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Abstract: This paper investigates the problems of H∞ consensus control for high-order fully actuated multi-agent systems
(HOFAMASs) with external disturbances. By utilizing the characteristics of high-order fully actuated systems (HOFASs), the
distributed control protocols are designed, eliminating all nonlinear characteristics of open loop systems while establishing new
closed-loop dynamic characteristics. Then, the H∞ consensus problems of HOFAMASs are addressed. The corresponding
parameters to be designed in the distributed control protocols are given by using linear matrix inequalities (LMIs). A novel
multi-spacecraft attitude model is proposed based on HOFASs. An illustrative example of the multi-spacecraft attitude model is
given, in order to demonstrate the effectiveness and application of the results proposed in this paper.

Key Words: High-order fully actuated system, multi-agent system, H∞ consensus control, multi-spacecraft attitude model

1 Introduction

With the rapid development of industrial demand, mod-
ern control systems are becoming more and more complex
and highly distributed. In this promotion, the multi-agent
system (MAS), which consists of a set of connected agents,
is regarded as a powerful system architectural to deal with
these challenging problems. The MASs have attracted con-
siderable research attention and have been widely applied in
multi-spacecraft systems, multi-AUV systems, battery sys-
tems and so on [1–3].

Consensus control is one of the important topics in the co-
operative control field of MASs. Moreover, owing to the
modeling and measurement errors [4, 5], external distur-
bances widely exist in MASs [6]. For MASs with simul-
taneous actuator and sensor faults, the H∞ control proto-
col is proposed by applying the static output-feedback de-
sign technique in [7]. When MASs are with simultane-
ous communication delay, random packet dropout and ex-
ternal disturbances, sufficient conditions for the H∞ con-
sensus are developed in terms of LMI form in [8]. In or-
der to tackle the satellite attitude tracking filtering problems,
the distributed H∞ consensus filters are given to to ensure
the optimal H∞ consensus disturbance rejection attenua-
tion performance in [9]. For guaranteed-cost H∞ consensus
problems for nonlinear MASs, a distributed event-triggered
controller is designed in [10] by using the Lyapunov func-
tion method. For discrete-time fractional order MASs with
external disturbance, different consensus protocols involving
finite-dimensional memory for state and output feedback are
given in [11] based on the Lyapunov function and Q-learning
approach.

However, most of the aforementioned significant devel-
opments in the consensus control, especially H∞ consensus
control, of MASs are based on the first-order state-space ap-
proach [12]. When the first-order state-space approach is

The work of this paper is supported by the National Natural Science
Foundation of China (No. 62303309 and No. 62073217).

* Corresponding author

used to model the agents of MASs, the physical background
information of the agents is lost because most practical sys-
tems are essentially second-order or high-order models after
modeling using physical laws such as Theorem of Linear and
Angular Momentum, Newton’s Law, and so on. Recently,
HOFASs have drawn great attention. HOFASs become gen-
eral models for control systems if this concept is mathemat-
ically generalized [13–16]. Most nonlinear systems can be
naturally modelled or converted into HOFASs as long as they
satisfy a certain kind of controllability property [17, 18]. For
the control design of nonlinear systems, the type of HOFASs
is relatively simple because the controllers can be immedi-
ately written out for HOFASs and eventually obtain the con-
stant linear closed-loop systems. Thus, applying HOFASs
to model the agents of MASs can not only truly reflect the
background information of MASs, but also be more conve-
nient for designing consensus control protocols. In [19], the
coordinated control of discrete-time HOFAMASs is investi-
gated and a predictive control strategy is proposed to realize
the simultaneous stability and output consensus. However,
the external disturbances are not considered in [19] and the
H∞ consensus of continuous-time HOFAMASs is one of the
important problems urgent to be studied.

Motivated by the above facts, the H∞ consensus of
continuous-time HOFAMASs is researched in this paper and
the main contributions can be summarized as follows:

(1) The H∞ consensus problems of continuous-time
HOFAMASs are addressed based on the bounded real
lemmas and inequality techniques. For HOFAMASs
with the undirected graph, the sufficient and necessary
condition for the H∞ consensus is given and the
distributed control protocol is established.

(2) Inspired by [20], the second-order fully actuated
continuous-time system is applied to model space-
craft attitude control systems and extended to multi-
spacecraft attitude nonlinear systems. Then, the
HOFAMASs are obtained and the H∞ consensus dis-
tributed control protocols are given based on the pro-
posed methods in this paper.
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The rest of this paper is as follows. The description of
HOFAMASs and some preliminaries are given in Section 2.
The distributed control protocol is established in Section 3d.
In Section 4, a numerical example is given. Section 5 con-
cludes this paper.
2 Preliminaries and Problem Formulation

Notations: Gu = (V, ε,A) represents the undirected
graph, in which V = {1, 2, · · · , N} is the nodes set of N
agents, ε ⊆ V × V is the edges set and A = [aij ] ∈ Rn×n
is the adjacent matrix. (i, j) is an edge of Gu. Ni is the
neighbor of node i. For the undirected graph Gu, (i, j) ∈ ε
is equivalent to aij = aji = 1, otherwise aij = 0. If
i = j,∀i ∈ V , then aii = 1 if the node i knows its own state
information; aii = 0, otherwise. L = [lij ] ∈ Rn×n repre-
sents the Laplacian matrix of Gu and lii = aii +

∑
j∈Ni

aij ,
lij = −aij , for i 6= j. For a node i in the undirected graph
Gu, if there exists at least a path such that this node could
reach any other node, then the graph Gu is connected. ⊗ is
the Kronecker product. ΛT represents the transpose of ma-
trix Λ. σ̄(Λ) is the maximum singular value of matrix Λ.
Sym{Λ} represents ΛT + Λ. det(Λ) is the determinant of
matrix Λ.

Assumption 1. Assume that the undirected graph Gu is con-
nected and has at least one node knowing its own state in-
formation.

Consider the following HOFAMAS

x
(n)
i =fi(x

(0∼n−1)
i ) +Gi(x

(0∼n−1)
i )ui +Bwi,

zi =Cx
(0∼n−1)
i , i = 1, 2, · · ·N,

(1)

where xi ∈ Rr, ui(t) ∈ Rr, wi(t) ∈ Rp, zi(t) ∈ Rq are
the state vector, the control input, the exogenous input and
the measured output of i−th agent, respectively. fi ∈ Rr
represents a continuous vector function. Gi ∈ Rr×r repre-
sents a continuous matrix function satisfying det(Gi) 6= 0.
B ∈ Rr×p, C ∈ Rq×nr are real constant matrices. n is an
integer and n ≥ 1. x(0∼n−1)i =

[
xi ẋi · · · xn−1i

]T
.

Remark 1. The condition det(Gi) 6= 0 implies that each
agent in system (1) is a HOFAS. It should be emphasized
that the HOFAS is a general model for control systems if this
concept is extended in mathematics [13–16]. Many typical
systems, such as affine systems, strict feedback systems and
interconnected systems, can be converted into HOFASs as
long as they satisfy a certain kind of controllability property
[17, 18]. Compared with the first-order state-space models,
one of the improvements of HOFASs is that they are directly
established by physical laws without model reduction. An-
other improvement of HOFASs is that it makes the control
design for nonlinear systems more concise. Controllers can
be immediately proposed based on HOFASs.

For HOFAMAS (1), a distributed control protocol is de-
signed

ui = G−1
i (x

(0∼n−1)
i )(gi + si),

gi = −fi(x(0∼n−1)
i )−A0∼n−1x

(0∼n−1)
i + vi,

si = cK
( ∑

j∈Ni

aij(x
(0∼n−1)
i − x(0∼n−1)

j ) + aiix
(0∼n−1)
i

)
,

(2)

in which A0∼n−1 =
[
A0 A1 · · · An−1

]
,

A0, A1, · · · , An−1 and K are control protocol gain
matrices, vi is some external signal, c > 0 represents the
coupling strength. With the distributed control protocol (2),
HOFAMAS (1) can be transformed into:

x
(n)
i = −A0∼n−1x

(0∼n−1)
i + vi +Bwi

+ cK
( ∑

j∈Ni

aij(x
(0∼n−1)
i − x(0∼n−1)

j ) + aiix
(0∼n−1)
i

)
,

zi = Cx
(0∼n−1)
i .

(3)
System (3) is equivalent to

ẋ
(0∼n−1)
i =φ(A0∼n−1)x

(0∼n−1)
i +Bcvi +BcBwi

+ cBcK
( ∑

j∈Ni

aij(x
(0∼n−1)
i − x(0∼n−1)

j )

+ aiix
(0∼n−1)
i

)
,

zi =Cx
(0∼n−1)
i ,

(4)

in which Bc =
[
0r×r 0r×r · · · Ir

]T ∈ Rnr×r, and

φ(A0∼n−1) =


0 Ir

. . .
Ir

−A0 −A1 · · · −An−1

 ∈ Rnr×nr.

Denote the follow variables

x(0∼n−1) =
[
(x

(0∼n−1)
1 )T (x

(0∼n−1)
2 )T · · · (x

(0∼n−1)
N )T

]T
,

v =
[
v1 v2 · · · vN

]T
, w =

[
w1 w2 · · · wN

]T
,

z =
[
z1 z2 · · · zN

]T
,

with which system (4) is equivalent to

ẋ(0∼n−1) = (IN ⊗ φ(A0∼n−1) + cL ⊗BcK)x(0∼n−1)

+ (IN ⊗Bc) v + (IN ⊗ (BcB))w,

z =(IN ⊗ C)x(0∼n−1).

(5)

It can be seen that HOFAMAS (1) with nonlinear terms
could be transformed into closed-loop linear system (5) by
applying the distributed control protocol (2), which is one
of the advantages of HOFASs as stated in Remark 1. Then,
some necessary definitions and lemmas can be given.

Definition 1. [21] For HOFAMAS (1) and a given real
scalar γ > 0, a distributed control protocol (2) is said to
address the H∞ consensus problem if

1) system (5) with wi = 0 and vi = 0 realizes consensus
satisfying limt→∞ ||xi − xj || = 0, ∀i, j = 1, 2, · · · , N ;

2) the transfer function from w to z of system (5)
satisfies ||Twz(s)||∞ < γ, where ||Twz(s)||∞ =
supw∈R σ̄(Twz(jw)) is theH∞ norm of Twz(s), j is a imag-
inary unit.

Based on Definition 1, the H∞ consensus problem of
HOFAMAS (1) can be addressed if the H∞ control problem
of system (5) is solved. The definition of the H∞ control
problem of system (5) is as follows.

Definition 2. For a given real scalar γ > 0, the H∞ control
problem of system (5) is solved if

2  



1) system (5) is asymptotically stable when v = 0, w = 0;
2) the transfer function from w to z of system (5)

satisfies ||Twz(s)||∞ < γ, where ||Twz(s)||∞ =
supw∈R σ̄(Twz(jw)) is theH∞ norm of Twz(s), j is a imag-
inary unit.

Lemma 1. [22] For the undirected graph Gu, if Gu is con-
nected and at least one node knows its own state information,
all the eigenvalues of L are real and positive.

The objective is as follows: For a given real scalar γ >
0, under the Assumption 1, design the corresponding dis-
tributed control protocol (2) such that the H∞ consensus
problems of HOFAMAS (1) are solved.

3 Main Results

In this section, Theorems 1 and 2 are derived to solve the
H∞ consensus problem of HOFAMAS (1) with the undi-
rected graph.

Theorem 1. For a given real scalar γ > 0 and undi-
rected graph Gu, system (5) is asymptotically stable and
||Twz||∞ < γ iff the following N systems are concurrently
asymptotically stable and ||Tw̃iz̃i ||∞ < γ, where Tw̃iz̃i is the
transfer function of the following N systems

˙̃x
(0∼n−1)
i = (φ(A0∼n−1) + cλiBcK) x̃

(0∼n−1)
i

+Bcṽi +BcBw̃i,

zi =Cx̃
(0∼n−1)
i , i = 1, 2, · · · , N.

(6)

Proof. Since Gu is undirected and connected and has at least
one node knowing its own state information, there exists a
unitary matrix H satisfying

H TL H = Γ = diag{λ1, λ2, · · · , λN}, (7)

in which 0 < λ1 ≤ λ2 ≤ · · · ≤ λN based on Lemma 1. Let

x̃
(0∼n−1)
i = (H T ⊗ IN )x

(0∼n−1)
i , w̃ = (H T ⊗ IN )w,

ṽ = (H T ⊗ IN )v, z̃ = (H T ⊗ IN )z.
(8)

Substituting (8) into system (5) yields

˙̃x(0∼n−1) = (IN ⊗ φ(A0∼n−1) + cΓ⊗BcK) x̃(0∼n−1)

+ (IN ⊗Bc) ṽ + (IN ⊗ (BcB)) w̃,

z̃ =(IN ⊗ C)x̃(0∼n−1).

(9)

Denote

x̃(0∼n−1) =
[
(x̃

(0∼n−1)
1 )T (x̃

(0∼n−1)
2 )T · · · (x̃

(0∼n−1)
N )T

]T
,

ṽ =
[
ṽ1 ṽ2 · · · ṽN

]T
, w̃ =

[
w̃1 w̃2 · · · w̃N

]T
,

z̃ =
[
z̃1 z̃2 · · · z̃N

]T
.

(10)
Then, system (9) can be transformed into system (6). The

transfer function of system (5) is

Twz(s) =(IN ⊗ C)(s(IN ⊗ Ir)− (IN ⊗ φ(A0∼n−1)

+ cL⊗BcK))−1 (IN ⊗ (BcB)) .
(11)

The transfer function of system (9) is

Tw̃z̃(s) =(IN ⊗ C)(s(IN ⊗ Ir)− (IN ⊗ φ(A0∼n−1)

+ cΓ⊗BcK))−1 (IN ⊗ (BcB)) .
(12)

The transfer function of system (6) is

Tw̃iz̃i(s) =C(sIr − (φ(A0∼n−1) + cλiBcK))−1(BcB).

(13)
From (11)-(13), one can find that Twz(s) = (H T ⊗
Ir)Tw̃z̃(s)(H T ⊗ Ir) and

||Twz(s)||∞ = ||Tw̃z̃(s)||∞ = max{||Tw̃iz̃i(s)||∞},
i = 1, 2, · · · , N.

(14)

The proof is completed.

Based on Theorem 1, the H∞ consensus problem of
HOFAMAS (1) with the undirected graph is solved and the
distributed control protocol is developed as follows.

Theorem 2. For a given real scalar γ > 0 and undi-
rected graph Gu, system (5) is asymptotically stable and
||Twz||∞ < γ iff there exist matrices P ∈ Rnr×nr, P >
0, T ∈ Rr×nr, real scalar τ > 0 such thatSym{φ(00∼n−1)P +BcT} − τBcB

T
c BcB PCT

BTBT
c −γIp 0

CP 0 −γIq

 < 0,

(15)

where φ(00∼n−1) =


0 Ir

. . .
Ir

0r×r 0r×r · · · 0r×r

 . Then,

the gain matrices in the distributed control protocol (2) can
be designed asA0∼n−1 = −TP−1, K = −0.5BTc P

−1 and
the coupling strength can be chosen as c ≥ τ

min{λi} , where
λi(i = 1, 2, · · · , N) are the eigenvalues of L .

Proof. Sufficiency: Substituting A0∼n−1 = −TP−1 into
inequality (15) and applying Schur complement lemma, one
has

Sym{φ(00∼n−1)P −BcA0∼n−1P} − τBcBTc
+ γ−1BcBB

TBTc + γ−1PCTCP < 0.
(16)

Note that c ≥ τ
min{λi} , which implies that cλi ≥ τ > 0.

From inequality (16), the following inequality holds

Sym{φ(00∼n−1)P −BcA0∼n−1P} − cλiBcBTc
+ γ−1BcBB

TBTc + γ−1PCTCP < 0.
(17)

By substituting K = −0.5BTc P
−1, there holds

Sym{φ(00∼n−1)P −BcA0∼n−1P}+ cλiBcKP

+ cλiPK
TBT

c + γ−1BcBB
TBT

c + γ−1PCTCP

= Sym{φ(00∼n−1)P −BcA0∼n−1P} − cλiBcB
T
c

+ γ−1BcBB
TBT

c + γ−1PCTCP < 0.
(18)

Using Schur complement lemma, one hasSym{(φ(A0∼n−1) + cλiBcK)P} BcB PCT

BTBT
c −γIp 0

CP 0 −γIq

 < 0.

(19)

From Theorem 1 and the Bounded Real Lemma in [23],
system (5) is asymptotically stable and ||Twz||∞ < γ.
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Necessity: If system (5) is asymptotically stable and
||Twz||∞ < γ, a matrix X > 0 can be found such thatSym{(φ(A0∼n−1) + cλiBcK)X} BcB XCT

BTBT
c −γIp 0

CX 0 −γIq

 < 0,

(20)

namely,

Sym{φ(00∼n−1)X −BcA0∼n−1X}+ cλiBcKX

+ cλiXK
TBT

c + γ−1BcBB
TBT

c + γ−1XCTCX < 0.
(21)

Since c > 0 and λi > 0, there exists a real scalar τ1 satisfy-
ing 0 < τ1 < cλi. Denote Y = KX and then the following
inequality holds

Sym{φ(00∼n−1)X −BcA0∼n−1X}+ τ1BcY

+ τ1Y
TBT

c + γ−1BcBB
TBT

c + γ−1XCTCX < 0.
(22)

From Finsler Lemma [24], there exists a real scalar τ2 > 0
satisfying

Sym{φ(00∼n−1)X −BcA0∼n−1X} − τ2τ1BcB
T
c

+ γ−1BcBB
TBT

c + γ−1XCTCX < 0.
(23)

Denote T = A0∼n−1X, τ = τ1τ2, P = X and then in-
equality (15) holds. The proof is completed.

Remark 2. For the H∞ consensus problem of HOFAMAS
(1), the necessary and sufficient condition is given and the
distributed control protocol is developed by introducing the
coupling strength parameter and using the LMI approach.
It should be emphasized that one only needs to solve one
LMI in Theorem 2, and does not need to substitute each
eigenvalue of the Laplacian matrix L into the LMI to find
the common solution set. By comparison, the methods in
[10, 25, 26] need to substitute each eigenvalue of the Lapla-
cian matrix L into the LMI to find the common feasible so-
lution set and address consensus problems of MASs with the
undirected graph, which could increase the computational
complexity when the number of the agents increases.

4 Numerical Example

In this section, a multi-spacecraft attitude model is pro-
posed and converted into a HOFAMAS. Then, the H∞ con-
trol protocol of this multi-spacecraft attitude model is given.

4.1 The Multi-Spacecraft Attitude Model
The commonly used models to analyze the spacecraft at-

titude include the Euler angle, quaternion, Classical Ro-
drigues Parameter (CRP) and Modified Rodrigues Parame-
ter (MRP) [27–29]. The Euler angle is the most widely used
attitude description method in engineering practice, which
has clear physical meanings and can be directly obtained by
attitude sensors [30]. Therefore, the Euler angle is used in
this paper. The dynamics for the attitude motion of the ith
rigid spacecraft can be written as follows [31]:

Jω̇i + ωi × (Jωi) = Tci + Tgi + Tdi, i = 1, 2, 3, · · · , N, (24)

where J = J = R3×3 is the inertia matrix, ωi, Tci, Tgi,
Tdi denote the angular velocity, control input torque, gravity

gradient torque and the external disturbance torque of the ith
rigid spacecraft, respectively.

Similar to the results in [31], the following equations can
be obtained
Jxϕ̈i + 4(Jy − Jz)ω

2
0ϕi + (Jy − Jz − Jx)ω0ψ̇i = Tcxi + Tdxi,

Jy θ̈i + 3ω2
0(Jx − Jz)θi = Tcyi + Tdyi,

Jzψ̈i + (Jy − Jx)ω
2
0ψi + (Jx + Jz − Jy)ω0ϕ̇i = Tczi + Tdzi,

(25)
where Jx, Jy and Jz are the three components of inertia ma-
trix; ϕi, θi and ψi are the roll, pitch and yaw attitude angles;
Tdxi, Tdyi and Tdzi are the three components of the external
disturbance torque; Tcxi, Tcyi and Tczi are the three com-
ponents of the control input torque; ω0 is the orbital angular
velocity.

Let xi =
[
ϕi θi ψi

]T
, zi =

[
ϕi θi ψi

]T
, ui =[

Tcxi Tcyi Tczi
]T

, wi =
[
Tdxi Tdyi Tdzi

]T
. System

(25) can be written as

ẍi = ξi(x, ẋ) +B1ui +B2wi,

zi = C1xi, i = 1, 2, 3, · · · , N,
(26)

where

ξi(x, ẋ) =

−4J−1
x (Jy − Jz)ω2

0ϕi + J−1
x (Jx + Jz − Jy)ω0ψ̇i

−3J−1
y ω2

0(Jx − Jz)θi
−J−1

z (Jy − Jx)ω2
0ψi − J−1

z (Jx + Jz − Jy)ω0ϕ̇i

 ,
B1 = B2 =

J−1
x 0 0
0 J−1

y 0
0 0 J−1

z

 , C1 =

1 0 0
0 1 0
0 0 1

 .
Considering the nonlinear dynamics gi = sin(θ̇) of pitching
systems, system (26) is transformed into

ẍi = fi(x, ẋ) +B1ui +B2wi,

zi = C1xi, i = 1, 2, 3, · · · , N,
(27)

where

fi(x, ẋ) =

−4J−1
x (Jy − Jz)ω2

0ϕi + J−1
x (Jx + Jz − Jy)ω0ψ̇i

−3J−1
y ω2

0(Jx − Jz)θi + gi
−J−1

z (Jy − Jx)ω2
0ψi − J−1

z (Jx + Jz − Jy)ω0ϕ̇i

 .
Remark 3. Note that many spacecraft attitude models are
based on the the state-space approach [9, 29, 31], where the
model is reduced to a first order system. From (25), it can be
seen that the spacecraft attitude model is a second order sys-
tem in nature. Thus, a novel multi-spacecraft attitude model
is obtained in (27), which is the second order fully actuated
multi-agent system, i.e. a typical case of HOFAMAS (1).

4.2 H∞ Consensus Control for The Multi-Spacecraft
Attitude Model

1

2

3 4

Fig. 1: Communication topology graph Gu.
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Fig. 2: The state evolution of the attitude angles.
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Fig. 3: The state evolution of the attitude angular velocities.

Consider the multi-spacecraft attitude model with the
moments of inertia Jx = 18, Jy = 21, Jz = 24 [20] and the
undirected graph Gu, which is shown in Fig. 1. The aim is to
design the distributed control protocol (2) such that system
(27) with Gu achieves theH∞ consensus. The Laplacian ma-

trix of the undirected graph Gu is L =


2 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2

 .
By applying Theorem 2 with γ = 1, there exist fea-

sible solutions P =

[
P1 P2

P2 P3

]
, T =

[
T1 T2

]
,

τ = 1.2977, where P1 = diag{0.4327, 0.4327, 0.4327},
P2 = diag{−0.3246,−0.3246,−0.3246},
P3 = diag{1.2978,1.2978, 1.2978}, T1 =
diag{−1.2977,−1.2977,−1.2977}, T2 =
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Fig. 4: The control inputs of the spacecrafts.

10
-6

10
-4

10
-2

10
0

10
2

Frequency(rad/s)

0

0.002

0.004

0.006

0.008

0.01

0.012

Ma
xim

um
 si

ng
ula

r v
alu

es
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diag{−1.2979,−1.2979,−1.2979}. Then, the gain matri-
ces to be determined in the distributed control protocol (2)
can be designed as A0∼1 =

[
Π1 Π2

]
, K =

[
K1 K2

]
,

where Π1 = diag{−4.6144,−4.6144,−4.6144}, Π2 =
diag{−2.1541,−2.1541,−2.1541}, K1 =
diag{−0.3557,−0.3557,−0.3557}, K2 =
diag{−0.4742,−0.4742,−0.4742}. The coupling strength
parameter c ≥ τ

min{λi} = 9.3226, i = 1, 2, 3, 4. Then, the
coupling strength parameter c can be taken as 10.

In order to show the effectiveness of the proposed dis-
tributed control protocol, consider the following initial val-
ues of attitude angles and attitude angular velocities of
the multi-spacecraft model: ϕ1(0) = 0.5236, θ1(0) =

−2.0944, ψ1(0) = 0.3927, ϕ̇1(0) = −0.2104, θ̇1(0) =

1.2000, ψ̇1(0) = −0.2618, ϕ2(0) = 0.6236, θ2(0) =

−1.9944, ψ2(0) = 0.4927, ϕ̇2(0) = −0.1104, θ̇2(0) =

1.3000, ψ̇2(0) = −0.1618, ϕ3(0) = 0.7236, θ3(0) =

−1.8944, ψ3(0) = 0.5927, ϕ̇3(0) = −0.0104, θ̇3(0) =

1.4000, ψ̇3(0) = −0.0618, ϕ4(0) = 0.8236, θ4(0) =

−1.7944, ψ4(0) = 0.6927, ϕ̇4(0) = 0.0896, θ̇4(0) =

1.5000, ψ̇4(0) = 0.0382. The state evolutions of attitude an-
gles and attitude angular velocities are shown in Fig. 2 and
3, respectively, where it can be seen that both attitude an-
gles and attitude angular velocities realize consensus. The
values of σ̄(Twz(jw)) are shown in Fig. 5, where the max-
imum peak value is about 0.0112 < 1. It can be seen that
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theH∞ consensus of the multi-spacecraft attitude model has
been realized under the distributed control protocol (2). The
corresponding control inputs of the spacecrafts are shown in
Fig. 4. One can find that during the initial phase, the con-
trol inputs are large but gradually decrease as the the multi-
spacecraft attitude tends to achieve consensus.
5 Conclusions

For HOFAMASs with external disturbances, the H∞ dis-
tributed control protocols have been designed, which can
eliminate all nonlinear characteristics of open loop sys-
tems and establish new closed-loop dynamic characteristics.
For the H∞ consensus of HOFAMASs with the undirected
graph, the necessary and sufficient condition has been given
and the gain matrices in the distributed control protocol have
been developed. Finally, a multi-spacecraft attitude model
has been proposed based on the HOFAS and a numerical ex-
ample has been given to show the effectiveness of the results.
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Adaptive Stabilization Control for Fully Actuated Systems with
Unknown Measurement Sensitivity
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Abstract: This study addresses the adaptive control problem of uncertain high-order fully actuated systems with unknown
measurement sensitivity. Sensitivity is a crucial metric for assessing sensor performance, directly influencing the effectiveness
of sensor applications. Considering sensitivity as an unknown constant, this paper employs the theory of fully actuated systems.
An adaptive controller is designed based on the actual measurement values of the system state, aiming to achieve stable control
performance and bounded signals within the closed-loop system. Finally, the proposed control approach is applied to a 2-DOF
robotic arm, validating the effectiveness of the proposed methodology.

Key Words: Fully actuated systems, adaptive control, unknown measurement sensitivity.

1 Introduction

The state space method provides an intuitive way to de-
scribe the dynamic behavior of linear systems, providing a
common framework for analyzing and designing linear sys-
tems. However, with the continuous development of mod-
ern industry, the state space method has become insufficien-
t to meet the control needs of nonlinear systems. For ex-
ample, for many practical control systems, applying the s-
tate space method to design globally stable control laws is
a highly challenging task. In recent years, Professor Duan
proposed a revolutionary new theory parallel to the state s-
pace method–the fully actuated system (FAS) theory. This
method can effectively describe almost all nonlinear control
systems. The full-actuation characteristic allows us to cancel
out all the dynamic characteristics of the open loop system
(whether linear or non-linear), while establishing new and
promising closed-loop dynamic characteristics. Even in the
case of nonlinear systems, A desired time-invariant linear
closed-loop system can also be obtained [1–3].

The FAS theory, once proposed, received a lot of atten-
tion from many scholars because it was based on the full-
actuation system model and completely freed from the state
space method. It has shown extremely strong advantages in
dealing with a series of complex problems such as nonlinear-
ity, time-varying, and lag characteristics. The fully actuated
system theory provides a new framework for studying non-
linear system control. Since the proposal of this theory, aca-
demic research on full-actuation system control has emerged
successively. In [4], the adaptive control problem of a class
of time-delay systems based on the high order full drive sys-
tem method is studied, and a continuous adaptive controller
is designed. It is proved that the controller can make the
system reach asymptotic stability. A proposed optimal con-
troller is presented in [5] for FASs, with the aim of achiev-
ing attitude and orbit stabilization control for combined s-
pacecraft. In [6], a model for the six-degree-of-freedom s-
pacecraft motion, specifically employing a FAS framework,

This work is supported by Guangyue Young Scholar Innovation Team
of Liaocheng University under Grant LCUGYTD2022-01, Liaocheng U-
niversity Major Vertical Project Cultivation Plan Project under Grant
318062305 and the Science Center Program of National Natural Science
Foundation of China under Grant 62188101.

is initially developed through variable elimination from the
state-space model. Subsequently, a tracking controller is
crafted based on the principles of the FAS approach.

It is pertinent to highlight that, owing to technological
constraints, sensors are unable to capture all state variables.
Consequently, the actual values of the output function un-
avoidably deviate from their nominal counterparts. In the
magnetic bearing suspension system, there is a sensitivity
error of 10% in the displacement sensor [7]. In [8], the
problem of global finite-time output feedback stabilization
for uncertain nonlinear systems with unknown measurement
sensitivity is investigated. Diao et al. [9] address the track-
ing control problem for flexible joint robots with unknown
measurement sensitivity in multi-input multi-output Euler-
Lagrange systems, regardless of the complete uncertainty in
system dynamics.

In summary, this paper investigates the adaptive control
problem of a high-order fully actuated system with unknown
measurement sensitivity. The contributions of this paper are
as follows:

(1) The use of the FAS method to address the challenges of
high-order systems with unknown measurement sensitivity,
eliminating the need for conversion into first-order systems
and thereby reducing computational complexity.

(2) The design of an adaptive controller based on unreal
state values measured by sensors, ensuring that all signals
within the closed-loop system remain bounded.

Notations: For ease of description, several symbols are
used in this paper. The upcoming section will simplify the
notation of the functions. Specifically, functions like fi(·)
will be represented as fi. I is the identity matrix, and I∗ is
the inverse identity matrix,

p(0∼n) =
[
pT , ṗT , . . . , p(n)T

]T
,

p
(0∼n)
i∼j =

[
p
(0∼n)
i , p

(0∼n)
i+1 , . . . , p

(0∼n)
j

]T
, j ≥ i,

B0∼n−1 =
[
B0 B1 . . . Bn−1

]
,

ϕ(B0∼n−1) =

[
0 I
−B0∼n−1

]
.
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2 Problem Statement and Preliminaries

2.1 Problem Statement
Examine a category of uncertain nonlinear high-order

FASs:
p
(mi)
i = fi(p

(0∼mi−1)
1∼i ) + gi(p

(0∼mi−1)
1∼i )pi+1,

i = 1, . . . , n− 1,

p
(mn)
n = fn(p

(0∼mn−1)
1∼n ) + gn(p

(0∼mn−1)
1∼n )u,

wi = ηipi, i = 1, . . . , n,

(1)

where pi ∈ Rr represents the state variables, mi is a set of
positive integers, fi(p

(0∼mi−1)
1∼i ) denotes a set of sufficiently

smooth vector functions, gi(p
(0∼mi−1)
1∼i ) ∈ Rr×r is a collec-

tion of sufficiently smooth matrix functions, ηi ∈ R signifies
the untrue system state value measured by sensors, utilized
for feedback control, where ηi ̸= 0 denotes the measuremen-
t sensitivity and is characterized as an unknown parameter.
Assuming, under the assumption of generality, that the un-
known measurement sensitivity ηi is positive. Additionally,
u ∈ Rr is the control input.

The control objective of this paper is to achieve stabili-
ty for the system (1) and ensure that all signals within the
closed-loop system remain bounded.

2.2 Preliminaries
Assumption A1: The control distribution matrix

gi(p
(0∼mi−1)
1∼i ) satisfies the full-actuation condition

det gi(p
(0∼mi−1)
1∼i ) ̸= 0, i = 1, . . . , n.

Lemma 1 [10]: Radial basis function neural networks have
the capability to approximate any continuous function χ(x)
over a compact set Ωx with arbitrary precision e > 0, as
demonstrated below:

k(x) = ψTS(x) + r(x),

satisfying

sup
x∈Ωx

|χ(x)− k(x)| ≤ e,

where r(x) denotes the estimation error, ψ represents the
weight vector, and S(x) corresponds to the basis function
vector.

Lemma 2 [11]: If matrix B0∼n−1 is chosen to guarantee
the stability of matrix ϕ(B0∼n−1), then there exists a posi-
tive definite matrix E(B0∼n−1) that fulfills the equation

ϕT (B0∼n−1)E(B0∼n−1) + E(B0∼n−1)ϕ(B0∼n−1) ≤ −I,

where I denotes identity matrix.
Lemma 3 [12]: For any positive constant o and any vari-

able ω ∈ R, the ensuing inequality prevails:

0 ≤ |ω| − ω2

√
ω2 + o2

≤ o.

The following section encompasses preparatory work, ex-
cluding assumptions and lemmas. Initially, introduce an ar-
ray of matrices B0∼mi−1

i ∈ Rr×nr, i = 1, 2, . . . , n that en-
sures the stability of ϕ(B0∼mi−1

i ) ∈ Rnr×nr. Assuming
the unique existence of the solution P to the following Lya-
punov inequality,

ϕT (B0∼mi−1
i )Ei(B

0∼mi−1
i ) + Ei(B

0∼mi−1
i )ϕ(B0∼mi−1

i )

≤ −Inr

for i = 1, 2, . . . , n, among them,

Ei(B
0∼mi−1
i ) =

[
EiF (B

0∼mi−1
i ), · · · , EiL(B0∼mi−1

i )
]

∈ Rnr×nr,

where EiF (B0∼mi−1
i ) and EiL(B

0∼mi−1
i ) ∈ Rnr×r. In

addition to that, we have to define

Ẽi(B
0∼mi−1
i ) = I∗i E

T
i (B

0∼mi−1
i ), i = 1, 2, . . . , n,

Ẽ−1
i (B0∼mi−1

i )

=

[
Ji1(B

0∼mi−1
i )

Ji2(B
0∼mi−1
i )

]
=

[
Ji1(B

0∼mi−1
i )

JiF (B
0∼mi−1
i ) JiM (B0∼mi−1

i ) JiL(B
0∼mi−1
i )

]
,

where JiF (B0∼mi−1
i ) and JiL(B0∼mi−1

i ) are two constant
matrices. Next, define the constant Θ as:

Θ = max{∥Wi ∥2,
η2i
η2i+1

, i = 1, ..., n},

where Θ̃ = Θ− Θ̂, Θ̂ is an estimate of Θ, Θ̃ is the estimated
error.

3 Controller design

Step 1: First, define

ζ
(0∼m1−1)
1 = w

(0∼m1−1)
1 (2)

and

E2(B
0∼m2−1
2 )ζ

(0∼m2−1)
2 = w

(0∼m2−1)
2 −

[
α1

0

]
. (3)

Considering the symmetry property of E2, divide the above
equation into

ET2L(B
0∼m2−1
2 )ζ

(0∼m2−1)
2 = w2 − α1, (4)

Then, write ζ̇(0∼m1−1)
1 in state space form

ζ̇
(0∼m1−1)
1 = ϕ(B0∼m1−1

1 )ζ
(0∼m1−1)
1 +

[
0(m1−1)

Ξ

]
.

where Ξ = η1f1 + η1
η2
g1(α1 + ET2Lζ

(0∼m2−1)
2 ) +

B0∼m1−1
1 ζ

(0∼m1−1)
1 . Introduce F1(P1) = WT

1 ψ1(P1) +
ϵ1(P1), where ϵ1(P1) is approximation error and ∥
ϵ1(P1) ∥≤ ϵ̄1. Let F1(P1) = η1f1, where P1 =

[p
(0∼m1−1)
1 ]. Construct V̄1 = (ζ

(0∼m1−1)
1 )TE1ζ

(0∼m1−1)
1 ,

˙̄V1 =
1

2
(ζ

(0∼m1−1)
1 )T (ϕTE1 + E1ϕ)ζ

(0∼m1−1)
1

+ (ζ
(0∼m1−1)
1 )TE1L(W

T
1 ψ1 + ϵ1 +

η1
η2
g1α1

+
η1
η2
g1E

T
2Lζ

(0∼m2−1)
2 +B0∼m1−1

1 ζ
(0∼m1−1)
1 ).
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By using Young’s inequality, one obtains

(ζ
(0∼m1−1)
1 )TE1LW

T
1 ψ1

≤ 1

2b21
(ζ

(0∼m1−1)
1 )TE1LE

T
1Lζ

(0∼m1−1)
1 ΘψT1 ψ1 +

1

2
b21,

(ζ
(0∼m1−1)
1 )TE1Lϵ1

≤ 1

2
(ζ

(0∼m1−1)
1 )TE1LE

T
1Lζ

(0∼m1−1)
1 +

1

2
ϵ̄21,

η1
η2

(ζ
(0∼m1−1)
1 )TE1Lg1E

T
2Lζ

(0∼m2−1)
2

≤ 1

2
Θ(ζ

(0∼m1−1)
1 )TE1LE

T
1Lζ

(0∼m1−1)
1 g21

+
1

2
(ζ

(0∼m2−1)
2 )TE2LE

T
2Lζ

(0∼m2−1)
2 .

Let V1 = V̄1 +
1

2a1
Θ̃2 + η1

2a2η2
ṽ21 , the virtual controller and

the adaptive laws are designed based on Assumption 1 as
follows

ᾱ1 =g−1
1 (

Θ̂

2b21
ET1Lζ

(0∼m1−1)
1 ψT1 ψ1 +

1

2
ET1Lζ

(0∼m1−1)
1

+
Θ̂

2
g21E

T
1Lζ

(0∼m1−1)
1 +B0∼m1−1

1 ζ
(0∼m1−1)
1 ),

α1 =− g1E
T
1Lζ

(0∼m1−1)
1 ᾱT1 ᾱ1v̂

2
1√

∥ g1ET1Lζ
(0∼m1−1)
1 ᾱ1 ∥2 v̂21 + ε21

,

˙̂v1 =a2(ζ
(0∼m1−1)
1 )TE1Lg1ᾱ1 − a2c1v̂1,

τ1 =
a1
2
(ζ

(0∼m1−1)
1 )TE1Lg

2
1E

T
1Lζ

(0∼m1−1)
1 − a1c0Θ̂

+
a1
2b21

(ζ
(0∼m1−1)
1 )TE1LE

T
1Lζ

(0∼m1−1)
1 ψT1 ψ1.

Furthermore, it is possible to obtain

V̇1 = ˙̄V1 −
1

a1
Θ̃

˙̂
Θ− η1

a2η2
ṽ1 ˙̂v1

≤− 1

2
∥ ζ(0∼m1−1)

1 ∥2 +
Θ̃

a1
(τ1 − ˙̂

Θ) +
1

2
b21 +

1

2
ϵ̄21

+
1

2
(ζ

(0∼m2−1)
2 )TE2LE

T
2Lζ

(0∼m2−1)
2 +

η1
η2
ε1

+ c0Θ̃Θ̂ +
η1
a2η2

c1ṽ1v̂1.

Step i (2 ≤ i ≤ n − 1): By utilizing Equation (3), we
can obtain

ζ
(0∼mi−1)
i = Ẽ−1

i

(
w

(0∼mi−1)
i −

[
αi−1

0

])
,

which gives

ζ
(mi−1)
i =JiF (wi − αi−1) + JiMw

(1∼mi−2)
i

+ JiLw
(mi−1)
i ,

taking the derivative of it,

ζ
(mi)
i =JiF (ẇi − α̇i−1) + JiMw

(2∼mi−1)
i + JiLw

(mi)
i

Let Fi(Pi) = WT
i ψi(Pi) + ϵi(Pi), Pi =

[(p
(0∼m1−1)
1 )T , . . . , (p

(0∼mi−1)
i )T , Θ̂]T , where

∥ ϵi(Pi) ∥≤ ϵ̄i is approximation error. Define

Fi(Pi) = JiF (ẇi − α̇i−1) + JiMw
(2∼mi−1)
i + JiLηifi.

Let Vi = Vi−1 + (ζ
(0∼mi−1)
i )TEiζ

(0∼mi−1)
i + ηi

2aiηi+1
ṽ2i ,

designing virtual controllers and adaptive laws

ᾱi =(JiLgi)
−1(

Θ̂

2b2i
ETiLζ

(0∼mi−1)
i ψTi ψi + ETiLζ

(0∼mi−1)
i

+
Θ̂

2
(JiLgi)

2ETiLζ
(0∼mi−1)
i +B0∼mi−1

i ζ
(0∼mi−1)
i ),

αi =− JiLgiE
T
iLζ

(0∼mi−1)
i ᾱTi ᾱiv̂

2
i√

∥ JiLgiETiLζ
(0∼mi−1)
i ᾱi ∥2 v̂2i + ε2i

,

˙̂vi =a2(ζ
(0∼mi−1)
i )TEiLgiᾱi − a2civ̂i,

τi =τi−1 +
a1
2b2i

(ζ
(0∼mi−1)
i )TEiLE

T
iLζ

(0∼mi−1)
i ψTi ψi

+
a1
2
J2
iL(ζ

(0∼mi−1)
i )TEiLg

2
iE

T
iLζ

(0∼mi−1)
i .

Thus,

V̇i ≤−
i∑

j=1

1

2
∥ ζ(0∼mj−1)

j ∥2 +
i∑

j=1

ηi
ηi+1

ciṽiv̂i +
1

2

i∑
j=1

ϵ̄2j

+
Θ̃

a1
(τi − ˙̂

Θ) + c0Θ̃Θ̂ +

i∑
j=1

ηj
ηj+1

εj +
1

2

i∑
j=1

b2j

+
1

2
(ζ

(0∼mi+1−1)
i+1 )TEi+1,LE

T
i+1,Lζ

(0∼mi+1−1)
i+1 .

Step n: Based on the previous n−1 steps, we can imme-
diately obtain

ζ(mn)
n =JnF (ẇn − α̇n−1) + JnMw

(2∼mn−1)
n + JnLw

(mn)
n .

Let Fn(Pn) = WT
n ψn(Pn) + ϵn(Pn), Pn =

[(p
(0∼m1−1)
1 )T , . . . , (p

(0∼mn−1)
n )T , Θ̂]T , where

∥ ϵn(Pn) ∥≤ ϵ̄n is approximation error. Define Fn(Pn) =

JnF (ẇn− α̇n−1)+JnMw
(2∼mn−1)
n +JnLηnfn. Construct

Vn = Vn−1 + (ζ
(0∼mn−1)
n )TELζ

(0∼mn−1)
n + ηi

2aiηi+1
ṽ2n,

designing the controller and adaptive gains is outlined below

ᾱn =(JnLgn)
−1(

Θ̂

2b2n
ETnLζ

(0∼mn−1)
n ψTnψn

+ ETnLζ
(0∼mn−1)
n +B0∼mn−1

n ζ(0∼mn−1)
n ),

αn =− JnLgnE
T
nLζ

(0∼mn−1)
n ᾱTn ᾱnv̂

2
n√

∥ JnLgnETnLζ
(0∼mn−1)
n ᾱn ∥2 v̂2n + ε2n

,

˙̂vn =a2(ζ
(0∼mn−1)
n )TEnLgnᾱn − a2cnv̂n,

τn =
a1
2b2n

(ζ(0∼mn−1)
n )TEnLE

T
nLζ

(0∼mn−1)
n ψTnψn

+ τn−1.

(5)

As a consequence,

V̇n ≤−
n∑
j=1

1

2
∥ ζ(0∼mj−1)

j ∥2 +ηncnṽnv̂n +
1

2

n∑
j=1

ϵ̄2j

+

n−1∑
j=1

ηj
ηj+1

cj ṽj v̂j +

n−1∑
j=1

ηj
ηj+1

εj +
1

2

n∑
j=1

b2j

+
Θ̃

a1
(τn − ˙̂

Θ) + c0Θ̃Θ̂ + ηnεn
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4 Stability Analysis

Theorem 1: For high-order FASs (1), the design of con-
trollers and adaptive laws (6) guarantee the stabilization of
the systems, and all signals of the closed-loop system remain
bounded.

Proof: Given that Θ̃ = Θ− Θ̂, one has

ηncnṽnv̂n ≤− 1

2
ηncnṽ

2
n +

1

2
ηncnv

2
n,

n−1∑
j=1

ηj
ηj+1

cj ṽj v̂j ≤− 1

2

n−1∑
j=1

ηj
ηj+1

cj ṽ
2
j +

1

2

n−1∑
j=1

ηj
ηj+1

cjv
2
j ,

c0Θ̃Θ̂ ≤− 1

2
c0Θ̃

2 +
1

2
c0Θ

2.

Hence,

V̇n ≤−
n∑
j=1

1

2
∥ ζ(0∼mj−1)

j ∥2 −1

2

n−1∑
j=1

ηj
ηj+1

cj ṽ
2
j + ηnεn

− 1

2
ηncnṽ

2
n +

1

2
ηncnv

2
n +

n−1∑
j=1

ηj
ηj+1

εj +
1

2

n∑
j=1

b2j

+
1

2

n−1∑
j=1

ηj
ηj+1

cjv
2
j −

1

2
c0Θ̃

2 +
1

2

n∑
j=1

ϵ̄2j +
1

2
c0Θ

2

≤− cVn + Γ,

where c = min{λ−1
min(E), a1c0, a2ci}, Γ =

n−1∑
j=1

ηj
ηj+1

εj +

1
2

n∑
j=1

b2j + ηnεn +
1
2

n−1∑
j=1

ηj
ηj+1

cjv
2
j +

1
2ηncnv

2
n +

1
2

n∑
j=1

ϵ̄2j +

1
2c0Θ

2. Therefore,

0 ≤ V (t) ≤ Γ

c
+ (V (0)− Γ

c
)e−ct,

which means that all signals are bounded.

5 Simulation examples

To verify the effectiveness of the proposed method, we
apply it to 2-DOF robot manipulators. The dynamic equation
of the system is given by [13]

D(x)ẍ+R(x, ẋ)ẍ+H(x) = τ,

where x ∈ R2 is the vector of joint position, D(x) ∈ R2×2

is the inertia matrix, R(x, ẋ) ∈ R2×2 is the centrifugal and
Coriolis matrix, H(x) ∈ R2 is the gravitational forces vec-
tor, τ(t) ∈ R2 is the input torque vector. In this context,
each vector or matrix can be further decomposed into the
following forms:

D(x) =

 (s1 +m2)d
2
1 + s2d

2
2 s2d

2
2 + s2d1d2 cos(x2)

+2s2d1d2 cos(x2) + I1
s2d

2
2 + d1d2 cos(x2) s2d

2
2 + I2

 ,
R(x, ẋ) =

[
−s2d1d2 sin(x2)q̇1 − 2s2d1d2 sin(x2)q̇1

0 s2d1d2 sin(x2)q̇2

]
,

H(x) =

[
(s1 + s2)gd1 cos(x2) + s2gd2 cos(x1 + x2)

s2gd2 cos(x1 + x2)

]
,

wheremι represents the mass of link ι, dι signifies the length
of link ι, and Iι stands for the moment of inertia of link ι,
ι = 1, 2.
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Fig. 1. Trajectory of x1.
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Fig. 2. Trajectory of ẋ1.

E =


2.6329 − 0.1366 0.7878 − 1.0756
−0.1366 1.3488 − 0.1366 0.3488
0.7878 − 0.1366 0.4465 − 0.5159
−1.0756 0.3488 − 0.5156 0.9707

 ,

B0 =

[
2 4
1 3

]
, B1 =

[
3 4
0.1 3

]
The system parameters are chosen as s1 = 4, s2 = 1, d1 =
0.5, d2 = 1, I1 = 1, I2 = 0.5, ε = 0.01, η = 0.75. The
initial values are x1(0) = 9, ẋ1(0) = 2, x2(0) = −6,
ẋ2(0) = 2, Θ̂(0) = 2, v̂(0) = 5, b = 0.4, a1 = 0.5, a2 =
0.5, c0 = 0.5, c1 = 3. The trajectories of the motion vari-
ables x1, ẋ1, x2 and ẋ2 are depicted in Figs. 1-4. Addition-
ally, Fig. 5 and Fig. 6 illustrate that the adaptive parameters
eventually become bounded, while Fig. 7 and Fig. 8 display
the trajectories of the inputs u1 and u2.

6 Conclusion

This paper addresses the adaptive stabilization control of
a class of high-order fully actuated systems with unknown
measurement sensitivity. Drawing upon the theory of ful-
ly actuated systems, the approach directly tackles high-order
systems, circumventing the computational complexity intro-
duced by system reduction. Leveraging the state values mea-
sured by sensors, the system is brought to stability with all
signals within the closed-loop system bounded. Finally, the
proposed control scheme is applied to a 2-DOF robotic arm,
substantiating the feasibility of the algorithm.
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Fig. 3. Trajectory of x2.
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Fig. 4. Trajectory of ẋ2.
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Fig. 5. Trajectory of Θ̂.
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Fig. 6. Trajectory of v̂.
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Fig. 7. Trajectory of u1.
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Fig. 8. Trajectory of u2.
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Coordinated Control for Incomplete Controllable Systems over
Finite Fields
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Abstract: Controller design is discussed for coordinated control problems of incomplete controllable systems over finite fields.
Generalized types of consensus and synchronization are proposed, respectively. Combined with high-order fully actuated system
approaches, incomplete controllable systems are decoupled. Under some circumstances, suitable controllers are given to achieve
consensus or synchronization in the general context. Finally, a numerical example about camera light network is shown to verify
our results.

Key Words: Incomplete controllable Systems, Coordinated control, Finite fields, High-order fully actuated system

1 Introduction

Networks over finite fields have gained significant attention
in recent years due to their applications in various areas,
including control, coordination, communication, etc [1].

Pasqualetti et al. [2] presented an analysis of consensus
networks over finite fields. Xu and Hong [3] further explored
leader-following consensus in multi-agent systems with di-
rected acyclic graph topology. Time-delayed consensus net-
works were investigated by Li et al. [4], and the discussion
of switching topology on consensus networks was explored
in their subsequent work [5]. Yu et al. [6] highlighted the
importance of finite-field networks in achieving coordinated
output behavior in leader-follower structures.

Synchronization, a more common case of consensus, was
investigated by Meng et al. [7] and Wang et al. [8], who
extended results in [2] to synchronization networks. Zhu et
al. [9] looked into synchronization with time delays with the
help of linear recursion theory.

There are many explorations of synchronization in special-
ized networks. Zhang et al. [10] investigated synchronization
in networks with switching multiple communication chan-
nels. Lin et al. [11] provided insights into synchronization
under uncertain conditions by analyzing stochastic networks
through finite fields. Cluster synchronization, a concept cru-
cial for large-scale networks, was explored by Lin et al. [12],
by means of semi-tensor product. Chen and Zhu [13] con-
tributed by conducting a synchronization analysis of Boolean
networks, which also used semi-tensor product. Zhao et al.
[14] extended this work by studying the synchronization of
drive-response singular Boolean networks, providing valu-
able insights into the synchronization behavior of specialized
Boolean networks.

The literature reviewed demonstrates the versatility and ap-
plicability of finite-field networks in diverse scenarios. How-
ever, their discussions are more or less based on special topol-
ogy structure of the multi-agent network, or based on semi-
tensor product, which has the disadvantage of computing.

High-order fully actuated (HOFA) systems have become
a focal point in control theory and engineering applications

This work was supported in part by the Science Center Program of
National Natural Science Foundation of China under Grant 62188101,
62273201, and the Research Fund for the Taishan Scholar Project of Shan-
dong Province of China (TSTP20221103).

due to their relevance in addressing complex dynamical sys-
tems. [15] provided a foundational understanding of HOFA
systems, outlining models and basic procedures. The se-
ries begin with an exploration of fully actuated systems and
parametric designs [16], followed by discussions on control-
lability and full actuation [17]. Subsequent articles delve into
robust control and high-order backstepping [18], adaptive
control and high-order backstepping [19], robust adaptive
control [20], disturbance attenuation, and decoupling [21],
showcasing a comprehensive approach to control design.

The application of HOFA systems extends to specific do-
mains. The work [22] on optimal control, particularly in
spacecraft attitude stabilization, the introduction of discrete-
time systems [23], as well as discrete time delay systems [24],
demonstrate the adaptability of HOFA system approaches to
different contexts. Researchers such as Liu [25] and Zhang
et al. [26] have extended HOFA system approaches to net-
worked multi-agent systems. Yang et al. [27] explored the
controllability of multi-agent systems over finite fields using
HOFA system approaches. HOFA system approaches have
shown a suitable method for problems of multi-agent sys-
tems, which may also be helpful in the coordinated control
problems.

For linear systems, they can be converted to HOFA systems
if and only if they are controllable [17]. Under the framework
of linear systems over finite fields, coordinated problems of in-
complete controllable systems will be discussed in this paper,
by using HOFA system approaches. The main contributions
of this paper can be summarized as follows:

(i) The concept of v-consensus and v-synchronization is
introduced, which is a generalized concept of the original
ones, with corresponding properties and conditions.

(ii) For both consensus and synchronization problems of in-
complete controllable systems, proper controllers are given to
achieve consensus and synchronization in the general context
under certain circumstances.

The rest of our paper are organized as follows. Section
2 introduces some basic knowledge about finite fields and
HOFA systems. Section 3 is the main section, including the
concept of v-consensus and v-synchronization, the analysis
of incomplete controllable systems, and the controller design.
Section 4 is a numerical example, and Section 5 concludes
this paper briefly.
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2 Preliminaries

2.1 Finite Fields
Define the finite field Fp = {0, 1, . . . , p − 1} with two

operations (+,×), where p is a prime number, and the
calculations use modular arithmetic. For example, in F5,
3 + 4 = 7 mod 5 = 2, and 3 × 4 = 12 mod 5 = 2. For
simplicity, the symbol “×” will be omitted. Fields defined
in this way are called Galois fields, and they are extensively
applied in multi-agent problems.

Unless otherwise specified, all operations in this paper are
carried out in the finite field Fp.

In finite fields, the concept of “order” is frequently used,
which is defined as follows:

Definition 1 ([28]). For α ∈ Fp, where α ̸= 0, the order
denoted as ord(α) = s is defined as the smallest positive
integer s that satisfies αs = 1.

Next, we will discuss the basic form of systems over finite
fields. The coordination control problems over finite fields
are discussed in the context of the following system

x(k + 1) = Ax(k) +Bu(k), (1)

where x(k) = [x1(k), x2(k), . . . , xn(k)]
⊤ ∈ Fn

p , A ∈
Fn×n
p , B ∈ Fn×m

p , rank[B] = m, and u(k) =

[u1(k), u2(k), . . . , um(k)]
⊤ ∈ Fm

p is the control vector, with
k starting from 0.

Discussing linear systems over finite fields has its unique
advantage. For example, the requirement for consensus in the
real field demands that the norm of the state difference tends
to zero as time approaches infinity, whereas in a finite field,
it is sufficient for the states to be equal within a finite time,
given the limited range of possible state values.

2.2 HOFA System Approaches
This subsection provides a brief introduction to the HOFA

system approaches. First, we present the definition of fully
actuated systems over a finite field. Although the original
definition is on the real field R [23], it is applicable to finite
fields as well.

Definition 2 ([23]). For system (1), if det(B) ̸= 0, then
system (1) is fully actuated.

The importance of Definition 2 is reflected in the following
lemma.

Lemma 1 ([15]). Given a matrix A0 ∈ Fn×n
p . If (1) is fully

actuated, then with the control law u(k) = B−1(−Ax(k) +
A0x(k) + v(k)), system x(k + 1) = A0x(k) + v(k) can be
obtained.

This method eliminates all open loop characteristics of
the original system, replacing them with the desired system
characteristics, which is beneficial for controller design. This
method will be used in the issues related to finite fields.

For linear systems over finite fields, the following lemma
holds.

Lemma 2 ([27]). System (1) is controllable if and only if it
can be equivalently transformed into a step forward HOFA
system or a step backward HOFA system.

Using the method from [27], we can transform a control-

lable system into both the the forward and backward HOFA
systems. The step forward HOFA system is represented in
this paper as

z̃1(k + 1) = L(z̃1(k)) + B̃u(k), (2)

and the step backward HOFA system is written as

z̃2(k + 1) = L(z̃2(k)) + B̃u(k), (3)

where B̃ is the same, with diagonal elements as 1 [29].
Systems (2) and (3) are equivalent forms of system (1)

when it is controllable. Although the controllers designed
in the following sections is for (2) and (3), they can also
be applied to (1). In fact, under the inverse transformation
x(k) = Q−1z(k), we can obtain the corresponding states
(trajectories) of original system (1) .

3 Analysis of Incomplete Controllable Systems

In the multi-agent network over a finite field, both consen-
sus and synchronization describe the behavior of individual
agents. Therefore, after a coordinate transformation of the
states (system), certain behavioral patterns can be obtained.
We will start with nonsingular coordinate transformation, in-
troduce new features of consensus and synchronization, and
analyze the consensus and synchronization issues of incom-
plete controllable systems.

3.1 Analysis of v-consensus
Consensus in a finite-field network requires that, for all

initial values x(0), there exists a finite time T ∈ N such that

x(T ) = x(T + τ) = α1 (4)

holds for all τ ∈ N, where α ∈ Fp, and 1 represents
[1, . . . , 1]

⊤ of proper dimensions. Here we introduce a non-
singular coordinate transformation z(k) = V x(k) and define
v = V 1 ̸= 0, where 0 represents a vector or matrix with
its elements all 0 of proper dimensions. Then (4) can be
rewritten as

z(T ) = z(T + τ) = V x(T ) = αV 1 = αv. (5)

Comparing (5) with (4), (5) only replaces 1 with v. Since the
coordinate transformation is nonsingular, consensus features
of the original system can be obtained by the inverse trans-
formation x(T ) = V −1z(T ). The form of (5) has certain
generalizations compared to the consensus, especially when
the conditions for the transformation matrix are unclear, al-
lowing for characteristics of system consensus to be obtained
in a similar way. The following definition is provided for this
type of consensus.

Definition 3. For all initial values z(0) ∈ Fn
p , system

z(k + 1) = Azz(k), Az ∈ Fn×n
p (6)

achieves v-consensus, if there exists a finite time T ∈ N such
that z(T ) = z(T + τ) = αv holds for all τ ∈ N, where
α ∈ Fp and v ∈ Fn

p .

Similar to the general consensus situation, a necessary
condition can be readily obtained.
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Proposition 1. Consider finite-field system (6) under non-
singular coordinate transformation z(k) = V x(k). If it
achieves v-consensus, then matrix Az should satisfy

Azv = v, v ̸= 0, (7)

or matrix Az is nilpotent.

Proof. Since system (6) achieves v-consensus, according to
Definition 3, for all z(0), there exists T ∈ N, when t ≥ T ,
At

zz(0) = At+1
z z(0) = αv. This implies Azαv = αv, which

leads to either Azv = v or, for all z(0), α = 0, i.e., matrix
Az is nilpotent.

It should be noted that, the propositions presented below
shares some similarities with conclusions related to general
consensus in the literature. These propositions can be directly
interpreted through the invariance of coordinate transforma-
tion, and the results and proof process are basically the same
as in literature [2].

Proposition 2. Consider system (6), and let Az satisfy (7), V
is a nonsingular matrix. The necessary and sufficient condi-
tion for (6) to achieve v-consensus is PAz

(s) = sn−1(s− 1),
where PAz

(s) is the characteristic polynomial of Az , and
v = V 1.

Proposition 3. Consider system (6), and let Az satisfy (7),
V is a nonsingular matrix. Suppose (6) achieves v-consensus,
where v = V 1. Let z(0) ∈ Fn

p be the initial state. Assume
T < n represents the maximum dimension of the Jordan
block associated with the eigenvalue 0. Let π ∈ F 1×n

p be
the unique eigenvector satisfying πAz = π, πv = 1. Then
AT

z = vπ, and it takes T iterations to achieve v-consensus
with value vπz(0).

3.2 Analysis of v-synchronization
Synchronization in a network over a finite field requires

that for all initial values x(0), there exists a finite time T ∈ N
such that all states satisfy x1(t) = x2(t) = · · · = xn(t), i.e.,

x(t) ∈ {α1|α ∈ Fp}, (8)

and this holds for all t ≥ T . If we also introduce a nonsin-
gular coordinate transformation z(k) = V x(k), then (8) can
be rewritten as v(t) ∈ {αv|α ∈ Fp}. Similar to the case of
v-consensus, we can define the concept of v-synchronization.

Definition 4. For all initial values z(0) ∈ Fn
p , system (6)

achieves v-synchronization, if there exists a finite time T ∈ N
such that z(t) ∈ {αv|α ∈ Fp} holds for all t ≥ T , v ∈ Fn

p .

Similar to the case of v-consensus, we can clearly obtain a
necessary condition:

Proposition 4. If system (6) achieves v-synchronization, V
is a nonsingular matrix, then the matrix Az should satisfy

Azv = αv, α ̸= 0, v ̸= 0, (9)

or the matrix Az is nilpotent.

Clearly, when α = 1, the result of Proposition 4 reduces to
the conclusion of Proposition 1.

Next, we present the necessary and sufficient conditions
for v-synchronization. The basic idea is similar to the previ-
ous subsection on v-consensus, and the related conclusions

for v-synchronization can be degenerated into those for v-
consensus. The proof refers to [7].

Proposition 5. If Az satisfies (9), V is a nonsingular matrix,
then system (6) achieves v-synchronization if and only if
PAz

(s) = sn−1(s− α), where v = V 1.

The time needed and values for synchronization can be
analogous to Proposition 3 and are stated as follows.

Proposition 6. Consider (6). Suppose Az satisfies (9), and
let the initial state be z(0) ∈ Fn

p . Assume that (6) achieves
v-synchronization, where v = V 1, V is a nonsingular matrix.
Let T < n represents the maximum dimension of the largest
Jordan block associated with the eigenvalue 0. Let π ∈ Fn

p

be the unique eigenvector satisfying πv = 1. Then it takes T
iterations to achieve v-synchronization, and the state vector is
in the cycle {vπz(0) → vπαz(0) → · · · → vπαs−1z(0) →
vπz(0) → . . . }, s = ord(α) mod p, or the state vector is
merely 0.

Remark 1. The definitions of v-consensus and v-
synchronization extend the coordinated behavior of agents.
Specifically, (4) and (8) both require that the states of one
agent must be the same at one time, which are actually
1-consensus and 1-synchronization, respectively. However,
v-consensus and v-synchronization do not require so.
Besides, they also show a coordinated behavior, and thus
further extend the original concepts of consensus and
synchronization.

In fact, the propositions above can be further extended
to a general vector v, other than merely from a nonsingular
transformation, the proof is omitted here for limited space.
The next subsection directly applies these results to specific
scenarios.

3.3 Controller Design for Incomplete Controllable Sys-
tems

For a general linear system with control inputs over a finite
field, there may exist a state pair (xi, xj) such that there is
no control input sequence allowing the system to transit from
state xi to xj . Systems exhibiting this behavior are referred
to as incomplete controllable systems.

Similar to linear systems over the real field R, consider a
system described by

x(k + 1) = Ax(k) +Bu(k), x ∈ Fn
p , B ̸= 0. (10)

System (10) is incomplete controllable, i.e., rank(B) = m <
n, and the order of non-controllable part is denoted by n̄ ≥ 1.
The controllable part has the order n − n̄, meaning there
are n− n̄ linearly independent vectors in the controllability
matrix. These vectors can be written in the form

M1 = [b1, Ab1, . . . , A
c1−1b1,

b2, Ab2, . . . , A
c2−1b2, . . . , A

cm−1bm],

where
m∑
i=1

ci = n− n̄, M1 ∈ Fn×(n−n̄)
p .

Literature [30] provides a synthesis method to obtain the
standard form of incomplete controllable systems and their
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transformations over finite fields. The method is listed as
follows.

Firstly, extend M1 to a reversible matrix M = [M1,M2],
where M2 ∈ Fn×n̄

p is chosen such that its rank is n̄ and
M⊤

2 M1 = 0.

Next, compute M−1. Denote σi =
i∑

j=1

cj , i = 1, . . . ,m,

and (l̄i)
⊤ = Rowσi

(M−1). Choose a nonsingular transfor-
mation matrix as R = [(R1)⊤, (R2)⊤]⊤, where

R1 = [(l̄1)
⊤, (l̄1A)

⊤
, . . . , (l̄1A

c1−1)
⊤
, (l̄2)

⊤, (l̄2A)
⊤
, . . . ,

(l̄2A
c2−1)

⊤
, . . . , (l̄mAcm−1)

⊤
]⊤,

R2 = [Row(n−n̄+1)(M
−1)

⊤
, . . . , Rown(M

−1)
⊤
]⊤.

Then under the transformation y(k) = Rx(k), system (10)
becomes

y(k + 1) = Ey(k) + Fu(k), (11)

where

E =

[
E1 E2

0 E3

]
, F =

[
F1

0

]
.

The forms of each block are as follows, E1 = [Ec
ij ], where

Ec
ii =

[
0(ci−1)×1 I(ci−1)×(ci−1)

eiici1 eiici2 eiici3 . . . eiicici

]
,

Ec
ij =

[
0(ci−1)×ci

eijci1 eijci2 eijci3 . . . eijcicj

]
, i ̸= j,

E2 =
[
(Ec

1)
⊤, . . . , (Ec

m)⊤
]⊤

,

Ec
i =

[
0(ci−1)×n̄

eci1 eci2 eci3 . . . ecin̄

]
,

F1 =
[
(F c

1 )
⊤, . . . , (F c

m)⊤
]⊤

,

F c
i =

[
0(ci−1)×m

0 . . . fcii fcii+1 . . . fcim

]
.

Ec
ij ∈ Fci×cj

p , F c
i ∈ Fci×m

p , i, j = 1, . . . ,m. fcii = 1 is
the element in the ci-th row and i-th column of F c

i . E1 ∈
F(n−n̄)×(n−n̄)
p , F1 ∈ F(n−n̄)×m

p , E2 ∈ F(n−n̄)×n̄
p , E3 ∈

Fn̄×n̄
p , and (E1, F1) is in the controllable canonical form

[30].
Rewriting (11) into the form of two subsystems,

y1(k + 1) = E1y1(k) + E2y2(k) + F1u(k), (12)
y2(k + 1) = E3y2(k), (13)

where y1(k) ∈ F(n−n̄)
p , y2(k) ∈ Fn̄

p , it can be observed that
(13) is an autonomous system, not influenced by external
control, while (12) is a coupled system where y1(k + 1) is
influenced by y1(k), y2(k), and external control.

Let R1 = [(R11)⊤, (R21)⊤]⊤ = [(r1)⊤, (r2)⊤]⊤, r1 =
[r111, . . . , r

1
1c1 , . . . , r

1
m1, . . . , r

1
mcm ]⊤, r2 = [r2b1, . . . , r

2
bn̄]

⊤,
y1(k) and y2(k) are also divided this way. The next part will
use the theory of HOFA systems to decouple (11) and write
it in the form of an HOFA system.

Subsystem (12) contains items related to y1(k) and y2(k).
The key to decoupling (12) is to eliminate A12y2(k) in (12).
In other words, we need to find a suitable controller u(k)
satisfying E2y2(k) + F1u(k) = 0. Literature [30] provides
an approach using state feedback u(k) = Kx(k) to decouple.

In the transformed system, suppose the feedback matrix
is K̄, which is further divided into K̄ = [K̄1, K̄2]. Thus,
u(k) = K̄1y1(k) + K̄2y2(k). It is sufficient to reach the
condition F1K̄2 = −E2, and it can always be satisfied.

Lemma 3 ([30]). The uncontrollable part can always be
decoupled from (12) in the form of linear state feedback.

The discussion above is from literature [30]. Inspired by
this lemma, we will use the theory of HOFA systems to
further illustrate. Observing the structural features of E2, we
can directly rewrite (12) using the methods from the [29] as
the following step forward HOFA system

ỹ1(k + 1) = L(ỹ1(k)) + L
′
(y2(k)) + B̃u(k), (14)

where

ỹ1(k) = (y11(k + c1 − 1), y21(k + c2 − 1), . . . ,

ym1(k + cm − 1))⊤,

L(ỹ1(k)) = (L1(ỹ1, k), L2(ỹ1, k), . . . , Lm(ỹ1, k))
⊤,

Li(ỹ1, k) =

ci∑
j=1

eiicijyi1(k + j − 1) + γi(k),

γi(k) =
m∑

j=1,j ̸=i

cj∑
l=1

eijcilyj1(k + l − 1),

L
′
(y2(k)) = (L

′

1(y2(k)), L
′

2(y2(k)), . . . , L
′

m(y2(k)))
⊤,

L
′

i(y2(k)) =

n̄∑
j=1

ecijy2j(k), i = 1, . . . ,m,

and B̃ is a upper triangular matrix with diagonal elements
being 1.

It can be observed that the terms related to y2(k) in (12) can
be directly incorporated into the form of the HOFA system.
This allows for the elimination of the uncontrollable parts
using the controller from Lemma 1, and its form can be
rewritten in the state feedback form. This is the content of
Lemma 3.

The above lemma indicates that a general incomplete con-
trollable system can be decoupled into two identical subsys-
tems. In the problem of consensus, it is only necessary to
discuss each part separately. But first we have to introduce
a lemma that gives a direct way to design coordinated con-
trollers for controllable systems.

Lemma 4 ([29]). Suppose system (1) is controllable, it
achieves synchronization with trajectory

β1 → αβ1 → · · · → αs−1β1 → β1 → αβ1 → · · · ,

where α, β ∈ Fp − {0}, s = ord(α)mod p, if and only if Q
satisfies

qij = αj−1qi1, i = 1, . . . ,m, j = 1, . . . , ci > 1, (15)

under control law

u(k) = −B̃−1(L(z̃1(k)) + α(k)βq̄⌝), (16)

for system (2), where α(k) = [αk+c1 , αk+c2 , . . . , αk+cm ]⊤,
Q is the transformation matrix, and qij = Qij1, Qij is the
(σi−1 + j)-th row of Q, σ0 = 0, q̄⌝ = [q11, q21, . . . , qm1]

⊤.
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Fig. 1: The camera light network

Lemmas 3 and 4 lead to the conclusions below.

Theorem 1. Incomplete controllable system (10) can achieve
consensus under control if and only if, for system (11) via the
transformation y(k) = Rx(k), the following two conditions
are satisfied simultaneously:

(i) Subsystem (13) achieves r2-consensus;
(ii) r1 satisfies r1ij = r1i1, i = 1, . . . ,m, j = 1, . . . , ci.

Proof. The consensus of incomplete controllable system (10)
is equivalent to the (R1)-consensus of system (11). Thus, we
will directly discuss (11).

For subsystem (13), since it achieves r2-consensus, assume
it converges to α(y2(0))r

2 ∈ Fn
p after n̄

′
steps, where n̄

′

corresponds to the dimension of the largest Jordan block of
E3, and α(y2(0)) ∈ Fp is dependent on the initial value. For
subsystem (12), the goal is to use the controller to bring the
state trajectory into a sequence that achieves r1-consensus.
Using Lemma 4, and taking the following controller

u(k) = −B̃−1(L(ỹ1(k))+L
′
(y2(k))+α(y2(0))r

⌝
1), (17)

where r⌝1 = [r111, r
1
21, . . . , r

1
m1]

⊤, α(y2(0)) ∈ Fp, k ≥ 0,
system (14) is transformed into ỹ1(k + 1) = α(y2(0))r

⌝
1 .

Combined with condition (ii) and Lemma 4, subsystem (13)
achieves r1-consensus. Along with condition (i), system (11)
achieves (R1)-consensus.

Utilizing Lemma 3 and the characteristics of system (14),
a generally incomplete controllable system can be decoupled
into two subsystems. In addressing the consensus problem
of the system, it is only necessary to separately discuss the
two parts to obtain the conclusions mentioned above. Similar
results can also be obtained for the synchronization.

Theorem 2. Incomplete controllable system (10) can achieve
synchronization under control, if and only if, for system (11)
via the transformation y(k) = Rx(k), the following two
conditions are satisfied simultaneously:

(i) Subsystem (13) achieves r2-synchronization, E3r
2 =

αr2, α ∈ Fp;
(ii) r1 satisfies r1ij = αj−1r1i1, i = 1, . . . ,m, j =

1, . . . , ci > 1.

Proof. It is equivalent to consider system (11). Using the
conclusions of Proposition 6, without loss of generality, we
can assume that subsystem (13) achieves r2-synchronization
after n̄

′
steps, where n̄

′
corresponds to the dimension of

the largest Jordan block of E3, and assume y2(n̄
′
+ k) =

αkβ(y2(0))r
2, k ≥ 0, β(y2(0)) ∈ Fp depends on the initial

value.
Using Lemma 4, we can adopt the following form of the

controller:

u(k) = −B̃−1(L(ỹ1(k)) +L
′
(y2(k)) + α1(k)β(y2(0))r̄

⌝),
(18)

where α1(k) = α−n̄
′

[αk+c1 , αk+c2 , . . . , αk+cm ]⊤, r⌝1 =
[r111, r

1
21, . . . , r

1
m1]

⊤, β(y2(0)) ∈ Fp. The system (14) is
then transformed into ỹ1(k + 1) = α1(k)β(y2(0))r̄

⌝, Com-
bining Lemma 4 and condition (ii), we obtain that when
cmax < n̄

′
, where cmax = max

i∈{1,...,m}
{ci}

y1(n̄
′
+ k) =αkβ(y2(0))[r

1
11, αr

1
11, . . . , α

c1−1r111, . . . ,

r1m1, αr
1
m1, . . . , α

cm−1r1m1]
⊤

=αkβ(y2(0))R
11,

and consequently, y(n̄
′
+ k) = αkβ(y2(0))R1, k ≥ 0.

When cmax ≥ n̄
′
,

y1(cmax + k) = y1(n̄
′
+ k + cmax − n̄

′
)

= αk+cmax−n̄
′

β(y2(0))R
11,

and y2(cmax + k) = αk+cmax−n̄
′

β(y2(0))r
2. Thus, we also

have y(cmax + k) = αk+cmax−n̄
′

β(y2(0))R1, k ≥ 0, and
under both two situations, system (11) can achieve (R1)-
synchronization.

cmax in the proof above indicates the convergence time of
the controller in Lemma 4, this can be found in [29], whereas
n̄

′
is the convergence time of the uncontrollable part (13). It

can be deduced that after max{cmax, n̄
′} steps, under con-

troller (18), system (11) achieves (R1)-synchronization. Ex-
actly, max{cmax, n̄

′} is the convergence time for controller
(18), which is also the convergence time for controller (17).

4 Numerical Example

We use a camera light network to illustrate the results
mentioned above. Let θi(k) : N≥0 → Fp denote the angle of
the i-th camera light with respect to time, where Fp represents
the set of azimuth angles {j 2π

p | j ∈ Fp}, and i ∈ {1, . . . , n}.
A camera light network can be represented by the following
incomplete controllable system over F2: θ(k+1) = Aθ(k)+
Bu(k), where

A =


1 1 0 1 0
0 1 1 1 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0

 , B =


0
0
0
1
0

 .

For A, its row sums are all 1, and the characteristic polyno-
mial is s5 + s, which does not satisfy Proposition 2. The
problem is to find a control law to make the angle of all cam-
era lights the same, in other words, to achieve consensus for
the camera light network via control inputs, also shown in
Fig 1.

Decomposing the controllable system, we get

y(k + 1) =


0 1 0 0 0
0 0 1 0 0
1 1 1 1 1
0 0 0 1 0
0 0 0 1 0

 y(k) +


0
0
1
0
0

u(k),
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where the transformation y(k) = Rθ(k) is applied with

R =


0 0 0 0 1
1 0 0 0 0
1 1 0 1 0
1 1 0 0 1
0 0 1 0 0

 .

The controllability index is c1 = 3, and the row sums of
R are all 1. The uncontrollable subsystem reaches a con-
sensus sequence after one iteration. Fig 2 shows the tra-
jectory of θ(k) with initial values θ(0) = [0, 0, 0, 1, 1]⊤

(y(0) = [1, 0, 1, 1, 0]⊤), applying Theorem 1 with r⌝1 = 1
and α(y2(0)) = 1. It can be observed that θ(k) eventually
enters a consensus trajectory.

Fig. 2: The trajectory of θ(k)

5 Conclusion

In this paper, controller design was extended to incom-
plete controllable systems. The concept of v-consensus and
v-synchronization was proposed, which generalized the usual
consensus and synchronization. For incomplete controllable
systems, by means of nonsingular transformation, the con-
troller design was available. Using HOFA system approaches
with properties of v-consensus and v-synchronization, proper
controllers were designed. Our future research will continue
to concentrate on applying HOFA system approaches to more
complex situations.
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On Full-Actuation of Linear Boolean Control Networks
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Abstract: This paper investigates fully actuated linear Boolean networks. Firstly, using semi-tensor product of matrices, necessary
and sufficient conditions are provided to determine whether a Boolean (control) network is linear. Furthermore, a suitable
algorithm is established to calculate corresponding coefficient matrices if the considered Boolean control network is linear. Then,
the definition of the fully actuated discrete linear systems is generalized to that of Boolean networks for the first time. On the basis
of equivalent condition obtained to determine the full-actuation of Boolean control networks, it is revealed that two definitions of
full actuation, which are respectively for linear systems and Boolean networks, are consistent. Finally, effectiveness of obtained
results is shown by an illustrative example.

Key Words: Fully actuated systems, Linear Boolean networks, Feedback, Semi-tensor product

1 Introduction

In 1969, Kauffman first proposed Boolean networks (BNs)
[1]. Subsequently, the discrete dynamic model with variables
taking values in {0, 1}, began to be widely used to describe
gene networks [2–4]. To account for the influence of the
external environment, BNs were extended to Boolean control
networks (BCNs) by adding control inputs. With the rapid
development of systems biology and medical science, BNs
have played an increasingly important role in gene regulatory
networks [5].

For a long time, there was no convenient method for deal-
ing with BNs until the emergence of semi-tensor product
(STP) [6, 7], which broke the dimension limit of traditional
matrix product. With the help of this tool, many fruitful
results about BCNs have emerged, such as controllability [8–
10], observability [8, 11], stabilizability [12–14], detectability
[15] and so on.

The stability and stabilization of BNs are two fundamental
problems, in which significant progress has been made. Un-
der the framework of STP, stability and stabilization of BNs
were first discussed in [12]. In [13], necessary and sufficient
conditions for the existence of global stable state feedback
controllers, along with a general design method, were pro-
vided. The investigation into set stability and set stabilization
of BNs began in [14], where some necessary and sufficient
conditions were established based on invariant subsets.

The traditional state space model of dynamic systems may
be the optimal method for solving response analysis problems,
but it is improvable in controller design. Recently, the fully
actuated system approach, has been used as a universal model
for a majority of physical systems [16]. In fully actuated
systems (FASs), as long as the nonlinear term is measurable,
the full-actuation property enables the elimination of all non-
linear dynamics, facilitating the implementation of control
in a straightforward way [17]. This systematic approach can
also be applied to robust control [18], adaptive control [19],
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of China (62273201, 62203264, 72134004, 12326425), the Taishan Scholar
Project of Shandong Province of China (tstp20221103), Science Center
Program of National Natural Science Foundation of China (62188101) and
the Natural Science Foundation of Shandong Province (ZR2022QF061), the
Support Plan for Youth Innovation Team in Shandong Higher Education
Institutions (2022KJ022).

disturbance attenuation and decoupling [20] and so on.
Linear automata based on XOR (∨̄) operations have con-

siderable logical functionality and have been widely applied
in practical problems, such as the reading and writing cir-
cuits of memory and the implementation of automatic error-
correcting codes [21]. In addition, synchronization of linear
Boolean networks (LBNs) that are also linear automata were
discussed in [22]. Recently, feedback shaping for BNs was
investigated via Koopman representation in [23]. However,
generally speaking, BNs are nonlinear, so solving control
problems is often challenging. We always hope that BCNs
can achieve the desired closed-loop system through feedback
control. Therefore, studying the feedback capability of BCNs
can help in analyzing and designing BCNs. Notably, to the
best of our knowledge, there were fewer results on fully actu-
ated BNs. Motivated by these, fully actuated LBNs will be
discussed in this paper.

The main contributions of this paper are listed as follows:
• Necessary and sufficient conditions for determining

whether a BCN (BN) is linear, and the algorithm to
calculate the coefficient matrices are given.

• The definition of fully actuated Boolean networks
(FABNs) is introduced for the first time along with a
necessary and sufficient algebraic condition.

• The relationship is revealed between two kinds of defi-
nitions on full-actuation of linear Boolean control net-
works (LBCNs).

The rest of this paper is organized as follows. Section 2
recommends useful notations and preliminaries. Section 3
provides the necessary and sufficient conditions for deter-
mining whether a BCN (BN) is linear. Section 4 proposes
the definition of FABNs and proves the equivalence of two
types of definitions on full-actuation in LBCNs. An illustra-
tive example is provided in Section 5, followed by a brief
conclusion.

2 Preliminaries

In this section, we give some useful notations and defini-
tions about STP, BNs, BCNs and FASs, which will be used
in the sequel.

2.1 Notations
• N := {0, 1, 2, . . . }, the set of natural numbers.
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• [i, j] := {i, i+ 1, . . . , j}, if i, j ∈ N and i < j.
• Rm×n : the set of m× n real matrices.
• D := {1, 0}, and Dn := D × · · · × D︸ ︷︷ ︸

n

.

• δin : the i-th column of the identity matrix In.
• ∆n := {δin|1 ≤ i ≤ n}. For convenience, ∆ := ∆2.
• 1n×m is an n×m matrix whose components are all 1.
• Matrix L ∈ Rn×m is called a logical matrix, if L =
[δi1n , δi2n , . . . , δimn ], where ik ∈ [1, n], k ∈ [1,m], de-
noted by L = δn[i1, i2, . . . , im].

• Ln×m : the set of all n×m logical matrices.
• Coli(A) : the i-th column of matrix A.
• Rowi(A) : the i-th row of matrix A.
• [A]i,j : the (i, j)-th element of A.
• A ≥ B : [A]i,j ≥ [B]i,j , ∀ i, j.
• A∨̄B: Exclusive OR operation between A and B.

For two matrices A and B of the same dimension,
[A∨̄B]i,j := [A]i,j∨̄[B]i,j .

• |X| : the cardinality of set X , i.e., the number of ele-
ments in set X .

• The Kronecker product of matrices A = (aij) ∈ Rm×n

and B ∈ Rp×q is

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
...

am1B am2B . . . amnB

 .

Definition 1. [6] The semi-tensor product of two matrices
A ∈ Rm×n and B ∈ Rp×q is

A⋉B = (A⊗ Iα
n
)(B ⊗ Iα

p
), (1)

where α = lcm(n, p) is the least common multiple of n and
p.

Remark 1. STP retains almost all the properties of the tra-
ditional matrix product. It reduces to the traditional matrix
product when n = p. In this paper, we omit the symbol “⋉”
if there is no confusion.

Proposition 1. [6] The following properties about STP hold.
1) Let X ∈ Rm×1 and Y ∈ Rn×1 be two column vectors.

Then,
Y ⋉X = W[m,n] ⋉X ⋉ Y, (2)

where W[m,n] is the swap matrix defined as

[δ1nδ
1
m, . . . , δnnδ

1
m, . . . , δ1nδ

m
m , . . . , δnnδ

m
m ]. (3)

2) Let X ∈ Lm×1 be a logical vector. Then,

X ⋉X = Mr ⋉X, (4)

where Mr := Diag{δ1m, δ2m, . . . , δmm} is the power re-
ducing matrix.

2.2 Algebraic Representation of BCNs
A BCN with n state nodes {x̄1, x̄2, . . . , x̄n} and m control

nodes {ū1, ū2, . . . , ūm} can be described as
x̄1(t+ 1) = f1(X(t), U(t))
x̄2(t+ 1) = f2(X(t), U(t))

...
x̄n(t+ 1) = fn(X(t), U(t)).

(5)

where X(t) = [x̄1(t), x̄2(t), . . . , x̄n(t)]
⊤, x̄i ∈ D, i =

1, 2, . . . , n and U(t) = [ū1(t), ū2(t), . . . , ūm(t)]⊤, ūi ∈
D, i = 1, 2, . . . ,m are Boolean variables, and fi : Dn+m 7→
D, i = 1, 2, . . . , n are Boolean functions. It can be rewritten
in the following form:

X(t+ 1) = f(X(t), U(t)). (6)

Eliminating the influence of control in BCNs, a BN with n
state nodes {x̄1, x̄2, . . . , x̄n} can be described as

x̄1(t+ 1) = f1(X(t))
x̄2(t+ 1) = f2(X(t))

...
x̄n(t+ 1) = fn(X(t)).

(7)

Moreover, it can also be expressed as the following concise
form:

X(t+ 1) = f(X(t)). (8)

By denoting 1 ∼ δ12 and 0 ∼ δ22 , we have ∆ ∼ D, where
“∼” indicates two different forms of the same object.

Lemma 1. [6] Let f(x̄1, x̄2, . . . , x̄n) : Dn 7→ D be a
Boolean function. Then, there exists a unique matrix Mf ∈
L2×2n , called the structure matrix of f , such that

δ
2−f(x̄1,x̄2,...,x̄n)
2 = Mf ⋉n

i=1 xi, (9)

where xi = δ2−x̄i
2 ∈ ∆.

Specially, we give the structure matrices of two basic logi-
cal operators, which will be used later.

• Negation (¬) : Mn = δ2[2, 1];
• Exclusive OR (∨̄) : Mp = δ2[2, 1, 1, 2].

Lemma 2. [6] Assume that y = My ⋉n
i=1 xi, z = Mz ⋉n

i=1

xi, where xi ∈ ∆, i = 1, 2, . . . , n,My ∈ L2×2n and Mz ∈
L2×2n . Then

yz = (My ∗Mz)⋉n
i=1 xi, (10)

where My∗Mz = [Col1(My)⊗Col1(Mz), . . . , Col2n(My)
⊗ Col2n(Mz)] is the K-R product of My and Mz .

Using Lemma 1, there exist structure matrices Li ∈
L2×2m+n

of fi, i = 1, 2, . . . , n, such that BCN (5) can be
converted into

xi(t+ 1) = Liu(t)x(t), i = 1, 2, . . . , n, (11)

where x(t) = ⋉n
i=1xi(t), u(t) = ⋉m

i=1ui(t) = ⋉m
i=1δ

2−ūi
2 .

Then, the algebraic representation of BCN (5) can be ex-
pressed by Lemma 2 as follows:

x(t+ 1) = Lu(t)x(t), (12)

where L = L1 ∗ L2 ∗ · · · ∗ Ln ∈ L2n×2m+n

.
Similarly, under the framework of STP, (7) can be rewritten

as
xi(t+ 1) = Fix(t), i = 1, 2, . . . , n, (13)

where Fi ∈ L2×2n is the structure matrix of fi, x(t) =
⋉n

i=1xi(t), and
x(t+ 1) = Fx(t), (14)
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where F = F1 ∗ F2 ∗ · · · ∗ Fn ∈ L2n×2n .
For ease of expression, this paper discusses general form

of BNs. In other words, in (5) or (7), fi formally depends
on all variables, but in reality, it may contain virtual redun-
dant variables. Therefore, Lemma 3 is introduced to analyze
redundant variables.

Lemma 3. [8] For a BN with algebraic form (13), the value
of node i is not influenced by the value of node j if and only
if Fi satisfies

FiW[2,2j−1](Mn − I2) = 0, (15)

where Mn, W[2,2j−1] are the structure matrix of negation ¬
and the swap matrix, respectively.

Moreover, as long as the equation above holds, xi(t+1) =
Fix(t) can be replaced by

xi(t+ 1) = F ′
ix1(t) . . . xj−1(t)xj+1(t) . . . xn(t), (16)

where F ′
i = LiW[2,2j−1]δ

1
2 .

2.3 Fully Actuated System
In this subsection, we briefly introduce the fully actuated

system.

Definition 2. [24] Let A,B ∈ Rn×n, if B is nonsingular,
then the discrete-time linear system

X(t+ 1) = AX(t) +BU(t), (17)

is called a fully actuated system.

For FASs, one can design control in an extremely simple
way, since the full-actuation property allows us to eliminate
the original dynamics. For example, we can design the con-
troller as U(t) = B−1(−AX(t) + A0X(t) + V (t)), where
V (t) is an external signal. Then we can obtain a desired
closed-loop system X(t+ 1) = A0X(t) + V (t).

Although the definition above is based on linear systems
over R, it is applicable to linear systems over the finite fields.

3 Linear Boolean Control Networks

In this section, we give definitions of LBCNs and LBNs.
By introducing a matrix sequence, we formulate procedures
to determine the linearity of BCNs and BNs, respectively.
Additionally, methods to obtain the coefficient matrices of
LBCNs and LBNs are presented. We first give the definition
of linear Boolean function.

Definition 3. Boolean function f0 : Dp 7→ D is called a
linear Boolean function, if ∀X,Y ∈ Dp, f0 satisfies

f0(X∨̄Y ) = f0(X)∨̄f0(Y ). (18)

Definition 4. Vector valued Boolean function f = [f1, f2,

. . . , fq]
⊤
: Dp 7→ Dq is called a linear vector valued Boolean

function if all component Boolean functions fi are linear
Boolean functions.

Definition 5. BCN (6) (resp. BN (8)) is called a linear
Boolean control network (resp. linear Boolean network),
if its iterative function f is a linear vector valued Boolean
function.

Remark 2. The definition of linear Boolean networks ac-
cording to equation (18), as stated in [22], is consistent with
Definition 5.

From the definitions above, we have the following proposi-
tion directly.

Proposition 2. BCN (6) (resp. BN (8)) is linear if and only
if each Boolean function fi in (5) (resp. (7)) is linear Boolean
function.

The following lemma shows the property of linear Boolean
functions.

Lemma 4. The Exclusive OR ∨̄ of two linear Boolean func-
tions results in a Boolean function that is still linear.

Proof. Assume h1, h2 : Dn 7→ D are two linear Boolean
functions. Denote h = h1∨̄h2. Next, we prove that h is also
a linear Boolean function.

In term of Definition 3, we have

hi(X∨̄Y ) = hi(X)∨̄hi(Y ),∀X,Y ∈ Dn, i = 1, 2. (19)

Substituting (19) into h(X∨̄Y ) = h1(X∨̄Y )∨̄h2(X∨̄Y ),
we have h(X∨̄Y ) = h1(X)∨̄h1(Y )∨̄h2(X)∨̄h2(Y ). Then,
h(X∨̄Y ) = h(X)∨̄h(Y ),∀X,Y ∈ Dn, which implies h is
a linear Boolean function. Hence, the conclusion holds.

Based on Lemma 4, we present a necessary and sufficient
condition to determine the linearity of linear Boolean func-
tions.

Theorem 1. Boolean function f : Dn 7→ D is a linear
Boolean function if and only if it always equals to 0 or there
exists a Boolean function g with ∨̄ as its unique logical oper-
ator, such that f(X) = g(X),∀X ∈ Dn.

Proof. (Necessity) Assume Boolean function f : Dn 7→ D is
a linear Boolean function. Denote Xi = Coli(In) ∈ Dn, and
f i = f(Xi). Next, we prove that f equals to the following
Boolean function:

g(X) =
n

∨̄
i=1

(xi ∧ f i), (20)

where X = [x̄1, x̄2, . . . , x̄n]
⊤ ∈ Dn.

Note that any X ∈ Dn can be represented by a combi-
nation of elements in {Xi}ni=1 connected by ∨̄, and each
element in {Xi}ni=1 appears at most once. In addition, except
for the order, this representation is unique. For any X ∈ Dn,
we may suppose X = ∨̄ k

j=1 Xij . Since f is a linear Boolean
function, we have

f(X) = f(
k

∨̄
j=1

Xij ) =
k

∨̄
j=1

f(Xij ) =
k

∨̄
j=1

f ij . (21)

Notice that, in (20), xi∧f i = f i when xi = 1, and xi∧f i =

0 when xi = 0. Then, one can obtain that g(X) = ∨̄ k
j=1 f

ij ,
which implies f(X) = g(X), ∀X ∈ Dn.

For Boolean function g, xi ∧ f i = xi when f i = 1, and
xi ∧ f i = 0 when f i = 0. Then, g consists ∨̄ as its unique
logical operator. Specially, when all f i are equal to 0, f
always equals to 0. Thus, the necessity holds.

(Sufficiency) When f always equals to 0, it is evident that
f is linear. Consider that f equals to a Boolean function g

21  



that consists ∨̄ as its unique logical operator, and suppose
g(x̄1, x̄2, . . . , x̄n) = ∨̄ k

j=1 x̄ij .
Let gj(x̄1, x̄2, . . . , x̄n) = x̄ij , j = 1, 2, . . . , k. Easy to

verify that all gi are linear Boolean functions. Through
Lemma 4, we conclude that g is a linear Boolean function.
Then, f is also a linear Boolean function. Thus, the suffi-
ciency holds.

Through the definitions and theorem above, we can easily
obtain the following proposition.

Proposition 3. If (6) (resp. (8)) is an LBCN (resp. LBN),
then there exist A ∈ Dn×n and B ∈ Dn×m (resp. A ∈
Dn×n), such that (6) (resp. (8)) can be equivalently expressed
as (22) (resp. (23)), where the matrix operations are per-
formed in F2, listed as follows:

X(t+ 1) = AX(t) +BU(t), (22)
X(t+ 1) = AX(t). (23)

In term of the propositions above, we will present a matrix-
based approach to determine whether a BCN (resp. BN) is an
LBCN (resp. LBN) and obtain its coefficient matrices (A,B)
(resp. A) effectively.

Now, we elucidate how to determine whether BCN (11)
is an LBCN by using the aforementioned lemmas, while
providing the coefficient matrices.

According to Proposition 2, determining whether a BCN
is an LBCN is equivalent to verify whether all fi are linear
Boolean functions. In order to address this issue, we construct
a matrix sequence as follows:

Ei+1 = [MnEi, Ei], i = 1, 2, · · · , (24)

where E1 = I2 and Mn = δ2[2, 1] is the structure matrix of
negation ¬.

Proposition 4. The structure matrix of f0(x̄1, x̄2, . . . , x̄i) =
x̄1∨̄x̄2∨̄ · · · ∨̄x̄i is Ei, i = 1, 2, · · · .

Proof. We prove it by mathematical induction.
When i = 1, it is trivial that the statement holds. Then,

assume conclusion holds for i = k, and consider Boolean
function g(x̄1, x̄2, . . . , x̄k+1) = x̄1∨̄x̄2∨̄ · · · ∨̄x̄k+1.

Denote h(x̄2, x̄3, . . . , x̄k+1) = x̄2∨̄x̄3∨̄ · · · ∨̄x̄k+1. Then,
g(x̄1, x̄2, . . . , x̄k+1) = x̄1∨̄h(x̄2, x̄3, . . . , x̄k+1). According
to the induction hypothesis, the structure matrix of h is Ek.
Moreover, we obtain g = ¬h when x1 takes 1, and g = h
when x1 takes 0, which implies the structure matrix of f
is Ek+1 = [MnEk, Ek]. Hence, the conclusion is true for
i = k + 1.

By induction, the conclusion holds for any i.

Since not all nodes impact the value of node i, we need to
obtain the simplified form of the structure matrix for fi after
removing all redundant dummy variables via Lemma 3.

Thus, in (11), we define the unrelated control set

Nu
i ={j|LiW[2,2j−1](Mn − I2) = 0 and j ∈ [1,m]},

and unrelated state set

Nx
i ={j|LiW[2,2j−1](Mn−I2) = 0 and j ∈ [m+1,m+n]}

of node i. Denote Ni = Nu
i ∪ Nx

i , and assume Ni =
{i1, i2, . . . , i|Ni|}, i1 < i2 < · · · < i|Ni|. For convenience,
we denote ui(t) and xi(t) as yi(t) and yi+m(t), respectively.
Then we obtain:

xi(t+ 1)=Liu1(t) · · ·um(t)x1(t) · · ·xn(t)

=Liy1(t)y2(t) · · · ym+n(t)

=LiW[2,2i1−1]yi1(t) ⋉
k ̸=i1

yk(t)

=LiW[2,2i1−1]W[2,2i2−1]yi2(t)yi1(t) ⋉
k ̸=i1,i2

yk(t)

...

= L̄iyi|Ni|
(t) · · · yi1(t) ⋉

k ̸=i1,i2...i|Ni|

yk(t),

where L̄i=Li⋉|Ni|
j=1 W[2,2ij−1]. Thus, matrix L̃i = L̄iδ

1

2|Ni|
is the simplified structure matrix after removing all redundant
dummy variables.

However, there is another special case where a node is
not influenced by any other nodes, i.e., there exists i0 such
that Ni0 = [1,m + n]. In this case, fi0 is a linear Boolean
function if and only if the structure matrix Li0 = δ2[2, . . . , 2].
In addition, for an LBCN, its coefficient matrix under (22)
can also be easily obtained through the unrelated control sets
and the unrelated state sets. The discussion above can be
summarized as the following theorem and algorithm.

Theorem 2. BCN (11) is an LBCN if and only if for any i,
Li = δ2[2, 2, . . . , 2] or its simplified structure matrix satisfies
L̃i = Em+n−|Ni|, where Ni = Nu

i ∪ Nx
i , Nu

i and Nx
i are

the unrelated control set and unrelated state set of node i,
respectively.

Algorithm 1. Given the structure matrices Li ∈ L2×2m+n

,
i = 1, 2, . . . , n.

Step 1: For i = 1 to n, if Li = δ2[1, 1, . . . , 1], go to step 6.
Else, go to the next step.

Step 2: Determine the unrelated control set Nu
i and the

unrelated state set Nx
i . Assume Ni = Nu

i ∪Nx
i =

{i1, i2, . . . , i|Ni|}, i1 < i2 < · · · < i|Ni|. If Ni =
[1,m+ n], go to step 5. Else, go to the next step.

Step 3: Obtain the simplified structure matrix:

L̃i = Li

|Ni|
⋉
j=1

W[2,2ij−1] ⋉ δ1
2|Ni| . (25)

Step 4: Check whether L̃i satisfies the following equation:

L̃i = Em+n−|Ni|. (26)

If L̃i fails to satisfy (26), go to step 6. Else, go to
the next step.

Step 5: Rowi(B,A)⊤ = 1(m+n)×1 −
∑|Ni|

k=1 δ
ik
m+n, i =

i + 1. If i ≤ n, go to step 1. Else, go to the next
step.

Step 6: If i = n + 1, this BCN is an LBCN and return
matrices (B,A), stop. Else, it is not, stop.

BNs are special BCNs with constant input. The procedure
to determine whether BN (13) is an LBN is similar to the
discussion above, except that there are no unrelated control
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sets, only unrelated state sets Nx
i = {j|FiW[2,2j−1](Mn −

I2) = 0}, i = 1, 2, · · · , n. We obtain the following corollary.

Corollary 1. BN (13) is an LBN if and only if for any i,
Fi = δ2[2, . . . , 2] or its simplified structure matrix satisfies
F̃i = En−|Nx

i |, where Nx
i is the unrelated state set of node i.

If (13) is an LBN, then its coefficient matrix A in (23) can
be obtained as follows:

[A]i,j =

{
0 , if j ∈ Nx

i ,

1 , otherwise.
(27)

4 Fully Actuated Boolean Networks

In this section, we present the definition of FABNs. Ad-
ditionally, we clarify that, the full-actuation of LBCNs are
equivalent under two definitions.

FASs allow us to eliminate all the original dynamics, and a
desired closed-loop systems can be obtained, which helps us
to efficiently analyze and design systems. Furthermore, with
the help of the full-actuation feature, many control problems
such as stabilization, disturbance decoupling, robust control,
and optimal control can be easily addressed. Moreover, many
systems in the world can be transformed into high order
fully actuated systems, including controllable linear systems,
controllable canonical forms of nonlinear systems, and strict-
feedback nonlinear systems. Inspired by this innovation, we
present the definition of FABNs below, which similarly allows
the design of closed-loop systems as desired.

Definition 6. BCN (12) is called a fully actuated Boolean
network, if for any given logical matrix F ∈ L2n×2n , there
exists a state feedback control u(t) = Kx(t), K ∈ L2m×2n

such that the system can be converted into the following
closed-loop system

x(t+ 1) = Fx(t). (28)

Since not all BCNs are LBCNs, the definition above gen-
eralizes the full-actuation definition of linear systems over
finite field F2 to arbitrary systems, including nonlinear ones.

Lemma 5. [25] For two given matrices L ∈ L2n×ω2n and
F ∈ L2n×2n , there exists a matrix K ∈ Lω×2n such that
LKMr = F , if and only if L1ω×1 ≥ F.

Through the lemma about logical matrix equations, we
obtain the following theorem.

Theorem 3. BCN (12) is an FABN if and only if L12m×1 ≥
12n×2n .

Proof. Substituting u(t) = Kx(t) into (12), yields

x(t+ 1) = LKx(t)x(t). (29)

Then, we obtain x(t+1) = LKMrx(t) via the power reduc-
ing matrix. In view of Lemma 5, BCN (12) is an FABN, if
and only if L12m×1 ≥ F , for all F ∈ L2n×2n , which implies
L12m×1 ≥ 12n×2n .

It is obvious to see, a necessary condition for a BCN to be
an FABN is that the number of its control nodes is greater
than or equal to the number of its state nodes, i.e., m ≥ n.

Now, we clarify the relationship between Definition 2 and
Definition 6 for LBCNs with n state nodes and n control
nodes.

Theorem 4. When m = n, LBCN (12) is an FABN if and
only if linear system (22) obtained through Algorithm 1 is an
FAS.

Proof. (Necessity) Suppose that x(t+ 1) = Lu(t)x(t) is an
LBCN with n state nodes and n control nodes, and it is an
FABN, which implies L12n×1 = 12n×2n . It can be trans-
formed into the following linear system using Algorithm 1:

X(t+ 1) = AX(t) +BU(t). (30)

Next, we will prove that B is nonsingular, i.e., invertible.
Split L into 2n blocks as

L = [Lδ12n , Lδ
2
2n , . . . , Lδ

2n

2n ]. (31)

Using the representation above, L12n×1 = 12n×2n im-
plies ∀ j = 1, 2, . . . , 2n,

{Colj(Lδ
i
2n)|i = 1, 2, . . . , 2n} = ∆2n . (32)

It is not difficult to see that Colj(Lδ
i
2n) = Lδi2nδ

j
2n , this

means that state δj2n is driven to state Colj(Lδ
i
2n) by control

input δi2n .
Through the analysis above, equation (32) implies that, for

any given initial state x0 = δj2n , it reaches different states
under different controls

In linear system (22), for any given initial state X0 ∈ Dn,
driving it under different controls leads to different states.
This implies

{AX0 +BU |U ∈ Dn} = Dn,∀X0 ∈ Dn. (33)

Since the invertibility of B is equivalent to the statement
that the equation BU = 0 has only the trivial solution, as-
suming B is singular, then there exist U1 ̸= U2 such that
BU1 = BU2, which contradicts to (33). Thus, B is nonsin-
gular, which implies that the necessity holds.

(Sufficiency) Suppose linear system (22) is fully actuated.
Then, B is nonsingular, which indicates equation BU = 0
has only the trivial solution, i.e., ∀U1 ̸= U2, BU1 ̸= BU2.
Moreover, we have

{AX0 +BU |U ∈ Dn} = Dn,∀X0 ∈ Dn. (34)

Retracing the proof of necessity, sufficiency holds.

The theorem above indicates, for LBCNs, the definitions
of full-actuation under the two different forms are equivalent.

5 An Illustrative Example

In this section, we provide an illustrative example to
demonstrate our algorithm and verify the equivalence of Def-
initions 2 and 6 in LBCNs.

Example 1. Consider BCN (11) with

L1 = δ2[1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2];

L2 = δ2[2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2].

Then, via Lemma 2, one can obtain its structure matrix:

L = δ4[2, 3, 4, 1, 4, 1, 2, 3, 1, 4, 3, 2, 3, 2, 1, 4].
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It is observed that L14×1 = 14×4, thus this BCN is fully
actuated.

Next, we use Algorithm 1 to determine whether it is an
LBCN. If it is, we transform it into a linear system and verify
that the transformed linear system is also fully actuated.

By examining the value of LiW[2,2j−1](Mn−I2), i = 1, 2,
j = 1, 2, 3, 4, we can derive the unrelated control set Nu

i ,
i = 1, 2 and the unrelated control set Nx

i , i = 1, 2. Through
straightforward calculations, we obtain

Nu
1 = {1}, Nx

1 = ∅; Nu
2 = {2}, Nx

2 = {3}.

It follows that the unrelated sets of the two nodes are N1 =
{1} and N2 = {2, 3}, respectively. Therefore, the simplified
structure matrix are:

L̃1 = L1W[2,1] ⋉ δ12 = δ2[1, 2, 2, 1, 2, 1, 1, 2];

L̃2 = L2W[2,2]W[2,4] ⋉ δ14 = δ2[2, 1, 1, 2].

Direct verification yields L̃1 = E3 and L̃1 = E2, which
implies that this BCN is an LBCN, and the corresponding
coefficient matrices are:

A =

[
1 1
0 1

]
, B =

[
0 1
1 0

]
.

As B is nonsingular, this indicates that under Definition 2,
the transformed linear system X(t+ 1) = AX(t) +BU(t)
is fully actuated.

6 Conclusion

In this paper, utilizing STP as a tool, we have presented
a mechanical algorithm to determine whether a BCN or BN
can be “linearized”, i.e., transformed into a linear system over
finite field F2. Additionally, by the unrelated sets, a method
to calculate the corresponding coefficient matrices has been
presented. Inspired by the work in [24], the definition of
FABNs has been proposed for the first time, allowing for the
design of desired closed-loop systems through state feedback
control. Furthermore, a necessary and sufficient algebraic
condition for determining full-actuation has been provided.
Finally, the equivalence of two definitions of full-actuation
for LBCNs, has been established.

In the future, we will leverage the concept of full-actuation
to explore the control problems of general BCNs. These
are networks that cannot be transformed into linear systems
over finite field F2. We will also investigate cases where the
number of state nodes is not equal to the number of control
nodes. The full-actuation of arbitrary logical networks will
also be explored in the near future. Additionally, the relation-
ship between controllability and high-order full-actuation in
arbitrary logical networks will be investigated.
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Abstract: This paper proposes an adaptive dynamic event-triggered tracking control scheme for a class of uncertain high-order
fully actuated (HOFA) systems with input saturation. To address the issue of uncertainties in the system, parameter adaption
technology is adopted in the control scheme. Then, a dynamic event-triggered mechanism is proposed in order to mitigate
the communication frequency between the controller and the actuator. In contrast to the conventional static event-triggered
mechanism, the proposed dynamic event-triggered mechanism enables a more efficient utilization of communication resources.
Additionally, based on Lyapunov stability theory, it is strictly proven that the designed controller guarantees the boundedness
of all signals within the closed-loop system and prevents the occurrence of Zeno behavior. Finally, the efficacy of the proposed
control scheme is substantiated through a numerical simulation case study.

Key Words: High-order fully actuated (HOFA) systems, adaptive control, input saturation, dynamic event-triggered mechanism

1 Introduction

In the development of control area, first-order state-space
models have traditionally dominated. However, the focus
in these models is primarily on state variables rather than
control variables, which cause challenges in addressing con-
trol problems. Then, the corresponding control approach-
es often transformed these systems into first-order models
through state augmentation, thereby resulting in a increased
complexity and losing the fully actuated property. Recent-
ly, the concept of high-order fully actuated (HOFA) system
was initially proposed in [1], providing a simplified frame-
work for controller design once HOFA system models can be
obtained. Subsequently, for a certain category of HOFA sys-
tems characterized by parameter uncertainties, both adaptive
stabilization and tracking control strategies were develope-
d in [2]. Furthermore, the author in [3] presented two de-
sign schemes for adaptive robust stabilization controller and
adaptive robust tracking controller of HOFA systems with
parametric uncertainties and nonlinear uncertainties. How-
ever, it is important to acknowledge that the aforementioned
control strategies are designed based on a time-triggered ap-
proache without considering the communication burden.

To decrease the transmission frequency, in recent years,
an event-triggered mechanism (ETM) has been widely em-
ployed in network control systems. As an aperiodic trans-
mission control strategy, the control input with ETM is up-
dated exclusively upon the occurrence of the specified con-
ditions, thereby mitigating energy expenditure and reducing
wear on actuators [4]. This process also improves the re-
source utilization efficiency. However, there are few works
available for nonlinear HOFA systems that take the trans-
mission efficiency into account. In [5], a dual-channel event-
triggered control strategy based on the HOFA theory was de-
signed for a category of nonlinear strict-feedback systems.

This work was supported by the National Natural Science Foundation
of China under Grants 62073339, 62173343, and the Postdoctoral Program
for Innovative Talents of Shandong Province of China under Grant SD-
BX2023021. *: Corresponding author.

In [6] an adaptive ETM was presented for the control de-
sign of uncertain HOFA systems with uncertain controller
gain matrices. However, it should be noted that the de-
sign approaches mentioned above only focuse on the con-
ventional static event-triggered mechanism (SETM), which
fails to adequately alleviate communication pressure. Keep-
ing this in consideration, the dynamic event-triggered mech-
anism (DETM), as an improved iteration of SETM, was pro-
posed in [7] for the first time. As a result of the incorpora-
tion of dynamic variables, the DETM is more flexible in the
systems where fast change of signals are required, and the
average inter-event interval can be extended, thereby further
resulting in a reduction in terms of communication resource
consumption [8]. Nonetheless, the aforementioned results
cannot be directly extended to the dynamic event-triggered
control design considering input saturation due to the uncer-
tainty of actuator dynamics.

In many practical control systems, the output of actuators
is often subject to threshold limitations which may causes
deteriorated control performance or even leads to instabili-
ty. Therefore, the input saturation is an important issue that
needs to be solved. In [9], an asymmetric saturation mod-
el based on the Gaussian error function was employed to
address the issue of asymmetric saturation nonlinearity. In
[10], an adaptive fault-tolerant controller with input satura-
tion was designed by introducing a smooth hyperbolic tan-
gent function. Additionally, the issue of actuator saturation
was addressed by adjusting the reference signal using an ex-
plicit reference governor [11]. Nevertheless, based on a thor-
ough survey of existing works, the problem of adaptive dy-
namic event-triggered tracking control for uncertain HOFA
systems with input saturation has not been studied, which
motivates our current research.

Inspired by the preceding discussions in this paper, we
propose an adaptive dynamic event-triggered tracking con-
trol framework for uncertain HOFA systems with input satu-
ration. The key contributions can be summarized as follows:

1) In this paper, the dynamic event-triggered tracking con-
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trol problem for a class of uncertain HOFA systems
with input saturation is addressed initially. The control
scheme puts forward in this paper results in significant
savings in communication resources, and the negative
influence caused by the actuator saturation can be con-
quered.

2) Compared with the conventional SETM, the DETM in-
troduced in this paper achieves lower transmission fre-
quency, which declines the frequency of communica-
tion effectively.

Notations: In the following discussion, some variables
are abbreviated if there is no ambiguity, e.g., P stands for
matrix P (A0∼n−1), λmax(·) and λmin(·) represent the max-
imum and minimum eigenvalues of a matrix respectively.
Additionally, A0∼n−1 = [A0, A1, . . . , An−1], x(n) signifies
the n-th derivative of x, tk = [t1,k, . . . , tr,k]

T ∈ Rr,

Φ
(
A0∼n−1

)
=


0r×r Ir×r

. . .
Ir×r

−A0 −A1 · · · −An−1

 ∈ Rnr×nr,

where 0r×r and Ir×r stand for the r × r null matrix and
identity matrix respectively.

2 Preliminaries and Problem Description

Consider the uncertain HOFA system with disturbances,
input saturation and unknown nonlinearities as:

x(n) =f (x̄) + ∆f (x̄) +HT (x̄) θ

+G (x̄)u (v) +D (x̄) d
(1)

where x ∈ Rr is the system state vector; x̄ =
[x, ẋ, . . . , x(n−1)]T ∈ Rnr; f (x̄) ∈ Rr is a known suffi-
ciently smooth nonlinear vector function; H (x̄) ∈ Rm×r

and D (x̄) ∈ Rr×r are known sufficiently smooth matrix
functions; G (x̄) ∈ Rr×r denotes the unknown control gain
matrix function; ∆f (x̄) ∈ Rr and θ ∈ Rm denote the
nonlinear uncertainty and the parameter uncertainty, respec-
tively; d ∈ Rr is an unknown disturbance input vector;
u(v) = [u1 (v1) , . . . , ur (vr)]

T ∈ Rr denotes the actual in-
put signal, which can be mathematically described by the
following equation:

ui (vi) =


ui,UB , vi ≥ ui,UB

vi, ui,LB < vi < ui,UB

ui,LB, vi ≤ ui,LB

(2)

where i = 1, . . . , r, vi is the input signal, ui,UB >
0 and ui,LB < 0 denote the upper bound and lower
bound of the actuator respectively, and there are uUB =
[u1,UB , . . . , ur,UB ]

T ∈ Rr, uLB = [u1,LB , . . . , ur,LB]
T ∈

Rr. In order to ensure the smoothness of u(v), a saturation
model is taken into account to describe the saturation non-
linearity:

sat(vi) = ui,m × erf

( √
π

2ui,m
vi

)
(3)

where ui,m = (ui,UB + ui,LB)/2 + (ui,UB −
ui,LB)sgn(vi)/2, sgn(·) and erf(·) represent a sign
function and a Gaussian error function respectively [12].

To facilitate subsequent controller analysis and design, the
saturation approximation error is defined as follows:

∆ = u (v)− pv (4)

where ∆ = [∆1, . . . ,∆r]
T ∈ Rr is bounded, v(t) =

[v1(t), . . . , vr(t)]
T ∈ Rr, p is a positive constant. Then,

the saturation model (3) can be represented by the following
manner:

u (v) = pv +∆. (5)

Therefore, the uncertain HOFA system (1) can be ex-
pressed in forms of

x(n) =f (x̄) + ∆f (x̄) +HT (x̄) θ

+G (x̄) (pv +∆) +D (x̄) d.
(6)

Considering yd as the desired reference signal, the track-
ing error z and its derivatives are expressed as follows:

z =x− yd

z(j) =x(j) − yd
(j), j = 1, 2, . . . , n.

(7)

Then, the system (6) can be converted into an uncertain
HOFA tracking error system as follows:

z(n) =f (z̄) + ∆f (z̄) +HT (z̄) θ +G (z̄) (pv +∆)

+D (z̄) d− yd
(n)

(8)

where z̄ = [z, ż, . . . , z(n−1)]T ∈ Rnr.
The primary goal of this study is to develop an adaptive

event-triggered tracking controller with the input saturation
(3), such that yd can be tracked accurately by the state x
and the boundedness of all signals within the closed-loop
system is guaranteed. To this end, the relevant assumptions
and lemmas are given below.

Assumption 1 There exists unknown constants g and g sat-
isfying 0 < g ≤ g and

g ≤ λmin(G(x̄)) ≤ λmax(G(x̄)) ≤ g.

Assumption 2 The uncertain nonlinearity ∆f (x̄) of the
system (1) is constrained by the product of a know non-
negative continuous function f ′(x̄) and an unknown con-
stant s, i.e.

∥∆f(x̄)∥ ≤ sf ′ (x̄) .

Assumption 3 There exists positive constants ∆, d that sat-
isfie ∥∆∥ ≤ ∆, ∥d∥ ≤ d,

Assumption 4 The desired reference signal yd and yd
(n)

are continuous, bounded and available.

Remark 1 Assumption 1 ensures the controllability of the
HOFA system (1); Assumption 2 is a commonly used as-
sumption when dealing with unknown nonlinear function-
s, which guarantees the uncertainty and nonlinearity of the
function ∆f (x̄); Assumption 3 shows the disturbance term
D (x̄) d satisfies the norm-bounded condition.
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Lemma 1 [2] Let A ∈ Rn×n satisfies Reλi (A) < −µ
2 ,

where i = 1, 2, . . . , n, µ > 0. Then there exists a positive
definite matrix P ∈ Rn×n that satisfies

ATP + PA ≤ −µP.

Lemma 2 [2] For any positive constant µ, there exists a set
of matrices Ai ∈ Rr×r, i = 0, 1, . . . , n− 1 that satisfies

Reλi
(
Φ
(
A0∼n−1

))
< −µ

2
, i = 1, 2, . . . , nr.

Lemma 3 [13] For any positive constant µ and any vari-
able h ∈ R, there is an inequality satisfies

0 ≤ |h| − h2√
h2 + µ2

< µ.

Remark 2 Lemma 2 shows that the eigenvalues can be
freely designed by properly choosing Ai ∈ Rr×r, i =
0, 1, . . . , n− 1 for matrix Φ

(
A0∼n−1

)
. When the condition

in Lemma 2 holds, it can be inferred that a positive definite
matrix P (A0∼n−1) = [P1, P2, . . . , Pn], Pi ∈ Rnr×r exist-
s according to Lemma 1, for which the following inequality
holds:

ΦT (A0∼n−1)P (A0∼n−1) + P (A0∼n−1)Φ(A0∼n−1)

≤ −µP (A0∼n−1).
(9)

3 Controller Design and Stability Analysis

In order to obtain the HOFA closed-loop system, an aux-
iliary signal u is introduced as follows [6]:

u = A0∼n−1z̄ + f (z̄) + ΨT (z̄) Θ̂− y
(n)
d (10)

where Θ̂ = [θ̂, ŝ]T ∈ Rm+1 is the estimate of Θ = [θ, s]T ∈
Rm+1 in which θ̂, ŝ are the estimated values of θ, s, respec-
tively. Then there exist Θ̃(t) = Θ − Θ̂(t), θ̃(t) = θ − θ̂(t),
s̃(t) = s − ŝ(t). Ψ(z̄) is an augmentation of H (z̄) and
ζT (z̄), which are given as fellows:

Ψ(z̄) =
[
HT (z̄) , ζ (z̄)

]T
ζ (z̄) =

f
′2PTn z̄√

f ′2 ∥z̄TPn∥2 + ε22

where ε2 is a positive constant.
Then, according to the auxiliary signal (10), the above un-

certain HOFA tracking error model (8) can be converted to a
HOFA standard closed-loop system form:

z(n) +A0∼n−1z̄ = ϕ (z̄) . (11)

where

ϕ (z̄) =∆f (z̄) +HT (z̄) θ̃ +D (z̄) d− ζ (z̄) ŝ

+G (z̄) (pv +∆) + u.

Further, (11) can be converted into the form of state-space
model:

˙̄z = Φ
(
A0∼n−1

)
z̄ +

[
0(n−1)r

ϕ (z̄)

]
(12)

In order to minimize the frequency of triggers, a DETM
is introduced, which includes dynamic event-triggered con-
dition and definition of dynamic variable ρi:

ti,k+1 =min
{
t ≥ ti,k : ρi +

(
Bi − |udi − vi|

)
≤ 0
}
(13)

ρ̇i =− ηiρi +
(
Bi − |udi − vi|

)
, ρi(0) = 0 (14)

where Bi, ηi are the designed positive constants, ud =
[ud1, . . . , udr]

T ∈ Rr is the control law to be designed sub-
sequently, ρ = [ρ1, . . . , ρr]

T ∈ Rr, B =
[
B1, . . . , Br

]T ∈
Rr.

The dynamic event-triggered control is now presented as:

vi(t) = udi (ti,k) , t ∈ [ti,k, ti,k+1). (15)

Lemma 4 For dynamic variable ρi, there exists 0 ≤ ρi ≤
Bi

ηi
for all t ∈ [0, t∞) under the event-triggered condition

(13) and the dynamic variable (14).

Proof : According to (13), it can be inferred that

ρi +
(
Bi − |udi − vi|

)
> 0, t ∈ [ti,k, ti,k+1) . (16)

Bringing the above equation into the definition of dynamic
variable (14), that

ρ̇i ≥ −ηiρi − ρi. (17)

Based on comparison lemma, there exists ρi>0 when t ∈
[ti,k, ti,k+1).

From (14) the following inequality can be obtained:

ρ̇i ≤ −ηiρi +Bi. (18)

For ρi(0) = 0, there exists ρi(t) ≤ Bi

ηi
(1− e−ηit) by

solving the differential equation of (17). Therefore, ρi has
upper bound of Bi

ηi
for all t ∈ [0, t∞).

In conclusion, ρi is bounded by 0 ≤ ρi ≤ Bi

ηi
. The proof

is complete. �
When Ai ∈ Rr×r satisfies Lemma 2, a positive definite

matrix P (A0∼n−1) can be found. Now, choose the Lya-
punov function as

V =
1

2p
z̄TP z̄ +

gγ̃2

2
+

1

2p
Θ̃TΓ−1Θ̃ +

gb̃2

2
(19)

where Γ ∈ R(m+1)×(m+1) stands for a gain matrix which is
positive definite; γ̃(t) = γ−γ̂(t) ∈ R, in which γ̂ represents
the estimated value of γ with γ = 1

pg ; b̃(t) = b− b̂(t) ∈ R,

in which b̂ represents the estimated value of b with b = g
g .

Then, we have

V̇ ≤− µ

2p
z̄TP z̄ +

1

p
z̄TPn

(
∆f (z̄) +HT (z̄) θ̃

+D (z̄) d− ζ (z̄) ŝ+G (z̄) (pv +∆) + u
)

− gγ̃ ˙̂γ − 1

p
Θ̃TΓ−1 ˙̂Θ− gb̃

˙̂
b.

(20)

According to Assumption 2 and lemma 3, it can be ob-
tained that

1

p
z̄TPn∆f (z̄) ≤

1

p
sz̄TPnζ (z̄) +

1

p
sε2. (21)
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By applying Young’s inequality, the subsequent relation-
ships are established:

1

p
z̄TPnD (z̄) d ≤ 1

p

∥∥z̄TPn∥∥ ∥D(z̄)∥ d

≤ 1

2p

∥∥z̄TPn∥∥2 ∥D (z̄)∥2 + 1

2p
d
2

(22)

1

p
z̄TPnG (z̄)∆ ≤ 1

p

∥∥z̄TPn∥∥ g∆
≤ 1

2p

∥∥z̄TPn∥∥2 + 1

2p
g2∆

2
.

(23)

Bringing (21)-(23) into (20), there exists

V̇ ≤− µ

2p
z̄TP z̄ +

1

p
z̄TPn

(
u+ C +ΨT (z̄) Θ̃

+G (z̄) pv
)
− gγ̃ ˙̂γ − 1

p
Θ̃TΓ−1 ˙̂Θ− gb̃

˙̂
b

+
1

p
sε2 +

1

2p
d
2
+

1

2p
g2∆

2

(24)

where C = 1
2P

T
n z̄
[
1 + ∥D (z̄)∥2

]
∈ Rr.

According to (13), we have ρi +
(
Bi − |udi − vi|

)
≥ 0,

i.e., |udi − vi| ≤ ρi + Bi, t ∈ [ti,k, ti,k+1). Hence, the
following equation can be derived:

v = ud − λ (t)
(
B + ρ

)
(25)

where λ(t) represents a time-varying function satisfying the
conditions |λ(t)| ≤ 1 with λ(tκ̇) = 0, λ(tκ̇+1) = 1.

Taking (25) into (24) yields

V̇ ≤− µ

2p
z̄TP z̄ +

1

p
z̄TPn

(
u+ C +ΨT (z̄) Θ̃

+G (z̄) p
(
ud − λ (t)

(
B + ρ

)) )
− gγ̃ ˙̂γ

− 1

p
Θ̃TΓ−1 ˙̂Θ− gb̃

˙̂
b+

1

p
sε2 +

1

2p
d
2
+

1

2p
g2∆

2
.

(26)

Based on Lyapunov stability theory, the adaptive event-
triggered tracking controller ud is designed as



ud = −r1 − b̂r2

r1 =
γ̂2(u+C)((u+C)TPT

n z̄)√
(γ̂z̄TPn(u+C))2+ε21

r2 =
W(WTPT

n z̄)√
(z̄TPnW )2+ε21

(27)

where W = B + ρ ∈ Rr, ε1 is a positive constant.
Considering z̄TPnG (z̄)ud ≤ 0 and Lemma 1, substitut-

ing (27) into (26), there exists:

1

p
z̄TPnG (z̄) p

(
ud − λ (t)

(
B + ρ

))
=z̄TPnG (z̄)ud − z̄TPnG (z̄)

(
λ(t)

(
B + ρ

))
≤gz̄TPnud + gz̄TPnr2 + ε1g

≤− gγ̂z̄TPn (u+ C) + ε1g − gb̂z̄TPnr2

+ gz̄TPnr2 + ε1g

≤− 1

p
z̄TPn (u+ C) + gγ̃z̄TPn (u+ C)

+ gb̃z̄TPnr2 + ε1g + ε1g.

(28)

Bringing (28) back to (26) yields:

V̇ ≤− µ

2p
z̄TP z̄ + ε1g + ε1g +

1

p
sε2 +

1

2p
d
2

+
1

2p
g2∆

2 − gγ̃
(
˙̂γ − z̄TPn (u+ C)

)
− 1

p
Θ̃TΓ−1

(
˙̂
Θ− ΓΨPTn z̄

)
− gb̃

(
˙̂
b− z̄TPnr2

)
.

(29)

Thus, the adaptive laws can be intuitively designed as
˙̂γ = z̄TPn (u+ C)− τ1γ̂
˙̂
Θ = ΓΨPTn z̄ − τ2ΓΘ̂
˙̂
b = z̄TPnr2 − τ3b̂

(30)

where τ1, τ2, τ3 are the designed positive constants.
Finally, substituting (30) into (29) yields:

V̇ ≤− µ

2p
z̄TP z̄ −

τ1g

2
γ̃2 − τ2

2p
Θ̃T Θ̃

−
τ3g

2
b̃2 +

τ1g

2
γ2 +

τ2
2p

ΘTΘ+
τ3g

2
b2

+ ε1g + ε1g +
1

p
sε2 +

1

2p
d
2
+

1

2p
g2∆

2

≤− aV + w

(31)

where

a =min
{
µ, τ1, τ2/λmax

(
Γ−1

)
, τ3
}

w =
τ1g

2
γ2 +

τ2
2p

ΘTΘ+
τ3g

2
b2 + ε1g + ε1g

+
1

p
sε2 +

1

2p
d
2
+

1

2p
g2∆

2
.

Theorem 1 Considering the uncertain HOFA system (1)
satisfying Assumptions 1, 2, 3, 4, the adaptive event-
triggered tracking controller (27) designed with adaptive
laws (30) guarantee the boundedness of all signals within the
closed-loop system. There is no occurrence of Zeno behavior
under the controller and adaptive laws designed above.

Proof : It can be obtained V ≤ e−at(V (0) − w
a ) +

w
a by

solving the differential equation of (31). When t → +∞, it
is easy to conclude V → w

a , which in turn gives the bound-
ness of z̄, γ̂, Θ̂ and b̂. Then, we can obtain that f ′ (z̄) and
Ψ(z̄) are bounded. According to (10), the boundedness of u
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can be obtained. Since 0 ≤ ρi ≤ Bi

ηi
was proved in Lemma

4, then ud, v and u are bounded due to the boundedness of
u, ρ and p. Thus, it is guaranteed that all signals within the
closed-loop system remain bounded.

Next it is shown that the event-triggered control scheme
proposed above avoids Zeno behavior, i.e., there exists a
minimum inter-execution time t∗ = [t∗1, . . . , t

∗
r ]
T ∈ Rr

satisfying ti,k+1 − ti,k ≥ t∗i with ∀k ∈ Z+. Letting
ei = udi − vi, obviously, for ∀t ∈ [ti,k, ti,k+1) it holds
that

d

dt
|ei| =

d

dt
(ei ∗ ei)

1
2 =

eiėi
|ei|

= sign(ei)ėi ≤ |u̇di| (32)

where ud is differentiable and u̇d is a function comprised
of all bounded signals. Therefore, there must exist a posi-
tive constant mi such that the inequality |u̇di| ≤ mi hold-
s. Integrating (32) from tk to tk+1 with ei (tk) = 0 and
limt→tk+1

ei(t) = limt→tk+1
[ρi(t) + Bi] = ρi(tk+1) +

Bi>0, thus yields Bi ≤ ρi(tk+1) + Bi ≤ mi(tk+1 − tk),
i.e., there exists

tk+1 − tk ≥ t∗ =
Bi
mi

> 0.

Therefore, no Zeno behavior is exhibited. �
4 Simulation Studies

In this subsection, a simulation example is presented to il-
lustrate the efficacy of the proposed adaptive dynamic event-
triggered tracking controller. Consider the following uncer-
tain fourth-order fully actuated system as

x(4) =f (x̄) + ∆f (x̄) +HT (x̄) θ

+G (x̄)u(v) +D (x̄) d
(33)

where x̄ = [x, ẋ, x(2), x(3)]T , f (x̄) = sin(x) + cos(x +
ẋ)+sin(x(2)x(3))+xẋ, ∆f (x̄) = cos(xẋ+x(2)) sin(x(3)),
H (x̄) = [0.25 sin(x), 0.5ẋ cos(x(2)), x + x(3)]T ,
θ = [1, 0.5, 0.5]T ,G (x̄) = 0.1 sin(x+ẋ+x(2)+x(3))+0.5,
D (x̄) = cos(x + x(3)) + ẋ, d = 0.1 sin(2t). Choose the
desired reference signal as yd = 1.5 sin(t) and the satu-
ration input is defined with uUB = 60 and uLB = −30
as its upper and lower bounds, respectively. The dy-
namic parameters set as η = 0.3, B = 18. According
to Assumption 2, Lemma 1 and Lemma 2, we choose
f ′(x̄) = sin(xẋ) + sin(x(2)x(3)), A0∼3 = [36, 60, 37, 10],
P4 = [0.1124, 0.1464, 0.0637, 0.0091]T . The initial con-
ditions are selected as [x(0), ẋ(0), x(2)(0), x(3)(0)] =

[0.5, 1.5, 0.75, 0.25], [γ̂(0), Θ̂T (0), b̂(0)] =
[0.1, 0.1, 0.1, 0.1, 0.1, 0.1] and ρ(0) = 0 is designed
based on Lemma 4. The remaining parameters are presented
as Γ = diag{5, 5, 5, 5}, ε1 = ε2 = 0.01, τ1 = 0.1,
τ2 = 0.2, τ3 = 0.5.

The simulation results are illustrated in Figs. 1-7. The
tracking performance of the designed algorithm is demon-
strated in Fig. 1, which illustrates that the algorithm is ca-
pable of tracking the reference signal effectively. Fig. 2 in-
dicates that the tracking error eventually converge to zero.
Fig. 3 illustrates the actual control signal of the system with
asymmetric saturation. Fig. 4 demonstrates the boundedness
of the adaptive parameters γ̂, Θ̂ and b̂, thereby implying that
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Fig. 1: Tracking trajectory.
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Fig. 2: Tracking error.
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Fig. 3: The actual control signal.

the estimation errors are also bounded. Fig. 5 displays that
the dynamic variable ρ is bounded within the range of 0 to
B
η , which corroborates Lemma 4 mentioned earlier. Fig. 6
shows the interval times between two consecutive trigger-
s. Fig. 7 compares the numbers of transmissions between
DETM and SETM, indicating that additional communica-
tion resources can be can conserved by the proposed DETM
compared to conventional SETM.

5 Conclusion

This paper has explored the adaptive dynamic event-
triggered tracking control problem for a class of uncertain
HOFA nonlinear systems containing actuator saturation. In
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Fig. 4: Adaptive updating parameters γ̂, Θ̂ and b̂.

0 10 20 30 40 50

0

5

10

15

20

25

Fig. 5: The dynamic variable ρ.
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Fig. 6: Triggering instants and inter-event times.

this study, the uncertainty nonlinearities presented in the sys-
tem are converted to adaptive estimation problems of un-
known parameters. Then the proposed controller has effec-
tively mitigated the impact of input saturation. Moreover, the
introduced DETM has further improved the communication
efficiency compared to the conventional SETM. Finally, the
efficacy of the designed control strategy has been rigorously
verified through theoretical proofs and simulations.
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Abstract: This paper focuses on addressing the event-triggered control problem for a specific class of nonlinear systems that
involve unknown terms. To tackle this issue, the paper employs the recursive design method of “ascending dimension and
descending order” to transform the cascade system into a high-order fully actuated (HOFA) model. The control law is then
obtained using HOFA system approaches. Furthermore, a robust control technique is applied to handle the unknown terms and
improve system stability and control accuracy. To reduce computation and energy consumption in signal transmission, a relative
threshold event-triggered mechanism (ETM) is designed. By utilizing Lyapunov stability theory, the stability of the closed-loop
system is examined. The analysis confirms that all signals within the closed-loop system exhibit ultimate boundedness. Finally,
the proposed approach is validated through a simulation example, showcasing its effectiveness in achieving the desired control
objectives.

Key Words: Robust control, High-order fully actuated systems, Event-triggered control, Nonlinear systems

1 Introduction

Significant progress has been made in control theory over
the last few decades. Although linear system theory is ma-
ture and widely used in theory, linear feedback control is of-
ten difficult to meet various practical requirements with the
development of science and technology and the continuous
improvement of control system performance requirements.
Most actual control systems are often nonlinear, so it is nec-
essary to study the nonlinear system [1], [2], [3]. Extensive
research and optimization on the control theory of nonlinear
systems have been conducted by many experts and scholars
in recent years, such as robust control [4], adaptive control
[5, 6], neural network theory [7], [8], fuzzy control [9], [10]
and so on.

Although the state-space model is widely used and has a
good theoretical basis in the modeling and control of non-
linear systems, it still has some inherent defects [11]. For-
tunately, there exists another system model called the high-
order fully actuated (HOFA) mode [12], in addition to the
state-space techniques. Regardless of their complexity, the
nonlinear terms in the HOFA model could be conveniently
eliminated by converting them into measurable forms using
the full-actuation structure. The HOFA system methods are
combined with robust control [13], optimal control [14] and
adaptive control [16] and so on.

In the process of designing controllers, it is crucial to con-
sider model uncertainties as they can have a detrimental im-
pact on the performance of control systems. Robust control
can maintain in the system containing unknown term sta-
bility and robustness, and simplify the design and adaptive
[17]. However, when dealing with systems with unknown
terms, robust control may not be able to completely elim-

This work was supported in part by the Funds of the National Natural
Science Foundation of China (Grant No. 62203377), the Hebei Natural
Science Foundation (Grant No. F2022203097), the S&T Program of Hebei
(Grant Nos. 236Z1603G and 236Z2002G), the Science Research Project
of Hebei Education Department (Grant No. QN2022077), and the Fund of
Innovation Capability Improvement Plan Project of Hebei Province (Grant
No. 22567619H). (Corresponding author: Cui-Hua Zhang.)

inate uncertainties and perturbations. The combination of
HOFA system approaches can further improve the robust-
ness and control performance of the system, make up for
the limitations of robust control, and ensure that the system
has better control effects. Therefor, the paper research using
robust control method to deal with the uncertainties of the
system to ensure the stability.

Event-triggered control strategies were proposed [15, 18]
as an alternative method to deal with the traditional peri-
odic execution control problems [19], considering the lim-
ited communication resources of communication channels
and the ability of sending channels. Reference [20] explored
the event-triggered output feedback control law to achieve
robust output regulation of linear systems. The problem’s
solvability was summarized via internal model design, and
a triggered mechanism based on the system output was pro-
posed to reduce steady-state tracking error. For a class of
uncertain nonlinear systems in [21], the authors of the paper
addressed the problem of global finite-time stabilization for
uncertain nonlinear systems with event-triggered inputs.

After comprehensive design, the innovation points of this
paper are as follows:

• This paper introduces the utilization of HOFA system
approaches as an alternative to the traditional back-
stepping method [22]. To convert the cascade system
into the HOFA model, the paper employs the recur-
sive design method known as “ascending dimension re-
duction”. This approach eliminates the need for com-
plex coordinate transformations and significantly re-
duces computational complexity.

• In this paper, the robust controllers and the ETM [23]
are synthetically designed. The use of HOFA system
approaches can boost system response prediction accu-
racy and simplify the creation of more efficient ETM
with relative thresholds. This design saves network re-
sources during signal transmission and avoids the con-
stant updating of the controller [24]. The control strate-
gy employed ensures that all signals within the closed-
loop system exhibit ultimate boundedness.
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Notations. The set of real numbers is denoted by R, the
set of positive numbers is denoted by Z+, c ∈ C means that
c is c constant. Gi(·), (i = 1,2, ...,n), are continuously dif-
ferentiable functions, which can be simply expressed as Gi.
Hi(·), (i = 1,2, ...,n)is the continuous partial derivative sym-
bol, which can be simply expressed as Hi. ∆ fi(x1∼n) is the
system uncertainty. Q is a real symmetric matrix that is pos-
itive definite, and the last row of the matrix Q is denoted by
QL. For xk ∈ R, ck ∈ C, we set

x(0∼k) =


x
ẋ
ẍ
...
x(k)

 ,x1∼k =


x1
x2
...
xk

 ,
c0∼kx(0∼k) = (c0,c1, ...,ck)(x, ẋ, ẍ, ...,x(k))T ,

k = 1,2, ...,n.

2 Problem Formulation and Preliminaries

2.1 Problem Formulation
This paper focuses on a specific class of nonlinear system

with unknown terms:{
ẋi = fi(x1∼i+1), i = 1,2, ...,n−1,
ẋn = u+∆ fn(x1∼n)+ fn(x1∼n),

(1)

where xi ∈R, (i = 1,2, ...,n) are the state variables, u ∈R is
the control input, fi(·), (i = 1,2, ...,n) are the differentiable
functions, ∆ fn(x1∼n) is the system uncertainty.

The main purpose of this paper is to co-design a robust
controller and event-triggered mechanism that ensure the ul-
timate boundedness of all signals in the considered systems.
In the case of cascading systems, the conventional approach
involves using backstepping, which can be cumbersome and
challenging. This paper utilizes the novel approach of em-
ploying HOFA system techniques to address the stabilization
problem of these systems.

2.2 Preliminaries
To provide a controller for systems with dynamic uncer-

tainties, it is necessary to present the preliminary results.
Lemma 2.1 [13]: Assuming the existence of a non-

negative continuous scalar function ρ(x1∼n), it can be guar-
anteed ∆ f (x1∼n) ∈ Rr satisfies the following conditions:

∥Hn−1∆ f (x1∼n)∥ ≤ ρ(x1∼n). (2)

Lemma 2.2 [15]: Let B ∈ Rr×r satisfy:

Reλi(B)≤−α
2
, i = 1,2, ...,n, (3)

where α > 0. Satisfying the above given conditions, there is
a positive definite matrix C ∈ Rr×r satisfying:

BTC+CB ≤−αC. (4)

Lemma 2.3 [15]: There exist a set of matrices Ci ∈ Rr×r,
(i = 0,1,2, ...,n−1) for any λ > 0, satisfying:

Reλi(C)≤−λ
2
, i = 1,2, ...,n, (5)

by properly selecting Ci, (i = 0,1,2, ...,n−1), the eigenval-
ues of C can be arbitrarily assigned, thereby confirming the
validity of the conclusion.

According to Lemma 2.2, if the condition in (5) is met for
some λ > 0, then there exists a positive definite matrix Q.

CT Q+QC ≤−λQ. (6)

Lemma 2.4 [16]: For two real numbers m and n, where
n> 0, the following relation holds:

m− m2

4n
≤ n. (7)

3 Event-Triggered Control Design

3.1 HOFA System Model
This section designs the control law of the system. To

accomplish this, the cascading system (1) is transformed in-
to the HOFA system model using a mathematical induction
technique.

To facilitate subsequent derivations, coordinate transfor-
mation processing is performed. Where x2 can be expressed
as a function of ẋ1, and ẋ1 can be substituted into the equa-
tion for x2. Also, x3 can be expressed as a function of x1,
x2, ẋ1, ẋ2, which means x3 can be expressed as a function of
x1, ẋ1, ẍ1. Therefore, the law of coordinate transformation is
summarized as follows:

xi+1 = mi(x
(0∼i)
1 ), i = 1,2, ...,n−1, (8)

where mi (·), (i = 1,2, ...,n−1) are the continuous differen-
tiable functions.

Therefore, in the later no longer described in the deriva-
tion of coordinate transformation.

For system (1), when i =1,2 that is{
ẋ1 = f1(x1,x2),
ẋ2 = f2(x1,x2,x3).

(9)

Taking the derivatives of the first equation in (9), it can be
obtained that

ẍ2 =
∂ f1

∂x1
ẋ1 +

∂ f1

∂x2
ẋ2

= G1 +H1 f2,

(10)

where

G1(x
(0∼1)
1 ) =

∂ f1

∂x1
ẋ1,

H1(x
(0∼1)
1 ) =

∂ f1

∂x2
.

Then take the derivative of both sides of (10) and get the
following result

x(3) = Ġ1 +(H1 f2)
(1)−H1

∂ f2

∂x3
ẋ3 +H1

∂ f2

∂x3
ẋ3

= G2 +H2 f3,

(11)
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where

G2(x
(0∼2)
1 ) = Ġ1 +(H1 f2)

(1)−H1
∂ f2

∂x3
ẋ3

= Ġ1 +(H1 f2)
(1)−H2ẋ3

= Ġ1 +(H1 f2)
(1)−H2 f3,

H2(x
(0∼2)
1 ) = H1

∂ f2

∂x3
.

When i = k, it follows

x(k)1 = Gk−1 +Hk−1 fk, (12)

where

Gk−1 = (Gk−2)
(1)+(Hk−2 fk−1)

(1)−Hk−1 fk,

Hk−1 = Hk−2
∂ fk−1

∂xk
.

Once again, by taking the derivatives of both sides of e-
quation (12), we can obtain the following expression:

x(k+1)
1 = Gk +Hk fk+1, (13)

where

Gk = (Gk−1)
(1)+(Hk−1 fk)

(1)−Hk fk+1,

Hk = Hk−1
∂ fk

∂xk+1
,

it can be seen that this is the case for i = k+1.
From the above inference, it can be seen that the following

equation is always valid for system (1):

x(i)1 = Gi−1 +Hi−1 fi, (14)

where i = 1,2, ...,n−1

Gi = (Gi−1)
(1)+(Hi−1 fi)

(1)−Hi fi+1,

Hi = Hi−1
∂ fi

∂xi+1
.

Especially, the initial values are set to G0 = f1(x1,x2),
H0 = 0.

When i = n−1, it can be deduced from equation (14) that:

x(n−1)
1 = Gn−2 +Hn−2 fn−1. (15)

The derivation of both sides of (15), get

x(n)1 =Gn−1 +Hn−1ẋn

=Gn−1 +Hn−1(u+∆ fn(x1∼n)+ fn(x1∼n)),
(16)

where

Gn−1 = (Gn−2)
(1)+(Hn−2 fn−1)

(1)−Hn−2
∂ fn−1

∂xn
ẋn,

Hn−1 = Hn−2
∂ fn−1

∂xn
.

In fact, the expression in (16) represents the HOFA model,
which serves as the basis for designing the event-triggered
robust controller.

3.2 Robust Control
The following theorem can be stated regarding the robust

stabilization of the high-order system (16) with nonlinear un-
certainties:

Theorem 1: Suppose that system (16) satisfies Lemma
2.1. Let ε and λ be two arbitrarily given positive numbers,
and let Ci ∈Rr×r, (i = 1,2, ...,n−1) be a set of matrices that
satisfy (5). For ease of presentation, denote x(0∼n−1)

1 as X̄1.
For the uncertain system (16), the following control law is

then applied.

u =− fn(x1∼n)−H−1
n−1(c

0∼n−1X̄1 +Gn−1

+
1

4ε
ρ2(x1∼n)QLX̄1),

(17)

converging to the ellipsoid centered at the origin is guaran-
teed by this control law for the state X̄1, as follows:

Ξλ ,ε(0) =
{

X̄1

∣∣∣(X̄1)
T QX̄1 ≤

ε
λ

}
. (18)

Proof: Substituting the control law (17) into system (16),
then the HOFA model can convert to

x(n)1 =−c0∼n−1X̄1 +Ψ(X̄1), (19)

where

Ψ(X̄1) =− 1
4ε

ρ2(x1∼n)QT
L x(0∼n−1)

1 +Hn−1∆ f (x1∼n).

It can easily obtain that:

(X̄1)
′ =CX̄1 +

[
0(n−1)×1
Ψ(X̄1)

]
. (20)

Then for system (20), can choose the following Lyapunov
function:

V =
1
2
(X̄1)

T QX̄1. (21)

In view of (6), (20), we have

V̇ =
1
2
((X̄1)

′)T QX̄1 +
1
2
(X̄1)

T Q(X̄1)
′

=
1
2
(X̄1)

T (CT Q+QC)X̄1 +(X̄1)
T Q
[

0(n−1)×1
Ψ(X̄1)

]
≤− λ

2
(X̄1)

T Q(X̄1)+(X̄1)
T QLΨ(X̄1)

=−λV +(X̄1)
T QLΨ(X̄1).

(22)

Next, we will examine the final term in the above equa-
tion. According to Lemma 2.1 and Lemma 2.4, the last term
of (22) is:

(X̄1)
T QLΨ(X̄1)

=− ρ2(x1∼n)

4ε
∥QLX̄1∥2

+(X̄1)
T QLHn−1∆ f (x1∼n)

≤− ρ2(x1∼n)

4ε
∥QLX̄1∥2

+∥Hn−1∆ f (x1∼n)∥∥QLX̄1∥

≤− ρ2(x1∼n)

4ε
∥QLX̄1∥2

+ρ(x1∼n)∥QLX̄1∥

≤ε.

(23)
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Taking (22) and (23) together, it can be obtained:

V̇ ≤−λV + ε. (24)

According to the Comparison Theorem [25] can be ob-
tained

V ≤V (0)e−λ t +
ε
λ
(1− e−λ t), (25)

which gives

V ≤ (V (0)− ε
λ
)e−λ t +

ε
λ

→ ε
λ
, t → ∞. (26)

In conclusion, the state X̄1 ultimately converges to the el-
lipsoid Ξλ ,ε(0), which completes the proof.

Module Ψ(X̄1) plays a crucial role in the control law by
integrating HOFA and ETM, thereby streamlining the sys-
tem’s communication load.

There are two ways to adjust the ellipsoid radius Ξλ ,ε(0):
increasing the stability threshold of the linear part λ and de-
creasing the value of the ε . The adjustment of these two
methods will directly affect the size of the ellipsoid.

3.3 Relative Threshold Event-triggered Robust Control
This section primarily focuses on the design of a robust

event-triggered controller:

ω(t) = (σ +δ )×ω1 tanh(
QLX̄1ω1

η
)

+(ρ(x1∼n)+m1) tanh(
QLX̄1(ρ(x1∼n)+m1)

η
), (27)

u(t) = ω(ts), (28)
ts+1 = inf{t ∈ R ||e(t)| ≥ M}, (29)

where M = δ |u(t)|+m, t ∈ [ts, ts+1), δ , η , m1, m are positive
parameters, σ <−1, m1 >m/(1−δ ), the measurement error
e(t) = ω(t)− u(t), ts,s ∈ Z+ is the update time. According
to (17), settings ω1 = u.

Considering the design of the controller and the given con-
ditions of event-triggered, we can obtain the following theo-
rem.

Theorem 2: The event-triggered controller designed by
equations (27), (28), and (29) for the HOFA model (16) ob-
tained from the transformation of the cascade system (1) is
proven to ensure that all signals of the closed-loop system
are ultimately bounded.

Proof: From (29), we get ω(t) = (1 + φ1(t)δ )u(t) +
φ2(t)m1 in the interval [ts, ts+1], where time-varying param-
eters φ1(t) and φ2(t) satisfy that the absolute value is less
than or equal to 1. Thus, we can obtain u(t) = ω/(1 +
φ1δ )− (φ2m1/(1+φ1δ )). Then for the Lyapunov function
designed by equation (21), there is

V̇ ≤−λV

+(X̄1)
T QL(Hn−1∆ fn(x1∼n)+ω1 −

ω −φ2m1

1+φ1δ
),

(30)

the last term in (30) is shown as follows

(X̄1)
T QL

(
Hn−1∆ fn(x1∼n)+ω1 −

ω −φ2m1

1+φ1δ

)
=(X̄1)

T QLHn−1∆ fn(x1∼n)+(X̄1)
T QLω1

− (X̄1)
T QL

ω −φ2m1

1+φ1δ

≤
∣∣∣(X̄1)

T QL(ρ +m1)
∣∣∣

− (X̄1)
T QL(ρ +m1) tanh(

QLX̄1(ρ +m1)

η
)

+
∣∣∣(X̄1)

T QLω1

∣∣∣− (X̄1)
T QLω1 tanh(

QLX̄1ω1

η
).

(31)

One of the properties of a hyperbolic tangent function
tanh(·) is as follows [25]:

0 ≤ |ξ |−ξ tanh(
ξ
κ
)≤ 0.2785κ, (32)

based on equation (32), at the same time, condition σ <−1
is used for inequality reduction, the final equation (30) can
be obtained

V̇ ≤−λV +0.557η . (33)

Through standard analysis, it can be concluded that all
signals in the closed-loop system are ultimately bounded.

Now, there exists t̂ > 0 such that ∀s ∈ Z+, {ts+1 − ts} ≥ t̂.
By calling e(t) = ω(t)−u(t), ∀t ∈ [ts, ts+1), we have

d
dt

|e|= d
dt
(e× e)

1
2 = sign(e)ė ≤ |ω̇| . (34)

From equation (27), it can be derived that both ω and ω̇
must be continuous. Sinceω̇ is a function of the signal x,
and all the closed-loop signals are ultimately bounded, there
exists a constant ζ > 0 such that |ω̇| ≤ ζ .

By considering that e(ts) = 0 and lim
t→ts+1

e(t) = m, we can

conclude that the lower bound of inter-execution intervals t̂
must satisfy t̂ ≥ M/ζ to avoid Zeno-behavior.

Remark 1: In comparison to the traditional relative
threshold strategy [26], this technical note introduces an ad-
ditional constant term m in equation (29). By employing the
presented approach, we can ensure that the inter-execution
time t̂ of the relative threshold strategy is always bounded
from below. Specifically, when the control signal u(t) is ze-
ro, the value of m determines the minimum duration between
executions. Setting the value of m too small will cause the
controller to fire frequently and make the ETM ineffective.

Remark 2: Under the current framework, we can only
get the result that all signals are ultimately bounded. This is
due to the uncertainty of the combination makes the system
stability and ETM are different from the traditional system,
at the same time the introduction of ETM also increases the
complexity of the system. Therefore, future work need to be
further collaboration and optimization of this aspect.

4 Simulation Result

This section provides a simulation example to illustrate
the effectiveness of the robust controller triggered by relative
threshold events.
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Consider the following system{
ẋ1 = x2

1 + x2,
ẋ2 = x1 + sin∆x+u.

(35)

The following HOFA model can be easily derived from
the system transformation.

ẍ1 = 2x1(x2
1 + x2)+ x1 + sin∆x+u. (36)

In this case, the parameters in C are set as c0 = c1 = 1,

C =

(
0 1
−1 −1

)
. Then the positive definite matrix Q can

be designed as Q =

(
2 1
1 2

)
. It is easy to obtain that

QLx(0∼1)
1 = x1 +2ẋ1. Then the controller is designed as

ω(t) = (σ +δ )[(ω1 tanh(
(x1 +2ẋ1)ω1

η
))

+(ρ +m1) tanh(
(x1 +2ẋ1)(ρ +m1)

η
).

(37)

The parameters of the above equation are designed as:
x1(0) = 0, x2(0) = 0, σ = −2.76, δ = 0.5, η = 6.7, m1 =
1.37, m = 2, and take ρ(x1∼n) = 1.

Figs. 1-4 show the simulation results of the designed rel-
ative threshold event-triggered controller. The trajectory of
the state variables is shown in Figs. 1-2. Fig. 3 shows the
trajectory of the control signal. The trigger time is shown in
Fig. 4. The simulation results show the effectiveness of the
designed relative threshold event trigger controller. The sim-
ulation results demonstrate that the HOFA system approach
is very simple and efficient.

Fig. 1: The trajectory of x1.

5 Conclusion

A class of nonlinear systems problem with unknown terms
in this paper is solved by application an event triggers a ro-
bust control strategy. By adopting HOFA system method, the
cascaded system is transformed into HOFA model. At the
same time, for the uncertain items the robust control method
is adopted to ensure the stability of the system. The relative
threshold event-triggered mechanism is designed to update
the controller based on the system state and a predetermined
threshold, aiming to minimize computation and energy con-
sumption during signal transmission. This paper proves that

Fig. 2: The trajectory of x2.

Fig. 3: The trajectory of u and w.

Fig. 4: Triggering events.

all signals are ultimately bounded by utilizing Lyapunov sta-
bility theory to analyze the stability of the closed-loop sys-
tem. Finally, the performance of the designed controller is
verified by a simulation example. The results show that the
control system has good stability and robustness, and can
achieve high control accuracy and efficiency.
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Abstract: In this paper, event-triggered tracking control scheme is proposed for a class of high-order strict-feedback systems with
uncertain nonlinear system functions. The structure of the subsystems in high-order nonlinear strict-feedback systems satisfies the
high-order fully actuated (HOFA) system model and the order of each subsystem is not necessarily the same. The system meets
the fully actuacted property, that is, the control gain matrix is reversible. Therefore, a relatively simple controller designed by
using the HOFA system approach can convert the closed-loop system into a constant linear system with the desired characteristic
structure. Based on the backstepping method, a switched threshold event-triggered control method is constructed to realize the
tracking control, meanwhile reduce the update frequency of controllers. In addition, the robust controller constructed using the
switched threshold event-triggered strategies can guarantee that all signals in the whole closed-loop system are bounded and
violate the Zeno behavior. Finally, the simulation results illustrate the validity of the proposed schemes by a practical example.

Key Words: High-order fully actuated system, mixed-order system, event-triggered strategy, uncertain system function.

1 Introduction

During the past decades, the event-triggered control
mechanism has been studied by widely scholars, and re-
sulting plentiful literature due to its application in practi-
cal engineering (see typically in [1–4]). Different from the
time-triggered control strategy based on periodic sampling,
the event-triggered control strategy is proposed in which the
sampling condition is determined by the system states or
the set threshold. Hence, compared with traditional control
methods, the event-triggered strategy can save communica-
tion resources and reduce controller update frequency.

In detail, [5] proposed a fixed threshold strategy under
which the controllers were updated based on the occurrence
of an fixed event (this fixed event typically takes the form of
a constant). In [6], a relative threshold strategy was devel-
oped to install a relatively variational event. The event of the
relative threshold strategy is time-varying and dependent on
the size of the sampling object. However, both the above-
mentioned strategies have the following drawbacks: for the
fixed threshold strategy, when the size of the sampling object
is small, the fixed threshold in this case is a large value and
will not trigger the events; for the relative threshold strategy,
when the size of the sampling object is big, an enormous
pulse at every trigger moment will create and destroy the
system performance. Therefore, a switching threshold strat-
egy was presented by combining the fixed threshold strategy
and the relative threshold strategy in [6]. The key to setting
up a switching domain is to use the fixed threshold strategy
outside the predefined domain and use the relative threshold
strategy inside the predefined domain. The switching thresh-
old strategy can centralize the advantages of the other two
ETC strategies, but very few works used this strategy.

In 2020, Duan proposed the control theory of high-order
fully actuated (HOFA) system. Based on the fully actu-
ated system model, this method completely gets rid of the
bondage of state-space model and shows strong advantages
in dealing with a series of complex problems such as non-

This work is supported by NSFC (62073020, 62133001, 62227810).

linearity. Traditional nonlinear control methods based on
the state-space model often require some strong assumptions
and the controller design is rather complicated. The HOFA
method has greater advantages in the universality of the ac-
tual system, the simplicity and flexibility of the controller
design. Enlightened by Duan’s work ([7–12]), the HOFA
system approach has emerged in control field, and attracted
plenty of scholars’ research interests (see [13–16]). In the
control design of nonlinear HOFA systems, the main strat-
egy is to design controller to eliminate the nonlinearities and
obtain a linear closed-loop system [14]. In [15] and [16], by
using HOFA systems approach, fault-tolerance control and
output-feedback control are proposed for nonlinear HOFA
systems with parameter uncertainties, actuator faults, and
measurement noises. Then, the coordination of networked
nonlinear multi-agents was studies by using HOFA system
approach and predictive control strategy in [17]. As a sig-
nificant problem in the field of nonlinear system control, the
research on the control of nonlinear strict-feedback system
is always a hot issue. Therefore, we are stimulated to use
the HOFA method to solve the tracking control problem of
nonlinear high-order strict-feedback systems.

Inspired by the above-mentioned challenges, this paper
concentrates upon the event-triggered tracking control for a
class of nonlinear high-order strict-feedback systems with
uncertain nonlinear system functions. The structure of the
subsystems in high-order nonlinear strict-feedback systems
satisfies the HOFA system model and the order of each sub-
system is not necessarily the same. The proposed event-
triggered control strategy can ensure that all signals in the
closed-loop system are bounded,the output tracks the ref-
erence signal and non-Zeno behavior simultaneously. Spe-
cially, we summarize the main contributions as follows.

(1) By using HOFA system approach, the constructed con-
troller can directly eliminate the nonlinearities and obtain a
linear closed-loop system. Further, most of the actual phys-
ical systems can be directly modeled by nonlinear HOFA
system instead of the state-space model.

(2) Compared with the traditional backstepping method
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for the nonlinear strict-feedback systems [18, 19], the design
process of controller in this paper is more simplified when
the order of system is extremely high. Hence, the proposed
scheme reduces the number of derivative of the virtual con-
trollers, such that reduces the computational burden.

(3) A switched threshold event-triggered control strategy
is introduced to construct the controller. The proposed event-
triggered control strategy combines the advantages of the
fixed threshold event-triggered control strategy and the rel-
ative threshold event-triggered control strategy. Moreover,
the value of the switch domain can be determined by user,
which makes the strategy more practical and flexible.

Notation: ∥ · ∥ denotes the Euclidean norm; λi(·),
λmin(·), λmax(·), respectively, represent the i-th eigen-
value, the minimum and the maximum eigenvalues of a ma-
trix; for a vector x ∈ Rm, x[n−1]= [x, ẋ, · · · , x(n−1)]T ∈
Rnm with x(n) the n-th derivative of x; for matrices
Ki ∈ Rm×m with i = 0, 1, ..., n − 1, let K<n−1> =
[K0,K1, · · · ,Kn−1] ∈ Rm×nm, and Φ(K<n−1>) =

0m×m Im×m
. . .

Im×m
−K0 −K1 · · · −Kn−1

 ∈ Rnm×nm with

Im×m the m×m identity matrix. Without loss of gener-
ality, the description of variables will be omitted to simplify
if there is no confusion.

2 Preliminaries and problem formulation

2.1 HOFA system
The dynamic of the nonlinear HOFA system is described

by the following structure:

x(n) = L(x[n−1], t)u+ F (x[n−1], t), y = x, (1)

where x ∈ Rm, u ∈ Rm and y ∈ Rm denote the state, the
input and the output of the system, respectively. F ∈ Rm

and L ∈ Rm×m represent the nonlinear vector function and
the control gain matrix function, respectively. The HOFA
system usually contains the following assumption and lem-
mas:

Assumption 1 [7, 16]: The control gain matrix function L
satisfies det L ̸= 0 for ∀x(k) ∈ Rm, k = 0, 1, ..., n− 1.

Lemma 1 [9]: For any µ > 0, if there exist a
matric K ∈ Rm×nm satisfying Reλ(Φ(K)) < −µ

2 ,
then there exists a positive definite matrix Qi(K) =
[Qi1 Qi2 · · · Qin], Qij ∈ Rnm×m, satisfying
Φ(K)TQ(K) +Q(K)Φ(K) < −µQ(K).

According to [7], a general controller which can achieve
asymptotic stability for the system (1) is presented as

u = −L−1(F +K<n−1>x[n−1]). (2)

2.2 High-order nonlinear strict-feedback system
In this paper, the following uncertain high-order nonlinear

strict-feedback system is considered [10]:

x
[m1]
1 = g1

(
x
[m1−1]
1

)
x2 + f1

(
x
[m1−1]
1

)
+∆f1

(
x
[m1−1]
1

)
x
[m2]
2 = g2

(
x
[mi−1]
i |i=1∼2

)
x3 + f2

(
x
[mi−1]
i |i=1∼2

)
+∆f2

(
x
[mi−1]
i |i=1∼2

)
...

x
[mn]
n = gn

(
x
[mi−1]
i |i=1∼n

)
u+ fn

(
x
[mi−1]
i |i=1∼n

)
+∆fn

(
x
[mi−1]
i |i=1∼n

)
(3)

where for i = 1, 2, ..., n, xi ∈ R, gi ∈ Rm×m and fi ∈ Rm

represent the nonlinear vector functions and the control gain
matrix functions, mi ∈ Z+ is the order of subsystem state.
For convenience, define notations pi = m1 +m2 + ...+mi

and p = pn. ∆fi ∈ Rm is a set of sufficiently smooth un-
known vector functions for i = 1, 2, ..., n, and there exists a
non-negative continuous scalar function γi

(
x
[mj−1]
j |j=1∼i

)
such that ∆fi satisfies ∥∆fi∥ ≤ γi. The objective of
this paper is to present event-triggered controllers for the
mixed-order nonlinear strict-feedback system (3), such that
the system output can asymptotically track the reference
signal yd(t). The control gain matrix function gi satisfies
det gi ̸= 0. Some necessary assumption and lemma are
given as follows.

Remark 1: Note that the order of subsystems cannot be
necessarily the same. For example, the single-link flexible-
joint robot system consists of two second-order fully actu-
ated subsystems [4], while the electromechanical system in
[13] consists of one-order and second-order fully actuated
subsystems. Hence, nonlinear high-order strict-feedback
systems with arbitrary order subsystems are more practical
and general.

Lemma 2 (Young’s inequality): For any x ∈ Rn, y ∈ Rn,
there always holds

xT y ≤ 1

p
|x|p + 1

q
|y|q, (4)

where p > 0 and q > 0 are real numbers satisfying 1
p +

1
q =

1.
Lemma 3 [2, 14]: Given ε > 0 and z ∈ R. The following

relationships hold:

|z| − z tanh
(z
ε

)
≤ κε,

|z| − z2√
z2 + ε2

≤ ε, (5)

where κ is a constant and κ = e−(κ+1), κ=0.2785.
Assumption 2 [18]: The reference signal yd and its time

derivatives up to the n-th order are continuous and bounded.
3 Main result

3.1 Switched Threshold Event-Triggered Control De-
sign through Backstepping Process

In this part, we provide the backstepping design pro-
cess for the system (3) based on switched threshold event-
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triggered control strategy.
Step 1: Firstly, define the tracking errors

z1 = x1 − yd, zi = xi − αi−1, for i = 2, 3, ..., n, (6)

where αi−1 is the virtual controller.
From (3) and (6), we have

z
(m1)
1 =x

(m1)
1 − y

(m1)
d = g1x2 + f1 +∆f1 − y

(p1)
d

=g1(z2 + α1) + f1 +∆f1 − y
(m1)
d , (7)

where the virtual control law α1 is constructed as

α1 =− g−1
1 (K<m1−1>

1 z
[m1−1]
1 + f1 − y

(m1)
d +Ω1)

=α1(z
[m1−1]
1 , y

(p1)
d ) (8)

with Ω1 =
γ2
1Q

T
1nz

[m1−1]
1√

γ12
∥∥∥QT

1nz
[m1−1]
i

∥∥∥2
+ε2

and ε is chosen such as∫∞
0
ε(τ)dτ ≤ εM < ∞, εM is a positive constant, Q1n

is a positive definite matrix defined in Lemma 1. Then, (7)
becomes

z
(m1)
1 +K<m1−1>

1 z
[m1−1]
1 = g1z2 +∆f1 − Ω1. (9)

Then, choose the Lyapunov function candidate as

V1 = V10 =
1

2
z
[m1−1]T
1 Q1z

[m1−1]
1 , (10)

where Q1 is a positive definite matrix defined in Lemma 1.
The time derivative of V1 can be calculated as

V̇1 =
1

2
z
[m1−1]T
1

(
ΦT1Q1 +Q1Φ1

)
z
[m1−1]
1

+QT1nz
[m1−1]
1 g1z2 +QT1nz

[m1−1]
1 (∆f1 − Ω1)

≤− (µ1 − 2λmax (Q1))V10 +QT1nz
[m1−1]
1 (∆f1 − Ω1)

+
∥g1∥2

4λmin (Q2)

(
z
[m2−1]T
2 Q2z

[m2−1]
2

)
. (11)

Using the definition of ∆f1, we get

QT1nz
[m1−1]
1 ∆f1 ≤

∥∥∥QT1nz[m1−1]
1

∥∥∥ γ1
≤

γ21

∥∥∥QT1nz[m1−1]
1

∥∥∥2√
γ21

∥∥∥QT1nz[m1−1]
1

∥∥∥2 + ε2
+ ε. (12)

Applying (12) to (11) yields

V̇1 ≤− (µ1 − 2λmax (Q1))V10

+
∥g1∥2

4λmin (Q2)

(
z
[m2−1]T
2 Q2z

[m2−1]
2

)
+ ε. (13)

Step i: It can be deduced that α
(mi)
i−1 =

hi−1(z
[mj−1]
j |j=1∼i, y

[pi]
d ) + ∆hi−1(z

[mj−1]
j |j=1∼i, y

[pi]
d ),

such that

z
(mi)
i =x

(mi)
i − α

(mi)
i−1 = gixi+1 + fi − hi−1 −∆hi−1

=gi(zi+1 + αi) + fi − hi−1 −∆hi−1, (14)

where ∥∆hi∥ ≤ γ̄i with γ̄i a known non-negative continuous
scalar function, then the virtual control law αi is designed as

αi =− g−1
i (K<mi−1>

i z
[mi−1]
i + fi − hi−1 +Ωi)

=αi(z
[mj−1]
j |j=1∼i, y

[pi]
d ) (15)

and Ωi =
(γi+γ̄i)

2QT
inz

[mi−1]

i√
(γi+γ̄i)

2
∥∥∥QT

inz
[mi−1]

i

∥∥∥2
+ε2

with Qin is a positive

definite matrix defined in Lemma 1.
Take the Lyapunov function candidates as

Vi = Vi−1 + Vi0 = Vi−1 +
1

2
z
[mi−1]T
i Qiz

[mi−1]
i , (16)

where Qi is a positive definite matrix defined in Lemma 1.
The first-order derivative of Vi along the trajectory of system
(3) is

V̇i ≤−
i∑

j=1

(
µj − 2λmax (Qj)−

∥gj−1∥2

2λmin (Qj)

)
Vj0

+
∥gi∥2

4λmin (Qi+1)

(
z
[mi+1−1]T
i+1 Qi+1z

[mi+1−1]
i+1

)
+ iε.

(17)

Step n: Design the switched threshold event-triggered
controller as

u∗(t) =− αn tanh

(
αngnQ

T
nnz

[mn−1]
n

ε

)
(18)

u(t) =u∗(tk), ∀t ∈ [tk, tk+1), (19)

tk+1 =


inf {t > tk ||u∗ (t)− u (t)| ≥ δ |u (t)|+ q1 } ,

if |u (t)| ≤ D,
inf {t > tk ||u∗ (t)− u (t)| ≥ q2 },

if |u (t)| > D,

(20)

where D, q1 and q2 are positive parameters to be designed,
Qnn is a positive definite matrix defined in Lemma 1. Con-
sider the Lyapunov function as

Vn = Vn−1 + Vn0 = Vn−1 +
1

2
z[mn−1]T
n Qnz

[mn−1]
n ,

(21)

where Qn is a positive definite matrix defined in Lemma 1.

3.2 Stability Analysis
Theorem 1: Consider the high-order nonlinear strict-

feedback system (3) with uncertainties. Under the switched
threshold event-triggered controller (19), if for i =
1, 2, ..., n, the matrix Qi are chosen to satisfy the following
inequalities:(

µi − 2λmax (Qi)−
∥gi−1∥2

2λmin (Qi)

)
> 0, (22)

then the global uniformly ultimately bounded tracking per-
formance can be realized without Zeno behavior.

Proof :
From (19), it can be proved that

u∗(t)− u(t) =

{
λ1 (t) (δ |u (t)|+ q1) , if |u (t)| ≤ D,
λ2 (t) q2, if |u (t)| > D,

(23)

39  



where λ1 (t) and λ2 (t) are time-varying parameters satisfy-
ing |λ1 (t)| ≤ 1 and |λ2 (t)| ≤ 1 .

By (23) one can get

u (t) =M (t)u∗ (t) + ν (t) , (24)

where M (t) =

{ 1
1+λ1(t)sign(u(t))δ

, if |u (t)| ≤ D,

1, if |u (t)| > D
and

ν (t) =

{
−λ1(t)q1

1+λ1(t)sign(u(t))δ
, if |u (t)| ≤ D,

−λ2 (t) q2, if |u (t)| > D.

From (3) and (24), we can obtain that

z(mn)
n =x(mn)

n − α
(mn)
n−1

=gnu+ fn +∆fn − hn−1 −∆hn−1

=gnMu∗ − gnαn + gnαn + fn +∆fn − hn−1

−∆hn−1, (25)

where αn = −g−1
n (K<mn−1>

n z
[mn−1]
n + fn − hn−1 +Ωn)

with Ωn =
(γn+γ̄n)

2QT
nnz

[mn−1]
n√

(γn+γ̄n)
2
∥∥∥QT

nnz
[mn−1]
n

∥∥∥2
+ε2

.

Subsequently, take the Lyapunov function as V = Vn.
According to (25), the time derivative of V is

V̇ ≤−
n∑
i=1

(
µi − 2λmax (Qi)−

∥gi−1∥2

2λmin (Qi)

)
Vi0 + nε

+QTnnz
[mn−1]
n gnMu∗ −QTnnz

[mn−1]
n gnαn

+QTnnz
[mn−1]
n gnν. (26)

Using lemma 2 and 3, it calculates

QTnnz
[mn−1]
n gnMu∗ −QTnnz

[mn−1]
n gnαn

= −QTnnz[mn−1]
n gnMαn tanh

(
αngnQ

T
nnz

[mn−1]
n

ε

)
− ∥QTnnz[mn−1]

n gnαn∥ ≤ κε,

QTnnz
[mn−1]
n gnν ≤ 2λmax(Qn)Vn0 +

1

4
ν̄2∥gn∥2, (27)

where ν̄ ≥ sup{|ν|}.
Combine (27), (26) becomes

V̇ ≤− aV + b, (28)

where a = min
{(
µi − 2λmax (Qi)− ∥gi−1∥2

2λmin(Qi)

)
,(

µn − 4λmax (Qn)− ∥gn−1∥2

2λmin(Qn)

)}
and b = (n + κ)ε +

1
4 ν̄

2∥gn∥2. Conclusions can be drawn from (28) that V (t) is
bounded, which implies the tracking error is bounded.

Then, we illustrate there exists a t̄ > 0 such that tk+1 −
tk > t̄ for ∀k. Define the trigger error by r(t), we have
r (t) = u (t)− u∗ (t), then

d

dt
|r (t)| = sign (r (t)) ṙ (t) ≤ |u̇∗| . (29)

There exists a positive constant U such that |u̇∗| ≤
U . Using the mean value theorem and r(tk) =

0, lim
t→tk+1

r(tk+1) ≥ min{q1, q2}, we obtain that the lower

bound of t̄ will not be less than min{q1,q2}
U . It is worthy to

note that under our design, even if the control input u con-
verges to zero, we still ensure t̄ is not zero. Hence, the Zeno
phenomenon will not appear.

4 Simulation

To show the superiority of the theoretical results, the ex-
amples of the single-link flexible-joint robot system is ap-
plied to conduct simulation results.

Fig. 1. The single-link flexible-joint robot.

The single-link flexible-joint robot system. The dy-
namic of the actual single-link flexible-joint robot system
(Fig. 1) is given as

ml2q̈1 +mgl sin (q1) + F (q̇1) +Kq1 =Kq2,

J q̈2 +Bq̇2 +K (q2 − q1) =u, (30)

where F (q̇1) = cos(q̇1). The values of m, l, g, J,K,B are
m = 0.5kg, l = 7.5m, g = 9.8m/s2, J = 0.35m/s2, K =
140N·m/rad, B = 0.95.

In the simulation, we set the output signals of the leaders
as yd = 1 + e−t. The initial states are set as q1(0) = 1,
q̇1(0) = 0.1, q2(0) = 0.1, q̇2(0) = 0.1. Next, accord-
ing to [10], the solution of control parameters are taken as
K<1>
i =

[
120 22

]
with i = 1, 2. The design pa-

rameters in switched threshold event-triggered control strat-
egy are chosen as D = 50, q1 = 1, q2 = 4, δ = 0.5.
Moreover, the uncertainties are set as ∆f1 = 0, ∆f2 =
0.1sin(q1) + q̇22 , the following conclusion can be observed
that |∆f2| ≤ 0.1 + q̇22 = γ2. Other parameter is chosen as
ε = 1.
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Fig. 2. The profiles of output and reference trajectories.

Under the proposed event-triggered control protocols, the
simulation results are displayed in Figs. 2-5. Figs. 2-3 show
that the outputs of the system track the reference signal and
the tracking errors are bounded. The profiles of inter-event
times and the controller are shown in Fig. 4 and Fig. 5,
respectively.
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Fig. 3. The profile of tracking error trajectory.
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Fig. 4. The profile of inter-event times.
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5 Conclusion

In this paper, the event-triggered control strategy for high-
order nonlinear strict-feedback systems has been presented
for the first time. The structure of the subsystems in high-
order nonlinear strict-feedback systems satisfies the HOFA
system model and the order of each subsystem can be differ-
ent. A robust controller is constructed based on the backstep-
ping method to eliminate the effects of uncertainties. More-
over, a switched threshold event-triggered strategy is pro-
posed to reduce the update frequency of the controller. It
is proved that the designed event-triggered robust controller
can ensure global uniformly ultimately bounded tracking
performance and violate Zeno behavior. For future explo-
ration, we will extend our control framework to the cooper-
ative control of HOFA multi-agent systems.
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Adaptive Control for Active Suspension System Based on the
High-order Fully Actuated System Theory
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Abstract: Active suspension systems are key in improving vehicle comfort and handling stability. However, designing con-
trollers more effectively remains a challenge. Most existing methods are based on the state-space method to design the controller,
and each control method has shortcomings. To enhance suspension control performance and damping efficacy under road surface
excitation, this paper proposed a novel adaptive control strategy for active suspensions based on the high-order fully actuated
(HOFA) approach, anchored in the continuous damping control shock absorber actuator. Firstly, we formulated the dynamical
model for active suspension based on Newton’s second law and transformed it into a fully actuated physical model. Subsequently,
we proposed a novel controller grounded in high-order fully actuated theory. Through simulation in MATLAB/Simulink, the re-
sults demonstrate significant enhancements in ride comfort and road handling using the proposed approach while ensuring robust
performance against sinusoidal road excitation. In conclusion, the proposed control method exhibits superior effectiveness to
other controllers discussed in this paper.

Key Words: Active suspension; High-order fully actuated theory; Road excitation; Adaptive control

1 Introduction

Active suspension, a pivotal component within the vehi-

cle chassis, is crucial in effectively mitigating vertical vi-

brations and enhancing overall vehicle ride comfort [1-3].

In tandem with advancements in vehicle technology, an in-

creasing number of premium vehicles are now equipped with

an active suspension system, incorporating features such as

the continuous damping control (CDC) shock absorber. The

CDC shock absorber achieves adjustable damping in the ac-

tive suspension by regulating the open-shut operation of the

internal solenoid valve [4]. As is well-established, vehi-

cle suspension systems are broadly categorized into three

types: passive, semi-active, and active. Numerous studies on

suspension systems have consistently concluded that active

suspension systems offer substantial performance improve-

ments over passive suspensions when vehicles encounter vi-

brations on diverse road surfaces. However, the widespread

adoption of active suspension systems is hindered by their

high energy consumption and cost [5]. Consequently, de-

spite these challenges, active suspension systems are gain-

ing popularity due to their exceptional shock absorption and

actuation capabilities.

With the development of control theory, some advanced

control methods are applied in the active suspension sys-

tems, which can effectively improve the vehicle ride comfort

and handling stability. Thus, the active suspension control

system design has been developed by some automakers over

the past decades. For example, Audi and BMW have im-

plemented the active body control strategy to improve sus-

pension performance and vehicle ride comfort. In modern

control theory, many control methods are usually based on

This work has been partially supported by the Foundation of Na-

tional Natural Science Foundation of China (52302482), the Foundation

of Central government guided local science and Technology Develop-

ment (236Z2202G), the Natural Science Foundation of Hebei Province

(E2021203079), Science and Technology Foundation of Hebei Education

Department (QN2022176), and Scientific Research Foundation of Hebei

Province for the Returned Overseas Chinese Scholars (C20210323).

the state-space representation to further design controllers.

In recent years, many researchers have proposed control

methods for active suspension systems. Even preview con-

trol has been applied to active suspension systems using road

recognition technology [6]. For example, Shao. et al. [7]

proposed the output feedback H∞ control for active sus-

pension of in-wheel motor-driven electric vehicle consider-

ing the control faults and input delay. Zhang. et al. [8]

proposed the bioinspired nonlinear dynamics-based adaptive

neural network control for vehicle suspension systems with

uncertain/unknown dynamics and input delay. The effec-

tiveness of the proposed method has been verified through

experiments. Besides, there are also lots of control methods

applied in the active suspension system, for example: model

predictive control [9], sliding mode control [10], and active

disturbance rejection control [11] et al.
During the past several decades, state-space approaches

have dominated the control field in an absolute state. In

2020, G. R. Duan [12-15] proposed the high-order fully ac-

tuated (HOFA) system approach. HOFA is directly proposed

for control objects by transforming the control system into a

high-order full-actuated system model and directly design-

ing controllers and control laws. The HOFA systems widely

exist in practical systems, and their remarkable feature is that

the control matrix function is reversible. In recent years, the

HOFA method has been applied in the space manipulator, the

vehicle system, and the UAVs et al. Active suspension con-

trols input variables and state variables. So, we can convert

the suspension dynamic model into the HOFA model. Then,

the control law about the active suspension system will be

directly designed through the HOFA method. In this paper,

we choose the adaptive control method based on the HOFA

theory applied in the active suspension system.

The remainder of this paper is organized as follows: Sec-

tion 2 mainly describes the fixed expression of the formula.

Section 3 illustrates the active suspension modeling, prob-

lem formulation, road excitation, and HOFA models. Sec-

tion 4 mainly explains the controller design method. Section
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5 compares the simulation results and analysis with different

controllers. The last section mainly concludes this paper.

2 Preliminaries

Firstly, we recall some commonly used notations in [12-

15]. In this paper, In represents the identity matrix, and the

following symbols are used in this paper:

K0∼n =
[
K0 K1 · · · Kn

]

A0∼n−1 =

⎡
⎢⎢⎣

A0

A1

· · ·
An−1

⎤
⎥⎥⎦

x0∼n =

⎡
⎢⎢⎢⎣
x
ẋ
...

xn

⎤
⎥⎥⎥⎦

Φ(A0∼n−1) =

⎡
⎢⎢⎢⎣

0 I
. . .

I
−A0 −A1 · · · −An−1

⎤
⎥⎥⎥⎦

3 Modeling and analysis

3.1 Active suspension modeling
The quarter vehicle model always represents the one cor-

ner of a vehicle for which only the vertical dynamics are

considered. From the Fig. 1, we can know the sample struc-

ture of the active suspension. The actuator is the CDC shock

absorber. we have ignored it because it has a complex dy-

namic and action mechanism [16]. The sprung mass rep-

resents the vehicle body mass, where the vehicle’s body is

denoted by the sprung mass Mb. The unsprung mass rep-

resents the tire mass, where the vehicle’s tire is denoted by

the unsprung mass Mu. u is the active suspension control

force input. Zs and Zu respectively represent the travel be-

tween the sprung and unsprung mass. zr represents the road

profile. The model of the active suspension system can be

represented as the equation (1):

{
mbz̈s + cs(żs − żu) + ks(zs − zu) = u

muz̈u − cs(żs − żu)− ks(zs − zu) + kt(zu − zr) = −u

(1)

If we use the traditional control method, the controller de-

sign is based on the state-space representation. So we can

convert equation (1) to the state-space representation equa-

tion (2):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x1 = ẋ2

ẋ2 = − cs
mb

(żs − żu)− ks

mb
(zs − zu) +

1
mb

u

x3 = ẋ4

ẋ4 = cs
mu

(żs − żu) +
ks

mu
(zs − zu)− kt

mu
(zu − zr)− 1

mu
u

(2)

According to the state-space representation equation, the

active suspension system is modeled as a fourth-order sys-

tem with a single control input and two state outputs, indica-

tive of its characteristic as a typical under-actuated system.

Consequently, in our initial investigation, the imperative is

to transform this under-actuated system into a fully actuated

counterpart.

3.2 Problem formulation
The control object is to suppress the vibration of the ve-

hicle body and the suspension travel space within the range

of safety. Some assumptions are required to facilitate the

controller design.

Assumption 1: For the convenience of research, it is as-

sumed that the system operates in an ideal environment with-

out external interference. So we think that the d̂ = 0.

Assumption 2: The travel of the suspension zu and the

travel of the vehicle body zs are all bounded.

Assumption 3: However, the spring damping has non-

linear characters. We should segment research or numerical

fitting to apply it. But, we don’t consider it to simplify this

research.

Assumption 4: The actuator doesn’t have to produce the

delay, dead input, and fault et al. phenomenon.

Control 
force input

Random road

Sprung mass

Unsprung mass

Suspension 
dynamic travel

Tire travel

u

Fig. 1: Physical model of active suspension

3.3 Road model
The road excitation is the input signal into the suspen-

sion system. In the research, we can choose different roads,

for example, the random road disturbance, bump road dis-

turbance, and sine road disturbance et al. In this paper, we

choose the sine road as the input signal. The equation (3)

represents the road sine signal. As shown in fig.2, which is

the sine road pavement map. The road excitation signal will

input the active suspension system to action the actuator.

zr = 0.02sin(2πt), (t ≥ 0) (3)

3.4 HOFA model
According to the equation (1), we can define that zs and zu

are the state variables, and u is the control input variable. We

can define that: x1 = zs, x2 = zu, zr = ξ, The vehicle travel

is the x1, and the suspension travel is the x2, ξ is the road
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Fig. 2: Road excitation signal.

signal. The equation (1) can be converted to the equation

(4):

{
mbẍ1 + cs(ẋ1 − ẋ2) + ks(x1 − x2) = u

muẍ2 − cs(ẋ1 − ẋ2)− ks(x1 − x2) + kt(x2 − ξ) = −u

(4)

According to equation (4), we can get equation (5) by

adding the two sub-formulas. In the equation (5), the con-

trol input u has been eliminated.

mbẍ1 +muẍ2 + kt(x2 − ξ) = 0 (5)

To convert to a high-order fully actuated model, the inter-

mediate variables z are constructed as equation (6). Z ex-

presses the coupling relationship between the two state vari-

ables.

z̈ = mbẍ1 +muẍ2 (6)

Substituting (6) into (5) yields. Therefore, we can get the

following equation (7).

z̈ + kt(x2 − ξ) = 0 (7)

Based on its physical background, we can get the rela-

tionship of z and x1, z2. Respectively: ż = mbẋ1 +muẋ2

and z = mbx1 +mux2. According to the equation (4) and

equation (5), we can get the equation (8).

cs(ẋ1 − ẋ2) + ks(x1 − x2)−muẍ2 − kt(x2 − ξ) = u (8)

According to the equation (7), we can get the relationship

of z and x2. ⎧⎪⎨
⎪⎩
x2 = ξ − 1

kt
z̈

ẋ2 = ξ̇ − 1
kt
z(3)

ẍ2 = ξ̈ − 1
kt
z(4)

(9)

Based on the equation (9), we can get the equation (10).

ẋ1 =
ż −muẋ2

mb
(10)

Substituting ẋ2 into the equation (9), we can get the equa-

tion (11) and equation (12).

ẍ1 =
ż −mu

(
ξ̈ − 1

k t
z(4)

)
mb

(11)

x1 =
z −mu

(
ξ − 1

kt
z̈
)

mb
(12)

Finally, by transforming and iterating the abovementioned

equations, we can get the HOFA expression about the active

suspension system in equation (13). In the equation, only

one control input is u, and one state variable is z.

mu

kt
z(4) +

mucs +mbcs
mbkt

z(3) +
muks +mbks +mbkt

mbkt
z̈

+
cs
mb

ż +
ks
mb

z −muξ̈ − cs(mu +mb)

mb
ξ̇

− ks(mu +mb)

mb
ξ = u

(13)

4 Controller designing and analysis

The HOFA controller design mainly includes the adaptive

control law design process, the parametric design process,

and the controller stability analysis. We will explain these

parts in detail in the following sections.

4.1 Adaptive control law design process
In this research, we have considered the following HOFA

system with an unknown parameter vector. According to the

references [12-16], we can learn the standard style of HOFA,

such as in equation (14).

z(n) = HT
(
z(0∼n−1)

)
θ+q

(
z(0∼n−1)

)
+L

(
z(0∼n−1)

)
u

(14)

where the z and u are the state vector and the control in-

put vector, respectively, θ is an unknown constant vector, q
is a sufficiently smooth vector function, H and L are two

sufficiently smooth matrix functions, and L satisfies the full-

actuation condition.

According to equation (2), the active suspension system is

a fourth-order system, so we can think that the system order

n = 4. And we can get the equation (15).

z(4) = HT
(
z(0∼3)

)
θ + q

(
z(0∼3)

)
+ L

(
z(0∼3)

)
u (15)

Because we don’t consider the external disturbances θ, the

external disturbances θ = 0. We can write the equation (16)

and convert the equation (14).

z(4) =
kt
mu

u−
(
mucs +mbcs

mbmu

)
z(3)

−
(
muks +mbks +mbkt

mbmu

)
z(2) − cskt

mbmu
ż − kskt

mbmu
z

+ ktξ̈ +

(
cskt(mu +mb)

mbmu

)
ξ̇ +

(
kskt(mu +mb)

mbmu

)
ξ

(16)

From the equation (16), we can get the equation (17) com-

pared with the equation (15).
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(4) = x(4),

L(x(0∼3)) = kt

mu
,

HT (x0∼3)θ = 0,

q(0∼3) =
(

mucs+mbcs
mbkt

)
z(3) +

(
muks+mbks+mbkt

mbkt

)
z(2)

+
(

cskt

mbmu

)
ż +

(
kskt

mbmu

)
z − ktξ̈ −

(
cskt(mu+mb)

mbmu

)
ξ̇

−
(

kskt(mu+mb)
mbmu

)
ξ

(17)

To establish the control law of the HOFA system (15) with

unknown parameters, we need the following preparations.

Lemma 1 : We can assume that A ∈ Rr×r satisfies [14]

Reλi ≤ −μ

2
, i = 1, 2, 3 . . . , n, (18)

where μ > 0, then there exists a matrix P > 0 such that

ΦT (A0∼n−1)P (A0∼n−1) + (A0∼n−1)Φ(A0∼n−1)

≤ −μP (A0∼n−1)
(19)

Theorem 1 : The next step is to design the controller

based on the previous work. We can reference the paper

[12-16]. The expression of the controller is as follows in

the equation (20).

{
u = −L−1x(0∼n−1)

(
A(0∼n−1)x(0∼n−1) + u∗)

u∗ = HTx(0∼n−1)θ̂ + q
(
x(0∼n−1)

) (20)

From the function (20), we can get the u∗ = q(0∼3). The

HOFA controller can be expressed as the equation (19).

u = −mu

kt
[A0∼3z(0∼3) +A11ξ̈ +A12ξ̇ +A13ξ +A14z

(3)

+A15z
(2) +A16ż +A17z]

(21)

In equation (21), the relationship can be defined as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11 = kt

A12 = cs(mu+mb)
mbmu

A13 = ks(mu+mb)
mbmu

A14 = mucs+mbcs
mbmu

A15 = muks+mbks+mbkt

mbmu

A16 = cskt

mbmu

A17 = kskt

mbmu

(22)

Then, we analyze the controller’s stability [12-16]. Sub-

stituting the control law (20) into (15), the controller close-

loop system is shown in the equation (23).

x(4) +A0∼3x(0∼3) = 0 (23)

The part of closed-loop system (23) can be expressed in the

following state-space form:

ẋ0∼3 = Φ(x0∼3)x0∼3 +

[
03×1

0

]
(24)

Since Ai ∈ R
r×r,i = 0, 1, ..., n − 1 satisfy the condition

(18), there exists a positive definite matrix P (A0∼n−1) sat-

isfying (19). Then the following Lyapunov function can be

chosen for the system (25):

Proof: Therefore, the following Lyapunov function can

be selected for the system (25).

V = (x(0∼n−1))TP (A0∼n−1)x(0∼n−1) (25)

Because n = 4, the Lyapunov function also is the:

V = (x(0∼3))TP (A0∼3)x(0∼3)

We have

V̇ =(ẋ(0∼3))TPx(0∼3) + (x(0∼3))TPẋ(0∼3)

=(Φx(0∼3))TPx(0∼3) + (x(0∼3))TP (Φx(0∼3))

=(x(0∼3))T (ΦTP + PΦ)x(0∼3) + 2(x0∼3)TP (A(0∼3)[0]

=(x(0∼3))T (ΦTP + PΦ)x(0∼3)

≤− μV

It thus follows from the Comparison Theorem that

V ≤ V (0)e(−μt) → 0, t → ∞.

A comprehensive stability analysis has established that the

designed active suspension HOFA controller is indeed sta-

ble.

4.2 Parametric design process
For an arbitrarily chosen F ∈ R

nr×nr, all the matrix

A0∼n−1, and the nonsingular matrix V ∈ R
nr×nr satisfy-

ing the equation (26) [15].

Φ(A0∼n−1) = V FV −1 (26)

are given by

A0∼n−1 = −ZFnV −1(Z,F ) (27)

In this paper, with n = 4, the subsequent function is de-

rived.

A0∼3 = −ZF 4V −1(Z,F ) (28)

and

V (Z,F ) =

⎡
⎢⎢⎣

Z
ZF
ZF 2

ZF 3

⎤
⎥⎥⎦ (29)

Where Z ∈ R
r×nr is an arbitrary parameter matrix satisfy-

ing

detV (Z,F ) �= 0 (30)

F =

⎡
⎢⎢⎣
−a −b 0 0
b −a 0 0
0 0 −c 0
0 0 0 −d

⎤
⎥⎥⎦ (31)

We can set the a, b, c, and d as four positive scalars, included

as a diagonal block in F . In the matrix F , we choose the

a = 1, b = 8, c = 12, d = 40 and Z =
[
1 1 1 1

]
. The

a, b, c, and d are adjustable and are very important for

the convergence of the system.
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5 Simulation results and analysis

The parameters of the quarter-vehicle model in the simu-

lation framework are delineated in Table 1 [18]. The HOFA

control model is incorporated into the control module of the

suspension system. Then, we simulate and analyze key per-

formance indicators such as vehicle body acceleration, vehi-

cle body travel, and vehicle tire travel et al. For comparative

analysis, we choose the passive suspension (no control) and

Fuzzy PID control as the comparison object. In the simula-

tion, the PID controller gain has been chosen (Kp = 5000,

Ki = 500, Kd = 10) [19]. The ensuing section presents the

simulation results and their corresponding analysis.

Table 1: Active suspension system parameters

Vehicle body mass (kg) mb 2.45

Vehicle wheel mass (kg) mu 1

Suspension spring stiffness (N/m) ks 900

Suspension damping coefficient (Ns/m) cs 7.5

Wheel stiffness (Ns/m) kt 2500
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Fig. 3: Active suspension travel.
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Fig. 4: Vehicle tire travel.

Table 2: Comparison of RMS values of different control

modes under the sine road surface
Controller

model

Suspension

travel

Tire

travel

Vehicle body

acceleration

Vehicle body

travel

Passive 0.014 0.009 8.523 0.024

FuzzyPID 0.011 0.007 6.566 0.018

HOFA 0.001 0.001 1.093 0.002

As shown in Figure 3-6, in the case of the time domain, the

Suspension travel, Vehicle tire travel, Vehicle body accelera-

tion, and Vehicle body travel under HOFA controller are re-

spectively reduced by 92 %, 88%, 87% and 91% compared
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Fig. 5: Vehicle body acceleration.
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Fig. 7: System control input force.

with the no control. HOFA control is respectively reduced

by 90 %, 85%, 83%, and 88% compared with the Fuzzy PID

control. The comparison of RMS values of different control

modes under the sine road surface can be shown in Table

2. These results show that the proposed algorithm is effec-

tive and the vehicle ride comfort is improved in the vertical

direction.

As shown in Figure 7, the control input force signal is un-

der the HOFA controller and the Fuzzy PID controller. Ac-

cording to section 4, the control force has stability and con-

vergence in finite time. From the result, the HOFA controller

provides a higher control input force.

6 Conclusion

In practice, the HOFA system model is regarded as a novel

system representation rather than a novel system. HOFA sys-

tem can maintain the full actuation characteristic of original

systems. This paper introduces the HOFA control for ac-

tive suspension systems. The proposed adaptive algorithm

demonstrates efficacy in significantly reducing the perfor-

mance index and enhancing ride comfort. The application
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of the HOFA algorithm in the active suspension system has

been successfully validated through simulation.

In addition to the significant findings presented in this pa-

per. There are also numerous questions necessitating further

exploration in future research. For example, several mod-

eling assumptions and simplifications have been employed

in this paper, and the external disturbances have been omit-

ted. In future research, we aim to construct a comprehensive

vehicle model as the research object, and the road identifi-

cation techniques also need to be considered. The external

disturbances of the system have a huge impact on the control

effectiveness of the controller [20]. Subsequently, observa-

tion and estimation of external uncertain disturbances will be

carried out, and the disturbance signal in the controller will

be compensated to improve the control effectiveness further.

To validate the efficacy of the proposed algorithm, we also

plan to design the hardware experiments for verification.
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Abstract: Inspired by the fully actuated system (FAS) approach, this paper proposes an observer-based control method for a class
of FASs with time-varying delays. Firstly, an observer-based controller is designed and the corresponding augmented system
is derived. The uniformly exponential stability of the augmented system is then demonstrated by means of Lyapunov stability
analysis. Finally, the effectiveness of the proposed method is demonstrated by the simulation of the thermoacoustic instability
system. The parameters to be designed for the controller are determined using a parametric approach which provides a rich
degree of design freedom.

Key Words: Observer-Based Control, Fully Actuated System Approach, Nonlinear Control, Thermoacoustic Systems

1 Introduction

The observer-based control design for the general nonlin-
ear systems is quite difficult, and there is currently no uni-
versal and effective method. Different from the linear cases,
the separation principle is not usually guaranteed due to the
complex structure of nonlinear systems. Most of the existing
results are obtained in a local sense for systems with special
forms under some certain assumptions [1–3]. Recently, aim-
ing to develop a unified architecture for the control design of
general nonlinear systems, Duan has heuristically proposed
a so-called mathematical fully actuated system (FAS) ap-
proach [4–6]. The full-actuation feature of the FAS systems
allows us to directly cancel the nonlinearity of the system,
resulting in a linear time invariant closed-loop system with
an arbitrarily assignable eigenstructure, when the full state is
measurable. However, if only partial states are measurable,
designing a state observer is an intuitive idea to circumvent
this barrier in practical applications.

It is vital how much convenience the FAS approach pro-
vides for observer design and observer-based control. As
outlined in [7, 8], the separation principle is still effective
in the FAS theory, and thus we can directly design state ob-
servers for linear closed-loop systems, which significantly
reduces the complexity of the problem. Zhao et al. intro-
duced the concept of an exponentially stable observer and
further proposed an observer-based control method for the
attitude control of flexible spacecraft with nonlinear inertia
for the output feedback case [7]. Under the same Lipschitz
condition, a generalized proportional-integral observer for
single-order FASs was presented by using the linear matrix
inequality (LMI) technique in [8]. Also, a practical applica-
tion for the twelve-input overactuated tiltrotor was reported
in [9].

Furthermore, considering the FASs with external distur-
bances, an extended state observer (ESO) is applied to esti-
mate the state and total disturbance of the 6DOF spacecraft
motion [10]. Different from the above traditional ESO, Cai

This work is supported by the Science Center Program of the National
Natural Science Foundation (NNSF) of China under Grant 62188101.

et al. presented a fully-actuated fault-tolerant control tech-
nique in conjunction with an ESO involving the sign function
[11], but the chattering phenomenon became an inevitable
problem. In the same year, the similar structure of ESO was
utilized to estimate unknown state variables of a proton ex-
change membrane fuel cell air feed system [12]. Besides,
benefiting from the simple structure of the FAS model, fruit-
ful results regarding disturbance observers can be found in
the references [13–17].

Based on the above analyses, this paper proposes an
observer-based control method for a class of FASs with time-
varying delays. The model of FASs with time-varying de-
lays is proposed, which represents a complex and general
control model. An observer-based controller is given for
the FAS and the augmented system is also derived. The
uniformly exponential stability of this augmented system is
strictly proved by applying Lyapunov stability analysis. Fi-
nally, the proposed method is applied to the control of a
thermoacoustic instability system and the simulation results
show the effectiveness.

The paper is divided into 6 sections. The next section pro-
vides the problem formulation. Some preliminaries are in-
troduced in Section 3. Section 4 is the solution to the prob-
lem, where the augmented system is proven to be uniformly
exponentially stable. In Section 5, we select a thermoacous-
tic instability system to illustrate the effectiveness of our pro-
posed approach, followed by a brief conclusion in Section 6.

The standard notations are used: the maximum and min-
imum eigenvalues of a matrix P ∈ Rn×n are denoted
by λmax(P ) and λmin(P ), respectively, ∥P∥ is its spectral
norm, Re(z) denotes the real part of a complex number z,
and the Euclidean norm of a vector x is denoted by ∥x∥.
Furthermore, we introduce the following symbols frequently
used in the FAS theory:

x(0∼n−1) =
[
xT ẋT · · · (x(n−1))T

]T
,

A0∼n−1 =
[
A0 A1 · · · An−1

]
,
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Φ (A0∼n−1) =


0 I

. . .
I

−A0 −A1 · · · −An−1

 ,

Φ (00∼n−1) =


0 I

. . .
I

0 0 · · · 0

 , Bc =


0
0
...
I

 .

2 Problem Statements

2.1 Problem Formulation
Consider the system{

x(n) = f
(
x(0∼n−1), ζx, t

)
+B (y, ζy, t)u

y = C0∼n−1x
(0∼n−1),

(1)

where x ∈ Rr and u ∈ Rr are the system elementary state
vector and the system input vector, respectively, y ∈ Rm is
the output vector, and C0∼n−1 ∈ Rm×nr is a known con-
stant matrix, ζx and ζy are the delay terms in the system and
are defined as

ζx ≜


x(0∼n−1) (t− τx1 (t))
x(0∼n−1) (t− τx2 (t))

...
x(0∼n−1) (t− τxγx

(t))

 , (2)

ζy ≜


y (t− τy1 (t))
y (t− τy2 (t))

...
y
(
t− τyγy

(t)
)
 , (3)

with τxi (t) , i = 1, 2, ..., γx, and τyi (t) , i = 1, 2, ..., γy,
being sets of nonnegative scalar functions. Furthermore,
f
(
x(0∼n−1), ζx, t

)
is a nonlinear function, and B (y, ζy, t)

is a matrix function satisfying the following assumptions.

Assumption 2.1. detB (y, ζy, t) ̸= 0 or ∞, for all y ∈
Rm, ζy ∈ Rmγy , and t ≥ 0.

Assumption 2.2. There exist a scalar ρ > 0 and a convex
subset Ω ⊆ Rnr containing the origin such that:∥∥∥f (x(0∼n−1)

1 , ζx1
, t
)
− f

(
x
(0∼n−1)
2 , ζx2

, t
)∥∥∥

⩽ ρ
∥∥∥x(0∼n−1)

1 − x
(0∼n−1)
2

∥∥∥ , (4)

holds for ∀x(0∼n−1)
1 , x

(0∼n−1)
2 ∈ Ω.

The observer-based dynamical output controller for sys-
tem (1) can be designed as

u = −B−1 (·)
(
f
(
x̂(0∼n−1), ζ̂x, t

)
+ v
)

v = A0∼n−1x̂
(0∼n−1)

.

x̂
(0∼n−1)

= Φ(A0∼n−1) x̂
(0∼n−1)

− L
(
y − C0∼n−1x̂

(0∼n−1)
)
,

(5)

where x̂(0∼n−1) is the estimation of x(0∼n−1), and
A0∼n−1 ∈ Rr×nr and L ∈ Rnr×m are matrices to be de-
signed.

With the above controller, system (1) becomes

x(n) = −A0∼n−1x̂
(0∼n−1)+∆f (·) , (6)

where

∆f (·) ≜ ∆f
(
x(0∼n−1), x̂(0∼n−1), ζx, ζ̂x, t

)
= f

(
x(0∼n−1),ζx,t

)
−f
(
x̂(0∼n−1),ζ̂x,t

)
. (7)

Note that the state-space form of (6) is

ẋ(0∼n−1) = Φ(00∼n−1)x
(0∼n−1)

+Bc

(
∆f (·)−A0∼n−1x̂

(0∼n−1)
)
. (8)

The closed-loop system is obviously composed of

.

x̂
(0∼n−1)

= Φ(A0∼n−1) x̂
(0∼n−1)

−LC0∼n−1

(
x(0∼n−1)−x̂(0∼n−1)

)
, (9)

and

ẋ(0∼n−1) = Φ(00∼n−1)x
(0∼n−1)

+Bc

(
∆f (·)−A0∼n−1x̂

(0∼n−1)
)
.(10)

Then, we impose the following assumption, which plays
a role in the subsequent stability analysis.

Assumption 2.3. The matrix pair (Φ (00∼n−1) ,C0∼n−1) is
observable.

Based on the above preparation, we can now state the
problem to be solved in this paper as follows.

Problem 2.4. Under Assumptions 2.1-2.3, find a dynamical
output controller in the form of (5) such that the closed-loop
system (9)-(10) is uniformly exponentially stable.

3 Preliminaries

For observer-based control of FAS (1), the following pre-
liminary results proposed in [18] are needed.

Lemma 3.1 ([18]). Let A ∈ Rn×n satisfy

Re λi (A) ≤ −γ

2
, i = 1, 2, · · · , n, (11)

where γ > 0, then there exists a positive definite matrix
P ∈ Rn×n satisfying

ATP + PA ≤ −γP. (12)

Lemma 3.2 ([18]). For any µc > 0, there exist a set of
matrices Ai ∈ Rr×r, i = 0, 1, · · · , n− 1, satisfying

Re λi (Φ (A0∼n−1)) ≤ −µ

2
, i = 1, 2, · · · , nr. (13)

It is known from Lemma 3.1 that, when the condition in
(13) holds for some µc > 0, there exists a positive definite
matrix P c ≜ P c(A0∼n−1) satisfying

ΦT (A0∼n−1)P
c+P cΦ (A0∼n−1) ≤ −µcP

c. (14)
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Similarly, due to Assumption 2.3, there exists a L ∈
Rnr×m satisfying

Re λi (Φ (00∼n−1) + LC0∼n−1) ≤ −µo

2
, i = 1, 2, · · · , nr.

(15)
Then it follows Lemma 3.1 again that there exists a positive
definite matrix P o satisfying

(Φ (00∼n−1) + LC0∼n−1)
T
P o + P o (Φ (00∼n−1)

+LC0∼n−1) ≤ −µoP
o. (16)

4 Solution to Problem

This section treats the observer-based control design.
Firstly, we convert the closed-loop system (9)-(10) to obtain
an augmented system. Then we discuss the stability of the
augmented system.

4.1 The Augmented System
Define the observation error vector

x̃(0∼n−1) = x(0∼n−1) − x̂(0∼n−1). (17)

Then by Assumption 2.2, we have∥∥∥f (x(0∼n−1), ζx, t
)
− f

(
x̂(0∼n−1), ζ̂x, t

)∥∥∥
⩽ ρ

∥∥∥x̃(0∼n−1)
∥∥∥ , (18)

and the second equation of (5) can be written as
.

x̂
(0∼n−1)

= Φ(A0∼n−1) x̂
(0∼n−1)

−LC0∼n−1x̃
(0∼n−1). (19)

Since

Φ (A0∼n−1) = Φ (00∼n−1)−BcA0∼n−1, (20)

the observer equation (19) can be rewritten as
.

x̂
(0∼n−1)

= Φ(00∼n−1) x̂
(0∼n−1)

−LC0∼n−1x̃
(0∼n−1)

−BcA0∼n−1x̂
(0∼n−1). (21)

Meanwhile, it follows from (8) and (21) that
.
x̃
(0∼n−1)

= (Φ (00∼n−1) + LC0∼n−1) x̃
(0∼n−1)

+Bc∆f (·). (22)

By combining the above with (19), we obtain the following
closed-loop system

.

x̂
(0∼n−1)

= Φ(A0∼n−1) x̂
(0∼n−1) − LC0∼n−1x̃

(0∼n−1)

.
x̃
(0∼n−1)

= (Φ (00∼n−1) + LC0∼n−1) x̃
(0∼n−1)

+Bc∆f (·) .
(23)

Define

X =

[
x̂(0∼n−1)

x̃(0∼n−1)

]
, (24)

then we can obtain the following augmented system

Ẋ =

[
Φ (A0∼n−1) −LC0∼n−1

0 Φ (00∼n−1) + LC0∼n−1

]
X

+

[
0

Bc∆f (·)

]
, (25)

where ∆f (·) satisfies (18).

4.2 Uniformly Exponential Stability
Regarding the stability of the above system (25), we have

the following result.

Theorem 4.1. Suppose that Assumptions 2.1-2.3 hold. Let
1. µc and µo be two positive numbers;
2. A0∼n−1 ∈ Rr×nr and L ∈ Rnr×m be two matrices satis-
fying (13) and (15), respectively; and
3. P c and P o be two matrices satisfying (14), (16) and

µc − λmax (P
c) > 0

µo −
2ρ ∥P oBc∥
λmin (P o)

− ∥LC0∼n−1∥2

λmin (P o)
> 0.

(26)

Then, the observer-based controller (5) guarantees that sys-
tem (25) is uniformly exponentially stable.

Proof. Since A0∼n−1 ∈ Rr×nr and L ∈ Rnr×m respec-
tively satisfy (13) and (15), there exist two positive definite
matrices P c and P o satisfying (14) and (16), respectively.
Then the following Lyapunov function can be chosen for the
system (25):

V = V1 + V2, (27)

where
V1 =

1

2

(
x̂(0∼n−1)

)T
P cx̂(0∼n−1), (28)

and
V2 =

1

2

(
x̃(0∼n−1)

)T
P ox̃(0∼n−1). (29)

In view of (14) and (19), we have

V̇1 =
1

2

(
x̂(0∼n−1)

)T (
ΦT (A0∼n−1)P

c

+P cΦ (A0∼n−1) x̂
(0∼n−1)

−
(
x̂(0∼n−1)

)T
P cLC0∼n−1x̃

(0∼n−1)

≤ −µc

2

(
x̂(0∼n−1)

)T
P cx̂(0∼n−1) +W, (30)

where

W = −
(
x̂(0∼n−1)

)T
P cLC0∼n−1x̃

(0∼n−1).

Using Young’s inequality, and the following relations(
x̂(0∼n−1)

)T
P c (P c)

T
x̂(0∼n−1)

≤ λmax (P
c)
(
x̂(0∼n−1)

)T
P cx̂(0∼n−1), (31)

λmin (P
o)
(
x̃(0∼n−1)

)T
x̃(0∼n−1)

≤
(
x̃(0∼n−1)

)T
P ox̃(0∼n−1), (32)

we can obtain

W ≤ 1

2

(
x̂(0∼n−1)

)T
P c (P c)

T
x̂(0∼n−1)

+
1

2

∥∥∥LC0∼n−1x̃
(0∼n−1)

∥∥∥2
≤ 1

2
λmax (P

c)
(
x̂(0∼n−1)

)T
P cx̂(0∼n−1)

+
∥LC0∼n−1∥2

2λmin (P o)

(
x̃(0∼n−1)

)T
P ox̃(0∼n−1).(33)
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Then it follows from (30) that

V̇1 ≤ −1

2
(µc − λmax (P

c))
(
x̂(0∼n−1)

)T
P cx̂(0∼n−1)

+
1

2

∥LC0∼n−1∥2

λmin (P o)

(
x̃(0∼n−1)

)T
P ox̃(0∼n−1). (34)

In view of (16), (18), (22), and (32), we have

V̇2 =
1

2

(
x̃(0∼n−1)

)T (
(Φ (00∼n−1) + LC0∼n−1)

T
P o

+P o (Φ (00∼n−1) + LC0∼n−1)) x̃
(0∼n−1)

+
(
x̃(0∼n−1)

)T
P oBc∆f (·)

≤ −µo

2

(
x̃(0∼n−1)

)T
P ox̃(0∼n−1)

+ρ ∥P oBc∥
∥∥∥x̃(0∼n−1)

∥∥∥2
≤ −µo

2

(
x̃(0∼n−1)

)T
P ox̃(0∼n−1)

+
ρ ∥P oBc∥
λmin (P o)

(
x̃(0∼n−1)

)T
P ox̃(0∼n−1). (35)

Combining (34) and (35), gives

V̇ ≤ −1

2
(µc − λmax (P

c))
(
x̂(0∼n−1)

)T
P cx̂(0∼n−1)

+
1

2

∥LC0∼n−1∥2

λmin (P o)

(
x̃(0∼n−1)

)T
P ox̃(0∼n−1)

−µo

2

(
x̃(0∼n−1)

)T
P ox̃(0∼n−1)

+
ρ ∥P oBc∥
λmin (P o)

(
x̃(0∼n−1)

)T
P ox̃(0∼n−1)

= −1

2
(µc − λmax (P

c))
(
x̂(0∼n−1)

)T
P cx̂(0∼n−1)

−1

2
ϖ
(
x̃(0∼n−1)

)T
P ox̃(0∼n−1), (36)

where

ϖ = µo −
2ρ ∥P oBc∥
λmin (P o)

− ∥LC0∼n−1∥2

λmin (P o)
.

If (26) holds, then we have

V̇ ≤ −kV, (37)

where
k = min {µc − λmax (P

c), ϖ} > 0. (38)

Based on the Comparison Theorem, we have from (37) that

V ≤ V (0) e−kt,

thus the conclusion is easily obtained. Then the proof is
completed.

Remark 4.2. If Assumption 2.2 is assumed to be globally
satisfied, then the closed-loop system is uniformly globally
exponentially stable, which is distinct from other reported
boundedness in various senses such as semi-global bounded-
ness [21] and global ultimately uniformly boundedness [11].

5 An Illustrative Example

The following thermoacoustic instability system in [19],
that is, a Rijke tube, is used to illustrate the effectiveness of
the proposed observer-based controller. η̈1 = f1

(
η
(0∼1)
1∼2 (t− τ)

)
+ q1

(
η
(0∼1)
1 (t)

)
+ u1

η̈2 = f2

(
η
(0∼1)
1∼2 (t− τ)

)
+ q2

(
η
(0∼1)
2 (t)

)
+ u2,

(39)
where η =

[
η1 η2

]T
, with ηi, η̇i denoting the amplitude

of velocity and pressure fluctuation of the i-th order acoustic
mode, respectively, u1, u2 are the control inputs, and fi

(
η
(0∼1)
1∼2 (t− τ)

)
= −2iπ (γ − 1) Q̇si (t− τ) sin (iπxf )

qi

(
η
(0∼1)
i (t)

)
= −

[
(iπ)

2
ϵi
]
η
(0∼1)
i , i = 1, 2,

with γ being the specific heat ratio of the medium, xf being
the location of the heat source, ϵi, i = 1, 2 denoting the
damping coefficient, and τ representing the dimensionless
time delay between heat transfer and flow field velocity. We
assume the output of system (39) to be y = C0∼1η

(0∼1)

C0∼1 =

[
1 0 0 0
0 1 0 0

]
.

Additionally, Q̇si (t− τ) , i = 1, 2, are the nondimen-
sional heat release rates in the following form of

Q̇si (t− τ) =
2Lω

(
Tω − T̄0

)
√
3υ0γP0S

√
πλCυρ0

dω
2

×

(√∣∣∣∣13+υfi (t−τ)

∣∣∣∣−
√

1

3

)
, (40)

where Lω , dω and Tω are the dimensionless length, diameter
and temperature of the heating coil, respectively, T̄0 is the
average temperature of the surrounding air, υ0, P0 are the
mean value of velocity and pressure, Cυ is the specific heat
capacity, S denotes the cross-sectional area of the tube, ρ0
represents the average density of the gas, and λ is the thermal
conductivity of air.

As pointed out in [20], if |υfi (t− τ)| < 0.3, we have

υfi (t− τ) ≈ υfi (t)− τ υ̇fi (t)

= ηi cos (πxf )− τ η̇i cos (πxf ) ,

and (40) can be rewritten as

Q̇si (t− τ) =
2Lω

(
Tω − T̄0

)
√
3υ0γP0S

√
πλCυρ0

dω
2

×

(√
1

3
+ ηi cos (πxf )− τ η̇i cos (πxf )

−
√

1

3

)
. (41)

It can be easily verified that the matrix pair (Φ (00∼1) ,C0∼1)
is observable and Assumption 2.2 also holds.
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In the simulation, the physical parameters listed in Table 1
are considered [20]. Applying Theorem 4.1, we choose the
following control parameters

A0∼1 =

[
3 0 4 0
0 8 0 6

]
L =

[
−17 0 −70 0
0 −8 0 −15

]T
.

Besides, the initial values are selected as η(0∼1) (0) =[
0.5 0.2 0.05 −0.1

]T
and η̂(0∼1) (0) =[

0 0 0 0
]T

.
The results are shown in Figs. 1-3. Figs. 1-2 depict

the time responses of velocity amplitude and pressure am-
plitude, where η̂(0∼1) is the estimation of η(0∼1). Com-
mensurate with the aforementioned analysis, the proposed
observer-based controller ensures that η̂(0∼1) tracks expo-
nentially the actual state, and η(0∼1) converges exponentially
to zero in about 5 seconds without overshoot. Also, it is seen
from Fig. 3 that the control magnitudes required are still in
a reasonable range.

Table 1: Physical parameters
Parameter Value Parameter Value

Lω 2.5 m S 0.00156 m2

dω 0.0005 m ρ0 1.225 kg/m

Tω 1680 K xf 0.25 m

T̄0 295 K λ 0.0328 W/(mK)

υ0 0.3 m/s τ 0.2 s

P0 86900 Pa ϵ1 0.044

Cυ 719 J/(kgK) ϵ2 0.1657

γ 1.4
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Fig. 1: Response of η and η̂

6 Conclusion

In this paper, an observer-based control method is pro-
posed for FASs with time-varying delays. The control
scheme consists of an observer equation using output infor-
mation and a feedback controller with full-actuation prop-
erty. The application of the parametric approach provides
rich design degrees of freedom for the selection of control
parameters. The effectiveness of the proposed method is
demonstrated by stability analysis and simulations of the

-2

-1

0

1

0 2.5 5 7.5 10

t (s)

-1

0

1

Fig. 2: Response of η̇ and ˙̂η

0 2.5 5 7.5 10

t (s)

-10

-5

0

5

Fig. 3: Control inputs

thermoacoustic system. In future work, we will consider
the observer-based control of continuous-time systems with
both state delays and input delays and try to make assump-
tions required more relax. Furthermore, the corresponding
results could also be extended to multi-order FASs, even sub-
FASs, which only partially satisfy the full-actuation condi-
tion.
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Abstract: Considering the complication and high requirements of controller design in unmanned surface vessels (USVs) from 

the perspective of under-actuated model, this paper investigates the tracking control of USVs in terms of fully actuated system 

approaches (FASA). We firstly propose a high-order fully actuated (HOFA) model of USV for path tracking. Then, using the idea 

and method of FASA controller design, a control law is proposed to make the closed-loop system obtain the dynamic 

characteristics we expect and decouple it into two linear systems, which can be achieved with simple and easy computation. The 

proposed USV path tracking control law achieves global asymptotic stability without continuous angular and forward velocity 

excitations. The effectiveness of this method is verified through MATLAB simulation. 

Key Words: FASA, USVs, HOFA, model transformation 

 

 
  

1 Introduction 

Unmanned surface vessels (USVs) are water-body 

working systems without on board crew, which have been 

widely used in large applications, ranging from military to 

civilian in reconnaissance, patrol, surveillance, search and 

rescue, just to name a few [1]. Therefore, more and more 

attentions have been drawn on the fully autonomous 

capabilities for USVs to realize operations in various 

complex environments. 

Control system is fundamental and crucial for the 

autonomy in USVs [2]. However, the designing of control 

system for most USVs can be quite challenging. Firstly, the 

dynamic model of USVs is rather special. For a conventional 

USV, the propulsion device is either a propeller with a 

rudder or water jets, which means there is no device applying 

force for side motion. The above configuration is embodied 

as only two independent control inputs therein the 

three-degree-of-freedoms (3-DOF) mathematical model for 

USVs. Thus, the dynamic model for USV is typically 

described as a 3-DOF under-actuated first-order system with 

second-order nonholonomic acceleration constraints. 

Additionally, various uncertainties such as modeling 

inaccuracy, unmodeled dynamics,  modification in physical 

parameters as well as external disturbance caused by wind, 

waves, and currents affect the performance of the control 

system.  

Path tracking control is one of the typical application 

scenarios for USVs [3] with a control target of following a 

desired 2-D path and stabilize the heading dynamics [4]. 
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part by the Natural minimize the completion time and mission latency 

respectively 61 Science Foundation of Jiangsu Province of China under 

Grants BK20222012 and BK20231439, and in part by the Fundamental 

Research Funds for the Central Universities under Grant NS2023052. 

Different control strategies and algorithms have been 

proposed [5,6,7,8,9,10,11,12] to solve the path following 

issue for USVs at present by adding diffeomorphism 

transformation, taking backstepping method, sliding mode 

method, adaptive method [13,14], artificial neural network 

and other methods on the basis of Lyapunov direct method 

[15]. However, applying these methods to the controller 

design process can be rather complicated: it is often 

necessary to do proper subsystem division and set up 

multiple virtual control quantities. Besides, some of the 

above controllers are designed under the persistent 

excitation condition of yaw velocities in USVs, which means 

that the control system can only complete the working 

condition of curve path tracking. Additionally, the problem 

of external interference is not considered or only be 

considered under the assumption of constant interference. 

In this paper, a newly proposed control theory-fully 

actuated system approaches (FASA) is considered to be 

applied on the path tracking issue of under-actuated USVs, 

since its property of controller-oriented enables us to avoid 

hierarchical design for controller and its fully-actuated 

property enables the controller designed without the 

assumption of persistent excitation for surge or yaw 

velocities at the same time. The FASA demands establishing 

a high-order fully actuated (HOFA) model firstly, and then, it 

is easy to design the control law to eliminate the dynamic 

characteristics (including nonlinear ones) of the open loop 

system and a new expected closed loop system with 

arbitrarily assignable eigenstructures can be achieved by 

properly selecting parameters in the control law.  

This paper is structured as follows. High-order fully 

actuated system approaches is briefly reviewed and the 

conventional under-actuated USV model is addressed in 

Section 2. A forth-order fully actuated system for USVs and 

a HOFA controller design approach for the path tracking of 

USVs, which does not require hierarchical design and 
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persistent excitation for surge or yaw velocities is proposed 

in Section 3. Numerical simulations for two working 

conditions of USV path tracking control-linear and curved 

path tracking, are presented to demonstrate the effectiveness 

of the proposed HOFA controller in Section 4, and this paper 

is concluded in Section 5. 

The contribution of this paper is applying a novel control 

theory-fully actuated system to path tracking control issue of 

USVs, which effectively simplifies the controller design 

process and relaxes the controller design condition as well. 

2 Preliminaries 

This section briefly reviews modeling and control of 

HOFA systems with some definitions and lemmas, then 

introduces the first-order USV model prepared for the 

HOFA model transforming. 

2.1 Modeling and control of HOFA systems 

Definition 1 [17]: For a general nonlinear system in the 

affine form shown as following, 
( ) ( 1) ( 1)

( , , , , ) ( , , , , , )
m m m

x f x x x t B x x x x t u
− −= +& &L L       (1) 

where nx ∈  is the state vector, ru ∈ is the system input 

vector, ( 1)
( , , , , )

m n
f x x x t

− ∈& L   is a sufficiently differentiable 

vector function, and ( 1)
( , , , , , )

m n r
B x x x x t

− ×∈& L  is a matrix 

function, if 

( 1)( ( , , , , , ))m

n r

rank B x x x x t r−

=


= & L
                   (2) 

system (1) is called fully actuated. 

Lemma 1 [18]: Let , 0,1, , 1r r

i
A i m×∈ = − L , be a series of 

matrixes which can be designed in need, then the following 

controller  
1

1 ( )

0

( )[ ( ) ]
m

i

i

i

u B f A x z
−

−

=

= − ⋅ ⋅ + −  

for fully actuated system (1) will generate the following 

constant linear closed-loop system, 
( ) ( 1)

1 1 0

m m

m
x A x A x A x z−

−+ + + + =&L            (3) 

where nz ∈  is the external input vector. 

According to the characteristics shown in Lemma 1, by 

selecting 
iA matrixes for controller, the engenstructures of 

closed-loop system (3) can be set arbitrarily.  

Lemma 2 [19]: It can be guaranteed to get the solution of 

0~ 1 0 1 1[ ]m mA A A A− −= L for (3) as 
1

0~ 1 ( , )m

m eA Q P V P Q−

− = − ⋅ ⋅ ,  

if and only if mn mnP ×∃ ∈ and n mn
Q

×∈ satisfy that  

det ( , ) 0eV P Q ≠ ,  

where 1
T

m

eV Q Q P Q P
− = ⋅ ⋅ L is the eigenvector 

matrix and P is the corresponding Jordon matrix of 

eigenvalues. 

Corollary 1: The closed-loop system (3) in Lemma 1 can 

be decoupled and globally asymptotically stable if P and 

Q in Lemma 2 be selected as follows: 

/ 2 /21 1

/2 /21 1

{[ ] [ ]}
nm nm

nm nm

P diag
α βα β

β αβ α

−−
=

− −− −
L  

where 0, 0, 1,2 , / 2i i i mnα β> > = L , and  

1

1

m

m n nm

I

Q

I

×

× ×

 
 =  
  

O . 

Proof: Since 0iα >  in P , all the eigenvalues of system (3) 

are set in the left-half plane of the complex plane, that is the 

system (3) achieves globally asymptotically stable. It is 

trivial to get that det ( , ) 0eV P Q ≠ , and therefore according to 

Lemma 2, , 0,1, , 1r r

i
A i m×∈ = − L can be calculated as 

diagonal matrixes, making system (3) decoupled for each 

dimension of the state vector x.                                           ■ 

2.2 Preparation for HOFA model transforming 

Given the simple and effective property for control design 

of FASA as described in section 2.1, modeling a HOFA 

system for USV becomes the first step we should take.  

The commonly used first-order 3-DOF USV model in [16] 

is simplified to design the tracking controller based on FASA 

by applying the following assumptions: 

Assumption 1: The off-diagonal terms of inertial and drag 

matrixes are small compared to main diagonal terms, and can 

be ignored. 

Assumption 2: The hydrodynamic added mass 
11 22,m m of 

USVs relative to the ,x y axis is very small compared with 

the ship body mass m , and can be simplified 

as
11 22m m m= = .  

In this way, the first-order 3-DOF USV model with 

under-actuated form is expressed as 

 
11

22

33 33

cos sin

sin cos

x u v

y u v

r

mu mvr d u F

mv mur d v

m r d r T

ϕ ϕ

ϕ ϕ

ϕ

= −


= +
 =


= − +
 = − −


= − +

&

&

&

&

&

&

                          (4) 

where ,x y stand for the position coordinates, ϕ  denotes yaw 

angle in the inertial frame. , ,u v r corresponds to the surge, 

sway and yaw velocities of the vessel in the body-fixed 

reference frame. The parameters
33m  and ( 1,2,3)iid i = denote 

the vessel inertia including added mass effects and 

hydrodynamic damping. m  is the mass of USV and the 

available control inputs denoted by F and T are the surge 

thrust and yaw moment. 

3 Main Results  

This section shall address our two main results. The first 

one is the HOFA system we established for under-actuated 

USVs through model transformation from (4). The second 

one is the controller we designed for HOFA system by 

applying FASA. 

3.1 HOFA system of USVs 

According to Definition 1, before transformation, state 

vector nx ∈  and input vector ru ∈  for HOFA system, 

should be selected from the first-order 3-DOF USV model 

(4). Given that path tracking control of USVs aims to make 

the vessel travel along the expected 2-D path with a 

stabilized forward heading yaw angle along the path, we 

consider the direct tracking control for USVs, which means 
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the ( , )x y position coordinates of USVs in (4) are selected as 

a 2-D state vector [ ]
T

Z x y= for HOFA system to be 

controlled to follow the desired path coordinates ( , )d dx y . 

And since under-actuated USVs only have two available 

control inputs F and T , the input vector is selected as a 2-D 

vector 
T

U F T =  
&& . 

Theorem 1: The first-order under-actuated USV system (4) 

is equivalent to the HOFA system (7) if the input F satisfies 

11 22( )F d d u≠ −                               (5) 

Remark 1: Assumption (8) is the embodiment of the 

fully-actuated property for HOFA system and also the 

prerequisite to ensure the effectiveness of controller design 

based on FASA. It is worth noticing that the assumption of 

persistent excitation for surge or yaw velocities of USVs can 

be pretty hard to guarantee during the path tracking process, 

whereas, assumption (5) can be much easier to be satisfied 

by designing the control input F . 

Proof: Considering the state vector and input vector for 

HOFA system has been selected as 

[ ]
T

Z x y= and
T

U F T =  
&& , the HOFA system is therefore 

a 2-D system. That is to say two equations should be 

obtained for , ,x y F&& and T  after transformation. Since the 

number of equations can be reduced by raising the order of 

the system, we take derivative of the first two equations, 

which are for ,x y  in (4), continuously to get the high order 

expressions of x and y . Substituting the corresponding 

derivatives of , , ,u v r ϕ  into the high order expressions 

of x and y , the third to sixth equations in (4) can be thus 

reduced. By this means, the fourth derivatives of x  

and y meet the condition that , ,x y F&& and T appear 

simultaneously, so the transformed high order system of 

under-actuated USVs is shown as 
(4) 11 22 11 22

1

33 33

(4) 11 22 11 22
2

33 33

cos 1
(cos sin )

sin 1
(sin cos )

d d F d u d u
x F v T f

m m m m

d d F d u d u
y F v T f

m m m m

ϕ
ϕ ϕ

ϕ
ϕ ϕ

− − +
= − + +




− − + = − − +


&&

&&

(6) 

with 
2

211 11 22 11
1 2 2 2

2 2

1 2 3 1 4 5 6

cos 2 sin
[ ( ) sin ] ( cos )

cos sin
( ) ( )

d d d d r
f r r F F

m m m m m

p ur p vr p u p vr p ur p v p r
m m

ϕ ϕ
ϕ ϕ

ϕ ϕ

−
= − + − +

− + + − − − − ,

&

2
211 11 22 11

2 2 2 2

2 2

1 2 3 1 4 5 6

sin 2 cos
[ ( ) cos ] ( sin )

sin cos
( ) ( )

d d d d r
f r r F F

m m m m m

p ur p vr p u p vr p ur p v p r
m m

ϕ ϕ
ϕ ϕ

ϕ ϕ

−
= − − − −

− + + + − − − ,

&

where ( )1 ~ 6ip i =  are parameters, specifically expressed as 

1 22 11

2 2

22 11 22 11 22 11 33
2

33

3 2

3 11

22 11 11 22
4

3 2

5 22

6 33 33

2 2

2 ( )

( )(2 )

.

p d d

d d d d d d d
p

m m

p d m

d d d d
p

m

p d m

p d m

= −

− − −
= +

=

− +
=

=

=

 

To simplify the expression, let 

11 22 11 22

33 33

11 22 11 22

33 33

cos 1
(cos sin )

sin 1
(sin cos )

d d F d u d u
v

m m m m
B

d d F d u d u
v

m m m m

ϕ
ϕ ϕ

ϕ
ϕ ϕ

− − + 
− + 

 =
 − − +

− − 
 

,   (7) 

[ ]1 2

T
f f f= , such that system (4) can be rewritten as 

(4)Z B U f= ⋅ + .                           (8) 

According to Definition 1, (8) satisfies the form of (1) 

with 4m = , 2n r= = . Calculate the determinate of B from 

(7), we have 

22 11

2

33

( )F d d u
B

m m

+ −
=

⋅
, 

Substituting (8), we can get 0B ≠ ,which is equivalent to 

2 2( ) 2rank B × = based on the knowledge of linear algebra. 

From (2) in Definition 1, it turns out that the 4-order system 

(8) is a HOFA system. The proof is completed.                  ■ 

3.2 Controller Design Based on FASA 

In this section, we shall design a virtual control law for 

HOFA system (8) we proposed in Section 3.1 based on 

FASA, and then combining the condition (5), transform the 

virtual control input to one for the original under-actuated 

USV system (4).   

According to the theory of FASA, we can design 
0~3A  to 

get the closed-loop dynamic characteristic we expect for 

position error e , that are the eigenvalues and eigenvectors of 

the closed-loop system.  

Theorem 2: The path tracking error e  of HOFA USV 

system (8) is globally asymptotically stable if the following 

control law is adopted. 
1 (0~3)

0~3[ ]U B f A E d−= − + ⋅ −
 

where
0~3

1.57 0 7.51 0 11.5 0 6 0

0 1.57 0 7.51 0 11.5 0 6
A

 
=  
 

. 

Proof: According to Lemma 1, the virtual control law for 

HOFA model (8) can be designed as follows: 

 1 (0~3)

0~3[ ]U B f A E d−= − + ⋅ −                   (9)                     

where [ ]0~3 0 1 2 3A A A A A= , and ( 0,1,2,3)iA i = are all 

2 2× real matrixes waiting to be designed, 
(0~3) (3) (3)

T

x y x y x y x yE e e e e e e e e =  & & && && ，with
x de x x= − a

nd y de y y= − denote the position errors, and (4) (4)
T

d dd x y =   .  

Combined with (9), the closed-loop system of (8) can be 

expressed as follows: 
(4) (0~3)

0~3 0Z d A E− + ⋅ =
 

that is 

 (4) (3)

3 2 1 0 0e A e A e Ae A e+ + + + =&& &              (10) 

where
T

x ye e e =   . 

According to Corollary 1, we can choose P and Q in the 

form shown in Corollary 1, and construct the appropriate 

performance index function below: 
1( ) e eJ P V V −=  

then combining the assumption (5), the matrix P  can be 

obtained by solving the following optimization problem: 

56  



  

■

11 22

min ( )

( )
. .

0, 0, 1,2,3,4i i

J P

F d d u
s t

iα β




≠ −
 > > =

    (11) 

So, we finally get the matrix ,P Q as follows: 

2.5 0.04 0 0 0 0 0 0

0.04 2.5 0 0 0 0 0 0

0 0 0.5 0.04 0 0 0 0

0 0 0.04 0.5 0 0 0 0

0 0 0 0 2.5 0.04 0 0

0 0 0 0 0.04 2.5 0 0

0 0 0 0 0 0 0.5 0.04

0 0 0 0 0 0 0.04 0.5

P

− 
 − − 
 −
 

− − =  −
 

− − 
 − 
 − − 

      

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1
Q

 
=  
     

and then we can get 

0~3

1.57 0 7.51 0 11.5 0 6 0

0 1.57 0 7.51 0 11.5 0 6
A

 
=  
 

.     (12) 

Substituting (12) into (10), the decoupled two closed-loop 

linear systems can be derived as 
(4) (3)

(4) (3)

6 11.5 7.51 1.57 0

6 11.5 7.51 1.57 0

x x x x x

y y y y y

e e e e e

e e e e e

 + + + + =


+ + + + = ,

&& &

&& &
 

and the parameters in each system satisfied Hurwitz 

condition, making the path tracking error 
xe and ye  globally 

asymptotically stable. The proof is completed.                    ■ 

4 Simulation 

In this section, the validation of the proposed control 

scheme is exhibited. Numerical simulations for two working 

conditions of USV path tracking control-linear and curved 

path tracking are conducted in MATLAB/Simulink and the 

corresponding parameters for first-order 3-DOF USV model 

are as follows, 

200m kg= ,
2

33 80m kg m= ⋅ ,   1

11 70d kg s−= ⋅ , 1

22 100d kg s−= ⋅ ,  
1

33 50d kg s−= ⋅ [20]. 

Our first simulation considers the working condition of 

linear path tracking and the desired straight path is selected 

and expressed as ( ) 2.3dx t t= , ( ) 2.3dy t t= . The initial states of 

the USV are set as  

(0) 20 (0) -20 (0) 90x m y m ϕ= , = , = ,o (0) 0u = m/s, (0) 0v = m/s,

(0) 0r = rad/s and the initial value of the controller is set as 

0 1F N= .   

The real tracking path of the vessel and the desired straight 

path are shown in Fig. 1, where N and E refer to the x and y 

position coordinates in the inertial frame. It can be seen from 

Fig.1 that with the use of the proposed controller, the USV 

can achieve accurate straight path tracking. Fig.2 displays 

the real yaw angle during the tracking process and the 

desired heading, which can be calculated from the desired 

path as tan( ) 45degd d da y xϕ = =& &  and it demonstrates that the 

yaw angle of the vessel is able to reach the desired heading 

and remain stable. Fig.3 further shows the change of surge, 

sway and yaw velocities of the vessel while tracking the 

straight path and they all become stable, which indicates that 

the vessel sails at a steady speed along the desired path. The 

surge force and yaw torch forced on the vessel during the 

tracking control are shown in Fig.4, which demonstrates a 

stable performance of the control inputs. 

 

 
 

Fig. 1: The straight tracking path of USV 
 

 
 

Fig. 2: The yaw angle of USV  
 

 
 

Fig. 3: The surge, sway and yaw velocities of USV  
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Fig. 4: Surge force and yaw torch for USV  

For the second simulation, we consider the case of curved 

path tracking. The expected curved path we selected is 

expressed as ( ) 150 cos(0.1 )dx t t= ⋅ , ( ) 150 sin(0.1 )dy t t= ⋅ , that is 

a circle with a radius of 150 m. Initial states of the vessel are 

set as follows, 

(0) 200 (0) 50 (0) 60x m y m ϕ= , = − , = ,o (0) 0u = m/s, (0) 0v = m/s,

(0) 0r = rad/s and the initial value of the controller is set as 

0 1F N= .  

The real tracking path of the USV and the expected circled 

path are shown in Fig. 5 and it can be seen from Fig.5 that the 

USV can achieve accurate curved path tracking under the 

control of the proposed controller. Fig.6 displays the real 

yaw angle during the tracking process and the desired 

heading, which can be calculated from the desired path as 

tan( )d d da y xϕ = & &  and Fig.6 demonstrates that the yaw angle 

of the vessel is able to follow the change of the desired 

heading with an acceptable error of about 2 deg. Fig.7 further 

shows the change of surge, sway and yaw velocities of the 

vessel while tracking the curved path and they all become 

stable, which indicates that the vessel sails at a steady speed 

along the desired path in the end. The surge force and yaw 

torch forced on the vessel during the curved tracking control 

are shown in Fig.8, which demonstrates a stable performance 

of the control inputs. 

 

 
 

Fig. 5: The curved path tracking of USV 
 

 
 

Fig. 6: The yaw angle of USV   
 

 
 

Fig. 7: The surge, sway and yaw velocities of USV  
 

 
 

Fig. 8: Surge thrust and yaw moment forced on the USV  
 

5 Conclusion 

Based on the FASA, this paper proposes a four-order 2-D 

HOFA model for first-order 3-DOF USV model with 

under-actuated form. Then, applying the controller design 

idea and method for HOFA system on our HOFA USV 

system, we propose a controller which enables the 

closed-loop four-order system to obtain the desired dynamic 

characteristics, decouple the 2-D system, and thus effectively 

simplify the design process of USV path tracking controller 

by translating it to the selecting of eigenstructure for 

high-order linear system. The USV path tracking controller 
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we proposed in this paper achieves global asymptotic 

stabilization for the tracking position errors and relaxes the 

assumption of continuous excitation for angular and forward 

velocity in previous path tracking control laws to one 

assumption for control input (surge thrust F). Finally, 

simulations are conducted to verify the control effectiveness 

of the proposed HOFA controller and the results show that it 

performs good for both two tracking cases for USV: straight 

and curved path tracking. Our next work shall concern on the 

uncertainties such as modeling inaccuracy, unmodeled 

dynamics, modification in physical parameters as well as 

external disturbance caused by wind, waves, and currents for 

path tracking control. 
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Abstract: This paper is concerned with the optimal control for networked control systems over multi-hop relay networks. In
the transmission process, there exist package losses which lead to heavy damage. To overcome the multi-hop relay package
losses, we introduce the relay code and a new Markov chain which convert the optimal control with series of packet losses into
the general Markovian jumping parameter system. Based on the converted system, a modified maximum principle is developed,
which is actually a forward-backward jumping parameter difference equation. In the finite horizon, the key step is to reveal the
relationship between the system state and optimal costate. The optimal controller as well as the optimal performance is deduced
via the solutions to the optimal costate and one type of coupled difference Riccati equation. In the infinite horizon, a new type
of Lyapunov function is defined, by which a necessary and sufficient stabilization condition is obtained, and an infinite optimal
controller is developed.

Key Words: Optimal Control; Stabilization; Multi-Hop Relay Network; Packet Loss

1 Introduction

A networked control system (NCS) is a closed-loop sys-
tem, in which the individual components including plant,
sensor, controller, and actuator are connected through a wire-
less communication network. In the past few decades, NCS
is widely used in the computer networks fields, burgeon-
ing iot devices, automated highway systems, and unmanned
aerial vehicles [1]. This is because of its high security,
flexibility, expansibility and auto-tuning optimization. At
present, many research achievements have been given on op-
timal control [2], H∞ control [3], guaranteed performance
control [4] and stabilization [5] of NCSs.
However, because of data collisions, network congestion and
so on, there is inevitably existed packet losses in the data
transmission line, which will deteriorate the system perfor-
mance. Generally, there are two types of packet loss models:
the independent and identically distributed (i.i.d.) Bernoulli
model and the Markov model. In [6], the optimal control
and stabilization of the NCSs with two-way Markov packet
dropouts, i.e., from the sensor to the estimator and from the
controller to the actuator, was considered. By the Maximum
principle, the optimal controller as well as its existence con-
dition was given. Also, the infinite horizon stabilization con-
dition was supplied by the solution to an algebraic Riccati
equation.
On the other hand, there exists a situation that the packet
losses and transmission delays occured simutaneouly. As for
the NCSs both with transmission delays and scalar Bernoulli
type packet losses, a necessary and sufficient condition for
stabilizing the NCSs based on the unique positive solution
to a certain algebraic equation was presented in [7]. For
the NCSs with scalar Markovian packet loss and transmis-
sion delay, the finite horizon optimal control and stabiliza-
tion condition were supplied by the stochastic Markovian
maximum principle method in [8]. The solution to the fi-
nite horizon optimal controller and infinite horizon stabiliza-
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Province (No. ZR2021MF069).

*Corresponding author

tion condition were given in terms of two coupled differ-
ence/algebraic Riccati equations. In [9], a sufficient condi-
tion with anH∞ disturbance attenuation level for NCSs with
Markovian packet losses was derived.
Up to now, some researches have been made on the filtering
of relay network systems, but less attention has been paid to
the optimal control and stabilization of relay networks. The
use of relay networks could significantly enhance the prop-
agation distance of wireless communication with high qual-
ity communication performance [10]. However, most of the
previous works focused on single-hop communication [11],
[12], [13], [14]. To balance the computation capability and
energy consumption, we introduce the relay code strategy in
the NCSs, which would reduce the forwarding times and gu-
rantee the transmission accuracy.
In this paper, we investigate the optimal control and stabi-
lization for NCS over multi-hop relay networks. The main
contributions are as below: (1) Multiple relay nodes are in-
troduced in the transmission line from the controller to the
actuator, and a higher reliable NCS model is proposed. (2)
A new multi-state Markov chain is defined, by which the
optimal control and stabilization over multi-relay NCSs is
transformed into the optimal control and stabilization for the
Markovian jumping parameter systems. (3) The finite hori-
zon optimal controller is designed by employing the stochas-
tic Markovian maximum principle. And the necessary and
sufficient stabilization condition is given by applying a new
type of coupled Lyapunov function.
The structure is listed as below. Section 2 gives the problem
formulation of finite horizon optimal control and supplies the
optimal solution and its existence condition by the stochastic
maximum principle. Section 3 is concerned with the infinite
horizon optimal control and stabilization. The conclusion is
drawn in Section 4.
Notation: Rn stands for the n dimensional Euclidean space,
Rm∗n stands for the set of all m ∗ n real matrices. A > 0(≥
0) means that A is a positive definite (positive semi-definite)
matrix. AT ,A

′
are the transpose matrix and inverse matrix

of A, respectively. P (A|B) is the conditional probability.
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Fig. 2: A structure of multi-hop relay network

E[.] represents the mathematical expectation. I represents
an identity matrix of appropriate dimension. {G,Gk,P ,Ω} is
the stochastic basis and Gk represents the random variables
{γ(k), k = 1, 2}

2 Finite Horizon Optimal Control

2.1 Problem statement
A block diagram of NCS is given in Figure 1 and a struc-

ture of multi-hop relay network is given in Figure 2.
Now consider the following NCS with multi-hop relay

nodes

x(k + 1) = Ax(k) +Buα(k), x(0) = x0, (1)

where x(k) ∈ Rn is the system state, uα(k) ∈ Rm is the
actuator signal,A,B are matrices of appropriate dimensions,
and

uα(k) = γ(k)u(k), (2)

where u(k) is the controller signal, γ(k) characterizes the
multistage pocket losses from the controller to the actuator
in the procedure of data transmission

γ(k) =
M∏
i=0

δik, (3)

Supposed that the controller signal u(k) is transmitted from
the remote controller to the actuator via wireless medium
with successive M relay nodes at time k, k= 0, 1, . . . , T .
The current relay node will receive data from its last node
and then forward data to the adjoining node. We denote
the arrival process of the observation at time k by a binary
stochastic variable δik, k = 0, 1, . . . , T , where δik = 1 repre-
sents that i-th relay node successfully receives the adjoining
data at the time k , otherwise δik = 0.
In this part, each δik is depicted as a two-state Markov chain
(See in Figure 3) with the transition probablity matrix

Λi =

[
λi00 λi01
λi10 λi11

]
, i = 1, 2, · · · ,M, (4)

1

Success

0

Failure
1-p 1-q

p

q

Fig. 3: Markov packet loss model

Baseed on the definition (3), we know that the transition
probability of γ(k) satisfies

λ00 = Prob{γ(k + 1) = 0|γ(k) = 0}

= 1− 1
2M+1−1

[
M∏
i=0

(λi01 + λi11)−
M∏
i=0

λi11], (5)

λ01 = Prob{γ(k + 1) = 1|γ(k) = 0}

= 1
2M+1−1

[
M∏
i=0

(λi01 + λi11)−
M∏
i=0

λi11], (6)

λ10 = Prob{γ(k + 1) = 0|γ(k) = 1}

=
M∏
i=0

(λi10 + λi11)−
M∏
i=0

λi11, (7)

λ11 = Prob{γ(k + 1) = 1|γ(k) = 1}

=
M∏
i=0

λi11, (8)

Based on the above analysis, systems (1) is transmitted as

x(k + 1) = Ax(k) +Gγ(k)
u(k), x(0) = x0, (9)

where
Gγ(k)

= Bγ(k), (10)

The performance index subject to finite horizon optimal con-
trol is given by

JT = E{ [
T∑
k=1

[x(k)
′
Qx(k) + u(k)

′
Ru(k)]+

x(T + 1)
′
P (T + 1)x(T + 1)}, (11)

where Q and R are both positive semi-definite matrices,
P (T + 1) reflects the penalty on the terminal state.
Problem 1 (Finite Horion Optimal Control) Find a Gk-
measurement controller u(k), such that the performance in-
dex (11) is minimized subject to system (1).

2.2 Solution to problem 1
Definition 1. Problem 1 is called solvable if there exists an

admissible control (u∗(0), ..., u∗(T )) such that (11) is mini-
mized for any x0.
The modified maximum principle is established as follows.
Lemma 1 (Modified Maximum Principle). According to
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system (1) and cost function (11), if the linear quadratic
problem min JT is solvable, then the optimal Gk-measurable
control u(k) satisfies the following equilibrium equation

0 = E[G
′

γ(k)ηk +Ru(k)|Gk] k = 0, . . . , T, (12)

and the costate ηk satisfies

ηT = P (T + 1)x(T + 1), (13)

ηk−1 = E[A
′
ηk +Qx(k)|Gk]. (14)

Proof. The derivation process can be implemented along the
similar line in [9], and is therefore omitted for conciseness.
(1), (12), (13) and (14) form the forward-backward stochas-
tic Markovian difference equations (FBSMDEs). Now we
give the main result of this section.
Therom 1. Problem 1 has a unique solution if and only if
the following coupled difference Riccati equation

Pi(k) = A
′
(

2∑
j=1

λi,jPj(k+1))A+Q−Mi(k)
′
Γi(k)

−1Mi(k),

(15)

Γi(k) = G
′

i(

2∑
j=1

λi,jPj(k + 1))Gi +R, (16)

Mi(k) = G
′

i(
2∑
j=1

λi,jPj(k + 1))A, (17)

are well defined for k = T, ..., 0, i = 1, 2, that is, Γi(k)(k =
T, . . . , 0, i = 1, 2) are all invertible. In this situation, the an-
alytical solution to the finite-horizon optimal control is given
as

u∗(k) = −Γγ(k)
(k)−1Mγ(k)

(k)x(k), i = 1, 2, (18)

for k = T, . . . , 0.
Moreover, the optimal costate is given by

ηk−1 = Pγ(k)
(k)x(k), (19)

and the optimal performance satisfies

J∗
T = E[x(0)

′
Pγ(0)(0)x(0)]. (20)

Proof. See Appendiex A.

3 INFINITE-HORIZON OPTIMAL CONTROL

In this section, we will seek for the infinite horizon opti-
mal control and stabilization condition for system (1).

3.1 Problem statement
Firstly, we consider a time-invariant version of the system

(1) and the infinite horizon performance index

J = E{
∞∑
k=0

[x(k)
′
Qx(k) + u(k)

′
R(k)u(k)]}. (21)

Before proceeding further, we will introduce some defini-
tions which will be used in the latter derivation of our results.
Definition 2. System (1) is mean-square stabilizable (MSS)
if there is a Gk-measurement controller u(k) = Fγ(k)x(k)

satisfying limk→∞ = E[u(k)
′
u(k)] = 0, such that system

(1) is asymptotically mean-square stable.
Definition 3. The following system

x(k + 1) = Ax(k) +Gγ(k)u(k), y(k) = Cx(k), (22)

is said to be exactly observable, if for any T ≥0,

y(k) = 0, a.s., ∀k ∈ [0, T ] =⇒ x0 = 0. (23)

For convenience of description, denote A = (A,A), G =
(G1, G2), C = (C,C). If system (1) is mean squre stabiliz-
able and exactly observable, we say that the pair (A,G) is
mean square stabilizable and (C,A) is exactly observable.
Problem 2. Find the Gk-measurable controller u(k) =
Fγ(k)x(k), k ≥ 0, such that the closed loop system is asymp-
totically stable in the mean-sequare sense, which also mini-
mizes the performance index (21).

3.2 Soluton to problem 2
Without loss of generality, we assume the terminal weight

matrix P (T + 1) in (11) to be zero and define the following
coupled algebraic Riccati equations

Pi = A
′( 2∑
j=1

λi,jPj
)
A+Q−M

′

iΓ
−1
i Mi, i = 1, 2,

(24)

Γi = G
′

i

( 2∑
j=1

λi,jPj
)
Gi +R, i = 1, 2, (25)

Mi = G
′

i

( 2∑
j=1

λi,jPj
)
A, i = 1, 2, (26)

Theorem 2. If system (1) is mean-square stabilizable,
then PTi (k)(i = 1, 2) is convergent when T → ∞, i.e.
limT→∞ PTi (k) = Pi(i = 1, 2), where Pi(i = 1, 2) satis-
fies (24), (25), (26) and Pi > 0.
Proof. See Appendix B.
Theorem 3. Consider Assumptions 1 and 2, system (1) is
stabilizable in the mean squre sense if and only if there exists
a unique solution to (24)-(26) such that Pi > 0 for i = 1, 2.
In this situation, the optimal controller is given by

u(k) = Γγ(k)Mγ(k)x(k), k ≥ 0, (27)

which stabilizes (1) in the mean-square sense and minimizes
performance (21) simutaneously. The infinite horizon opti-
mal performance is given as

J∗ = E{x(0)
′
Pγ(0)x(0)}. (28)

Proof. The derivation process is similar to that of Theorem
3 in [15], and thus is omitted here.

4 Numerical Example

In this section, we will give numerical examples to illus-
trate the right of the results above.

4.1 Finite-horizon example
In this part ,we consider the NCS with the following spe-

cific matrices

A =

[
0.8 0.1
−0.2 0.7

]
, B =

[
0.2 0.7

−0.05 1.4

]
,
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Fig. 4: The path of γ(k)
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Fig. 5: the trajectories of the optimal controllers

while the weight matrices of the cost function (11) are given
by

Q =

[
0.8 0
2 1.1

]
, B =

[
0.7 0
0 0.5

]
, P (T + 1) =

[
1 0
0 1

]

. Let T= 40 and the initial value x(0) =

[
0.55
0.35

]
, uα =[

0.1
0.3

]
. And we set the transition probability matrices below

Λ1 =

[
0.3 0.7
0.15 0.85

]
,Λ2 =

[
0.1 0.9
0.25 0.75

]
.

Implementing 100 Monte Carlo simulations from k = 0 to k =
40 and in terms of T = 40, we obtain the simulation results as
below. In accordance with Theorem 1, Figure 4 is depicted
as the transitions of the Markov chain λ(k), Figure 5 is used
to represent the trajectories of the optimal controllers and
Figure 6 is used to represent the trajectories of the state x(k).

5 conclusion

In this paper, we have investageted the optimal control and
stabilization for NCSs over multi-hop relay networks. A new
packet loss model has been established to describe the un-
reliable charicteristic of the relay comunication line. The
relationship between the costate and system state has been
revealed, and the finite horizon optimal controller was sup-
plied. Addtionally, the necessary and sufficient stabilization
condition has been developed according to the solution to an
algebraic Riccati equation.
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Fig. 6: The trajectories of the state x(k).

Appendiex A (Proof of Theorem 1)

Proof. (Necessary) Assume that Problem 1 is solvable, we
will prove Γi(k) is invertible for all k = T, . . . , 0 such that
u(k) satifies (19). By the induction method, we first define

J(k) = E{ [
T∑
k=1

[x(k)
′
Qx(k) + u(k)

′
Ru(k)]

+ x(T + 1)
′
P (T + 1)x(T + 1)|Gk] }, (29)

for k = T, ..., 0. When k = T , (29) can be rewritten as

J(T ) =E{[x(T )
′
Qx(T ) + u(T )

′
Ru(T )]+

x(T + 1)
′
P (T + 1)x(T + 1)|GT }. (30)

Let x(T ) = 0 and substitute (1) into (30), we have

J(T ) = E{[x(T )
′
Qx(T )

+ [Ax(T ) +Gγ(T )u(T )]
′
P (T + 1)[Ax(T )

+Gγ(T )u(T )]|GT ]}

= u(T )
′
Γi(T )u(T ), (31)

in which

Γi(T ) = R+G
′

i

( 2∑
j=1

λi,jP (T + 1)
)
Gi. (32)

Since J(T ) > 0, we get Γi(T ) > 0.
Now, we concentrate on the derivation of the optimal con-
troller u(T ). In view of (15)-(17), we have

0 = G
′

i

( 2∑
j=1

λi,jP (T + 1)
)
Ax(T )

+ [G
′

i

( 2∑
j=1

λi,jP (T + 1)
)
Gi +R]u(T ). (33)

In view of (33), one yields

u(T ) = −Γi(T )
−1Mi(T )x(T ), (34)

in which Γi(T) is the same as (32) and Mi(T) is as below

Mi(T ) = G
′

i

( 2∑
j=1

λi,jP (T + 1)
)
A. (35)
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Based on (1), (16) and (A3), we have

η(T − 1) = E[A
′
ηT +Qx(T )|GT ]

= {A
′( 2∑
j=1

λi,jPj(T + 1)
)
A+Q

−Mi(T )
′
Γi(T )

−1Mi(T )}x(T )
= Pi(T )x(T ), (36)

where

Pi(T ) = A
′( 2∑
j=1

λi,jP (T + 1)
)
A+Q

−Mi(T )
′
Γi(T )

−1Mi(T ). (37)

Taking any k with 1 ≤ k ≤ T , for any t ≥ k+1, we assume
that Γi(t)(i = 1, 2) is invertible and the optimal controller
and the optimal costate are satisfied, respectively. By the in-
ductive method, we will prove these conditions are satisfied
for t = k. Let x(k) = 0 and on the basis of (1), (12), (13)
and (14), we have

E{x(t)
′
ηt−1 − x(t+ 1)

′
ηt|Gk+1}

= E{x(t)
′
Qx(t) + u(t)

′
Ru(t)|Gk+1}. (38)

Taking addition from t = k + 1 to t = T on both sides of
(38), we get

E{x(k + 1)
′
ηk − x(T + 1)

′
ηT |Gk+1}

=
T∑

t=k+1

E{x(t)
′
Qx(t) + u(t)

′
Ru(t)|Gk+1}. (39)

So we can obtain from (39) and (16) that

J(k) = E{u(k)
′
Ru(k) + u(k)

′
G

′

γ(k)
ηk|Gk}. (40)

Note that

ηk = Pγ(k)
(k + 1)x(k + 1)

= Pγ(k)
(k + 1)[Ax(k) +Gγ(k)

u(k)], (41)

we have

J(k) = E{u(k)
′
Ru(k)

+ u(k)
′
G

′

i

2∑
j=1

λi,jPj(k + 1)Giu(k)|Gk}

= u(k)
′
[R+G

′

i

2∑
i=1

λi,jPj(k + 1)Gi]u(k)

= u(k)
′
Γi(k)u(k), i = 1, 2. (42)

Based on the uniqueness of the optimal controller, we know
that J(k) must be positive for any u(k) ̸= 0. Thus we can
say Γi >0 for i = 1, . . . ,M . In order to obtain u(k), substi-

tuting (41) into (16) yields

0 = E[G′
γ(k)

ηk +Ru(k)|Gk]

= G
′

i(
2∑
j=1

λi,jP (T + 1))Ax(T )

+ [G
′

i(
2∑
j=1

λi,jP (T + 1))Gi +R]u(T )

=Mi(k)x(k) + Γi(k)u(k). (43)

In light of (43), we get

u(k) = −Γi(k)
−1Mi(k)x(k), (44)

which

Γk(k) = G
′

i(
2∑
j=1

λi,jPj(k + 1))Gi +R, (45)

Mi(k) = G
′

i(
2∑
j=1

λi,jPi(k + 1))A. (46)

Based on (12), (41) and (43) , we have

ηk−1 = E[A
′
ηT +Qx(T )|Gk]

= Pi(k)x(k), (47)

where

Pi(k) = [Q+A
′
Pi(k+1)A]−Mi(k)

′
Γi(k)

−1Mi(k). (48)

(Sufficiency) Suppose Γi(k) for i = 1, 2 , we focus on prov-
ing that there exists a unique solution for Problem 1. Define

VT (k, x(k)) = E[x(k)
′
Pγ(k)(k)x(k)]. (49)

Based on above (49) and (15)-(17), we can obtain

VT
(
k, x(k))− VT

(
k + 1, x(k + 1)

)
= E{x(k)

′
Qγ(k)

(k)x(k) + u(k)
′
Ru(k)

− [u(k) + Γ−1
γ(k)

(k)Mγ(k)
(k)x(k)]

′
Γγ(k)

(k)[u(k)

+ Γ−1
γ(k)

(k)Mγ(k)
(k)x(k)]}. (50)

Adding from k = 0 to k = T , the performance index (11)
is rewritten as

JT =E{x(0)
′
Qx(0) +

T∑
k=0

[u(k)

+ Γγ(k)
(k)−1Mγ(k)

(k)x(k)]
′
Γγ(k)

(k)[u(k)

+ Γγ(k)
(k)−1Mγ(k)

(k)x(k)]}. (51)

Problem 1 has a unique solution, and the optimal controller
is

u(k) = −Γγ(k)
(k)−1Mγ(k)

(k)x(k). (52)

The optimal performance index is

JT = E[x(0)
′
Pγ(0)(0)x(0)]. (53)

This completes the proof of Theorem 1.
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Appendiex B (Proof of Theorem 2)

Proof. In term of JT ≤ JT+1, we get J∗
T ≤ J∗

T+1 for any
initial value x0. From (26), we have

E{x
′

0P
T (0)x0} ≤ E{x

′

0P
T+1(0)x0}. (54)

Because of the arbitrary of x0, we have PT (0) ≤ PT+1(0),
it means that PT (0) is increasing with respect to T .
In the sequel, we will prove that PT (0) is bounded. If sys-
tem (1) is stabilizable in the mean-square sense, there exists
u(k) = Fγ(k)

x(k) satisfying

lim
k→∞

E[x(k)
′
x(k)] = 0. (55)

So one yields

J∗ ≤ J = E
∞∑
k=0

[x(k)
′
Qx(k) + u(k)

′
Ru(k)]

≤ λE
∞∑
k=0

[x(k)
′
x(k)] ≤ λcE[x(k)

′
x(k)], (56)

where λ denotes the maximum eigenvalue of (Q +
F

′

γ(k)
RFγ(k)

) and c is a positive constant. In view of (56),
we have

E[x(0)
′
P (0)x(0)] ≤ λcE[x(k)

′
x(k)], (57)

that is
PT (0) ≤ λcI. (58)

Therefore, PT (0) is bound. On the account of PT (0) is
monotonous, we can say that PT (0) is convergent. As is
stated above, the variables given in (15)-(17) are time invari-
ant for T because of Pj(T + 1) = 0, (j = 1, 2), thus we
have

lim
k→∞

PTi (k) = lim
k→∞

PT−k
i (k) = Pi, (59)

At the same time, we get

lim
k→∞

ΓTi (k) = Γi, lim
k→∞

Mi(k) =Mi. (60)

Next, we will show Pi > 0. Because of J∗ ≥ 0, we have
PT (0) ≥ 0 for the arbitrary of x0. We will prove that there
exists a positive intenger T0 that make PT (0) ≥ 0 (T ≥ T0).
If not, there exists a nonempty set

XT = {x ∈ Rn : x ̸= 0, x′PTγ0(0) = 0}. (61)

Owing to PT (0) is monotonically increasing, we have that
if E{x′

PT+1(0)x} = 0, then E{x′
PT (0)x} = 0, that is,

XT+1 ⊆ XT . As XT is a nonempty finite dimensional set,
so we get

1 ≤ · · · ≤ dim(X2) ≤ dim(X1) ≤ dim(X0) ≤ k. (62)

So, there exists a positive intenger T0, such that

dim(XT ) = dim(XT0). (63)

For any T > T0. That is XT = XT0 . Thus , there exists a
nonzero x ∈ XT satisfying x

′
PT (0)x = 0. Set x0 = x, we

can obtain

J∗
T = E{

∞∑
k=0

[x∗(k)
′
Qx∗(k) + u∗(k)

′
Ru∗(k)]}

= E[x
′
(0)PTγ(k)

(0)x(0)] = 0. (64)

Since Q ≥ 0, R > 0, we have u∗(k) = 0, Cx∗(k) = 0, that
is,

x∗(k + 1) = Ax∗(k), Cγ(k)
x∗(k) = 0. (65)

Note that (C,A) is exactly observable, so we get x = 0. This
contradicts with x ̸= 0. Thus, there must exist a positive
integer T0, such that P (0) ≥ 0. Therefore

Pi ≥ lim
T→∞

PTi (k) ≥ PT0
i (k) > 0. (66)

This completes the proof.
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Distributed recursive filter for 2-D Markov jump systems with
stochastic communication protocol and nonlinearities
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Abstract: This paper investigates the distributed filtering for a class of two-dimensional Markov jump parameter systems with
communication protocols and nonlinearity. The system is described by the FM-II model and the random communication protocol
is characterized by a set of mutually uncorrelated random processes with known probability distributions, which determines the
transmission order of each sensor data. The objective is to develop a recursive distributed filter for the two-dimensional systems.
Firstly, an upper bound of the local estimation error variance is established through the mathematical induction method and the
stochastic analysis approach. Then, by the complete mean square method, the filter gains are derived by optimizing the upper
bound of the estimation error variance. Subsequently, a distributed filter based on covariance intersection (CI) fusion algorithm
is developed, which exhibits higher accuracy and reliability. Finally, a numerical example is provided to demonstrate that the
fusion estimator exhibits higher estimation accuracy compared to the local one.

Key Words: CI fusion estimation; Markov jump linear system; two-dimensional system; stochastic nonlinearity; Riccati equa-
tion

1 INTRODUCTION

Over the past few years, two-dimensional (2-D) systems
have gradually become a research hotpot, owing mainly to
the 2-D systems can effectively describe real-world systems
with multiple variables in practical processes. The applica-
tions of 2-D systems can be found in various areas which
include, but are not limited to signal and image processing,
iterative learning tracking, water stream heating, and envi-
ronmental monitoring [1]-[2]. It is worth noting that com-
pared to the traditional one-dimensional (1-D) state-space
model where signals evolve along a single direction, the 2-D
systems possess the feature that the system states are trans-
mitted along two independent directions. This means that
existing theories for 1-D systems may become inapplicable
in the 2-D settings. Accordingly, a host of researchers focus
on the investigation of the recursive filtering problem for 2-
D systems, yielding some representative results [3]-[4].

With the increasing prevalence of sensor networks, the
distributed filtering problem has garnered heightened re-
search interest, primarily attributed to its extensive prospec-
tive applications in the fields of communication, control, and
signal processing [5]-[7]. It is well acknowledged that, in the
distributed systems, the sensors or nodes collaborate among
each others through communication links to estimate the sys-
tems state, enhancing the filtering performance collectively.
In response to the popularity of sensor networks, significan-
t efforts have been devoted to the distributed filtering. In
general, the distributed Kalman filter consists of two strate-
gies: the distributed consistency strategy [8]- [10] and the
distributed fusion strategy [11]- [14]. These strategies differ
in the processes of information fusion and sharing pattern.
In [14], the consensus distributed H∞ filtering for 2-D sys-
tems based on Rosser models was investigated. The aim was
to ensure the stability of the filtering error systems by the
satisfactions of a set of linear matrix inequality form condi-

This work is supported by the Natural Science Foundation of Shandong
Province (No. ZR2021MF069).

*Corresponding author

tions. In [13], a distributed recursive filter was designed for
the 2-D systems with constraints on random communication
protocols. Based on the given topology, the local real state
of the system was estimated by utilizing available informa-
tion from individual nodes and adjacent nodes in the sensor
network. Finally, the filter parameters to be designed were
determined through the vector augmentation method and the
centralized fusion approach.

On the other hand, with the development of modern tech-
nology and communication techniques, the construction of
communication protocols plays a significant role in the dis-
tributed filtering research, which involves several issues such
as the timing of information exchange between nodes, the
triggering conditions, and the reliability of data transmis-
sion. It is worth noting that a reasonable communication
protocol not only reduces the communication overhead and
improves the real-time performance of the system, but also
enhances the robustness of the system against noise and un-
certainty. Consequently, the problem of filtering based on
communication protocols has attracted much attention by
researchers [15]. In [13], a communication protocol char-
acterized by mutually uncorrelated random variables with
known probability distributions was proposed, which deter-
mined the transmission order of each sensors data packet.
In the context of given topology, a distributed filter was de-
signed in the 2-D framework. By employing the mathemati-
cal induction and matrix simplification techniques, the min-
imum upper bound on the estimation error variance was es-
tablished, along with the determination of the required filter
gains. So far, there have been some preliminary research re-
sults on the filtering the 1-D network systems with stochas-
tic communication protocols. Yet, the distributed filtering
problem for 2-D Markov jump parameter systems subject to
stochastic communication protocols and nonlinearities has
been seldom studied.

Inspired by the discussions above, this study focuses on
the investigation of the distributed recursive filter for a 2-D
Markov jump parameter system with the influence of ran-
dom communication protocols and nonlinearity. The main
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contributions of this paper are as follows: (1) The random
communication protocol is described by an independent ran-
dom sequence with known probability distribution, which is
to determine the order of the packets received by each sen-
sor. (2) A class of Riccati difference equations is defined to
derive the local upper bound of the filtering error variance
matrix by mathematical induction method. The filter gain is
then determined by the complete mean square method. (3)
Utilizing the distributed CI fusion estimation algorithm, we
derive the information fusion estimator for the multi-sensor
scenario. This approach effectively avoids the computation-
al burden associated with the cross-covariance matrix of the
estimation error.

This paper is organized as follows: Section II provides
the problem description and preliminaries. Section III out-
lines local estimators, and then develops a distributed fusion
estimator by the CI fusion method. Section IV presents a
simulation example to shown the efficiency of the proposed
algorithm. Section V draws the conclusion in the final part.

Notations: Rn represents the n-dimensional real-valued
vector. The superscript “T” denotes the transpose of the ma-
trix and tr{·} indicates the trace of the matrix. ‘◦’ stands
for the Hadamard product. diag{·} denotes the block diago-
nalization operation. E[·] and Pr{·} serve as the expectation
operator and the probability of the random variable, respec-
tively.
2 PROBLEM DESCRIPTION AND PREPARA-

TION

The stochastic 2-D Markov jump system is considered on
i, j ∈ [0, N ],

x(i+ 1, j + 1)

= A1
θ(i+1,j)x(i+ 1, j) +A2

θ(i,j+1)x(i, j + 1)

+B1
θ(i+1,j)w(i+ 1, j) +B2

θ(i,j+1)w(i, j + 1)

+ α1
θ(i+1,j)f(x(i+ 1, j)) + α2

θ(i,j+1)f(x(i, j + 1)), (1)

yl(i, j) = Clθ(i,j)x(i, j) + βlθ(i,j)h
l(x(i, j)) + vl(i, j), (2)

where x(i, j) ∈ Rnx represents the system state, yl(i, j) ∈
Rny represents the output of the l th sensor. We set Arθ(i,j),
Brθ(i,j) (r = 1, 2) and Clθ(i,j) (l = 1, 2, · · · ,m) for the co-
efficient matrices of systems (1) and (2), which are func-
tions of θ(i, j). θ(i, j) is a discrete time Markov chain
with finite state space θ(i, j) ∈ {1, 2, . . . , Nθ} and transi-
tion probability pez = P{θ(i + 1, j) = z|θ(i, j) = e} =
P{θ(i, j + 1) = z|θ(i, j) = e}, e, z ∈ {1, 2, . . . , Nθ}. Let
πz(i, j) = P (θ(i, j) = z). f(x(i, j)) and hl(x(i, j)) indi-
cates the nonlinear functions. w(i, j) and vl(i, j), respec-
tively stands for the zero-mean process noise and measure-
ment noises with covariances Q(i, j) and Rl(i, j). αrθ(i,j)
and βlθ(i,j) are random variables with mean zero and covari-
ances σrθ(i,j) and γlθ(i,j), respectively.

We set the initial conditions of the system to be,

E{x(i, 0)} = u1(i),

E{x(0, j)} = u2(j),

cov{x(i, 0), x(s, 0)} = P (i, 0)δ(i, s),

cov{x(0, j), x(0, t)} = P (0, j)δ(j, t),

cov{x(i, 0), x(0, j)} = P (0, 0)δ(i, 0), δ(0, j), (3)

where u1(i), u2(j), P (i, 0) and P (0, j) are known parame-
ters with appropriate dimensions and u1(0) = u2(0).

As for the stochastic nonlinear functions f(x(i, j)) ∈ Rnx
and hl(x(i, j)) ∈ Rny , the following properties are satisfied

f(0) = 0, hl(0) = 0,

(f(x)− f(s))T (f(x)− f(s)) ≤ λ(x− s)T (x− s),
(hl(x)− hl(s))T (hl(x)− hl(s)) ≤ τl(x− s)T (x− s),

where x, s are the state vectors, λ, τl are known positive s-
calars.

The information obtained from the sensor is subsequent-
ly organized through a stochastic communication protocol.
Each sensor is with limited capacity, allowing only ny pack-
ets to be simultaneously observed during network transmis-
sion. To ensure the signal integrity, it is assumed that each
sensor can only transmit a single data packet at any given
time. Thus, the random variable ζl(i, j) (l = 1, 2, · · · ,m)
is introduced, where ζl(i, j) ∈ {1, 2, . . . , ny} denotes the
transmission characteristic of the l th sensor at the instant
(i, j) and ζ1(i, j), ζ2(i, j), . . . , ζm(i, j) are mutually uncor-
related random variables. The event ζl(i, j) = t signifies
that the l-th sensor transmits the observed tth packet to the
estimator. The probability distribution of ζl(i, j) is given as
below

prob{ζl(i, j) = t} = ρlt. (4)

here, ρlt is a known positive scalar that satisfies ρl1 + ρl2 +
· · ·+ ρlny = 1.

For short, denote the observed output of the lth sensor as
below

yl(i, j) = [ yl1(i, j) yl2(i, j) · · · ylny (i, j) ]T .

Since each sensor can only send one data packet through
the shared network at each transmission time, then the
aforementioned communication protocol is employed for
scheduling. And the received observation for the l-th sen-
sor can be written as

ȳl(i, j) =


δ(ζl(i, j), 1)yl1(i, j)
δ(ζl(i, j), 2)yl2(i, j)

...
δ(ζl(i, j), ny)ylny (i, j)

 .
So it can be converted as,

ȳl(i, j) = Hζl(i,j)yl(i, j), (5)

where Hζl(i,j) , diag1≤t≤ny{δ(ζl(i, j), t)}, which satisfies
the following statistical properties,

E{Hςl(i,j)} = Φ̄l,

with Φ̄l = diag1≤l≤m{ρlt} ∈ Rny×ny . Based on the func-
tion of δ(·, ·), the following equalities hold for l, k ∈ [1,m],
s, t ∈ [1, ny]

E{δ2(ζk(i, j), s)} = ρks,

E{δ(ζk(i, j), s)δ(ζk(i, j), t)} = 0, s 6= t,

E{δ(ζk(i, j), s)δ(ζl(i, j), t)} = ρksρlt, k 6= l.
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Then, for any matrix Y , the following equality holds

E{Hςl(i,j)Y H
T
ςl(i,j)

} = Φ̂◦l Y ,

Φ̃◦l Y = Φ̂◦l Y − Φ̄lY Φ̄Tl ,
(6)

where Φ̃l = (Φ̃l,st)ny×ny satisfies

Φ̃l,st =

{
ρls(1− ρls), s = t
−ρlsρlt, s 6= t

. (7)

Now, we make the following assumption.

Assumption 1 For the random sequences ζl(i, j), wT (i, j),
vTl (i, j), αs(i, j) and βl(i, j) are mutually uncorrelated for
i, j ∈ [0, N ] and s, l ∈ [1,m].

The problem investigated in this paper is to design a dis-
tributed filter based on the CI fusion algorithm for (1) and
(2).
3 MAIN RESULTS

This section aims to develop a distributed recursive esti-
mator of 2-D systems with jumping parameters. The initial
step is to design a local filter based on the lth measurement

x̂lp(i, j) = A1
θ(i,j−1)x̂

l
u(i, j − 1)

+A2
θ(i−1,j)x̂

l
u(i− 1, j), (8)

x̂lu(i, j) = x̂lp(i, j) +Kl
θ(i,j)(ȳl(i, j)

−Hςl(i,j)C
l
θ(i,j)x̂

l
p(i, j)), (9)

where x̂lp(i, j) and x̂lu(i, j) represents the local one-step
prediction and local state estimation of the lth sensor state
x(i, j), respectively. Kl

θ(i,j) is the filter gain.
According to (1), (2), (8) and (9), the local one-step pre-

diction error x̃lp(i, j) , x(i, j) − x̂lp(i, j) and the local fil-
tering error x̃lu(i, j) , x(i, j) − x̂lu(i, j) are respectively
defined as below

x̃lp(i, j) = A1
θ(i,j−1)x̃

l
u(i, j − 1) +A2

θ(i−1,j)x̃
l
u(i− 1, j)

+B1
θ(i,j−1)w(i, j − 1) +B2

θ(i−1,j)w(i− 1, j)

+ α1
θ(i,j−1)f(x(i, j − 1)) + α2

θ(i−1,j)f(x(i− 1, j)),

(10)

x̃lu(i, j) = [I −Kl
θ(i,j)Hςl(i,j)C

l
θ(i,j)]x̃

l
p(i, j)

−Kl
θ(i,j)Hςl(i,j)[β

l
θ(i,j)h

l(x(i, j)) + vl(i, j)]. (11)

Subsequently, a 2-D distributed CI fusion estimator
x̂CIu (i, j) can be obtained recursively based on the local
predictors and filters by the CI fusion algorithm.

For simplicity, we denote the second moments of the
above variables as below,

Xz(i, j) , E{x(i, j)xT (i, j)1θ(i,j)=z},
P lzp (i, j) , E{x̃lp(i, j)x̃lp(i, j)T 1θ(i,j)=z},
P lzu (i, j) , E{x̃lu(i, j)x̃lu(i, j)T 1θ(i,j)=z},

Xe(i, j − 1; i− 1, j) , E{x(i, j − 1)xT (i− 1, j)

× 1θ(i,j−1)=e1θ(i−1,j)=e},
P lep (i, j − 1; i− 1, j) , E{x̃lp(i, j − 1)(x̃lp(i− 1, j))T

× 1θ(i,j−1)=e1θ(i−1,j)=e},
P leu (i, j − 1; i− 1, j) , E{x̃lu(i, j − 1)(x̃lu(i− 1, j))T

× 1θ(i,j−1)=e1θ(i−1,j)=e}.

The upper bounds of the aforementioned second moments
are provided in the following lemmas, which are conducive
to the subsequent inference of results.

Lemma 1 Consider the 2-D jumping parameter system (1),
(2) and the local estimator (9), (10), under the condition
that there exists a set of positive definite matrix sequences
{X̄z(i, j)}Ni,j=1 satisfying the following recursive equation
for any given positive scalar µ, then X̄z(i, j) forms the up-
per bound for the second moments of the system state,

X̄z(i, j)

=

Nθ∑
e=1

pez{(1 + µ)A1
e(i, j − 1)X̄e(i, j − 1)A1

e(i, j − 1)T

+ (1 + µ−1)A2
e(i− 1, j)X̄e(i− 1, j)A2

e(i− 1, j)T

+ πeB
1
e (i, j − 1)Q(i, j − 1)(B1

e (i, j − 1))T

+ πeB
2
e (i− 1, j)Q(i− 1, j)(B2

e (i− 1, j))T

+ λσ1
etr{X̄e(i, j − 1)}I

+ λσ2
etr{X̄e(i− 1, j)}I}. (12)

Proof. In light of the nonlinear properties, we have

E{f(x(i, j))fT (x(i, j))1θ(i,j)=z}
≤ λE{xT (i, j)x(i, j)1θ(i,j)=z}I
≤ λtr{Xz(i, j)}I. (13)

On the basis of (1) and in view of the statistical property of
the random variables, the recursive equation for the second
moments X(i, j) can be expressed as

Xz(i, j) = E{x(i, j)xT (i, j)1θ(i,j)=z}

=

Nθ∑
e=1

pez[A
1
e(i, j − 1)Xe(i, j − 1)(A1

e(i, j − 1))T

+A2
e(i− 1, j)Xe(i− 1, j)(A2

e(i− 1, j))T

+ πeB
1
e (i, j − 1)Q(i, j − 1)(B1

e (i, j − 1))T

+ πeB
2
e (i− 1, j)Q(i− 1, j)(B2

e (i− 1, j))T

+ σ1
eE{f(x(i, j − 1))fT (x(i, j − 1))}

+ σ2
eE{f(x(i− 1, j))fT (x(i− 1, j))}

+A1
e(i, j − 1)Xe(i, j − 1; i− 1, j)(A2

e(i− 1, j))T

+A2
e(i− 1, j)Xe(i− 1, j; i, j − 1)(A1

e(i, j − 1))T ]

≤
Nθ∑
e=1

pez{(1 + µ)A1
e(i, j − 1)Xe(i, j − 1)

× (A1
e(i, j − 1))T + (1 + µ−1)A2

e(i− 1, j)

×Xe(i− 1, j)(A2
e(i− 1, j))T

+ πeB
1
e (i, j − 1)Q(i, j − 1)(B1

e (i, j − 1))T

+ πeB
2
e (i− 1, j)Q(i− 1, j)(B2

e (i− 1, j))T

+ λσ1
etr{Xe(i, j − 1)}I

+ λσ2
etr{Xe(i− 1, j)}I}. (14)
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Based on (12), (14), one yields

Xz(i, j)− X̄z(i, j) ≤
Nθ∑
e=1

pez{(1 + µ)A1
e(i, j − 1)

× (Xe(i, j − 1)− X̄e(i, j − 1))(A1
e(i, j − 1))T

+ (1 + µ−1)A2
e(i− 1, j)(Xe(i− 1, j)

− X̄e(i− 1, j))(A2
e(i− 1, j))T

+ λσ1
etr{(Xe(i, j − 1)− X̄e(i, j − 1))}I

+ λσ2
etr{(Xe(i− 1, j)− X̄e(i− 1, j))}I}. (15)

According to the initial conditions X̄z(i, 0) = Xz(i, 0),
X̄z(0, j) = Xz(0, j), one has (12) for (i, j) ∈
{(i1, j1)|i1, j1 > 0; i1 + j1 = 1}. Next, assume (i, j) ∈
{(i1, j1)|i1, j1 > 0; i1 + j1 = k}, Xz(i, j) ≤ X̄z(i, j)
is true. By the mathematical induction method, we ob-
tain Xz(i, j) ≤ X̄z(i, j) for (i, j) ∈ {(i1, j1)|i1, j1 >
0; i1 + j1 = k + 1}. This completes the proof of Lemma
1.

Lemma 2 Consider (10) and (11), the recursive form for the
local error covariance matrices P lzp (i, j) and P lzu (i, j) are
respectively given as below

P lzp (i, j) =

Nθ∑
e=1

pez{A1
e(i, j − 1)P leu (i, j − 1)

× (A1
e(i, j − 1))T +A1

e(i, j − 1)

× P leu (i, j − 1; i− 1, j)(A2
e(i− 1, j))T

+A2
e(i− 1, j)P leu (i− 1, j; i, j − 1)

× (A1
e(i, j − 1))T

+A2
e(i− 1, j)P leu (i− 1, j)(A2

e(i− 1, j))T

+ πeB
1
e (i, j − 1)Q(i, j − 1)(B1

e (i, j − 1))T

+ πeB
2
e (i− 1, j)Q(i− 1, j)(B2

e (i− 1, j))T

+ λσ1
eE{f(x(i, j − 1))fT (x(i, j − 1))}

+ λσ2
eE{f(x(i− 1, j))fT (x(i− 1, j))}}, (16)

P lzu (i, j) = E{x̃lu(i, j)(x̃lu(i, j))T 1θ(i,j)=z}
= E{[I −Kl

z(i, j)Hςl(i,j)C
l
z(i, j)]P

lz
p (i, j)

× [I −Kl
z(i, j)Hςl(i,j)C

l
z(i, j)]

T }
+ E{Kl

z(i, j)Hςl(i,j)[β
l
z(i, j)h

l(x(i, j))

× (hl(x(i, j))T )(βlz(i, j))
T +Rl(i, j)]

× (Kl
z(i, j)Hςl(i,j))

T }. (17)

Proof. Based on (10), (11), and by the definition of
f(x(i, j)), hl(x(i, j)) under Assumption 1, this lemma can
be obtained straightly. Thus, the proof is omitted for sim-
plicity.

Remark 1 Lemmas 1 and 2 provide the recursive equation-
s for the prediction and filter error variances. It is evident
that, due to the presence of nonlinear terms in the covariance
matrix of the state estimation errors, direct calculation of the
filter gains are not feasible. Therefore, our subsequent step
is to seek for an upper bound of the covariance matrix of the
state estimation error.

Theorem 1 Assume that there exist two sets of positive def-
inite matrix sequences Y lzp (i, j), Y lzu (i, j) satisfying the fol-
lowing recursive equations

Y lzp (i, j) =

Nθ∑
e=1

pez[(1 + µ)A1
e(i, j − 1)Y leu (i, j − 1)

× (A1
e(i, j − 1))T + (1 + µ−1)A2

e(i− 1, j)

× Y leu (i, j − 1)(A2
e(i− 1, j))T

+ πeB
1
e (i, j − 1)Q(i, j − 1)(B1

e (i, j − 1))T

+ πeB
2
e (i− 1, j)Q(i− 1, j)(B2

e (i− 1, j))T

+ λ(σ1
etr{X̄e(i, j − 1)}

+ σ2
etr{X̄e(i− 1, j)})I], (18)

Y lzu (i, j) = (I −Kl
z(i, j)Φ̄lC

l
z(i, j))Y

lz
p (i, j)

× (I −Kl
z(i, j)Φ̄lC

l
z(i, j))

T

+Kl
z(i, j)[Φ̂

◦
l R̄(i, j) + Φ̃◦l (C

l
z(i, j))

× Y lzp (i, j)(Clz(i, j))
T ) + κI]

× (Kl
z(i, j))

T , (19)

for i, j ∈ [1, N ], where λ and k are the given positive scalars
and the initial conditions obey

Y lzu (i, 0) = P lzu (i, 0), Y lzu (0, j) = P lzu (0, j), i, j ∈ [1, N ],

then the covariance matrices of prediction and filter errors
are with the following upper bounds

P lzp (i, j) ≤ Y lzp (i, j), P lzu (i, j) ≤ Y lzu (i, j). (20)

Proof. According to (19), we obtain

E{f(x(i, j))fT (x(i, j))1θ(i,j)=z}
≤ λtr{X̄z(i, j)}Inx . (21)

Similarly, one yields

E{hl(x(i, j))(hl(x(i, j)))T 1θ(i,j)=z}
≤ τltr{X̄z{i, j}}Iny . (22)

Substituting (21) into (16), we have

P lzp (i, j) ≤
Nθ∑
e=1

pez{(1 + µ)A1
e(i, j − 1)

× P leu (i, j − 1)(A1
e(i, j − 1))T

+ (1 + µ−1)A2
e(i− 1, j)P leu (i− 1, j)

× (A2
e(i− 1, j))T

+ πeB
1
e (i, j − 1)Q(i, j − 1)(B1

e (i, j − 1))T

+ πeB
2
e (i− 1, j)Q(i− 1, j)(B2

e (i− 1, j))T

+ λ(σ1
etr{X̄e(i, j − 1)}

+ σ2
etr{X̄e(i− 1, j)})I}. (23)

According to (22), we have

E{Hςl(i,j)[β
l
θ(i,j)h

l(x(i, j))(hl(x(i, j)))T

× (βlθ(i,j))
T +Rl(i, j)](Hςl(i,j))

T 1θ(i,j)=z}

≤ Φ̂l ◦ [γlzτltr{X̄z(i, j)}I +Rl(i, j)]. (24)
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And in light of (6), (17) and (24), one yields

P lzu (i, j) ≤ P lzp (i, j)−Kl
z(i, j)Φ̄lC

l
z(i, j)P

lz
p (i, j)

− P lzp (i, j)(Clz(i, j))
T Φ̄Tl (Kl

z(i, j))
T

+Kl
z(i, j)[Φ̂l ◦ Clz(i, j)P lzp (i, j)(Clz(i, j))

T

+ R̄(i, j)](Kl
z(i, j))

T

= (I −Kl
z(i, j)Φ̄lC

l
z(i, j))P

lz
p (i, j)

× (I −Kl
z(i, j)Φ̄lC

l
z(i, j))

T

+Kl
z(i, j)[Φ̂l ◦ R̄l(i, j) + Φ̃l

◦ (Clz(i, j)P
lz
p (i, j)(Clz(i, j))

T )]

× (Kl
z(i, j))

T , (25)

where

R̄l(i, j) = γlzτltr{X̄z(i, j)}I +Rl(i, j).

Remark 2 Theorem 1 supplies the upper bounds of the es-
timation error variances. The next step is to design the filter
gains by minimizing the trace of the upper bound matrix for
the estimation error variances.

Theorem 2 Consider the local estimator defined in (8) and
(9), the estimator gain Kl

z(i, j) that minimizes the trace of
the upper bound for the estimation error variance Y lzu (i, j)
is given by

Kl
z(i, j) = Y lzp (i, j)(Clz(i, j))

T Φ̄Tl (R̂l(i, j))−1. (26)

Proof. In view of (6) and (19), the upper bound of the esti-
mation error variance can be expressed as

Y lzu (i, j) = Y lzp (i, j)−Kl
z(i, j)Φ̄lC

l
z(i, j)Y

lz
p (i, j)

− Y lzp (i, j)(Clz(i, j))
T Φ̄Tl (Kl

z(i, j))
T

+Kl
z(i, j)[Φ̄lC

l
z(i, j)Y

lz
p (i, j)(Clz(i, j))

T Φ̄Tl

+ Φ̂l ◦ R̄l(i, j) + Φ̃◦Clz(i, j)Y lzp (i, j)(Clz(i, j))
T

+ κI](Kl
z(i, j))

T

= Y lzp (i, j) + [Kl
z(i, j)− K̄l

z(i, j)]

× R̂l(i, j)[Kl
z(i, j)− K̄l

z(i, j)]
T

− K̄l
z(i, j)R̂

l(i, j)(K̄l
z(i, j))

T . (27)

By minimizing the upper bound of the local estimation error
covariance, the filter gain Kl

z(i, j) is to be determined based
on the complete square method, where

R̂l(i, j) = Φ̂l ◦ (R̄l + Clz(i, j)Y
lz
p (i, j)(Clz(i, j))

T ) + κI,

Kl
z(i, j) = Y lzp (i, j)(Clz(i, j))

T Φ̄Tl (R̂l(i, j))−1.

If selectKl
z(i, j) = K̄l

z(i, j), Y lzu (i, j) would be minimized.
So the local minimum upper bound for the estimation error
variance is obtained,

Y lzu (i, j) = Y lzp (i, j)−Kl
z(i, j)Φ̄lC

l
z(i, j)Y

lz
p (i, j). (28)

This completes the proof of Theorem 2.
On the basis of the local state estimators, a distributed s-

tate fusion estimator based on the CI fusion algorithm will
be presented in the following result.

Theorem 3 Consider the 2-D systems (1) and (2), a dis-
tributed CI fusion estimator is given by

x̂CIu (i, j) =
m∑
l=1

ωlz(i, j)Y
CIz
u (i, j)

× [Y lzu (i, j)]−1x̂lu(i, j), (29)

Y CIzu (i, j) = [
m∑
l=1

ωlz(i, j)[Y
lz
u (i, j)]−1]−1, (30)

where Y CIzu (i, j) is the upper bound for the variance of the
distributed state fusion estimator, ωlz(i, j) is the weight co-
efficients satisfying 0 ≤ ωlz(i, j) ≤ 1, ω1

z(i, j) + ω2
z(i, j) +

· · ·+ ωmz (i, j) = 1, which can be calculated as follows

ωlz(i, j) =
tr[Y lzu (i, j)

−1
]∑m

l=1 tr[Y
lz
u (i, j)

−1
]
. (31)

Proof. In view of (9), Theorem 2 and the CI fusion esti-
mation algorithm, the CI fusion estimator can be obtained
straightforwardly, and therefore is omitted here.

Remark 3 In Theorem 3, a distributed CI based estimation
algorithm is developed, which avoids computing the error
covariance matrix of local estimators and effectively reduces
the computational complexity.

4 NUMERICAL EXAMPLE

In this section, we present a simple example of a 2-D
jumping parameter system to illustrate the feasibility of the
design scheme. Consider a 2-D system with two observation
channels, as described in (1), (2) and (5). The system param-
eters are provided as below.
If θ(i, j) = 1,

A1
1(i, j) =

[
0.4 0.05
0 0.4

]
, A2

1(i, j) =

[
0.35 0.2
0.1 0.45

]
,

B1
1(i, j) =

[
0.3 0.2

]T
, B2

1(i, j) =
[

0.3 0.25
]T
,

C1
1 (i, j) =

[
0.3 0.5
0.6 0.8

]
, C2

1 (i, j) =

[
0.32 0.5
0.55 0.8

]
,

If θ(i, j) = 2,

A1
2(i, j) =

[
0.4 0.04
0 0.4

]
, A2

2(i, j) =

[
0.35 0.1

0 0.45

]
,

B1
2(i, j) =

[
0.3 0.35

]T
, B2

2(i, j) =
[

0.3 0.24
]T
,

C1
2 (i, j) =

[
0.3 0.6
0.5 0.8

]
, C2

2 (i, j) =

[
0.32 0.4
0.5 0.8

]
.

The transition probabilities between different modes satisfy

P =

[
0.5 0.5
0.6 0.4

]
,

where µ = 0.9, λ = 0.9, κ = 0.01, τl = 0.3, N = 50
and l = 2. w(i, j), vl(i, j) are mutually independent zero-
mean Gaussian white noises with variances of Q = 0.16,
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Fig. 1: The first component of the Root Mean Square Error of CI Fusion Estimation.
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Fig. 2: The second component of the Root Mean Square Error of CI Fusion Esti-
mation.

R1(i, j) = 0.09I and R2(i, j) = 0.09I , respectively. The
random variables αlθ(i,j) and βlθ(i,j) are zero-mean Gaussian
white noises with variances of σlθ(i,j) = 0.04 and γlθ(i,j) =

0.125. θ(i, j) is a Markov chain taking in a finite set {1, 2},
and the initial distribution of θ(i, j) is (0.5, 0.5). The prob-
ability distribution of the random variables depicting the
communication protocol are prob(ζl(i, j) = 1) = 0.5 and
prob(ζ2(i, j) = 1) = 0.5. Here, the nonlinear functions sat-
isfy f(x(i, j)) = 0.3|x(i, j)| and hl(x(i, j)) = 0.3|x(i, j)|.
The initial conditions are x(0, j) = x(i, 0) = 0, P (0, j) =
P (i, 0) = I .

The simulation results are shown in Figures 1-3. Figure
1 displays the first component of the root mean square error
of the CI Fusion Estimation and Figure 2 shows the second
component of the root mean square error of the CI Fusion
Estimation. Figure 3 shows the trace of the covariance for
the CI fusion estimate error. It can be seen that the CI fusion
estimator can estimate the state of the system effectively.

5 CONCLUSION

In this paper, a recursive distributed filter has been de-
signed for a 2-D Markov jump parameter system with com-
munication protocols and nonlinearity. The system utilizes
a set of mutually uncorrelated random sequences to charac-
terize the random communication protocols. Through the
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Fig. 3: Trace of the covariance matrix of the CI fusion estimation error
Y CIzu (i, j).

mathematical induction method and the stochastic analysis
approach, the upper bounds on the local estimation error
variances have been established. The filter gains were de-
signed by minimizing the upper bounds on the estimation
error variances obtained at each moment. Finally, a CI fu-
sion algorithm has been applied to address the optimal state
fusion estimation problem, demonstrating its high precision
and reliability.
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Abstract: In this paper, an output tracking control scheme based on the reduced-order observer is proposed for fully actuated
systems. First, to make more use of the output information, a reduced-order observer is designed, and a linear matrix inequality
condition is given to solve the observer gain. The estimated values of the observer can converge to the true values exponentially.
Second, taking advantage of the full-actuation property, an output tracking controller based on the above observer is designed
such that the system output tracks a given signal, and the condition for exponential convergence of the tracking error is also
given. An example is provided to show the effectiveness of the proposed approach.

Key Words: Reduced-Order Observer, Fully Actuated System, Linear Matrix Inequality, Full-Actuation Property, Output Track-
ing Controller

1 Introduction

Actual physical systems are often nonlinear, which makes
the controllers design enormously difficult and the form of
controllers complex. For this reason, Duan proposed the
full-actuated system (FAS) approach to deal with the con-
troller design problem for nonlinear systems [1–3]. By
means of ascending the system order, the original system
is transformed into a higher-order system, whose number
of states is equal to the number of control inputs and the
control input matrix is invertible. Then we can utilize the
full-actuation property to eliminate the nonlinearity of the
system and obtain a high-order linear closed-loop system.
Duan also illustrates that many systems can be converted to
FASs [4, 5], meaning that FASs are widespread. Due to the
great advantages of the FAS approach in controller design,
the method has also been extended to complex nonlinear sys-
tems such as discrete-time systems [6], time-delay systems
[7], and nonholonomic systems [8], as well as to engineering
applications [9–11].

However, the above results are based on state-feedback
control, which is the only way to eliminate the nonlinearity
in the system. In actual engineering systems, the states are
not always measurable, in which case we need use observers
to estimate the states and use estimations to design the con-
troller. For example, Zhao designed an exponentially conver-
gent observer using the linear parameter varying (LPV) ap-
proach and an observer-based state stabilization controller to
make the closed-loop system exponentially stable [12]. Jiang
devised a generalized proportional-integral (PI) observer and
applied it to the output tracking problem [13]. In addition,
the extended state observer (ESO) has been introduced for
FASs with disturbances, and satisfactory results have been
obtained [14–16].

For the observer design of FASs, all of them currently ob-
serve the full state of the system, which does not make max-
imal use of the output information. In order to further utilize
the output information and reduce the dimension of the ob-

This work is supported by Science Center Program of the National Nat-
ural Science Foundation of China under Grant 62188101.

server, one generally designs a reduced-order observer. For
instance, Zhu provided a design method for reduced-order
observer of nonlinear systems using Riccati equation, and
proved that the existence of the full- and reduced-order ob-
servers are equivalent [17]. Trin derived the reduced-order
observer gain for the nonlinear systems based on the LMI
method [18]. Furthermore, the reduced-order observer is
also extended to discrete-time systems [19] and many en-
gineering systems [20–22]. It can be seen that in the frame-
work of state-space model, the reduced-order observer has
been well applied for nonlinear systems.

In this paper, a reduced-order observer-based output track-
ing controller is designed for FASs. The contribution in-
cludes two parts. First, a reduced-order observer is de-
signed for FASs, which makes full use of the output infor-
mation and reduces the dimensionality of the observer com-
pared to existing work of FASs. Second, on the basis of
the full-actuation property, a reduced-order observer-based
controller is proposed to make output tracking a reference
signal. Also, we show that for the tracking error to be expo-
nentially convergent, the nonlinear function needs to satisfy
an additional condition.

In the subsequent sections, Ir denotes the r-order identity
matrix. 0n×m and 0n both denote the zero matrix. λmax(A)
and λmin(A) denote the maximum and minimum eigenval-
ues of A. In order to keep consistent with the FAS series
papers, we continue to use the following symbols

x(0∼n−1) =


x
ẋ
...

x(n−1)

 , Br =


0
...
0
Ir

 ,

A0∼n−1 =
[
A0 A1 · · · An−1

]
,

Φ(A0∼n−1) =


0 Ir · · · 0

0 0
. . .

...
...

... · · · Ir
A0 A1 · · · An−1

 .
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This paper contains 5 sections. In the next section, we de-
sign a reduced-order observer for FASs, and give the LMI
condition for exponential convergence of the observation er-
ror. Then, we apply the observer to the output tracking in
Section 3. Section 4 is a numerical example for the effect of
our approach. The last section is a brief conclusion.

2 Observer Design

In this paper, we consider the following general FAS{
x(n) = f(x(0∼n−1)) +B(y)u

y = Cx(0∼n−1),
(1)

where u ∈ Rr and y ∈ Rm are the input and output vec-
tors, respectively, x ∈ Rr is the state vector, f(·) ∈ Rr

and B(y) ∈ Rr×r are vector and matrix functions, and
C ∈ Rm×nr is a constant full-row matrix.

Assumption 1. det(B(y)) ̸= 0 or ∞, for all y ∈ Rm.

Assumption 2. f(x) is α1-Lipschitz for all x ∈ Rnr, that
is, ∥f(x1)− f(x2)∥ ≤ α1∥x1 − x2∥.

The system (1) can be rewritten as

ẋ(0∼n−1) =Φ(00∼n−1)x
(0∼n−1)

+Brf(x
(0∼n−1)) +BrB(y)u. (2)

For the observer design, it is natural to have the observability
assumption.

Assumption 3. The matrix pair (Φ(00∼n−1), C) is observ-
able.

Since C is full-row, then there exists a matrix M ∈
R(nr−m)×nr, such that T =

[
C
M

]
is non-singular. Denote

Q = T−1 =
[
Q1 Q2

]
,

where Q1 ∈ Rnr×m and Q2 ∈ Rnr×(nr−m), then

CQ1 = Im, CQ2 = 0, MQ1 = 0, MQ2 = In−m.

Define
z = Tx(0∼n−1),

then, the derivative of z is

ż =T ẋ(0∼n−1)

=TΦ(00∼n−1)x
(0∼n−1) + TBrf(x

(0∼n−1))

+ TBrB(y)u

=TΦ(00∼n−1)T
−1z + TBrf(x

(0∼n−1))

+ TBrB(y)u

=

[
CΦ(00∼n−1)Q1 CΦ(00∼n−1)Q2

MΦ(00∼n−1)Q1 MΦ(00∼n−1)Q2

]
z

+

[
C
M

]
Brf(x

(0∼n−1)) +

[
C
M

]
BrB(y)u. (3)

Block z as

z =

[
z1
z2

]
,

where z1 ∈ Rm and z2 ∈ Rnr−m. Then, we have
ż1 =CΦ(00∼n−1)Q1z1 + CΦ(00∼n−1)Q2z2

+ CBrf(x
(0∼n−1)) + CBrB(y)u

ż2 =MΦ(00∼n−1)Q1z1 +MΦ(00∼n−1)Q2z2

+MBrf(x
(0∼n−1)) +MBrB(y)u,

(4)

and

y = CT−1z

= C
[
Q1 Q2

]
z

=
[
Im 0m×(nr−m)

] [z1
z2

]
= z1. (5)

Thus, we we can only estimate z2 by the following reduced-
order observer

˙̂z2 =MΦ(00∼n−1)Q1z1 +MΦ(00∼n−1)Q2ẑ2

+MBrf(x̂
(0∼n−1)) +MBrB(y)u

− L[ż1 − CΦ(00∼n−1)Q1z1 − CΦ(00∼n−1)Q2ẑ2

− CBrf(x̂
(0∼n−1))− CBrB(y)u], (6)

where L ∈ R(nr−m)×m is the gain matrix, and x̂(0∼n−1) is
the estimation of x(0∼n−1). We can define the estimations
of z and x(0∼n−1) as

ẑ =

[
z1
ẑ2

]
, (7)

and

x̂(0∼n−1) = T−1ẑ =
[
Q1 Q2

] [z1
ẑ2

]
= Q1y+Q2ẑ2. (8)

Since the derivative of z1 contains the unavailable state z2,
we define the following auxiliary vector

w = ẑ2 + Ly, (9)

then, combining with (6), we have

ẇ = ˙̂z2 + Lẏ

=(M + LC)[Φ(00∼n−1)Q1y +Φ(00∼n−1)Q2ẑ2

+Brf(Q1y +Q2ẑ2) +BrB(y)u]. (10)

Therefore, the observer (6) is rewritten as
ẇ = (M + LC)[Φ(00∼n−1)Q1y +Φ(00∼n−1)Q2ẑ2

+Brf(Q1y +Q2ẑ2) +BrB(y)u]

ẑ2 = w − Ly,
(11)

Define the estimation error as

ez = z2 − ẑ2, (12)

then
x(0∼n−1) − x̂(0∼n−1) = Q2ez.

Taking the derivative of (12), we have the following state-
space model

ėz = [MΦ(00∼n−1)Q2 + LCΦ(00∼n−1)Q2]ez

+ (M + LC)Br∆f(·), (13)
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with
∆f(·) = f(x(0∼n−1))− f(x̂(0∼n−1)). (14)

Now, we have the following theorem.

Theorem 1. If there exist a symmetric positive definite ma-
trix P , a constant matrix R with appropriate dimensions,
and a positive real number µ, such that[

H1 + εα∥Q2∥2I + µP H2

HT
2 −εI

]
< 0, (15)

where ε is an any given positive real number, and
H1 =PMΦ(00∼n−1)Q2 +QT

2 Φ
T(00∼n−1)M

TP

+RCΦ(00∼n−1)Q2 +QT
2 Φ

T(00∼n−1)C
TRT

H2 =PMBr +RCBr.
(16)

The estimation error of observer (11) is exponential conver-
gent, and the observer gain is

L = P−1R. (17)

Proof. Choose the following Lyapunov function

V (t) = eTz Pez. (18)

Taking the derivative of (18), and combining with (16) and
(17), give

V̇ = eTz P ėz + ėTz Pez

= eTz H1ez + eTz H2∆f(·) + ∆fT(·)HT
2 ez

=

[
ez

∆f(·)

]T [
H1 H2

HT
2 0

] [
ez

∆f(·)

]
. (19)

In view of (15), we have

V̇ <

[
ez

∆f(·)

]T [
−εα∥Q2∥2I − µP 0

0 εI

] [
ez

∆f(·)

]
= −εα∥Q2∥2∥ez∥2 − µeTz Pez + ε∥∆f(·)∥2

< −εα∥Q2∥2∥ez∥2 − µeTz Pez + εα∥Q2ez∥2

< −µV.

It is obvious that

V (t) ≤ V (0)e−µt. (20)

According to the definition of the Lyapunov function, we
obtain

∥ez(t)∥2 ≤ λ−1
min(P )V (t) ≤ λ−1

min(P )V (0)e−µt

≤ λmax(P )

λmin(P )
∥ez(0)∥2e−µt

= c1∥ez(0)∥2e−µt, (21)

where

c1 =
λmax(P )

λmin(P )
.

Furthermore, on the basis of (13), we know

∥ėz∥ ≤∥MΦ(00∼n−1)Q2 + LCΦ(00∼n−1)Q2∥∥ez∥
+ α1∥(M + LC)Br∥∥ez∥

≤ c2∥ez(0)∥2e−µt, (22)

where

c2 = c1∥MΦ(00∼n−1)Q2 + LCΦ(00∼n−1)Q2∥∥ez∥
+ c1α1∥(M + LC)Br∥.

3 Output Tracking

In control theory, the main target of a control system is
to achieve state stabilization. Furthermore, output tracking
is also a fundamental control objective. In this section, we
will present the output tracking controller design based on
the reduced-order observer (11). First, let us introduce the
following assumption.

Assumption 4. f(x) ∈ Rm is a differentiable Lipschitz
function satisfying ∥f(x)−f(y)∥ ≤ α1∥x−y∥ and ∥ḟ(x)−
ḟ(y)∥ ≤ α2∥x− y∥.

Compared to the Lipschitz condition, the above assump-
tions seem more strict, but most Lipschitz functions also
meet the above condition, such as the trigonometric func-
tion. For output tracking, similar to state-feedback [23], on
the basis of the full-actuation property, utilizing the estima-
tion of nonlinear function to counteract nonlinearity in the
system, the following controller is designed

u = B−1(y)[−f(x̂(0∼n−1)) + v]. (23)

Define

q(t) =

∫ t

0

[y(τ)− yr] dτ. (24)

Using the controller (23), and combining with (4) and (6),
give
ż1 =CΦ(00∼n−1)Q1z1 + CΦ(00∼n−1)Q2ẑ2

+ CBrv + CΦ(00∼n−1)Q2ez + CBr∆f(·)
˙̂z2 =MΦ(00∼n−1)Q1z1 +MΦ(00∼n−1)Q2ẑ2

+MBrv − L1[CΦ(00∼n−1)Q2ez + CBr∆f(·)].
(25)

From (8), the derivative of x̂(0∼n−1) is

˙̂x(0∼n−1)

=Q1ż1 +Q2
˙̂z2

=
[
Q1 Q2

] [CΦ(00∼n−1)Q1 CΦ(00∼n−1)Q2

MΦ(00∼n−1)Q1 MΦ(00∼n−1)Q2

]
×[

C
M

]
x̂(0∼n−1) +

[
Q1 Q2

] [C
M

]
Brv

+ (Q1 −Q2L1)(CΦ(00∼n−1)Q2ez + CBr∆f(·))
=Φ(00∼n−1)x̂

(0∼n−1) +Brv +Ψ1ez +Ψ2∆f(·), (26)

and the output can be rewritten as

y = Cx̂(0∼n−1) + CQ2ez, (27)

with {
Ψ1 = (Q1 −Q2L1)CΦ(00∼n−1)Q2

Ψ2 = (Q1 −Q2L1)CBr.
(28)
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The extended system is[
˙̂x(0∼n−1)

q̇

]
=

[
Φ(00∼n−1) 0

C 0m

] [
x̂(0∼n−1)

q

]
[
Br

0

]
v +

[
Ψ1ez +Ψ2∆f(·)

CQ2ez − yr

]
. (29)

Let

A =

[
Φ(00∼n−1) Br

C 0

]
, (30)

and

Ao =

[
Φ(00∼n−1) 0

C 0m

]
, Bo =

[
Br

0

]
. (31)

It is obvious that (Ao, Bo) is controllable if and only if
rank(A) = n + m. The proof is similar to Lemma 3.1 in
[23].

At this point, we can give the following theorem to illus-
trate the asymptotic convergence of tracking error.

Theorem 2. For the extended system (29) under Assumption
4, if rank(A) = n+m, we can find a control variable

v = A0∼n−1x̂
(0∼n−1) +Kq, (32)

such that Ac is Hurwitz, where

Ac =

[
Φ(A0∼n−1) BrK

C 0m

]
, (33)

then the following equation holds

lim
t→∞

q̇ = lim
t→∞

y(t)− yr = 0. (34)

Proof. Since rank(A) = n + m, it follows that (Ao, Bo)
is controllable. Then we can find a set of matrices A0∼n−1

such that Ac is Hurwitz. There exist a positive real number
µ and a symmetric positive definite matrix P such that

PAc +AT
c P ≤ −µP.

The closed-loop system is[
˙̂x(0∼n−1)

q̇

]
= Ac

[
x̂(0∼n−1)

q

]
+

[
Ψ1ez +Ψ2∆f(·)

CQ2ez − yr

]
.

Taking the derivative of the above equation, gives[
¨̂x(0∼n−1)

q̈

]
= Ac

[
˙̂x(0∼n−1)

q̇

]
+

[
Ψ1ėz +Ψ2∆ḟ(·)

CQ2ėz

]
.

(35)
Define

X =

[
˙̂x(0∼n−1)

q̇

]
,

and choose the Lyapunov function as

V = XTPX.

Block P as
P =

[
P1 P2

]
,

where P1 ∈ R(n+m)×n and P2 ∈ R(n+m)×m. The deriva-
tive of Lyapunov function is

V̇ =XT(PAc +AT
c P )X

+ 2XT
[
P1 P2

] [Ψ1ėz +Ψ2∆ḟ(·)
CQ2ėz

]
≤− µV + 2XTP1(Ψ1ėz +Ψ2∆ḟ(·))
+ 2XTP2CQ2ėz

≤− µV + 2α2∥X∥∥P1Ψ2∥∥ez∥
+ 2∥X∥ (∥P2CQ2∥+ ∥P1Ψ1∥) ∥ėz∥

≤ − µV + α2∥P1Ψ2∥
(
ε1∥X∥2 + 1

ε1
∥ez∥2

)
+ (∥P2CQ2∥+ ∥P1Ψ1∥)

(
ε2∥X∥2 + 1

ε2
∥ėz∥2

)
≤− µV + ε1α2∥P1Ψ2∥λ−1

min(P )XTPX

+ ε2 (∥P2CQ2∥+ ∥P1Ψ1∥)λ−1
min(P )XTPX

+
c1
ε2

(∥P2CQ2∥+ ∥P1Ψ1∥) ∥ez(0)∥2e−µt

+
c1α2

ε1
∥P1Ψ2∥∥ez(0)∥2e−µt

=− σV + β∥ez(0)∥2e−µt,

with
σ =µ− ε1α2∥P1Ψ2∥λ−1

min(P )

− ε2 (∥P2CQ2∥+ ∥P1Ψ1∥)λ−1
min(P )

β =
c1α2

ε1
∥P1Ψ2∥+

c1
ε2

(∥P2CQ2∥+ ∥P1Ψ1∥) .

Since ε1, ε2 can be arbitrarily small, we can find two real
positive numbers such that σ > 0. Based on the Comparison
Theorem, we have

V (t) ≤
(
V (0)− β∥ez(0)∥2

σ − µ

)
e−σt +

β∥ez(0)∥2

σ − µ
e−µt.

V (t) converges to zero, then X also converges to zero. That
is, (34) holds.

Remark 1. In this section, the output tracks a constant sig-
nal, but our method can also be used to track a time-varying
signal, such as the signal generated by a linear system, for
which the readers can combine our approach with the litera-
ture [23].

4 Example

In this section, a numerical simulation is given respec-
tively to verify the validity of the proposed method. The
system is described as

ẋ1 = x2

ẋ2 + x2 = x3

ẋ3 + x2 − x3 + sinx2 = u

y = x1.

From the first two equation of above equation, we have

x2 = ẋ1, ẋ2 = ẍ1, x3 = ẋ1 + ẍ1.
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Taking the third-order derivative of x1, yields

x
(3)
1 = ẍ2 = −ẋ2 + ẋ3

= −ẋ2 − x2 + x3 − sinx2 + u

= −ẍ1 − ẋ1 + ẋ1 + ẍ1 − sin ẋ1 + u

= − sin ẋ1 + u.

Reviewing the design process of the reduced-order ob-
server, we can obtain

M =

[
0 1 0
0 0 1

]
, Q1 =

10
0

 , Q2 =

0 0
1 0
0 1

 ,

and define

z1 = x1, z2 =
[
ẋ1 ẍ1

]T
, f(z1, ẑ2) = sin z21.

Solving the LMI (15), gives

L =

[
−3.5
−3.5

]
.

The simulation result is shown in Fig. 1 with initial values
and input signal being{

x1(0) = −1, x2(0) = −1, x3 = 1, w = [0 0]T

u = 0.1 sin 10t.
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Figure 1: Simulation results of observer

According to Theorem 2, the control matrices are chosen
as

A0∼2 =
[
−18.8 −18.3 −6.8

]
, K = −8.5,

and the tracking result is shown in Fig. 2. It can be seen that
the system output can track the reference signal eventually,
which is consistent with Theorem 2.
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Figure 2: Simulation results of output tracking

5 Conclusion

This paper designs a reduced-order observer and an out-
put tracking controller based on the proposed observer. It
can be seen that for the tracking error to converge to zero
exponentially, we need to give not only the design condition
for the controller, but also additional constraint that need to
be satisfied by the nonlinearity. Therefore, the exponential
convergence of the observation error also does not guarantee
that the tracking error exponentially converge to zero.

References
[1] G. R. Duan, High-order fully actuated system approaches: Part

I. Models and basic procedure, International Journal of Sys-
tems Science, 52(2): 422–435, 2021.

[2] G. R. Duan, High-order fully actuated system approaches: Part
II. Generalized strict-feedback systems, International Journal
of Systems Science, 52(3): 437–454, 2021.

[3] G. R. Duan, High-order fully actuated system approaches: Part
III. Robust control and high-order backstepping, International
Journal of Systems Science, 52(5): 952–971, 2021.

[4] G. R. Duan, High-order System Approaches: I. Fully-actuated
Systems and Parametric Designs, ACTA Automatica Sinica (in
Chinese), 46(7): 1333-1345, 2020.

[5] G. R. Duan, High-order System Approaches: II. Controllabil-
ity and Full-actuation, ACTA Automatica Sinica (in Chinese),
46(8): 1571-1581, 2020.

[6] G. R. Duan, High-order fully actuated system approaches: Part
X. Basics of discrete-time systems, International Journal of
Systems Science, 53(4): 810–832, 2022.

[7] L. L. Zhang, P. Wang, and C. C. Hua, Adaptive control of time-
delay nonlinear HOFA systems with unmodeled dynamics and
unknown dead-zone input, International Journal of Robust and
Nonlinear Control, 33(4): 2615–2628, 2023.

[8] G. R. Duan, Brockett’s first example: An fas approach treat-
ment, Journal of Systems Science & Complexity, 35(2): 441–
456, 2022.

[9] G. T. Tian, B. Li, Q. Zhao, and G. R. Duan, High-precision
trajectory tracking control for free-flying space manipulator
subject to multiple constraints and system uncertainty, IEEE
Transaction on Aerospace and Electronic System, 2023, early
access.

[10] G. P. Liu, Attitude and orbit optimal control of combined
spacecraft via a fully-actuated system approach, IEEE/CAA
Journal of Automatica Sinica, 9(4): 615–623, 2022.

[11] G. Q. Liu, K. Zhang, and B. Li, Fully-actuated system ap-
proach based optimal attitude tracking control of rigid space-
craft with actuator saturation, Journal of Systems Science &
Complexity, 35(2): 688–702, 2022.

[12] T. Y. Zhao, Parametric design of observer-based control sys-

76  



tem and its application, Ph.D. dissertation, Harbin Institute of
Technology, Harbin, China, 2022.

[13] H. Jiang and G. R. Duan, Output tracking based on general-
ized proportional-integral observer for fully actuated systems,
in Proceedings of 2nd Conference on Fully Actuated System
Theory and Applications, 2023: 117–121.

[14] S. W. Chen, W. Wang, J. F. Fan, and Y. Ji, Impact angle
constraint guidance law using fully-actuated system approach,
Aerospace Science and Technology, 136, 2023, early access.

[15] X. Q. Liu, M. Y. Chen, L. Sheng, and D. H. Zhou, Adaptive
fault-tolerant control for nonlinear high-order fully-actuated
systems, Neurocomputing, 495: 75–85, 2022.

[16] Z. Y. Feng, M. Liu, and X. B. Cao, A fully-actuated system
approach for spacecraft attitude control with input saturation,
in Proceedings of 2nd Conference on Fully Actuated System
Theory and Applications, 2023: 705–710.

[17] F. L. Zhu and Z. Z. Han, A note on observers for Lipschitz
nonlinear systems, IEEE Transactions on Automatic Control,
47(10): 1751–1754, 2002.

[18] H. Trinh, T. Fernando, and S. Nahavandi, Partial-state ob-
servers for nonlinear systems, IEEE Transactions on Automatic
Control, 51(11): 1808–1812, 2006.

[19] M. Benallouch, M. Boutayeb, and M. Zasadzinski, Observer
design for one-sided Lipschitz discrete-time systems, Systems
& Control Lettere, 61(9): 879–886, 2012.

[20] M. Homayounzade and M. Keshmiri, A note on a reduced-
order observer based controller for a class of Lipschitz nonlin-
ear systems, Journal of Dynamic Systems, Measurement, and
Control, 135(1): 014 505:1–014 505:4, 2012.

[21] Z. X. Liu, Y. B. Li, F. Y. Wang, and Z. Q. Chen, Reduced-
order observer-based leader-following formation control for
discrete-time linear multi-agent systems, IEEE/CAA Journal of
Automatica Sinica, 8(10): 1715–1723, 2021.

[22] A. Cristofaro and A. De Luca, Reduced-order observer design
for robot manipulators, IEEE Control & Systems Letters, 7:
520–525, 2023.

[23] G. R. Duan, High-order fully-actuated system approaches:
Part IX. Generalised PID control and model reference track-
ing, International Journal of Systems Science, 53(3): 652–674,
2022.

77  



Enhancing Frequency Emergency Control with Battery Energy Storage 

Systems in Low-Inertia Power Grid 

Yuxin Weng1, Guangchao Geng1, Quanyuan Jiang1, Heng Wang2 

1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027 
E-mail: 22210016@zju.edu.cn 

 

2. State Grid Xinjiang Electric Power Co., Ltd., Urumqi 830002 

 
Abstract: The high penetration of renewable energy into the power grid results in a reduction of system inertia. Consequently, in the event of 

faults like DC blocking fault, low-inertia systems exhibit severe frequency fluctuations, thereby triggering the activation of stability control 

devices and resulting in substantial economic losses. Frequency emergency control is of great significance for ensuring the safe and stable 

operation after large disturbances. This paper combines energy storage control with frequency emergency control. Specifically, it integrates 

the actual output of the energy storage into the generation tripping tuning process, thereby reducing the amount of generation tripping, 

optimizing the frequency intervals and delays of generation tripping. This paper constructs an optimization model for the coordinated operation 

of energy storage systems, consisting of two stages: optimization tuning and simulation verification. The optimization tuning module includes 

a scenario selection process considering system inertia and a generator tripping tuning process, which combines the energy storage output to 

obtain an optimized generator tripping scheme. The verification module consists of an energy storage control model based on MPC-MHE 

(Model Predictive Control and Moving Horizon Estimation) and an energy storage virtual inertia control process, verifying the effectiveness 

of energy storage control under the proposed generator tripping scheme. Finally, a provincial-level power grid is taken as a case study to 
validate the effectiveness of the proposed energy storage control strategy. 

Key words: Energy storage system, Frequency emergency control, Low-inertia system and Model predictive control 

 

1 Introduction 

n response to the carbon peak and carbon neutrality goals, 
China has vigorously promoted the development of new 
energy generation in various provinces and cities in recent 

years. The northwestern region, as an important new energy 
base in China, has witnessed rapid growth in the development 
of new energy [1]. As of December 30, 2022, the proportion 
of new energy installed capacity in the northwestern power 
grid has increased to 45%, surpassing coal-fired power and 
becoming the largest power source [2]. The large-scale 
connection of new energy has reduced the system inertia, 
posing significant challenges to the frequency stability 
operation of the northwestern sending-end grid. 

Frequency emergency control, as an important measure to 
maintain the stable operation of power systems, is also a 
significant component of the second and third lines of defense. 
Its primary function is to ensure the system's stable operation 
or prevent further escalation of system faults when the system 
cannot maintain stability in its original state[3], [4]. This is 
achieved by shedding a portion of the load or units. Energy 
Storage System (ESS), with its fast response and effective 
regulation, has emerged as a key research focus for its 
involvement in frequency emergency control[5]. Many 
experts and scholars have devoted their attention to studying 
the ways in which energy storage can participate in frequency 
emergency control. 

There are currently two main control strategies for energy 
storage: 1) Measurement-based strategies [6], [7], including 
Proportional-Derivative (PD) control, fuzzy logic control, 
power-frequency characteristic curve control, etc. 2) Model-
based strategies [8], [9]. This paper primarily adopts a model-
based control strategy, which has the advantage of 
considering system constraints comprehensively and 
establishing more accurate models for energy storage control. 

In terms of frequency emergency control, many scholars have 
conducted research in this area. Reference [10] performed 
sensitivity analysis using a binary table to optimize high-
frequency generator tripping schemes. In [11] a scheme is 
proposed for the construction of a secure and stable defense 
system for wind-solar-bundled multi-terminal HVDC 
transmission networks, ensuring frequency stability in the 
northwest transmission network of China. Reference [12] 
suggested that shedding wind power units is beneficial for 
reducing transient frequency deviations and facilitating 
system frequency recovery. 

However, there is currently limited research on the ways 
in which energy storage can participate in frequency 
emergency control. Therefore, this paper proposes a two-
stage optimization model. Firstly, a high-frequency generator 
tripping scheme is established considering the energy storage 
output curve. By taking into account the scenario with the 
most severe inertia deficiency, the generator tripping scheme 
that minimizes system losses is determined, considering 
factors such as frequency intervals and time delays for 
generator tripping. Secondly, a model-based control strategy 
is developed using Model Predictive Control with Moving 
Horizon Estimation (MPC-MHE) for energy storage. By 
incorporating energy storage virtual inertia control, the 
optimization of energy storage output is achieved. 
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Fig.1 The overall control strategy. 
 

The main innovations of this paper are as follows: 
(1) A frequency emergency control strategy for ESS 
participation based on MPC-MHE has been constructed, 
which can enable ESS to cooperate with frequency 
emergency control strategy and accelerate frequency 
recovery speed; 
(2) A tuning method for emergency frequency control of the 
second line of defense in power systems involving energy 
storage has been proposed. This method significantly reduces 
system downtime by configuring energy storage through 
offline calculation. 

2 Energy Storage Control Model 

The energy storage control model constructed in this 
paper mainly consists of three parts: Model Predictive 
Control, Moving Horizon Estimation, and virtual inertia 
control. MHE provides the predicted grid frequency deviation 
for MPC control, while MPC control provides the energy 
storage reference output to the ESS. The actual ESS output is 
obtained by the ESS through virtual inertia control. 

2.1 MPC Model 

The basic principle of MPC is: At sampling time k, based 
on the current measurement information obtained, an open-
loop optimization problem is solved online over a finite time 
horizon. The first element of the resulting control sequence is 
then applied to the controlled object. At sampling time k+1, 
the process is repeated by refreshing the optimization 
problem with new measurements and solving it again. 

For the ESS control system, at each sampling time k, the 

MPC model utilizes the measured actual grid frequency kf  

and the grid active power imbalance kP∆  to solve for a 

control sequence containing power control signals for the 
energy storage system over the next H time steps. The first 

set of control signals, denoted as 
,

*

B k

ch
P  or 

,

*

B k

dis
P ( all symbolic 

variables defined in this article are real numbers), is then 
applied to the system. At the next sampling time, the 
optimization problem is solved again based on the latest 
measurement information at that time. 

1) Objective function: 
In the energy storage participation frequency emergency 

control strategy proposed in this paper, the controller aims to 
meet the following requirements: to find the optimal control 
inputs that make the predicted curve of the grid frequency as 
close as possible to the reference curve of the grid frequency, 

while minimizing the control cost. Therefore, the objective 
function is defined as follows: 
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(1)

 

where k h k+丨  represents the estimated value of the 

parameters at time k based on the information available at 
time k. The coefficients α and β are weighting factors where 
larger values indicate a higher penalty for the corresponding 

term. 
,B k

ch
P  and 

,B k

dis
P represent the charging and discharging 

amounts of the energy storage system at time k, respectively. 

kf and 0f  represent the predicted frequency and the 

reference frequency of the system at time k, respectively. 

2) Constraints: 
The considered constraint conditions mainly include 

system frequency constraints and energy storage constraints. 
The system frequency constraints are set as follows: 

When the number of time points within the prediction 
time horizon H where the system frequency deviation 
exceeds the action threshold of the second and third defense 
lines exceeds N (indicating a significant predicted system 
frequency deviation that would trigger the action of the 
second and third defense lines), no frequency constraint 
conditions are imposed. 

Otherwise, the frequency constraint conditions are set as 
follows: 

 t k t
HFGTf f δ+ ⋅∆∆ ≥ ∆ +  (2) 

where δ  represents the frequency error, HFGTΔf  represents 

the High Frequency Generator Tripping frequency (HFGT). 
The energy storage system constraints mainly include 

power constraints, charge-discharge constraints, and State of 
Charge (SOC) constraints, as follows: 

 

,max,

,max,

0
1, 2, ,

0

ch
BB k h k

dis
BB k h k

P P
h H

P P

+

+

 < ≤
��� =

< ≤

L
丨

丨  

(3) 

where ,maxBP  represents the maximum output of ESS. 

 , , 0 1, 2, ,ch dis
B k h k B k h kP P h H+ + ��= = L丨 丨  

(4)
 

 min max, 1, 2, ,B k h kS E S h H+ ��≤ ≤ = L丨  
(5)

 

where minS  represents the set lower limit of the SOC, and 

maxS  represents the set upper limit of the SOC. 

Up to now, this paper has established a controller model 
based on MPC, which is a quadratic programming problem 
with formula (1) as the objective function and (2) ~ (5) as the 

79  



constraint conditions. This formulation makes it convenient 
to use commercial solvers for solving the optimization 
problem. 

2.2 MHE Model 

MHE (Moving Horizon Estimation) algorithm, similar to 
MPC, is also based on the system's dynamic model and 
involves solving an online optimization problem. It allows 
the direct representation of time-domain constraints and 
nonlinear characteristics of the system in the optimization 
problem formulation. Unlike other estimation methods such 
as Kalman Filtering (KF), MHE is capable of handling 
constraints, resulting in more accurate and reliable estimation 
results. 

MHE can be categorized into full information MHE and 
approximate MHE. To reduce the computational burden of 
the online optimization problem, the Approximate MHE 
approach is commonly adopted [13]. 

In the context of power grid applications, considering the 
availability of measurements for the power imbalance, the 

estimation of the system frequency deviation f∆  can be 

achieved using P∆ . The specific relationship can be 
expressed as follows: 

 
0 0

2 2

L G R WP P P PP
f f f

H H

⋅ − + + +∆
= =

 
(6) 

where f represents the actual grid frequency, P∆  denotes the 

grid active power imbalance, 0f  corresponds to the rated 

frequency of the system, H represents the grid inertia time 

constant, LP  represents the load power, GP  and RP  

represent the generated power and the reserve power 

provided by thermal power units, WP  represents the wind 

power output. 
The further discretization of equation (6) yields: 
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where sT  representing the discrete time constant. 

The state-space model of the system in discrete time can 
be formulated as follows: 
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where the state vector [ ]1, 2,

T T

k k k k kx x x f P �� ��= = ∆  , the 

process noise ,k V kω δ= , and the measurement output 

k ky f= . The parameter definitions for each matrix are as 

follows: 
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The estimation problem for the system frequency 
deviation can be defined as follows: at time instant k, using 

the N+1 latest measurement data 
~ ~ ~

1, , ,k N k N kP P P− − +
 

∆ ∆ ∆ 
 

L  

from the past N time instants, estimate the system frequency 

kf  at time instant k. The optimization objective is defined as 

follows: 
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k

k i i

i k N

J f f

= −

= ∆ − ∆
 

(10) 

where 
if∆  represents the actual system frequency deviation, 

and 
i

f∆  represents the predicted system frequency 

deviation. 
To enhance the accuracy of the prediction results, noise 

sequence is incorporated into the equation (7), then we get: 
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1 k
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s
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T f
f f P

H
ω+ = + ∆ +

 
(11) 

Equation (12) can be obtained by (10): 

 

^
2 2
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= − = −
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(12) 

In summary, the frequency deviation prediction model 
constructed in this paper, based on MHE, simultaneously 
optimizes the frequency deviation 

k Nf −∆  and the 

compensation sequence { }
N

k k N
ω

−
. It estimates the frequency 

deviation at time instant k, and the obtained results are used 
in the MPC model. 

2.3 Virtual Inertia Control 

The energy storage device's virtual inertia control module 
generates active power reference value and power response 
by introducing the grid frequency differential signal [14] and 
considering the effects of frequency rate of change and inertia 
control gain. A typical energy storage virtual inertia control 
model is shown in Fig.2. With reference to the control model 

depicted in Fig.2, the active power output fin

BP  of the energy 

storage device can be represented as [15]: 

 11

dffin

B

fK s
P

T s

∆
=

+
 

(13) 

1

1

1 T s+

f∆ d

dt
dfK−

fin

BP

Filter Inertia Controller 

 
 

Fig.2 Energy storage virtual inertia control module. 
 

The magnitude of the virtual inertia provided by the 
energy storage can be calculated based on SOC of the energy 
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storage. The specific derivation process can be found in 
reference [15]. The expression is as follows: 
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(14) 

where K represents the conversion coefficient, 

_

N N

d N BESS

u
K

Ku S

ω
′ = , Nu  and du  represent the DC components 

of the grid voltage, Nω  represents the rated angular velocity 

of the synchronous generator, 
_N BESSS  represents the rated 

capacity of the energy storage system, 1K  and 2K  represents 

the coefficient of the quadratic term expansion, 1α  and 2α  

are the two roots of the denominator polynomial. 

2.4 Generator Tripping Model 

The method proposed in this paper for setting the 
generator tripping is an offline calculation. Firstly, the 
minimum inertia requirement of the system is considered. By 
taking into account the system frequency Rate of Change of 
Frequency (RoCoF) limit, frequency minimum/maximum 
limits, and considering different renewable energy output 
scenarios and generator combinations under different 
operating conditions, a genetic algorithm is employed to find 
the minimum inertia required by the system under various 
scenarios. Subsequently, by establishing the relationship 
between the virtual inertia provided by energy storage and the 
generator tripping, the role of energy storage in reducing the 
generator tripping is demonstrated. The process of setting the 
generator tripping involves using the optimized power output 
of the energy storage as input and combining it with the 
minimum inertia requirement in each scenario to determine 
the optimal governor droop setting. 

2.5 Inertia Estimation 

The inertia of a power system refers to its resistance to 
frequency changes caused by external disturbances. It helps 
to slow down the rate of frequency variations and is a crucial 
safeguard for maintaining system frequency stability [16]. 
System inertia is a quantitative measure of system inertia and 
can be expressed in various forms, such as inertia time 
constant M, inertia time H, rotational inertia J, etc. In this 
paper, the inertia time H is used to describe and calculate the 
critical inertia requirement of the system. The calculation 
method is described by the following equation: 

 
sys sys

/
sys

H E S=

 
(15) 

where 
sysH  represents the system inertia time, sysE  

represents the rotational kinetic energy of thermal power 
units, hydroelectric units, and wind power units in the system, 

and sysS  represents the total rated capacity of the system. 

The stability constraints of the grid frequency at the 
sending end mainly consider the limits on the maximum 
RoCoF and the maximum frequency deviation. The 
maximum frequency deviation constraint can be obtained by 
[17]: 
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where 
G

k  represents the power frequency characteristic 

coefficient, 
G

T  represents the integrated time constant of 

generator governor and prime mover, P∆  represents the 

power deviation, 
m

t  represents the time to reach the nadir 

frequency, 
i

u  represents the start/stop status of the i-th 

generating unit, 
D

k  represents the the load frequency 

response coefficient. 
The maximum RoCoF constraint is as follows: 
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2

LP
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∆
≤ ≤

 
(17) 

where maxRoCoF  and minRoCoF  represents the maximum 

and minimum RoCoF tolerance capacity of the generating 
units. 

 
Due to the limited adjustable power of thermal power 

units, it is necessary to consider the maximum power limit 
and the minimum technical output of the units: 
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where D

Gmi
P∆  represents the minimum technical output of 

generator i, and U

Gmi
P∆  represents the maximum power limit 

of generator i. D

Bi
P∆  and U

Bi
P∆  represent the additional power 

allowed by the ESS installed for generator i. 
In conclusion, the calculation of critical inertia for the 

system can be described as the following optimization 
problem: 
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(19) 

This paper adopts a genetic algorithm to solve the global 
optimization problem defined by equation (19). The process 
is shown in Fig.3: 
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Fig.3 Genetic Algorithm Flowchart 
 

In this algorithm, the fitness of the population 
corresponds to the system inertia time H. The individuals in 
the population must satisfy constraints such as frequency 
deviation, RoCoF, and generator operating constraints. If any 
individual fails to meet these constraints, the iteration process 
is repeated. Eventually, the algorithm determines the 
minimum critical inertia required by the system. 

2.6 Generator tripping adjustment model 

3) Total setting of generator tripping 
The problem of total generator tripping calculation can be 

defined as the following optimization problem: 
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(20) 

where 
trip

P∆  represents the actual total generator tripping, 

dist,maxP  represents the maximum system power disturbance, 

, 1UFLS setf  represents the tuning value for the frequency of the 

first round of system low-frequency load shedding, and 

,OPC setf  represents the tuning value for the over speed protect 

(OPC) controller action of the generator units. 

The calculations for 
min

f  and 
max

f  are obtained using the 

following equation: 
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where 
LD  represents the frequency regulation coefficient of 

the system load, 
G

P∆  represents the total output of 

conventional generating units, 
W

P∆  represents the wind 

power output, 
E

P∆  represents the output of ESS, 
L

P∆  

represents the system load. 

By solving equation (20), we can obtain the maximum 

and minimum values of 
trip

P∆ . The total generator tripping 

can be calculated by taking the average value: 
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where 
,maxtrip

P∆  and 
,mintrip

P∆  represents the maximum and 

minimum value of 
trip

P∆ . 

4) Each Round of Generator Tripping Quantity Distri-

bution 
In order to optimize the generator tripping in each round, 

it is necessary to incorporate ESS output in the optimization 
problem. Additionally, to prevent excessive generator 
tripping in each round that may trigger low-frequency load 
shedding, it is important to ensure that the generator tripping 
in each round remains within a certain range around the 
average total generator tripping. The tuning of generator 
tripping in each round can be formulated as the following 
optimization problem: 
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(23) 

where 
,trip i

P∆  represents the generator tripping in the i-th 

round of the system, δ  represents the maximum power 

deviation, and 
E

P∆  represents the size of the energy storage 

output. 
By solving equations (20), (22), and (24), we can obtain 

the final tuning for the total generator tripping as well as the 
generator tripping in each round. 

3 Case Study 

This paper uses a provincial power grid in the western 
region of China as a case study. The unit parameters are based 
on the BPA 2021 summer biggest operating mode. The total 
installed capacity of the provincial power grid is 76,324 
MVA, which includes 119 thermal power units. Under stable 
conditions, the total power generation in the entire grid is 
65,347 MW, the provincial load is 25,743 MW, and the 
power transmitted through AC and DC interconnections is 
approximately 39,604 MW. 

3.1 Generation loss 

This section primarily focuses on low-frequency faults 
that occur in the system due to generator failures. These faults 
are relatively mild, and they are used to validate the 
advantages of the proposed control strategy. The generation 
loss in the system is simulated by disconnecting a thermal 
power generator, resulting in a loss of 498MW of active 
power. This event triggers a low-frequency fault in the 
system, which may lead to low-frequency load shedding. 

82  



After incorporating energy storage, both droop control and 
the proposed control strategy are implemented. The resulting 
system frequency response curve and energy storage output 
curve are as follows: 

 
 

Fig.4 Frequency curve under different methods 
 

 
 

Fig.5 ESS power curve under two methods 
 

From the Fig.4 above, it can be observed that the proposed 
strategy effectively reduces the maximum frequency 
deviation after system faults to below 0.05Hz, thereby 
preventing low-frequency load shedding. On the other hand, 
although traditional droop control also reduces system 
frequency deviation, it does not incorporate frequency 
constraints and therefore cannot guarantee the avoidance of 
low-frequency load shedding. Additionally, as shown in 
Fig.5, the proposed strategy exhibits a maximum increase of 
only 11.9% in energy storage output compared to traditional 
energy storage control methods, demonstrating its economic 
feasibility. 

3.2 DC fault 

Firstly, the inertia of each scenario was assessed based on 
the load and power output data during summer daytime, 
summer nighttime, winter daytime, and winter nighttime. The 
results are as follows: 

 
 

Fig.6 The inertia deficiency in different scenarios 
 

From the above figure, it can be observed that the most 
severe inertia deficiency occurs during winter daytime. 
Winter daytime exhibits the highest required inertia, which is 
5.57 seconds. Additionally, during winter, due to high load 
levels and limited renewable energy output, the system 
already has a relatively small inertia time of only 4.81 
seconds, which clearly does not meet the system's inertia 
requirements. 

Taking the scenario with the most severe inertia 
deficiency as an example, the ESS output curve obtained 
using the proposed energy storage control strategy, along 
with the system frequency response curve, is shown below: 

 
 

Fig.7 ESS output under different control strategies 
 

 
 

Fig.8 Frequency deviation under different control strategies 
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Without energy storage configuration, the maximum 
frequency deviation in the system will exceed 1Hz. By 
incorporating energy storage, the maximum frequency 
deviation can be reduced to around 0.85Hz. Fig.7 illustrates 
the power output throughout the ESS process. It can be 
observed that the proposed strategy effectively combines the 
process of generator tripping. After the first round of 
generator tripping is triggered, the energy storage power 
output is reduced to prevent the system frequency from 
dropping too rapidly, which could result in an excessive 
RoCoF. After the last round of generator tripping is triggered, 
the ESS output is increased again to allow the system 
frequency to quickly recover. Once the generator tripping 
process is completed, the ESS output reduce rapidly to further 
conserve the ESS power. 

The comparison of the system generator tripping schemes 
with 800MW ESS capacity after tuning is as follows: 

Table 1: Different trippings 

 

No ESS ESS 

ESS With 

Proposed 

Strategy 

First 

round 

f>50.6Hz; 

tripping 

generators 

2024.5MW 

f>50.6Hz; 

tripping 

generators 

2031MW 

f>50.6Hz; 

tripping 

generators 

2024.5MW 

Second 

round 

f>50.8Hz; 

tripping 

generators 

2024.5MW 

f>50.8Hz; 

tripping 

generators 

2031MW 

f>50.7Hz; 

tripping 

generators 

1984.4MW 

Third 

round 

f>51Hz; 

tripping 

generators 

2024.5MW 

f>51Hz; 

tripping 

generators 

2031MW 

f>50.8Hz; 

tripping 

generators 

1916.1MW 

Final 

round 

f>52Hz; 

tripping 

generators 

2024.5MW 

/ / 

By incorporating energy storage and adopting the 
proposed tuning strategy, the system can reduce one round of 
generator tripping. Moreover, compared to conventional 
methods of ESS configuration, the proposed tuning strategy 
can further reduce the amount of generator tripping and, at 
the same time, decrease the frequency interval between each 
round of generator tripping. This leads to an accelerated 
frequency recovery process. 

The virtual inertia support effect of ESS is shown as 
follows: 

 
 

Fig.9 Relationship between ESS capacity with its virtual inertia 
and reduction in generator tripping 

 

From Fig.9, it can be observed that as the capacity of the 
ESS increases, it provides a higher level of virtual inertia. 
When the ESS capacity reaches 800MW, the system's inertia 
level meets the requirements, leading to a significant 
reduction in the amount of generator tripping required. 

4 Conclution 

This paper proposes a two-stage optimization model for 
energy storage participation in frequency emergency control. 
The energy storage control module consists of Model 
Predictive Control, Moving Horizon Estimation, and virtual 
inertia control components. It can provide emergency 
frequency support and compensate for the system's inertia 
deficiency during system frequency disturbances. The paper 
primarily focuses on high-frequency generator tripping in 
frequency emergency control and incorporates ESS output in 
the tuning process to further optimize generator tripping time 
interval and the total amount of generator tripping. Finally, 
the effectiveness of the proposed method is demonstrated 
through a case study conducted on a provincial power grid. 
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Abstract: We investigate the right coprime factorization of the transfer function matrix of a linear time-delay system considering 
constant state and input delays. This transfer function matrix is a quasi-polynomial matrix, and its right coprime factorization can 
be explicitly obtained by solving a series of linear equations once a user-specified Pseudo-Controllability Indices (PCI) set is 
selected. Besides, we determine the condition for the PCI set such that the denominator matrix in the right coprime factorization 
is column reduced. We then utilize these results to transform the original time-delay system into a fully actuated one. Finally, an 
example demonstrates the effectiveness of our method. 
Key Words: Right coprime factorization, quasi-polynomial matrix, time-delay fully actuated systems, Pseudo-Controllability 
Indices (PCI), column reduced 

 
 

1 Introduction 

Time delays play an important role in various engineering 
systems such as underwater vehicles, industrial processes, 
and communication networks since they inherently exist in 
the process of communication, computation, and execution 
[1]. The majority of the contributions are devoted to 
stabilizing time-delay systems [2, 3]. Among numerous 
methods, the fully actuated system (FAS) approach can 
eliminate all the dynamic characteristics of the open-loop 
system and achieve a linear time-invariant closed-loop 
system with an arbitrarily assignable eigenstructure [4, 5]. 
This provides a novel idea for the controller design of 
time-delay systems. 

The control problem of FASs with nonlinearity and 
multiple time-varying state delays is solved thanks to the 
FAS approach [6]. The time-delay sub-FASs (namely, the 
time-delay systems that do not completely but partially 
satisfy the full actuation) are investigated [7], and a region 
of exponential attraction (ROEA) is defined for the 
constraint of initial values to achieve exponential stability. 
When initial values are outside the ROEA, a globally 
stabilizing controller or pre-controller should be deployed [8, 
9]. Additionally, a time-varying nonlinear uncertain system 
with state delays is presented [10], and a robust controller is 
developed for this system by the FAS approach. However, 
these studies merely consider state delays. Based on [6], 
both state and input delays are considered in [11] where the 
FAS approaches for systems with time-varying state delays 
and a constant input delay are proposed. A prediction 
scheme is also introduced for such systems. Besides, 
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researchers utilize the FAS approach to stabilize 
discrete-time nonlinear systems with multiple input delays 
[12], but this investigation does not consider state delays. 
Notably, the potential of the FAS approach is elucidated for 
the stabilization of time-delay systems. Meanwhile, further 
explorations of the FAS approach to general systems with 
both state and input delays are required. 

For time-delay systems, we can concisely design a 
stabilizing control law by the FAS approach provided that a 
time-delay FAS model is given. However, the existing 
studies usually use manual variable elimination to derive 
time-delay FAS models, leading to non-uniform results. 
Moreover, this manual deployment is cumbersome and 
entails in-depth skills for high-order systems. To overcome 
these obstacles, the polynomial matrix description (PMD) is 
employed to establish a FAS model for a linear controllable 
system from the frequency domain perspective [13]. More 
specifically, this method requires not only a right coprime 
factorization of the system’s transfer function matrix but 
also a column reduced denominator matrix in the 
factorization. The study [13], however, is restricted to the 
treatment of a non-delayed case. To the best of our 
knowledge, an implementable approach is still missing for 
converting time-delay systems to the corresponding FAS 
models. 

In this paper, a linear system with both state and input 
delays is considered, and its FAS model is established. 
Inspired by the procedure of the polynomial matrix right 
coprime factorization in [14] that analyzes a non-delayed 
system, we further use the Pseudo-Controllability Indices 
(PCI) set to attain the right coprime factorization of the 
transfer function matrix of the considered time-delay system. 
Besides, different from [13] employing elementary column 
operations to reduce the column degree of the matrix, we 
directly attain a column reduced denominator matrix in the 
right coprime factorization. With the obtained solution, the 
original time-delay system can be transformed into a fully 
actuated one. Our work provides insight into a procedural  
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way to obtain time-delay FAS models. 

2 Problem Formulation 

We consider the following linear time-delay system:  

      t t t h   x Ax Bu  (1) 

where   nt x  and   rt u  are respectively the state 
and input vectors; n nA  and n rB  are constant 
coefficient matrices;    and h  are constant state 
and input delays, respectively. 

We then obtain the following PMD model of the system 
(1) by taking the Laplace transformation of (1) with the zero 
initial condition: 

        s s s sP X Q U  (2) 

where s  is the Laplace variable;     ,s s P Q  
 ,s hs

ns e e I A B ;     s tX x ;     s tU u . 

Definition 1 (Fully actuated PMD model). The PMD model 
(2) is said to be fully actuated if n r  and  sQ  is a 
nonsingular matrix. 

Besides, the transfer function matrix of (1) is 

     1
.s hs

ns s e e   IG A B  (3) 

We assume that two matrices   n rs N  and 
  r rs D  factorize (3) into the following form: 

      
1 1

.s hs
ns e e s s    I A B N D  (4) 

 We then introduce the following definitions given in [15]. 

Definition 2 (Right coprime factorization of  sG ). For 
controllable (1),   n rs N  and   r rs D  satisfying 
(4) are right coprime iff 

      deg det dim .s n D A  (5) 

Definition 3 (Column reduction of  sD ).  sD  is column 
reduced if  

    
1

deg det i

r

i

s 


D  (6) 

where ,  1, 2,...,i i r   is the degree of the thi  column of 
 sD . 

The objective of this paper is threefold: i) Obtain a right 
coprime pair     ,s sN D  satisfying (4); ii) Determine 
the condition for a column reduced  sD  in the obtained 
factorization; iii) Apply the above results to establish a 
time-delay FAS of (1).  

3 Solution to Quasi-Polynomial Matrix Right 
Coprime Factorization 

We first denote    ijs s   D D  and t   
   1 ,max degi j r ij s  D . With these, we can express  sN  

and  sD  as 
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We then substitute (7) into (4) and obtain 
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i i i

s s

i

h

i i
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   B D N A N  (8) 

We can rewrite (8) as 
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AN BD
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The following lemma is extended from Lemma 2 in [14]: 

Lemma 1. Given ,  0,1,..., 1i ti  N  and ,  0,1,...,i ti D  
in (7), (4) holds iff ,  0,1,...,i ti D  satisfy 
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and ,  0,1,..., 1i ti  N  satisfy 

    0 1 2 1 ,t t
s hse t et 

 
   N N N N Q S  (11) 

where 

  2 1t tt     Q B AB A B A B  

and 
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is an upper block matrix. 

Proof. We first demonstrate how to get (10) and (11) from 
(9), i.e., the proof of sufficiency. Multiplying both sides of 
the th ,  0,1,...,ti i   equation in (9) by i i se A  on the left 
yields 
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1
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We then sum both sides of the obtained 1t   equations in 
(12), leading to 

  0 1 ,s t t s hs
te e e      0 BD ABD A BD  (13) 

the matrix form of which is (10). 
Note that substituting 1tN  in the tht  equation of (9) into 

the  th1t   equation results in 

 1

1
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2
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t
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ABD + BD
 (14) 
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Furthermore, we can obtain ,  0,1,..., 1i ti  N  written in 
(11) by repeating the above procedure. 

We then explain how to derive (9) according to (10) and 
(11), i.e., the proof of necessity. With (10) and (11) at hand, 
we obtain 
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and  

 
1 .t t

hse   0BD N  (17) 

Equations (15), (16), and (17) are equivalent to (8). That 
completes the proof.       

We then introduce the following definitions mentioned in 
[14] and [16]. 

Definition 4 (Pseudo-Controllability Indices (PCI)). The set 
of PCI, denoted by  1 2, , , rh h h , is any of integers ,ih  

1, 2, ,i r  satisfying 1, ,0 2 ,,  i ih n r    and 

ii
r h n  . 

Definition 5 (Admissibility of the PCI set). Given that the 
sets  11 1,2,, ,, , ,  1,  ih

i i i i i i rh  = b b bA A , the set 
of PCI is admissible if 

  1 2, , , r    (18) 

form a set of linearly independent columns. 

The following theorem is then presented. 

Theorem 1. For controllable (1) where n nA and 
n rB , an admissible PCI set  1 2, , , rh h h  exists such 

that 
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1 0

,  , 1, 2,1 , 
i

k
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h

k i i
i j

j
jik k rh



 

 Ab = bA  (19) 

where jik  . Then,  sN  and  sD  in (4) are right 
coprime if  sD  is determined below and  sN  is 
subsequently calculated by (11): 

    
0

j
ik jik

t
j s

j

s s s e 


 
       
D D  (20) 

where  max ,  1it h i r    and 
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,  1,  , 1, 2, ,
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k

jik jik k
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j h i k r
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  (21) 

Proof. Instead of a general proof, we use an example to 
illustrate the philosophy behind our theorem. We take 

6 6 6 3
1 2 3,       A B b b b  and choose an admissible 

PCI set as    1 2 3, , 2,3,1h h h  . Thus, a unique combination 
of jik  satisfying (19) exists since the n  columns defined 
in (18) are linearly independent. Besides, the matrices 

, 0,1, ,r r
i i t  D  satisfy (10) as per Lemma 1, leading to 
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where  
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According to (7),  sD  can then be calculated as 
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which satisfies      1
3deg det dim 6i is h  D A . 

Therefore,  sN  and  sD  in (4) are right coprime 
according to Definition 2. Furthermore,  sD  can be 
described by (20) after defining (21).       

Note that Theorem 1 achieves the right coprime 
factorization of (3). However, it does not ensure a column 
reduced  sD . Specifically, the summation of the column 
degree of the obtained  sD  is 7, indicating that  sD  is 
not column reduced as per Definition 3. The following 
corollary then presents a way to obtain a column reduced 
 sD  in the right coprime factorization by appropriately 

choosing the admissible PCI set. 

Corollary 1.  sD  and  sN  determined by Theorem 1 
are not only right coprime but also  sD  is column reduced 
when the admissible PCI set is chosen as  

    1, , , , , 1, , 1   r

r

h h

 

   


       (23) 

where / /n r   and %n r   represent the quotient and 
remainder of n  divided by r , respectively. 
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Proof. We still take 6 6 6 3
1 2 3,       A B b b b  as an 

illustration. We choose another admissible PCI set as 
   1 2 3, , 2, 2,2h h h   according to (23), and  sD  is then 
obtained as 
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whose column degree summation is 6 n , indicating that   
 sD  is column reduced according to Definition 3.       

Remark 1. For an admissible PCI set  1 2, , , rh h h , the 
column degree summation of  sD , denoted by deg , can 
be calculated as 

   deg

PCI set determined by (23) 

admissible PCI sets 

,                  

h  

          

1 1 ,  ot er    

n

t t r

      
 

where  max ,  1it h i r   . 

The subsequent section will establish the time-delay FAS 
model of (1) with the help of Corollary 1. 

4 Application in Establishment of Time-Delay 
FAS 

For a column reduced  sD  obtained by Corollary 1, it 
can be written as 

      0 , , , ,s hs s hse e es s es  D D L  (24) 

where 0
r r D  is nonsingular [15] and the degree of each 

column of  , ,s hs r re es  L  is correspondingly smaller 
than that of  sD . Besides,  
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in which   and   are defined in (23). Furthermore, we can 
factorize  , ,s hss e e  as 
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When the transfer function matrix  sG  in (3) is strictly 

proper [15], we can express  sD  and  sN  in (4) as 
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        1 1 2 2   r rs s s s   
  N N l N l N l  (27) 

where    , , ,  1, 2, ,i ir h n h
i i i r      D N  and 

 
T1 ,  1, 2, , .1 iih

i
hs s s i r      l  

The following theorem is then presented. 

Theorem 2. For the controllable system (1) whose transfer 
function matrix is strictly proper, let  sD  and  sN  
satisfying (4) be determined by Corollary 1. Furthermore, 
let  sD  and  sN  be expressed by (26) and (27), 
respectively. Then, the fully actuated PMD of (1) can be 
represented as  
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 (28) 

where  sZ  is the Laplace transformation of   rt z  
that is referred to as a generalized state vector. Additionally, 
 sZ  can be uniquely determined by 

   

T
1

T
12
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e

e
Z N N N X
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(29) 

where 

 T1 0 0 ,  1,2, , .i
i

h i r    e  
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Proof. The dimensions of  tz  and  tu  are identical to r . 
Meanwhile, the matrix   1

0 1
D   is nonsingular. Thus, the 

PMD model (28) is fully actuated according to Definition 1. 
Besides, we can obtain      1

s s s
Z D U  as per (26) and 

(28). Thus, 
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Since the matrix 1 2   r  
  N N N  is invertible [Lemma 

4.4 in 13], (30) can be converted to 
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Notice that  
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Substituting (31) into (32) then yields (29).       

Remark 2. With Theorem 2 at hand, we can derive the 
time-delay FAS model of (1) and the generalized state 
vector  tz  by deploying the Laplace inverse 
transformation of (28) and (29), respectively. 

5 Case study 

We consider the system (1) with the following 
parameters: 

 

 0 1 0 2 1 1 0 1

1 1 0 1 0 0 0 0

.1 1 0 1 0 0 1 0
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,A B  (33) 

5.1 Solution to Right Coprime Factorization of 

  1s hs
ns e e  I A B  

Given   ,A B  in (33), we verify that the system (1) is 
controllable and its transfer function matrix is strictly proper. 
For a column reduced  sD , an admissible PCI set is 
chosen as    1 2 3, , 1,2, 2h h h   according to (23), leading to 
a set of linearly independent columns as 

  1 2 2 3 3, , , , .b b Ab  b Ab  (34) 

As per Corollary 1, we have 
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which is a solution to the right coprime factorization of the 
transfer function     1s hs

ns s e e   IG A B . 

5.2 Establishment of Time-Delay FAS 

According to (26) and (27), we rewrite the obtained 
 sD  and  sN  in Section 5.1 as 

   0 1 2 1 2 3

1 1
    ,s

s s

    
     

    
    D D D D D   (35) 

   1 2 3

1 1
    s

s s

    
    

    
   N N N N  (36) 

where 

1 1

1

se  
 

  
 
 

 , 2

2

2

2

2

2

s

s hs

s

se

es

s

e

e







 
 

  
 
  

 , 

0

0 0

1 0

0

1

1

1 1

 
   
  

D , 1

1

3

0 hse

 
   
  


D , 

2

0

2 3

0

4 2

s hs

s

e e

e






 
 

  
 


D , 3

0

4 4

0

1 4

s hs

s

e e

e






 
 

  
 


D , 

1

0

2

0

0
s

s

e

e





 
 
 
 
 
 
 
 

N , 2

2

2 4

0 0

3

0

0

s

s s

s s

s

e

e e

e e

e



 

 



 
 
 
   
 
 
  



N , 

2

2

3

2

02

6 0

s s

s

s

s s

s s

e e

e

e

e e

e e

 





 

 

 
 
 
 

  
 
 
  





N . 

As per (29), if we choose the generalized state vector 
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we can obtain the following fully actuated PMD model of (1) 
according to (28): 
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Furthermore, the time-delay FAS model of (1) can be 
determined by taking the Laplace inverse transformation of 
(38), which is described by the following two subsystems:  

      1 1 1 ,z t z t u t h        (39a) 
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  (39b) 

The second subsystem (39b) is over-actuated, which can 
be regarded as a fully actuated case in terms of control 
[Remark 2.1 in 4]. Furthermore, stabilizing controllers for 
(39) can be designed in two steps. We first design  1u t  for 
(39a). Then,  2u t  and  3u t  are designed after 
substituting  1u t  into (39b). Note that both of these steps 
can be accomplished through the FAS approach. 

6 Conclusion 

For a linear time-delay system where both state and input 
delays are considered, we obtain an explicit solution to the 
right coprime factorization of its transfer function matrix. 
Furthermore, we provide a technique to directly determine a 
column reduced denominator matrix in the right coprime 
factorization. The proposed results are then deployed to 
transform the considered time-delay system into a fully 

actuated one, which provides a valuable reference for 
establishing time-delay FASs through a procedural 
approach. Future work includes establishing time-delay 
fully actuated systems with multiple state and input delays. 
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Abstract: In this paper, we study the fully actuated systems (FASs) with unknown parameters where the control input takes
quantized values. It is shown that, compared with early works, the adaptive control law is much easier to design and no longer
limited to the single-input systems by utilizing the full-actuation property. The system state can converge to an arbitrarily small
neighborhood of the origin with a hysteretic quantizer which can be very coarse. An illustrative example demonstrates the
effectiveness of the given method.

Key Words: Adaptive Control, Fully Actuated Systems, Quantization

1 Introduction

Quantized control has attracted a great deal of attention
[1, 2] due to the fact that it plays an important role in modern
engineering such as the control of network systems, hybrid
systems, and multi-agent systems. In these systems, quantiz-
ers are usually placed after the controller or the sensors to re-
duce communication burden. However, at the same time, the
quantization error may affect the performance of the closed-
loop systems. Two types of quantizers were mainly con-
cerned in the existing literature: dynamic quantizers [3, 4]
and static logarithmic (or hysteresis) quantizers [5, 6]. Re-
cently, adaptive quantized control schemes have been de-
veloped in [7–10], in which the researchers considered the
control of single-input strict-feedback systems based on the
state-space approach.

In recent years, a novel philosophy of control called fully
actuated system (FAS) approach, which was first proposed in
the series of papers [11–13], has attracted many researchers
to study. This new control theory no longer depends on the
conventional state-space models, and it mathematically gen-
eralized the concept of the physical fully actuated systems
[14], proving that many control systems (including some
underactuated systems) essentially have the full-actuation
property [15]. On the basis of this discovery, this newly es-
tablished approach, which focuses on the FASs, has more
simplicity for nonlinear system design, since the dynamics
of the open-loop system can be eliminated directly. This
control strategy has shown great superiority in many control
problems. In [16, 17] and [18–20], authors studied robust
and adaptive control for FASs, respectively, while in [21],
the model reference tracking controller was proposed.

So far, to the best of the authors’ knowledge, there is
still no result available for adaptive control for FASs with
input quantization. The main contribution of this paper is
that we provide a solution to the quantized adaptive control

This paper is partially supported by the Science Center Program of the
National Natural Science Foundation of China under grant No. 62188101,
the Major Program of National Natural Science Foundation of China
(61690210, 61690212), and also supported by the National Natural Science
Foundation of China (61333003).

for FASs. Utilizing the adaptive control scheme proposed
in [18], we only need to add an additional part to the con-
trol input to overcome the influence of the quantization er-
ror. Compared with the previous research depending on the
state-space models, our control design is much simpler and
can be extended to the multi-input systems, the complicated
backstepping method is no longer necessary. Meanwhile, the
control scheme proposed in this paper does not have any re-
quirements for the density of the quantizer, which means it
is still effective when the quantizer is very coarse.

The remaining part of the paper is organized in the fol-
lowing way. Section 2 introduces the system description and
preliminary results. Section 3 proposes our adaptive con-
troller for FASs with input quantization. Section 4 studies
an illustrative example and shows simulation results. The
concluding remarks follow in Section 5.

Through out this paper, we use AT and λi (A) to denote
the transpose and the ith eigenvalue of the matrix A. For
a vector a, ∥a∥ denotes its Euclidean norm. For a complex
number s, we use Re(s) to represent its real part. In denotes
the n × n identity matrix. Moreover, for x ∈ Rr, and Ai ∈
Rr×r, i = 0, 1, . . . , p, the following symbols are used in
this paper:

x(0∼p) =


x
ẋ
...

x(p)

 , A0∼p−1 =
[
A0 A1 · · · Ap−1

]
,

Φ(A0∼p−1) =


0 Ir

. . .
Ir

−A0 −A1 · · · −Ap−1

 .
2 System Description and Preliminaries

In this paper, the following high-order system with an un-
known parameter is investigated:

x(p) = f
(
x(0∼p−1)

)
+ΩT

(
x(0∼p−1)

)
θ

+B
(
x(0∼p−1)

)
q(u),

(1)
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where x ∈ Rr is the state vector, u = [u1, u2, . . . , ur]
T ∈

Rr is the input vector, f (·) ∈ Rr, Ω (·) ∈ Rn×r and
B (·) ∈ Rr×r are known sufficiently smooth vector or ma-
trix functions. θ ∈ Rn is an unknown constant vector.
q(u) = [q1, q2, . . . , qr]

T, qi is the quantization of ui, 1 ≤
i ≤ r. System (1) is fully actuated, if the following assump-
tion is satisfied.
Assumption A1: detB

(
x(0∼p−1)

)
̸= 0 or∞, ∀x(j) ∈

Rr, j = 0, 1, . . . p− 1.
In this paper, same as [7], we use the hysteresis quantizer to
avoid chaterring. For j = 1, 2, . . . , r, we have:

qj =



ξisgn(uj),
ξi

1+δ < |uj | ≤ ξi, u̇j < 0, or

ξi < |uj | ≤ ξi
1−δ , u̇j > 0

ξi(1 + δ)sgn(uj), ξi < |uj | ≤ ξi
1−δ , u̇j < 0, or

ξi
1−δ < |uj | ≤ ξi(1+δ)

1−δ , u̇j > 0

0, 0 ≤ |uj | < umin

1+δ , u̇j < 0, or
umin

1+δ ≤ uj ≤ umin, u̇j > 0

qj(t
−), u̇j = 0

(2)
where ξi = η(1−i)umin, i = 1, 2, . . . , with parameters
umin > 0 and η = 1−δ

1+δ . umin denotes the size of the dead-
zone for the quantizer, while η ∈ (0, 1) determines the quan-
tization density. Parameter δ satisfies:

0 < δ < 1. (3)

Our control objective is to design a quantized control law
for system (1) to ensure that closed-loop state variables of
converge to some neighborhood of the origin whose size is
arbitrarily small.

Remark 1. When systems modeled by many existing physi-
cal laws, for example, Lagrangian equation and Kirchhoff’s
law, a set of high-order differential equations, which consti-
tute the system (1), are naturally obtained. Meanwhile, it
has been proven that the system (1) can be converted equiv-
alently from a variety of control systems by using the order-
increase method.

In order to propose our control scheme, we need some
preparations. Firstly, we decompose the quantizer q(u) into
two parts:

q(u) = u+ d, (4)

where d is the quantization error. And the following lemma
holds:

Lemma 1. The quantization error d satisfies the following
inequality:

∥d∥ ≤ δ ∥u∥+
√
rumin. (5)

Proof. From Lemma 1 of [7], we have the following in-
equalities:

d2j ≤ δ2u2j , ∀|uj | ≥ umin,

d2j ≤ u2min, ∀|uj | ≤ umin,

dj is the jth component of d. Then we have:

r∑
j=1

|dj |2 ≤ δ2
r∑

j=1

|uj |2 + ru2min,

which implies that the property (5) holds.

Secondly, the following lemmas are also needed.

Lemma 2 ([16]). Suppose that matrices Ai ∈ Rr×r, i =
1, 2, . . . , p− 1, with Φ(A0∼p−1) ∈ Rpr×pr satisfy

Reλi (Φ) < −µ
2
, i = 1, 2, . . . , pr, (6)

where µ is a positive constant. Then a positive definite ma-
trix P ∈ Rpr×pr satisfying (7) exists.

ΦT (A0∼p−1)P + PΦ (A0∼p−1) ≤ −µP. (7)

Lemma 3 ([16]). Suppose that a, b are two real numbers,
and b > 0. Then we have:

a− a2

4b
≤ b. (8)

At last of this section, we introduce the following nota-
tion:

PL = P
[
0(pr−r)×r

Ir

]
. (9)

3 Main Results

In this section, we deal with the adaptive control for the
nonlinear system (1) with parametric uncertainties. Inspired
by the control scheme proposed in [18] and [19], we design
the adaptive stabilizing control law as follows:

u = −B−1
(
x(0∼p−1)

)
ua − ub, (10)

where
ua =f

(
x(0∼p−1)

)
+A0∼p−1x

(0∼p−1)

+ΩT
(
x(0∼p−1)

)
ϑ

ϑ̇ =γΩ
(
x(0∼p−1)

)
PT
Lx

(0∼p−1) − µϑ,

(11)

is the part to eliminate the nonlinearity, assign the stable
eigenstructure, and estimate the unknown vector; while

ub =
1

4ε
ψ2BT

(
x(0∼p−1)

)
PT
Lx

(0∼p−1), (12)

with

ψ =
1√
1− δ

(
δ
∥∥∥B−1

(
x(0∼p−1)

)
ua

∥∥∥+
√
rumin

)
,

(13)
is the part to handle the quantization error. γ > 0 and ε > 0
are two selected real numbers. Then we have the following
theorem.

Theorem 1. Under Assumption A1, let A0∼p−1 ∈ Rr×pr

be a matrix such that Φ (A0∼p−1) satisfies (6)–(7), and PL

be given by (9). Then, the control law given by (10)–(12)
guarantees that the closed-loop state variables of (1) can be
steered to within an arbitrarily small neighborhood of the
origin by properly choosing the design parameters.

Proof. Substituting control law (10)–(12) into system (1)
and using the decomposition (4) gives the closed-loop sys-
tem as

x(p) =−A0∼p−1x
(0∼p−1) +ΩT (·) (θ − ϑ)

+B (·) (d− ub) .
(14)
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We denote

ϕa = ΩT (·) θ +B (·) (d− ub) ,

where θ = θ − ϑ. Then we have

θ̇ = −ϑ̇, 2ϑTθ ≤ −θTθ + θTθ. (15)

Obviously, (14) is equivalent to the following form:

ẋ(0∼p−1) = Φ(A0∼p−1)x
(0∼p−1) +

[
0(pr−r)×1

ϕa

]
. (16)

Then we consider the following Lyapunov function candi-
date:

V =
1

2

(
x(0∼p−1)

)T

Px(0∼p−1) +
1

2γ
θ
T
θ.

In view of (7) and (16), we have

V̇ =
1

2

(
ẋ(0∼p−1)

)T

Px(0∼p−1)

+
1

2

(
x(0∼p−1)

)T

Pẋ(0∼p−1) − 1

γ
ϑ̇Tθ

=
1

2

(
x(0∼p−1)

)T (
ΦTP + PΦ

)
x(0∼p−1) − 1

γ
ϑ̇Tθ

+
(
x(0∼p−1)

)T

P
[
0(pr−r)×1

ϕa

]
≤− µ

2

(
x(0∼p−1)

)T

Px(0∼p−1) +
(
x(0∼p−1)

)T

PLϕa

− 1

γ
ϑ̇Tθ

=− µ

2

(
x(0∼p−1)

)T

Px(0∼p−1)

+
(
x(0∼p−1)

)T

PLB (·) (d− uq)

+

[(
x(0∼p−1)

)T

PLΩ
T (·)− 1

γ
ϑ̇T

]
θ

=− µ

2

(
x(0∼p−1)

)T

Px(0∼p−1) +
µ

γ
ϑTθ

+
(
x(0∼p−1)

)T

PLB (·) (d− ub) ,

which, by virtue of (15), can be rewritten as

V̇ ≤ − µ

2

(
x(0∼p−1)

)T

Px(0∼p−1) − µ

2γ
θ
T
θ +

µ

2γ
θTθ

+
(
x(0∼p−1)

)T

PLB (·) (d− ub)

=− µV +
µ

2γ
θTθ

+
(
x(0∼p−1)

)T

PLB (·) (d− ub) .

Next, let us consider the last term of the above equation. It

follows from (5), (8) and (12) that(
x(0∼p−1)

)T

PLB (·) (d− ub)

≤ − 1

4ε
ψ2

∥∥∥BT (·)PT
Lx

(0∼p−1)
∥∥∥2

+
∥∥∥BT (·)PT

Lx
(0∼p−1)

∥∥∥ ∥d∥
≤ − 1

4ε
ψ2

∥∥∥BT (·)PT
Lx

(0∼p−1)
∥∥∥2 + ∥∥∥BT (·)PT

Lx
(0∼p−1)

∥∥∥
×

[
δ
(∥∥B−1 (·)ua

∥∥+ ∥ub∥
)
+
√
rumin

]
= −1− δ

4ε
ψ2

∥∥∥BT (·)PT
Lx

(0∼p−1)
∥∥∥2

+
√
1− δψ

∥∥∥BT (·)PT
Lx

(0∼p−1)
∥∥∥

≤ ε.

The above two inequalities imply

V̇ ≤ −µV +
µ

2γ
θTθ + ε,

which yields

V(t) ≤ V(0)e−µt +

(
1

2γ
θTθ +

ε

µ

)(
1− e−µt

)
.

Furthermore,

V(t) ≤ 1

2γ
θTθ +

ε

µ
+

(
V(0)− 1

2γ
θTθ − ε

µ

)
e−µt

→ 1

2γ
θTθ +

ε

µ
, t→ +∞.

Hence, by choosing the design parameters in (10)–(12) so
that γ is large enough and ε is small enough, x(0∼p−1) can
converge to a neighborhood of the origin whose size can be
arbitrarily small.

Based on the above theorem, we can give a direct control
design (10)–(12) for the FAS (1) without turning the system
into a conventional state-space model. The system consid-
ered in [7] actually can be converted into the FAS (1), and
we do not need to use the complicated backstepping method
proposed in previous papers anymore. Our control law is
realised in a simpler way. Meanwhile, our control law theo-
retically does not have any requirements for the quantization
density, in other words, our control law is available for a very
coarse quantization.

4 An Illustrative Example

We consider the example in [7] to demonstrate our fully
actuated control law:

ẍ+ θ sin (ẋ) + tanh (x) = q(u), (17)

where x, u ∈ R, and q(u) is described by (2), and θ ∈ R
is an unknown parameter. The parameters of the control law
(10)–(12) is chosen as µ = 4, γ = 2, ε = 0.25. Then the
eigenvalues of the matrix Φ(A0∼1) are chosen as −3 ± j,
which yields

A0∼1 =
[
10 6

]
. (18)

Consider the Lyapunov function

(Φ + 2I)
T P + P (Φ + 2I) = 0.2I, (19)
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which implies that the matrixA0∼1 satisfying (7). We obtain

P =

[
2.950 0.600
0.600 0.175

]
. (20)

We choose the initial values as: x(0) = ẋ(0) = 0.5, ϑ(0) =
0. In the simulation, θ = 1, and we consider two quantizers
with different density:

Case A δ = 0.2, umin = 0.02.
Case B δ = 0.8, umin = 0.02.
Figures 1 and 2 show the results of the simulation, which

are consistent with our theoretical findings. Furthermore,
for Case B, the control input has large magnitude, since the
quantizer with δ = 0.8 is relatively coarse which means
great energy is needed to handle the quantization error.
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(b) Control input

Fig. 1: Simulation results for Case A

5 Conclusion

In this paper, an adaptive state-feedback stabilization
scheme for FASs whose input is quantized by the hystere-
sis quantizer is developed. By taking advantage of the full-
actuation feature of the system, complex nonlinear design
methods are no longer necessary, and the proposed controller
is still practical for a coarse quantization.
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(b) Control input

Fig. 2: Simulation results for Case B

It is worth mentioning that in this paper, only the adaptive
control with matching condition is considered, that is, the
unknown terms are in the span of the control input. High-
order backstepping techique [17, 20] needs to be used, if
more general systems are considered. Meanwhile, the con-
troller with state quantization for FASs also deserves future
study.
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Optimal filtering for NCSs with amplify-and-forward relays
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Abstract: This paper is concerned with the optimal Markov jump estimator for wireless networked control system with amplify-
and-forward (AF) relay. An AF relay is located in the transmission link between the sensor and the remote estimator to regulate
the data transmission. A set of random variables obeying Markov distribution is adopted to model the transmission power of
the sensor and relay. By utilising the reorganization Markov chain method, the observation equation with two independent jump
processes is transformed into an equivalent one with single jump process. Then, the optimal Markov jump estimator is derived
by using the complete square method and the stochastic approximation theory. Further, an optimal stationary Markov jump
estimator is developed under the assumption of ergodicity of the associated Markov chain. It is shown that there exists a unique
stabilizing solution for the corresponding coupled algebraic Riccati equation, which coincides with the limit of the solution to
the corresponding coupled difference Riccati equation for the proposed Markov jump estimator.

Key Words: Amplify-and-forward relay, Transmission power, Reorganization Markov chain method, Markov jump estimator,
Stability

1 Introduction

In recent years, benefiting from the burgeoning sens-
ing, computing and communication technologies, networked
control systems (NCSs) have been gaining an ever-growing
popularity in practical engineering. As an integrated sys-
tem consisting of network communication media and sys-
tem components (e.g., sensors, controllers, actuators, and
plants), NCSs possess a broad range of applications in a va-
riety of fields including mobile sensor networks [1], smart
grids [2], industrial automation systems [3], due to their di-
verse advantages like easy installation and maintenance, less
wiring, lower cost, and more flexibility and maintainability.
In particular, one of the fundamental issues for the NCSs is
to estimate the system state of the target plant based on a se-
ries of measurement sequences observed over the time. Up
to now, various types of algorithms have been developed for
the state estimation/filtering problems of NCSs, consisting
of the Kalman filtering approach [4], the extended Kalman
filtering scheme [5], the H∞ filtering algorithm [6], and etc.
In fact, the state estimation problems of NCSs have been act-
ing as a research frontier for almost two decades, and there
is already a rich body of literature with respect to this subject
[7–9].

For wireless networked systems with relatively long-
distance communication, ensuring satisfactory network
communication quality is a vitally important issue. General-
ly, long-distance communication would increase the energy
consumption and reduce the received signal strength during
the signal transmissions. In order to overcome the disadvan-
tages of the long-distance communication, relay-based trans-
mission technology has been proposed to effectively solve
these problems. As one of the essential technologies of 5G
mobile networks, relay-based communication has been con-
sidered as a promising technology to extend the communi-
cation range and improve the transmission link quality [10].
So far, several relaying protocols have been developed in ex-
isting literature, such as the amplify-and-forward (AF) pro-

This work is supported by the Natural Science Foundation of Shandong
Province (No. ZR2021MF069).

*Corresponding author

tocol [11], the decode-and-forward (DF) protocol [12], the
compress-and-forward (CF) protocol [13], and the filter-and-
forward (FF) protocol [14], where AF protocol is more pop-
ular because of its simplicity and practicality.

It is worth mentioning that, the filtering problem over AF
relay network has recently attracted a great deal of attention,
see e.g. [11, 15, 16] for some representative results. For
example, in [15], a distributed fusion filter was developed
for a class of nonlinear time-varying systems in the simul-
taneous presence of the AF relay communication, the miss-
ing measurement, and the dynamic quantization. In [11],
the recursive filtering problem was investigated for a class
of stochastic uncertain systems over the AF relay protocol,
where the transmission power of the sensor and relay trans-
mitting the measurement were described as a set of random
variables with certain probability distribution. Despite the
fruitful results on the filtering with AF relay, little attention
has been paid to the state estimation problem of wireless net-
worked system with both Markov jump parameters and AF
relay communication. On the other hand, the filtering prob-
lem for sensor system subject to Markov jump parameters
has recently drawn much research attention from the fields of
control engineering since Markov jump parameters are very
appropriate to model random variations resulting from ran-
dom communication delays [17], packet losses [18], and un-
predicted component malfunctions [19]. Therefore, the state
estimation problem in the case of the sensor and the AF relay
with transmission power of Markov distribution has proven
to be both theoretically important and practical significant.

In this article, we endeavor to deal with the optimal
Markov jump linear (MJL) estimation problem for wireless
networked system over the AF relay strategy. The primary
contributions of this paper are highlighted as follows:
(1) The optimal MJL estimator is, for the first time, obtained
for the NCSs over the AF relay strategy, where the trans-
mission power of the sensor and the AF relay obey Markov
distribution. This is a generalization in previous work [11],
since our case brings a challenging issue that the Riccati e-
quation is related with the transition probabilities and prob-
ability distributions of the Markov chain.
(2) A sufficient condition is established for the existence and
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uniqueness of the mean-square stabilizing solution to the as-
sociated coupled algebraic Riccati equation.
(3) The stationary case is studied and the proof for the con-
vergence of the solution to the difference Riccati equation
for the proposed MJL estimator is obtained, which means
that the MJL estimator can be calculated offline.

Notations: Throughout this paper, Rn stands for the n-
dimensional real Euclidean space, Rm×n denotes the set of
all m × n real matrices. The A−1 and AT represent the in-
verse and transpose of the matrix A, respectively. As usual,
P > 0(P ≥ 0) indicates that the real symmetric matrix
P is a positive definite (or positive semi-definite) matrix.
The n × n identity matrix is denoted by In (or simply I).
diag{. . .} denotes a block-diagonal matrix, and E{.} repre-
sents the expectation of a stochastic variable. ∥.∥ describes
the Euclidean norm of a vector. δij means the Kronecker
delta function with δij = 1 if i = j, otherwise, δij = 0.
In addition, we denote Hn,m = {Q = (Q1, . . . , QN ), Qi ∈
Rm×n} and we adopt, for simplicity, Hn = Hn,n and Hn∗ =
{Q = (Q1, . . . , QN ) ∈ Hn;Qi = QTi , i = 1, . . . , N},
Hn+ = {Q = (Q1, . . . , QN ) ∈ Hn∗;Qi ≥ 0, i =
1, . . . , N}. Finally, 1{.} stands for the indictor function of
the event {.}, and rσ(.) represents the spectral radius of a
matrix.
2 Problem formulations

Consider the following linear discrete-time system:

xk+1 =Hkxk +Bkwk (1)
yk =Fkxk + vk (2)

where xk ∈ Rn and yk ∈ Rm stand for the state sequence
and the measured output sequence, respectively. wk ∈ Rp
and vk ∈ Rm are the white noises with zero mean and co-
variances E{wkwTl } = Qkδkl, E{vkvTl } = Rkδkl, respec-
tively. The initial value x0 is a Gaussian distributed random
vector with E{x0} = x̄0 and E{(x0− x̄0)(x0− x̄0)T } = P0.
Hk, Bk, Fk are known matrices of compatible dimensions.
The random processes wk, vk for all k and the initial state
x0 are mutually independent.

In an ideal condition, the signals from the sensor can
be transmitted to the corresponding estimator by arbitrari-
ly long distance. However, this is not always the case due to
constrained transmission capability of the sensor. To extend
the propagation distance of wireless communication, relay
is introduced in the wireless communication link. Motivat-
ed by the above discussions, the AF relay node is deployed
in this paper to facilitate the signal transmissions between
the sensor and the remote estimator, where the transmission
power of the sensor and relay obeys Markov distribution and
the Markov chains are assumed to be known. The structure
diagram of the addressed estimation issue is demonstrated in
Fig. 1. It is observed from Fig. 1 that the data transmission
channel from the sensor to the estimator can be divided into
two parts, including the sensor-to-relay (STR) channel and
the relay-to-estimator (RTE) channel. In this paper, only one
relay node is introduced between the sensor and the remote
estimator, and the design of multi-relay channel filter can be
readily obtained based on this algorithm.

The signal received by the relay can be represented as

zk =
√
Es,θs,kCs,kyk + ϱs,k (3)

Fig. 1: System model with AF relays

where Es,θs,k represents the transmission power of the sen-
sor, Cs,k is the known channel gain in STR channel, and
ϱs,k is an additive noise with the statistical characteristic-
s E{ϱs,k} = 0 and E{ϱs,kϱTs,k} = Ss,k. In addition,
θs,k is a discrete-time Markov chain with finite state space
{1, 2, . . . , ϕ} and transition probability p(s)ij = Pr{θs,k+1 =

j|θs,k = i}(i, j = 1, 2, . . . , ϕ), P (s) = [p
(s)
ij ]. Denote

π
(s)
i,k = Pr{θs,k = i}(i = 1, 2, . . . , ϕ). The transmission

power Es,i(i = 1, 2, . . . , ϕ) is known.
After the signal zk is received by the AF relay, the relay

amplifies and retransmits it to the remote estimator. At the
remote estimator, the measurement received from the relay
is described as follows

rk =
√
Er,θr,kCr,kzk + ϱr,k (4)

where Er,θr,k represents the transmission power of the re-
lay, Cr,k is the known channel gain in RTE channel, and
ϱr,k is an additive noise with the statistical characteristic-
s E{ϱr,k} = 0 and E{ϱr,kϱTr,k} = Sr,k. In addition,
θr,k is a discrete-time Markov chain with finite state space
{1, 2, . . . , φ} and transition probability p(r)ij = Pr{θr,k+1 =

j|θr,k = i}(i, j = 1, 2, . . . , φ), P (r) = [p
(r)
ij ]. Denote

π
(r)
i,k = Pr{θr,k = i}(i = 1, 2, . . . , φ). The transmission

power Er,i(i = 1, 2, . . . , φ) is known.

Assumption 1. The noises vk, ϱs,k, and ϱr,k are mutually
independent.

Assumption 2. θs,k, θr,k are known and independent of x0,
wk, vk, ϱs,k and ϱr,k.

Based on the above statement, the actual measurement re-
ceived by the estimator at time k can be rewritten as

rk =
√
Er,θr,kEs,θs,kCr,kCs,kFkxk

+
√
Er,θr,kEs,θs,kCr,kCs,kvk

+
√
Er,θr,kCr,kϱs,k + ϱr,k (5)

Remark 1. As pointed out in [20], the Markov process is a
special random process based on probability statistics. Due
to its no memory effect and homogeneity, its widely applied
in prediction for power transmission. In this paper, the sen-
sor and the relay transmit the measurements according to
the transmission power that they possess. The transmission
power is depicted by a homogeneous Markov chain taking
different level with different probability distribution. It can
be seen that when the current power level is given, the prob-
abilistic law of the future development of power level has
nothing to do with the historical state. Note that such a
transmission line with Markovian power level has received
seldom attention in the filtering investigation field and the
main purpose of this paper is to design an optimal filter as
well as a stationary filter for the NCSs under such a trans-
mission way.
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The optimal filtering problems in this paper are now stated
as follows:

Problem 1 (Optimal MJL estimator). Given the observation
sequences {r0, r1, . . . , rk} and the present-time value of the
jumping parameter θs,k and θr,k, find an optimal recursive
estimator x̂k of the state xk, such that

E{∥xk − x̂k∥|r0, . . . , rk; θs,k, θr,k} (6)

is minimised, while the estimator gain is deterministic.

Problem 2 (Stationary MJL estimator). Given the observa-
tion sequences {r0, r1, . . . , rk} and the present-time value of
the jumping parameter θs,k and θr,k, find a stationary MJL
estimator x̂e,k of the state xk, such that

E{∥xk − x̂e,k∥|r0, . . . , rk; θs,k, θr,k} (7)

is minimised, while the estimator gain is constant.

Remark 2. In network-based communication process, the
signal transmissions between sensor and estimator is af-
fected by the transmission power of the sensor and the re-
lay. Particularly, a set of Markov distributed variables with
known Markov chain is adopted to characterize the trans-
mission power. It is worth noting that the estimation prob-
lem with respect to such transmission power has not received
sufficient attention, and thus the main purpose of the paper is
to design an easy-to-implemented optimal MJL estimator for
discrete-time system subject to transmission power from the
sensor and relay. Furthermore, a stationary MJL estimator
is developed, which means that our optimal MJL estimator
can be calculated offline.

3 Markov jump estimation

The purpose of this section is to design an optimal MJL
estimator in the recursive form for systems (1) and (5) by
employing the complete square method and the stochastic
approximation theory. To be more specific, the reconstruc-
tion Markov chain method is adopted to convert the obser-
vation equation with jumping parameters θs,k and θr,k into
a new equivalent one with jumping parameter θk. Then, we
will develop the MJL estimator according to new observa-
tion equation.

3.1 Re-organized Markov chain
In what follows, we are going to define the new Markov

chains associated with equation (5). For any given time k,
let

θk =
[
θr,k θs,k

]T (8)

θk is assumed to be a new Markov chain, and takes value
from the finite set as follows

S =

{[
1
1

]
,

[
1
2

]
, . . . ,

[
1
ϕ

]
,

[
2
1

]
, . . . ,

[
φ
ϕ

]}
,{e1, e2, . . . , eφϕ} (9)

For notational simplicity, denote N = φϕ in the remainder
of the paper. The transition probability matrix P can be ob-
tained by

P = P (r) ⊗ P (s) , [pij ] (10)

where pij = Pr{θk+1 = ej |θk = ei}(i, j = 1, 2, . . . , N).
The probability to find the jump process in mode ei(i =
1, 2, . . . , N) at time k = 0, 1, 2, . . . is denoted as πi,k, the
vector of the property πi,k at time k is denoted as πk =
[π1,k, π2,k, . . . , πN,k]

T , which is described as

πk =


π
(r)
1,k

π
(r)
2,k
...

π
(r)
φ,k

⊗


π
(s)
1,k

π
(s)
2,k
...

π
(s)
ϕ,k

 (11)

with the initial value

π0 =
[
π
(r)
1,0π

(s)
1,0, π

(r)
1,0π

(s)
2,0, . . . , π

(r)
φ,0π

(s)
ϕ,0

]T
Moreover, πk and P satisfy the Kolmogorov difference e-
quation, that is

πk+1 = PTπk (12)

which shows the complete description of the jumping param-
eter θk.

In view of the definition of θk, the observation equation
(5) can be written as

rk = E1,θkC1,kFkxk + E2,θkC2,kv̄k (13)

where

E1,θk =
√
Er,θr,kEs,θs,k

E2,θk =
[√

Er,θr,kEs,θs,kI
√
Er,θr,kI I

]
C1,k =Cr,kCs,k, C2,k = diag{Cr,kCs,k, Cr,k, I}

v̄k =
[
vTk ϱTs,k ϱTr,k

]T
It can be seen that

E1,θk ∈
{√

Er,1Es,1, . . . ,
√
Er,1Es,ϕ,

√
Er,2Es,1, . . . ,√

Er,φEs,ϕ

}
, {E1,1, . . . ,E1,ϕ,E1,ϕ+1, . . . ,E1,N}

E2,θk ∈
{ [√

Er,1Es,1I
√
Er,1I I

]
, . . . ,[√

Er,1Es,ϕI
√
Er,1I I

]
,[√

Er,2Es,1I
√
Er,2I I

]
, . . . ,[√

Er,φEs,ϕI
√
Er,φI I

] }
, {E2,1, . . . ,E2,ϕ,E2,ϕ+1, . . . ,E2,N}

Note that the MJL system estimation theory cannot be ap-
plied directly since the simultaneous presence of the jump
processes θs,k and θr,k. So, we address this issue by reor-
ganisation Markov chain method. From the above discus-
sion, we can know that the next step is to design estimator
for MJL system with jumping parameter θk.

3.2 Design of the optimal Markov jump estimator
The problem considered here is how to acquire an optimal

MJL estimator x̂k of the state vector xk by using the new ob-
servation equation (13). To begin with, let us give following
useful definition.
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Definition 1. Given a time instant k, the optimal MJL filter
x̂k of the state xk is defined as

x̂k , E{xk|r0, . . . , rk; θk} (14)

and the optimal MJL one-step predictor x̄k of the state xk is
defined as

x̄k , E{xk|r0, . . . , rk−1; θk−1} (15)

In addition, define the one-step predictor of the observa-
tion

r̄k , E{rk|r0, . . . , rk−1; θk−1} (16)

and the corresponding innovation sequence is calculated by

εk , rk − r̄k (17)

Before computing the MJL estimator, we first introduce
some notations and derive some preliminary results. Set

x̃k ,xk − x̂k

˜̄xk ,xk − x̄k

Yi,k ,E{x̃kx̃Tk 1θk=ei}, i = 1, 2, . . . , N

Ȳi,k ,E{˜̄xk ˜̄xTk 1θk=ei}, i = 1, 2, . . . , N

Wi,k ,E{εkεTk 1θk=ei}, i = 1, 2, . . . , N

Based on the above discussion, we obtain the following
main result of this section.

Theorem 1. Consider the system (1), (13) and given the time
k, the predictor x̄k is given by

x̄k+1 = Hkx̄k + Lθk,kεk (18)

The innovation sequence εk with variance Wi,k is calcu-
lated by

εk =rk − E1,θkC1,kFkx̄k (19)

Wi,k =E1,iC1,kFkȲi,kF
T
k C

T
1,kET1,i

+ πi,kE2,iC2,kR̄kC
T
2,kET2,i (20)

where

R̄k = diag{Rk, Ss,k, Sr,k}

The predictor gain matrix Lθk,k is denoted as Li,k for
θk = i(i = 1, 2, . . . , N), which is determined by

Li,k = HkȲi,kF
T
k C

T
1,kET1,iW

−1
i,k (21)

The prediction error covariance matrix Ȳi,k for the state
satisfies the following equation:

Ȳj,k+1 =
N∑
i=1

pij{HkȲi,kH
T
k + πi,kBkQkB

T
k

−HkȲi,kF
T
k C

T
1,kET1,i[E1,iC1,kFkȲi,kF

T
k C

T
1,kET1,i

+ πi,kE2,iC2,kR̄kC
T
2,kET2,i]−1E1,iC1,kFkȲi,kH

T
k }
(22)

with the initial value Ȳj,0 = πj,0P0.

Proof. From the definition of the innovation sequence, we
obtain that

εk = E1,θkC1,kFk ˜̄xk + E2,θkC2,kv̄k (23)

In view of (23), and recalling the notations Wi,k, we have

Wi,k =E{εkεTk 1θk=ei}
=E{[E1,θkC1,kFk ˜̄xk + E2,θkC2,kv̄k]

× [E1,θkC1,kFk ˜̄xk + E2,θkC2,kv̄k]
T 1θk=ei}

=E1,iC1,kFkE{˜̄xk ˜̄xTk 1θk=ei}FTk CT1,kET1,i
+ E2,iC2,kE{v̄kv̄Tk 1θk=ei}CT2,kET2,i (24)

Therefore, we obtain the expression (20).
Next, we have from (1) and (18) that

˜̄xk+1 = Hk ˜̄xk +Bkwk − Lθk,kεk (25)

According to the definition of Ȳj,k+1, it can be derived as

Ȳj,k+1 =E{[Hk ˜̄xk +Bkwk − Lθk,kεk]

× [Hk ˜̄xk +Bkwk − Lθk,kεk]
T 1θk+1=ej}

=
N∑
i=1

pij{HkȲi,kH
T
k −HkȲi,kF

T
k C

T
1,kET1,iLTi,k

+ πi,kBkQkB
T
k − Li,kE1,iC1,kFkȲi,kH

T
k

+ Li,kWi,kL
T
i,k}

=
N∑
i=1

pij{HkȲi,kH
T
k + πi,kBkQkB

T
k

+ (Li,k −HkȲi,kF
T
k C

T
1,kET1,iW

−1
i,k )Wi,k

× (Li,k −HkȲi,kF
T
k C

T
1,kET1,iW

−1
i,k )

T

−HkȲi,kF
T
k C

T
1,kET1,iW

−1
i,k E1,iC1,kFkȲi,kH

T
k }
(26)

It can be seen from (26) that Ȳj,k+1 will be minimised if
Li,k obeys equation (21). Moreover, then (26) becomes (22).
The proof is ended here.

Theorem 2. For system (1), (13), the optimal MJL estimator
x̂k for the state xk is

x̂k = x̄k +Kθk,k(rk − E1,θkC1,kFkx̄k) (27)

where the estimator gain Kθk,k is denoted as Ki,k for θk =
i(i = 1, 2, . . . , N), and satisfies the following equation:

Ki,k = Ȳi,kF
T
k C

T
1,kET1,iW

−1
i,k (28)

with Ȳi,k is given by (22).

Proof. The proof can be carried out along the similar line
to Theorem 1. The detail is omitted to save space.

Remark 3. In the next section, we consider a scenario that
H , B, F , Q, R̄, and pij are time invariant and the Markov
chain satisfies the ergodic assumption, so that πi,k converges
to πi > 0 as k goes to infinity, the coupled difference Ric-
cati equations (CDREs) (22) lead to the following coupled
algebraic Riccati equations (CAREs)

Ȳj =

N∑
i=1

pij{HȲiHT + πiBQB
T −HȲiF

TCT1 ET1,i
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× [E1,iC1FȲiF
TCT1 ET1,i + πiE2,iC2R̄C

T
2 ET2,i]−1

× E1,iC1FȲiH
T } (29)

Further, we present a sufficient condition for the existence
and uniqueness of a positive semi-definite solution Ȳ =
(Ȳ1, . . . , ȲN ) ∈ Hn+ for (29), and the convergence of Ȳk
to Ȳ , so that a stationary estimator would be obtained.

4 Stationary Markov jump linear estimator

In this section, we assume that all matrices in (1) and (13)
are time invariant. Our aim is to show that the asymptotic
behaviour of a set of CDREs (22), and the mean square sta-
bility of the corresponding estimator under the assumption
of ergodicity of the associated Markov chain.

Assume that the Markov chain is ergodic. That is, there
exist limit probabilities πi > 0(i = 1, 2, . . . , N), with∑N
i=1 πi = 1, such that limk→∞ πi,k = πi exponentially

fast and independent from θ0. Set πk = (π1,k, . . . , πN,k),
π = (π1, . . . , πN ).

We state our stationary estimation problem as: find the
estimator gain Li, i = 1, 2, . . . , N , such that

x̄e,k+1 = Hx̄e,k + Li[rk − E1,iC1Fx̄e,k] (30)

is mean square stable and minimizes its corresponding esti-
mation error. The solution of the above proposed problem
is closely related to the stabilizing solution for the CAREs
(29).

For Γ = (Γ1, . . . ,ΓN ) ∈ Hn and W = (W1, . . . ,WN ) ∈
Hn, we define the linear operator L(W ) = (L1(W ), . . . ,
LN (W )) as

Lj(W ) ,
N∑
i=1

pijΓiWiΓ
T
i (31)

Next, to facilitate the subsequent handwriting, let us set
Hi = H , Bi = B, Di = E1,iC1F , Gi = E2,iC2,
i = 1, 2, . . . , N , and denote

H̄ :=(H1, . . . , HN ) ∈ Hn, B̄ := (B1, . . . , BN ) ∈ Hp,n

D̄ :=(D1, . . . , DN ) ∈ Hn,m, Ḡ := (G1, . . . , GN ) ∈ H3m,m

In the following, we will give some definitions, which are
the concepts of mean square stabilizability and mean square
detectability.

Definition 2 ([21]). For H̄ ∈ Hn, B̄ ∈ Hp,n, we say that
(H̄, B̄, P ) is mean square stabilizable if there exists M =
(M1, . . . ,MN ) ∈ Hn,p such that rσ(L) < 1, where L is as
defined in (31) with Γi = Hi − BiMi. In this case, M is
said to stabilize (H̄, B̄, P ).

Definition 3 ([21]). For H̄ ∈ Hn, D̄ ∈ Hn,m, we say that
(P, D̄, H̄) is mean square detectable if there exists M =
(M1, . . . ,MN ) ∈ Hm,n such that rσ(L) < 1, where L is as
defined in (31) with Γi = Hi −MiDi. In this case, M is
said to stabilize (P, D̄, H̄).

Further, for Ȳ = (Ȳ1, . . . , ȲN ) ∈ Hn, we define the linear
operators J(Ȳ , π) = (J1(Ȳ , π), . . . , JN (Ȳ , π)), M(Ȳ , π)
= (M1(Ȳ , π), . . . ,MN (Ȳ , π)), Ξ(Ȳ , π) = (Ξ1(Ȳ , π), . . . ,

ΞN (Ȳ , π)), Φ(M(Ȳ , π), π) = (Φ1(M(Ȳ , π), π), . . . ,
ΦN (M(Ȳ , π), π)) as

Jj(Ȳ , π)

,
N∑
i=1

pij{(Hi −Mi(Ȳ , π)Di)Ȳi(Hi −Mi(Ȳ , π)Di)
T

+ πi(Mi(Ȳ , π)GiR̄G
T
i (Mi(Ȳ , π))

T +BiQB
T
i )}

(32)

Mi(Ȳ , π) , HiȲiD
T
i (DiȲiD

T
i + πiGiR̄G

T
i )

−1 (33)
Φj(M(Ȳ , π), π)

,
N∑
i=1

pijπi(Mi(Ȳ , π)GiR̄G
T
i (Mi(Ȳ , π))

T +BiQB
T
i )

(34)

Ξi(Ȳ , π) , DiȲiD
T
i + πiGiR̄G

T
i (35)

In particular, we set J(Ȳ ) = J(Ȳ , π), M(Ȳ ) = M(Ȳ , π),
Φ(M(Ȳ )) = Φ(M(Ȳ , π), π), Ξ(Ȳ ) = Ξ(Ȳ , π), then the
CAREs (29) can be expressed as

Ȳj = Jj(Ȳ ), j = 1, 2, . . . , N (36)

Moreover, we define X = {Ȳ = (Ȳ1, . . . , ȲN ) ∈
Hn∗; Ξ(Ȳ ) > 0 and − Ȳ + J(Ȳ ) ≥ 0}.

Now, some useful definitions as for the CAREs (36) and
the operator (31) are given as below.

Definition 4 ([22]). Ȳ = (Ȳ1, . . . , ȲN ) ∈ Hn+ is a
stabilizing solution for the CAREs (36) if it satisfies (36)
and M(Ȳ ) = (M1(Ȳ ), . . . ,MN (Ȳ )) stabilizes (P, D̄, H̄),
where Mi(Ȳ )(i = 1, 2, . . . , N) is as defined in (33).

Definition 5 ([21]). Consider L as defined in (31). If
rσ(L) < 1, then for any Φ ∈ Hn, there exists a unique
solution Ȳ ∈ Hn such that Ȳ − L(Ȳ ) = Φ. Moreover, if
Φ ∈ Hn+, then Ȳ ∈ Hn+.

Lemma 1. Suppose that (H̄, B̄, P ) is mean square stabiliz-
able and (P, D̄, H̄) is mean square detectable. Then there
exists a unique solution Ỹ = (Ỹ1, . . . , ỸN ) ∈ Hn+ to the
CAREs (36), which will coincide with the mean square sta-
bilizing solution.

Proof. Along the same line of the proof in [22]. we can
prove Lemma 1. The details are omitted to save the space.

Remark 4. To reduce online computational cost and com-
munication burden, we present a stationary MJL estimator,
where the estimator gains can be computed off-line. In this
section, conditions for existence, uniqueness, and stability of
the stationary MJL estimator is obtained for the case when
the system is time invariant.

Lemma 2. If (H̄, B̄, P ) is mean square stabilizable and
(P, D̄, H̄) is mean square detectable. Then the solution
Ȳk = (Ȳ1,k, . . . , ȲN,k) of (22) with any initial condition
Ȳ0 ∈ Hn+ converges to the unique positive semi-definite
solution Ỹ = (Ỹ1, . . . , ỸN ) as k goes to infinity. In addition,
Ỹ = (Ỹ1, . . . , ỸN ) ∈ Hn+ is the stabilizing solution for the
CAREs (29).

Proof. Similar to Theorem 3 of [23], we can prove Lem-
ma 2. In order to save space, the detailed proof here is omit-
ted.
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5 Conclusion

In this paper, the optimal MJL estimator problem has been
addressed for wireless networked system with AF relay. The
long-distance signal transmission between the sensor and the
estimator is implemented by introducing the AF relay node,
in which the transmission power of the sensor and the re-
lay is characterized as a set of Markov distributed variables
with known Markov chain. Firstly, a new observation equa-
tion model is developed by the reorganization Markov chain
technique. Then, the MJL estimator has been obtained based
on the new observation equation. This is the main novelty of
this paper. Secondly, under the hypothesis that ergodicity of
the associated Markov chain, the stationary MJL estimator
with constant-gain has been explored, and it has been shown
that the solution of the CDREs converges to the unique sta-
bilizing solution of the corresponding CAREs.
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Abstract: In this paper, we address the challenge of finite-time tracking control for a specific class of high-order fully actu-
ated strict-feedback systems (HOFASFSs). The proposed solution involves the introduction of a finite-time high-order Levant
differentiator, which is employed for estimating high-order derivatives to mitigate the “explosion of complexity” problem. Ad-
ditionally, finite-time error compensation signals are designed to minimize the impact of the unachieved portion between the
estimated virtual control and the actual virtual control. The newly developed high-order finite-time command filtered back-
stepping (HOFTCFB) scheme not only capitalizes on the advantages of reducing backstepping steps through the utilization of
high-order fully actuated (HOFA) system approaches but also ensures finite-time convergence. The stability and finite-time con-
vergence properties of the closed-loop system are analyzed using the Lyapunov stability criterion, and the theoretical results are
validated through simulation tests.

Key Words: High-order fully-actuated system approach, strict-feedback systems, finite-time convergence, command filtered
backstepping

1 Introduction

Even though the fully actuated systems are universal in
the second-order mechanical system, it is always neglected
and treated as a small proportion of the control system. To be
more specific, such inherent fully actuated characteristics of
nonlinearities are largely neglected, and almost all the origi-
nal systems are turned into the first-order form. However, it
can be a general model by mathematically generalizing such
a concept, and it was named as HOFA system [1]. Ever since
the celebrated work of Duan [1, 2], fruitful results have been
achieved based on HOFA system approach, e.g., DC micro-
grids control [3], prescribed time control for strong inter-
connected nonlinear systems [4], adaptive control [5], weak
disturbance decoupling [6], event-triggered control [7].

To study the lower-triangular form nonlinear systems, the
seminal backstepping design technique has achieved suc-
cessful achievement in robust [8] and adaptive nonlinear
control design [9]. However, the traditional backstepping
technique suffers from the “explosion of complexity” prob-
lem that caused by the repeated differentiation of virtual con-
trollers in each step design. Hence, a seminal command
filtered backstepping (CFB) is brought out to estimate the
derivatives of the virtual control rather than calculate them in
detail. Among those CFB approaches, a type of finite-time
CFB scheme has gotten great attention since it obtains faster
response, higher tracking precision, and better disturbance-
rejection ability [10–14]. However, the existing finite-time
CFB schemes are restricted to the first-order state-space sys-
tem framework. Recently, an interesting type of high-order
CFB technique has been presented that derives a direct con-

This work was supported by the Science Center Program of the Na-
tional Natural Science Foundation of China under Grant No. 62188101,
the Program of Heilongjiang Touyan Team, Shenzhen Science and Tech-
nology Program under grant No. KQTD20221101093557010, and also
by Shenzhen Key Laboratory of Control Theory and Intelligent Systems
ZDSYS20220330161800001.

troller design to reduce the backstepping steps. Based on the
HOFA system approach, the original HOFA strict-feedback
systems (HOFASFSs) need not be converted into the first-
order state-space form. The dynamical nonlinear uncertain-
ties and parametric uncertainties are studied in [15] and in
[16, 17], respectively. Even though those above high-order
CFB schemes do not consider the finite-time convergence,
the finite-time convergence propriety is of great significance
that can bring out various valuable characteristics for dy-
namical system, e.g., stronger robustness and rapid transient
performance. A natural question arises: Can a novel CFB
scheme be devised to tackle the tracking control problem
with rapid convergence rates, eliminating the need to trans-
form the original HOFASFS into a first-order state-space
form to reduce the number of backstepping steps? This ques-
tion inspires us to carry out the present work.

In this paper, we developed a high-order finite-time com-
mand filtered backstepping (HOFTCFB) scheme. This is a
nontrivial task since we need to design high-order differ-
entiators to estimate higher-order derivatives of the virtual
control law to avoid the “explosion of complexity” problem.
Moreover, the main difficulties lie in guaranteeing the stabil-
ity and finite-time convergence in this high-order framework.
To solve such a problem, we have introduced a finite-time
high-order Levant differentiator, which is employed for es-
timating high-order derivatives to mitigate the “explosion of
complexity” problem. Furthermore, we also design finite-
time error compensation signals to minimize the impact of
the unachieved portion between the estimated virtual control
and the actual virtual control.

The paper is organized as follows. Section 2 introduces
some preliminaries about the HOFASFSs and the related
assumptions. Section 3 formally proposes the designed
HOFTCFB scheme for the HOFASFSs, and stability and
finite-time convergence properties of the closed-loop system
are given. Section 4 provides finite-time trajectory tracking
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control for an electromechanical system to verify the perfor-
mance of this scheme. Section 5 ends with some concluding
remarks.

For x ∈ R, and Ai, j ∈ R, i = 1,2, . . . ,n, j = 0,1, . . . ,n−1,
the following symbols, which are frequently used in HOFA
systems [2], are also introduced to ease the presentation

x(0∼n) =


x
ẋ
...

x(n)

 ,〈x(0∼n)
〉γ

=


xγ

ẋγ

...(
x(n)
)γ

 ,

x(0∼n)
i∼ j =


x(0∼n)

i

x(0∼n)
i+1

...
x(0∼n)

j

 , i ≤ j

A0∼n−1
i =

[
Ai,0 Ai,1 · · · Ai,n−1

]
,

Φi
(
A0∼n−1

i
)
=


0 I

. . .
I

−Ai,0 −Ai,1 · · · −Ai,n−1

 ,
where γ is a positive constant and 0 < γ < 1. And λmax (P)
and λmin (P) are the largest and smallest eigenvalues of P,
respectively.
2 Problem formulation and preliminaries

Consider the following HOFASFSs

x(q1)
1 = f1

(
x(0∼q1−1)

1

)
+g1

(
x(0∼q1−1)

1

)
x2

x(q2)
2 = f2

(
x(0∼qk−1)

k |k=1∼2

)
+g2

(
x(0∼qk−1)

k |k=1∼2

)
x3

...

x(qn−1)
n−1 = fn−1

(
x(0∼qk−1)

k |k=1∼n−1

)
+gn−1

(
x(0∼qk−1)

k |k=1∼n−1

)
xn

x(qn)
n = fn

(
x(0∼qk−1)

k |k=1∼n

)
+gn

(
x(0∼qk−1)

k |k=1∼n

)
u,
(1)

where xi ∈ R, i = 1,2, . . . ,n are the state vari-
ables, qi, i = 1,2, . . . ,n are a set of positive in-
tegers, fi

(
x(0∼qk−1)

k |k=1∼i

)
∈ R, i = 1,2, . . . ,n

are a set of sufficiently smooth scalar functions.
gi

(
x(0∼qk−1)

k |k=1∼i

)
∈ R, i = 1,2, . . . ,n, are a group

of sufficiently smooth scalar functions. The control objec-
tive is to steer the output x1 of the HOFASFSs (1) from any
given initial condition to trace the trajectory yd in finite-time
under the designed control signal u, and also ensures that
all the signals of the closed-loop system are uniformly
ultimately bounded. Moreover, gi, i = 1,2, . . . ,n satisfy the
full-actuation assumption:

Assumption 1

gi

(
x(0∼qk−1)

k |k=1∼i

)
̸= 0,

∀ x(0∼qk−1)
k ∈ Rqk , k = 1,2, . . . , i, i = 1,2, . . . ,n.

The desired output trajectory yd are assumed to satisfy the
following Assumptions 2.

Assumption 2 The desired trajectory yd is available and
satisfies that

[ yd ẏd · · · y(2q1)
d ]⊤ ∈ Br0 =

{[ z1 z2 · · · z2q1+1 ]⊤ : z2
1 + z2

2 + · · ·+ z2
2q1+1 ≤ r0},

(2)

where r0 is a positive constant.

Lemma 1 [18] Consider Ai,k ∈ R, i = 1,2, . . . ,n, k =

0,1, . . . ,qi −1 and Φi

(
A0∼qi−1

i

)
∈ Rqi×qi satisfying

Reλi

(
Φi

(
A0∼qi−1

i

))
<−µi

2
, i = 1,2, . . . ,n, (3)

where µi ∈ R>0. Then, there exist positive definite matrices
Pi

(
A0∼qi−1

i

)
∈ Rqi×qi that satisfy

Φ
⊤
i

(
A0∼qi−1

i

)
Pi

(
A0∼qi−1

i

)
+Pi

(
A0∼qi−1

i

)
Φi

(
A0∼qi−1

i

)
<−µiPi

(
A0∼qi−1

i

)
. (4)

Assume A0∼qi−1
i ∈R1×qi , i = 1,2, . . . ,n are a set of matri-

ces to make Φi ∈ Rqi×qi , i = 1,2, . . . ,n Hurwitz and

Pi =
[

PiF · · · PiL
]
, (5)

where Pi ∈ Rqi×qi , PiF and PiL are the first and last columns
of Pi, respectively.

In the following sections, Φi

(
A0∼qi−1

i

)
, Pi

(
A0∼qi−1

i

)
,

gi

(
x(0∼mk−1)

k |k=1∼i

)
and fi

(
x(0∼qk−1)

k |k=1∼i

)
, will be writ-

ten shortly as Φi, Pi, gi and fi, respectively.
The high-order Levant differentiator is introduced as fol-

lows:

ψ̇0 =υ0, υ0 =−λ0 |ψ0 −αυ |n/(n+1) sign(ψ0 −αυ)+ψ1,

ψ̇1 =υ1, υ1 =−λ1 |ψ1 − v0|(n−1)/n sign(ψ1 −υ0)+ψ2,

...

ψ̇n−1 =υn−1, υn−1 =−λn−1 |ψn−1 −υn−2|1/2

× sign(ψn−1 −υn−2)+ψn,

ψ̇n =−λnsign(ψn −υn−1) .

where ψi ∈R, i = 0,1, . . . ,n are state variables of the Levant
differentiator, αυ is the input signal, and λi, i = 0,1 . . . ,n are
the design parameters. Then, the following Lemma holds:

Lemma 2 ([19]) Let input signal αυ consists of a bouned
noise and an unknown real signal αυ0, and the noise satisfy
|αυ −αυ0| ≤ ε. Then, the following real-time robust estima-
tions of α̇υ0, α̈υ0, . . . ,α

(n)
υ0 satisfy the following inequality in

finite time∣∣∣ψi −α
(i)
υ0

∣∣∣≤ µiε
(n−i+1)/(n+1) = ∆i, i = 0,1, . . . ,n.

where µi and ∆i are positive constants.

Lemma 3 ([14]) Consider xi∈ R, i = 1,2, . . . ,n, and 0 <
p < 1, then(

n

∑
i=1

|xi|
)p

≤
n

∑
i=1

|xi|p ≤ n1−p

(
n

∑
i=1

|xi|
)p

. (6)
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Lemma 4 ([14]) If there exists a continuous function V (x)
and parameters ρ1 > 0, ρ2 > 0, 0 < γ < 1, and 0 < c < 1
for the system ẋ = f (x), then the V (x) satisfy that V̇ (x) ≤
−ρ1V (x)− ρ2V γ (x)+ c. It can be concluded that the tra-
jectory of the system is practical finite-time stable, and the
convergence time is bounded as

Tb ≤max
{

t0 +
1

θ0ρ1 (1− γ)
ln

θ0ρ1V 1−γ (t0)+ρ2

ρ2
,

t0 +
1

ρ1 (1− γ)
ln

ρ1V 1−γ (t0)+θ0ρ2

θ0ρ2

}
,

and V (x) is bounded by

lim
t→Tb

∣∣∣∣∣V (x)≤ min

{
η

(1−θ0)ρ1
,

(
η

(1−θ0)ρ2

) 1
γ

}
where 0 < θ0 < 1.

3 HOFTCFB Design

3.1 Finite-time controller design
The tracking errors for the HOFASFSs (1) are defined as

Si = xi − xic, i = 1,2, . . . ,n, (7)

x1c = yd is the desired trajectory, and xic, i = 2,3, . . . ,n are
derived through a set of high-order Levant differentiators ap-
plied to the i-th virtual control function αi

ψ̇i,0 =υi,0, υi,0 =−λi,0 |ψi,0 −αi|qi/(qi+1)

× sign
(
ψqi,0 −αi

)
+ψqi,1,

ψ̇i,1 =υi,1, υi,1 =−λi,1 |ψi,1 −υi,0|(qi−1)/qi

× sign(ψi,1 −υi,0)+ψi,2,

...

ψ̇i,qi−1 =υi,qi−1, υi,qi−1 =−λi,qi−1
∣∣ψi,qi−1 −υi,qi−2

∣∣1/2

× sign
(
ψi,qi−1 −υi,qi−2

)
+ψi,qi ,

ψ̇i,qi =−λi,qisign
(
ψi,qi −υi,qi−1

)
.

(8)
where λ i,k ∈ R>0, k = 1,2, . . . ,qi, i = 2,3, . . . ,n. Further-
more, the outputs of each command filer are expressed as
x(k)
(i+1)c = ψi,k, k = 0,1, . . . ,qi.

Construct the virtual control function αi (i =
1,2, . . . ,n−1) of the proposed HOFTCFB scheme as
follows:

αi =− 1
gi

(
A0∼qi−1

i S(0∼qi−1)
i +A0∼qi−1

i Φ
−1
i

〈
v(0∼qi−1)

i

〉γ

+ fi − x(qi)
ic

)
(9)

and the control law is given as

u =− 1
gn

(
A0∼qn−1

n S(0∼qn−1)
n +A0∼qn−1

n Φ
−1
n

〈
v(0∼qn−1)

n

〉γ

+ fn − x(qn)
nc

)
(10)

where v(0∼qi−1)
i are the compensated tracking errors that are

defined later in (13), and γ is a positive constant that satisfies
0 < γ < 1.

The compensating signals, which aim to remove the effect
of x(i+1)c −α i with i = 1,2, . . . ,n−1, are defined as

ξ
(qi)
i =−A0∼qi−1

i ξ
(0∼qi−1)
i +giξi+1 +gi

(
x(i+1)c −αi

)
−

qi

∑
k=1

li,ksign
(

ξ
(k−1)
i

)
, (11)

ξ
(qn)
n =−A0∼qn−1

n ξ
(0∼qn−1)
n −

qn

∑
k=1

ln,ksign
(

ξ
(k−1)
n

)
. (12)

where li,k are positive constants with k = 1,2, . . . ,qi, i =
1,2, . . . ,n.

Define the compensated tracking error signals

vi = Si −ξi. (13)

Theorem 5 Assuming that the HOFASFSs (1) satisfy As-
sumptions 1-2, consider the proposed scheme comprising
the control law (10), the virtual control function (9), and
the command filters (8). Given the tuning parameters
A0∼qi−1

i , i = 1,2, . . . ,n that satisfy (3), and positive con-
stants λi,k, k = 1,2, . . . ,qi, i = 2,3, . . . ,n, li,k, k = 1,2, . . . ,qi,
i = 1,2, . . . ,n, the proposed HOFTCFB ensures that all
states of the closed-loop system remain uniformly ultimately
bounded, and the output tracking error can be reduced to a
disc region in finite-time.

Proof. To streamline the presentation and avoid repetitive
derivation processes, we initially provide frequently used in-
equalities. Using Young’s inequality, it is clear that(

v(0∼qi−1)
i

)⊤
PiLgivi+1

=
(

v(0∼qi−1)
i

)⊤
Pi

[
0(qi−1)×1

givi+1

]
≤
(

v(0∼qi−1)
i

)⊤
PiP⊤

i v(0∼qi−1)
i +

g2
i

4
v2

i+1

≤λmax (Pi)
(

v(0∼qi−1)
i

)⊤
Piv

(0∼qi−1)
i

+
g2

i
4λmin (Pi+1)

(
v(0∼qi+1−1)

i+1

)⊤
Pi+1v(0∼qi+1−1)

i+1 , (14)

and (
v(0∼qi−1)

i

)⊤
PiL

qi

∑
k=1

li,ksign
(

ξ
(k−1)
i

)
≤
(

v(0∼qi−1)
i

)⊤
PiP⊤

i v(0∼qi−1)
i +

1
4

(
qi

∑
k=1

li,k

)2

≤
(

v(0∼qi−1)
i

)⊤
PiP⊤

i v(0∼qi−1)
i +qi

qi

∑
k=1

l2
i,k

4

≤λmax (Pi)
(

v(0∼qi−1)
i

)⊤
Piv

(0∼qi−1)
i +qi

qi

∑
k=1

l2
i,k

4
(15)

The first step: Taking q1-th differentials of (13) and uti-
lizing (7) with i = 1, as well as the first equation in (1), one
has

v(q1)
1 =S(q1)

1 −ξ
(q1)
1

= f1 +g1 (S2 + x2c)− x(q1)
1c −ξ

(q1)
1

= f1 +g1S2+g1α1 +g1 (x2c−α1)− x(q1)
1c −ξ

(q1)
1
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By using the virtual control signal α1 and the derivative of
compensating signal ξ1, one obtains the closed-loop subsys-
tem

v(q1)
1 =−A0∼q1−1

1 v(0∼q1−1)
1 −A0∼q1−1

1 Φ
−1
1

〈
v(0∼q1−1)

1

〉γ

+g1v2 +
q1

∑
k=1

l1,ksign
(

ξ
(k−1)
1

)
(16)

The above dynamics can be rewritten as

v̇(0∼q1−1)
1 =Φ1v(0∼q1−1)

1 −
〈

v(0∼q1−1)
1

〉γ

+

[
0(q1−1)×1

g1v2 +∑
q1
k=1 l1,ksign

(
ξ
(k−1)
1

) ] . (17)

Then, define

V1 =
1
2

(
v(0∼q1−1)

1

)⊤
P1v(0∼q1−1)

1 .

According to the Lemma 1, equations (5) and (17), it follows
that

V̇1 =
1
2

(
v(0∼q1−1)

1

)⊤(
Φ

⊤
1 P1 +P1Φ1

)
v(0∼q1−1)

1

−
(

v(0∼q1−1)
1

)⊤
P1

〈
v(0∼q1−1)

1

〉γ

+
(

v(0∼q1−1)
1

)⊤
P1

([
0(q1−1)×1

g1v2 +∑
q1
k=1 l1,ksign

(
ξ
(k−1)
1

) ])

≤− µ1

2

(
v(0∼q1−1)

1

)⊤
P1v(0∼q1−1)

1

−
(

v(0∼q1−1)
1

)⊤
P1

〈
v(0∼q1−1)

1

〉γ

+
(

v(0∼q1−1)
1

)⊤
P1L

(
g1v2 −

q1

∑
k=1

l1,ksign
(

ξ
(k−1)
1

))
Based on Young’s inequality in equations (14) and (15)

with i = 1, the above V̇1 can be reexpressed as

V̇1 ≤− 1
2
(µ1 −4λmax (P1))

(
v(0∼q1−1)

1

)⊤
P1v(0∼q1−1)

1

−
(

v(0∼q1−1)
1

)⊤
P1

〈
v(0∼q1−1)

1

〉γ

+
g2

1
4λmin (P2)

(
v(0∼q2−1)

2

)⊤
P2v(0∼q2−1)

2 +q1

q1

∑
k=1

l2
1,k

4
.

The i-th step: Taking qi-th differentials of (13) and uti-
lizing (7), as well as the i-th equation in (1), one can deduce
the following:

v(qi)
i =S(qi)

i −ξ
(qi)
i

= fi +gi
(
Si+1 + x(i+1)c

)
− x(qi)

ic −ξ
(qi)
i

= fi +giSi+1 +giα i

+gi

(
x(i+1)c−α i

)
− x(qi)

ic −ξ
(qi)
i (18)

One has the closed-loop subsystem by substituting the vir-
tual control signal αi and the compensating signal ξi into
(18)

v̇(qi)
i =−A0∼qi−1

i v(0∼qi−1)
i −A0∼qi−1

i Φ
−1
i

〈
v(0∼qi−1)

i

〉γ

+givi+1+
qi

∑
k=1

li,ksign
(

ξ
(k−1)
i

)
(19)

The above dynamics of the tracking errors can be ex-
pressed as:

v(0∼qi−1)
i =Φiv

(0∼qi−1)
i +

〈
v(0∼qi−1)

i

〉γ

+

[
0(qi−1)×1

givi+1+∑
qi
k=1 li,ksign

(
ξ
(k−1)
i

) ] . (20)

Define

Vi =Vi−1 +
1
2

(
v(0∼qi−1)

i

)⊤
Piv

(0∼qi−1)
i .

According to the Lemma 1, equations (5) and (20), the
above result leads to

V̇i =V̇i−1 +
1
2

(
v(0∼qi−1)

i

)⊤(
Φ

⊤
i Pi +PiΦi

)
v(0∼qi−1)

i

−
(

v(0∼qi−1)
i

)⊤
Pi

〈
v(0∼qi−1)

i

〉γ

+
(

v(0∼qi−1)
i

)⊤
Pi

[
0(qi−1)×1

givi+1+∑
qi
k=1 li,ksign

(
ξ
(k−1)
i

) ]

≤V̇i−1 −
µi

2

(
v(0∼qi−1)

i

)⊤
Piv

(0∼qi−1)
i

−
(

v(0∼qi−1)
i

)⊤
Pi

〈
v(0∼qi−1)

i

〉γ

+
(

v(0∼qi−1)
i

)⊤
PiL

(
givi+1+

qi

∑
k=1

li,ksign
(

ξ
(k−1)
i

))
Based on the equations (14) and (15), it follows that

V̇i ≤− 1
2
(µ1 −4λmax (P1))

(
v(0∼q1−1)

1

)⊤
P1v(0∼q1−1)

1

− 1
2

i

∑
k=2

(
µk −4λmax (Pk)−

g2
k−1

2λmin (Pk)

)(
v(0∼qk−1)

k

)⊤
Pk

× v(0∼qk−1)
k +

g2
i

4λmin (Pi+1)

(
v(0∼qi+1−1)

i+1

)⊤
Pi+1v(0∼qi+1−1)

i+1

−
i

∑
k=1

(
v(0∼qk−1)

k

)⊤
Pk

〈
v(0∼qk−1)

k

〉γ

+qi

qi

∑
k=1

l2
i,k

4
(21)

The n-th step: For brevity, we omit similar steps here,
and the n-th step can be derived

v(qn)
n =S(qn)

n −ξ
(qn)
n

= fn +gnu− x(qn)
nc −ξ

(qn)
n (22)

One has the closed-loop subsystem by substituting related
control law (10) into (22)

v(qn)
n =−A0∼qn−1

n v(0∼qn−1)
n −A0∼qn−1

n Φ
−1
n

〈
v(0∼qn−1)

n

〉γ

+
qn

∑
k=1

ln,ksign
(

ξ
(k−1)
n

)
. (23)

The dynamics of the system described above can be refor-
mulated as follows:

v̇(0∼qn−1)
n =Φnv(0∼qn−1)

n −
〈

v(0∼qn−1)
n

〉γ

+

[
0(qn−1)×1

∑
qn
k=1 ln,ksign

(
ξ
(k−1)
n

) ] . (24)
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Define

Vn =Vn−1 +
1
2

(
v(0∼qn−1)

n

)⊤
Pnv(0∼qn−1)

n .

According to the Lemma 1, equations (5) and (24), one has

V̇n =V̇n−1 −
µn

2

(
v(0∼qn−1)

n

)⊤
Pnv(0∼qn−1)

n

−
(

v(0∼qn−1)
n

)⊤
Pn

〈
v(0∼qn−1)

n

〉γ

+
(

v(0∼qn−1)
n

)⊤
PnL

qn

∑
k=1

ln,ksign
(

ξ
(k−1)
n

)
. (25)

By using equation (15), V̇n is derived as

V̇n ≤V̇n−1 −
1
2
(µn −2λmax (Pn))

(
v(0∼qn−1)

n

)⊤
Pnv(0∼qn−1)

n

−
(

v(0∼qn−1)
n

)⊤
Pn

〈
v(0∼qn−1)

n

〉γ

+qn

qn

∑
k=1

l2
n,k

4

≤− 1
2
(µ1 −4λmax (P1))

(
v(0∼q1−1)

1

)⊤
P1v(0∼q1−1)

1

− 1
2

n−1

∑
k=2

(
µk −4λmax (Pk)−

g2
k−1

2λmin (Pk)

)

×
(

v(0∼qk−1)
k

)⊤
Pkv(0∼qk−1)

k − 1
2
(µn −2λmax (Pn))

×
(

v(0∼qn−1)
n

)⊤
Pnv(0∼qn−1)

n −
n−1

∑
k=1

(
v(0∼qk−1)

k

)⊤
×Pk

〈
v(0∼qk−1)

k

〉γ

+
n

∑
i=1

(
qi

qi

∑
k=1

l2
i,k

4

)
. (26)

Then, the following inequality holds

n

∑
i=1

(
v(0∼qi−1)

i

)⊤
Pi

〈
v(0∼qi−1)

i

〉γ

≥
n

∑
i=1

λmin (Pi)

λmax

(
P

1+γ

2
i

) ((v(0∼qi−1)
i

)⊤
Pi

(
v(0∼qi−1)

i

)) 1+γ

2

=λ̄P

n

∑
i=1

(
2

1
2

(
v(0∼qi−1)

i

)⊤
Pi

(
v(0∼qi−1)

i

)) 1+γ

2

≥2
1+γ

2 λ̄P

(
n

∑
i=1

1
2

(
v(0∼qi−1)

i

)⊤
Pi

(
v(0∼qi−1)

i

)) 1+γ

2

=2
1+γ

2 λ̄PV
1+γ

2
n (27)

where λ̄P = mini
λmin(Pi)

λmax

(
P

1+γ

2
i

) with i = 1,2, . . . ,n.

By substituting (27) into (26), it follows that

V̇n ≤− 1
2
(µ1 −4λmax (P1))

(
v(0∼q1−1)

1

)⊤
P1v(0∼q1−1)

1

− 1
2

n−1

∑
k=1

(
µk −4λmax (Pk)−

g2
k−1

2λmin (Pk)

)

×
(

v(0∼qk−1)
k

)⊤
Pkv(0∼qk−1)

k

− 1
2
(µn −2λmax (Pn))

(
v(0∼qn−1)

n

)⊤
Pnv(0∼qn−1)

n

−2
γ+1

2 λ̄PV
γ+1

2
n +

n

∑
i=1

(
qi

qi

∑
k=1

l2
i,k

4

)
.

≤−κ1Vn −κ2V
γ+1

2
n + c (28)

where

κ1 = min
2≤i≤n−1

(µ1 −4λmax (P1) ,µn −2λmax (Pn) ,

µi −4λmax (Pi)−g2
i−1/(2λmin (Pi))

)
,

κ2 =2
γ+1

2 λ̄P,

c =
n

∑
i=1

(
qi

qi

∑
k=1

l2
i,k

4

)
.

Since the eigenvalues of Φi can be arbitrarily assigned by
selecting the proper a0∼η i

i , then we can choose a proper µi to
guarantee that κ1 is a positive constant. According to Lemma
4, we obtain that vi converges to

vi ≤ min


√

2c
λmin (Pi)(1−θ0)κ1

,

√
2

λmin (Pi)

(
c

(1−θ0)κ2

) 2
γ+1


(29)

in finite-time

T1 ≤max

 1

θ0κ1

(
1− 1+γ

2

) ln
θ0κ1V 1− 1+γ

2 (t0)+κ2

κ2
,

1

κ1

(
1− 1+γ

2

) ln
κ1V 1− 1+γ

2 (t0)+θ0κ2

θ0κ2

 .

where 0 < θ0 < 1.
Then, we prove that the compensating signals are bounded

and convergent a disc region in finite-time. Define the fol-
lowing Lyapunov function

Vξ =
1
2

n

∑
i=1

(
ξ
(0∼qi−1)
i

)⊤
Piξ

(0∼qi−1)
i . (30)

According to the Lemma 1, equations (11) and (12), it fol-
lows that

V̇ξ =− 1
2

n

∑
i=1

µi

(
ξ
(0∼qi−1)
i

)⊤
Piξ

(0∼qi−1)
i

+
n

∑
i=1

(
ξ
(0∼qi−1)
i

)⊤
Pi

[
0(qn−1)×1

giξi+1 −∑
qi
k=1 li,ksign

(
ξ
(k−1)
i

) ]

+
n−1

∑
i=1

(
ξ
(0∼qi−1)
i

)⊤
Pi

[
0(qn−1)×1

gi
(
x(i+1)c −αi

) ] . (31)
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Based on Young’s inequality, one has(
ξ
(0∼qi−1)
i

)⊤
Pi

[
0(qn−1)×1

giξi+1

]
≤λmax (Pi)

(
ξ
(0∼qi−1)
i

)⊤
Piξ

(0∼qi−1)
i

+
g2

i
4λmin (Pi+1)

(
ξ
(0∼qi+1−1)
i+1

)⊤
Pi+1ξ

(0∼qi+1−1)
i+1 , (32)

n−1

∑
i=1

(
ξ
(0∼qi−1)
i

)⊤
Pi

[
0(qn−1)×1

gi
(
x(i+1)c −αi

) ]
≤

n−1

∑
i=1

(
ξ
(0∼qi−1)
i

)⊤
Pi

[
0(qn−1)×1
|gi|∆0

]
≤

n−1

∑
i=1

λmax (Pi)
(

ξ
(0∼qi−1)
i

)⊤
Piξ

(0∼qi−1)
i

+(n−1)
n−1

∑
i=1

|gi|2 ∆2
0

4
, (33)

and it directly derives that

−
n

∑
i=1

(
ξ
(0∼qi−1)
i

)⊤
Pi

[
0(qn−1)×1

∑
qi
k=1 li,ksign

(
ξ
(k−1)
i

) ]

=−
n

∑
i=1

(
ξ
(0∼qi−1)
i

)⊤
PiL
[
li,1 · · · li,qi

]
×
[
sign(ξi) · · · sign

(
ξ
(qi−1)
i

)]⊤
≤−

n

∑
i=1

εPP⊤
iL PiL

1

λmax

(
P

1
2

i

) ((ξ
(0∼qi−1)
i

)⊤
Pi

(
ξ
(0∼qi−1)
i

)) 1
2

≤− λ̃Plmin

n

∑
i=1

√
2
(

1
2

(
ξ
(0∼qi−1)
i

)⊤
Piξ

(0∼qi−1)
i

) 1
2

≤−
√

2λ̃Plmin

(
n

∑
i=1

1
2

(
ξ
(0∼qi−1)
i

)⊤
Piξ

(0∼qi−1)
i

) 1
2

=−
√

2λ̃PlminV
1
2

ξ
(34)

where εP > 0, λ̃P = mini
1

λmax

(
P

1
2

i

) , εPPiL =

[
li,1 · · · li,qi

]⊤ and lmin = mini εPP⊤
iL PiL. Above all,

it follows that

V̇ξ ≤− 1
2

n

∑
i=1

µi

(
ξ
(0∼qi−1)
i

)⊤
Piξ

(0∼qi−1)
i −

√
2λ̃PlminV

1
2

ξ

−2λmax (Pi)
n

∑
i=1

(
ξ
(0∼qi−1)
i

)⊤
Piξ

(0∼qi−1)
i +

n−1

∑
i=1

|gi|2 ∆2
0

4

≤− 1
2

n−1

∑
i=1

(µi−4λmax (Pi))
(

ξ
(0∼qi−1)
i

)⊤
Piξ

(0∼qi−1)
i

− 1
2
(µn−2λmax (Pn))

(
ξ
(0∼qn−1)
n

)⊤
Pnξ

(0∼qn−1)
n

−
√

2λ̃PlminV
1
2

ξ
+(n−1)

n−1

∑
i=1

|gi|2 ∆2
0

4

≤−κξ 1Vξ −κξ 2V
1
2

ξ
+cξ (35)

where

κξ 1 = min
1≤i≤n−1

(µi −4λmax (Pi) ,µn−2λmax (Pn)) ,

κξ 2 =
√

2λ̃Plmin,

cξ =(n−1)
n−1

∑
i=1

|gi|2 ∆2
0

4
.

According to Lemma 4, we obtain that ξi convergence to

ξ i ≤ min


√

2cξ

λmin (Pi)(1−θ0)κξ 1
,

√√√√ 2
λmin (Pi)

(
cξ

(1−θ0)κξ 2

)2


(36)
in finite-time

T2 ≤max

{
2

θ0κξ 1
ln

θ0κξ 1V
1
2 (t0)+κξ 2

κξ 2
,

2
κξ 1

ln
κξ 1V

1
2 (t0)+θ0κξ 2

θ0κξ 2

}
.

where 0 < θ0 < 1.
From equation (13), we have

|S1| ≤ |v1|+ |ξ1| , (37)

so we can conclude that the output tracking error can be re-
duced to a disc region in finite-time.
4 Illustrative simulations

Consider the following dynamics of the electromechanical
system: {

Mq̈+Bq̇+N sin(q) = I
Lİ +RI +KBq̇ =V, (38)

where the definitions of q, I, V , L, R, KB, ∆(t), M, B, N, and
their value are given in [16, 20].

Comparatively, when contrasted with the conventional
method that transforms system (38) into a first-order state
space, this proposed HOFTCFB scheme offers a direct de-
sign approach. We express (38) in the form of (1) by desig-
nating x1 = q, x2 = I, and u =V as follows: ẍ1 = f1

(
x(0∼1)

1

)
+g1

(
x(0∼1)

1

)
x2

ẋ2 = f2

(
x(0∼qk−1)

k |k=1∼2

)
+g2

(
x(0∼qk−1)

k |k=1∼2

)
u

where f1 =− B
M ẋ1 − N

M sin(x1), f2 =−R
L x2 − KB

L ẋ1, g1 =
1
M ,

and g2 =
1
L .

This scheme aims to facilitate the tracking of the link
angular position to its desired trajectory x1c = 0.5sin(t) +
0.5sin(0.5t) by designing the input control voltage. The
simulation parameters are set as follows: λ1,0 = 450, λ1,1 =
8000, ψ1,0 (0) = ψ1,1 (0) = 10, γ = 3/5, A0∼1

1 =
[
120 22

]
,

A2 = 60, P1 = 10−5 ×
[

273558/5 31118/91
31118/91 26091/58

]
, P2 = 1.

Moreover, the simulation is initialized with x1 (0) = ẋ1 (0) =
x2 (0) = 0.5, x2c (0) = 10. The tracking performance and in-
put control voltage of the proposed HOFTCFB scheme are
depicted in Figs.1. The first and second subfigure of Fig.1
illustrates that the proposed HOFTCFB scheme fast and ac-
curately achieves the trajectory tracking in finite-time. The
third subfigure of Fig.1 shows that only a small control en-
ergy is needed to achieve the trajectory tracking.
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Fig. 1: Tracking performance and input control voltage of
the proposed HOFTCFB scheme

5 Conclusion

This paper has proposed a new HOFTCFB scheme for
finite-time tracking control of a class of HOFASFSs. The
proposed HOFTCFB scheme induces a finite-time high-
order Levant differentiator in the control system of each
of the subsystems, guaranteeing “explosion of complexity”
avoidance by estimating high-order derivatives of the vir-
tual control law. By introducing finite-time error compen-
sation signals, we have derived that the impact of the un-
achieved portion between the estimated virtual control and
the actual virtual control can be minimized. Moreover, we
have shown that the proposed scheme achieves the advan-
tages of reducing backstepping steps and finite-time con-
vergence simultaneously based on the HOFA system ap-
proaches. The theoretical analysis has shown that the closed-
loop system achieves finite-time convergence and uniform
ultimate boundedness under the proposed scheme. Future
directions will focus on fixed-time or prescribed-time con-
vergence under various uncertainties.

References
[1] G.-R. Duan. High-order fully actuated system approaches:

Part I. Models and basic procedure. International Journal of
Systems Science, 52(2), pp. 422–435, 2021.

[2] G.-R. Duan. Substability and substabilization: Control of sub-
fully actuated systems. IEEE Transactions on Cybernetics,
53(11), pp. 7309–7322, 2023.

[3] Y. Yu, G.-P. Liu, Y. Huang, and J. M. Guerrero. Coordi-
nated predictive secondary control for DC microgrids based
on high-order fully actuated system approaches. IEEE Trans-
actions on Smart Grid, 15(1), pp. 19–33, 2024.

[4] L. Zhang, L. Zhu, and C. Hua. Practical prescribed time con-
trol based on high-order fully actuated system approach for
strong interconnected nonlinear systems. Nonlinear Dynam-
ics, 110(4), pp. 3535–3545, 2022.

[5] C. Liu, X. Liu, H. Wang, Y. Zhou, and C. Gao. Adaptive

control for unknown hofa nonlinear systems without over-
parametrization. International Journal of Robust and Non-
linear Control, 33(6), pp. 3640–3660, 2023.

[6] N. Wang, X. Liu, C. Liu, and H. Wang. Weak disturbance de-
coupling of high-order fully actuated nonlinear systems. In-
ternational Journal of Robust and Nonlinear Control, 34(3),
pp. 1971–2012, 2024.

[7] Y. Wang, G. Duan, and P. Li. Event-triggered adaptive sliding
mode control of uncertain nonlinear systems based on fully
actuated system approach. IEEE Transactions on Circuits and
Systems II: Express Briefs, 2024.

[8] R. Freeman and P. V. Kokotovic. Robust Nonlinear Control
Design: State-Space and Lyapunov Techniques. Springer Sci-
ence & Business Media, 1996.

[9] M. Krstic, P. V. Kokotovic, and I. Kanellakopoulos. Nonlinear
and Adaptive Control Design. John Wiley & Sons, Inc., 1995.

[10] X. Zheng, X. Yu, J. Jiang, and X. Yang. Practical finite-
time command filtered backstepping with its application to
DC motor control systems. IEEE Transactions on Industrial
Electronics, 71(3), pp. 2955–2964, 2024.

[11] C. Xin, Y.-X. Li, and Z. Hou. Finite time adaptive learning for
tracking control of constraint nonlinear systems via command
filtered output feedback. International Journal of Robust and
Nonlinear Control, 33(7), pp. 4076–4097, 2023.

[12] W. Yang, G. Cui, Q. Ma, J. Ma, and C. Tao. Finite-time adap-
tive event-triggered command filtered backstepping control
for a quav. Applied Mathematics and Computation, 423, p.
126898, 2022.

[13] Y.-X. Li. Finite time command filtered adaptive fault tolerant
control for a class of uncertain nonlinear systems. Automat-
ica, 106, pp. 117–123, 2019.

[14] J. Yu, P. Shi, and L. Zhao. Finite-time command filtered back-
stepping control for a class of nonlinear systems. Automatica,
92, pp. 173–180, 2018.

[15] W. Liu, G.-R. Duan, and M. Hou. High-order robust com-
mand filtered backstepping design for strict-feedback sys-
tems: A high-order fully-actuated system approach. Interna-
tional Journal of Robust and Nonlinear Control, 32(18), pp.
10251–10270, 2022.

[16] W. Liu, G.-R. Duan, and M. Hou. High-order command
filtered adaptive backstepping control for second- and high-
order fully actuated strict-feedback systems. Journal of the
Franklin Institute, 360(6), pp. 3989–4015, 2023.

[17] W. Liu, G.-R. Duan, and M. Hou. Concurrent learning adap-
tive command filtered backstepping control for high-order
strict-feedback systems. IEEE Transactions on Circuits and
Systems I: Regular Papers, 70(4), pp. 1696–1709, 2023.

[18] G.-R. Duan. High-order fully actuated system approaches:
Part III. Robust control and high-order backstepping. Interna-
tional Journal of Systems Science, 52(5), pp. 952–971, 2021.

[19] A. Levant. Higher-order sliding modes, differentiation and
output-feedback control. International Journal of Control,
76(9-10), pp. 924–941, 2003.

[20] Y. Pan and H. Yu. Dynamic surface control via singular per-
turbation analysis. Automatica, 57, pp. 29 – 33, 2015.

109  



Operational Flexibility Enhancement with Aggregated Electric
Vehicles based on Virtual Energy Storage Model
Shiwei Chen1, Hongfei Lang1, Muchun Wan*2, Junjun Du1, Feng Bao1, Guangchao Geng2

1. Fuyang Rongda Complete-Set Electric Equipmnent Manufacturing Branch of Hangzhou Power Equipment Manufacturing Co., Ltd.,
Hangzhou 311400, P. R. China

2. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
E-mail: muchunwan@zju.edu.cn

Abstract: Distribution network (DN) operational flexibility refers to the adaptability of DNs to uncertainties in sources and
loads, which is directly related to the reliability and economics of power supply. With the large-scale integration of distributed
energy resources (DERs) into DNs, higher requirements are placed on the operational flexibility. As an important load component
in DNs, the optimal control of electric vehicles (EVs) is the crucial mean to improve operational flexibility. However, optimizing
the charging and discharging power of a large number of EVs requires a significant amount of computation time, making real-
time control of EVs difficult. Therefore, this paper aggregates a large number of EVs based on a virtual energy storage model
(VESM), and proposes an optimization method for the VESM to obtain its controllable power and capacity limits. In order to
reduce computation time, an online tracking method of the controllable power and capacity without re-solving the optimization
model is proposed. Finally, the effectiveness of the VESM and proposed online tracking method are verified in both residential
and workplace area by case studies.

Key Words: Electric vehicles, Operational flexibility, Online tracking, Virtual energy storage model

1 Introduction

Energy is the everlasting cornerstone of modern society.
In recent years, with the gradual depletion of fossil fuels
and global advocacy for decarbonization, renewable energy
has been vigorously promoted. According to data from [1],
the proportion of wind and solar power in the world’s total
electricity generation has risen from 10% in 2021 to 12%
in 2022. Renewable energy has changed the pattern of cen-
tralized power supply in traditional power systems, with an
increasing number of renewable energy sources being in-
tegrated as distributed energy resources (DERs) into low-
voltage distribution networks (DNs), with rooftop solar pan-
els being a typical example [2]. According to the “REPow-
erEU Plan” proposed by the European Union, it is expected
that rooftop solar panels can meet nearly 25% of Europe’s
power consumption in the future [3].

However, as DERs rapidly integrates into DNs, it brings
about challenges to the operational flexibility. For DNs,
DERs have multiple uncertainties such as power, quantity
and location, which may pose new challenges to operational
management and safety stability [4]. Electric vehicles (EVs),
as an important component of loads in DNs, optimizing and
controlling their charging and discharging power is an im-
portant mean to improve the operational flexibility of DNs.

In recent years, the development of EVs has been rapid.
According to data from [5], EV sales surpassed 10 million in
2022, with an anticipated increase to 14 million by the end of
2023. Against the backdrop of a large number of EVs being
connected to the DNs, the uncontrolled peak load caused by
their charging behavior is likely to exceed the transformer
capacity, posing a threat to the safe operation of the DNs
[6]. Therefore, how to aggregate and control the charging
and discharging power of EVs has become a key factor in

This work is supported by Fuyang Rongda Complete-Set Electric
Equipmnent Manufacturing Branch of Hangzhou Power Equipment Man-
ufacturing Co., Ltd. (YF231701)

improving the operational flexibility of DNs.
Currently, there are numerous researches on enhancing the

operational flexibility of DNs through the aggregated control
of EVs. Reference [7] investigated the optimization of EVs
charging to improve the voltage distribution in low-voltage
DNs and enhance their operational flexibility. Similarly, ref-
erence [8] explored the optimization of voltage distribution
in medium-voltage DNs by incorporating photovoltaic gen-
erators and EVs charging stations. The effectiveness of the
approach was demonstrated using the 123-bus test feeder. In
the context of large-scale EVs integration into DNs, refer-
ence [9] proposed a robust operation method to mitigate the
adverse effects brought about by the integration of a large
number of EVs, thus improving the operational flexibility of
the DNs. Furthermore, reference [10] provided a compre-
hensive review of EVs’ participation in enhancing the oper-
ational flexibility of DNs from technical, economic, regula-
tory and user perspectives. It also presentd a potential value
framework for implementation.

However, existing research has proposed optimal control
methods for aggregated EVs, but lacks the establishment of
a unified aggregated EVs model to enhance the operational
flexibility of the DNs, and also lacks consideration for long
computation time. To address these issues, this paper pro-
poses an aggregated real-time tracking control method for
large numbers of EVs based on virtual energy storage model
(VESM). Firstly, a VESM consists of aggregated EVs is pro-
posed to obtain the overall controllable power and capac-
ity. Considering the presence of large numbers of EVs in the
VESM, each optimization process takes a significant amount
of time, making real-time tracking difficult. Therefore, a on-
line tracking method is proposed. This method allows for
online tracking of the controllable power and capacity of the
VESM without re-solving the optimization model, thereby
reducing the computation time. Finally, the proposed VESM
and online tracking method are validated by using real data
cases. The results of the case study demonstrate that the
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proposed VESM and online tracking method can effectively
calculate the controllable power and capacity while signif-
icantly reducing the computation time. The main contribu-
tion of this paper are summarized as follows:

• A VESM-based aggregated control optimization model
for EVs is proposed, which can accurately calculate the
controllable power and capacity under the current state,
providing a basis for optimal control of EVs.

• An online tracking method is proposed, which can cal-
culate the real-time controllable power and capacity
without re-solving the optimization model, thereby re-
ducing the computation time.

The rest of the paper is organized as follows: Section 2
proposes an aggregated EVs optimization model based on
VESM to obtain its controllable power and capacity. Sec-
tion 3 proposes an online tracking method, which can pro-
vide real-time tracking of the controllable power and capac-
ity of the VESM. Section 4 validates the effectiveness of the
VESM and online tracking method through real data cases.
Section 5 summarizes the paper.

2 Virtual Energy Storage Model

In this section, a VESM consists of aggregated EVs is pro-
posed. According to the mathematical model of VESM, the
optimization model can be solved to obtain the upper and
lower limits of the controllable power and capacity under
the specific time.

2.1 Concept
Under common circumstances, the charging time of EVs

probably exceeds their actual charging requirement, allow-
ing for flexible adjustment of the charging load [11]. The
emergence of Vehicle-to-Grid (V2G) technology further en-
ables EVs to not only consume energy as a load but also
feed energy back into the grid. This dual characteristic of
electricity generation and consumption makes EVs capable
of being dispatched by the grid, akin to real energy storage,
hence referred to as VESM [12].

However, individual EV possesses limited control capa-
bilities over the grid. Therefore, in order to fully utilize
the energy storage characteristics of EVs during idle pe-
riods, it is necessary to aggregate a large number of EVs
through VESM to participate in the grid’s macroscopic con-
trol such as peak shaving, frequency regulation, load shifting
and power supply assurance [13].

In the VESM, EVs are considered as DERs that can func-
tion as battery storage devices for storing and releasing elec-
tricity. The advantages of the VESM lie in its flexibility and
scalability. However, due to the uncontrollability of individ-
ual EV’s behavior, there are uncertainties regarding the ca-
pacity and controllable power of VESM. For a VESM com-
posed of a large number of EVs, the power grid is concerned
with the overall controllable power and the state of charge
(SOC), rather than individually. The variations in the overall
charging and discharging power and SOC of the VESM can
be described as (1).

Ct
vesSOCt

ves = Ct−1
ves SOCt−1

ves +
(
P t−1
ch − P t−1

dh

)
∆T (1)

where, for a VESM, Ct
ves represents the capacity at time t,

SOCt
ves represents the SOC at time t, P t

ch represents the

overall charging power at time t, P t
dh represents the overall

discharging power at time t, ∆T represents the time interval.

2.2 Mathematical Model
The mathematical model of VESM can be proposed. The

VESM consists of two levels of control, namely the overall
and individual levels. For the power grid, the overall level
is of concern, while for the EV owners, the individual level
is of concern. The VESM needs to achieve coordination be-
tween the overall and individual levels in order to meet the
needs of both parties.

From the overall level, the number of EVs in the VESM
may change at any time due to the arrival or departure of
EVs. Therefore, the capacity and SOC of the VESM will be
updated at time t when an EV arrives or departs. The up-
dating formula can be described as (2) and (3), and the over-
all charging and discharging power along with SOC changes
can be described as (1).

Ct
ves = Ct−1

ves +
At−1∑
i=1

Ct−1
i −

Dt−1∑
j=1

Ct−1
j (2)

Ct
vesSOCt

ves =Ct−1
ves SOCt−1

ves +
At−1∑
i=1

Ct−1
i SOCt−1

i

−
Dt−1∑
j=1

Ct−1
j SOCt−1

j

(3)

where, Ct−1
i represents the capacity of individual EV at time

t− 1, SOCt−1
i represents the SOC of individual EV at time

t − 1, At−1 represents the arrive car numbers at time t − 1,
Dt−1 represents the depart car numbers at time t− 1.

From the individual level, the overall charging and dis-
charging power of the VESM needs to be decomposed into
specific power values for each EV, while meeting the usage
requirements of each EV owner. Therefore, the power as-
signed to each EV needs to be calculated based on its specific
information. The charging power value for an individual EV
can be described as (4) and (5), and the discharging power is
similar.

P t
ch =

N∑
i=1

P i,t
ch (4)

min(P i,t
ch ) ≤ P i,t

ch ≤ max (P i,t
ch ) (5)

where, P i,t
ch represents the decomposed charging power of

individual EV at time t, min(P i,t
ch ) represents the mini-

mum limit charging power of individual EV at time t − 1,
max (P i,t

ch ) represents the maximum limit charging power of
individual EV at time t− 1.

It is worth noting that the maximum and minimum limit
of the charging and discharging power reflect the upper and
lower limits of the controllable power for the individual EV
at the current time, which can be aggregated to the control-
lable power and capacity of the overall VESM.

2.3 Controllable Power and Capacity
For the VESM, the controllable power and capacity rep-

resent its regulation ability at the moment, which is the most
concerned issue for the power grid. The controllable power
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and capacity of the VESM can also be divided into two lev-
els: the overall level and individual level.

For the overall level, the controllable power and capac-
ity are aggregated from each EV’s. Therefore, obtaining
the controllable power and capacity of each individual EV is
the key step. For each individual EV, its controllable power
and capacity at the current moment, while meeting the EV
owner’s usage requirements, can be modeled as an optimiza-
tion problem, which can be mathematically described as (6)
and (7). In this model, there are 5 constraints considered,
including the SOC safety constraint, the maximum and min-
imum charging or discharging power limits, the SOC change
limit and the owner’s target SOC requirement limit.

Flow = min
k∑

T=t

SOCt

Fup = max
k∑

T=t

SOCt

(6)

s.t.



SOCmin ≤ SOCt ≤ SOCmax

P t
chmin ≤ P t

chmax ≤ Pchmax

P t
dhmin ≤ P t

dh ≤ P t
dhmax

SOCt = SOCt−1 + (P t−1
ch − P t−1

dh )∆T/C

SOCk ≥ SOCtarget

(7)

where, Flow represents the objective function of lower con-
trollable power and capacity of individual EV, while Fup

represents the upper. t represents the current time, k rep-
resents the depart time, SOCtarget represents the owner’s
target SOC when departing.

Taking an individual EV at time t as example, the opti-
mization model described above is used to obtain its regu-
lation upper and lower limits that meet the owner’s require-
ments, as shown in Fig 1. By aggregating the regulation up-
per and lower limit curves of all EVs in the VESM, the over-
all regulation upper and lower limit curve can be obtained.

Fig. 1: The regulation limits of individual EV.

3 Online Tracking for Power and Capacity

In Section 2, a VESM consists of aggregated EVs is pro-
posed. However, when there are a large number of EVs in

the VESM, solving it requires a significant amount of time,
making it impractical to achieve real-time tracking of con-
trollable power and capacity [14]. To address this issue, Sec-
tion 3 proposes an online tracking method, which can greatly
reduce the computation time.

3.1 Theoretical Basis
The VESM is affected by various factors, including the

number of EVs, SOC, arrival and departure time. These fac-
tors are time variant, which leads to time variant control-
lable power and capacity of the VESM [15]. When there are
a large number of EVs, solving the optimization model at
each time step requires a significant amount of time.

To address the issue of long computation time, a novel
online tracking method based on optimal sensitivity is pro-
posed. The mathematical model of optimal sensitivity can
be referred to in [16]. With the optimal sensitivity df

dx , for
the time instant (t + ∇T ) in the vicinity of time t, its con-
trollable power and capacity do not need to be resolved, but
can be directly estimated by (8).

f (x+∆x) = f (x) +
df

dx
∆x (8)

where, f (x+∆x) represents the controllable power or ca-
pacity in the time (t+∇T ), while f (x) represents the value
in time t. df

dx represents the optimal sensitivity, ∆x repre-
sents the change of time variant factors.

By employing this online tracking method based on opti-
mal sensitivity, it is possible to achieve rapid optimization of
VESM with a large number of EVs connected, while sacri-
ficing a minimal amount of accuracy.

3.2 Online Tracking Method
Combining the VESM proposed in Section 2 with the op-

timal sensitivity proposed in Section 3, an online tracking
method can be proposed. This method aims to quickly cal-
culate the current controllable power and capacity of the
VESM with high accuracy.

Fig. 2: Online tracking method.
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When the time variant factors are below the update cri-
terion, the online tracking method is used for calculation.
When the time variant factors exceed the threshold of the
update criterion, it is necessary to resolve the optimization
model. This method can significantly reduce the number
of times the optimization model is solved, thereby reduc-
ing computation time. The flowchart of the online tracking
method is shown in Fig 2.

4 Case Study

This section validates the proposed VESM from Section
2 and the online tracking method proposed in Section 3 by
using real data cases.

4.1 Data Preparation
The data used in this case study is partially provided by the

power company of Hangzhou. The data includes the capac-
ity, maximum charging and discharging power, arrival time,
departure time, initial SOC and target SOC for each EV. The
data consists of 100 EVs and is recorded at a time interval
of 15 minutes. This representative dataset can accurately re-
flects the collective behavior of EVs.

4.2 Aggregated Results using VESM
For the VESM, it is necessary to analyze from both indi-

vidual and overall levels.
Firstly, the individual level analysis is focused. At any

given time t, the state of each EV needs to be solved by
an optimization model. Taking the i-th EV as an example,
it has a capacity of 60 kWh and a maximum charging and
discharging power of ±30 kW. At 20:00, its SOC is 0.4, with
an expected departure time the next day at 8:00 and a target
SOC of 0.9. Therefore, for this specific time, the controllable
power and capacity of the i-th EV are illustrated in Fig 3.

Fig. 3: Controllable power and capacity of individual EV.

It is worth noting that the controllable power and capacity
curve in Fig 3 is only applicable to the i-th EV at that par-
ticular time 8:00. In subsequent time intervals, recomput-
ing the optimization model based on the actual conditions is
necessary. This requirement holds true for each EV and ev-
ery time interval within the VESM, resulting in a significant
computation burden.

Next, the overall level analysis is focused. In fact, the con-
trollable power and capacity at the overall level are similar to
the individual level. Considering that the charging and dis-
charging power of each EV can be independently controlled,
the controllable power and capacity at the overall level rep-

resent the sum of all individual EVs within the VESM. For
a specific time interval, the controllable power and capac-
ity for the entire day are illustrated in Fig 4. Similarly, this
curve is only valid for that specific time interval, and subse-
quent time intervals require recalculations.

Fig. 4: Controllable power and capacity of aggregated EVs.

The behavior of EVs is closely related to the daily rou-
tines of residents. By analyzing Fig 4, it can be observed
that the controllable power and capacity of the VESM start
to increase around 18:00, reach peak during the early hours
of 4:00 and gradually decrease around 8:00 the next day.
This pattern can be explained by the fact that this particular
day represents a typical workday, and most residents return
to their community after 18:00. As a result, the majority
of EVs are already fully charged during the early morning
hours, leading to the peak in controllable power and capac-
ity. The following morning, when residents have to go to
work, a significant number of EVs leave, causing a decrease
in controllable power and capacity.

The middle curve in the Fig 4 (a) represents the real con-
trol power exerted by the power grid. This control power
and capacity are subject to real-time variations, necessitating
the real-time solution of an optimization model. In this case
study, which involves 100 EVs, the average solving time is
7.82 seconds. However, during the early morning period
when a large number of EVs are optimized, the solving time
may reach its maximum at 31.27 seconds, posing challenges
for real-time tracking of the controllable power and capacity
of the VESM.

4.3 Online Tracking Results 1: Residential Area
In order to address the issue of long optimization model

solving time in the context of a large number of EVs being
connected, an online tracking method, as proposed in Sec-
tion 3, is employed for analysis by using this case study in
residential area.

For this case study, time variant factors include the SOC
for each EV in the aggregated model. After multiple exper-
iments, it was determined that a preferable update criterion
is SOC(t + 1) − SOC(t) ≤ 5%. Under this update cri-
terion, the VESM’s controllable power and capacity upper
or lower limit curves are shown in Fig 5, obtained by using
the online tracking method and point-to-point optimization
method respectively.

Based on the analysis of Fig 5, it can be observed that
the controllable power and capacity upper or lower limit
curves obtained from the online tracking method are close to
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Fig. 5: Online correction results 1.

those obtained from the point-to-point optimization method,
which demonstrates the accuracy of the online tracking
method. By employing the online tracking method, the max
computation time during the large-scale EVs charging at
early morning can be reduced from 31.27 seconds to 7.99
seconds, and the overall computation time can be reduced
from 1501.44 seconds to 368.53 seconds, while ensuring the
accuracy. The computation time comparison between the
online tracking method and the point-to-point optimization
method is presented in Table 1.

Table 1: Computation time comparison 1.

Approach Max Computation Time Counts Total Time

Point-to-Point 31.27s 4732 1501.44s
Online Tracking 7.99s 557 368.53s

It is evident that the counts for solving the optimization
model by using the online tracking method is much less
than the point-to-point optimization method, resulting in a
407.88% increase in the overall computation speed.

4.4 Online Tracking Results 2: Workplace Area
The locations where aggregated EVs participate in power

grid regulation are diverse. In addition to the residential area
mentioned in Section 4.3, the workplace is also a hotspot for
idle EVs participation in the VESM. EV owners typically
commute to their workplaces in the morning and return home
in the evening. In this scenario, EVs also experience long
periods of idle time and should therefore be included as case
study for analysis.

For this case in the workplace area, the controllable power
and capacity of the VESM, as well as the performance of on-
line tracking, are shown in Fig 6. The comparison of com-
putation time between the online tracking method and the
point-to-point optimization method is presented in Table 2.

As can be seen, the controllable power and capacity of the
VESM increase around 8:00, reach their peak around 12:00,
and decrease around 18:00. Similarly, this is closely related
to the behavior of EV owners. For the workplace area, EV
owners typically commute to work in the morning and return
home in the evening.

Fig. 6: Online tracking results 2.

From Table 2, it can be observed that by employing the
online tracking method proposed in Section 3, the maximum
computation time of VESM is reduced from 30.68 seconds
to 5.08 seconds. The number of solving the optimization
model is decreased from 4152 to 175, and the total com-
putation time is reduced from 1248.84 seconds to 116.38
seconds. This case study conducted in the workspace fur-
ther demonstrate the accuracy and effectiveness of the online
tracking method.

Table 2: Computation time comparison 2.

Approach Max Computation Time Counts Total Time

Point-to-Point 30.68s 4152 1248.84s
Online Tracking 5.08s 175 116.38s

5 Conclusion

Based on the background that the operation flexibility of
the DNs is affected by the large-scale access of DERs, this
paper aims to improve the operation flexibility of the DNs
by aggregating EVs for regulation.

First, a VESM consists of aggregated EVs is proposed,
which is mathematically modeled at both the overall and in-
dividual levels to obtain its controllable power and capacity.
However, when the number of EVs in VESM is large, the op-
timization model has long solution time and cannot achieve
real-time tracking of the controllable power and capacity.

Furthermore, to address the problem of long computa-
tion time, a online tracking method is proposed. Then, the
flowchart of online tracking method is presented.

Finally, the effectiveness of the proposed VESM and on-
line tracking method is validated by using real data from both
residential area and workplace area. It can achieve online
tracking of the controllable power and capacity of the VESM
in short time with high accuracy, provide basis for the regu-
lation of DNs, and thus improve the operation flexibility.
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Abstract: This paper focuses on the trajectory tracking control of a multi-degree-of-freedom manipulator system. Firstly, the
actuator model is introduced into the manipulator system to generate a cascaded system , so as to avoid the negative impact of
control for the actuator itself on the tracking accuracy of the system. Then, the trajectory tracking controller is designed based on
the high-order fully actuated (HOFA) system approach to make the manipulator reach the desired position with high accuracy.
Then, a universal nonlinear disturbance observer (UNDO) designed to compensate for the internal and external uncertainty
in practical manipulator systems. Finally, a tracking differentiator (T-D) is employed to obtain the acceleration signal of the
manipulator, avoiding the use of expensive acceleration sensors in the construction of the trajectory tracking controller and
nonlinear disturbance observer. Simulation results reveal the effectiveness of the proposed method.

Key Words: High-order systems, fully-actuated systems, parametric approaches, fully-measured systems, disturbance observer

1 Introduction

With the development of the robotics industry, robotic
manipulators have been applied in various fields, including
industrial production, healthcare, military, aerospace, and
more[1–3]. However, due to strong coupling, nonlinearity,
and the presence of internal and external uncertainties in
robotic manipulator systems, it is difficult to build an ac-
curate dynamic model for the manipulator. Consequently,
controlling robotic manipulator systems poses a significant
challenge. To ensure precise trajectory tracking by robotic
manipulators, the development of advanced control methods
for robotic manipulator systems is essential.

The trajectory tracking accuracy of a robotic arm re-
flects its overall performance to a certain extent. In or-
der to enable it to smoothly and precisely track the de-
sired operational trajectory, various relevant control meth-
ods have been proposed to address the dynamic and steady-
state performance requirements of the robotic manipulator
under different conditions. For the trajectory tracking con-
trol of robotic arms, commonly used methods include PID
control[4], adaptive control[5], sliding mode control[6], neu-
ral network control[7], and fuzzy control[8]. PID control
is a model-independent control method, which is simple to
design, but it is difficult to meet the performance require-
ments of the robotic manipulator system, whereas the model-
dependent control method generally adopts the first-order
state-space model as the object of study, and the control ac-
curacy can meet the requirements of the system, but due to
the complexity of the dynamics model of the robotic manip-
ulator, the control rate obtained by this type of method may
be more complicated. Based on the above considerations,
this paper chooses the high-order fully actuated system ap-
proach proposed in the recent series of papers[9–18]for the
controller design of the robotic manipulator system.

The high-order fully actuated system approach has at-
tracted significant attention since its introduction. For ex-
ample, the reference [19] studied the attitude tracking con-
trol for spacecraft by fully-actuated system approach. In
[20], a design method for an angular acceleration observer
is proposed based on the high-order fully actuated system

approach. In [21], the fully actuated mathematical model of
the LCL grid-connected inverter is established, and its con-
trol strategy is derived. There is relatively limited research
on controlling robotic manipulator based on the fully actu-
ated system approach. Therefore, the main contributions of
this paper lie in the design of a universal nonlinear distur-
bance observer and a trajectory tracking controller within
the framework of the high-order fully actuated system ap-
proach. This enables the cascaded system composed of the
robotic manipulator and the actuator to accurately track the
target trajectory. Additionally, a tracking differentiator is in-
troduced to facilitate the acquisition of the acceleration sig-
nal in the robotic manipulator system.

The organization of this paper is as follows. The cascaded
system model of the actuator and manipulator is given in
Section 2. A trajectory tracking controller is designed based
on the high-order fully actuated system approach in Section
3. In the following chapter, a universal nonlinear disturbance
observer and a tracking differentiator are designed. Section
5 shows the effectiveness of the proposed design method by
performing simulations on a two-link robotic manipulator.
Finally, the conclusion is presented in the last section.

2 Modeling of Cascaded Systems

In this section, a cascaded model of a n-DOF manipulator
is established[22].

2.1 Dynamic Model of the Manipulator
The dynamic model of the n-DOF manipulator is as fol-

lows

M(q(t))q̈(t) +C(q(t), q̇(t))q̇(t) +G(q(t)) = τ(t) + τd(t),
(1)

where τ(t) ∈ Rn is the control vector produced by the mo-
tors at the joint, q(t) ∈ Rn, q̇(t) ∈ Rn and q̈(t) ∈ Rn rep-
resent the position, velocity, and acceleration vectors of each
joint, respectively. M(q(t)) ∈ Rn×n is the symmetric and
positive definite robot inertia matrix, C(q(t), q̇(t)) ∈ Rn×n

comprises the Coriolis and centrifugal effects, and G(q(t))
is the gravity vector. The vector τd(t) denotes the unknown
bounded disturbance.
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2.2 Actuator Model
The model of the actuator can be expressed by the follow-

ing first-order model

τ̇(t) = f (τ(t), t) + u(t), (2)

where τ(t) represents the actuator’s output torque vector,
f(τ(t), t) denotes some vector function of dimension n, and
u(t) is the driving control vector, which is often a voltage
vector. In many cases, the above model can be replaced with
the linear one

τ̇(t) = Aaτ(t) + u(t), (3)

with Aa, being coefficient matrice of dimension n× n.
A typical approach to realizing control of the cascaded

system is to first reduce the system into a first-order state
space form and then apply control techniques to the first-
order system. Eventually, a first-order system of dimension
3n needs to be dealt with. In contrast to this, in this paper we
apply the high-order fully actuated(HOFA) system approach.
For simplicity, the first-order linear model (3) is used in this
paper.

2.3 Integrated High-order Model
Differentiate the dynamic model (1) of the n-DOF manip-

ulator with respect to both ends and combine Equation (3),
we can obtain the following third-order model for the cas-
caded system:

A3(q, q̇, q̈)
...
q (t) +A2(q, q̇, q̈)q̈(t) +A1(q, q̇, q̈)q̇(t)

+A0(q, q̇, q̈)q(t) = u(t) + d(t),
(4)

where
A3(q, q̇, q̈) = M(q(t)), (5)

A2(q, q̇, q̈) =
dM(q(t))

dt
+C(q(t), q̇(t))−AaM(q(t)), (6)

A1(q, q̇, q̈) =
dC(q(t), q̇(t))

dt
−AaC(q(t), q̇(t)), (7)

A0(q, q̇, q̈) = 0, (8)

d(t) =
dτd(t)

dt
−Aaτd(t)−

dG(q(t))

dt
+AaG(q(t)). (9)

According to the theory of the high-order fully actuated
system, it can be concluded that the above cascaded system
model (4) satisfies the fully-actuated characteristic and can
be designed using the direct parameter method for controller.

3 Controller Design

Figure 1 shows the structure diagram of the third-order
fully actuated control system for the manipulator. As shown
in the figure, we design a controller which is composed of
two parts:

u = uc + uf ,

uc = −d(t),

uf = K0(q, q̇, q̈)q(t) +K1(q, q̇, q̈)q̇(t)

+K2(q, q̇, q̈)q̈(t) + v,

(10)

where uc is used to compensate for the influence of the sys-
tem modeling uncertainty and disturbance on the cascaded

Fig. 1: The structure diagram of the high-order control sys-
tem for the manipulator.

system, uf is feedback controller designed by the direct
parametric approach, Ki(q, q̇, q̈) ∈ Rn×n, i = 0, 1, 2 are the
feedback gains to be designed, and v is an external signal.

Applying this controller to the fully-actuated system (4),
the closed-loop system can be derived as follows:

A3 (q, q̇, q̈)
...
q (t) +Ac

2 (q, q̇, q̈) q̈(t)

+Ac
1 (q, q̇, q̈) q̇(t) +Ac

0 (q, q̇, q̈) q(t) = v,
(11)

where

Ac
i (q, q̇, q̈) = Ai(q, q̇, q̈)−Ki(q, q̇, q̈), i = 0, 1, 2. (12)

Transform the closed-loop system into first-order form :

Ẋ = AcX +Bcv, (13)

where
X =

[
qT q̇T q̈T

]T
, (14)

Ac =

 0 In 0
0 0 In

−A−1
3 Ac

0 −A−1
3 Ac

1 −A−1
3 Ac

2

 , (15)

Bc =

 0
0

A−1
3

 , (16)

and our design purpose is to ensure that the closed-loop sys-
tem attains the desired Jordan canonical form and character-
istic vector matrices.

Therefore, the controller uf is designed by the direct para-
metric approach as follows.

Given an arbitrarily chosen matrix F ∈ R3n×3n, there
exists a constant nonsingular matrix

V = V (Z,F ) =

 Z
ZF
ZF 2

 , (17)

such that,
V −1AcV = F. (18)

Where Z ∈ Rn×3n is an arbitrary parameter matrix which
makes the matrix V (Z,F ) nonsingular.

The feedback gains K0,K1,K2 are given by

Ki = Ai(q, q̇, q̈) +Gi(q, q̇, q̈), i = 0, 1, 2, (19)
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where Gi(q, q̇, q̈) ∈ Rn×n, i = 0, 1, 2,are defined by

A3(q, q̇, q̈)ZF 3V −1(Z,F )

= [G0(q, q̇, q̈) G1(q, q̇, q̈) G2(q, q̇, q̈)].
(20)

Thus, this direct parametric approach results in a constant
linear closed-loop system although the open-loop system is
highly nonlinear and the eigenstructure of the constant linear
closed-loop system (13) is determined by the matrix F .

4 Universal Nonlinear Disturbance Observer De-
sign

A disturbance observer for the manipulator is proposed as

˙̂
d(t) = −L[d̂(t)−A3(q, q̇, q̈)

...
q (t)−A2(q, q̇, q̈)q̈(t)

−A1(q, q̇, q̈)q̇(t)−A0(q, q̇, q̈)q(t) + u(t)]
(21)

where L ∈ Rn×n is a observer gain to be designed and d̂(t)
is the estimated disturbance of the disturbance observer.

According to the equation (21), the implementation of the
disturbance observer requires a three-order signal

...
q (t). To

avoid the measurement of the third-order signal
...
q (t), it is

possible to modify the disturbance observer as follows


z(t) = d̂(t)− LA3(q, q̇, q̈)q̈(t)

ż(t) = −LȦ3(q, q̇, q̈)q̈(t)− L[d̂(t)−A2(q, q̇, q̈)q̈(t)

−A1(q, q̇, q̈)q̇(t)−A0(q, q̇, q̈)q(t) + u(t)].
(22)

Define the error of the disturbance observer as

d̃(t) = d(t)− d̂(t), (23)

thus the differential equation of estimation error can be ex-
pressed as

˙̃
d(t) + Ld̃(t) = ḋ(t). (24)

The solution to Equation (24) is

d̃(t) = e−tLd̃(0) + e−tL

∫ t

0

exLḋ(x)dx, (25)

where e(. ) represents the exponential function and x repre-
sents the integral variable.

The stability of the UNDO is expressed by the following
lemma[23]. To simplify the proof for the following lemma,
we assume all the elements in L are nonnegative constants.

Lemma 1. Suppose that the derivative of the distur-
bance for the cascaded system (4) is bounded, that is,
|ḋi(t)| ≤ ¯̇

di (i = 1, . . . , n). By using the proposed UNDO
(11) and designing a positive definite matrix L, (1) the
estimation error d̃(t) is within the domain ∥d̃ (t) ∥ ≤
min{∥d̃ (0) ∥ + ∥L−1ḋmax∥, ∥d̂ (0) ∥ + 2∥dmax∥};(2)
the estimation error d̃(t) globally converges into
∥d̃ (t) ∥ ≤ min{∥L−1ḋmax∥, 2∥dmax∥}, where
ḋmax = [

¯̇
d1, . . . ,

¯̇
dn]

T and dmax = [d̄1, . . . , d̄n]
T.

Proof. From equation (24) or (25), we know that the esti-
mator is stable when L is a positive definite matrix. Further,

equation (26) can be deduced based on the relationship
expressed in equation (25).

∥d̃ (t) ∥ = ∥e−tLd̃ (0) + e−tL

∫ t

0

exLḋ (x) dx∥

≤ ∥e−tLd̃(0)∥+ ∥e−tL

[∫ t

0

exLdxL

]
L−1ḋmax∥

≤ ∥d̃ (0) ∥+ ∥e−tL

[∫ t

0

exLdxL

]
L−1ḋmax∥

= ∥d̃(0)∥+ ∥(I − e−tL)L−1ḋmax∥
≤ ∥d̃(0)∥+ ∥L−1ḋmax∥.

(26)
Sometimes the rate of change of disturbance may increase

to exceedingly large value, while the value of the distur-
bance remains relatively small. As a consequence, the upper
limit of the disturbance estimation error, calculated based on
equation (26), is far greater than the actual value, and it may
not be useful in applications. Therefore, this paper derives
another upper bound for the disturbance estimation error.

From equation (25), we can obtain

d̃ (t) = e−tLd̃ (0) + e−tL

[
exLd(x)|t0 −

∫ t

0

exLLd(x)dx

]
= −e−tLd̂ (0) + d(t)− e−tL

∫ t

0

exLLd(x)dx,

(27)
and then we can have

∥d̃ (t) ∥ ≤ ∥d(t)∥+ ∥d̂ (0) ∥+ ∥e−tL

∫ t

0

exLLd(x) dx∥

≤ ∥d(t)∥+ ∥d̂ (0) ∥+ ∥e−tL

∫ t

0

exLdxL∥∥dmax∥

≤ 2∥dmax∥+ ∥d̂ (0) ∥.
(28)

Therefore, we can conclude that the upper boundary of the
disturbance estimation error are determined by the smaller
boundary in equations (26) and (28), which can be expressed
as

∥d̃ (t) ∥ ≤ min
{
∥d̃ (0) ∥+ ∥L−1ḋmax∥,

∥∥∥d̂ (0)∥∥∥+ 2∥dmax∥
}
.

(29)
This completes the proof for (1) of Lemma 1.
From equation (25), we have

lim
t→∞

∥∥∥d̃ (t)∥∥∥ = lim
t→∞

∥e−tL

∫ t

0

exLḋ(x)dx∥

≤ lim
t→∞

∥e−tL

[∫ t

0

exLdxL

]
L−1ḋmax∥

= lim
t→∞

∥e−tL

[∫ t

0

exLdxL

]
L−1ḋmax∥

= lim
t→∞

∥(I − e−tL)L−1ḋmax∥ = ∥L−1ḋmax∥.
(30)
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From equation (27), we can obtain

lim
t→∞

∥∥∥d̃ (t)∥∥∥ = lim
t→∞

∥d(t)− e−tL

∫ t

0

exLLd(x) dx∥

≤ lim
t→∞

∥d(t)∥+ lim
t→∞

∥e−tL

∫ t

0

exLdxL∥∥dmax∥

≤ 2∥dmax∥.
(31)

Then we can conclude

lim
t→∞

∥d̃(t)∥ ≤ min{∥L−1ḋmax∥, 2∥dmax∥}. (32)

This completes the proof for (2) of Lemma 1. The Lemma
1 also indicates that we can enhance the estimation accu-
racy of disturbance observer (22) by increasing the values
of observer gains li(i = 1, . . . , n)when we choose L =
diag(l1, . . . , ln). However, in practice the observer gains
should be selected as a trade-off between the permissible ac-
curacy, model accuracy, the characteristics of noise, and so
on[24].

In the design of controllers (10) and disturbance observers
(22), the acceleration signal of the manipulator is required.
Considering increased system feasibility and reduced system
costs, a tracking differentiator(T-D) can be employed in this
scenario to avoid the use of expensive acceleration sensors
for obtaining the acceleration signal of the manipulator. The
T-D is shown as{

ẋ1(t) = x2(t)− λ|x1(t)− q̇(t)| 12 sgn(x1(t)− q̇(t))

ẋ2(t) = −βsgn(x1(t)− q̇(t))

(33)
where λ and β are adjustable parameters, q̇(t) is the input
signal to the tracking differentiator (T-D). The terms x1(t)
and x2(t) represent the tracking value of the T-D for q̇(t)
and its first-order derivative estimation, respectively.

5 Simulations

To validate the effectiveness of the proposed control
method and disturbance observer, simulation analysis is con-
ducted using a two-link robot as an example. The specific
parameters for the two-link robot and actuator are as follows:

M(q) =

[
a+ q01 + 2q02 cos(q2) q01 + q02 cos(q2)

q01 + q02 cos(q2) q01

]
,

(34)

C(q, q̇) =

[
−q02q̇2 sin(q2) −q02(q̇1 + q̇2) sin(q2)
q02q̇1 sin(q2) 0

]
,

(35)

G(q) =

[
15g cos q1 + 8.75g cos(q1 + q2)

8.75g cos(q1 + q2)

]
, (36)

Aa =

[
−1 0
0 −1

]
, (37)

where a = 13.33, q01 = 8.98, q02 = 8.75, g = 9.8.
The initial angles of each joint in the manipulator system

are set to qr (0) =
[
5.0 3.0

]T
rad, the desired trajectory is

qd (t) =
[
0.3cos(t) 0.1cos(5t)

]T
rad. The parameters λ

and β for the tracking differentiator are chosen as 5 and 10,
respectively.

In addition, according to the desired eigenstructure of
the closed-loop system, the parameter F is considered as
F = diag(−10,−15,−20,−25,−30,−35). For simplicity,
we just choose Z =

[
I2 I2 I2

]
.

The lumped uncertainty of the cascaded system is d(t) =[
5sin(2t) 2cos(5t)

]T
, and the observer gain matrix of

UNDO is chosen as L =

[
50 0
0 40

]
.

When the lumped uncertainty of the cascaded system is
zero, the tracking error of the designed trajectory tracking
controller is shown in Fig. 2. It can be observed that the tra-
jectory tracking controller designed by the direct parametric
approach exhibits excellent performance. Furthermore, the
tracking speed can be altered by modifying the eigenstruc-
ture of the closed-loop system.

Fig. 2: The tracking error of the designed trajectory tracking
controller.

When there are internal and external uncertainties in the
system, Figure 3 illustrates the trajectory tracking perfor-
mance of each joint before and after employing the universal
nonlinear disturbance observer. It can be observed that the
UNDO effectively enhances the system’s disturbance rejec-
tion capability.

Fig. 3: The trajectory tracking performance of each joint be-
fore and after employing the UNDO.
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6 Conclusions

This paper presents trajectory tracking control for a multi-
degree-of-freedom manipulator system based on the theory
of the high-order fully actuated (HOFA) system. To address
the internal and external uncertainties in the manipulator sys-
tem, a universal nonlinear disturbance observer (UNDO) is
designed for estimation without requiring a third-order state
signal. Combining the actuator model with the dynamic
model of the manipulator forms a cascaded system model,
aiming to enhance the accuracy of trajectory tracking for the
manipulator. A trajectory tracking controller is designed by
the direct parametric approach, enabling the system to track
the target trajectory within a finite time while meeting per-
formance requirements. Additionally, the use of the tracking
differentiator (T-D) addresses challenges in obtaining the ac-
celeration signal of the manipulator, which may be difficult
or costly. Finally, simulations are conducted to validate the
effectiveness of the proposed theory.
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[4] Victor Santibañez, Karla Camarillo, Javier Moreno-
Valenzuela, Ricardo Campa, A practical PID regulator
with bounded torques for robot manipulators, International
Journal of Control, Automation and Systems, vol. 8, pp.
544–555, 2010, Springer.

[5] Wei Wang, Bin Xie, Zongyu Zuo, Huijin Fan, Adaptive back-
stepping control of uncertain gear transmission servosystems
with asymmetric dead-zone nonlinearity, IEEE Transactions
on Industrial Electronics, vol. 66, no. 5, pp. 3752–3762, 2018,
IEEE.

[6] Brahim Brahmi, Mark Driscoll, Mohamed Hamza Laraki, Ab-
delkrim Brahmi, Adaptive high-order sliding mode control
based on quasi-time delay estimation for uncertain robot ma-
nipulator, Control Theory and Technology, vol. 18, pp. 279–
292, 2020, Springer.

[7] Aiqin Liu, Honghua Zhao, Tao Song, Zhi Liu, Haibin Wang,
Dianmin Sun, Adaptive control of manipulator based on neu-
ral network, Neural Computing and Applications, vol. 33, pp.
4077–4085, 2021, Springer.

[8] Kshetrimayum Lochan, Binoy Krishna Roy, Control of two-
link 2-DOF robot manipulator using fuzzy logic techniques:
a review, Proceedings of Fourth International Conference on
Soft Computing for Problem Solving: SocProS 2014, Volume
1, pp. 499–511, 2014, Springer.

[9] Guang-Ren Duan, High-order fully actuated system ap-
proaches: Part I. Models and basic procedure, International
Journal of Systems Science, vol. 52, no. 2, pp. 422–435, 2021,
Taylor & Francis.

[10] Guang-Ren Duan, High-order fully actuated system ap-
proaches: Part II. Generalized strict-feedback systems, Inter-
national Journal of Systems Science, vol. 52, no. 3, pp. 437–
454, 2021, Taylor & Francis.

[11] Guang-Ren Duan, High-order fully actuated system ap-
proaches: Part III. Robust control and high-order backstep-
ping, International Journal of Systems Science, vol. 52, no. 5,
pp. 952–971, 2021, Taylor & Francis.

[12] Guang-Ren Duan, High-order fully actuated system ap-
proaches: Part IV. Adaptive control and high-order backstep-
ping, International Journal of Systems Science, vol. 52, no. 5,
pp. 972–989, 2021, Taylor & Francis.

[13] Guang-Ren Duan, High-order fully actuated system ap-
proaches: Part V. Robust adaptive control, International Jour-
nal of Systems Science, vol. 52, no. 10, pp. 2129–2143, 2021,
Taylor & Francis.

[14] Guang-Ren Duan, High-order fully-actuated system ap-
proaches: Part VI. Disturbance attenuation and decoupling,
International Journal of Systems Science, vol. 52, no. 10, pp.
2161–2181, 2021, Taylor & Francis.

[15] Guang-Ren Duan, High-order fully actuated system ap-
proaches: Part VII. Controllability, stabilisability and para-
metric designs, International Journal of Systems Science, vol.
52, no. 14, pp. 3091–3114, 2021, Taylor & Francis.

[16] Guangren Duan, High-order fully actuated system ap-
proaches: Part VIII. Optimal control with application in space-
craft attitude stabilisation, International Journal of Systems
Science, vol. 53, no. 1, pp. 54–73, 2022, Taylor & Francis.

[17] Guangren Duan, High-order fully-actuated system ap-
proaches: Part IX. Generalised PID control and model refer-
ence tracking, International Journal of Systems Science, vol.
53, no. 3, pp. 652–674, 2022, Taylor & Francis.

[18] Guangren Duan, High-order fully actuated system ap-
proaches: Part X. Basics of discrete-time systems, Interna-
tional Journal of Systems Science, vol. 53, no. 4, pp. 810–832,
2022, Taylor & Francis.

[19] Guang-Quan Duan, Guo-Ping Liu, Fully-Actuated System
Approach in Attitude Tracking Control for Spacecraft, 2022
37th Youth Academic Annual Conference of Chinese Associ-
ation of Automation (YAC), pp. 877–881, 2022, IEEE.

[20] Yipeng Yang, Xinghu Yu, Yuan Li, Sichen Yang, Zhan Li,
Huijun Gao, Angular Acceleration Observer Design for Jerk-
level Control of Tiltrotors Based on the High-order Fully Ac-
tuated System Approaches, 2022 China Automation Congress
(CAC), pp. 3750–3755, 2022, IEEE.

[21] Xingyu Zhang, Xuemei Zheng, Zongxuan Liu, Weizhen
Liu, Fully actuated system modeling and control of LCL
grid-connected inverter, 2023 2nd Conference on Fully Actu-
ated System Theory and Applications (CFASTA), pp. 857–861,
2023, IEEE.

[22] Guang-Ren Duan, Direct parametric approach for cascaded
systems with application in robot control, 2014 14th Interna-
tional Conference on Control, Automation and Systems (ICCAS
2014), pp. 29–35, 2014, IEEE.

[23] Feilong Zhang, Xin Zhang, Qingxin Li, Hualiang Zhang, Uni-
versal nonlinear disturbance observer for robotic manipula-
tors, International Journal of Advanced Robotic Systems, vol.
20, no. 2, pp. 17298806231167669, 2023, SAGE Publications
Sage UK: London, England.

[24] Weiguang Huo, Mohamed Amine Alouane, Yacine Amirat,
Samer Mohammed, Force control of SEA-based exoskeletons
for multimode human–robot interactions, IEEE Transactions
on Robotics, vol. 36, no. 2, pp. 570–577, 2019, IEEE.

120  



Design and Modeling of A Trapezoidal Leaf Spring-Based
Actuators with Valid Arm Length and Bending Deformation for

Stiffness Adjustment
Tianle Yang1,∗, Hui Zhang1,∗, Shijie Zhang1,∗, Xiang Wu1, Yuebin Qiu1, Jing Zhang2

1. College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
E-mail: yangtl2002@stu.haut.edu.cn, huizh2021@haut.edu.cn, zhangshijie@haut.edu.cn

2. Industrial Internet Division, Hitrobot Industry Technology Research Institute Co, LTD, Wuhu 242007, P. R. China

Abstract: This paper proposes a design and modeling of a trapezoidal leaf spring actuator (TLSA) with variable stiffness. The
mechanical mechanism of the actuator for stiffness adjustment consists of a flexible trapezoidal leaf spring and two grooved
bearing followers (GBFs). The relationship between each GBF and the leaf spring always maintains line contact through the
preload generated by the tension spring. Stiffness adjustment is achieved by changing the position of the contact point between the
leaf spring and GBF. Such design ensures that only rolling friction ispresent and contributes to the improved stiffness adjustment
performance of the actuator. The synchronous belt transmission system is used to change the pivot position accurately and
suppress the vibration. Simulation results indicate that the proposed TLSA has the characteristics of a wide stiffness range, rapid
stiffness response capability and large maximum load torque value.

Key Words: Actuator, Trapezoidal leaf spring, Stiffness adjustment, Modeling

1 Introduction

With the increasing requirement for robots in the ap-
plication of various fields, human-robot interaction safety
is becoming increasingly important. Flexible robots are
developed to fulfil the requirement. Several fixed-flexure
devices[1–3] have many beneficial effects in these fields
through study and validation. The advanced structure has
been the introduction of variable stiffness actuators (VSAs)
to maximise efficiency and extend the range of applications.
Despite the optimisation of mechanical components through
various studies, the use of additional actuators for stiffness
control adds complexity, size and weight, affecting the per-
formance of the VSA in terms of torque capacity, stiffness
range and adjustment time as well as limiting the VSA ap-
plications in robotic systems. Therefore, the more simple
and compact VSA is an urgent requirement.

Many existing variable stiffness actuators (VSAs) face
trade-offs in order to meet the mechanical requirements of
compact size and reduced weight while maintaining en-
ergy efficiency, as well as performance requirements such
as a large range of stiffness adjustments and high torque
capacity[4–7]. Some prioritise small size and light weight,
but offer a limited range of stiffness adjustment. Others of-
fer a wide range of stiffness adjustment (from zero to infi-
nite), but at the cost of greater size, weight, and energy con-
sumption.Early implementations of VSAs relied on antago-
nistic springs or quasi-mechanical devices to regulate stiff-
ness, often consuming significant amounts of energy by ad-
justing the spring pre-tension[8–11]. The existing technol-
ogy approach utilises a lever principle to achieve stiffness
scaling up and down while saving energy. The lever prin-
ciple has three specific ways of achieving stiffness adjust-
ment. The first lever principle is implemented by changing

This work is supported by the Open Research Fund of Anhui Province
Key Laboratory of Machine Vision Inspection under Grant No. KLMVI-
2023-HIT-18, the Science Foundation of Henan University of Technology
under Grants 2021BS060 and 2020BS059.

the spring position or the effective arm length, as shown in
the AwAS[12] and hybrid double actuator devices[13]. The
second is to adjust the force applied to the lever position,
such as the vsaUT[14], vsaUT-II[15], and sVSA[16]. The
third is to modify the pivot position, such as the AwAS-II[17]
and CompAct-VSA[18] as well as TSA[19, 20]. It is worth
noting that the CompAct-VSA and TSA stands out because
it allows the stiffness to transition from zero to full rigidity.
However, its mechanical design has some drawbacks. The
pivot moves in a sliding groove, which creates significant
sliding friction during the energy-intensive stiffness adjust-
ment process. Once the mechanical design is determined,
the range of stiffness adjustment depends on the size of the
lever structure, which is very sensitive to the pivot position.
The use of rack and pinion introduces backlash issues that
affect the accuracy of the pivot position, while the use of
ball screw drives may introduce control issues due to low
response speeds, as well as mechanical design layout issues
related to size and weight.

This paper describes a variable stiffness actuator and
presents a trapezoidal leaf spring-based actuators with valid
arm length and bending. The actuator uses a structure con-
sisting of a trapezoidal leaf spring and two grooved bearing
follower (GBF) to adjust the stiffness. Similar to the third
lever principle, the structure adjusts the stiffness by chang-
ing the pivot position (midpoint between the centers of the
two GBFs) on the leaf springs and transitions the stiffness
from zero to full rigidity. However, it differs by the use
of a trapezoidal leaf spring in the construction and the use
of two GBFs in the sliding groove to avoid sliding friction.
Rolling friction is used since each GBF has only one point
of contact. Since the range of stiffness adjustment is related
to the arm length and trapezoidal leaf spring stiffness, for
ease of control, the longer the arm length the better as the
stiffness increases without increasing the structural dimen-
sions. The proposed TLSA is an improvement in both elas-
tic deflection and elastic energy compared to conventional
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designs. The stiffness can be adjusted under normal operat-
ing conditions. It not only meets the safety requirement of
fast stiffness adjustment from high to low, but also can work
normally under variable stiffness. The main purpose of the
paper is to present a simple and compact variable stiffness
structural model and design.

2 Stiffness Regulation Principle

The TLSA takes the characteristics of a trapezoidal leaf
spring to adjust the stiffness by changing the position of the
pivot. Designing the trapezoidal leaf spring and two GBFs as
shown in the schematic diagram in Fig. 1, where both slant
sides of the trapezoidal leaf spring are balanced about the
central axis and in contact with the GBFs. δ1 represents the
distance from the joint axis A to the pivot position P. δ3 and
δ4 are the distances from the starting points of the right-angle
side of the trapezoidal leaf spring to the contact points of the
slant side with the outer circle of the GBFs, also known as
the effective straight arm length. δ2 is the distance from the
joint axis A to the center position of the top vertex of the
trapezoidal leaf spring. τ11 and τ12 represent the torques
generated at the joint axis due to the external torque when
the trapezoidal leaf spring rotates about the roller. τE repre-
sents the elastic torque at the joint axis (A), coupled from the
torques generated on the two outer edges of the trapezoidal
leaf spring by the two grooved rollers. Stiffness adjustment
is achieved by moving the center point of the GBF, causing
changes in δ1 , δ3 , and δ4 . It is noteworthy that due to
the different patterns of contact point changes, the effective
lengths of the two outer edges of the trapezoidal leaf spring
are not always equal, and stiffness varies with the movement
of the pivot position. When point P coincides with point
B, the stiffness is infinite, and when point P coincides with
point A, the stiffness decreases.

3 Structural Principle

Figure 2 and Figure 3 illustrate the overall structural
framework and stiffness adjustment module of the structure.
A trapezoidal leaf spring with stiffness X is mounted on the
spring bracket, fixed on the input disk, and equipped with
two rollers on the roller mechanism. The inner circles of the
two rollers can freely rotate about their axes. To ensure that
the two grooved rollers (GBFs) are always in contact with
the two outer edges of the trapezoidal leaf spring, a suffi-
cient tension needs to be provided beneath the two GBFs,
achieved by setting a tension spring pulling towards the cen-
ter. The tension is small enough to be negligible. The slide
rail is placed beneath the output disk, with the slider fixed
to the roller frame, capable of sliding in the direction of the
conveyor. The stiffness adjustment device is driven by mo-
tor M2 , using a conveyor belt drive. M2 Motor is a graphite
brush DC motor with a rated torque of 30.4 mNm (maxon
DC motor 155). The conveyor belt moves around the drive
pulley and idle pulley, fixed on the pulley bracket. To pre-
vent component collisions, such as the grooved rollers at the
bottom of the trapezoidal leaf spring, a pair of mechanical
blocks is placed at the bottom of the trapezoidal leaf spring,
limiting the movement of the grooved rollers and preventing
detachment from the trapezoidal leaf spring.It is worth not-
ing that the range of angular deflection is influenced not only

Fig. 1: Schematic of the trapezoidal leaf Spring mechanism
with a variable pivot position. 1) Trapezoidal Leaf Sping. 2)
Cam bearing follows. 3) Joint Axis. 4) Pivot.

by the components on the output disk but also by the com-
ponents on the input disk. Specifically, at low stiffness, the
components on the output disk have an impact on the deflec-
tion range, while at high stiffness, the mechanical blocks on
the input disk affect the range of deflection.
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Fig. 2: TLSA assembly in the main view. A) Secondary out-
put panel. B) Main output disk. C) Trapezoidal leaf spring
bracket. D) Grooved bearing follower. E) Trapezoidal leaf
spring. F) Slide block. G) Slide rail. H) Photoelectric sen-
sors. I) Encoder. L) Drive the pulley. M) MotorM2.

The stiffness adjustment module is connected to the main
actuator. The main motor consists of a 35mNm brushless
BLDC motor (ECX FLAT 32 Sϕ32 mm) and a planetary
gearbox with a reduction ratio of 103:1 (GPX 32). The sec-
tional view of the overall assembly of the TLSA is shown in
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Fig. 3: The reverse side of the main view composed of
TLSA. I) Absolute magnetic encoder. H) Photoelectric sen-
sors. L) Drive the pulley. N) Enter the disk. O) Hexagonal
screws. P) Limit block. K) Toothed disc.

Fig. 4.

Fig. 4: Sectional view of the total TLSA assembly. A)
Pedestal. M) MotorM2. Q) MotorM1. R) Planctary gear
box. S) Main actuator shaft.

In the TLSA, three position sensors are included to pro-
vide feedback on the complete state data. Two incremental
encoders are respectively mounted on motor M1 and motor
M2, with the former used to detect the position of the input
disk, and the latter used to detect the position of the roller
frame on the conveyor belt. The third sensor is a 12-bit res-
olution multi-turn absolute encoder (OID-3806D), utilized
to measure the angle between the input disk and the output
disk.

4 Modeling of the TLSA

The modelling of the TLSA is trapezoidal leaf spring-
based characteristics. Figure 5 provides a simplified
schematic of the elastic principle. Meanwhile, table 1 gives
the meanings expressed by the corresponding parameters.
Due to the small gradient of the trapezoidal leaf spring in

the actual structure, it is abstracted as a straight leaf spring
for study purposes. The figure facilitates a detailed explana-
tion of the modeling process. When the input disk remains
stationary and an external torque acts on the output disk, the
output disk rotates an angle θ relative to the joint axis. The
specific modeling process is as follows:

1
F

2
F

R

q

1
L

2
L

h
d

r

a

1
F

2
F

R

q

1
L

2
L

h
d

r

a

1
F

2
F

R

q

1
L

2
L

h
d

r

a

1
d

1
F

2
F

R

q

1
L

2
L

h
d

r

a

1
d

Fig. 5: Schematic of the elastic mechanism.

Table 1: Description of the symbols in Fig. 5
d1 Half of the upper edge line of the leaf spring
R Distance from top midpoint of the leaf spring to the joint axis
d Half distance between two GBF centers
h Distance between pivot position and the joint axis
θ Included angle between input disk and output disk
L1,L2 Effective straight arm length on both sides of the leaf spring
α The torsion angle of the leaf spring
r Radius of GBF

According to the schematic of the elastic principle in Fig.
5 and the symbol descriptions in the table above, the coordi-
nates of the three vertices at the upper end of the leaf spring,
from left to right, and the centers of the two GBFs can be
given by {

xt1 = R sin θ − d1 cos θ

yt1 = R cos θ + d1 sin θ
(1)

{
xt = R sin θ

yt = R cos θ
(2)

{
xt2 = R sin θ + d1 cos θ

yt2 = R cos θ − d1 sin θ
(3)
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{
xp1 = −d cos θ + h sin θ

yp1 = h cos θ + d sin θ
(4)

{
xp2 = d cos θ + h sin θ

yp2 = h cos θ − d sin θ
(5)

where (xti, yti) and (xpi, ypi) respectively represent the
coordinates of the three vertices at the upper edge of the leaf
spring and the center point of the GBF i ∈ [1, 2]. Here,
d = r + d1, [1, 2] when considering the subscripts of the left
and right sides, and other symbols are represented in the
same way. In the context, L1, L2 can be expressed as fol-
lows:

L1 =

√
(xt1 − xp1)

2
+ (yt1 − yp1)

2 − r2 (6)

L2 =

√
(xt2 − xp2)

2
+ (yt2 − yp2)

2 − r2 (7)

According to the principle of cantilever beam, α can be
expressed as:

α =
FL2

2EI
(8)

Since here we have approximated the trapezoidal leaf
spring by a straight leaf, the angle α, which is the angle
of the tangent to the cantilever beam, can be approximately
equivalent to θ.

According to the characteristics of the leaf spring, here are
the torques, τt1 and τt2, generated by the leaf spring acting
on the two rollers:

τt1 = kt (α− α0) ; τt2 = kt (α+ α0) (9)

Where k is the stiffness of the leaf spring, and a is the pre-
twist angle of the leaf spring. The pre-twist angle ensures
that there is a pre-twist angle that keeps the GBF always in a
tangential state with the outer edge of the leaf spring. At the
point, the forces f1 and f2 generated by the leaf spring at the
tangential point can be expressed as:

F1 =
τt1
L1

, F2 =
τt2
L2

(10)

At the point, the total elastic torque of the joint can be
expressed as:

τ
E
= τ

E2
− τ

E1
(11)

Where τE1 and τE2 respectively represent the torque gen-
erated by the force of the leaf spring on the rollers, which is
translated into torque at the joint axis. It can be expressed
using the following formula:

τ
E1

= F1 cosα
(
hcosθ + dsinθ

)
(12)

τ
E2

= F2 cosα
(
hcosθ − dsinθ

)
(13)

At the point, the joint stiffness K =
∂τE
∂θ

can be ex-

pressed as:

K =
∂ (τE2 − τE1)

∂θ
=

∂

∂θ
(
kt (α+ α0)

L2
cosα(hcosθ − dsinθ

−kt (α− α0)

L1
cosα(hcosθ + dsinθ))

(14)
From the above equation, it can be seen that the joint stiff-

ness is complex and depends on many parameters. For the
sake of convenient analysis, the model has been appropri-
ately simplified as follows:

τE =
ktd sin(2θ)

R− h
(15)

The stiffness expression of the structure can be obtained
as follows:

K =
2ktd cos(2θ)

R− h
(16)

Due to the fact that the position of the pivot is adjusted
through the wire rope drive of the motor M2, the relationship
between the position of the pivot h and the angle position of
the motor M2. φ2 can be expressed as:

h = nφ2 (17)

In the formula, n is the radius of the transmission wheel,
which is called the wire rope transmission ratio. The energy
stored in elasticity is very important, and according to (15),
it can be expressed as:

UE =

∫
τEdθ (18)

Through the method, torque resistance can be obtained:

τ
R
=

∂U
E

∂φ
2

(19)

The specific details are as follows:

U
E
=

kdsin2 (θ)

R− h
(20)

τ
R
=

k, nd sin
2 (θ)

(R− nφ
2
)
2 (21)

By deriving the resistive and elastic moments as well as
the external moments after the next work-analysis of the dy-
namics model of the TLSA and the addition of algorithms to
achieve the goal simulation experimental purposes.

5 Simulation Analysis

In Fig. 6, the stiffness adjustment of TLSA is represented
by the distance relationship between the center point of the
roller and the joint axis. Figure 7 shows the stiffness varia-
tion of different center point positions with the change of the
angle. Both figures provide the relationship between the dis-
tance from the center point of the roller to the joint axis and
the stiffness when the initial angle is nearly equal to zero.
Figure 7 presents the stiffness variation curve for different
pivot positions relative to the joint axis under the same angle
conditions. In Fig. 6, as the pivot position h increases, the
amplitude of the corresponding stiffness variation becomes
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Fig. 6: Stiffness adjustment for the TLSA based on the dis-
tance between pivot position and joint axis.

Fig. 7: Stiffness adjustment for the TLSA based on the in-
cluded angle of the input disk and the output disk.

larger, and the variation speed also accelerates. In Fig. 7,
when the pivot position is below 45mm, the range of stiff-
ness adjustment is small, indicating that the stiffness model
proposed in the mechanism exhibits good stability at low
stiffness. It also maintains relatively stable stiffness when
the deflection angle changes within a small range.

Figure 8 shows the τE represented by the coordinates of
different roller center positions under the same deflection an-
gle. The curve indicates that the structure has relatively good
stability performance when adjusting stiffness.

6 Conclusion

This paper presents the design and model approach for
a trapezoidal leaf spring-based actuator with variable stiff-
ness. The structure consists of a trapezoidal leaf spring and
two grooved bearing follower modules. The advantages of
the TLSA are the adoption of a loosely structured and well
laid out design concept that prevents component collisions,
while also offering a large and precise range of stiffness ad-
justments, overcoming some of the traditional problems such

Fig. 8: Elastic torque based on the included angle with dif-
ferent pivot positions.

as small size and high energy consumption. Additionally, the
vertical relationship between the trapezoidal leaf spring and
the grooved bearing follower further reduces energy con-
sumption. Simulation results show that the structure has
good stiffness adjustment range and accuracy as well as large
maximum load torque values.

In future research, the structural principle will be further
optimised according to the structural characteristics of the
trapezoidal leaf spring, and the control algorithm will be
further optimised according to the sliding mode control and
PID control. In addition, the parameter recognition func-
tion of the system will be improved by optimising the struc-
tural principle of the trapezoidal leaf spring, and the trajec-
tory tracking performance of the system will be improved
by optimising the control algorithm. The ultimate goal is to
establish a multi-degree-of-freedom robotic system.
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Adaptive Fuzzy Fault-Tolerant Control of High-Order Nonlinear
Time-Varying Delay Systems with Dead-Zone Inputs: A Fully

Actuated System Approach
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Abstract: This paper investigates adaptive fault-tolerant (FT) tracking control for high-order nonlinear time-varying delay strict-
feedback system (SFS) with non-affine nonlinear faults and non-symmetric dead-zone inputs. A novel adaptive fault-tolerant
control strategy is developed by combining the theory of high-order fully actuated (HOFA) systems, dynamic surface control
techniques, the finite covering lemma, and generalized approximation of fuzzy logic systems (FLSs). Notably, there is no need
to reduce the order of high-order systems. Utilizing the finite covering lemma and fuzzy logic systems to address the issue of
unknown time-varying delays, this control scheme circumvents the use of Lyapunov-Krasovskii functions, thus removing the
condition that the time derivative of the time-varying delay function must be less than one. Through Lyapunov function theory,
it is rigorously proved that the designed controller ensures both the stability of the closed-loop system and the convergence of
the tracking error to a small neighborhood of the origin. Simulation results are presented to demonstrate the feasibility and
effectiveness of the proposed control scheme.

Key Words: Strict-feedback System, Time-varying Delays, Fully Actuated Systems, Fault-tolerant Control, Finite Covering
Lemma

1 Introduction

The pursuit of effective tracking control for nonlinear sys-
tems has been a prominent area of research, driven by its
substantial theoretical and practical relevance in various en-
gineering applications. However, nonlinear systems often
exhibit uncertainties, adding complexity to their analysis.
The advent of neural networks (NNs) and fuzzy logic sys-
tems (FLSs) has invigorated the study of adaptive control in
uncertain nonlinear systems, leading to a wealth of discov-
eries and innovations [1–5]. Specifically, a fuzzy adaptive
control problem was investigated for nonlinear systems with
unmodelled dynamics, employing finite-time theory in [5].

All the above control methods are based on first-order sys-
tem approaches in state-space models. However, the major-
ity of practical industrial systems are inherently described by
high-order differential equations [6, 7]. Consequently, the
utilization of state-space methods requires the conversion of
high-order systems into a first-order system format. How-
ever, this process can complicate the design of the controller
and even compromise the fully-actuated performance of the
system. To address these challenges, Professor Guangren
Duan introduced the High-Order Fully Actuated (HOFA)
system method, which has pioneered an innovative approach
to designing controllers for high-order systems [8–10].

It is well known that time delays are a prevalent phe-
nomenon in practical industrial systems. The presence of
time delays can adversely affect system performance. In
recent years, significant advancements have been made in
the study of nonlinear time-delay systems [11–13]. Based
on the Lyapunov-Krasovskii methods, the adaptive tracking
control approach was proposed for time-delay nonlinear sys-

This research was supported by the National Natural Science Founda-
tion of China under Grant 61903169, Science Center Program of National
Natural Science Foundation of China under Grant 62188101, Liaoning Re-
vitalization Talents Program under Grant XLYC2007182, Education De-
partment Project of Liaoning under Grant LJKMZ20220655.

tems with full state constraints in [11]. However, it should
be noted that Lyapunov-Krasovskii functionals require that
time delays be either constant or that the derivative of time-
varying delays does not exceed one. These conditions are
not always feasible in practical scenarios. In order to re-
lax the above limitations, a global adaptive control method
was proposed for stochastic nonlinear systems in [13], us-
ing the Lyapunov-Razumikhin approach. Nevertheless, the
Lyapunov-Razumikhin functions tend to be overly conserva-
tive and challenging to apply in systems with complex struc-
tures. Recently, Duan proposed for the first time the HOFA
system controller with time delay in [14]. Building upon
this development and leveraging the HOFA theory, signifi-
cant progress has been achieved in the adaptive control of
HOFA systems with time delays [15, 16]. However, strict
constraints on time delays are remain crucial. Therefore, it
is essential to further investigate adaptive control methods
for nonlinear time-varying delay HOFA systems.

In addition to time-varying delays, many mechanical sys-
tems exhibit other nonlinear characteristics, such as dead-
zone. Various techniques have been developed to counter-
act the adverse effects of dead-zone [17–19]. For instance,
a command-filtered adaptive neural network controller was
proposed for non-strict feedback nonlinear systems with
dead-zones and input saturation nonlinearity in [19]. Fur-
thermore, faults are an inevitable occurrence in actual in-
dustrial systems, and when they do occur, they can lead to
severe consequences. Several adaptive control methods for
nonlinear systems with faults were investigated in [20–22].
In [22], a fixed-time fuzzy fault-tolerant control method was
presented for nonlinear systems with input delays and ac-
tuator faults. However, all of the above literature primar-
ily focuses on linear faults or affine nonlinear faults, and the
studied systems are often limited to first-order nonlinear sys-
tems. Consequently, the development of a direct adaptive
controller for high-order nonlinear time-varying delays SFS
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with non-affine nonlinear faults is an urgent problem.
In comparison to existing literature, this article offers the

following major contributions:
1) A novel tracking control method is developed for

high-order nonlinear systems with time-varying delays,
which simultaneously experience non-affine nonlinear
faults and asymmetric nonlinear dead-zones.

2) The method employed in this paper allows for the direct
design of controllers for uncertain high-order nonlinear
systems without the need for system conversion.

2 Problem description and preliminaries

2.1 Problem formulation
The high-order nonlinear SFS is described as

x
(q1)
1 =f1(x

(0∼q1−1)
1 ) + g1(x

(0∼q1−1)
1 )x2

+ h1(x
(0∼q1−1)
1 (t− τ1(t))),

x
(q2)
2 =f2(x

(0∼qi−1)
i |i=1∼2) + g2(x

(0∼qi−1)
i |i=1∼2)x3

+ h2(x
(0∼qi−1)
i (t− τi(t))|i=1∼2),

...

x
(qn−1)
n−1 =fn−1(x

(0∼qi−1)
i |i=1∼n−1)

+ gn−1(x
(0∼qi−1)
i |i=1∼n−1)xn

+ hn−1(x
(0∼qi−1)
i (t− τi(t))|i=1∼n−1),

x(qn)
n =fn(x

(0∼qi−1)
i |i=1∼n) + gn(x

(0∼qi−1)
i |i=1∼n)D(u)

+ hn(x
(0∼qi−1)
i (t− τi(t))|i=1∼n)

+ l(t− T0)ν(x
(0∼qi−1)
i |i=1∼n, u),

y = x1,
(1)

where xi ∈ R, with i = 1, 2, . . . , n, represents the
system state variables, fj(x

(0∼qi−1)
i |i=1∼j ) ∈ R and

hj(x
(0∼qi−1)
i (t− τi (t)) |i=1∼j ) ∈ R, j = 1, 2 . . . , n de-

note unknown nonlinear functions, where τi (t) signifies
unknown time-varying delays. Known continuous non-
linear functions are denoted by gj(x

(0∼qi−1)
i |i=1∼j ) ∈

R. It is assumed that gj(x
(0∼qi−1)
i |i=1∼j ) ̸= 0 and∣∣∣gj(x(0∼qi−1)

i |i=1∼j )
∣∣∣ ≤ g∗, g∗ > 0. The output and in-

put of the system are represented by y ∈ R and u ∈ R,
respectively. The system is subject to an unknown exter-
nal disturbance ν

(
x
(0∼qi−1)
i |i=1∼n , u

)
∈ R due to a fault.

The time profile of the fault occurring at some unknown time
is represented by l (t− T0) ∈ R, described as follows

l (t− T0) =

{
0, t < T0,
1− e−δ(t−T0), t ≥ T0,

(2)

where δ > 0 is the evolution rate of the unknown fault.
The uncertain asymmetric nonlinear dead-zone D (u)

takes the following form:

D (u) =

 kr (u) (u− br) , u ≥ br,
0, bl < u < br,
kl (u) (u− bl) , u ≤ bl,

(3)

where kr (u) and kl (u) are the unknown smooth slop func-
tion of D (u), br > 0 and bl < 0 denote the unknow break-
points of D (u).

The reference signal yr is a smooth function with bounded
derivatives up to the q1th order.

Assumption 1 [23]: For system (1), the inequality

|f̄n + l (t− T0) ν
(
x
(0∼qi−1)
i |i=1∼n , u

)
|

≤ η
(
x
(0∼qi−1)
i |i=1∼n , u

)
(4)

holds, where f̄n represents an unknown nonlinear func-
tion, the definition of which will be provided later and
η
(
x
(0∼qi−1)
i |i=1∼n , u

)
is an unknown non-negative func-

tion.
Assumption 2 [18]: There exist unknown smooth func-

tions kr (u) and kl (u) that satisfy the following conditions:

0 < kr ≤ kr (u) ≤ kr,∀u ∈ [br,+∞) ,

0 < kl ≤ kl (u) ≤ kl,∀u ∈ (−∞, bl] ,

with kr, kl, kr and kl are unknown constants, additionally,
it is known that min {kr, kl} ≥ k∗, where k∗ is a known
positive constant.

As described in [17–19], the dead-zone model (3) can
be decomposed into smooth nonlinear terms k (u)u and
bounded nonlinear terms m (u).

D (u) = k (u)u+m (u) , (5)

where

k (u) =

{
kr (u) , u ≥ 0,
kl (u) , u ≤ 0,

and

m (u) =

 −kr (u) br, u ≥ br,
−k (u)u, bl < u < br,
−kl (u) bl, u ≤ bl.

Based on this, it can be readily deduced that m (u) is
bounded and there exists a positive constant, denoted as m∗,
such that |m (u)| ≤ m∗.

Assumption 3 [24]: τi (t), for i = 1, 2, . . . , n, are con-
tained within a known compact set [0, τiM ], where τiM rep-
resents the maximum upper bound for each τi (t).

2.2 Preliminaries
For convenience, we introduce the following symbols in

this paper to represent commonly used matrices. Im repre-
sents the identity matrix, and

x(0∼q) =
[
x ẋ · · · x(q)

]T
,

x
(q0∼qk)
k

∣∣∣
k=i∼j

=


x
(q0∼qk)
i

x
(q0∼qk)
i+1

...
x
(q0∼qk)
j

 , j ≥ i,

A0∼q−1 =
[
A0 A1 · · · Aq−1

]
,

Φ
(
A0∼q−1

)
=


0 I

. . .
I

−A0 −A1 · · · −Aq−1

 .
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For ensuring the stability of the control system, the fol-
lowing lemmas are essential.

Lemma 1 [24]: Consider a function h (x) defined on a
compact set Ωx → R. Let x = x (t− τ (t)) be uniformly
continuous with respect to t, where τ (t) ∈ [0, τM ] repre-
sents an unknown time-varying delay. The constant τM is
know. Then, for any constant ϑ > 0, there exists a finite
partition of [0, τM ], independent of t

0 ≤ t1 < t2 < . . . < tm ≤ τM

from this partition, time-varying points τ̄σ(t) ∈ {t1, . . . , tm}
where σ (t) ∈ {1, . . . ,m} can be selected such that:∣∣h (x (t− τ (t)))− h

(
x
(
t− τ̄σ(t)

))∣∣ < ϑ,∀t ≥ 0

Lemma 2 [23]: For any continuous function f̄ (x) de-
fined on a compact set U , there exists a corresponding FLS
θTφ (x) such that

sup
x∈U

∣∣f̄ (x)− θTφ (x)
∣∣ ≤ ε, (6)

where ε satisfies |ε| ≤ ε∗, ε∗ is a positive constant.
Proposition 1 [8]-[10]: Given an arbitrarily chosen ma-

trix F ∈ Rqi×qi , for all the matrix A0∼qi−1 and the nonsin-
gular matrix V ∈ Rqi×qi satisfying

Φ
(
A0∼qi−1

)
= V FV −1. (7)

The matrices A0∼qi−1 and V are determined as follows:

A0∼qi−1 = −ZF qiV −1 (Z,F ) , (8)

V (Z,F ) =
[
Z ZF · · · ZF qi−1

]T
, (9)

where Z ∈ R1×qi is an arbitrary parameter matrix satisfying
detV (Z,F ) ̸= 0.

Then, to solve the matrix P
(
A0∼qi

i

)
satisfying the fol-

lowing Lyapunov matrix equation (12), we introduce some
notations related to a square matrix Φ ∈ Rqi×qi :

det (sI +Φ) ≜
qi∑
i=0

cΦi s
i, (10)

adj
(
sI +ΦT

)
≜

qi−1∑
i=0

CΦ
i s

i. (11)

Proposition 2 [10]: If Φ ∈ Rqi×qi is Hurwitz, then, the
following Lyapunov equation

ΦTP + PΦ = −I (12)

has a unique solution given by P =
qi−1∑
i=0

CΦ
i P

−1
0 Φi with

P0 =
qi∑
i=0

cΦi Φ
i.

3 High-order backstepping controller design

In this section, a direct design approach for the FTC of
the high-order nonlinear SFS with time-varying delay(1) is
considered.

Consider A0∼qi−1
i ∈ R1×qi , for i = 1, 2, . . . , n, are a

set of matrices that guarantee the stability of Φ(A0∼qi−1
i ) ∈

Rqi×qi . Additionally, consider

Pi

(
A0∼qi−1

i

)
=

[
PiF

(
A0∼qi−1

i

)
PiM

(
A0∼qi−1

i

)
PiL

(
A0∼qi−1

i

) ]
∈ Rqi×qi

which represents the unique positive definite solution to the
Lyapunov equation:

ΦT (
A0∼qi−1

i

)
Pi

(
A0∼qi−1

i

)
+ Pi

(
A0∼qi−1

i

)
Φ
(
A0∼qi−1

i

)
= −Iqi

where PiF

(
A0∼qi−1

i

)
∈ Rqi×1 and PiL

(
A0∼qi−1

i

)
∈

Rqi×1 .
To further simplify the design of the controller, we intro-

duce a first-order filter as follows:

li ˙̄αi + ᾱi = αi, i = 2, . . . , n, (13)

where ᾱi denotes the output and the designed virtual con-
troller αi denotes the input, and li is a positive design pa-
rameter.

The filter error is defined as ϖi = ᾱi − αi, and we can
obtain

liGi (·) = liϖ̇i +ϖi, (14)

where Gi (·) is a continuous function.
According to Lemma 1, we have

hi

(
x
(0∼qj−1)
j (t− τj (t)) |j=1∼i

)
=hi

(
x
(0∼qj−1)
j

(
t− τj,σ(t)

)
|j=1∼i

)
+ ϑi, (15)

where |ϑi| ≤ ϑ∗
i , for i = 1, . . . , n, and ϑ∗

i ≥ 0 is an unknow
constant.

Next, we introduce the following error transformation sys-
tem {

ξ
(0∼q1−1)
1 = x

(0∼q1−1)
1 − y

(0∼q1−1)
r ,

ξ
(0∼qi−1)
i = x

(0∼qi−1)
i − ᾱ

(0∼qi−1)
i ,

(16)

where i = 2, . . . , n.
According to (16), we can extract

ξi = xi − ᾱi (17)

and {
ξ
(q1−1)
1 = x

(q1−1)
1 − y

(q1−1)
r ,

ξ
(qi−1)
i = x

(qi−1)
i − ᾱ

(qi−1)
i .

(18)

Step 1: By combining (1), (17) and (18), and subse-
quently substituting (15), we can determine the q1th deriva-
tive of ξ1 as

ξ
(q1)
1 = f̄1 + g1(x

(0∼q1−1)
1 ) (ξ2 +ϖ2 + α2) + ϑ1 − y(q1)r ,

(19)
where f̄1 = f1(x

(0∼q1−1)
1 ) + h1

(
x
(0∼q1−1)
1

(
t− τ1,σ(t)

))
.

According to the [24], the unknown nonlinear functions
f̄i can be approximated by FLSs. Then, the virtual control

law α2 and the adaptive law ˙̂
θ1 are constructed as follows:

α2 =− g−1
1 (x

(0∼q1−1)
1 )

×
(
A0∼q1−1

1 ξ
(0∼q1−1)
1 + θ̂T1 φ1 (z1)− y(q1)r

)
, (20)
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˙̂
θ1 =

(
ξ
(0∼q1−1)
1

)T

P1L

(
A0∼q1−1

1

)
φ1 (z1)− γ1θ̂1, (21)

where z1 =
(
x
(0∼q1−1)
1 , x

(0∼q1−1)
1

(
t− τ1,σ(t)

))
.

Substituting (20) into (19), it can be further obtained

ξ̇
(0∼q1−1)
1 = Φ1

(
A0∼q1−1

1

)
ξ
(0∼q1−1)
1 +

[
0
b1

]
, (22)

where b1 = θ̃T1 φ1 (z1)+ε1+ϑ1+g1(x
(0∼q1−1)
1 ) (ξ2 +ϖ2).

Design the Lyapunov function in the following manner

V1 =
(
ξ
(0∼q1−1)
1

)T

P1

(
A0∼q1−1

1

)
ξ
(0∼q1−1)
1 + θ̃T1 θ̃1.

(23)
Taking the derivative of V1 and substituting (21) and (22),

we obtain

V̇1 = −
∥∥∥ξ(0∼q1−1)

1

∥∥∥2 + 2γ1θ̃
T
1 θ̂1 + 2

(
ξ
(0∼q1−1)
1

)T

× P1L

(
A0∼q1−1

1

)
g1(x

(0∼q1−1)
1 ) (ξ2 +ϖ2)

+ 2
(
ξ
(0∼q1−1)
1

)T

P1L

(
A0∼q1−1

1

)
(ε1 + ϑ1) . (24)

Through the utilization of inequalities, one can derive

2
(
ξ
(0∼q1−1)
1

)T

P1L

(
A0∼q1−1

1

)
g1(x

(0∼q1−1)
1 ) (ξ2 +ϖ2)

≤1

4

∥∥∥ξ(0∼q1−1)
1

∥∥∥2 + 8
∥∥∥P1L

(
A0∼q1−1

1

)∥∥∥2 g21(x(0∼q1−1)
1 )ϖ2

2

+ 8
∥∥∥P1L

(
A0∼q1−1

1

)∥∥∥2 g21(x(0∼q1−1)
1 )

∥∥∥ξ(0∼q2−1)
2

∥∥∥2 ,
(25)

2
(
ξ
(0∼q1−1)
1

)T

P1L

(
A0∼q1−1

1

)
(ε1 + ϑ1)

≤1

4

∥∥∥ξ(0∼q1−1)
1

∥∥∥2 + 8
∥∥∥P1L

(
A0∼q1−1

1

)∥∥∥2 (ε∗21 + ϑ∗2
1

)
.

(26)

By substituting (25) and (26),(24) can be rewritten as

V̇1 ≤ −1

2

∥∥∥ξ(0∼q1−1)
1

∥∥∥2 + 2γ1θ̃
T
1 θ̂1

+ 8
∥∥∥P1L

(
A0∼q1−1

1

)∥∥∥2 g21(x(0∼q1−1)
1 )ϖ2

2

+ 8
∥∥∥P1L

(
A0∼q1−1

1

)∥∥∥2 g21(x(0∼q1−1)
1 )

∥∥∥ξ(0∼q2−1)
2

∥∥∥2 + c1,

(27)

where c1 = 8
∥∥∥P1L

(
A0∼q1−1

1

)∥∥∥2 (ε∗21 + ϑ∗2
1

)
.

Step i: Similarly, from (1),(17) and (18), the qith deriva-
tive of ξi can be obtained by substituting (15) as follows :

ξ
(qi)
i =f̄i + gi(x

(0∼qj−1)
j |j=1∼i ) (ξi+1 +ϖi+1 + αi+1)

+ ϑi − ᾱ
(qi)
i , (28)

where f̄i = hi

(
x
(0∼qj−1)
j

(
t− τj,σ(t)

)
|j=1∼i

)
+

fi(x
(0∼qj−1)
j |j=1∼i ).

The virtual controller αi+1 and the adaptive law ˙̂
θi are

chosen as

αi+1 =−
(
gi(x

(0∼qj−1)
j |j=1∼i)

)−1

×
(
A0∼qi−1

i ξ
(0∼qi−1)
i + θ̂Ti φi(zi)− ᾱ

(qi)
i

)
,

(29)

˙̂
θi =

(
ξ
(0∼qi−1)
i

)T

PiL

(
A0∼qi−1

i

)
φi(zi)− γiθ̂i, (30)

where zi =
(
x
(0∼qj−1)
j |j=1∼i, x

(0∼qj−1)
j (t− τj,σ(t))|j=1∼i

)
.

Combining (28) and (29) yields the updated value of ξ(qi)i ,
and furthermore, the state space expression can be obtained

ξ̇
(0∼qi−1)
i = Φi

(
A0∼qi−1

i

)
ξ
(0∼qi−1)
i +

[
0
bi

]
, (31)

where bi = gi(x
(0∼qj−1)
j |j=1∼i ) (ξi+1 +ϖi+1) +

θ̃Ti φi(zi) + εi + ϑi.
Choose the Lyapunov function in the following manner

Vi =
(
ξ
(0∼qi−1)
i

)T

Pi

(
A0∼qi−1

i

)
ξ
(0∼qi−1)
i +ϖ2

i + θ̃Ti θ̃i.

(32)
Differentiating Vi and subsequently replacing (30) and

(31) into it yields

V̇i = −
∥∥∥ξ(0∼qi−1)

i

∥∥∥2 + 2γiθ̃
T
i θ̂i + 2

(
ξ
(0∼qi−1)
i

)T

× PiL

(
A0∼qi−1

i

)
gi(x

(0∼qj−1)
j |j=1∼i ) (ξi+1 +ϖi+1)

+ 2
(
ξ
(0∼qi−1)
i

)T

PiL

(
A0∼qi−1

i

)
(εi + ϑi)

+ 2ϖi

(
Gi (·)−

ϖi

li

)
. (33)

By applying the inequality, we conclude that

2ϖiGi (·) ≤ β +
G2

i (·)ϖ2
i

β
. (34)

Substituting (34) into (33) and similar to (25) and (26),
(33) can be written as

V̇i ≤ −1

2

∥∥∥ξ(0∼qi−1)
i

∥∥∥2

+ 2γiθ̃
T
i θ̂i −

(
2

li
− G2

i (·)
β

)
ϖ2

i

+ 8
∥∥PiL

(
A0∼qi−1

i

)∥∥2
g2i (x

(0∼qj−1)
j |j=1∼i )

∥∥∥∥ξ(0∼qi+1−1)
i+1

∥∥∥∥2

+ 8
∥∥PiL

(
A0∼qi−1

i

)∥∥2
g2i (x

(0∼qj−1)
j |j=1∼i )ϖ

2
i+1 + ci,

(35)

where ci = 8
∥∥∥PiL

(
A0∼qi−1

i

)∥∥∥2 (ε∗2i + ϑ∗2
i

)
+ β.

Step n: In view of [17], the system (1) together with (15),
taking the qnth derivative of ξn yields

ξ(qn)n = ϱu+ f̄n (zn, u) + gn(x
(0∼qi−1)
i |i=1∼n )m (u)

+ ϑn − ᾱ(qn)
n + l (t− T0) ν

(
x
(0∼qi−1)
i |i=1∼n , u

)
,

(36)
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where f̄n (zn, u) =
(
gn(x

(0∼qi−1)
i |i=1∼n )k (u)− ϱ

)
u +

fn(x
(0∼qi−1)
i |i=1∼n )+hn

(
x
(0∼qi−1)
i

(
t− τi,σ(t)

)
|i=1∼n

)
,

ϱ > 0 is a design parameter and zn =(
x
(0∼qi−1)
i |i=1∼n , x

(0∼qi−1)
i

(
t− τi,σ(t)

)
|i=1∼n

)
.

The actual controller u and the adaptive law ˙̂
θn can be

constructed as

u = −ϱ−1
(
A0∼qn−1

n ξ(0∼qn−1)
n + θ̂Tnφn(zn, uf )− ᾱ(qn)

n

)
,

(37)
˙̂
θn =

(
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

)
φn(zn, uf )− γnθ̂n.

(38)
Substituting (37) into (36), subsequently, it can be trans-

formed into a state-space representation

ξ̇(0∼qn−1)
n = Φn

(
A0∼qn−1

n

)
ξ(0∼qn−1)
n +

[
0
bn

]
, (39)

where bn = f̄n (zn, u)+gn(x
(0∼qi−1)
i |i=1∼n )m (u)+ϑn−

θ̂Tnφn(zn, uf ) + l (t− T0) ν
(
x
(0∼qi−1)
i |i=1∼n , u

)
.

Construct the Lyapunov function in the following manner

Vn =
(
ξ(0∼qn−1)
n

)T

Pn

(
A0∼qn−1

n

)
ξ(0∼qn−1)
n +ϖ2

n+θ̃Tn θ̃n.

(40)
Computing the time derivative of Vn gives

V̇n =
(
ξ(0∼qn−1)
n

)T (
ΦT

n

(
A0∼qn−1

n

)
Pn

(
A0∼qn−1

n

)
+Pn

(
A0∼qn−1

n

)
Φn

(
A0∼qn−1

n

))
ξ(0∼qn−1)
n

+ 2
(
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

) (
f̄n (zn, u)

+ϑn − θ̂Tnφn(zn, uf ) + gn(x
(0∼qi−1)
i |i=1∼n )m (u)

+l (t− T0) ν
(
x
(0∼qi−1)
i |i=1∼n , u

))
+ 2ϖn

(
Gn (·)−

ϖn

ln

)
− 2θ̃Tn

˙̂
θn. (41)

With the application of Assumption 1 and Young’s in-
equality, we can obtain

2
(
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

) (
f̄n (zn, u)

+l (t− T0) ν
(
x
(0∼qi−1)
i |i=1∼n , u

))
≤2

∣∣∣∣(ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

)∣∣∣∣ |η (zn, u)|
≤1

a

((
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

))2

η2 (zn, u) + a

=2
(
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

)
η̄ (zn, u) + a, (42)

where η̄ (zn, u) = 1
2a

(
ξ
(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

)
η2 (zn, u).

Combined with Lemma 2, η̄ (zn, u) can be expressed as

η̄ (zn, u) = θTnφn(zn, uf ) + εn, (43)

where |εn| is bounded by ε∗n, ε∗n represents a positive con-
stant, uf is the output of filtered signal

uf = HL (s)u ≈ u (44)

with HL (s) is the Butterworth low-pass filter. Then, (41)
can be represented as follows:

V̇n ≤ −
∥∥∥ξ(0∼qn−1)

n

∥∥∥2

+ 2ϖn

(
Gn (·)− ϖn

ln

)
+ 2θ̃Tn

((
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

)
φn(zn, uf )− ˙̂

θn

)
+ 2

(
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

)
(εn + ϑn) + a

+ 2
(
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

)
gn(x

(0∼qi−1)
i |i=1∼n )m (u) .

(45)

Based on Yang’s inequality,one have

2
(
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

)
gn(x

(0∼qi−1)
i |i=1∼n )m (u)

≤1

4

∥∥∥ξ(0∼qn−1)
n

∥∥∥2

+ 4
∥∥PnL

(
A0∼qn−1

n

)∥∥2
g∗2m∗2. (46)

Substituting (46) into (45) and similar to (26) and (34), we
can obtain the following:

V̇n ≤ −1

2

∥∥∥ξ(0∼qn−1)
n

∥∥∥2+2γnθ̃
T
n θ̂n−

(
2

ln
− G2

n (·)
β

)
ϖ2

n+cn,

(47)
where cn = 4

∥∥PnL

(
A0∼qn−1

n

)∥∥2 (2 (ε∗2n + ϑ∗2
n

)
+ g∗2m∗2)+

a+ β.

4 Stability analysis

In this section, the main result of the paper is summarised
in the following theorem:

Theorem 1: For high-order time-varying delay nonlinear
SFS characterized by non-affine nonlinear faults and asym-
metric nonlinear dead-zones (1), and subject to Assump-
tions 1, 2, and 3, the proposed fuzzy adaptive FTC scheme,
comprising the virtual control law (20) and (29), the adap-
tive law (21), (30) and (38), along with the actual controller
(37) guarantees the convergence of the tracking error of the
closed-loop control system to a small neighborhood around
the origin. This holds true for appropriately selected param-
eters γi and li, while ensuring the boundedness of all signals.

Proof: The overall Lyapunov function V is selected as
V =

∑n
i=1 Vi.

In light of the inequalities denoted by (27), (35) and (47),
we can derive the derivative of V as

V̇ ≤ −
n∑

i=1

(
1

2
− ηi

)∥∥∥ξ(0∼qi−1)
i

∥∥∥2 + 2
n∑

i=1

γiθ̃
T
i θ̂i

−
n∑

i=2

(
2

li
− G2

i (·)
β

− δi

)
ϖ2

i + c0, (48)

where c0 =
∑n

i=1 ci, η1 = 0,

ηi = 8
∥∥∥Pi−1,L

(
A

0∼qi−1−1
i−1

)∥∥∥2 g2i−1(x
(0∼qj−1)
j |j=1∼i−1 ), i = 2, . . . , n.

δi = 8
∥∥∥Pi−1,L

(
A

0∼qi−1−1
i−1

)∥∥∥2 g2i−1(x
(0∼qj−1)
j |j=1∼i−1 ), i = 2, . . . , n.

and Gi (·) satisfy the inequalities |Gi (·) | ≤ Ḡi with Ḡi be-
ing some positive constants.

Based on Young’s inequality, one has

θ̃Ti θ̂i = θ̃Ti

(
θi − θ̃i

)
≤ −1

2
θ̃Ti θ̃i +

1

2
θTi θi. (49)
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Substituting (49) into (48) gives

V̇ ≤ −
n∑

i=1

(
1

2
− ηi

)∥∥∥ξ(0∼qi−1)
i

∥∥∥2 − n∑
i=1

γiθ̃
T
i θ̃i

−
n∑

i=2

(
2

li
− Ḡ2

i

β
− δi

)
ϖ2

i +
n∑

i=1

γiθ
T
i θi + c0

≤ −bV + c, (50)

where c =
∑n

i=1 γiθ
T
i θi + c0 and b =

min
{

1
2 − ηi, γi,

2
li
− Ḡ2

i

β − δi

}
.

5 Simulation example
In order to demonstrate the feasibility of the FTC method

proposed in this paper, numerical simulations and analyses
were conducted using the following the numerical example:

ẍ1 = f1(x
(0∼1)
1 ) + g1(x

(0∼1)
1 )x2 + h1

(
x
(0∼1)
1 (t− τ1 (t))

)
,

ẍ2 = f2(x
(0∼qi−1)
i |i=1∼2 ) + g2(x

(0∼qi−1)
i |i=1∼2 )D (u)

+h2

(
x
(0∼qi−1)
i (t− τi (t)) |i=1∼2

)
+l (t− T0) ν

(
x
(0∼qi−1)
i |i=1∼2 , u

)
,

y = x1,

where f1(x
(0∼2)
1 ) = sin(ẋ1)e

−x4
1 , f2(x

(0∼qi−1)
i |i=1∼2 ) =

ẋ2e
0.5x1ẋ1 + ẋ1 sin (x1x2), g1(x

(0∼2)
1 ) = 2 + sin(x1ẋ1),

g2(x
(0∼qi−1)
i |i=1∼2 ) = 3 + 0.5 cos(x1ẋ1) sin(x2ẋ1), and

the nonlinear time-delay functions are selected as

h1

(
x
(0∼1)
1 (t− τ1 (t))

)
= sin (x1 (t− τ1 (t)) ẋ1 (t− τ1 (t))) ,

h2

(
x
(0∼qi−1)
i (t− τi (t)) |i=1∼2

)
=cos (x1 (t− τ1 (t)) ẋ1 (t− τ1 (t))) + x2 (t− τ2 (t)) ẋ2 (t− τ2 (t)) .

The time-varying delays are selected as τ1 (t) = 1 +
sin (t) , τ2 (t) = 1.2 (1 + cos (t)).

The fault function is chosen as
ν
(
x
(0∼qi−1)
i |i=1∼2 , u

)
= 15(x1ẋ1x2ẋ2 + sin(u)) + 15,

and the parameters of the time profile model of the fault are
chosen as δ = 8 and T0 = 10s.

And select the dead-zone as

D (u) =

 (u− 2) (0.5− 0.3 sin (u)) , u > 2
0,−1.5 ≤ u ≤ 2

(u+ 1.5) (0.6− 0.2 cos (u)) , u < −1.5

The Butterworth low-pass filter is chosen as HL(s) =
1

s2+1.414s+1 , and the given reference signal is yr =
0.5 (sin(t) + sin (0.5t)).

Choose F1 =

[
−6 1
0 −6

]
, F2 =

[
−5 −1
1 −5

]
, Z1 =[

1 0
]

and Z2 =
[
1 1

]
, by Proposition 1, we have

V1 =

[
Z1

Z1F1

]
=

[
1 0
−6 1

]
, V2 =

[
Z2

Z2F2

]
=[

1 1
−4 −6

]
, A0∼2

1 = −Z1F
2
1 V

−1
1 =

[
36 12

]
and

A0∼2
2 = −Z2F

2
2 V

−1
2 =

[
26 10

]
.

Select the initial values as x1 (0) = x2 (0) = 0 and
θT1 (0) = θT2 (0) = [0, 0, 0, 0, 0, 0, 0], and choose the design
parameters as ϱ = 80, γ1 = γ2 = 60 and l2 = 0.01.
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Fig. 1: Tracking performance trajectories
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Fig. 2: The trajectories of u and D(u)

Simulation results, as shown in Figs. 1-3, clearly demon-
strate the effectiveness of the proposed method. It is clear
from Fig. 1 that the proposed fuzzy adaptive FTC scheme
exhibits excellent control performance. Fig. 2 displays the
response of the control input signal. Fig. 3 presents the
adaptive laws parameter curves. These results collectively
indicate that the control scheme developed in this study not
only successfully achieves the specified control objectives
but also ensures the stability of the high-order nonlinear SFS.

6 Conclusion

In this study, we have introduced a novel fuzzy adap-
tive FTC scheme specifically designed for high-order un-
known time-varying delay SFS with non-affine nonlinear
faults and asymmetric dead-zone inputs. Notably, this ap-
proach obviates the requirement for reduced-order process-
ing of high-order systems, enabling a more direct controller
design. Furthermore, in dealing with unknown time-varying
delays, we relax the condition restrictions by avoiding the
use of Lyapunov-Krasovskii functionals, employing com-
bination of the finite coverage lemma and the fuzzy logic
systems. And the proposed control method can achieve the
control objectives. In future research, we will extend our
framework to practical systems such as robotic arm systems,
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Fig. 3: The trajectories of adaptive parameters

utilizing the theory of fully actuated systems.
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Event-triggered Fuzzy Adaptive Fault-Tolerant Control of
High-Order Nonlinear Systems: A Fully Actuated System

Approach
Qingyi Zhao1, Yang Cui1∗

1. School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China
E-mail: kdcuiyang@163.com

Abstract: In this paper, an event-triggered adaptive tracking control issue is discussed for a class of high-order nonlinear strict-
feedback system (SFS). The systems considered involve non-affine nonlinear faults as well as external disturbances. The pro-
posed approach incorporates fuzzy logic systems to handle the unknown nonlinear functions in this system. Additionally, an
event-triggered control method is developed using the backstepping technique to conserve network resources. Leveraging the
theories of high-order fully actuated (HOFA) systems, dynamic surface control, and event-triggered control, novel adaptive fuzzy
fault-tolerant tracking controllers are directly constructed. Importantly, there is no need to convert the high-order system into a
first-order one. Theoretical analysis and Lyapunov function theory guarantee the stability of the closed-loop system, ensuring
the convergence of the tracking error to a compact neighborhood around zero. The feasibility and effectiveness of the proposed
control approach are demonstrated through a simulation example.

Key Words: Fully actuated system approach, Nonlinear systems, Adaptive backstepping control, Fuzzy control, Fault-tolerant
control, Event-triggered

1 Introduction

In recent years, the adaptive control problem for uncertain
nonlinear systems has garnered significant attention, leading
to the proposal of various results [1–3]. With the combina-
tion of the backstepping method, the fuzzy control scheme
and neural networks has found wide application in practical
systems to address uncertainties in nonlinear systems, this
approach has been applied to control problems of nonlinear
systems, including affine/non-affine nonlinear systems [4, 5]
and high-order fully actuated systems [6].

Most of the above control methods are based on the state-
space method, which is very effective for dealing with the
control problems of nonlinear systems, but it requires that
the system must be a first-order differential equation. How-
ever, for dealing with control problems of higher-order non-
linear systems, they must be converted to first-order sys-
tems, which greatly increases the complexity of the con-
troller design. Many models of real industrial systems of-
ten exhibit higher-order differential equations. Therefore,
direct controller design for higher-order systems is a great
challenge. To address these limitations, a new approach
has been introduced—the Fully Actuated System (FAS) ap-
proach. Professor Guangren Duan first proposed the High-
Order Fully Actuated (HOFA) system method, which was
initially proposed and introduced in [7–11]. The above re-
sults are extended by incorporating faulty operation con-
ditions to design fault-tolerant controllers for higher-order
nonlinear systems in [6]. However, the above article does
not consider the problem with event-triggered mechanism
for higher-order nonlinear systems.

Event-triggered control has received increasing attention
as an effective alternative to traditional time-triggered con-

This research was supported by the National Natural Science Founda-
tion of China under Grant 61903169, Science Center Program of National
Natural Science Foundation of China under Grant 62188101, Liaoning Re-
vitalization Talents Program under Grant XLYC2007182, Education De-
partment Project of Liaoning under Grant LJKMZ20220655.

trol. It proves to be efficient in reducing resource waste while
ensuring system performance [12–14]. In [14], this brief
proposes a fuzzy adaptive event-triggered quantized finite-
time control scheme for uncertain strict-feedback nonlinear
systems. While there are limited works on event-triggered
controllers for fully actuated systems, inspired by the afore-
mentioned results, this study proposes an event-triggered
adaptive fuzzy tracking control scheme designed for fully
actuated systems.

In real engineering systems, individual components like
actuators and sensors may experience abrupt failures dur-
ing operation. Establishing a fault-tolerant control (FTC)
scheme is crucial to address actuator and sensor faults, en-
suring the maintenance of a robust system control perfor-
mance. Several adaptive control methods for nonlinear sys-
tems with faults have been investigated in [15–18]. Bias/gain
faults, loss of effectiveness faults, and lock-in-place scenar-
ios were considered in previous works [15, 16]. However,
these control methods mainly focus on linear faults, most
faults are nonlinear functions of both the controller u and
state x [17, 18]. However, all the Fault-Tolerant Control
(FTC) approaches in the mentioned literature were studied
for first-order nonlinear systems. How to directly design-
ing adaptive controllers for higher-order nonlinear SFS with
non-affine nonlinear faults has not been studied much. Con-
sequently, this research has significant theoretical and prac-
tical value.

The primary contributions of this study are summarized as
follows:

1) The proposed high-order backstepping method requires
fewer steps compared to the traditional state-space
backstepping method. This reduction in steps not only
enhances convenience in controller design but also sig-
nificantly reduces computational complexity.

2) The event-triggered mechanism is designed, which can
reduce network resources in signal transmission.

3) Based on the Butterworth low-pass filter, fuzzy logic
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systems and event-triggered mechanism, we propose
an adaptive event-triggered fault-tolerant tracking con-
trol law for High-Order Fully Actuated (HOFA) sys-
tems with non-affine nonlinear faults and external dis-
turbances.

2 Problem description and preliminaries

2.1 Problem formulation
The high-order nonlinear SFS is considered as

x
(q1)
1 = f1(x

(0∼q1−1)
1 ) + g1(x

(0∼q1−1)
1 )x2 + d1 (t) ,

x
(q2)
2 = f2(x

(0∼qi−1)
i |i=1∼2 ) + g2(x

(0∼qi−1)
i |i=1∼2 )x3

+d2 (t) ,
...

x
(qn−1)
n−1 = fn−1(x

(0∼qi−1)
i |i=1∼n−1 )

+gn−1(x
(0∼qi−1)
i |i=1∼n−1 )xn + dn−1 (t) ,

x
(qn)
n = fn(x

(0∼qi−1)
i |i=1∼n ) + gn(x

(0∼qi−1)
i |i=1∼n )u

+l (t− T0) ν
(
x
(0∼qi−1)
i |i=1∼n , u

)
+ dn (t)

y = x1

(1)
where xi ∈ R, i = 1, 2, . . . , n are the state variables,
fj(x

(0∼qi−1)
i |i=1∼j ) ∈ R and gj(x

(0∼qi−1)
i |i=1∼j ) ∈

R, j = 1, 2 . . . , n denote unknown nonlinear functions
and known nonlinear functions, respectively. y ∈ R and
u ∈ R are the output and input of the considered system.
di ∈ R, i = 1, · · ·n denotes a bounded external distur-
bance, and it satisfies that |di (t)| ≤ d̄i. It is assumed that
gj(x

(0∼qi−1)
i |i=1∼j ) ̸= 0. ν

(
x
(0∼qi−1)
i |i=1∼n , u

)
∈ R

represents an unknown external disturbance induced by a
fault. l (t− T0) ∈ R signifies the time profile of the fault
occurring at an unknown time

l (t− T0) =

{
0, t < T0

1− e−δ(t−T0), t ≥ T0
(2)

where δ > 0 denotes the evolution rate of the unknown
fault. The reference signal yr is a smooth function, and all
its derivatives ẏr, . . . , y

(q1)
r are bounded.

Assuming that the controller is implemented on a digital
platform. We define an increasing sequence {tk}∞k=0 , t0 =
0, k ∈ Z+ (Z+ represents positive integer)to signify the
triggering instants of events generated by an event genera-
tor. Subsequently, the sample error is expressed as

z (t) = ϖ (t)− u (t) , t ∈ [tk, tk+1) (3)

where ϖ (t) is the continuous control input. The sampled
control u (t), defined as u (t) ≜ ϖ (tk), is obtained at t = tk.
The variable z (t) varies randomly and resets to 0 at each tk,
defining a triggering interval [tk, tk+1) as a cycle.

Assumption 1 ([19]): For system (1), the inequality

|fn(x(0∼qi−1)
i |i=1∼n ) + l (t− T0) ν

(
x
(0∼qi−1)
i |i=1∼n , u

)
|

≤η
(
x
(0∼qi−1)
i |i=1∼n , u

)
(4)

holds, where η
(
x
(0∼qi−1)
i |i=1∼n , u

)
is an unknown non-

negative function.

Lemma 1 ([12]): The following inequality holds for any
ρ > 0 and any x ∈ R :

0 ≤ |x| − x tanh

(
x

ρ

)
≤ κρ (5)

where κ is a constant satisfying κ = e−(κ+1), κ = 0.2785.

2.2 Preliminaries
In this article, the following symbols are defined to use in

the following paper. Im represents the identity matrix, and

x(0∼q) =
[

x ẋ · · · x(q)
]T

x
(q0∼qk)
k

∣∣∣
k=i∼j

=
[

x
(q0∼qk)
i x

(q0∼qk)
i+1 · · · x

(q0∼qk)
j

]
, j ≥ i

A0∼q−1 =
[
A0 A1 · · · Aq−1

]

Φ
(
A0∼q−1

)
=


0 I

. . .
I

−A0 −A1 · · · Aq−1


Lemma 2 ([19]): Let f (x) be a continuous smooth function
defined on a compact set U , for any positive approximation
error ε, there exists a Fuzzy Logic System (FLS) θTφ (x)
such that

sup
x∈U

∣∣f (x)− θTφ (x)
∣∣ ≤ ε (6)

where ε satisfies |ε| ≤ ε∗, ε∗ is a positive constant.
Proposition 1 ([8, 9]): For an arbitrarily chosen F ∈

Rqi×qi , all the matrix A0∼qi−1 and the nonsingular matrix
V ∈ Rqi×qi satisfying

Φ
(
A0∼qi−1

)
= V FV −1

A0∼qi−1 = −ZF qiV −1 (Z,F )

V (Z,F ) =
[

Z ZF · · · ZF qi−1
]T

where Z ∈ R1×qi is an arbitrary parameter matrix satisfying

detV (Z,F ) ̸= 0

To find the matrix P
(
A0∼qi

i

)
that satisfies the Lyapunov

matrix equation ΦTP + PΦ = −I , we introduce notations
related to a square matrix Φ ∈ Rqi×qi : det (sI +Φ) ≜
qi∑
i=0

cΦi s
i.

Proposition 2 ([9]): If Φ ∈ Rqi×qi is Hurwitz, then, the
following Lyapunov equation ΦTP + PΦ = −I , has a

unique solution P =
qi−1∑
i=0

CΦ
i P

−1
0 Φi, where P0 =

qi∑
i=0

cΦi Φ
i.

3 High-order backstepping controller design

Building upon the Higher-Order Fully Actuated (HOFA)
theory, the backstepping controller design approach is di-
rectly applicable to the high-order nonlinear SFS described
by equation (1), eliminating the need to transform the system
into a first-order representation.
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Consider a set of matrices A0∼qi−1
i ∈ R1×qi , i =

1, 2, . . . , n, these matrices ensure that Φ(A0∼qi−1
i ) ∈

Rqi×qi , i = 1, 2, . . . , n is stable, and

Pi

(
A0∼qi−1

i

)
=

[
PiF

(
A0∼qi−1

i

)
PiM

(
A0∼qi−1

i

)
PiL

(
A0∼qi−1

i

) ]
∈ Rqi×qi

(7)
is the unique positive definite solution to the Lyapunov equa-
tion:

ΦT (
A0∼qi−1

i

)
Pi

(
A0∼qi−1

i

)
+Pi

(
A0∼qi−1

i

)
Φ
(
A0∼qi−1

i

)
= −Iqi

(8)
where PiF

(
A0∼qi−1

i

)
, PiL

(
A0∼qi−1

i

)
∈ Rqi×1.

This article introduces the following first-order filters:

li ˙̄αi + ᾱi = αi, i = 2, . . . , n (9)

where ᾱi is the output of filter, αi is the input of the virtual
controller. li is a positive design parameter. ϖi = ᾱi − αi,
denotes the filter error. Then, get

liGi (·) = liϖ̇i +ϖi (10)

where Gi (·) represents the continuous function.
Step 1: Let

ξ
(0∼q1−1)
1 = x

(0∼q1−1)
1 − y(0∼q1−1)

r , (11)

ξ
(0∼q2−1)
2 = x

(0∼q2−1)
2 − ᾱ

(0∼q2−1)
2 , (12)

(12) can be decomposed into ξ2 = x2 − ᾱ2.
Then, the q1th derivative of ξ1 is given by

ξ
(q1)
1 =f1(x

(0∼q1−1)
1 ) + g1(x

(0∼q1−1)
1 ) (ξ2 +ϖ2 + α2)

+ d1 − y(q1)r . (13)

The virtual control α2 in the design is as follows:

α2 = −g−1
1 (x

(0∼q1−1)
1 )

(
A0∼q1−1

1 ξ
(0∼q1−1)
1

+θ̂T1 φ1

(
x
(0∼q1−1)
1

)
− y(q1)r

)
. (14)

Substituting (14) into (13), (13) can be further expressed
as:

ξ̇
(0∼q1−1)
1 = Φ1

(
A0∼q1−1

1

)
ξ
(0∼q1−1)
1 +

[
0 b1

]T
,

(15)
where b1 = θ̃T1 φ1

(
x
(0∼q1−1)
1

)
+ d1 + ε1 +

g1(x
(0∼q1−1)
1 ) (ξ2 +ϖ2).

Choosing the Lyapunov function candidate as follows:

V1 =
(
ξ
(0∼q1−1)
1

)T

P1

(
A0∼q1−1

1

)
ξ
(0∼q1−1)
1 + θ̃T1 θ̃1.

(16)
The derivative of (16) is

V̇1 =
(
ξ
(0∼q1−1)
1

)T (
ΦT

1

(
A0∼q1−1

1

)
P1

(
A0∼q1−1

1

)
+ P1

(
A0∼q1−1

1

)
Φ1

(
A0∼q1−1

1

))
ξ
(0∼q1−1)
1

+2θ̃T1

((
ξ
(0∼q1−1)
1

)T

P1L

(
A0∼q1−1

1

)
φ1

(
x
(0∼q1−1)
1

)
− ˙̂

θ1

)
+2

(
ξ
(0∼q1−1)
1

)T

P1L

(
A0∼q1−1

1

)
g1(x

(0∼q1−1)
1 ) (ξ2 +ϖ2)

+2
(
ξ
(0∼q1−1)
1

)T

P1L

(
A0∼q1−1

1

)
(d1 + ε1) . (17)

By designing the adaptive law and using the following in-
equalities:

˙̂
θ1 =

(
ξ
(0∼q1−1)
1

)T

P1L

(
A0∼q1−1

1

)
φ1

(
x
(0∼q1−1)
1

)
−λ1θ̂1

(18)

2
(
ξ
(0∼q1−1)
1

)T

P1L

(
A0∼q1−1

1

)
g1(x

(0∼q1−1)
1 ) (ξ2 +ϖ2)

≤1

4

∥∥∥ξ(0∼q1−1)
1

∥∥∥2 + 8
∥∥∥P1L

(
A0∼q1−1

1

)∥∥∥2 g21(x(0∼q1−1)
1 )ϖ2

2

+ 8
∥∥∥P1L

(
A0∼q1−1

1

)∥∥∥2 g21(x(0∼q1−1)
1 )

∥∥∥ξ(0∼q2−1)
2

∥∥∥2
(19)

2
(
ξ
(0∼q1−1)
1

)T

P1L

(
A0∼q1−1

1

)
(d1 + ε1)

≤1

2

∥∥∥ξ(0∼q1−1)
1

∥∥∥2 + 4
∥∥∥P1L

(
A0∼q1−1

1

)∥∥∥2 (d̄21 + ε∗21
)
(20)

(17) becomes

V̇1 ≤− 1

4

∥∥∥ξ(0∼q1−1)
1

∥∥∥2 + 2λ1θ̃
T
1 θ̂1 + c1

+8
∥∥∥P1L

(
A0∼q1−1

1

)∥∥∥2 g21(x(0∼q1−1)
1 )ϖ2

2

+8
∥∥∥P1L

(
A0∼q1−1

1

)∥∥∥2 g21(x(0∼q1−1)
1 )

∥∥∥ξ(0∼q2−1)
2

∥∥∥2 ,

(21)

where c1 = 4
∥∥∥P1L

(
A0∼q1−1

1

)∥∥∥2 (d̄21 + ε∗21
)
.

Step i: Let

ξ
(0∼qi−1)
i = x

(0∼qi−1)
i − ᾱ

(0∼qi−1)
i , (22)

(22) can be written as ξ(qi−1)
i = x

(qi−1)
i − ᾱ

(qi−1)
i .

Utilizing equation (1), yield

ξ
(qi)
i =fi(x

(0∼qj−1)
j |j=1∼i ) + gi(x

(0∼qj−1)
j |j=1∼i )xi+1

+ di − ᾱ
(qi)
i . (23)

Let

ξ
(0∼qi+1−1)
i+1 = x

(0∼qi+1−1)
i+1 − ᾱ

(0∼qi+1−1)
i+1 , (24)

(24) can be converted to an equivalent ξi+1 = xi+1 − ᾱi+1.
Substituting ξi+1 = xi+1 − ᾱi+1 into (23) gives

ξ
(qi)
i =fi(x

(0∼qj−1)
j |j=1∼i )− ᾱ

(qi)
i + di

+gi(x
(0∼qj−1)
j |j=1∼i ) (ξi+1 +ϖi+1 + αi+1) . (25)

Designing the virtual controller αi+1 as follows:

αi+1 =−
(
gi(x

(0∼qj−1)
j |j=1∼i )

)−1 (
A0∼qi−1

i ξ
(0∼qi−1)
i

+θ̂Ti φ(x
(0∼qj−1)
j |j=1∼i )− ᾱ

(qi)
i

)
, (26)

and substituting (26) into (25), (25) can be further rewritten
in the state-space form as follows:

ξ̇
(0∼qi−1)
i = Φi

(
A0∼qi−1

i

)
ξ
(0∼qi−1)
i +

[
0 bi

]T
,

(27)
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where bi = θ̃Ti φ(x
(0∼qj−1)
j |j=1∼i ) + di + εi +

gi(x
(0∼qj−1)
j |j=1∼i ) (ξi+1 +ϖi+1).

Select Lyapunov function candidate as follows:

Vi =
(
ξ
(0∼qi−1)
i

)T

Pi

(
A0∼qi−1

i

)
ξ
(0∼qi−1)
i +ϖ2

i + θ̃Ti θ̃i.
(28)

Taking the derivative of Vi yields

V̇i =
(
ξ
(0∼qi−1)
i

)T (
ΦT

i

(
A0∼qi−1

i

)
Pi

(
A0∼qi−1

i

)
+ Pi

(
A0∼qi−1

i

)
Φi

(
A0∼qi−1

i

))
ξ
(0∼qi−1)
i

+2θ̃Ti

((
ξ
(0∼qi−1)
i

)T

PiL

(
A0∼qi−1

i

)
φ(x

(0∼qj−1)
j |j=1∼i )

− ˙̂
θi
)
+ 2

(
ξ
(0∼qi−1)
i

)T

PiL

(
A0∼qi−1

i

)
gi(x

(0∼qj−1)
j |j=1∼i )

(ξi+1 +ϖi+1) + 2
(
ξ
(0∼qi−1)
i

)T

PiL

(
A0∼qi−1

i

)
(di + εi)

+2ϖi

(
Gi (·)−

ϖi

li

)
. (29)

By designing the adaptive law, the following inequality
and similar to (19) and (20),

˙̂
θi =

(
ξ
(0∼qi−1)
i

)T

PiL

(
A0∼qi−1

i

)
φ(x

(0∼qj−1)
j |j=1∼i )−λiθ̂i

(30)

2ϖiGi (·) ≤ β +
G2

i (·)ϖ2
i

β
(31)

(29) becomes

V̇i ≤− 1

4

∥∥∥ξ(0∼qi−1)
i

∥∥∥2 + 2λiθ̃
T
i θ̂i −

(
2

li
− G2

i (·)
β

)
ϖ2

i

+8
∥∥∥PiL

(
A0∼qi−1

i

)∥∥∥2 g2i (x(0∼qj−1)
j |j=1∼i )

∥∥∥ξ(0∼qi+1−1)
i+1

∥∥∥2
+8

∥∥∥PiL

(
A0∼qi−1

i

)∥∥∥2 g2i (x(0∼qj−1)
j |j=1∼i )ϖ

2
i+1 + ci,

(32)

where ci = 4
∥∥∥PiL

(
A0∼qi−1

i

)∥∥∥2 (ε∗2i + d̄2i
)
+ β.

Step n: Similarly, let,

ξ(0∼qn−1)
n = x(0∼qn−1)

n − ᾱ(0∼qn−1)
n (33)

which gives ξ(qn−1)
n = x

(qn−1)
n − ᾱ

(qn−1)
n .

From the system (1), taking the derivative of (33) yields

ξ(qn)n =fn(x
(0∼qi−1)
i |i=1∼n ) + gn(x

(0∼qi−1)
i |i=1∼n )u

+dn + l (t− T0) ν
(
x
(0∼qi−1)
i |i=1∼n , u

)
− ᾱ(qn)

n .

(34)

Based on z (t) in (3), the event-triggered mechanism is
designed as:

ϖ (t) =− (1 + γ)

(
v tanh

(
v

ρ

)
+ m̄ tanh

(
m̄

ρ

))
,

u (t) =ϖ (tk) ,∀t ∈ [tk, tk+1) ,
tk+1 = inf {t ∈ R | |z (t)| ≥ γ |u (t)|+m} , (35)

where v is the virtual control input, ρ is a positive constant,
0 < γ < 1, m > 0, and m̄ > [m/ (1− γ)] are constants to

be designed. From (35), there are two time-varying parame-
ters ri (t), i = 1, 2, satisfying |ri (t)| ≤ 1, based on analysis
of the relative-threshold scheme in ([20]), such that

u (t) =
ϖ (t)

1 + r1 (t) γ
− r2 (t)m

1 + r1 (t) γ
. (36)

Design the following Lyapunov function

Vn =
(
ξ(0∼qn−1)
n

)T

Pn

(
A0∼qn−1

n

)
ξ(0∼qn−1)
n +ϖ2

n+θ̃Tn θ̃n.
(37)

Combining (34) and (36), Vn derivative is given as

V̇n =
[

ξ̇n · · · ξ
(qn−1)
n B1

]
Pn

(
A0∼qn−1

n

)
ξ(0∼qn−1)
n

+
(
ξ(0∼qn−1)
n

)T

Pn

(
A0∼qn−1

n

) [
ξ̇n · · · ξ

(qn−1)
n B1

]T
+2ϖn

(
Gn (·)−

ϖn

ln

)
− 2θ̃Tn

˙̂
θn, (38)

where

B1 = fn(x
(0∼qi−1)
i |i=1∼n ) + gn(x

(0∼qi−1)
i |i=1∼n )(

ϖ (t)

1 + r1 (t) γ
− r2 (t)m

1 + r1 (t) γ

)
+ dn

+ l (t− T0) ν
(
x
(0∼qi−1)
i |i=1∼n , u

)
− ᾱ(qn)

n .

In light of r1 (t) ∈ [−1, 1], r2 (t) ∈ [−1, 1], we have

ϖ (t)

1 + r1 (t) γ
≤ ϖ (t)

1 + γ
,
∣∣∣∣ r2 (t)m

1 + r1 (t) γ

∣∣∣∣ ≤ m

1− γ
. (39)

Substituting (35) and (39) into (38), have

V̇n ≤
[

ξ̇n · · · ξ
(qn−1)
n B2

]
Pn

(
A0∼qn−1

n

)
ξ(0∼qn−1)
n

+
(
ξ(0∼qn−1)
n

)T

Pn

(
A0∼qn−1

n

) [
ξ̇n · · · ξ

(qn−1)
n B2

]T
+2ϖn

(
Gn (·)−

ϖn

ln

)
− 2θ̃Tn

˙̂
θn, (40)

where

B2 =fn(x
(0∼qi−1)
i |i=1∼n ) + gn(x

(0∼qi−1)
i |i=1∼n )(

−v tanh

(
v

ρ

)
− m̄ tanh

(
m̄

ρ

)
+

∣∣∣∣ m

1− γ

∣∣∣∣)
+ dn + l (t− T0) ν

(
x
(0∼qi−1)
i |i=1∼n , u

)
− ᾱ(qn)

n .

Based on Lemma 1 and the following inequality:∣∣∣∣ m

1− γ

∣∣∣∣− |m̄| < 0. (41)

Combining (40), leads to

V̇n ≤
[

ξ̇n · · · ξ
(qn−1)
n B3

]
Pn

(
A0∼qn−1

n

)
ξ(0∼qn−1)
n

+
(
ξ(0∼qn−1)
n

)T

Pn

(
A0∼qn−1

n

) [
ξ̇n · · · ξ

(qn−1)
n B3

]T
+2ϖn

(
Gn (·)−

ϖn

ln

)
− 2θ̃Tn

˙̂
θn, (42)
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where

B3 =fn(x
(0∼qi−1)
i |i=1∼n ) + gn(x

(0∼qi−1)
i |i=1∼n )

(− |v|+ 2κρ) + dn

+ l (t− T0) ν
(
x
(0∼qi−1)
i |i=1∼n , u

)
− ᾱ(qn)

n .

Designing the virtual controller

v =−
(
gn(x

(0∼qi−1)
i |i=1∼n )

)−1 (
A0∼qn−1

n ξ(0∼qn−1)
n

+θ̂Tnφ(x
(0∼qi−1)
i |i=1∼n , uf )− ᾱ(qn)

n

)
, (43)

(42) can be converted to

V̇n ≤
[

ξ̇n · · · ξ
(qn−1)
n B4

]
Pn

(
A0∼qn−1

n

)
ξ(0∼qn−1)
n

+
(
ξ(0∼qn−1)
n

)T

Pn

(
A0∼qn−1

n

) [
ξ̇n · · · ξ

(qn−1)
n B4

]T
+2ϖn

(
Gn (·)− ϖn

ln

)
− 2θ̃Tn

˙̂
θn, (44)

where

B4 =−A0∼qn−1
n ξ(0∼qn−1)

n + fn(x
(0∼qi−1)
i |i=1∼n )

− θ̂Tnφ(x
(0∼qi−1)
i |i=1∼n , uf )

+ l (t− T0) ν
(
x
(0∼qi−1)
i |i=1∼n , u

)
+ 2κρgn(x

(0∼qi−1)
i |i=1∼n ) + dn.

Where,
[

ξ̇n · · · ξ
(qn−1)
n B4

]T
= ξ̇

(0∼qn−1)
n ,

ξ̇
(0∼qn−1)
n can be converted into a state-space form

ξ̇(0∼qn−1)
n = Φn

(
A0∼qn−1

n

)
ξ(0∼qn−1)
n +

[
0 bn

]T
,

(45)
where bn = fn(x

(0∼qi−1)
i |i=1∼n ) −

θ̂Tnφ(x
(0∼qi−1)
i |i=1∼n , uf )+l (t− T0) ν

(
x
(0∼qi−1)
i |i=1∼n , u

)
+

2κρgn(x
(0∼qi−1)
i |i=1∼n ) + dn.

Combining (44) and (45) , we have

V̇n ≤
(
ξ(0∼qn−1)
n

)T (
ΦT

n

(
A0∼qn−1

n

)
Pn

(
A0∼qn−1

n

)
+ Pn

(
A0∼qn−1

n

)
Φn

(
A0∼qn−1

n

))
ξ(0∼qn−1)
n

+2
(
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

) (
2κρgn(x

(0∼qi−1)
i |i=1∼n )

)
+2

(
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

)
(
fn(x

(0∼qi−1)
i |i=1∼n )− θ̂Tnφ(x

(0∼qi−1)
i |i=1∼n , uf )

+ l (t− T0) ν
(
x
(0∼qi−1)
i |i=1∼n , u

))
+2

(
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

)
dn

+2ϖn

(
Gn (·)− ϖn

ln

)
− 2θ̃Tn

˙̂
θn. (46)

By using Assumption 1 and Young’s inequality, one has

2
(
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

) (
fn(x

(0∼qi−1)
i |i=1∼n )

+l (t− T0) ν
(
x
(0∼qi−1)
i |i=1∼n , u

))
≤2

(
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

)
η̄
(
x
(0∼qi−1)
i |i=1∼n , u

)
+ a,

(47)

where

η̄
(
x
(0∼qi−1)
i |i=1∼n , u

)
=

1

2a

(
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

)
η2

(
x
(0∼qi−1)
i |i=1∼n , u

)
.

(48)

Define the approximation error as

εn = η̄
(
x
(0∼qi−1)
i |i=1∼n , u

)
−θTnφ(x

(0∼qi−1)
i |i=1∼n , uf ),

(49)
where |εn| ≤ ε∗n, ε∗n being a positive constant, uf is the
output of filtered signal

uf = HL (s)u ≈ u, (50)

and HL (s) is the Butterworth low-pass filter.
By designing the adaptive law, similar to (20) and (31) and

the following inequality:

2
(
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

)
(
2κρgn(x

(0∼qi−1)
i |i=1∼n )

)
≤ 1

4

∥∥∥ξ(0∼qn−1)
n

∥∥∥2 + 16
∥∥PnL

(
A0∼qn−1

n

)∥∥2
g2n(x

(0∼qj−1)
j |j=1∼i )κ

2ρ2 (51)

˙̂
θn =

(
ξ(0∼qn−1)
n

)T

PnL

(
A0∼qn−1

n

)
φ(x

(0∼qi−1)
i |i=1∼n , uf )

− λnθ̂n (52)

V̇n can be obtained as

V̇n ≤ −1

4

∥∥∥ξ(0∼qn−1)
n

∥∥∥2+2λnθ̃
T
n θ̂n−

(
2

ln
− G2

n (·)
β

)
ϖ2

n+cn,

(53)
where cn = 4

∥∥PnL

(
A0∼qn−1

n

)∥∥2 (ε∗2n + d̄2n
)
+ a + β +

16κ2ρ2
∥∥PnL

(
A0∼qn−1

n

)∥∥2 g2n(x(0∼qj−1)
j |j=1∼i ).

4 Stability analysis

In accordance with the fully actuated system approach, we
have developed an adaptive event-triggered tracking Fault-
Tolerant Control (FTC) for a high-order nonlinear SFS with
non-affine nonlinear faults. Then, a theorem can be summa-
rized as follows.

Theorem 1: For the fuzzy adaptive event-triggered track-
ing control of the high-order nonlinear SFS with non-affine
nonlinear faults described by equation (1), the main com-
ponents include virtual controllers (14) and (26), the actual
controllers (43) and adaptive laws (18), (30) and (52), if
there exist the positive design parameters λi and li satisfy
1
4 − ηi > 0 and 2

li
− G2

i

β − δi > 0, then all signals in the
closed-loop system are bounded.

Proof: Select the whole Lyapunov function V as V =∑n
i=1 Vi.
According to the inequalities (21), (32) and (53), the

derivative of V can be given as

V̇ ≤ −
n∑

i=1

(
1

4
− ηi

)∥∥∥ξ(0∼qi−1)
i

∥∥∥2 + 2
n∑

i=1

λiθ̃
T
i θ̂i

−
n∑

i=2

(
2

li
− G2

i (·)
β

− δi

)
ϖ2

i + c0, (54)
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where c0 =
∑n

i=1 ci, η1 = 0,

ηi = 8

∥∥∥∥Pi−1,L

(
A

0∼qi−1−1

i−1

)∥∥∥∥2 g
2
i−1(x

(
0∼qj−1

)
j

∣∣∣j=1∼i−1 ), i = 2, . . . , n

δi = 8

∥∥∥∥Pi−1,L

(
A

0∼qi−1−1

i−1

)∥∥∥∥2 g
2
i−1(x

(
0∼qj−1

)
j

∣∣∣j=1∼i−1 ), i = 2, . . . , n.

and Gi (·) satisfy the inequalities |Gi (·) | ≤ Ḡi with Ḡi be-
ing some positive constants.

Based on Young’s inequality, one has

θ̃Ti θ̂i = θ̃Ti

(
θi − θ̃i

)
≤ −1

2
θ̃Ti θ̃i +

1

2
θTi θi. (55)

Substituting (55) into (54) gives

V̇ ≤−
n∑

i=1

(
1

4
− ηi

)∥∥∥ξ(0∼qi−1)
i

∥∥∥2 − n∑
i=1

λiθ̃
T
i θ̃i

−
n∑

i=2

(
2

li
− Ḡ2

i

β
− δi

)
ϖ2

i +
n∑

i=1

λiθ
T
i θi + c0

≤− bV + c, (56)

where c =
∑n

i=1 λiθ
T
i θi + c0 and b =

min
{

1
4 − ηi, λi,

2
li
− Ḡ2

i

β − δi

}
.

It is proved below that the proposed control protocol
avoids the Zeno behavior, which is the phenomenon where
events are triggered infinitely many times in a finite time in-
terval. It is first shown that there exists a constant t∗ > 0
satisfying ∀k ∈ Z+, {tk+1 − tk} ≥ t∗. By (35) and (3), one
has

d

dt
|z| = sign (z) ż ≤ |ϖ̇| (57)

Form (35), it is evident that ϖ̇ is a function of αn+1, which
is bounded, Additionally, we have established the continu-
ity of ϖ̇ in our analysis. Consequently, there exists a con-
stant ω that satisfies |ϖ̇| ≤ ω. In addition, z (tk) = 0,
limtk→tk+1

z (tk+1) = m, we can deduce a lower bound t∗

satisfy t∗ ≥ (m/ω) > 0. Thus, this ensures the avoidance
of Zeno behavior.

5 Simulation example

To demonstrate the effectiveness of the proposed control
approach, we present a numerical example in the following
section:

ẍ1 = f1(x
(0∼2)
1 ) + g1(x

(0∼2)
1 )x2 + d1,

ẍ2 = f2(x
(0∼qi−1)
i |i=1∼2 ) + g2(x

(0∼qi−1)
i |i=1∼2 )u

+l (t− T0) ν
(
x
(0∼qi−1)
i |i=1∼2 , u

)
+ d2

y = x1

(58)
where f1(x

(0∼2)
1 ) = sin(ẋ1)e

−x4
1 , f2(x

(0∼qi−1)
i |i=1∼2 ) =

ẋ2e
0.5x1ẋ1 + ẋ1 sin (x1x2), g1(x

(0∼2)
1 ) = 2 + sin(x1ẋ1),

g2(x
(0∼qi−1)
i |i=1∼2 ) = 3 + 0.5 cos(x1ẋ1) sin(x2ẋ1), d1 =

0.1 sin (0.2t) , d2 = 0.1 sin (0.5t).
Select the fault function as ν

(
x
(0∼qi−1)
i |i=1∼2 , u

)
=

15(x1ẋ1x2ẋ2 + sin(u)) + 15, and the time profile of fault
as

l (t− T0) =

{
0, t < T0

1− e−δ(t−T0), t ≥ T0

where δ = 8 and T0 = 12s. The Butterworth low-pass filter
is chosen as HL(s) =

1
s2+1.414s+1 , and the reference signal

is chosen as yr = sin(t).

Choose F1 =

[
−6 1
0 −6

]
, F2 =

[
−5 −1
1 −5

]
, Z1 =[

1 0
]

and Z2 =
[
1 1

]
, by Proposition 1, we can

calculate the value of V1, V2, A0∼2
1 and A0∼2

2 . Select the
initial values as x1 (0) = x2 (0) = 0 and θT1 (0) = θT2 (0) =
[0, 0, 0, 0, 0, 0, 0], and choose the design parameters as λ1 =
λ2 = 60 and l2 = 0.01.
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Fig. 1: Tracking performance trajectories
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Fig. 2: Trajectory of control signal u

From Fig. 1, the control method proposed in this paper
exhibits satisfactory tracking performance. Fig. 2, epicts the
response of the adaptive fuzzy tracking controller. The norm
of adaptive laws estimation are shown in Fig. 3. The time
intervals of the triggering event are illustrated in Fig. 4, the
controller minimum triggering time interval t∗ = 0.01 > 0,
which implies the Zeno behavior did not occur. Figs. 1,2,3
and 4 show that our proposed fuzzy adaptive event-triggered
tracking control method ensures the stability of the high-
order nonlinear SFS. The effectiveness of the proposed algo-
rithm can be obtained from the simulation plots. Compared
with Article [6], this paper introduces an event-triggered
mechanism in the design of the controller, which consid-
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ers the problem of saving the communication resources of
the system. Moreover, the fully actuated system method
simplifies the controller design compared to the state-space
method.

6 Conclusion

We propose a novel event-triggered adaptive fuzzy Fault-
Tolerant Control (FTC) method for high-order nonlinear SFS
with non-affine nonlinear faults and external disturbances.
The fuzzy logic systems serve as approximators for unknown
nonlinear functions. The utilization of an event-triggered
mechanism contributes to resource conservation on the In-
ternet, and it effectively avoids Zeno behavior. Simulation
results for the high-order nonlinear SFS further validate the
efficacy of the proposed theoretical approach. Notably, there
is no need to convert the high-order system into a first-order
one, the controllers are designed directly for the high-order
system, and the control performance can be achieved.
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Abstract: This paper studied the problem of prescribed-time control for fully actuated nonlinear system. Utilizing the prescribed-
time adjustment function defined herein, along with the solution parameter Lyapunov function, we propose a prescribed-time
control scheme for these fully actuated nonlinear systems. Compared to the prescribed-time control scheme based on the back-
stepping method, the approach presented in this paper offers the benefits of brevity and simplicity in design. Furthermore, we
explore the adaptive prescribed-time control for fully actuated nonlinear systems with uncertainties. In this context, we design a
novel adaptive time-varying controller to ensure the prescribed-time stability of these uncertain systems. Finally, two simulation
examples are givento illustrate the effectiveness of the proposed control scheme.

Key Words: Nonlinear systems, fully actuated system approaches, prescribed-time stability, adaptive control

1 Introduction

Prescribed-time control has been the focus of consider-
able scholarly interest in recent years, largely due to its char-
acteristics of zero error and expedited convergence. Unlike
finite-time and fixed-time control methods, prescribed-time
control permits the convergence time to be established inde-
pendently of the system’s initial conditions and control pa-
rameters. Furthermore, it allows for the presetting of this
time within a practicable range. This unique feature expands
the potential applications of prescribed-time control across
various fields, including but not limited to, spacecraft ren-
dezvous, telemedicine, emergency braking in automobiles,
among other related sectors (see [1]).

The issue of prescribed-time stabilization in high-order
nonlinear systems, where nonlinearities and uncertainties
are exclusively linked to the control input, was initially ex-
plored in [2] using the state-scaling framework. This con-
trol framework utilized a time-varying gain function that
escalating towards infinity as the settling time nears, serv-
ing as a mechanism for state transformation. This inno-
vative approach has since inspired a range of prescribed-
time control results, such as [3],[4], [5] and [6]. In [3] and
[4], the problems of prescribed-time estimation and output
feedback control were addressed for linear systems in ob-
server canonical form and controllable canonical form, re-
spectively. Based on the state-scaling transformation ap-
proach, [5] achieved the stabilization of switched nonlin-
ear systems within the prescribed-time. The work of [6]
studied the global prescribed-time control problem for strict-
feedback nonlinear systems, utilizing the dyncmic gain tech-
nique. Different from the state-scaling framework, an in-
novative method for achieving prescribed-time stabilization
of nonlinear systems was developed in [7] using the tem-

This work was supported in part by the National Natural Science Foun-
dation of China under Grant U20A20187, in part by the Science Fund for
Creative Research Groups of Hebei Province under Grant F2023203100 and
Grant F2020203013, in part by the Science and Technology Development
Grant of Hebei Province under Grant 20311803D, and in part by the Hebei
innovation capability improvement plan project under Grant 22567619H,
and in part by the S&T Program of Hebei under Grant No. 236Z1603G.

poral transformation framework. Building upon this frame-
work, the variable τ ∈ [0,+∞) serves as the mapping
for time t ∈ [0, Tp), thereby transforming the prescribed-
time stability problem of the system state with respect to
t into an asymptotic stability issue concerning τ .Further,
[8] delved into the prescribed-time output feedback con-
trol problem for uncertain nonlinear systems. With the aid
of two crucial transformations, the adaptive prescribed-time
controllers was designed in [9] for strict-feedback nonlin-
ear systems with unknown control directions. Given that the
aforementioned methodologies depend on state or temporal
transformation, substantial computational resources are es-
sential, particularly for high-order nonlinear systems. To
address this limitation, a non-scaling backstepping design
methodology was introduced in [10] to achieve prescribed-
time stability. This methodology was further extended to
address adaptive prescribed-time control for nonlinear time-
delay systems and uncertain nonlinear systems with event-
trggerring mechanism. The comprehensive details of these
extensions can be found in [11], [12], and [13]. In the
context of stochastic nonlinear systems with uncertainties,
[14] devised prescribed-time state-feedback control strategy,
while [15] focused on prescribed-time output-feedback con-
trol strategy. In addition, by solving the time-varying param-
eter Lyapunov equation, [1] accomplished prescribed-time
stabilization of linear systems and subsequently extends this
approach to nonlinear systems in [16]. However, the cur-
rent prescribed-time control results rely on the state-space
model method, formulated through first-order differential
equations, resulting in a relatively intricate controller design.

High-order fully actuated system theory has garnered sig-
nificant attention in recent years, primarily due to its con-
venience and effectiveness in addressing control problems.
The approaches to high-order fully actuated systems were
initially proposed as a methodology in [17], which high-
lighted the limitations of the first-order system method based
on state-space models, introducing the concept of high-
order fully actuated systems and emphasizing the advan-
tages in controller design. Based on the Lyapunov stabil-
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ity theory, the robust stabilization control scheme and ro-
bust tracking control scheme for single high-order fully ac-
tuated systems with nonlinear uncertainties were introduced
in [18]. Additionally, the work [19] presented an adap-
tive stabilization control scheme and an adaptive tracking
control scheme for high-order fully actuated systems with
parametric uncertainties. In [20], the adaptive control prob-
lem for uncertain nonlinear time-delay systems was investi-
gated via fully actuated system approaches. In [21], a new
active fault-tolerance framework was introduced for uncer-
tain fully-actuated nonlinear systems. The framework es-
tablished an integration of a fully actuated system adaptive
observer and controller. Further, the work [22] presented a
linear observer-based fault-tolerant control framework for a
class of nonideal time-varying high-order fully actuated sys-
tems. The fault-tolerant tracking control problem was stud-
ied for fully-actuated nonlinear systems with multiplicative
and additive actuator faults in [23]. However, the majority
of the aforementioned results can only attain asymptotic sta-
bility, signifying that the system state can converge to the
equilibrium point only as time approaches infinity.

Building upon the aforementioned discussion, this paper
investigates the global prescribed-time control problem for
the fully actuated nonlinear system. The main contributions
are summarized as follows:

(i) Unlike the prescribed-time control strategy based on
the state-space method, the design methodology for the
prescribed-time controller proposed in this paper, rooted in
the fully actuated system theory, is marked by its straightfor-
wardness and simplicity.

(ii) Contrasting with existing fully actuated system control
methods that only achieve asymptotic stability, the control
method proposed herein accomplishes prescribed-time sta-
bility. This signifies that the system’s convergence time re-
mains independent of its initial conditions and other control
parameters, and can be determined by the designer within a
specified feasible range.

2 Prescribed-Time Control Nonlinear Systems

2.1 Problem formulation
Consider the following fully actuated nonlinear systems

x(q)(t) = f(x(0∼q−1)(t)) +B(x(0∼q−1)(t))u(t),

u(t) = ν(t, x(0∼q−1)(t)), ν(t, 0) = 0, t ≥ t0 (1)

where t0 ≥ 0, x(i)(t) ∈ R, i = 0, . . . , q − 1 and u(t) ∈ R
are the initial time, state and control input of the system, re-
spectively;

(
x(0∼q−1)

)T
= [x, ẋ, · · · , x(q−1)], q ≥ 1 is an

integer; f(·) ∈ R and B(·) ∈ R>0 are known continuous
functions with f(0) = 0. Then x(0∼q−1) = 0 is the equilib-
rium point of system (1). It should be noted that only x and
its derivatives can be obtained and used for controller design.

Let Z = [x, ẋ, · · · , x(q−1)]T , then the system (1) can be
transformed into

Ż = AZ + L
(
f
(
x(0∼q−1)

)
+Bu

)
(2)

where L = [0, 0, . . . , 0, 1]T ∈ Rq and

A =


0
0 I(q−1)×(q−1)

...
0 0 · · · 0

 (3)

Definition 1 For an arbitrarily given positive constant Tp,
if there exists u ∈ R, such that the fully actuated system (1)
is Lyapunov stable, and moreover

x(0∼q−1)(t) = 0, ∀t ≥ t0 + Tp (4)

for any x(i)(t) ∈ Ω, i = 0, 1 . . . , q − 1, then the equilibrium
point of system (1) is said to be locally prescribed-time sta-
ble, Tp is called the prescribed-time. In particular, if Ω = R,
then the equilibrium point of system (1) is called globally
prescribed-time stable.

Definition 2 ([10]) If a continuous function µ(t) satisfies

µ(t) > 0, ∀t ∈ [t0, t0 + Tp)

lim
t→(t0+Tp)

−

∫ t

t0

µ(s) ds = +∞ (5)

then µ(t) is called a prescribed-time adjustment (Tp-PTA)
function.

Lemma 1 ([16]) Consider the general parametric Lya-
punov equation (PLE):

ATP (ρ) + P (ρ)A− P (ρ)LLTP (ρ) = −ρP (ρ) (6)

then, we can get that
1) the PLE (6) has a (unique) positive definite solution

P (ρ) = W−1(ρ), which is a polynomial function of ρ, and
satisfies the Lyapunov equation(

A+
ρ

2
Iq

)
W +W

(
A+

ρ

2
Iq

)T

= LLT (7)

2) P (ρ) has the following properties

dP (ρ)

dρ
> 0, tr(LTPL) = qρ (8)

3) there exists a constant δ ≥ 1, which is independent of
ρ, such that

dP (ρ)

dρ
≤ δP (ρ)

qρ
, ∀ρ > 0 (9)

Lemma 2 ([13]) Consider the system (1) with the free con-
trol input u, if there exist a continuous differentiable func-
tions V1

(
x(0∼q−1)

)
∈ R≥0, V2(t) ∈ R≥0 and class K∞

functions α(·) satisfying

V (t) = V1(x
(0∼q−1)(t)) + V2(t) (10)

α(∥x(0∼q−1)∥) ≤ V1(x
(0∼q−1)), ∀x(i)(t) ∈ Ω (11)

V̇ (t) ≤ −cρ(t)V1(x
(0∼q−1)(t)), ∀t ∈ [t0,+∞) (12)

where c is a positive constant, ρ(t) = µ(t), t ∈ [t0, t0 +Tp)
and ρ(t) = ε, t ∈ [t0 + Tp,+∞) with the Tp-PTA function
µ(t) and the positive constant ε, then the equilibrium point
of the system (1) is prescribed-time stable.
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The objective of this section is to design a prescribed-time
controller for the nonlinear systems (1) based on the fully
actuated system approaches, such that the equilibrium point
of system (1) is prescribed-time stable.

Remark 1 The first-order system model within the state-
space framework prioritizes the integrity and resolution of
the system state, whereas the higher-order fully actuated sys-
tem model is designed for control development, emphasizing
the determination of control variables [1]. On one hand,
the derivation of the fully actuated system involves modeling
based on fundamental physical principles such as Newton’s
Law, Momentum (Moment) Theorem, Lagrange’s Equation,
Kirchhoff’s Law, and others [2]. On the other hand, the fully
actuated system can be obtained by eliminating and upgrad-
ing the underdrive system.

2.2 Controller design
According to the fully actuated system theory, the con-

troller can be designed as

u = −B−1
(
LTP (ρ)Z + f(x(0∼n−1))

)
, t ∈ [0,∞) (13)

ρ(t) =

{
µ(t), t ∈ [0, Tp)
ε, t ∈ [Tp,+∞)

(14)

where µ(t) = σ
Tp−t is a Tp-PTA function, and σ > δ

q + 1 is
a design parameter. Then, we can obtain that

Ż = AZ − LLTP (ρ(t))Z (15)

The stability theorem is summarized as follows.

Theorem 1 For the fully actuated nonlinear systems (1), un-
der the control input (13)-(14), such that the the equilibrium
point of system (1) is globally prescribed-time stable.

Proof: First, the Lyapunov function is chosen as

V = ZTP (ρ)Z (16)

According to (15), the derivative of Lyapunov function V
satisfies

V̇ = ZT
(
ATP + PTA− 2PLLTP

)
Z

+ ZT

(
dP

dρ
ρ̇

)
Z (17)

Then, from (8), (9) and (14), we have

0 ≤ ZT

(
dP

dρ
ρ̇

)
Z ≤ δ

σn
ρZTP (ρ)Z (18)

since σ > δ
q + 1, so δ

σq < 1.
Based on the (6), (17) and (18), we can get that

V̇ ≤ −cρZTP (ρ)Z = −cρV (19)

where c = 1− δ
σq > 0 is a constant.

According to (19), we can deduce that

V (t) ≤ V (0)

(
1− t

Tp

)cσ

, t ∈ [0, Tp)

V (t) = 0, t ∈ [Tp,∞) (20)

where cσ > 1 is a constant. Let ρ0 = ρ(0), since

V ≥ ZTP (ρ0)Z ≥ λmin(P (ρ0))∥Z∥2 (21)

we have

∥Z(t)∥ ≤

√
V (0)

λmin(P (ρ0))

(
1− t

Tp

)cσ

, t ∈ [0, Tp)

∥Z(t)∥ = 0, t ∈ [Tp,∞) (22)

which shows that the equilibrium point Z = 0 of system (2)
exhibits prescribed-time stability, thereby establishing that
the equilibrium point x(0∼q−1) = 0 of system (1) also pos-
sesses prescribed-time stability.

In addition, from (8) and (20), one has

ZTPLLTPZ ≤ ZTP
1
2 tr

(
P

1
2LLTP

1
2

)
P

1
2Z

= LTPLZTPZ = nρV

≤ nV (0)

Tp

(
1− t

Tp

)ι

, t ∈ [0, Tp)

ZTPLLTPZ = 0, t ∈ [Tp,+∞) (23)

where ι = cσ−1 > 0 is a constant. Therefore, the controller
u(t) is bounded and converges to zero with in the prescribed-
time Tp. This proof is finished. ■

Remark 2 The prior results [17]-[23] based on the full ac-
tuated system theory can only achieve bounded stability or
asymptotic stability, signifying that the system converges to
the origin only as time approaches infinity. In contrast to
these works, the prescribed-time control strategy introduced
in this article ensures that the system states converge to the
origin within a predetermined time, concurrently ensuring
boundedness for all state variables. Notably, the settling
time of the proposed control strategy is a constant, which
is independent of system initial conditions and can be preset
according to practical requirements.

2.3 Simulation example
Consider the fully actuated nonlinear system as follows

z̈ = u+ 2zż + z sin(ż − z2) (24)

The controller can be designed as

u = −LTP (ρ)Z − f(·) (25)

with L = [0, 1]T , f(·) = 2zż + z sin(ż − z2) and

P (ρ) =

[
ρ3 ρ2

ρ2 2ρ

]
, ρ(t) =

{ σ
Tp−t , t ∈ [0, Tp)

ε, t ∈ [Tp,+∞)
(26)

Based on (26), it is easy to verify that

dP (ρ)

dρ
≤ 3P (ρ)

ρ
(27)

Therefore, the design parameters can be designed as

σ = 5, ε = 10, Tp = 5 (28)

The initial conditions of the system are given by three dif-
ferent conditions Z(0) = [1,−1]T , [−2, 2]T , [3, 3]T . The
simulation results are shown in Figs. 1-3.
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The responses of z and ż are shown in Figs.1-3, from
which we can find that the system state converges to the
origin within the prescribed-time Tp under different initial
conditions. The curves of the controller are shown in Fig. 3,
it can be seen from Fig. 3 that the controller is bounded and
converges to the origin within the prescribed-time Tp under
different initial conditions.

3 Prescribed-time control Uncertain Nonlinear
Systems

3.1 Problem formulation
Then fully actuated nonlinear systems with uncertain pa-

rameters are considered as follows

x(q)=B(x(0∼q−1))u+f(x(0∼q−1))+θTω(z(0∼q−1)) (29)

where θ ∈ Rr is an uncertain parameter vector and ω ∈ Rr

is a known continuous function with ω(0) = 0.
Similar to Section 2, let Z = [x, ẋ, · · · , x(q−1)]T , then the

system (29) can be transformed into

Ż = AZ +L
(
f(x(0∼q−1)) + θTω(x(0∼q−1)) +Bu

)
(30)

where L = [0, 0, . . . , 0, 1]T ∈ Rn and

A =


0
0 I(n−1)×(n−1)

...
0 0 · · · 0

 (31)

The objective of this chapter is to design an adaptive con-
troller for the uncertain nonlinear systems (29) based on the
fully actuated system approaches, such that the system states
x(0∼q−1) converge to zero within the prescribed-time Tp.

3.2 Controller design
From the fully actuated system theory, the adaptive

prescribed-time controller can be designed as

u(t) = −B−1
(
LTP (ρ(t))Z(t) + f(·) + θ̂Tω(·)

)
(32)

˙̂
θ(t) = ΓZTPLω (33)

ρ(t) =

{
µ(t), t ∈ [0, Tp)
ε, t ∈ [Tp,+∞)

(34)

where µ(t) = σ
Tp−t is a Tp-PTA function with the design

parameter σ > δ
q + 1 and Γ is positive definite matrix.

Substituting (32)-(34) into (30), we can get that

Ż = AZ − LLTP (ρ(t))Z + Lθ̃Tω (35)

The stability theorem is summarized as follows.

Theorem 2 For the uncertain fully actuated nonlinear sys-
tems (29), under the control input (32)-(34), such that the the
equilibrium point of system (29) is prescribed-time stable.

Proof: First, the Lyapunov function is chosen as

V = V1 + V2

V1 = ZTP (ρ)Z, V2 = θ̃Γ−1θ̃ (36)

According to (35) and (36), the derivative of the Lyapunov
function V satisfies

V̇ = ZT
(
ATP + PTA− 2PLLTP

)
Z + ZT

(
dP

dρ
ρ̇

)
Z

+ 2ZTPLθ̃Tω − 2θ̃Γ−1 ˙̂θ (37)

Then, from (8), (9) and (34), we have

0 < ZT

(
dP

dρ
ρ̇

)
Z ≤ δ

σq
ρZTP (ρ)Z (38)

since σ > δ
q + 1, so δ

σq < 1.
Based on the (6), (33), (37) and (38), we can get that

V̇ ≤ −cρZTP (ρ)Z = −cρV1 (39)

where c = 1− δ
σn > 0 is a constant.

According to Theorem 1 and (19), we know that

lim
t→T−

p

∥Z∥ = lim
t→T−

p

√
V1

λmin(P (ρ0))
= 0 (40)

∥Z∥ = 0, t ∈ [Tp,+∞) (41)

In addition, from (36) and (39), one has

V̇1 ≤ −cρV1 − V̇2 (42)

Based on (42), we can deduce that

V1 ≤ V1(0)

(
1− t

Tp

)cσ

−(Tp−t)cσ
∫ t

0

V̇2

(Tp−s)cσ
ds (43)

By taking the limits on both sides of (43), we obtain

lim
t→T−

p

ρV1 ≤ lim
t→T−

p

−σ

ι
V̇2 (44)
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where ι = cσ − 1 > 0 is a constant.
Then, from (8) and (20), one has

ZTPLLTPZ ≤ ZTP
1
2 tr

(
P

1
2LLTP

1
2

)
P

1
2Z

= LTPLZTPZ = nρV1 (45)

According to (44) and (45) , we can get that

lim
t→T−

p

ZTPLLTPZ ≤ lim
t→T−

p

−σ

ι
ZTPLω (46)

Since ω(0) = 0, we have

lim
t→T−

p

∥ZTPL∥ ≤ lim
t→T−

p

−σ

ι
ω(·) = 0

∥ZTPL∥ = 0, t ∈ [0, Tp) (47)

Therefore, the controller u(t) is bounded and converges
to zero with in the prescribed-time Tp. Furthermore, the
equilibrium point Z = 0 of system (30) exhibits prescribed-
time stability, thereby establishing that the equilibrium point
x(0∼q−1) = 0 of system (29) also possesses prescribed-time
stability. This proof is finished. ■

Remark 3 The works [2]-[5] studied the prescribed-time
control problem for a class of nonlinear systems; Using
adaptive technology, the works of [8]-[13] investigated the
prescribed-time control problem of uncertain nonlinear sys-
tems. However, the aforementioned results are all based on
the state-space approach for designing prescribed-time con-
trollers, which involves relatively complex controller com-
putation and is not easy to implement. In contrast to this
methodology, this paper explores the adaptive prescribed-
time control problem for uncertain nonlinear systems with
unknown parameters based on the fully actuated system the-
ory. The design of the controller is relatively simple and easy
to implement.

3.3 Simulation example
The standard fully actuated uncertain nonlinear system are

considered as follows
...
z = u+ θz̈2 + z sin(ż) (48)

The controller is designed as

u = −LTP (ρ)Z − h(·)− θ̂Tω(·) (49)

with h(·) = z sin(ż), ω = z̈2 and

P (ρ) =

 ρ5 2ρ4 ρ3

2ρ4 5ρ3 3ρ2

ρ3 3ρ2 3ρ

 (50)

From (50), we can get that

dP (ρ)

dρ
≤ 5P (ρ)

ρ
(51)

Therefore, the design parameters are selected as

σ = 8, ε = 10, Tp = 5 (52)

For simulation, the initial conditions of the system are
given by three different conditions Z(0) = [1, 1, 1]T ,

0 1 2 3 4 5 6

Time/s

-1.5

-1

-0.5

0

0.5

1

1.5

z

Z(0) = [1, 1, 1]
Z(0) = [1,−1, 1]
Z(0) = [−1,−1,−1]

(a) z

0 1 2 3 4 5 6

Time/s

-1.5

-1

-0.5

0

0.5

1

1.5

ż
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Fig. 3: The responses of z and ż

0 1 2 3 4 5 6

Time/s

-4

-2

0

2

4

z̈

Z(0) = [1, 1, 1]
Z(0) = [1,−1, 1]
Z(0) = [−1,−1,−1]

(a) z̈

0 1 2 3 4 5 6

Time/s

-40

-20

0

20

u

Z(0) = [1, 1, 1]
Z(0) = [1,−1, 1]
Z(0) = [−1,−1,−1]

(b) u

Fig. 4: The responses of z̈ and θ̂

[1,−1, 1]T , [−1,−1,−1]T . The simulation results are
shown in Figs. 6-10.

The responses of z, ż, and z̈ are shown in Figs.4-6, from
which we can find that the system state converges to the ori-
gin within the prescribed-time Tp under different initial con-
ditions. The curves of the controller are shown in Fig. 7, it
can be seen from Fig. 7 that the controller is bounded and
converges to the origin within the prescribed-time Tp under
different initial conditions. The responses of the adaptive pa-
rameter are illustrated in Fig. 8, indicating that the adaptive
parameter remains bounded.

4 Conclusion

This paper delves into the prescribed-time control prob-
lem for fully actuated nonlinear systems. It provides a defi-
nition of prescribed-time stability for general fully actuated
nonlinear systems. Drawing on the properties of the Tp-PTA
function and the solution of the PLE, the paper presents a de-
sign methodology for the prescribed-time controller tailored
for fully actuated nonlinear systems. Subsequently, for fully
actuated uncertain nonlinear systems, the paper outlines the
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Fig. 5: The responses of θ̂ under different initial conditions
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design approach for an adaptive prescribed-time controller.
Utilizing the adaptive prescribed-time stability lemma, it is
proved that the designed controller can make the system state
converge to the origin within the predetermined time. Future
research endeavors will focus on addressing the prescribed-
time control problem for fully actuated nonlinear time-delay
systems.
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Abstract: This paper proposes a fully actuated system approach (FASA)-based trajectory tracking control strategy for free flying
space manipulator, whose pre-assignable tracking performance can be ensured within prescribed time under uncertain dynamics
and input saturation. More specifically, the practical prescribed time control is introduced to ensure the convergence time and
tracking accuracy regardless of initial condition. Through coordinate transformation, the considered tracking error system is
transformed into the fully actuated systems (FASs). Then a FASA-based robust controller is designed to address the uncertain
dynamics and system uncertainties. Moreover, an auxiliary system is used for tackling the input saturation. Furthermore, the
boundedness of all system signals and global practical prescribed time performance can be ensured. Simulation results are
presented to show the effectiveness of the proposed method.

Key Words: Space manipulators, fully actuated system approach (FASA), practical prescribed time performance, input satura-

tion, trajectory tracking.

1 Introduction

Free flying space manipulators are essential for space ma-

neuvering like satellite repairs and debris capture, which

have drawed increased attention for precise motion control

[2, 3]. However, the complex coupling between the base

spacecraft and joints amplifies difficulties in achieving pre-

cise trajectory tracking [4, 5]. While advanced control meth-

ods aim to enhance tracking performance with complex con-

troller structure [6]. A simpler controller structure can ad-

dress computational challenges and enhance reliability in

engineering applications. Hence, developing a straightfor-

ward yet effective control scheme for space manipulators to

achieve high-precision trajectory tracking remains an open

challenge.

Actually, the precise tracking performance for space ma-

nipulators within a short time is highly desirable. Moreover,

many control methods, such as finite time control, fixed time

control, and predefined time control. However, these meth-

ods are restricted to the dependence of controller design pa-

rameters, thus the prescribed time control has been devel-

oped for mechanical systems [7], networked systems [8],

and aerospace systems [9]. In [10], a prescribed time con-

trol approach is proposed for high-order uncertain nonlinear

systems based on feedback of the scaled system state. In

[11], a prescribed time control method is proposed to achieve

pre-assignable tracking precision for nonlinear systems in

the presence of non-vanishing disturbances and mismatched

uncertainties. To address the input saturation problem, a

This work has been partially supported by Shenzhen Key Lab-

oratory of Control Theory and Intelligent Systems under grant No.

ZDSYS20220330161800001, Shenzhen Science and Technology Program,

under grant No. KQTD20221101093557010, Guangdong Basic and Ap-

plied Basic Research Foundation under grant No. 2023A1515110761, and

also by the Major Program of National Natural Science Foundation of China

under grant No. 61690210, 61690212, the National Natural Science Foun-

dation of China under grant No. 61333003, 62203207, and the Science

Center Program of the National Natural Science Foundation of China under

grant No. 62188101.

Fig. 1: Structure of the proposed controller.

model-free prescribed time control scheme is proposed for

robot manipulator subject to input saturation in [12]. In [13],

a adaptive prescribed-time control problem is studied for a

class of uncertain nonlinear systems.

Actually, space manipulators are naturally modeled as

second-order fully actuated systems (FASs) in view of the

Newton’s Law, the Euler, and Lagrangian equations. How-

ever, the aforementioned trajectory tracking control meth-

ods have a shortcoming that the original dynamical behav-

ior of space manipulators need to be converted to first-order

state-space models, which leading to the increased compu-

tational complexity and illconditioned matrices. Recently,

a new approach called the FAS approach (FASA) is estab-

lished [14–19]. The key step of this approach is to design a

parametrized controller with special structure. Furthermore,

a great advantage of FAS approach is that a controller for a

deterministic FAS can be easily designed such that a linear

closed-loop system is obtained with an arbitrarily assignable

eigenstructure. This efficient tool is well suitable for ad-

dressing many nonlinear control problems, such as robust

control [15], adaptive control [16], optimal control [18], and

tracking control [19]. Recently, [20] investigates the practi-

cal prescribed time control problem for strong interconnect-

ed nonlinear systems by utilizing the FASA. However, the

existing FASA has not been applied to complex space ma-

nipulators subject to uncertain dynamics and input saturation

to achieve prescribed time control performance.

To solve the aforementioned difficulties, the prescribed
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Fig. 2: Structure of the space manipulator.

time control problem for space manipulators with uncertain

dynamics, system uncertainties, and input saturation is tack-

led in this paper. As shown in Fig. 1, the prescribed time

control strategy can achieve system nonlinearities compen-

sation, suppressing uncertain dynamics and system uncer-

tainties, and input saturation effect compensation. The main

contributions of this paper are summarized as follows: First,

a practical prescribed time is designed for the space ma-

nipulators to ensure the tracking error within the prescribed

bound and achieve a prescribed tracking accuracy within a

predefined time independent of initial conditions. Second,

a smooth function is introduced to approximate the saturat-

ed control input for avoiding sharp change, then an auxiliary

system is integrated into the control strategy to compensate

the input saturation. Third, different from the back-stepping

method, FASA is utilized to design the prescribed time con-

troller, robust control method is used to address the uncertain

dynamics and system uncertainties.

In this paper, some frequently used symbols are listed as

follows: The matrix transposition is denoted by “T.” ‖x‖ =√
xTx is the Euclidean vector norm. Denote ξ(0∼1) =[
ξ, ξ̇

]T
. diag (μ1, μ2, ..., μn) represents a matrix with di-

agonal elements being μ1, μ2,..., μn and 0 elsewhere.

2 Problem Formulation

2.1 Space Manipulator Model
As depicted in Fig. 2, a free flying space manipulator is

mounted with a movable base spacecraft and a N revolute

joints manipulator, the position of the mass center of link i
is written as follows:

ri = r0 + b0 +

i−1∑
j=1

lj + ai. (1)

Taking the differentiate of equation (1), the linear velocity

and the angular velocity of body Bi are calculated by

vi = v0 + w0 × (ri − r0) +
i∑

j=1

{kj × (ri − pj)} q̇j

=
[
E3 −r×0i

] [ v0
w0

]
+ Jviq̇m, (2)

wi = w0 +
i∑

j=1

kj q̇j = w0 + Jwiq̇m, (3)

where w0 and v0 are the joint angular velocity and

linear velocity of the base spacecraft, respectively.

qm = [q1, q2, ..., qn]
T

and q̇m = [q̇1, q̇2, ..., q̇n]
T

are the joint angle and the joint angular velocity, re-

spectively. ki is a unit vector indicating a rotational

axis of joint i. In addition, r0i = ri − r0, Jvi =[
k1 (ri − p1) k2 (ri − p2) ... kj (ri − pj) 03 ... 03

]
,

Jwi =
[
k1 k2 ... kj 03 03 03

]
.

In accordance with the principle of linear momentum con-

servation, the total linear momentum of the space manipula-

tor can be described by

PSM =
N∑
i=0

mivi

=

N∑
i=0

(
mi

[
E3 −r×0i

] [ v0
w0

]
+miJviq̇m

)

=
[
mE3 −mr×0c

] [ v0
w0

]
+ Jmv q̇m = 03, (4)

where m =
N∑
i=0

mi is the total mass, r0c = rc − r0 and

Jmv =
N∑
i=0

miJvi.

The kinetic energy T can be given by

T =
1

2

N∑
i=0

(
w

T

i Iiwi +miv
T
i vi

)
, (5)

where Ii and mi are the moment of inertia and the mass of

link i, respectively.

Substituting (2)–(4) into (5), it yields

T =
1

2

[
wT

0 q̇Tm
] [ Hbb Hbm

HT
bm Hmm

] [
w0

q̇m

]
=

1

2
q̇TH (q) q̇, (6)

where Hbb, Hmm denote the inertia matrix of the base s-

pacecraft and the manipulator, respectively, and Hbm is the

coupling matrix between the base spacecraft and the manip-

ulator. For more details, please refer to [1].

The rotational motion of the space manipulator is given by

H (q) q̈ + C (q, q̇) q̇ = u (τ) + d, (7)

where q ∈ R
n denotes the generalized space manipulator

attitude, including the base spacecraft attitude angles and the

manipulator joint angles, whose degree of freedom is n =
N + 3. H (q) and C (q, q̇) ∈ R

n×n are the inertia matrix

and Coriolis matrix of the space manipulator, respectively.

τ ∈ R
n is the control torque and d ∈ R

n represents the total

system uncertainties and unmodelled dynamics.

Properties 1: [12] For ∀q ∈ R
n, ∀x ∈ R

n, the inertia

matrix H (q) satisfies a ‖x‖2 ≤ xTH (q)x ≤ b ‖x‖2, where

a, b > 0 are the minimum and maximum eigenvalues of H ,

respectively.
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2.2 Control Object
Consider the input saturation, based on the theory in [21],

the input saturation effect on u (τ) can be described by

ui (τi) =

⎧⎨
⎩

umax i, τi > umax i

τi, umin i ≤ τi ≤ umax i,
umin i, τi ≤ umin i

i = 1, 2, ..., n

where umin i, umax i are the control input lower bound and

upper bound of joint i, respectively.

Based on the analysis in [21], a smooth function is intro-

duced to approximate the control torque u (τ)

Π (τ, ϑ) =
[
Π1 (τ1, ϑ1) Π2 (τ2, ϑ2) ... Πn (τn, ϑn)

]T
∈ R

n,

with user-defined parameter and

Πi (τi, ϑi) =

⎧⎨
⎩

ϑiumax i + ūmax i, τi > ϑiumax i

τi, ϑiumin i ≤ τi ≤ ϑiumax i

ϑiumin i + ūmin i, τi ≤ ϑiumin i

i = 1, 2, ..., n

and

ūmax i = (1− ϑi)umax i tanh

(
τi − ϑiumax i

(1− ϑi)umax i

)
,

ūmin i = (1− ϑi)umin i tanh

(
τi − ϑiumin i

(1− ϑi)umin i

)
,

To proceed, the control torque can be written as

u (τ) = Π (τ, ϑ) + Δu,

where Δu denotes the control input discrepancy.

Remark 1. It worth noting that the piecewise function
Π(τ, ϑ) with ϑ ∈ (0, 1) possesses second-order differentia-
bility with respect to τ . This property facilitates achieving
a smoother control input around the limits by designing a
control law τ and substituting it into Π(τ, ϑ), rather than
directly employing u (τ)

To proceed, space manipulator (7) can be converted to

H (q) q̈ + C (q, q̇) q̇ = Π(τ, ϑ) + Δu+ d,

where

τ∗d = d+Δu,

Define Δτ = τ −Π(τ, ϑ), then it follows that

H (q) q̈ + C (q, q̇) q̇ = τ −Δτ + τ∗d ,

which can be written as

q̈ = −H−1 (q)C (q, q̇) q̇ +H−1 (q) (τ −Δτ) + τd,

where

τd = H−1 (q) τ∗d .

Assumption 1: [2] The total system uncertainty τd is

bounded by ‖τd‖ ≤ η.

Assumption 2: The desired trajectory qd with its deriva-

tives are known and bounded.

In this paper, we aim to develop a control strategy to

achieve the following control objectives:

(1) All signals of the closed-loop system are bounded;

(2) The tracking error can converge to a pre-assignable

bound within a prescribed setting time, which are indepen-

dent of initial conditions;

(3) The control input is avoided to exceed the limit.

Some necessary lemmas are introduced as follows:

Lemma 1. ([15]) Let A ∈ R
n×n satisfyReλi (A) ≤

−γ
2 , i = 1, 2, · · · , n, where γ > 0, then there exist a positive

definite matrix P ∈ R
n×n satisfyingATP + PA ≤ −γP.

3 Practical Prescribed Time Control

In this section, a FASA-based control strategy is proposed

to guarantee the prescribed time performance for the space

manipulator with uncertain dynamics and input saturation.

More specifically, a robust method is developed for tackling

uncertain dynamics and external disturbances. In addition,

an auxiliary system is designed to address the input satura-

tion.

Define the tracking error with its derivatives as follows:

e = q−qd, ė = q̇− q̇d, ë = q̈− q̈d, furthermore, the tracking

error e is required to satisfy the following condition:

−ρi (t) < ei (t) < ρi (t) ,

where ρi (t) is the performance function to guarantee the

prescribed performance and can be designed as follows:

ρi (t) =

{ (
1
t − 1

T

)2p
+ ρT , t ∈ (0, T ] ,

ρT , t ∈ (T,∞) ,

then we can construct the following compound function

hi (γ (t))

hi (γi (t)) =

{
1−

(
γi(t)
a − 1

)2p

, 0 < γi (t) ≤ a,

1, γi (t) > a,

where a > cρ2T , γi (t) = c (ρi (t)− ei (t)) (ρi (t) + ei (t))
with c > 0. To proceed, the following transformation can be

introduced

ξi =
ei

hi (γi (t))
,

then we have

ξ̇i = μiėi + υi, (8)

where

μi =

{
1
hi

− 4cp
ah2

i

(
γi

a − 1
)2p−1

e2i > 0, 0 < γi (t) ≤ a,

1, γi (t) > a,
(9)

and

υi =

{
4cp
ah2

i

(
γi

a − 1
)2p−1

ρiρ̇iei, 0 < γi (t) ≤ a,

0, γi (t) > a,
(10)

further we have

μ̇i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− ḣi(γi(t))
h2
i (γi(t))

− 4cp
a

(
−2ḣi(γi(t))

hi(γi(t))
3

(
γi(t)
a − 1

)2p−1

e2i

+ (2p−1)γ̇i(t)
ah2

i (γi(t))

(
γi(t)
a − 1

)2p−2

e2i

+ 2
h2
i

(
γi

a − 1
)2p−1

eiėi

)
> 0, 0 < γi (t) ≤ a,

0, γi (t) > a,
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υ̇i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4cp
a

(
−2ḣi(γi(t))

hi(γi(t))
3

(
γi

a − 1
)2p−1

ρiρ̇iei

+ (2p−1)γ̇i(t)

ahi(γi(t))
2

(
γi

a − 1
)2p−2

ρiρ̇iei

+ 1
hi(γi(t))

2

(
γi

a − 1
)2p−1

ρ̇2i ei

+ 1
hi(γi(t))

2

(
γi

a − 1
)2p−1

ρiρ̈iei

+ 1
hi(γi(t))

2

(
γi

a − 1
)2p−1

ρiρ̇iėi

)
, 0 < γi (t) ≤ a,

0, γi (t) > a,

Consider system (8), define

μ = diag (μ1, μ2, ..., μn) ∈ R
n×n,

μ̇ = diag (μ̇1, μ̇2, ..., μ̇n) ∈ R
n×n,

υ =
[
υ1 υ2 ... υn

]T ∈ R
n,

υ̇ =
[
υ̇1 υ̇2 ... υ̇n

]T ∈ R
n,

then system (8) can be converted to

ξ̇ = μė+ υ, (11)

then it follows that

ė = μ−1
(
ξ̇ − υ

)
,

to proceed, take derivation of (11), then we have

ξ̈ =μ̇ė+ μë+ υ̇

=μ̇μ−1
(
ξ̇ − υ

)
− μ

(
H−1C (ė+ q̇d) + q̈d

)
+ μτd + μH−1 (τ −Δτ) + υ̇, (12)

further, system (12) can be converted to

ξ̈ = μ̇ė+ μë+ υ̇ = F +D +G (τ −Δτ) ,

where

F =μ̇μ−1
(
ξ̇ − υ

)
− μH−1Cμ−1

(
ξ̇ − υ

)
− μ

(
H−1Cq̇d + q̈d

)
+ υ̇,

G =μH−1, D = μτd,

To handle the input saturation effect in the stability analy-

sis, the following auxiliary system is introduced:

ς̇ (t) = −k2ς (t)−Δτ, (13)

further, a FASA-based trajectory tracking controller can be

designed as follows:

τ =−G−1F +G−1K1ξ̇ +G−1K0ξ︸ ︷︷ ︸
A

−G−1ur︸ ︷︷ ︸
B

−G−1ua︸ ︷︷ ︸
C

,

(14)

ur =
μ2η2

4ε
(PB)

T
ξ(0∼1), ua = k1

(
BTPB

)−1
ς, (15)

where A is used for system compensation, B is used for sup-

pressing the system uncertainties and external disturbances,

C is used for input saturation effect compensation.

Theorem 1. Consider robotic system (7) with the unknown
variable τd satisfying Assumption 1. Construct the controller
(14) with the auxiliary system (13), if the parameters k1, k2,

μ > 0, 4k2

3 >
3k2

1

2μ‖P‖ , the control gains K0, K1 can be
chosen to ensure closed-loop system matrix Hurwitz, then all
the signals of the closed-loop system are bounded and the
transient performance of tracking error e (t) is maintained
within the predefined boundary.

Proof. Applying controller (14) to system (3), the following

closed-loop tracking error system can be derived

ξ̈ +K1ξ̇ +K0ξ = D − ur − ua −GΔτ,

Denote

ξ(0∼1) =

[
ξ

ξ̇

]
,

then it follows that

ξ̇(0∼1) = Aξ(0∼1) +B (D − ur − ua)−BGΔτ, (16)

where

A =

[
0 In

−K0 −K1

]
, B =

[
0
In

]
, BG =

[
0
G

]
.

Considering the tracking error system (16), all eigenvalues

of the closed-loop system matrix A can be assigned to lie

in the left half-plane by properly choosing K0 and K1. In

addition, the matrix B is bounded and the estimation error

τ̃d is bounded whose bound can be calculated by Theorem 1.

Similarly to the proof for the boundedness in above section,

the trajectory tracking error is also bounded. This completes

the proof.

Define the following Lyapunov function

V =
1

2

(
ξ(0∼1)

)T

Pξ(0∼1) +
1

2
ςTς,

according to the Lemma 1, then we have

V̇ =
1

2

(
ξ̇(0∼1)

)T

Pξ(0∼1) +
1

2

(
ξ(0∼1)

)T

P ξ̇(0∼1) + ςTς̇

=
1

2

(
ξ(0∼1)

)T (
ATP + PA

)
ξ(0∼1)

+
(
ξ(0∼1)

)T

PB (D − ur − ua)

−
(
ξ(0∼1)

)T

PBGΔτ − ςT (k2ς (t) + Δτ) ,

where(
ξ(0∼1)

)T

PB (D − ur) ≤
(
ξ(0∼1)

)T

PBD

−
(
ξ(0∼1)

)T

PB
μ2ρ2

4ε
(PB)

T
ξ(0∼1)

≤
(
ξ(0∼1)

)T

PBμρ−
(
ξ(0∼1)

)T

PB
μ2ρ2

4ε
(PB)

T
ξ(0∼1)

≤ ||μρ||
∣∣∣∣∣∣(PB)

T
ξ(0∼1)

∣∣∣∣∣∣− μ2ρ2

4ε

∣∣∣∣∣∣(PB)
T
ξ(0∼1)

∣∣∣∣∣∣2
≤ ε,

then we have

V̇ ≤− μ
(
ξ(0∼1)

)T

Pξ(0∼1) − k2ς
Tς (t) + ε

−
(
ξ(0∼1)

)T

PBua −
(
ξ(0∼1)

)T

PBGΔτ − ςTΔτ

≤− μ
(
ξ(0∼1)

)T

Pξ(0∼1) − k2ς
Tς (t) + ε

− k1

(
ξ(0∼1)

)T

Bς −
(
ξ(0∼1)

)T

PBGΔτ − ςTΔτ.
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With the help of Young’s inequalities, we have

−k1

(
ξ(0∼1)

)T

Bς ≤μ ‖P‖
3

∣∣∣∣∣∣ξ(0∼1)
∣∣∣∣∣∣2 + 3k21

4μ ‖P‖ ‖ς‖2

−
(
ξ(0∼1)

)T

PBGΔτ ≤μ ‖P‖
3

∥∥∥ξ(0∼1)
∥∥∥2

+
3 ‖P‖
4μ

‖BG‖2 ‖Δτ‖2

−ςTΔτ ≤k2
3

‖ς‖2 + 3

4k2
‖Δτ‖2 ,

According to the above results, it follows that

V̇ ≤− μ ‖P‖
∥∥∥ξ(0∼1)

∥∥∥2 − k2ς
Tς (t) + ε

+
μ ‖P‖

3

∣∣∣∣∣∣ξ(0∼1)
∣∣∣∣∣∣2 + 3k21

4μ ‖P‖ ‖ς‖2

+
μ ‖P‖

3

∥∥∥ξ(0∼1)
∥∥∥2 + 3 ‖P‖

4μ
‖BG‖2 ‖Δτ‖2

+
k2
3

‖ς‖2 + 3

4k2
‖Δτ‖2

≤− 1

3
μ ‖P‖

∣∣∣∣∣∣ξ(0∼1)
∣∣∣∣∣∣2 − (

2k2
3

− 3k21
4μ ‖P‖

)
‖ς‖2

+ ε+

(
3 ‖P‖
4μ

‖BG‖2 + 3

4k2

)
‖Δτ‖2 ,

which can be rewritten as

V̇ ≤ −γV +Υ,

where γ = min
{

2
3μ,

4k2

3 − 3k2
1

2μ‖P‖
}
,

Υ = ε+
(

3‖P‖
4μ ‖BG‖2 + 3

4k2

)
‖Δτ‖2.

For k1, k2, μ > 0, 4k2

3 >
3k2

1

2μ‖P‖ , then we have

V (t) ≤ e−γtV (0) +
Υ

γ

(
1− e−γt

) ≤ V (0) +
Υ

γ
, (17)

which means that V (t) is bounded at [0,∞) and V → Υ
γ as

t → ∞. Thus, ξ, ξ̇, ς are bounded.

Further, we will prove all the singals are bounded. By

(17), we can obtain that ξ, ξ̇, ς are bounded, which means

|ei| < i(t), and |ei| < ρT after t > T . Thus, the system

outputs are within the prescribed bounds and converge to the

predetermined invariant region in the settling time T regard-

less of the initial conditions. Meanwhile, it is obvious that μ,

μ̇, q̈d is bounded, which implies the input torque τ is contin-

uous and bounded regardless of initial condition. Therefore,

all the signals in the closed-loop system are bounded.

4 Simulation Results

Numerical simulations will be performed regarding a two

joints planar space manipulator to verify the effectiveness

of the proposed FASA-based control strategy. The detailed

space manipulator parameters are listed in Table 1, which are

available in [22].

The tracking precision and prescribed time are set as T =
2 s, ρT = 0.02, a = 5, c = 50, p = 2, and the control gain

of the robust control method is chosen as ε = 0.1. The satu-

ration on the control torque is set as umax 1 = umax 2 = 400

Table 1: Parameters of the two joint planar FFSM.

Body No. mi (kg) Ii
(
kg ·m2

)
bi (m) ai (m)

0 300 27.5000 0.75 0.75
1 6.0 1.125 0.75 0.75
2 5.0 0.9375 0.75 0.75

t 5.0 1.0 0.5 0.75

Nm, and k1 = 0.01, k2 = 6. Additionally, the FASA-based

control parameters are set as K0 = diag (115, 126, 137),
K1 = diag (21.5, 22.5, 23.5).

In this simulation, the space manipulator atti-

tude is driven along a desired trajectory in the

inertial frame. The desired trajectory is formu-

lated as qr = [0.5sin(t), 0.6cos(t), 0.8sin(t)]
T

,

q̇r = [0.5cos(t),−0.6sin(t), 0.8cos(t)]
T

. The ini-

tial values have been chosen as q =
[
π
3 ,

π
3 ,

π
6

]T
,

q̇ = [0, 0, 0]
T

. Moreover, qt = π
6 , and the total un-

certain dynaticals and system uncertainties is given by

d = [6 sin (t) , 3 cos(t), 2.5 cos (t)]
T
.
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Fig. 3: Space manipulator attitude angles
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Fig. 4: Space manipulator angular velocities

The space manipulator attitude angles and the reference

trajectories are plotted in Figure 3. The space manipulator

attitude angular velocities are plotted Figure 4. Figure 5 fur-

ther gives the tracking error of the space manipulator atti-

tude angles. A shown in the Figure 5, the tracking errors of

q0, q1 and q2 converge to the pre-assigned bound 0.03 rad

within the prescribed time 2 s. Figure 6 gives the control

torques generated by the proposed control method, more-

over, the satisfaction of the input torque are ensured. As

depicted in Figs. 3–6, the proposed method can effectively

control space manipulators under the system uncertainty and
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Fig. 5: Tracking errors between the space manipulator and

the reference trajectory.
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Fig. 6: Response of control torques.

physical constraints with predefined convergence accuracy

and convergence time globally.

5 Conclusion

In this paper, we have investigated the prescribed time tra-

jectory tracking control for space manipulators with uncer-

tain dynamics, system uncertainties, and input saturation. A

FASA-based control strategy has been designed to guaran-

tee the disturbance rejection and the pre-assignable conver-

gence accuracy within prescribed convergence time global-

ly. Moreover, a smooth function was used to approximate

the control input, and the input saturation was compensated

by an auxiliary system. Numerical simulations have demon-

strated the effectiveness of the proposed control method.
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Abstract: This paper extends the high-order fully actuated system (HOFAS) theory to the adaptive tracking control of random
nonlinear systems disturbed by second-order moment process. Firstly, a random high-order fully actuated system (RHOFAS)
with unknown drift nonlinearity and diffusion coefficient is proposed. Secondly, an adaptive tracking controller is designed
for this RHOFAS by virtue of the HOFAS theory and a radical basis function neural network (RBFNN). It is proved that the
resulting closed-loop system is exponentially noise-to-state practically stable in mean square, the mean square of tracking error
can converge to an arbitrarily small neighborhood of zero, and all signals in the closed-loop system is bounded in mean square.
Finally, two simulation examples are provided to demonstrate the effectiveness of our proposed controller.

Key Words: Adaptive control, Random systems, High-order fully actuated systems, Unknown nonlinearity, Neural network

1 Introduction

Random noises and nonlinearity are almost inevitable in
numerous practical control systems, and hence it is quite
necessary to take them into account when modelling control
systems. The most celebrated modelling way is the follow-
ing Itô-type stochastic differential equation (SDE) [1], dxxx =
fff(xxx, t) +GGG(xxx, t)dWWW t with the initial condition xxx(t0) = xxx0,
where xxx ∈ Rr is the system state, fff : Rr × R+ → Rr and
GGG : Rr×R+ → Rr×l are nonlinear functions, andWWW t ∈ Rl
is the Wiener process whose formal derivative dWWW t

dt is taken
as the white noises. Albeit the Itô-type SDE has gained sig-
nificant success in many science fields, it may not suit very
well for describing random noises existing in many control
engineering applications. To be specific, in the Itô-type S-
DE, random noises are modelled by white noises which have
infinite mean power. In practical control engineering how-
ever, systems are required to run with desired performance
under the disturbance of random noises, and thus it is more
sensible to model random noises by the second-order mo-
ment processes which have finite mean power. This way of
modelling random noises corresponds to the so-called ran-
dom differential equation (RDE) [2]. After a seminal work
on the stability analysis of RDE is done by [3], the stability
analyses of various types of RDEs are emerging continuous-
ly, such as RDEs with time-dependent switch [4, 5], state-
dependent switch [6], stochastic impulses [7, 8], and time-
varying delay [9, 10]. At the same time, a series of control
design problems of RDEs are gradually being solved; see
[11] for a detailed overview of the latest progress for stabili-
ty and control on RDE.

This work is partially supported by the Shenzhen Key Laboratory of
Control Theory and Intelligent Systems (ZDSYS20220330161800001), the
Shenzhen Science and Technology Program (KQTD20221101093557010),
the Major Program of the National Natural Science Foundation of China
(61690210, 61690212), the National Natural Science Foundation of China
(61333003), and also by the Science Center Program of the National Natural
Science Foundation of China under grant No. 62188101.

A common feature of both the Itô-type SDE and RDE is
that they are all within the first-order state-space framework,
that is, systems are described by one or several first-order
differential equations. Even though the state-space frame-
work is convenient for state response analysis and state es-
timation, it is not the best one for control design. In fac-
t, governed by physical laws including Newton’s laws, La-
grange’s equations and Kirchhoff’s law, many physical sys-
tems are originally modelled as high-order differential equa-
tions. More importantly, these high-order systems are like-
ly to have the full-actuation property, and this property can
greatly simplify the control design as it can be used to elim-
inate the nonlinearity of systems. However, this charming
property would generally no longer exist when these high-
order systems are converted into the first-order state-space
models via the variable extension method. Inspired by the
above facts, Professor Duan recommended to directly mod-
el control systems by high-order differential equations and
further proposed the corresponding high-order fully actuat-
ed system (HOFAS) theory for stability analysis and control
design [12, 13]. In the past five years, a series of theoretical
results on HOFAS have been done by Duan, such as the gen-
eralized strict-feedback system [14], adaptive control [15],
robust control [16], optimal control [17], sub-fully actuated
systems [18], and nonholonomic systems [19]. Meanwhile,
many other researchers have begun to extend the HOFAS
theory to several aspects like predictive control [20], coop-
erative control [21], fault-tolerant control [22] and quadrotor
control [23].

Up to now, except for [24–26], almost all the existing re-
search works on the HOFAS theory do not take the influence
of random noises into consideration. Moreover, the random
noises in [24–26] are described as white noises, which con-
strains the use of [24–26] in practical control applications.
On the basis of the above facts, the motivation of this pa-
per is to extend the HOFAS theory to the random nonlinear
systems. Specifically, the main contributions of this paper
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consist of the following three aspects:
(1) Different from the existing state-space model (SDE

and RDE), a random HOFAS (RHOFAS) is proposed
to model the nonlinear control systems disturbed by
second-order moment process.

(2) By using the HOFAS theory and a radical basis func-
tion neural network (RBFNN) [27], an adaptive track-
ing controller is designed for the RHOFAS with un-
known drift nonlinearity and diffusion coefficient.

(3) The proposed adaptive tracking controller can ensure
that: the closed-loop system is exponentially noise-to-
state practically stable in mean square; the asymptotic
mean squared tracking error can be made as small as
possible by properly tuning design parameters; all the
closed-loop signals are bounded in mean square.

The remainder of the paper is outlined as follows. In
Section 2, some notations and mathematical preliminaries
are given. Section 3 introduces the tracking problem of the
RHOFAS with unknown drift nonlinearity and diffusion co-
efficient, and the corresponding adaptive tracking controller
is designed and analyzed in Section 4. Simulation examples
are provided in Section 5, followed by a concluding remark
in Section 6.
2 Notations and mathematical preliminaries

2.1 Notations
Throughout the entire paper, we employ bold characters to

denote vectors and matrices, and normal characters are used
to represent scalars. IIIn is the n × n identity matrix, and 000
is the zero vector or matrix with proper dimension. The n-
dimensional vector space and the m×n dimensional matrix
space are represented by Rm and Rm×n, respectively. For
a complex number s, its real part is represented by Re (s).
P(·), E[·] and U[a, b] denote the probability, mathematical
expectation and the uniform distribution on interval [a, b],
respectively. The Frobenius norm of a matrix AAA is denoted
by ‖AAA‖. For a square matrixAAA, λi (AAA), λmax (AAA), λmin (AAA),
detAAA stand for its i-th, maximum, and minimum eigenval-
ues and its determinant. blockdiag (AAAi, i = 1, 2, . . . , n) rep-
resents a block diagonal matrix with the i-th diagonal block
beingAAAi. Ci denotes the set of all functions with continuous
i-th partial derivatives, and K represents the set of all func-
tions: R+ → R+, which are continuous, strictly increasing,
and vanishing at zero.

Forxxx ∈ Rm andAAAi ∈ Rm×m, i = 1, 2, . . . , n, the follow-
ing symbols are used as in [12] for notational convenience:

xxx(0∼n−1) ,

[
xxxT, ẋxxT, · · · ,

(
xxx(n−1)

)T]T
,

AAA0∼n−1 , [AAA0,AAA1, . . . ,AAAn−1] ,

ΦΦΦ (AAA0∼n−1) ,

[
000m(n−1)×m IIIm(n−1)

−AAA0∼n−1

]
,

where xxx(i) denotes the i-order derivative of xxx.

2.2 Mathematical preliminaries
Consider the random nonlinear system described by the

following RDE:{
ẋxx = fff (xxx, t) +GGG (xxx, t)ωωω(t)

xxx (t0) = xxx0,
(1)

where xxx ∈ Rr andωωω(t) ∈ Rl denote the system state and the
random noise process, respectively; t0 and xxx (t0) are the ini-
tial time and the initial system state, respectively. The under-
lying complete probability space is represented by the quar-
tet (Ω,F ,Ft,P), where Ω, F , Ft, and P are the sample s-
pace, sigma-field, filtration, and probability measure, respec-
tively. Ft is further assumed to satisfy the typical conditions
that Ft is increasing and right continuous while F0 contains
all P-null sets. Nonlinear functions fff : Rr × R+ → Rr
and GGG : Rr × R+ → Rr×l, called the drift and diffusion
coefficient respectively, are locally Lipschitz in xxx and piece-
wise continuous in t, and for all t ≥ t0, fff(000, t) and GGG(000, t)
are bound almost surely (a.s.). Moreover, ωωω(t) is assumed
to a second-order random process satisfying the following
assumption [11].

Assumption 1. Random noise process ωωω(t) is Ft-adapted
and piecewise continuous, and there exist a constant K > 0
such that

sup
t0≤s≤t

E
[
‖ωωω(s)‖2

]
≤ K, ∀t ≥ t0. (2)

To conduct stability analysis, we adopt the following sta-
bility concept and the corresponding stability criterion [28].

Definition 1. For m > 0, system (1) is claimed to be ex-
ponentially noise-to-state practically stable in the m-th mo-
ment (eNSpS-m-M), if there exist constants a0 > 0, a1 > 0,
a2 ≥ 0 and a class-K function γ(·) such that for ∀t ∈
[t0,+∞),

E [‖ xxx ‖m] ≤a0 ‖ xxx0 ‖m e−a1(t−t0) + a2

+ γ

(
sup

t0≤s≤t
E
[
‖ξξξ(s)‖2

])
.

Particularly, when m = 2, it is also said to be exponential-
ly noise-to-state practically stable in mean square (eNSpS-
MS).

Lemma 1. For system (1) under Assumption 1, if there exist
constants m > 0, b1 > b0 > 0, c0 > 0, c1 > 0, c2 ≥ 0 and
a C1 function V (xxx, t) : Rr × [t0,+∞)→ R+ such that

b0 ‖ xxx ‖m≤ V (xxx, t) ≤ b1 ‖ xxx ‖m,
V̇ (xxx, t) ≤ −c0V (xxx, t) + c1‖ωωω(t)‖2 + c2.

Then system (1) has a unique global solution for ∀xxx0 ∈ Rr
and is eNSpS-m-M.

The following lemma about RBFNN is very useful for
tackling the control law design of dynamical systems with
unknown functions [27].

Lemma 2. Assume that ϕ(XXX) : Rm → R is a continuous
function over a compact set Ω ⊂ R, then the RBFNN can
reconstruct ϕ(XXX) as follows:

ϕ(XXX) = WWWTSSS(XXX) + δϕ(XXX), ∀XXX ∈ Rn,
|δϕ(XXX)| ≤ δ̄ϕ ≤ ∞,

where WWW ∈ RN is the ideal weight vector with N being
the number of neural network nodes, δϕ(XXX) is the recon-
struction error with δ̄ϕ > 0 being an unknown constan-
t, and SSS(XXX) = [s1(XXX), s2(XXX), . . . , sN (XXX)]T is the rad-
ical basis function (RBF) vector. For i = 1, 2, . . . , N ,
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si(XXX) = exp
[
− (XXX − γγγi)T (XXX − γγγi) /ν2i

]
, where νi and

γγγi are the width and center vector respectively.

In the HOFAS theory, the following lemma plays a vital
role in the control law design [16, 22, 29].

Lemma 3. For any µ > 0, there exists a set of matrices
AAAi ∈ Rr×r, i = 0, 1, . . . , n− 1 such that

Reλi (ΦΦΦ(AAA0∼n−1)) ≤ −µ
2
, i = 1, 2, . . . , rn. (3)

Consequently, there exists a positive definite matrix PPP ∈
Rrn×rn satisfying

ΦΦΦT(AAA0∼n−1)PPP +PPPΦΦΦ(AAA0∼n−1) ≤ −µPPP . (4)

3 Problem formulation

In this paper, we consider the following random high-
order fully-actuated system (RHOFAS)

xxx(n) =fff
(
xxx(0∼n−1)

)
+GGG

(
xxx(0∼n−1)

)
uuu

+ ΓΓΓ
(
xxx(0∼n−1)

)
ωωω(t),

(5)

where xxx ∈ Rr and uuu ∈ Rr are the system state and the con-
trol input respectively. The random noise process ωωω(t) ∈ Rl
satisfies Assumption 1. fff : Rrn → Rr and ΓΓΓ : Rrn → Rrn
are unknown smooth vector and matrix functions respective-
ly, fff(000) and ΓΓΓ(000) are bounded a.s., and moreover, ΓΓΓ satisfies
Assumption 2. GGG : Rr → Rr×l is a known smooth matrix
function and satisfies the following fully-actuation Assump-
tion [12].

Assumption 2. detGGG
(
xxx(0∼n−1), t

)
6= 0 or ∞ for ∀xxx(i) ∈

Rr, i = 0, 1, . . . , n− 1, and t ∈ [t0,+∞).

Objective: For the RHOFAS (5), suppose that there is
a desired signal xxxd satisfying Assumption 3, the objective
of this paper is to design a controller uuu such that the sys-
tem state xxx can track the desired signal xxxd as well as possi-
ble while maintaining all the closed-loop signals bounded in
mean square, regardless of the influence of random noises.

Assumption 3. The desired signal xxxd and its first to n-th
derivatives xxxd, ẋxxd, . . . ,xxx

(n)
d are available and bounded.

4 Controller design and analysis

4.1 Preparation works
Denote the tracking error by eee(t) = xxx − xxxd. As a result,

eee(i)(t) = xxx(i) − xxx(i)d , i = 1, 2, . . . , n, and furthermore, the
following dynamic equation of the tracking error is obtained

eee(n) =fff
(
xxx(0∼n−1)

)
− xxx(n)d +GGG

(
xxx(0∼n−1)

)
uuu

+ ΓΓΓ
(
xxx(0∼n−1)

)
ωωω(t).

(6)

For ease of writing, we shall denote XXX , xxx(0∼n−1) and
ΞΞΞ , eee(0∼n−1) in the remaining context, and moreover, we
shall occasionally omit the dependence of fff (XXX),GGG (XXX) and
ΓΓΓ (XXX) onXXX and simply write fff ,GGG and ΓΓΓ when no confusion
can arise.

Now we shall show how to employ the RBFNN to tackle
the influence of the two unknown functions fff and ΓΓΓ.

From Lemma 2 we can get

fff =


f1
f2
...
fr

 =


WWWT

1,fSSS1,f (XXX) + δ1,f (XXX)

WWWT
2,fSSS2,f (XXX) + δ2,f (XXX)

...
WWWT

r,fSSSr,f (XXX) + δr,f (XXX)

 , (7)

where for i = 1, 2, . . . , r,WWW i,f andSSSi,f are the ideal weight
vector and the RBF vector respectively. By letting

W̄WW i,f ,
[
WWWT

i,f , δi,f (XXX)
]T
, i = 1, 2, . . . , r

S̄SSi,f (XXX) ,
[
SSST
i,f (XXX) , 1

]T
, i = 1, 2, . . . , r,

W̄WW f , blockdiag
(
W̄WW 1,f , W̄WW 2,f , . . . , W̄WW r,f

)
,

S̄SSf (XXX) ,
[
S̄SS

T
1,f (XXX) , S̄SS

T
2,f (XXX) , . . . , S̄SS

T
r,f (XXX)

]T
,

(8)

(7) can then be rewritten into the more compact form below

fff = W̄WW
T
f S̄SSf (XXX) . (9)

Further, from Lemma 1 we can also know that∥∥∥W̄WWT
i,f

∥∥∥2 ≤ ∥∥∥(WWW ∗i,f)T∥∥∥2 , i = 1, 2, . . . , r, (10)

where

WWW ∗i,f ,
[
WWWT

i,f , δi,f
]T
, |δi,f (XXX) | ≤ δ̄i,f , i = 1, 2, . . . , r,

(11)
and δi,f > 0, i = 1, 2, . . . , r are a set of unknown constants.
Using (8)∼(11), yields

‖fff‖2 ≤
∥∥∥W̄WWT

f

∥∥∥2 ∥∥S̄SSf (XXX)
∥∥2 ≤ ∥∥∥(WWW ∗f)T∥∥∥2 ‖S̄SSf (XXX) ‖2,

(12)
where we define

WWW ∗f , blockdiag
(
WWW ∗1,f ,WWW

∗
2,f , . . . ,WWW

∗
r,f

)
. (13)

In the following, we will present how to eliminate the im-
pact of unknown function ΓΓΓ (XXX) by RBFNN. For simplicity,
we define h(XXX) ,

∥∥ΓΓΓT (XXX)
∥∥2. Then according to Lemma

2, there exist a ideal weight vector WWWh and a RBF vector
SSSh (XXX) such that

h(XXX) = WWWT
hSSSh (XXX) + δh (XXX) , |δϕ(XXX)| ≤ δ̄h ≤ ∞, (14)

where δ̄h > 0 is an unknown constant. Similar to the pre-
vious analysis made for fff , we can obtain the following in-
equality

h(XXX) ≤ |h(XXX)| ≤
∥∥∥W̄WWT

h

∥∥∥∥∥S̄SSh∥∥ ≤ ∥∥∥(WWW ∗h)
T
∥∥∥∥∥S̄SSh∥∥ ,

(15)
where

W̄WWh ,
[
WWWT

h , δh (XXX)
]T
,

S̄SSh (XXX) ,
[
SSST
h (XXX) , 1

]T
,

WWW ∗h ,
[
WWWT

h , δ̄h (XXX)
]T
.

(16)
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4.2 Adaptive tracking controller
With the aid of previous preparations, the adaptive track-

ing controller designed for the RHOFAS (5) can be summa-
rized into the following theorem.

Theorem 1. Let Assumptions 1∼3 be met. Further let µ be
an arbitrary positive number,AAAi ∈ Rr×r, i = 0, 2, . . . , n−
1, be a set of matrices satisfying (3), and

PPPL = PPP

[
000r(n−1)×r

IIIr

]
, (17)

where the positive definite matrix PPP ∈ Rrn×rn satisfies

(4). Define unknown parameters θ1 ,

∥∥∥∥(WWW ∗f)T∥∥∥∥2 and

θ2 ,
∥∥∥(WWW ∗h)

T
∥∥∥. Then for the RHOFAS (5), the following

controller

uuu = −GGG−1
(
AAA0∼n−1eee

(0∼n−1) − xxx(n)d + uuu1 + uuu2

)
, (18a)

uuu1 =
1

2ε21
PPPT
LΞΞΞθ̂1‖S̄SSf (XXX) ‖2, (18b)

uuu2 =
1

2ε22
PPPT
LΞΞΞθ̂2‖S̄SSh (XXX) ‖, (18c)

and adaptive laws

˙̂
θ1 =

r1
2ε21

∥∥∥ΞΞΞTPPPL

∥∥∥2‖S̄SSf (XXX) ‖2 − π1θ̂1, (19a)

˙̂
θ2 =

r2
2ε22

∥∥∥ΞΞΞTPPPL

∥∥∥2‖S̄SSh (XXX) ‖ − π2θ̂2, (19b)

can guarantee that: the corresponding closed-loop system
((22)) has a unique solution and is eNSpS-MS; all closed-
loop signals are bounded in mean square, and

lim
t→∞

E
[
‖ΞΞΞ‖2

]
≤ ε22K + 2%

λmin (PPP ) c
, (20)

where ε1, ε2, π1, π2, r1, r2 > 0 and

c , min (µ, π1, π2) , % ,
ε21
2

+
π1
2r1

θ21 +
π2
2r2

θ22. (21)

Proof. By plugging the controller (18) into system (6), the
following closed-loop system is obtained

eee(n) = −AAA0∼n−1ΞΞΞ + fff − uuu1 − uuu2 + ΓΓΓωωω(t),

which can be further reformulated into the state-space form

Ξ̇ΞΞ = ΦΦΦ(AAA0∼n−1)ΞΞΞ +

[
000r(n−1)×1

fff − uuu1 − uuu2 + ΓΓΓωωω(t)

]
. (22)

For the system (22), choose the corresponding Lyapunov
function as

V =
1

2
ΞΞΞTPPPΞΞΞ +

1

2r1
θ̃21 +

1

2r2
θ̃22, (23)

where θ̃1 , θ1 − θ̂1 and θ̃2 , θ2 − θ̂2. Then from (22) we

know that the differential of V satisfies

V̇ =
1

2
Ξ̇ΞΞ

T
PPPΞΞΞ +

1

2
ΞΞΞTPPPΞ̇ΞΞ +

1

r1
θ̃1

˙̃
θ1 +

1

r2
θ̃2

˙̃
θ2

=
1

2
ΞΞΞT
(
ΦΦΦT(AAA0∼n−1)PPP +PPPΦΦΦ(AAA0∼n−1)

)
ΞΞΞ

+ ΞΞΞTPPP

[
000r(n−1)×1

fff − uuu1 − uuu2 + ΓΓΓωωω(t)

]
− 1

r1
θ̃1

˙̂
θ1 −

1

r2
θ̃2

˙̂
θ2

≤ −µ
2

ΞΞΞTPPPΞΞΞ + ΞΞΞTPPPLfff −ΞΞΞTPPPLuuu1 −ΞΞΞTPPPLuuu2

+ ΞΞΞTPPPLΓΓΓξξξ(t)− 1

r1
θ̃1

˙̂
θ1 −

1

r2
θ̃2

˙̂
θ2.

(24)
Via Young’s inequality and (12), we have

ΞΞΞTPPPLfff 6
1

2ε21

∥∥∥ΞΞΞTPPPLfff
∥∥∥2 +

ε21
2

6
1

2ε21

∥∥∥ΞΞΞTPPPL

∥∥∥2‖fff‖2 +
ε21
2

6
1

2ε21

∥∥∥ΞΞΞTPPPL

∥∥∥2 ∥∥∥(WWW ∗f)T∥∥∥2 ‖S̄SSf‖2 +
ε21
2
,

=
1

2ε21

∥∥∥ΞΞΞTPPPL

∥∥∥2θ1‖S̄SSf‖2 +
ε21
2

(25)

Substituting (25), (18b) and (19a) into (24) and using the fact
˙̃
θ1 = − ˙̂

θ1, yield

V̇ ≤− µ

2
ΞΞΞTPPPΞΞΞ−ΞΞΞTPPPLuuu2 + ΞΞΞTPPPLΓΓΓωωω(t)

+
π1
r1
θ̃1θ̂1 − θ̃2 ˙̂

θ2 +
ε21
2
.

(26)

Further, by virtue of Young’s inequality and (15), we can
obtain

ΞΞΞTPPPLΓΓΓωωω(t) ≤ 1

2ε22

∥∥ΓΓΓTPPPT
LΞΞΞ
∥∥2 +

ε22
2
‖ωωω(t)‖2

≤ 1

2ε22

∥∥ΓΓΓT
∥∥2 ∥∥PPPT

LΞΞΞ
∥∥2 +

ε22
2
‖ωωω(t)‖2

≤ 1

2ε22

∥∥PPPT
LΞΞΞ
∥∥2 ∥∥∥(WWW ∗h)

T
∥∥∥∥∥S̄SSh∥∥+

ε22
2
‖ωωω(t)‖2

=
1

2ε22

∥∥PPPT
LΞΞΞ
∥∥2 θ2 ∥∥S̄SSh∥∥+

ε22
2
‖ωωω(t)‖2 .

(27)
By plugging (27), (18c) and (19b) into (26) and by using the

fact ˙̃
θ2 = − ˙̂

θ2, it can be obtained that

V̇ ≤− µ

2
ΞΞΞTPPPΞΞΞ +

π1
r1
θ̃1θ̂1 +

π2
r2
θ̃2θ̂2 +

ε21
2

+
ε22
2
‖ωωω(t)‖2 ,

(28)
Using Young’s inequality again, we have

π1
r1
θ̃1θ̂1 = −π1

r1
θ̃21 +

π1
r1
θ̃1θ1 ≤ −

π1
2r1

θ̃21 +
π1
2r1

θ21,

π2
r2
θ̃2θ̂2 = −π2

r2
θ̃22 +

π2
r2
θ̃2θ2 ≤ −

π2
2r2

θ̃22 +
π2
2r2

θ22.
(29)

Combining (28) and (29), produces

V̇ ≤ −cV + %+
ε22
2
‖ωωω(t)‖2 . (30)
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Define ZZZ ,
[
ΞΞΞT, θ̃1, θ̃2

]T
. Then it can be obtained from

(23) that
a1
2
‖ZZZ‖2 ≤ V ≤ a2

2
‖ZZZ‖2 , (31)

where

a1 , min

{
λmin (PPP ) ,

1

r1
,

1

r2

}
,

a2 , max

{
λmax (PPP ) ,

1

r1
,

1

r2

}
.

(32)

Consequently, from (30), (31) and Lemma 1, it signifies that
the closed-loop system (22) has a unique global solution and
is eNSpS-MS.

On the basis of (30), we can further get

d (E [V ])

dt
= E

[
V̇
]
≤ −cE [V ]+%+

ε22
2

E
[
‖ωωω(t)‖2

]
. (33)

Applying the Gronwall inequality to (33) and using Assump-
tion 1, produce

E [V ] ≤ E [V (ZZZ (t0))] e−c(t−t0) +
ε22K + 2%

2c
. (34)

Using (31) and (34), gives

E
[
‖ZZZ‖2

]
≤ 2E [V (ZZZ (t0))]

a1
e−c(t−t0) +

ε22K + 2%

a1c
, (35)

which implies the mean-square boundedness of ZZZ =

[ΞΞΞT, θ̃1, θ̃2]T. From Assumption (3) we know that xxx(0∼n−1)d

is bounded, and thus xxx(0∼n−1) = xxx
(0∼n−1)
d + ΞΞΞ is also

bounded. Similarly, the boundedness of θ̃1 and θ̃2 signifies
the boundedness of θ̂1 and θ̂2. In addition, by (18), uuu is also
bounded in mean square.

Since
λmin (PPP )

2
‖ΞΞΞ‖2 ≤ V, (36)

using (34) and (36), we can get

E
[
‖ΞΞΞ‖2

]
≤ 2E [V (ZZZ (t0))]

λmin (PPP )
e−c(t−t0) +

ε22K + 2%

λmin (PPP ) c
. (37)

By taking the limit of both sides of (37) with respect to t,
(20) holds.

Remark 1. From (20) and (21) in Theorem 1, it is clear
to see that the right hand side of (20) can be predesigned
arbitrarily small by choosing quite large c and quite smal-
l % and ε2, indicating the asymptotically tracking in the
mean square sense. The reason why parameters c and %
can be designed satisfactorily is expounded as follows. On
the one hand, according to Lemma 3, the eigenvalues of
ΦΦΦ(AAA0∼n−1) can always be arbitrarily assigned by selecting
properAAA0∼n−1 (see [13] for the detailed procedures of how
to choose AAA0∼n−1), and thus µ can be designed as a large
value. This fact shows that c can be designed as a large val-
ue by designing large µ, π1 and π2. On the other hand, %
can be designed as a large value by choosing small ε1 and
large r1 and r2. Note that even though large π1 and π2 may
affect %, we can select much larger r1 and r2 to eliminate
this effect and make the value of % freely tuned.

5 Simulations

In this section, two examples, including a numerical one
and a practical one, are used to testify the performance of the
adaptive tracking controller presented in Theorem 1.

5.1 Numerical example
Consider the following RHOFAS

x(3) = f(x(0∼2)) +G(x(0∼2))u+ Γ(x(0∼2))ω(t), (38)

where f(x(0∼2)) = 4
(
ẋ2 + xẍ

)
, G(x(0∼2)) = 1

Γ(x(0∼2)) = 0.7x sin (x), and ω(t) is a colored random
disturbance satisfying ω(t) = 0.3 sin (t+ φ) with φ ∼
U[0, 2π]. It is easy to see that E

[
‖ω(t)‖2

]
≤ 0.09 for

∀t ≥ 0, and thus we take K = 0.09 in Assumption 1.
To verify the effectiveness of our proposed tracking con-

troller, we assume that f(x(0∼2)) and Γ(x(0∼2)) are un-
known. In the simulation, the desired signal is selected as
xd(t) = 0.2 sin (0.5t). The initial conditions are set to
x(0∼2) (0) = [3, 1,−6]T, θ̂1(0) = 5 and θ̂2(0) = 5, and
the designing parameters are chosen as

µ = 1, AAA0∼2 = [2, 4, 3], PPP =

 0.86 0.8 0.24
0.8 1.1 0.35
0.24 0.35 0.16

 ,
π1 = 0.5, π2 = 2, r1 = r2 = 100, ε1 = ε2 = 0.1.

In RBFNN, the number of neural network nodes is 10, the
widths are 2, and the center vectors are located evenly in
[−10, 10]× [−10, 10]× [−10, 10].

The random disturbance ω(t), tracking performance and
tracking error are shown in Fig. 1, which clearly reflects the
mean-square boundedness of random disturbance ω(t) and
the effectiveness of our proposed tracking controller. Fig. 2
exhibits the response curves of control input and parameter
estimates θ̂1 and θ̂2, and Fig. 3 presents the response curves
of the first and second derivatives of e and x. These three
figures clearly manifest the (mean-square) boundedness of
all the closed-loop signals.
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Fig. 1: Random disturbance ω(t), tracking performance and
tracking error e for Example 1.

5.2 Practical example
To further validate the effectiveness of our designed con-

troller, we consider the following one-link manipulator with
a stochastic motor dynamics system{

Aθ̈ +Dθ̇ +M sin(θ) = ρ,

Nρ̇+ Fρ = u−Rmθ̇ + σρω(t),
(39)
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Fig. 2: Response curves of control input u and parameter
estimates θ̂1 and θ̂2 for Example 1.
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Fig. 3: Response curves of the first and second derivatives of
e and x for Example 1.

where θ, θ̇ and θ̈ are respectively the position, velocity and
acceleration of the link, ρ is torque generated by the motor,
and u is control input. σρω(t) is the stochastic disturbance
torque caused by a second-order moment noise process ω(t),
where σ is the coefficient of noise intensity. The detailed
definition of model parameters A, D, M , N , F , Rm can be
found in [30].

Clearly, by plugging transformations ρ = Aθ̈ + Dθ̇ +
M sin(θ) and ρ̇ = A

...
θ + Dθ̈ + M cos(θ)θ̇ into the second

equation in system (39), we can convert the system (39) into
the following RHOFAS

...
θ = f(θ(0∼2)) +G(θ(0∼2)) + Γ(θ(0∼2))ω(t), (40)

where

f(θ(0∼2)) =− 1

NA

{
(ND + FA) θ̈ + FM sin(θ)

+ (NM cos(θ) + FD) θ̇
}
,

G(θ(0∼2)) =
1

NA
,

Γ(θ(0∼2)) =
σ

NA

{
Aθ̈ +Dθ̇ +M sin(θ)

}
.

In the simulation, let x , θ. f(θ(0∼2)) and Γ(θ(0∼2)) are
assumed to be unknown, while G(θ(0∼2)) is assumed to be
known. The desired signal is chosen as xd(t) = 0.5 sin(t),
and the random disturbance ω(t) is produced by

$ω̇ = −ω + ψ(t), ω(0) = 0, i = 1, 2, (41)

where ψ(t) is zero-mean bandlimited white noise with noise
power and sampling time being C and tc, respectively. Ac-
cording to [3], ω(t) is a second-order moment process with
E [ω(t)] = 0 and E

[
‖ω(t)‖2

]
= C

$π arctan
(
$π
50tc

)
. The

model parameters are set to A = 1, D = 1, M = 10,
N = 0.1, F = 1, Rm = 0.2, C = 1, tc = 0.0001, and
the designing parameters are chosen as:

µ = 2, AAA0∼2 = [24, 26, 9],PPP =

 173
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 ,
π1 = π2 = 1, r1 = r2 = 1000, ε1 = ε2 = 0.01.

In this example, we employ 10 neural network nodes is cho-
sen. Moreover, all the widths are 2 and the center vec-
tors of the radical basis functions are situated evenly in
[−5, 5]× [−5, 5]× [−5, 5].

The simulation results are shown in Figs. 4∼6. Once a-
gain, the simulation results show that our proposed tracking
controller can approximately track the desired signal and all
the signals in the closed-loop system are bounded when the
random noise, unknown nonlinearity, and unknown diffusion
coefficient concurs in a dynamical system.
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Fig. 4: Random disturbance ω(t), tracking performance and
tracking error e for Example 2.
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Fig. 5: Response curves of control input u and parameter
estimates θ̂1 and θ̂2 for Example 2.

6 Conclusion

This paper solves the tracking problem of RHOFAS with
unknown drift nonlinearity and diffusion coefficient. The
unknown drift nonlinearity and diffusion coefficient are dealt
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Fig. 6: Response curves of the first and second derivatives of
e and x for Example 2.

with by the RBFNN. By exploiting the full-actuation proper-
ty of RHOFAS, an adaptive tracking controller is designed,
which guarantees that the closed-loop system is eNSpS-MS,
the mean square of tracking error converges to an arbitrarily
small neighborhood of zero, and all the closed-loop signal-
s are bounded in mean square. The stability analysis and
simulation examples verify the effectiveness of the designed
controller. The results of this paper show the big advantages
and huge potentiality of the HOFAS theory in tackling the
control problems of random nonlinear systems. Our further
study will concentrate on the tracking problem of the random
high-order strict-feedback systems.
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A Fully Actuated System Approach for Robust Control of a Type
of Feedback Linearizable System
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Abstract: In this paper, high-order fully actuated (HOFA) systems are adopted to solve the issue of robust control for a type
of feedback linearizable system. Firstly, a type of uncertain feedback linearizable systems are converted to an uncertain HOFA
model in preliminaries, which reduce the sensitivity of the model error when the linearization conditions are poor. Besides,
based on the Lyapunov stability theory, a direct approach for the design of robust stabilising controllers and robust tracking
controllers for an uncertain HOFA model are proposed. Compared with feedback linearization, robustness is guaranteed when
exist unmodeled dynamics. Finally, two illustrative examples demonstrate both the effectiveness and the application procedure
of the proposed HOFA robust control approaches.

Key Words: Robust Control, Fully Actuated System, Feedback Linearization

1 Introduction

Nonlinear system are widely found in several fields and
modern technologies, such as power systems [1], spacecraft
[2], etc. Feedback linearization is one of normal measures to
solve the control issues of nonlinear systems [3]. Late 20th
century, Brockett known as the father of feedback lineariza-
tion proposed to decouple all the states and the parts of states
into a linear system [4].

Furthermore, the development of feedback linearization,
such as multi-input feedback linearization or partial feed-
back linearization, has been proposed and applied to many
fields [5–7]. In addition, the project of robust feedback lin-
earization improves the robustness of the nonlinear system
[8]. A new method of feedback linearization robust control
for bilinear system is proposed [9]. However, existing tech-
nologies would be limited by the being of special forms or
strong conditions according to the different modeling char-
acteristics of nonlinear systems. As a result, the robustness
can not be maintained well when there are uncertain param-
eters or unmodeled dynamics.

Fortunately, these regrets were remedied with the emer-
gence of the HOFA system [10]. As the condition of feed-
back linearization, the controllable standard form problem
of nonlinear control systems is proposed [11], which estab-
lishes a bridge for the transformation of feedback lineariz-
able systems. The relationship of controllability and fully
actuated system illustrates the most systems can eliminate
nonlinear and obtain linear closed-loop full actuated sys-
tems through simple design [12]. Once a parametric design
approach of the HOFA systems is introduced, a linear con-
stant closed-loop system with desired eigenstructure can be
derived, meanwhile, complete parametric presentations for
the closed-loop eigenvectors and the feedback law are given
[13]. A direct approach for the design of robust stabilising
controllers and robust tracking controllers for an uncertain
single HOFA model are proposed based on the Lyapunov
stability theory [14].

In this paper, a type of systems satisfying the condition of

This work was supported by the Science Center Program of the Na-
tional Natural Science Foundation of China under Grant No. 62188101.

feedback linearization are converted into a model of uncer-
tain HOFA. Compared with the feedback linearization, the
difficulty of transforming conditions and the sensitivity of
the model error all are reduced when the linearization condi-
tions are poor. Meanwhile, the superiority of elimination
method, that is the HOFA system approaches, is embod-
ied. Besides, the preliminary conclusion for the design of
robust stabilising controllers and robust tracking controllers
are proposed under the Lyapunov direct method. Unlike
feedback linearization, its robustness is fundamentally guar-
anteed once there are unmodeled dynamics in the system.
At the end of the paper, two numerical examples are used to
verify the effectiveness of the proposed method.

2 Preliminaries

2.1 Uncertain HOFA Model
Consider a class of uncertain feedback linearizable non-

linear systems

ẋ = f(x) + ∆f(x) + [g(x) + ∆g(x)]u, (1)

where x, u ∈ Rn are the state vector and the control input
vector, respectively, f(x), g(x) ∈ Rn are continuous vector
function, ∆f(x),∆g(x) ∈ Rn are the nonlinear uncertainty
of the system, satisfying that (1) is feedback linearizable.

Then there is the following diffeomorphism

z(i−1) = Li−1f h (x) , i = 1, 2, . . . ,m, (2)

with h(x) is a smooth scalar function, Li−1f h (x) is called
the (i− 1)th derivative Lie derivative of h with respect to f
or along f , m ≤ n is the relative degree of the system (1),
z ∈ R is the state vector of the uncertain HOFA model.

According to (2), the uncertain HOFA model is acquired
as following

z(m) = f(z(0∼m−1)) + B̃(z(0∼m−1))u+ δ(z(0∼m−1), u),
(3)

where

δ(z(0∼m−1), u) = ∆f(z(0∼m−1)) + ∆g(z(0∼m−1))u.
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2.2 Conditions for Robust Control
Condition 1. There exists a non-negative continuous
scalar function ρ(z(0∼m−1)) such that nonlinear uncertainty
∆f

(
z(0∼m−1)

)
,∆g

(
z(0∼m−1)

)
∈ Rm satisfies∥∥∥∆f

(
z(0∼m−1)

)
+ ∆g

(
z(0∼m−1)

)
Ψ
(
z(0∼m−1)

)∥∥∥
≤ ρ

(
z(0∼m−1)

)
,

with Ψ
(
z(0∼m−1)

)
is the control law of HOFA model with-

out uncertainty.

Lemma 1. Let u = Ψ
(
z(0∼m−1)

)
+ B̃−1

(
z(0∼m−1)

)
v,

then uncertainty δ
(
z(0∼m−1), u

)
satisfy∥∥∥δ (z(0∼m−1),Ψ(z(0∼m−1))+ B̃−1

(
z(0∼m−1)

)
v
)∥∥∥

≤ ρ
(
z(0∼m−1)

)
+ k0 ‖v‖ , 0 < k0 < 1,

Lemma 2. Let A ∈ Rm×m satisfy

Reλi (A) ≤ −λ
2
, i = 1, 2, . . . ,m,

where Reλi (A) denotes the real part of a complex number
λi (A), and the i− th eigenvalue of the matrix A is denoted
by λi (A), then there is a positive matrix P ∈ Rm×m satis-
fying

ATP + PA ≤ −λP,
where P

(
A0∼m−1) as following

P
(
A0∼m−1) =

[
P1 P2 · · · Pm

]
, Pi ∈ Rmr×r.

Lemma 3. For any µ > 0 and a set of arbitrarily given
matrices Ai ∈ Rr×r, i = 0, 1, . . . ,m− 1, both satisfying

Reλi
(
Φ
(
A0∼m−1)) ≤ −µ

2
, i = 1, 2, . . . ,mr,

where I denotes the identity matrix, and

A0∼m−1 =
[
A0 A1 · · · Am−1

]
,

Φ
(
A0∼m−1) =


0 I

. . .
I

−A0 −A1 · · · −Am−1

 ,
Lemma 4. The uncertainties are supposed to satisfy

|∆f (z)| ≤ σ1z2,

|∆f (z1, ż2)| ≤ σ2 |z1ż2| ,∣∣∣∣∂∆f (z)

∂z

∣∣∣∣ ≤ γ1 |ż| ,∣∣∣∣∂2∆f (z)

∂z2

∣∣∣∣ ≤ γ2 |z̈| ,
with σp and γp, p = 1, 2, being some non-negative scalars.

Lemma 5. Let a, b, c, d, e be five real numbers, and b > 0.
Then the following relations hold as

a+ b2 ≤ a2

4b
,

|c+ d− e| ≤ |c|+ |d|+ |e| .

3 Robust Control

3.1 Robust Stabilisation
Theorem 1. Considering (3), there exists the following ro-
bust stabilising control law

u = Ψ(z(0∼m−1)) + B̃−1(z(0∼m−1))v,

Ψ(z(0∼m−1)) = −B̃−1(z(0∼m−1))[
m−1∑
i=0

Aiz
(i) + f(z(0∼m−1))],

v = − 1
4ερ

2(z(0∼m−1))PL
T(A(0∼m−1))z,

where ε is a real number and

PL
T
(
A0∼m−1) = Pm.

Then the above control law guarantees that the states
z(0∼m−1) converges into the following ellipsoid centered at
the origin:

Θµ,ε(0) =
{
z(0∼m−1)|(z(0∼m−1))

T

×P (A0∼m−1)z(0∼m−1) ≤ ε

(1− k0)µ

}
.

3.2 Robust Tracking
Consider the reference signal zd of the uncertain HOFA

model (3), and let be the error of (3) as following

e = z − zd,

and then there exists obviously

e(i) = z(i) − zd(i), i = 1, 2, . . . ,m.

Such that it can be transformed into HOFA model with
respect to e(0∼m−1) and t for (3)

e(m) = f
(
e(0∼m−1), t

)
+ B̃

(
e(0∼m−1), t

)
ue

+ δ
(
e(0∼m−1), ue, t

)
− zd(m),

where

δe

(
e(0∼m−1), ue, t

)
= ∆f

(
e(0∼m−1), t

)
+∆g

(
e(0∼m−1), t

)
ue,

Theorem 2. Considering (3), there exists the following ro-
bust tracking control law

ue = Ψ(z(0∼m−1)) + B̃−1(z(0∼m−1))ve,

Ψ(z(0∼m−1))

= −B̃−1(z(0∼m−1))[

m−1∑
i=0

Aiz
(i) + f(z(0∼m−1))],

ve = − 1

4ε
ρ2(z(0∼m−1))PL

T(A0∼m−1)z(0∼m−1) + u0(zd),

u0(zd) = zd
(m) −

m−1∑
i=0

Aizd
(i)

− 1

4ε
ρ2(z(0∼m−1))PL

Tzd
(0∼m−1),

guaranteeing that the state z(0∼m−1) converges globally
into the following ellipsoidal belt-shaped region centered at
zd

(0∼m−1):

Θµ,ε(zd
(0∼m−1)) =

{
z(0∼m−1)|((z − zd)(0∼m−1))

T

×P (z − zd)(0∼m−1) ≤
ε

(1− k0)µ

}
.
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4 Two Illustrative Examples

Two illustrative examples of the proposed approaches
demonstrate the effectiveness under two multi-input feed-
back linearizable systems with uncertainty.

4.1 Example of the Robust Stabilisation
Consider the system as (1), where

x =
[
x1 x2

]T
,

x1 =
[
x11 x12

]T
,

x2 =
[
x21 x22 x23 x24

]T
,

f (x) =
[
f1 (x1) f2 (x2)

]T
,

f1 (x1) =

[
x12 + x11 sinx11

x11x12

]
,

f2 (x2) =


x22

− sinx21 − 2 (x21 − x23)
x24

x21 − x23

 ,
g (x) =

[
g1 (x1) g2 (x2)

]
,

g1 (x1) =
[

0 1 0 0 0 0
]T
,

g2 (x2) =
[

0 0 0 0 0 3
]T
,

u =
[
u1 u2

]T
,

∆f (x) =
[

∆f1 (x1) ∆f2 (x2)
]T
,

∆f1 (x1) =
[

∆f11 (x11) ∆f12 (x11, ẋ12)
]T
,

∆f2 (x2) =


∆f21 (x21)

∆f22 (x21, x22)
∆f23 (x21, x23)

∆f24 (x21)

 ,
∆g (x) =

[
∆g1 (x1) ∆g2 (x2)

]
,

∆g1 (x1) =
[

0 ∆g12 (x11) 0 0 0 0
]T
,

∆g2 (x2) =
[

0 0 0 0 0 ∆g24 (x21)
]T
.

As the output y is following

y =

[
y1
y2

]
=

[
x11
x21

]
,

via the simple transformation, the uncertain HOFA system
of (1) is obtained as following

z(4) = f
(
z(0∼3)

)
+ ∆f

(
z(0∼3)

)
+ B̃

(
z(0∼3)

)
u,

where m = 4 is the maximum of the relative degree, and

z =
[
z1 z2

]T
,

f (z) =
[
f1 (z1) f2 (z2)

]T
+ z(3) + z(2),

f1 (z1) = z1 (ż1 − z1 sin z1) + ż1 (z1 cos z1 + sin z1) ,

f2 (z2) = − (cos z2 + 3) z̈2 +
(
ż22 − 1

)
sin z2,

∆f (z) =
[

∆f1 (z1) ∆f2 (z2)
]T
,

∆f1 (z1) = ∆ḟ11 (z1)− z1∆f11 (z1)

+ ∆f12
(
z1, (ż1 − z1 sin z1 −∆f11 (z1))

′)
,

∆f2 (z2) = ∆f21
(3) (z2) + ∆f21

(1) (z2) + ∆f̈22 (z2, ż2 −∆f21 (z2))

+ ∆f22 (z2, ż2 −∆f21 (z2)) + 2∆f24 (z2)

+ 2∆f23
(1)

(
z2,

1

2
(z̈2 + sin z2 −∆f22(z2, ż2 −∆f21(z2))

−∆f21
(1)(z2)) + z2

)
,

B̃ =

[
1 3 + ∆g(z2)
0 1

]
.

Thus, there is the control law as following

u =− B̃−1
(
A0∼3z(0∼3) + f

(
z(0∼3)

))
− B̃−1 1

4ε
ρ2
(
z(0∼3)

)
PL

Tz(0∼3),

guaranteeing that the state z(0∼3) converges into the ellip-
soid Θµ,ε (0) as

Θµ,ε (0) =

{
z(0∼3)

∣∣∣∣(z(0∼3))TPz(0∼3) ≤ ε

(1− k0)µ

}
,

where

ρ
(
z(0∼3)

)
= a1 |z1|+ a2 |z1| |ż1|+ a3 |z̈1|+ a4 |ż1|

+ a5 |sin z1|+ a6

∣∣∣z1(3)∣∣∣+ b1

∣∣∣z2(3)∣∣∣+ b2 |z̈2|

+ b30 |ż2|+ b31|ż2|2 + b32|ż2|3 + b33|ż2|4

+ b34|ż2|5 + b35|ż2|6 + b36|ż2|8 + b4 |z2|

+ b5|ż2|2 |z̈2|
∣∣∣z2(3)∣∣∣+ b6 |z̈2|

∣∣∣z2(3)∣∣∣+ b8 |z2| |ż2|

+ b7 |ż2|
∣∣∣z2(3)∣∣∣+ b91 |ż2| |z̈2|+ b92|ż2|2|z̈2|2

+ b93 |ż2| |z̈2|2 + b94|ż2|2 |z̈2|+ b95|ż2|3 |z̈2|

+ b96|ż2|4 |z̈2| ,

and
a1 = 76.5883k0 + σ11z1

2,

a2 = σ12 (|sin z1|+ |z1| |cos z1|+ γ12 |ż1|)+k0 (1 + |cos z1|) ,

a3 = σ12 |z1|+ 87.5883k0,

a4 = γ11 |ż1|+ (146.4117 + |sin z1|) k0,

a5 = k0z1
2,

a6 = 18.7647k0,

b1 = 10.6471k0 +
1

2
γ29

∣∣∣z2(3)∣∣∣ ,
b2 = 38.8823k0 +

1

2
γ26

2γ29|z̈2|3,

b30 = 57.1177k0 + |sin z2| ,

b31 = γ21 + 2γ28 +
1

2
γ29|cos z2 + 1|2,

b32 = γ29(γ21 + γ24) |cos z2 + 1| ,
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b33 =
1

2
γ29(γ21 + γ24)

2
,

b34 = γ21
2γ26 |cos z2 + 1| ,

b35 = γ21
2γ26γ29(γ21 + γ24),

b36 =
1

2
γ21

4γ26
2γ29.

b4 = 27.8823k0 + σ24 |z2|+ σ21σ22|z2|2,

b5 = 2γ21(γ27 + γ26γ29),

b6 = γ26(γ29 |z̈2|+ 1),

b7 = γ21 + γ29 |cos z2 + 1|+ [γ21γ26 + γ29(γ21 + γ24)] |ż2|+ γ23|ż2|2

+ γ21
2(γ27 + γ26γ29)|ż2|3,

b8 = σ22,

b91 = γ24 + γ26[γ21γ22 + γ29(γ21 + γ24)] |ż2| |z̈2| ,

b92 = 2γ21
2γ27 |ż2|+(γ22γ26+2γ21γ22γ27+2γ21γ26

2γ29) |z̈2| ,

b93 = 3γ22+γ21γ26+γ26γ29 |cos z2 + 1|+γ22γ27 |ż2| |z̈2|2+γ21γ27 |z̈2| ,

b94 = γ25 + 3γ21
2γ26

2γ29|ż2|2 |z̈2| ,

b95 = γ21γ26(γ21+2γ29 |cos z2 + 1|)+γ212γ22γ27|ż2|3 |z̈2| ,

b96 = γ21[γ21
2 |ż2| (γ27+2γ26

2γ29 |ż2|)+2γ26γ29(γ21+γ24)],

Proof. Matrices F and Z are chosen arbitrarily as

F = diag{F1, F2, F3, F4}8×8,

Z =
[
Z1 Z2 Z3 Z4

]
,

where

F1 = diag{−1, − 2}, F2 = diag{−3, − 3},

F3 = diag{−2, − 1}, F4 = diag{−5, − 7},

z1 =

[
1 0
1 1

]
, z2 =

[
1 1
0 2

]
,

z3 =

[
2 1
1 0

]
, z4 =

[
3 5
11 7

]
.

Then combining with Lemmas 4 and 5, the result of The-
orem 1 is obtained.

Here are the simulation results of (see Figures 1-4) when
the initial values is chosen as

z(0)(0) =
[

0.001 50
]T
,

z(1)(0) =
[

200 0.2
]T
,

z(2)(0) =
[

3 100
]T
,

z(3)(0) =
[

15 0.03
]T
,

0 2 4 6 8 10 12 14 16 18 20

-100

0

100

200

0 2 4 6 8 10 12 14 16 18 20

-400

-200

0

200

Fig. 1: The results of state variable z(0∼3)
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4.2 Example of the Robust Tracking
Similarly, consider the system as (1), where

x =
[
x1 x2 x3

]T
,

x1 =
[
x11 x12

]T
,

x2 =
[
x21 x22

]T
,

x3 =
[
x31 x32

]T
,

f (x) =
[
f1 (x1) f2 (x2) f3 (x3)

]T
,

f1 (x1) =
[
x12 −x11 +

(
1− x112

)
x12

]T
,

f2 (x2) =
[
x22 + x21 sinx21 x21x22

]T
,

f3 (x3) =
[
x32 −x31 + (2 + x31)x32

]T
,

∆f (x) =
[

∆f1 (x1) ∆f2 (x2) ∆f3 (x3)
]T
,

∆f1 (x1) =
[

∆f11 (ẋ11) ∆f12 (ẋ11, ẋ12)
]T
,

∆f2 (x2) =
[

∆f21 (x21) ∆f22 (x21, ẋ22)
]T
,

∆f3 (x3) =
[

∆f31 (x31) ∆f32 (ẋ32)
]T
,

g (x) =
[
g1 (x1) g2 (x2) g3 (x3)

]T
,

g1 (x1) =
[

0 1 0 0 0 0
]T
,

g2 (x2) =
[

0 0 0 1 0 0
]T
,

g3 (x3) =
[

0 0 0 0 0 1
]T
,

∆g (x) =
[

∆g1 (x1) ∆g2 (x2) ∆g3 (x3)
]
,

∆g1 (x1) =
[

0 ∆g12 (x11) 0 0 0 0
]T
,

∆g2 (x2) =
[

0 0 0 ∆g22 (x21) 0 0
]T
,

∆g3 (x3) =
[

0 0 0 0 0 ∆g32 (ẋ31)
]T
,

and the output y is following

y =
[
y1 y2 y3

]T
=
[
x11 x21 x31

]T
.

Via the simple transformation, the uncertain HOFA sys-
tem of (1) is obtained as following

z̈ = f(z) + ∆f(z) + ż + z + B̃u,

where m = 2 is the maximum of the relative degree, and

z =
[
z1 z2 z3

]T
,

f(z) =
[
f1 (z1) f2 (z2) f3 (z3)

]T
,

∆f (z) =
[

∆f1 (z1) ∆f2 (z2) ∆f3 (z3)
]T
,

f1 (z1) = −z1 +
(
1− z12

)
ż1,

f2 (z2) = z2
(
ż2 − sin2 z2

)
+ ż2 (z2 cos z2 + sin z2) ,

f3 (z3) = −z3 + ż3 (2 + z3) ,

∆f1 (z1) = ∆f12
(
ż1, (ż1 −∆f11 (ż1))

′)
+ ∆ḟ11 (ż1) + (z1

2 − 1)∆f11(ż1),

∆f2 (z2) = ∆ḟ21 (z2)− z2∆f21 (z2)

+ ∆f22
(
z2, (ż2 − z2 sin z2 −∆f21 (z2))

′)
,

∆f3 (z3) = ∆ḟ31 (z3) + ∆f32
(
(ż3 −∆f31 (z3))

′)
− (2 + z3) ∆f31 (z3) ,

B̃ =

 1 1 + ∆g22 (z2) 1 + ∆g32 (ż3)
0 1 1 + ∆g32 (ż3)
0 0 1

 .
Let be e = z − zd, then the above HOFA model can be

turned into following form with respect to e(0∼1) and t

ë = f(e(0∼1), t) + B̃(e(0∼1), t)u+ δ(e(0∼1), u, t)− zd(2),

Thus, there is the control law as following for the original
system (3)

u =− B̃−1
(
A0∼1z(0∼1) + f

(
z(0∼1)

))
− B̃−1

(
1

4ε
ρ2
(
z(0∼1)

)
PL

Tz(0∼1) − u0(zd)

)
,

with

u0(zd) = −A0∼1zd
(0∼1)− 1

4ε
ρ2(z(0∼1))PL

Tz(0∼1)+zd
(2),

guaranteeing that the state z(0∼1) converges globally into the
following ellipsoidal belt-shaped region centered at zd(0∼1)

as

Θµ,ε(zd
(0∼1)) =

{
z(0∼1)|((z − zd)(0∼1))

T

×P (z − zd)(0∼1) ≤
ε

(1− k0)µ

}
,

where

ρ = a1 |e1|+ a2 |ė1|+ γ11 |ë1|2 + b1 |e2|+ b2 |ė2|+ c1 |e3|

+ c2 |ė3|+ σ32 |ë3|2 ,

a1 = 18.417k0,

a2 = [σ12(|ë1|+ γ11 |ë1|2) + k0(8.2275 +
∣∣1− e12∣∣)]

+ σ11
∣∣e12 − 1

∣∣ |ė1|+ 3.0995k0,

b1 = σ21 |e2|2 + k0
∣∣ė2 − sin2 e2

∣∣+ 5.2749k0,

b2 = σ22[|ë2 + |ė2| (|sin e2|+ |e2| |cos e2|+ γ21 |ė2|)|]
+ γ21 |ė2|+ k0 |sin e2 + e2 cos e2|+ 4.711k0,

c1 = σ31 |2 + e3| |e3|+ 10.2938k0,

c2 = k0(|2 + e3|+ 2.6777) + 4.4597k0

+ γ31 |ė3| (1 + γ31σ32 |ė3|2 + 2σ32 |ë3|),
Proof. Matrix F and matrix Z are chosen in arbitrary

F = diag{F1, F2}6×6,

Z =
[
Z1 Z2

]
3×6,

where

F1 = diag{−1, − 2, − 3}, F2 = diag{−1, − 5, − 2},

Z1 =

 1 0 2
1 3 5
1 5 1

 , Z2 =

 1 7 2
2 3 5
0 1 3

 .
Then combining with Lemma 4 and Lemma 5, the result

of Theorem 2 is obtained.
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Here are the simulation results (see Figures 5-8) when the
initial values is chosen as{

z(0) =
[

100 50 0.15
]T
,

ż(0) =
[

25 0.003 120
]T
,
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Fig. 5: The results of state variable z(0∼1)
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5 Conclusion

In this paper, a direct approach for the design of robust
stabilising controllers and robust tracking controllers solve
the issue of the robust control for the uncertain feedback
linearizable systems based on the Lyapunov stability theory.
Improving the result of simulation and other work are con-
tinued in the future.
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cable-driven space manipulator 
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Abstract: High precision trajectory tracking control is critical for achieving long-distance operations for cable-driven space 

manipulators. However, due to the uncertainty and deformation of long-distance transmission cables, the existing cable-driven 

space manipulator trajectory tracking control method cannot meet the requirements of high precision and strong robustness in 

actual engineering. In this paper, the high precision trajectory tracking control problem of a kind of novel cable-driven 

large-scale space manipulator is studied. First, the kinematics and dynamics of the cable-driven space manipulator are 

established using the principle of virtual work. Based on the fully actuated system control idea, a trajectory tracking control 

scheme is designed for the cable-driven space manipulator. The asymptotic stability of the resulting closed-loop system is proved 

using Lyapunov stability theory. The simulation results show that the proposed control scheme can effectively overcome the 

influence of interference and achieve high precision trajectory tracking control of the cable-driven space manipulator. 

Key Words: Cable-driven space manipulator, fully actuated system method, trajectory tracking control 

1 Introduction 

In contemporary aerospace systems, space manipulators 

play an increasingly vital role. They stand in for astronauts, 

handling complex and hazardous tasks such as in-orbit 

refueling, spacecraft maintenance, and the crucial task of 

managing space debris [1]. Noteworthy examples of these 

manipulators include Space Shuttle Remote Manipulator 

System (SRMS) [2] and the Mobile Servicing System, both 

utilized extensively for routine operations aboard the 

International Space Station. Additionally, the Japanese 

Experiment Module Remote Manipulator System [3] and 

the Educable Space Agency's autonomously maneuverable 

Educable Arm contribute to the assortment of traditional 

space robotic arms. These mechanisms exhibit a distinct 

structural feature: a hinge-like interconnection between the 

manipulator’s segments, strategically housing drive motors 

at rotational joints. 

As aerospace technology progresses, forthcoming space 

missions, including the in-orbit assembly of ultra-large 

spacecraft, redirection of asteroids, and precise 

manipulation of high-inertia rolling targets, impose 

heightened demands on the capabilities of space robotic 

manipulators. Conventional designs confront challenges in 

extending arm lengths and augmenting end-effector payload 

capacities, requiring the integration of more robust drive 

components at joints and additional transmission 

mechanisms. These adaptations inevitably elevate the 

overall system's mass, thereby contributing to a substantial 

escalation in the cost profile of space missions. 

To reduce the cost of future space missions, the National 

Aeronautics and Space Administration (NASA) of the 

United States has put forth a proposal for innovative, 

dexterous, and lightweight cable-driven space robotic 

manipulator. This novel robotic manipulator exhibits a 

broader range of motion and can accommodate larger 

end-effector payloads. The innovation of cable-driven 

*This work is supported by Natural Science Foundation of Guangdong 
Province of China under Grant Nos. 2023A1515011466, 

2023A1515110743 and 2022A1515010543, by State Key Laboratory of 

Robotics and Systems (HIT)(SKLRS-2023-KF-22). 

manipulator involves the separation of drive motors from 

rotational joints by extending and retracting cables, the 

manipulator segments are connected by the spreader. With 

similar length, the novel cable-driven space manipulator 

exhibits significantly lower mass compared to traditional 

counterparts, by several orders of magnitude, and when 

folded, occupies only around 14% of the volume of the 

previous SRMS. This groundbreaking innovation holds 

immense promise in substantially reducing the cost 

associated with space missions. 

Numerous scholars have dedicated substantial research 

efforts to the modeling and control methodologies for 

traditional space manipulators. Typically, the modeling 

process treats space manipulators as a multi-rigid-body 

system, utilizing established methods such as Lagrange 

mechanics, Newton-Euler method, and Kane's method.  

However, alternative methods have also been utilized for 

dynamic modeling, such as the Hamiltonian principle 

proposed in [4] and the Jourdain method proposed in [5] for 

variable speeds. Moreover, reference [6] analyzed the 

dynamic coupling characteristics of space robots and 

proposed a comprehensive inertial parameter identification 

method for space robot system. 

In the domain of control, for flexible-joint manipulator, [7] 

proposed an adaptive control schedule under uncertain 

parameters. In [8], considering the dynamic coupling 

between spacecraft bases and space robotic manipulator. An 

adaptive coordination controller was proposed in spacecraft 

attitude control. In [9], a sliding mode robust control 

approach for multi-rigid-body system models has been 

introduced, resolving high dynamic coupling among bodies 

and achieving control objectives for cable-driven robot. An 

observer output feedback control methodology for space 

robotic arms based on fuzzy functions to address model 

uncertainties was proposed in [10]. 

As aforementioned, despite considerable achievements in 

control research for space manipulators, addressing highly 

coupled and strongly nonlinear characteristics of space 

cable-driven manipulator remains challenging. Model-based 

control methods frequently encounter challenges in 

translating physical models into state-space representations 
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for these systems, whereas model-free nonlinear control 

methods grapple with ensuring effective control outcomes. 

Therefore, in [11], based on six degrees of freedom robotic 

system, the approach diverges from converting the actual 

system model into a state-space form of a first-order system. 

Instead, it directly targets the physical model, employing a 

direct parameter method was proposed in [12] to design a 

full-actuated system controller, which transforms the 

open-loop nonlinear system into a closed-loop system with 

configurable eigenvalues and linear constant coefficients. 

As a result, it facilitates effective trajectory-tracking control 

for robotic manipulators. 

In this paper, a comprehensive exposition of the model for 

the cable-driven space manipulator system model is 

proposed. Drawing from the structural attributes of the 

cable-driven mechanism, a mapping relation between the 

tension of cables and the equivalent joint torque is 

established. Subsequently, leveraging the Lagrange method, 

the dynamic model for the system is formulated. The 

dynamic equation considers the cable elastic model, which 

provides a model basis for high-precision motion control. 

Then, a full-actuated system method is utilized to design a 

composite controller for cable-driven space manipulator. 

Theoretical proofs regarding the stability of the system are 

conducted. Finally, the efficacy and superiority of the 

proposed controller are empirically substantiated through 

comprehensive comparative simulation experiments. 

2 Modeling and Control Problem Description 

The mechanical structure of the cable-driven space 

manipulator is depicted in Fig. 1. Adjacent links are 

interconnected through spreaders, with cable drive and 

control devices positioned at the extremities of the links.  

Cables are configured on both sides of the links, with one 

end connecting to the winch and the other end linking to a 

tension sensor located on the top of the spreader. Motors are 

situated at the winches to drive rotation, facilitating the 

controlled movement of the links through motor rotation. 

The system is equivalently represented by joint torques 

propelling the manipulator's motion, wherein the spreader 

rotates in tandem with the corresponding joint rotations. 

 
Fig. 1: Joint module structure diagram 

2.1 Mapping from Cable Tension to Joint Torques 

The simplified model of cable-driven space manipulator 

single-joint module is depicted in Fig. 2. The winch radius is 

denoted by r ,  iL  and 1iL +  are the distance from the winch 

center to the spreader center, the single-sided height and 

width of the suspension system are h and d respectively, 

angle between adjacent link segments is i , the angle 

between the link and the spreader is / 2i , 

 1 2 3 4,  ,  ,  
T

i i i i il l l l=l is the length of cables. 

  

         

    

 

 

 

 

  

    

   

   

   

   

 

 

 

 

Fig. 2: Equivalent diagram of joint torque 

From the geometric relations: 

 2 2S d h= +  (1) 

 ( )arctan /h d =  (2) 

then, the relationship between the length of cables il and the 

angle i  of rotation of the joint is obtained by 
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 (3) 

differentiating both sides of (3) yields 

 d di qi i=l J   (4) 

where the Jacobian matrix of the joint module can be 

expressed as 
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 (5) 

It can be seen from the equation (5) that the relationship 

between the change of the cables and the joints angle is only 

related to the i . 

2.2 Dynamic equations 

During the movement, the length of the cables changes as: 

 δ δ δsl l l= +  (6) 

where δ sl is the elastic deformation of the cable, and l  is 

the changes in cables length caused by changes in joints 

angle.  

According to the principle of virtual work: 

 δ δ δ δ δ δT T

s sW W W = + = + = f l     (7) 

where 1n

s

 R is the elastic deformation loss moment of 

the cables, sW represents the elastic potential energy of the 

cables, and 1n

s

 R is the driving joint change torque. 

 11 12 13 14 1 2 3 4, , , , , , ,,
T

n n n nl l l l l ll l=l is the cables length 

vector.  
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Combining equation (4) and equation (7), the relationship 

between the cables length change and the torque is: 

 s = +τf τJ  (8) 

where 

 

1 4 1 4

1 1

1

24 4 4

1 4 1 4

n n

T

q

T

q

T

qi



 

  

 

 
 
 =
 
 
 





0 0

0 0

0 0

J

J
J R

J

 (9) 

Assuming that the cables have the same cross-sectional 

area S and elastic modulus E , the elastic loss energy on the 

cable can be deduced through energy conservation as: 

 
2

11 12 13 1

22 2 2

1311 12 14

2 2 2

1 2

4

2 3

3 4

1 4

n n n n

s

n n n n

ff f f
W

ES ES ES ES

f f f f

l l l l

l l l l
ES ES ES ES

 
= + + + + 

 

 
+ + + 
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 (10) 

the elastic loss energy of the equation (10) can be obtained 

by taking the partial derivative of i  

 
1 2

T

s s s

n

s

s
ES

W W W 

  

 
= = 



  

   
τ

J f
 (11) 

where
2 2 2 2 2 2 2 2

11 12 13 14 1 2 3 4,, , , , , , ,
T

ns n n nf f f f f f f f =  f , which 

can be obtained by force sensors in practical applications. 

Consider the cable-driven space manipulator in the 

microgravity environment of space, the dynamic equation of 

the cable-driven space manipulator is expressed as 

 ( ) ( ), s + =θ θ C θ θ θ + J f + dM   (12) 

where 1n R  is the generalized joint variables, 

( ) n nM R is the inertial matrix, 

( ), n nC R  represents the Coriolis force and centrifugal 

force matrix. 1nd R represents the external disturbance 

which varies with time. 

In the following section, we will delve into the trajectory 

tracking control for the cable-driven space manipulator 

described by equation (12), which aims to enable the joints 

of the manipulator   to accurately track the desired 

trajectory d . 

3 Observer design and controller design 

3.1 Observer Design 

From the equation(12), the disturbance term can be 

expressed as 

 ( ) ( ), s= −− −d J f θ θ θ θ θ M C τ  (13) 

Therefore, the disturbance observer is designed to 

 
( )

( ) ( ) ( )( )

ˆ ˆ

,

,

, s 

= −

+ + + −

d L e d

L e M θ e C θ θ e τe J

e

f
 (14) 

where ( ), n n−  RL e e is a set of functional diversions that 

needs to be constructed in the future, 
1ˆ nd R  is the 

interference estimation value obtained by the observed. 

Since the priori information of the disturbance is 

unknown, which can be considered that it changes slowly, 

therefore, it is reasonable to assume: 

 0=d  (15) 

Define the disturbance observer error as: 

 ˆ= −d d d  (16) 

substituting(13),(14), and (15) into (16): 

 ( ,ˆ ˆ) ( ),= − = −d d L e d L e dd e e  (17) 

then 

 ( , ) 0+ =ed L e d  (18) 

Therefore, choosing ( , )L e e  appropriately can make the 

disturbance observer globally asymptotically stable. 

Given the presence of measurement noise and the 

inherent difficulty in obtaining accurate acceleration signals 

in practical engineering scenarios, including the challenge 

of constructing the acceleration signal from velocity signals, 

the disturbance observer (14) will be suitably modified. 

Define an auxiliary variable 1nz R  as: 

 ˆ ( , )−= d p e ez  (19) 

where 1( , ) nee Rp is function vector that needs to be 

constructed. 

( , )L e e in the equation (14) can be designed as follows: 

 
, ( ,( )

( , ) (
)

)
  

=       

 ee p
L

e e
e e

e

p e
M e

e
e

e
 (20) 

Combining (14) (19) and (20) we get 

 

( ) ( )

ˆ

( , )ˆ

( , ) ( , )

,

( , ) ( ,

d ( , )

dt

( )

) s

= −

  
= −       

= − +



+ + −

e
z d

ee p e e
d

ee e

L e e z p e e L

p

e e C e e

e

p

e f

e

J τ

(21) 

therefore, the disturbance observer can be expressed as: 

 
( )( , ) ( , ) ( , ) ( , )

ˆ ( , )

s
 = − + − + −

 = +

z L e e z L e e C θ θ e J f τ p e e

d z p e e

(22) 

The disturbance observer proposed in (22) has two 

parameters and to be designed, so one of them must be 

selected so that the observer is asymptotic stable. 

3.2 Controller design 

Define the following symbols 

  0~ 1 0 1 1n n− −=A A A A  

 ( )0~ 1

0 1 1

n

n

−

−

 
 
 =
 
 

− − − 

0 I

A
I

A A A

  

Let the joints angle  of the manipulator track the 

expected value d , the tracking error gives 

 d−=e    (23) 

Substituting the equation (23) into (12), we get 

 ( ) ( )( )1 , d ds

−  = + −− −


+


e M J f d eC       (24) 

where 
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B M
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Furthermore, the equation (24) can be expressed as 

 ( ) ( ) ( )( )0, , a     += +  +e h h B uu  (25) 

where 0u  represents the partial control input of the constant 

coefficients closed-loop system, and au  is the external 

signal control input. 

3.3 Controller stability analysis 

Based on the full-actuated system controller design 

method proposed in [12], the closed-loop system control 

input in the equation (25) can be designed as: 

 
1 (0~1)

0 0~1( ) ( ) (, ),    −  = − + + u B A e h h  (26) 

where 0~1A  is the given coefficient matrix. Combining 

equations (21) and (23), the linear constant coefficient 

closed-loop system can be obtained as follows: 

 (0~ 1)

0~ 1 0n

n

−

−+ =e A e  (27) 

The equivalent conversion of the equation (27) into the state 

space form is: 

 ( )(0~1) (0~1)

0~1= ee A  (28) 

To make the linear constant coefficient closed-loop system 

stable, the problem is transformed into selecting the 

coefficients so that the ( )0~1 A is Hurwitz matrix. 

Lemma 1[13]: For an arbitrary matrix mn mnF  , all 

matrices 0~ 1m−A  and non-singular matrices mn mnV  

satisfy  

 1

0~ 1( )m

−

− =A VFV  

where 

 1

0~ 1 ( , )n

m

−

− = −A ZF V Z F  

 

1

( , )

n−

 
 
 =
 
 
 

Z

ZF
V Z F

ZF

 

and Z  is the parameter matrix, and satisfies: 

 det ( , ) 0V Z F  

It can be seen that to ensure the stability of the 

closed-loop system (25), It is important to choose the 

matrix F and Z  reasonably. 

For simplicity, the matrix F and Z are selected as: 

 
1 2

1 2

diag( , )

[ , ]

=


=

F

Z Z Z

 
 (29) 

where 

 
diag( )

  1,2;   1,2,
diag(

,
)

i ij

i ij

ni j
z

=
= =

=Z


 (30) 

Let  

 
 

=  
 

Z
V

ZF
 (31) 

from Lamma 1, the gain matrix is 

 
 

2 1

0~1

1 2 1 2

( , )

      ( )

−= −

= − +

A ZF V Z F

   
 (32) 

therefore, 0~1A  is only related to
ij . 

 11 1 21 2[ ]n n   =  (33) 

ij  is the eigenvalue of the closed-loop system, the selection 

problem of the gain matrix 0~1A is transformed into finding 

the appropriate closed-loop eigenvalue to guarantee the 

system stable. When the conditions meet 

0,  1,2,  1,2,ij ni j  = = can ensure the stability of the 

equation (27). 

To improve the convergence speed of linear systems, a 

global fast terminal sliding mode controller is proposed in 

[14] as follows: 

 /q p = + +e e es  (34) 

where , 0   , p and ( )q p q are positive odd numbers. 

The external signal control input of equation (22) can be 

designed as: 

  1( ) ( ,( ),)a tt −= − +u B e h e e w  (35) 

where  

 
/ /d

dt

q q pp   += ++e e s sw  (36) 

and ,  0   . 

Theorem 1：Consider the system (25) under the controller 

designed as equation (26) and equation(35),  if the external 

disturbance estimated by the observer (22), then the 

resulting closed-loop system is asymptotically stable. 

Proof. Choose the Lyapunov function as: 
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T=V ss  (37) 

Derivative the equation (37), then: 
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 (38) 

Since ,p q  are odd number, then ( ) /p q p+  is an even 

number, so when the parameter is 
/

1
( , , )

q p
t   e eh

s
, 

substituting it into (38) gives 0V  . 

Remark 1: In a real physical system, the cable tension 

cannot be infinite, so it is necessary to add saturation 

function to handle unrealistic control inputs. The input 

saturation function gives 

 max

max




=
+




  (39) 

where max is the maximum torque that system can output. 

4 Numerical simulation 

On the space mission, the cable-driven space manipulator 

is usually installed on large spacecraft. As shown in Fig. 3, 
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the mass of the manipulator system is much smaller than the 

spacecraft base, The cable-driven space manipulator can be 

regarded as mounted on a fixed base. 

 

Fig. 3: Tendon-driven space manipulator task operation 

Then, the schematic diagram of the double-joint module 

cable-driven space manipulator shows in Fig. 4.  

 

Fig. 4: Schematic diagram of Cable-driven manipulator 

Utilizing the Matlab simulation platform, this study 

addresses the trajectory tracking control challenge inherent 

in the cable-driven space manipulator with a double-joint 

module. Essential to our investigation are the physical 

structure parameters of the tendon-driven space manipulator 

system, meticulously outlined in Table 1. 

Table 1: Physical structure parameter table of manipulators  

Physical Structure Parameters 

Manipulator Mass 

1 =5.982kgm  

2 10.343kgm =  

3 5.982kgm =  

Spreader Mass 1.951kgsm =  

Manipulator Length 1 2 3 1.955mL L L= = =  

Spreader Length 0.101msL =  

Spreader Width 0.37mh =  

Capstan Radius 0.03mr =  

The initial state of the double-joint module manipulator 

system is  0.2 0.1
T

=θ ,  0 0
T

=θ . The expected 

trajectory of the joint is: 

0.1 0.2cos( ) 0.5 0.5cos( )
20 40

T

d

t t 
+ −

 
=  

 
θ . The external 

disturbance is ( ) 0
1

1
1

2 2
0.1si

5 5
n . cos

T

d t t t 
    

=     
    

 

In order to reflect the superiority of the proposed 

algorithm under the full-actuated system method. Compare 

it with linear sliding mode and fast non-singular terminal 

sliding mode controller in [15]. 

Finally, given that sudden load changes often occur in 

actual processes, such as the cable-driven space manipulator 

suddenly grabbing a heavy object, we assume that the 

manipulator tip suddenly grabs a 5kg object. 

The simulation results show as follows: 

 

Fig. 5: Joint 1 tracking error 

 

Fig. 6: Joint 2 tracking error 

 
Fig. 7: Control input of joint1 

 
Fig. 8: Control input of joint2 
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Fig. 5~Fig. 6 depict the corresponding tracking errors. Fig. 

7~Fig. 8 provide insights into the tension in the cables 

across each joint module. Through the comprehensive 

analysis of the simulation diagrams, it is evident that the 

terminal sliding mode composite controller, designed based 

on the full-actuated system method proposed in this paper, 

outperforms both the linear sliding mode and the new fast 

non-singular terminal sliding mode. The controller exhibits 

enhanced trajectory tracking speed and superior stability, 

thereby demonstrating notable advantages in achieving  

high precision trajectory tracking control for cable-driven 

space manipulators. 

5 Conclusion 

A controller design aimed at achieving high precision 

performance for the cable-driven space manipulator is 

presented in this paper. Considering the impact of 

high-frequency variations in cable tension deformation 

during the transmission process, a kinematic and dynamic 

mapping relationship between cable tension and joint angles 

is established using the principles of virtual work and the 

Lagrange method. Based on the fully actuated system 

method, a terminal sliding mode controller is introduced to 

facilitate trajectory tracking for the cable-driven space 

manipulator. The simulation results demonstrate the 

effectiveness of the designed controller in effectively 

achieving  high precision trajectory tracking. 
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Abstract—In this paper, a predictor-based sliding mode control
law is proposed for discrete-time systems with input delays
to reject unknown disturbances. First, a disturbance observer
is built to estimate the unkown disturbance signal, and the
boundedness of estimation error of disturbance observer is
obtained. Next, a predictor is designed to transform the system
with input delay to a system without time delay, solving the
delay compensation problem of discrete-time systems with input
delays. Finally, a new predictor-based sliding mode control law is
proposed to construct the sliding surface by using the predictors
and the unknown disturbance signal. The unknown disturbance
signal is estimated by the designed observer. It is noted that the
sliding surface is constructed by utilizing the predictor, rather
than by using system state. A numerical example is given to show
the effectiveness of this predictor-based sliding mode control law.

Index Terms—predictor, input delays, sliding mode control,
disturbance observer

I. INTRODUCTION

There are often time delays in a variety of real-world
technical issues, including transmission, communication, and
satellite systems [1]. In the high precision pointing maneuver
mission, time-delay is often considered in the precise control
of large angle attitude maneuver, which will lead to the
increase of attitude error and the decrease of control perfor-
mance, even lead to the instability of the system. Because of
this, there has been a lot of interest in the design of non-
predictor based sliding mode controllers for input delayed
systems in recent years [2]–[4]. These controllers are intended
to reject disturbances and accurately manage and deal with
delays.

There are different disturbance attenuation controls for input
delayed systems in recent years. The most typical one is
Smith predictor-based feedback control [5], which is also
called pure delay compensation method. This method solves
the control problem of pure time-delay system theoretically,
but it also has great disadvantages [6]. It is highly dependent
on the accurate system model. If the model is inaccurate,
the control performance will be degraded and the adaptive
performance will be poor. In [7], Brahim extended the work
in [5], and proposed a system combining cascade control with

This work was supported by the Doctoral Research Initiation Fund of
Jiangsu University of Science and Technology under Grant No. 1032932303.

Smith predictor-based feedback control, which can improve
the performance of the system especially when disturbance
occurs. In [8], a simple adaptive law is proposed to improve
the performance of Smith predictor by changing the controlled
variables and set values step by step, and it is suitable for
more control. Compared with adaptive control, sliding mode
control (SMC) does not need an accurate system model and
has a fast response speed. The disturbance attenuation based
on sliding mode control is designed, by introducing sliding
mode surface and sliding mode reaching law. The system
state can be quickly adjusted and disturbance attenuation can
be achieved, and the system has strong robustness and anti-
disturbance ability. In [9], the combination of Smith predictor
and sliding mode control is used to improve the robustness of
the system.

The basic idea of anti-disturbance control of predictor-
based sliding mode control is to constuct a predictor to
compensate the time delay for input-delayed systems and use
the the sliding mode control method to reject the disturbance.
Predictor-based feedback control for input time-delay systems
is designed by constructing a predictor to transform the
original time-delay system to a time-delay-free system, and
then feedback control is designed based on the transformed
system. This method can compensate the influence of time
delay on the system and has a better disturbance attenuation
ability. Compared with state feedback and output feedback,
this predictor-based method avoids constructing complex Lya-
punov functions and does not need to solve complex linear ma-
trix inequalities. Its biggest benefit is in its strong robustness,
rapid reaction, easy implementation, and high precision control
[10], which is commonly utilized in systems with disturbances.
In the past, the majority of the research on sliding mode
control was carried out in continuous time domain. However,
the continuous-time sliding mode controller can only show
good performance when the sampling time is very small. With
the expanding application of digital controllers, discrete-time
SMC receives ever more attention. Gao in [11] presented a
way to deal with discrete SMC, and produced a pioneering
effort for the design of this type of system. The work in
[12] introduces both the quasi-sliding mode band and the
reaching law. The state of the system is constrained to a band
surrounding the sliding hyperplane by a new reaching law.

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications 
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The issue in [11] that the sliding variable’s rate of change
is a constant additive proportional descent, and the sliding
variable’s rate is modified in [13]. The system is more robust
because the ratio is always constrained and the drop speed
is slower than in [11]. The reaching rule is established on
the exponential term to adjust to the change in the switching
function, which is different between the work in [14] and [11]–
[13]. The reaching law designed can ensure that the width of
the quasi-sliding mode domain is small and the system states
converge to the quasi-sliding band in a finite time.

The aim of this paper is to construct a new predictor-based
sliding mode control for systems with input delays such that
the disturbance attenuation capacity can be improved. This
paper’s primary contents are: (1) The compensation problem
of input delay in discrete-time systems is solved by a predictor-
based feedback control; (2) A disturbance observer is given to
estimate the unknown disturbance signal, and it is necessary to
give the boundness of the estimation error of the disturbance
observer; (3) The sliding surface is constructed by utilizing the
predictior and thus a new predictor-based sliding mode control
law is presented.

II. PROBLEM FORMULATION

Consider the following discrete-time system with input
delay:

x(k + 1) = Ax(k) +Bu(k − h) +Bdd(k), (1)

where x(k) ∈ Rn is the system state, u(k) ∈ Rm is the
input variable, and d(k) ∈ Rq denotes an unknown external
disturbance. Input delay h is an integer and satisfies h > 0. For
the input matrix B and disturbance matrix Bd, the condition
rank(B) = m and rank(Bd) = q should be ensured, that is,
B and Bd have full column rank.

Moreover, the following assumptions should be given
throughout this paper.

Assumption 1: The mtrix pair (A,B) is fully controllable.
Assumption 2: The definitions about the unknown distur-

bance signal are given by d(k)
∆
= [d1(k), d2(k), ..., dq(k)]T

and dδi(k)
∆
= di(k + 1) − di(k), i = 1, 2, ..., q, respectively.

For the unknown disturbance d(k), it is assumed that there are
two positive scalars αi and βi that satisfy |di(k)| ≤ αi and
|dδi(k)| ≤ βi.

To our knowledge, discrete-time variable structure control
(VSC) is an useful method to deal with the problem of
disturbance rejection for system with unknown bounded dis-
turbances. In the past decades, a variety of discrete-time VSC
strategies with different reaching laws were proposed to solve
the sliding mode vibration problem. However, these discrete-
time VSC strategies are rarely used in systems with both input
delays and unknown disturbances. Thus, for system (1), the
discrete-time VSC method is studied in this paper to reject an
unknown disturbance. For discrete-time VSC, the following
definitions given in [15] are necessary.

Definition 1: A discrete-time VSC system moving in a way
that meets the requirements in [15] is said to be in quasi-

sliding mode. The frequency range that contains quasi-sliding
mode is known as the quasi-sliding mode frequency band and
is described as follows:

{x : |si(x)| < δi, i = 1, ...,m} , (2)

where 2δ = 2[δ1, ..., δm]T ∈ Rm is the bandwidth of the
quasi-sliding mode band. The sliding mode becomes an ideal
sliding mode when δi = 0,i = 1, ...,m.

In [16], the disturbance information was estimated by the
bound of the disturbance, and then a discrete-time sliding
mode control law was given to reject an unknown disturbance
by using the bound of the disturbance. In order to improve
the capacity of the corresponding closed-loop system to reject
the unknown disturbance, a disturbance observer is used in the
following part.

III. DISTURBANCE OBSERVER

In this section, a disturbance observer is proposed to esti-
mate the unknown disturbance d(k). According to the main
idea in [17], the following disturbance observer

z(k + 1) = Λd̂(k) + (Λ− Iq)B†d(Ax(k) +Bu(k − h)(3)

d̂(k) = z(k)− (Λ− Iq)B†dx(k)

is used to estimate d(k). Where d̂(k) is the disturbance
estimation, z(k) is an auxiliary variable, B†d

∆
=
(
BTd Bd

)−1
BTd

satisfies B†dBd =
(
BTd Bd

)−1
BTd Bd = I , and Λ =

diag{λ1, λ2, ..., λq} with |λi| < 1, i = 1, 2, ..., q.
Let the estimated disturbance error be

d̃(k) = d(k)− d̂(k). (4)

For the above disturbance error, it follows from the idea in
[19], the bound can be calculated by∣∣∣d̃i(k)

∣∣∣ ≤ βi
1− |λi|

. (5)

For an unknown disturbance signal, it follows from the
above expression that the bound of the disturbance error is
associated with the known parameters βi and λi. Thus, in the
design of sliding-mode control laws, the disturbance error can
be estimated by using the relation (5).

It is widely known that predictor-based feedback control is
an effective method for system (1) to compensate the negative
influence from time delays, and the sliding mode control is
always used to reject external disturbances. Thus, for systems
shown as (1), the predictor-based sliding mode control is
naturally applied to time delay compensation and disturbance
suppression. In the following, a standard predictor is first
considered for system (1), and then the sliding surface of
the sliding mode control is constructed by using the predictor
state. In the previous works, the sliding surface of the sliding
mode control is often designed by using the system state,
rather than using the predictor state. Morever, the unknown
disturbance information in the designed sliding mode control
law is estimated by the disturbance observer (3).
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IV. PREDICTOR-BASED SLIDING MODE CONTROL

In this section, the standard predictor

xp0(k) = Ahx(k) +
k−1∑
j=k−h

Ak−1−jBu(j) (6)

is first considered for system (1). By using the predictor (6)
and the expression (1), the dynamics of predictor xp0(k) is
given by

xp0(k + 1) = Ahx(k + 1) +
k∑

j=k−h+1

Ak−jBu(j)

= Axp0(k) +Bu(k) +AhBdd(k). (7)

Obviously, the predictor system (7) is a system without time
delay. Thus, predictor xp0(k) can be regarded as a state
transformation that converts the input-delayed system (1) to
the delay-free system (7). In adition, it follows from the state
transformation (6) that the stability of the closed-loop system
of the system (7) under the control law u(k) = Kxp0(k)
implies the stability of the closed-loop system of the system (1)
under the control law u(k) = Kxp0(k), where K is designed
to satisfy that the system x(k+1) = (A+BK)x(k) is stable.
In view of this, a sliding-mode control law can be designed
for system (1) by first considering the sliding-mode control
method for the system (7).

For the system (7), the sliding surface is constructed as

s(k) = Cxp0(k), (8)

where s = [s1, ..., sm]T ∈ Rm, C = [CT
1 , ..., C

T
m] ∈ Rm×n,

rank(C) = m, and the matrix CB is nonsingular.
For discrete-time sliding-mode control, a reaching law is

often chosen to design a control law such that the state of
the closed-loop system can approach to the sliding surface
and then move on the sliding surface. The following standard
reaching law proposed by Gao et al. [16]

s(k + 1)− s(k) = −wTs(k)− εT sgn(s(k)) (9)

is considered to design the sliding-mode control law. Where

sgn (s(k)) = [sgn(s1(k)), · · · , sgn(sm(k))]
T
,

ε > 0, w > 0, 1− wT > 0,

and T is the sampling period.
From the system (7) and the reaching law (9), the incre-

mental change of sliding surface s(k) is

s(k + 1)− s(k)

= CAxp0(k) + CBu(k) + CAhBdd(k)− Cxp0(k)

= −wTs(k)− εT sgn(s(k)). (10)

It can be deduced from (10) that

u(k) = −(CB)−1C(A− I)xp0(k)

−(CB)−1[CAhBdd(k) + wTs(k) + εT sgn(s(k))].

Obviously, the above controller is difficult to implement since
the existence of the unknown disturbance d(k). In order to

make the controller easy to implement, d(k) can be replaced
by a disturbance observer d̂(k) in the form of (3). Thus, a
sliding mode control law with the disturbance observer d̂(k)
is given as

u(k) = −(CB)−1C(A− I)xp0(k) (11)

−(CB)−1[CAhBdd̂(k) + wTs(k) + εT sgn(s(k))].

This control law is given based on the the standard predictor
xp0(k), thus it can be named as the predictor-based sliding
mode control law.

By substituting the control law to the expression (10), a
new reaching law with the disturbance observation error d̃(k)
is presented by

s(k + 1)− s(k) = CAhBdd̃(k)− wTs(k)− εT sgn(s(k))

From this expression, it is further deduced that

s(k+1) = (1− wT ) s(k)−εT sgn(s(k))+CAhBdd̃(k) (12)

For this expression, it is denoted that

D̄ = CAhBd

with the matrix D̄ =
[
d̄ij
]
∈ Rm×q . For convenience,

D̄d̃(t) in the reaching law (12) is denoted as φ(t) =[
φ1(t) · · · φm(t)

]T
. With this denotion, (12) can be

written as

si(k + 1) = si(k)− qTsi(k)− εT sgn(si(k)) + φi(k) (13)

where |φi(t)| ≤ ϕi, i = 1, 2, · · · ,m,

ϕi =

q∑
j=1

dijβj
1− |λj |

. (14)

It can be found that the reaching law in (13) is the so-called
modified Gao’s reaching law in [19]. Thus, it follows from
the work in [19] that si(k) will converge to a bound region
|si(k)| ≤ εT + ϕi in a finite time, where the parameter ε is
chosen by εT > ϕi. In this case, the quasi-sliding mode band
δ = [δ1, ..., δm]T ∈ Rm is given by

δi = εT + ϕi, i = 1, 2, · · · ,m (15)

For δi in (15), it is denoted that δ̄ = maxi=1,··· ,m {δi}.
In view that the sliding surface s(k) is constructed by

utilizing the predictor xp0(k), thus it is concluded that the
predictor state xp0(k) will move on the sliding surface by the
predictor-based control law (11) in a finite time. In addtion, it
follows from the relation (6) that the system state x(k) will
also move on the sliding surface in a finite time.

V. STABILITY ANALYSIS

For discrete-time sliding mode control, the ultimate state
of the closed-loop system moves in the neighborhood of the
sliding surface s(k) = 0. Thus, the stability of the dynamics
of the sliding mode in the sliding surface s(k) = 0 cannot
be obtained. In the following, the stability of the quasi-
sliding mode around the sliding surface will be studied by
the Lyapunov method.
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In this section, it is assumed that the disturbance is matched,
that is, rank

(
[B,AhBd]

)
= rank(B).

For the matrix B satisfying rank
(
[B,AhBd]

)
= rank(B),

the singular value decomposition

B = [U1, U2]

[ ∑
0(n−m)×m

]
V T (16)

is considered. Where U1 ∈ Rn×m, U2 ∈ Rn×(n−m), Σ ∈
Rm×m is a diagonal positive-definite matrix, and V ∈ Rm×m
is a unitary matrix. For convenience, it is denoted that T =[
U2 U1

]T
. With this denotion, we have

TB =

[
UT

2

UT
1

] [
U1 U2

] [ ∑
0(n−m)×m

]
V T

=

[
0(n−m)×m∑

V T

]
.

It is obvious that the regular form system of system (7) is
given as

Z1(k + 1) = A11Z1(k) +A12Z2(k) (17)
Z2(k + 1) = A21Z1(k) +A22Z2(k) +B2[u(k) + d(k)]

by the state transformation Z(k) = Txp0(k). Where Z1(k) ∈
Rn−m, Z2(k) ∈ Rm, A11 = UT

2 AU2, A12 = UT
2 AU1, A21 =

UT
1 AU2, A22 = UT

1 AU1, and B2 =
∑
V T is a nonsigular

matrix.
Moreover, by utilizing the the state transformation Z(k) =

Txp0(k), the sliding surface can be rewriten as

s(k) = Cxp0(k) = CT−1Txp0(k)

=
[
C1 C2

] [
ZT

1 (k) ZT
2 (k)

]T
(18)

= C1Z1(k) + C2Z2(k).

It follows from (18) and the assumption |C2| 6= 0 that

Z2(k) = C−1
2 (s(k)− C1Z1(k)) .

By substituting this expression to the expression of Z1(k+ 1)
in (17) that

Z1(k + 1) = A11Z1(k) +A12C
−1
2 (s(k)− C1Z1(k))

=
(
A11 −A12C

−1
2 C1

)
Z1(k) +A12C

−1
2 s(k).

From this expression and the reaching law in (12), system (17)
can be converted to the following system

Z1(k + 1) = Ā11Z1(k) + Ā12s(k) (19)
s(k + 1) = (1− wT ) s(k)− εT sgn(s(k)) + CAhBdd̃(k)

where

Ā11 = A11 −A12C
−1
2 C1

Ā12 = A12C
−1
2 .

Next, the stability of the quasi-sliding mode around the
sliding surface will be investgated by utilizing the Lyapunov
analysis method for the system (19). The following theorm
gives the main result of this paper.

Theorem 1: For the system (19) under the predictor-based
sliding-mode control law (11), if εT is chosen to satisfy
εT > ϕi, where ϕi is defined as (14), then the system (19) is
ultimately uniformly bounded.

Proof: Choose the Lyapunov function as

V (k) = ZT1 (k)PZ1(k) + sT (k)s(k) (20)

where 0 < P = PT ∈ R(n−m)×(n−m). The incremental
change of the Lyapunov function is

V (k + 1)− V (k)

= ZT
1 (k + 1)PZ1(k + 1) + sT(k + 1)s(k + 1)

−ZT
1 (k)PZ1(k)− sT(k)s(k)

=
[
Ā11Z1(k) + Ā12s(k)

]T
P
[
Ā11Z1(k) + Ā12s(k)

]
−ZT

1 (k)PZ1(k)

+
[
s(k)− εT sgn (s(k))− wTs(k) + CAhBdd̃(k)

]T
×
[
s(k)− εT sgn (s(k))− wTs(k) + CAhBdd̃(k)

]
−sT(k)s(k)

Since the matrix pair (A,B) is controllable, thus it follows
from [18] that there exists a matix C such that Ā11 is stable.
Therefore, there exists a positive definite matrix P , so that

AT
12PA12 − P = −Q (21)

is true for any positive definite matrix Q. Then

V (k + 1)− V (k)

≤ −Qmin ‖Z1 (k)‖2 +
−

2δ̄
∥∥ĀT

12PĀ11

∥∥ ‖Z1(k)‖+
∥∥ĀT

12PĀ12

∥∥ δ̄2

−2εT δ̄m− 2wT δ̄2

+ε2T 2m+ 2wTεTmδ̄ + w2T 2δ̄2 + 2δ̄
∥∥CAhBd∥∥∥∥∥d̃(k)

∥∥∥
−2εTm

∥∥CAhBd∥∥∥∥∥d̃(k)
∥∥∥

−2wT δ̄
∥∥CAhBd∥∥∥∥∥d̃(k)

∥∥∥+
∥∥CAhBd∥∥2

∥∥∥d̃(k)
∥∥∥2

(22)

= −Qmin ‖Z1(k)‖2 +
−

2δ̄
∥∥ĀT

12PĀ11

∥∥ ‖Z1(k)‖+mε2T 2

+
(∥∥ĀT

12PĀ12

∥∥− 2wT + w2T 2
)
δ̄2 − 2mεT (1− wT )δ̄

+2
(
δ̄ − εTm− wT δ̄

) ∥∥CAhBd∥∥∥∥∥d̃(k)
∥∥∥+

∥∥CAhBd∥∥2
∥∥∥d̃(k)

∥∥∥2

,

where Qmin is the minimum singular value of Q. For conve-
nience, let

δ̄1 = δ̄
∥∥AT

12PĀ11

∥∥ ,
δ̄2 =

(∥∥ĀT
12PĀ12

∥∥− 2wT + w2T 2
)
δ̄2 − 2mεT (1− wT )δ̄

+2
(
δ̄ − εTm− wT δ̄

) ∥∥CAhBd∥∥∥∥∥d̃(k)
∥∥∥ (23)

+mε2T 2 +
∥∥CAhBd∥∥2

∥∥∥d̃(k)
∥∥∥2

.

With these denotions, it is deduced from (22) that

V (k + 1)− V (k)

≤ −Qmin ‖Z1(k)‖2 + 2δ̄1 ‖Z1(k)‖+ δ̄2 (24)

≤ −Qmin

(
‖Z1(k)‖ − δ̄1

Qmin

)2

+
δ̄2
1

Qmin
+ δ̄2.
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It is found from the relation (24) that

V (k + 1)− V (k) < 0

if

‖Z1(k)‖ > δ̄1 +
√
δ̄2
1 +Qminδ̄2
Qmin

(25)

is satisfied. The relation (25) means that the
trajectory of Z1(k) will enter into the ball{

Ω

(
0,

δ̄1+
√
δ̄21+Qminδ̄2
Qmin

)
: ‖Z1(k)‖ ≤ δ̄1+

√
δ̄21+Qminδ̄2
Qmin

}
within a finite time. Thus, uniform ultimate boundedness can
be obtained for the system (19) from the conclusion in [20].
The proof is thus finished.

Then, a numerical example is given to verify the effective-
ness of the proposed method.

VI. NUMERICAL SIMULATION

In this section, an example illustrating the effectiveness of
the proposed predictor-based sliding-mode control law (11) to
reject unknown disturbance for systems with input delay is
presented. Take into account the F-16 fighter’s discrete-time
state space model with input delay and unknown disturbances:

x(k + 1)

=


1 0.1025 0.2080 −0.0502 −0.0057
0 1.1175 4.1534 −0.8000 −0.1010
0 0.0955 1.0722 −0.0541 −0.0153
0 0 0 0.1353 0
0 0 0 0 0.1353

x(k)

+


−0.0581 −0.004
−1.7586 −0.1131
−0.0720 −0.0175

2 0
0 0.8647

u(k − h) (26)

+


−0.2
−0.3
−0.2
−0.2
−0.1

 d(k).

Where the sampling period T = 0.1 s and the input delay
h = 5. The initial system state is

x(0) =
[

0 0 0 0 0
]T
.

For the system (26), the predictor-based sliding-mode control
law (11) is considered to reject a sinusoidal disturbance signal

d(k) = 2 sin(0.06t). (27)

The sliding surface is designed as s(k) = Cz(k), where

C =

[
5.6168 0.6354 −0.5360 −0.3587 −0.0143
−27.0080 −0.3808 21.9722 0.0461 −0.2247

]
.

Choose ε = 4 and wT = 0.75.
In order to verify the effectiveness of the method proposed

in this paper, the control laws

u0(k) = Kxp0(k) (28)

and

u1(k) = −(CB)−1C(A− I)xp0(k) (29)
−(CB)−1[d̄(k) + wTs(k) + εT sgn(s(k))]

in [16] are considered for the system (1) to reject the distur-
bance (27).

The simulation results are shown in Figure 1. It is found
from this figure that the closed-loop system of the system (1)
under the proposed predictor-based sliding-mode control law
(11) can achieve a better disturbance attenuation capacity. The
disturbance error caused by the use of disturbance observer (3)
is described by Figure 2.

t

0 50 100 150 200

‖x
(t
)‖

2

0

50

100

150

200

250
u0(k)

u(k)

u1(k)

Fig. 1. The states of the closed-loop systems under the different predictor-
based control laws.

0 50 100 150 200 250 300

t

-0.5

0

0.5

Fig. 2. Disturbance estimation error.

VII. CONCLUSION

In this article, the predcitor-based feedback control method
is combined with the sliding mode control method such that
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the disturbance attenuation capacity can be improved for
input-delayed systems. In the proposed prdictor-based sliding
mode control law, the unknown disturbance is estimated by a
disturbance obsever. It is verified that the estimation error of
the disturbance obsever is bounded. Moreover, the uniform ul-
timate boundedness is obtained for the system by utilizing the
Lyapunov analysis method for the dynamics of the predictor.
Finally, it is shown by a numerical example that disturbance
attenuation capacity is impoved by this prdictor-based sliding
mode control law.
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Fully Actuated Behavioral Control for Multiple Omnidirectional
Mobile Robots System with Uncertain Dynamics
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Abstract: In this paper, the issue of distributed formation control for a group of omnidirectional mobile robots with uncertain
dynamics and external disturbances is investigated. A fully actuated behavioral control scheme is introduced to efficiently
accomplish the desired cooperative task. Within the strategy, a distributed formation behavior based on a fixed-time cooperative
protocol and null-space-based behavioral control method is designed, satisfying both neighbor collaboration and leader tracking
requirement. Through a prioritized multi-behavior fusion process, the desired kinematic commands of each robot is obtained.
Then, we convert the over-actuated systems into a fully actuated configuration form. Furthermore, a sliding mode controller
integrated with an extended state observer was designed for each robot. This advanced controller enables precise tracking of
desired kinematic commands by taking into account the fully actuated nonlinear dynamics of the robots. Finally, simulation
results are provided to demonstrate the advantages and effectiveness of the proposed method.

Key Words: Omnidirectional mobile robots system, formation control, fully actuated system theory, behavioral control, uncer-
tain dynamics

1 Introduction

The omnidirectional mobile robot (OMR) [1] exhibits su-
perior load-bearing and maneuverability capabilities within
confined indoor environments. In real-world scenarios, all
the OMRs interact through a network structure, and they
are often assigned to perform diverse and incompatible tasks
within a specific period of time. These tasks include for-
mation, obstacle avoidance, and task execution. Numer-
ous research has been conducted on the cooperative behav-
ioral controller designed for multiple omnidirectional mo-
bile robot system (Multi-OMRs). In [2], a fuzzy logic based
consensus strategy was proposed for self-organizing forma-
tion control task of OMRs. This approach automatically gen-
erates a communication topology through a continuous for-
mation method with constant spatial relationships, achieving
self-organizing formation control of OMRs. In [3], the au-
thors proposed a model predictive control method for a for-
mation tracking task involving Multi-OMRs. This approach
significantly improving tracking performance through the
prediction and estimation.

Although the aforementioned research achievements have
realized efficient formation control for the OMRs, they have
not considered the issues of multi-task control and conflict
resolution in cooperative tasks. However, conflicts among
OMRs are inevitable in cooperative task implementation
process. The null-space-based behavioral control (NSBC)
[4] offers a effective approach for addressing the task con-
flicts problem. NSBC ensures that tasks of the highest
priority are executed first. Tasks with lower priorities are
then partially executed, but only after being projected into
the task with higher priority. There are many researcher
who has studied on the cooperative behavioral controller de-
signed for autonomous robot system. In reference [5], a be-
havioral control formation tracking scheme tailored to con-

This work was supported in part by Science Center Program of the
National Natural Science Foundation of China under Grant No. 62188101,
and in part by Natural Science Foundation of Guangdong Province of China
under Grant Nos. 2023A1515011466 and 2023A1515110743.

strained multi-agent system with second-order dynamic was
proposed. This strategy ensures conflict-free formation con-
trol by incorporating path tracking, obstacle detection and
avoidance tasks. In [6], a reinforcement learning behavioral
control method was proposed to obtain optimal task priority
rules through trial-and-error learning. The multi-task con-
flict problem in formation control was solved.

Unfortunately, existing methods for designing behavioral
controllers are beset by challenges, including complex struc-
tures, an abundance of parameters, a dearth of physical sig-
nificance, and rigorous stability requirements. Due to the
fact that physical Multi-OMRs are consistently modeled as
second-order nonlinear systems using the Euler-Lagrange
method [2], the complexity of tasks leads to an increased
level of nonlinear characteristic and uncertainty in system.
Therefore, in recent years, scholars have proposed a high-
order fully actuated control theory approach for nonlinear
systems [7][9]. This method encompasses a fully actuated
transformation and the design of a feedback linearization
controller. As a result, the control efficiency and stability is
optimized by a simplified linear closed-loop system control.

Based on the previously detailed analysis, this paper in-
troduces a novel fully actuated behavioral control (FABC)
scheme designed for Multi-OMRs subjected to uncertain dy-
namics. This approach aims to address cooperative forma-
tion challenges from a fresh perspective, highlighting the fol-
lowing key innovations:

1) A novel distributed formation behavioral model is de-
veloped, leveraging the communication and measure-
ment data from neighboring OMRs to determine the
reference formation speed for each OMR.

2) A path tracking controller based on sliding-mode con-
trol and extended state observer (ESO) for each OMR
is designed. This controller ensures the stabilization of
error system in formation task of OMRs.

Notations 1 Given a vector a = [a1, a2, a3]T , the function
sigr(a) is in the form of sigr(a) = [|a1|rsign(a1), |a2|rsign
(a2), |a3|rsign(a3)]T , where | · | is the operator of absolute
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value, sign(·) represents a symbolic function, r is positive
constant. Behavior is also named mission or task in behav-
ioral control in this study. Let λ(·), λ(·) denote the maximum
and minimum singular value, respectively.

2 Preliminaries and Problem Statement

This section illustrates the preliminaries with regard to al-
gebraic graph theory, model description of the OMRs, and
multiple behaviors composition subjected to priority rules.

2.1 Algebraic Graph Theory
According to preliminary knowledge in algebraic graph

theory, the coupling relationships of the communica-
tion network among n robot can be characterized by
a directed weighted graph G1 = {V , ς,W } , where
V = {v1, v2, . . . , vn} denotes the node set, ς =
{(vi, vj) : vi, vj ∈ V , i 6= j} represents a set composed of
edges, and matrix W = [ωij ] ∈ Rn×n is a weighted adja-
cency matrix of graph G1, where the symbol of ωij denotes
the direction of signal transmission, and the magnitude of its
absolute value represents communication strength between
ith robot and jth robot. Define G0 as the virtual leader,
their topological relationships is shown in Fig. 1(a). In a di-
rected graph, if there exists a node with a directed path to any
other node, it is called a directed spanning tree. In this pa-
par, the trajectory (position and velocity) of formation leader
required to be bounded. We assume that the communication
network G = {G0,G1} is a directed spanning tree.

2.2 System model and problem formulation
In this subsection, the specific modeling of the Multi-

OMRs will be presented. In order to precisely modeling the
translation and rotation motion process of each OMR, they
are constrained to move in a flat horizontal plane surface.

Motor 4

Motor 3

Motor 2

Motor 1

xw

yw
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2w
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φ θ4

θ3

.

.
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.

θ3

.

3

1

2
0

Actual OMRs with 
communication topology

Virtual leader

(a) (b)

Fig. 1: The structures and coordinate definition of an OMR.

As shown in Fig. 1(b), the world coordinate frame
xwowyw and robot coordinate frame xroryr are established.
Then, define [ẋr, ẏr, ϕ̇]

T as the velocity of robot coordi-
nate frame, and [ẋw, ẏw, ϕ̇]

T as the velocity of world co-
ordinate frame, respectively. Let θ̇ = [θ̇1, θ̇2, θ̇3, θ̇4]T ,
ẋr = [ẋr, ẏr, ϕ̇]

T ,ẋw = [ẋw, ẏw, ϕ̇]
T , the kinematic map-

ping of the state between robot coordinate frame space of a
robot and the motor angular space [2] can be expressed by

ẋr = RP †θ̇ (1)

where P † = P T (PP T )−1 is the pseudo-inverse of P , and

P =


1 −1 − (l + w)
1 1 (l + w)
1 1 − (l + w)
1 −1 (l + w)

 .

The parameter w and l are half the width and length
of the robot, respectively. And R represents the radius of
wheel. Defined T (ϕ) as the transformation matrix of robot
coordinate frame with respect to world coordinate frame,
which can be described as

T (ϕ) =

 cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 .
Then, the state differentiation described in world coordi-

nate frame can be obtained by ẋw = T (ϕ) ẋr. According
to the Euler-Lagrange method, the dynamic equation of the
OMR can be accurately established[2]. Therefore, the sim-
plified dynamic model of the Multi-OMRs can be written as

ẍi +A0,iẋi +A1,i − di = Biui, (2)

where xi = [xw,i, yw,i, ϕi]
T ,A0,i = T (ϕi) (Ṫ (ϕi))

−1 +
CθR

2T (ϕi)P
†M−1P (T (ϕi))

−1,A1,i = R2T (ϕi)P
†

M−1CfFg,i,Bi = RT (ϕi)P
†M−1, di = RT (ϕi)P

†

M−1hd,i, and ui = [τ1,i, τ2,i, τ3,i, τ4,i]
T
. i = 1, 2, . . . , N

denotes ith OMR in the Multi-OMRs, N represent the to-
tal number of OMR, and ui is the driving torque input
generated by the electric motor. Fg,i = mig denotes the
gravity of ith OMR, mi is total mass and g = 9.8m/s2

is the gravitational acceleration. hd,i represents uncer-
tainty disturbances of ith OMR, which encompass model
inaccuracies and external input disturbances. Cf and Cθ
are the static friction and viscous friction coefficient, re-
spectively. M represents the total inertia matrix in Euler-
Lagrange equation of Multi-OMRs, which is calculated by

M =


M3 −M2 M2 M4

−M2 M3 M4 M2

M2 M4 M3 −M2

M4 M2 −M2 M3

 ,
where M1 = miR

2

8 , M2 = IzR
2

16(l+w)2 , M3 = M1 +M2 + Iw,
M4 = M1 −M2, Iw and Iz represent the moment of inertia
around the OMR axle and the moment of inertial of wheels
around the z-axis, respectively.

If we let xd,i be the reference state signal, and we define
ei = xi − xd,i as state error and combined it with Eq. (??),
hence the state error system model can be written as

ëi + ẍd,i +A1,i +A0,iėi +A0,iẋd,i − di = Biui, (3)

where ėi, ẋd,i are the first derivative of ei and xd,i, respec-
tively. Similarly, ëi, ẍd,i are the second derivative of ei and
xd,i, respectively. The model of Multi-OMRs is established.

2.3 Prioritized Multi-behavior Fusion
Generally, each robot in Multi-OMRs is required to si-

multaneously execute behaviors (tasks/missions) at different
levels and with varying priorities. The criteria for behavior
fusion can be found in the referenced [6]. In order to better
describe the control objectives of this paper, a precise defini-
tion of the behavioral control task error eδ,i(t) at time t can
be defined as eδ,i(t) = δi(t)−δd,i(t),where δi(t) and δd,i(t)
are the actual and desired behavioral control task function [6]
of ith OMR, respectively.

3 Distributed Behaviors Design

This section show the details design of elementary behav-
iors and the prioritized multi-behavior fusion rules within

190  



the NSBC framework. Finally, the behavioral stability of
proposed distributed behavior is provided.

3.1 Elementary Behaviors
The design of elementary behaviors is crucial for behavior

control approach. In this section, we analyze the various
tasks that can be executed within the multi-OMRs. Based
on task requirements and actuator characteristics, we define
three elementary behaviors, individual local motion (ILM),
distributed formation (DF).

Individual local motion design. The ILM behavior drives
a specific OMR to move along a reference trajectory guided
by predefined mathematical model, which is determined in
real-time through autonomous planning algorithms. Based
on the behavior design guidelines of the NSBC approach,
the ILM behavioral function δm,i ∈ R2×1 is defined as

δm,i = fm(pi), (4)

where pi = [xi, yi]
T denotes the position vector of ith

OMR, and fm(α) = kmα, km is a scale coefficient. The
corresponding differential relationship of δm,i is

δ̇m,i = Jm,ivi, (5)

where Jm,i =
∂δm,i
∂pi

∈ R2×2 is a Jacobian matrix [4] of δm,i,
and vi = ṗi denotes the derivative of position vector with re-
spect to time. However, the integration of reference velocity
would incur a certain drift of the reconstructed position of
the robot, which can be compensated for by the closed-loop
inverse kinematics [4]. Therefore, the reference velocity of
the ILM behavior can be calculated as

vm,i = J†m,i(δ̇md,i + Λm(δmd,i − δm,i)) (6)

where J†m,i = JTm,i(Jm,iJ
T
m,i)

−1 is the pseudo-inverse ma-
trix of Jm,i, i = 1, 2, · · · , n represents the index of ith

OMR, δmd,i = [xd,i, yd,i]
T is the desired behavior function.

δ̇md,i is the derivative of the δmd,i with respect to time, and
Λm denotes a suitable positive-defined gain matrix.

Distributed formation design. The physical significance
of DF behavior lies in the ability to generate the reference
velocities based on the cooperative requirements and dis-
tributed formation constraints. Similarly, the mathematical
description of DF behavior function δf,i ∈ R2×1 and the
derivative δ̇f,i can be written as{

δf,i =ff(pi),

δ̇f,i =Jf,i(pi)vi,
(7)

where ff(α) = kfα in this scenarios, kf is a scale coef-
ficient. The Jf,i =

∂δf,i
∂pi

∈ R2×2 is a Jacobian matrix of
δf,i, and vi = ṗi denotes the derivative of position vector
with respect to time. Unlike the ILM behavior, the desired
DF behavior function δfd,i requires obtaining the informa-
tion of communication or measurements from neighboring
OMRs and formation leaders. Define p0 and v0 as the posi-
tion and velocity of leader, respectively. And then define the
distributed relative relationship of offsets between followers
and leader as ζ = [ζ1, ζ2, · · · , ζn], the derivative of ζ is

restricted to be bounded. Subsequently, the δfd,i based on
communication network topology can be designed as

δfd,i =
1

(κ1 + κ2 + κ3
∑n
j=1 ωij)

[
κ1bi(p0 + ζi)

+ κ2(p̂0,i + ζi) + κ3

n∑
j=1

ωij(pj − ζj + ζi)
]
,

(8)

where the coefficient κ1 ∈ [0, 1] , κ2 ∈ [0, 1] are utilized
for tuning the weight of behavior tracking, respectively, and
0 6 κ3 6 1 is responsible for regulating coordination per-
formance, they satisfy the relationship κ1 + κ2 + κ3 = 1.
And p̂0,i represents the distributed estimation of p0 in the
ith OMR, which can be obtained within a fixed time under
Assumption 1 by a distributed estimator [8] as follow:{

˙̂p0,i =− ι1sigη1 (êp0)− ι2sign (êp0) + v̂0,i,

˙̂v0,i =− ι3sigη2 (êv0)− ι4sign (êv0) ,
(9)

where êp0 =
∑n
j=1 ωij(p̂0,i − p̂0,j) + bi(p̂0,i − p0) and

êv0 =
∑n
j=1 ωij(v̂0,i − v̂0,j) + bi(v̂0,i − v0) are the posi-

tion and velocity estimation error, respectively. The param-
eters ι1, ι2, ι3, ι4, η1 and η2 are all candidate gains for the
convergence of estimator (9). v̂0,i represents the distributed
estimation of v0 in the ith OMR. Then, the corresponding
reference velocity of the DF behavior can be obtained as

vf,i = J†f,i(δ̇fd,i + Λf(δfd,i − δf,i)) (10)

where J†f,i = JTf,i(Jf,iJ
T
f,i)
−1 is the pseudo-inverse matrix

of Jf,i, Λf denotes a suitable positive-defined gain matrix.

3.2 Prioritized Multi-behavior Fusion
The prioritized multi-behavior fusion process enables the

acquisition of the kinematic reference signal, and the geo-
metric rules of null-space projection can be applied to com-
bine the speed outputs of those individual elementary behav-
iors like ILM, DF behavior.

Then, we mark the labels of two behaviors as 1, 2, respec-
tively. A specific vector ϑ ∈ R2×1 is used to represent the
priority order, its subscript indicates the magnitude of prior-
ity. Thus, this vector can be described as ϑ = [1, 2]

T when
the priority of behaviors satisfying the condition ILM>DF
at certain moment t. Consequently, the desired velocity out-
put vd,i of ith OMR at time t can be expressed as

vd(t) =vϑ(1) + (Iϑ(1) − J†ϑ(1)Jϑ(1))vϑ(2), (11)

where vϑ(1),vϑ(2),vϑ(3) denotes the kinematic output of el-
ementary behaviors after priority sorting, respectively. Sim-
ilarly, Jϑ(1),Jϑ(2) are Jacobian matrix after priority sorting.
And Iϑ(1), Iϑ(2) are all identity matrix related to the dimen-
sion of involved behavior function, respectively.

3.3 Behavioral Stability Analysis

Considering the task function δi =
[
δT1,i, δ

T
2,i

]T
, which

composed of two elementary behaviors with priority order,
ILM and DF. The subscript 1 indicates the task with highest
priority, 2 is the second.

Theorem 1 The task error eδ,i = δi−δd,i system are large-
scale asymptotic stable under different priority conditions
when using our designed distributed behaviors.
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Proof 1 The candidate Lyapunov function is considered as

V1(eδ,i) =
1

2

n∑
i=1

(γδ1e
T
δ1,ieδ1,i + γδ2e

T
δ2,ieδ2,i) (12)

where γδ1 , γδ2 are the positive behavior parameters to be
designed, respectively.

Firstly, taking the time derivative of V1(eδ,i), we get

V̇1(eδ,i) =
n∑
i=1

[
γδ1e

T
δ1,iėδ1,i, γδ2e

T
δ2,iėδ2,i

]T
= −

n∑
i=1

{
eTδ,i [J1,J2]

T

[
γδ1J

†
1Λ1eδ1,i,

γδ2N1J
†
2Λ2eδ2,i

]}
= −

n∑
i=1

(eTδ,iQeδ,i).

(13)

where N1 = I − J†1J1 is the null-space projection oper-
ator of the highest priority behavior, and the matrix Q =[

γδ1Λ1 γδ2J1N1J
†
2Λ2

γδ1J2J
†
1Λ1 γδ2J2N1J

†
2Λ2

]
. To ensure that Q is

positive definite, it is necessary that all the values of the
determinants of its adjacent minors are greater than zero.
Defined the λ(As) and λ(As) are the maximum and mini-
mum singular values of matrix As, respectively. Obviously,
the ‖J1‖ = 1, ‖N1‖ 6 1. Then, By using λ(AsBs) 6
λ(As)λ(Bs) and λ(AsBs)>λ(As)λ(Bs), we have

V̇1(eδ,i) 6 −
n∑
i=1

[
γδ1λ(Q11)‖eδ1,i‖2+

γδ2λ(Q22)‖eδ2,i‖2 − 2 ∗max

(
γδ1λ(Q21, γδ2λ(Q12)

)
‖eδ2,i‖‖eδ1,i‖

]
6 −

n∑
i=1

(êTδ,iQ̂êδ,i).

(14)

where the matrix Q̂ =

[
γδ1λ(Q11) 1

2λ
∗

1
2λ
∗ γδ2λ(Q22)

]
, and

λ∗ = max

(
γδ1λ(Q21, γδ2λ(Q12)

)
. Therefore, if Q̂ is pos-

itive definite, the conditions can be written as
λ(Q11) > 0,

λ(Q22) >
(λ∗)2

4γδ1γδ2λ(Q11)
.

(15)

Based on the derived conditions mentioned above, the
Eq. (14) can be rewritten as:

V̇1(eδ,i) 6 −
n∑
i=1

(êTδ,iλ(Q̂)êδ,i) 6 0. (16)

Therefore, the designed behavioral task function, along
with the fusion process for multiple behaviors prioritized un-
der various conditions, exhibits large-scale asymptotic sta-
bility. It ensures that behavioral task error will finally con-
verge to the neighborhood of zero.

Remark 1 After analyzing the behavior design and stabil-
ity, kinematic control commands for the distributed reference
of each robot can be obtained. However, it is still necessary
to design a fully actuated tracking controller to achieve the
desired distributed formation control.

4 Fully Actuated Behavioral Controller Design

This section show a fully actuated conversion method of
over-actuated system, the design of fully actuated behavioral
tracking controller and its stability analysis process.

4.1 Fully Actuated Conversion
From the state tracking error system Eq. (3), we can infer

that the system input coefficient matrix Bi ∈ R3×4 is not
a square matrices in this scenario, but rather a matrix with
an over-actuated attribute. The over-actuated system can be
converted to fully actuated system through variable augmen-
tation method [7]. Therefore, in Eq. (3), we let

x̄d,i =

[
xd,i

O1×1

]
, ēi =

[
ei
O1×1

]
,

Ā0,i =

[
A0,i O1×1
O1×3 O1×1

]
, Ā1,i =

[
A1,i

O1×1

]
,

d̄i =

[
di
O1×1

]
, B̄i =

[
Bi

O1×4

]
,

where Oa×b denotes a zero matrix of dimension a × b, the
system (3) can be converted into following equivalent form

¨̄ei + ¨̄xd,i + Ā1,i + Ā0,i ˙̄ei + Ā0,i ˙̄xd,i − d̄i = B̄iui, (17)

Generally, the system input coefficient matrix B̄i ∈ R4×4

is non-singular, det(Bi) 6= 0) in this application scene. For
the rigor of derivation, necessary assumption is proposed.

Assumption 1 Matrix T (ϕi), P † and M−1 all satisfy the

condition: det(

[
RT (ϕi)P

†M−1

O1×4

]
) 6= 0.

4.2 Fully Actuated Control Law
For fully actuated system (17), the time-invariant closed-

loop system can always be obtained through controller

ui = −B̄−1i (−Ā0,i ˙̄ei − Ā1,i − ¨̄xd,i − Ā0,i ˙̄xd,i + Γi), (18)

where Γi denotes the control term to be designed in this sec-
tion. Then, we substitute the expression of the controller
(18) into system (17), the new expression can be written as

¨̄ei = Γi +Di, (19)

whereDi encompasses model uncertainties and external dis-
turbances, representing the total disturbance of ith OMR.

In practical engineering scenarios, the instantaneous mag-
nitude of the total disturbance is typically unknown in ad-
vance. To this end, an ESO is designed to provide real-time
observation of the total disturbanceDi in the Multi-OMRs.

4.3 ESO Design
Then, expanding Di as a new state variable z2,i for sys-

tem (17), that is z2,i = Di. And let z1,i = ˙̄ei, consequently,
Eq. (19) can be converted into the following form:

z1,i =Γi + z2,i,

z2,i =εi,

Yi =z1,i,

(20)

where εi = Ḋ = [ε1,i, ε2,i, ε3,i]
T is the first derivative of

total disturbance, Yi denotes the output of system (20). To
ensure that the disturbance is estimable and compensable,
their properties need to be constrained. Then, necessary as-
sumption is proposed, as shown below.
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Assumption 2 The first derivative of total disturbance εi =
[ε1,i, ε2,i, ε3,i]

T is bounded, for ∀t ∈ [0,∞), the elements
εk,i, k = 1, 2, 3, satisfy the following inequality |εk,i| 6 ε̄,
where ε̄ ∈ (0,∞) is a unknown positive constant.

Denote ẑ1,i, ẑ2,i as the output of the ESO in ith OMR, and
let ε1,i = z1,i − ẑ1,i, ε2,i = z2,i − ẑ2,i, be the estimation
error. Then, the specific ESO for system (17) is designed as{

˙̂z1,i =Γi + ẑ2,i + µ1sigr1(ε1,i),

˙̂z2,i =µ2sigr2(ε1,i),
(21)

where µ1, µ2 ∈ (0,∞), r1 ∈ (0.5, 1) and r2 = 2r1 − 1 are
the ESO parameters to be designed. The output z2,i gener-
ated by ESO (21) is capable of driving the estimation errors
ε1,i and ε2,i toward a neighborhood of zero within a finite
time, the relevant proof of the convergence has been pre-
sented in reference [10] Theorem 1. Consequently, real-time
estimation of the total disturbanceDi is achieved.

The sliding mode control strategy has the capability to
overcome non-linearity and achieve repid convergence per-
formance. It is expected that the nonlinear error system is
first converge to the sliding surface, and then following a
sliding mode control law to the stable condition. There-
fore, the sliding surface of nonlinear control is designed as
si = [s1,i, s2,i, s3,i], which can be obtained by the equation

si = ˙̄ei + ψ(ēi), (22)

The form of ψ(ei) in Eq. (19) can be designed as

ψ(ēi) =
π

ρTp

(
‖ēi‖−

ρ
2 + ‖ēi‖

ρ
2

)
ēi, (23)

where γ>0 is a given parameter. Under the classical Lya-
punov theory, the controller term Γi in ui is designed as

Γi =− π

ρTp

(
‖si‖−

ρ
2 + ‖si‖

ρ
2

)
si − ẑ2,i

− ψ̇(ēi)−
1

2υ2
si,

(24)

where the υ is a parameters determined by the stability anal-
ysis process. Here, the design of fully actuated behavioral
tracking controller is completed.

Theorem 2 The Multi-OMRs in proposed fully actuated be-
havioral tracking control scheme can be stable when exe-
cuting the proposed ESO (21), controller (18). All states in
error system (17) will converge to a neighborhood of zero.

Proof 2 Based on the deduction of behavioral tracking error
variables ēi, ˙̄ei, we consider a candidate Lyapunov function

V2(ēi, ˙̄ei) =
1

2

n∑
i=1

sTi si. (25)

Then, we take the time derivative of V2(ēi, ˙̄ei), we have

V̇2(ēi, ˙̄ei) =
n∑
i=1

[
sTi

(
Γi +Di + ψ̇(ēi)

)]
. (26)

Further, by substituting the controller (18) into the rela-
tion (26), one can obtain

V̇2(ēi, ˙̄ei) =−
n∑
i=1

{
π

ρTp
sTi

[
(‖si‖−

ρ
2 + ‖si‖

ρ
2

]
si

+ sTi ε2,i +
1

2υ2
sTi si

}
,

(27)

where the definition of ε2,i has been present in above section.
Based on the Mean value theorem, it can be inferred that

sTi ε2,i 6
1

2υ2
sTi si +

υ2

2
εT2,iε2,i, (28)

where 0<υ<2 is a weight coefficient. From reference [11]
Lemma 1, we can infer that the observation error of the ESO
(21) is bounded, meaning that for ∀t ∈ [0,∞), there exists
a positive constant % that makes εT2,iε2,i<%. Then, by substi-
tuting the inequality (28) into the relation (27), we get

V̇ (ēi, ˙̄ei) 6 −
n∑
i=1

[
π

ρTp

(
V (ēi, ˙̄ei)

1− ρ2

+ V (ēi, ˙̄ei)
1+ ρ

2

)
+
υ2

2
εT2,iε2,i

]
6 0..

(29)

Therefore, the error system (17) is large-scale asymptotic
stable, such that all states in error system (17) will converge
to a neighborhood of zero.

Remark 2 The fully actuated behavioral tracking controller
enables each OMR to accurately track the desired motion
signals of distributed behaviors, thereby realizing the de-
sired distributed formation control of Multi-OMRs.

5 Simulation result

For the proposed fully actuated behavioral control strat-
egy and algorithm, a simulation in two dimensional space
under uncertain disturbances scenarios is presented in this
Section. In the simulation, three OMRs move according to
the preset distributed behavioral task function trajectories.
The important parameters which used in the simulation are
shown in Table 1, including the gain parameters of proposed
formation behaviors and configuration of Multi-OMRs, and
parameters proposed fully actuated behavioral controller.

Moreover, the external disturbance is designed as

hi(t) =


1 + 2 cos(0.3t)

2 + 1.5 sin(0.3t) + 3 cos(0.3t)
3 + 2 sin(0.2t)
2.5 + sin(0.1t)

× 10−2Nm,

the initial state of the Multi-OMRs are chosen as

x(0) =

[
−2.5 −5 −7.5
20 12.5 27

]
, ẋ(0) =

[
0 0 0
0 0 0

]
,

and the trajectory of the virtual formation leader is given as

xo(t) =

[
20 sin(2t+ 1)
−20 cos(t+ 0.5)

]
. We also choose

˙̂z1(0) =

 0.01 0.01 0.01
0.01 0.01 0.01
0.01 0.01 0.01

 , ˙̂z2(0) =

 0 0 0
0 0 0
0 0 0


as the initial value of ESO (10).

The moving trajectories of the three OMRs and the virtual
leader using proposed formation behavioral control meth-
ods and fully actuated behavioral controller as shown in
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Table 1: Parameter values in the simulation

Parameters Value
Sampling frequency, fq 60Hz

Wheel radius of OMR, R 0.0375m
Total mass of a OMR, m 1.2kg

Moment of inertia about z-axis, Iz 0.01kg ·m2

Moment of inertia about wheel axis, Iw 0.02kg ·m2

Distance between shafts of OMR, 2l 0.06m
Distance between wheel of OMR, 2w 0.04m

Static friction coefficient, Cf 0.125
Viscous friction coefficient, Cθ 0.2

Adjacency matrix,W

 1 0 0
1 0 0
1 1 0


Leader adjacency matrix, b [1, 0, 0]T

Gain of ILM behavior, Λm 3.5
Gain of DF behavior, Λf 2

DF behavior parameters κ1, κ2, κ3 0.33, 0.33, 0.33
Leader state estimator parameters, 2, 3, 2, 14

ι1, ι2, ι3, ι4, η1, η2
3
2
, 3
2

Offsets between followers and leader ζ
[

3 3 −3
3 −3 3

]
Controller parameters, ρ, Tp, υ 0.5, 10, 1.5
ESO parameters, µ1, µ2, r1, r2 0.6, 0.2, 0.7, 0.4

Fig. 2(a). In addition, three snapshots are provided to
show the formation of three OMRs and the virtual leader at
t = 4.3s, t = 24.5s and t = 45.5s. The variation curve of
control input, state, task error and tracking error are shown
also in Fig. 2(b − h). Under the proposed control strategy,
the three OMRs smoothly and rapidly converge to the de-
sired distributed formation task from diverse initial states.
The tracking performance of nonlinear system states is ex-
cellent. Furthermore, both behavioral errors and behavioral
task errors converge rapidly to zero in the vicinity.

6 Conclusion

This paper explores distributed formation control for
Multi-OMRs with uncertainties and disturbances. The
FABC scheme is proposed for efficient formation control.
The scheme includes a distributed formation behavior using
a fixed-time protocol under the NSBC teamwork. OMRs
get their kinematic commands through a prioritized fusion
process. We also the convert over-actuated OMR system to
fully actuated ones and design a sliding-mode controller with
an ESO for precise behavioral tracking. Simulation results
show the effectiveness of propersed method.
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Adaptive neural-networks control for uncertain second-order
fully actuated strict-feedback systems without

over-parametrization
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Abstract: In this paper, the tracking control is addressed for second-order fully actuated strict-feedback systems with unknown
dynamics. An adaptive neural-networks control law is constructed via command filtered backstepping control approach. Different
from the existing traditional first-order state-space backstepping approach, the proposed control law can avoid “explosion of
complexity”, and does not need to convert the second-order systems into first-order form. Besides, the neural networks are
utilized to identify unknown dynamics in the systems with only two tuning parameters. Based on Lyapunove stability theory,
it is proven that the closed-loop system under the proposed adaptive neural-networks control law is stable in the sense of the
uniformly ultimately bounded.

Key Words: Fully actuated systems; Nonlinear uncertainty; Adaptive neural-networks; Command filtered backstepping.

1 Introduction

Second-order nonlinear systems are widely applied in en-
gineering applications, such as robotic systems [1], aircraft
systems [2], satellite attitude control systems [3]. However,
in the control law design procedure, these second-order sys-
tems are usually transformed into first-order state-space sys-
tems. Recently, a systematic high-order fully actuated sys-
tem approach [4–6] has been drawing considerable atten-
tion since it could directly deal with the analysis and con-
trol of high-order systems without converting them into first-
order ones. Based on the high-order fully actuated system
approach, some adaptive backstepping control laws were
constructed for second-order and high-order strict-feedback
nonlinear systems in [7–9]. Note that the backstepping con-
trol suffers from ”explosion of complexity” caused by re-
peated differentiation for the virtual control signals. To
address this problem, adaptive command filtered backstep-
ping (CFB) control approaches were proposed in [10,11] for
second-order and high-order strict-feedback nonlinear sys-
tems. It is worthy mentioning that the presented control laws
in [8, 9, 11] only could deal with parameter uncertainties.
As for the dynamic uncertainties, the proposed approaches
in [7, 10] required the unknown nonlinear dynamics to be
bounded by a known function. The control of second-order
strict-feedback nonlinear systems with completely unknown
nonlinear dynamics needs further investigation.

In view of the aforementioned discussions, the tracking
control is investigated for a class of second-order strict-
feedback nonlinear systems with unknown dynamics. The
objective is to construct a robust control law such that the
output of the closed-loop system tracks a reference signal.
Particularly, the unknown nonlinear dynamics is approxi-
mated by utilizing neural-networks (NNs), By combining
this techniques with CFB approach, an NNs-based adaptive
command filtered backstepping control law is constructed.
Compared with the previous results, the main contributions
can be concluded as follows:

This work was supported by the Science Center Program of National
Natural Science Foundation of China under Grant No.62188101.

1) The proposed NNs-based adaptive command filtered
backstepping control law do not need to convert the second-
order systems into first-order forms.

2) Only two adaptive laws are introduced to avoid over-
parametrization problem of NNs.

Notations. Throughout this paper, For m < n, we use
I[m,n] to denote the set {m, m+ 1, · · · , n}. For any vector
x ∈ Rn, we use ‖x‖ to denote the 2-norm of the vector x.
Besides, the following symbols are defined.

x(0∼n) =


x
ẋ
...

x(n)

 , x(0∼n)
i∼j =


x

(0∼n)
i

x
(0∼n)
i+1

...
x

(0∼n)
j

 , j ≥ i,

A0∼n−1 =
[
A0 A1 · · · An−1

]
,

Φ
(
A0∼n−1

)
=


0 I

. . .
I

−A0 −A1 −An−1

 .
2 Problem Formation

Consider the following second-order fully actuated strict-
feedback nonlinear system

ẍ1 = f1

(
x

(0∼1)
1

)
+ g1

(
x

(0∼1)
1

)
x2,

ẍ2 = f2

(
x

(0∼1)
1∼2

)
+ g2

(
x

(0∼1)
1∼2

)
x3,

...

ẍn−1 = fn−1

(
x

(0∼1)
1∼n−1

)
+ gn−1

(
x

(0∼1)
1∼n−1

)
xn,

ẍn = fn

(
x

(0∼1)
1∼n

)
+ gn

(
x

(0∼1)
1∼n

)
u,

y = x1,

(1)

where xi ∈ R, i ∈ I[1, n] are the state variables, u ∈ R
and y ∈ R are the input and output of the strict-feedback
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system respectively; fi
(
x

(0∼1)
1∼i

)
, gi

(
x

(0∼1)
1∼i

)
, i ∈ I[1, n]

are two sets of sufficiently smooth functions. For simplicity,
the functions gi

(
x

(0∼1)
1∼i

)
, i ∈ I[1, n] are abbreviated as gi

in the rest of the paper. In this paper, fi
(
x

(0∼1)
1∼i

)
, i ∈ I[1, n]

are unknown.
The objective of this paper is to construct an adaptive

neural-networks control law for the second-order fully actu-
ated strict-feedback system (1), such that the output y tracks
the reference signal y0. The following assumptions on refer-
ence signal and the system (1) are required.

Assumption 1 The reference signal y0 and its first-order to
fourth-order derivatives ẏ0, ÿ0, ...

y 0, and y
(4)
0 are smooth,

avaiable and bounded.

Assumption 2 Let Ωd represent an open set which contains
the origin, the initial condition x(0), and the reference sig-
nal y0. For the second-order fully actuated strict-feedback
system (1), fi

(
x

(0∼1)
1∼i

)
and gi

(
x

(0∼1)
1∼i

)
, i ∈ I[1, n] are

bounded on Ωd. Besides, |gi
(
x

(0∼1)
1∼i

)
| 6= 0.

3 RBFNNs and Preliminaries

From [12], any unknown smooth function f (x) : Rn →
Rm can be approximated to a sufficient degree of accuracy
over the compact set Ωx by

f (x) = θTϕ (x) + ε (x) , (2)

where x ∈ Ωx ⊂ Rn is the input vector, ϕ (x) ∈ Rr is the
basis function vector, θ ∈ Rr×m is the weight matrix, and
ε (x) is the bounded approximation error. Denote ϕ (x) =

[ϕ1 (x) ϕ2 (x) · · · ϕr (x)]
T where r > 1 is the number of

the neurons. In this paper, we adopt the Gaussian function
as the basis function. That is , ϕj (x) is in the form of

ϕj (x) = exp

(
−
‖x− cj‖22

b2j

)
, j ∈ I[1, r], (3)

where cj and bj are the center and width of the j-th neuron
respectively. The optimal weight matrix θ* is defined as

θ* = arg minθ

{
sup
x∈Ωx

∥∥f (x)− θTϕ (x)
∥∥

2

}
.

In the sequel, some necessary definitions and useful lem-
mas are introduced.

Lemma 3.1 Let A(0∼n−1) ∈ Rr×nr and Φ(A(0∼n−1)) ∈
Rnr×nr satisfying

Reλi (Φ) ≤ −µ
2
, i ∈ I[1, n],

where µ > 0, then there exists a positive definite symmetric
matrix P satisfying

ΦT
(
A0∼n−1

)
P + PΦ

(
A0∼n−1

)
≤ µP

(
A0∼n−1

)
.

Lemma 3.2 [13] (Young’s inequality) For any x ∈ R and
y ∈ R, the following inequality holds:

xy ≤ εm

m
|x|m +

1

nεn
|y|n ,

where ε > 0, m > 1, n > 1, and (m− 1) (n− 1) = 1.

4 Control Law Design

To accomplish our control goal, we need to develop virtual
control laws with command filters step by step. Besides, the
NNs are utilized to approximate unknown nonlinear func-
tions in the backstepping design procedure, and the adaptive
technique is adopted to update tuning parameters.

Before constructing the control law for the system (1), the
unknown function fi

(
x

(0∼1)
1∼i

)
in (1) needs to be approxi-

mated by using radial basis function NNs (RBFNNs) in the
form of

fi

(
x

(0∼1)
1∼i

)
= θT

i ϕi

(
x

(0∼1)
1∼i

)
+ δi, i ∈ I[1, n], (4)

where θi is the weight vector, and ϕi
(
x

(0∼1)
1∼i

)
is the basis

function vector, which is abbreviated as ϕi in the rest of the
paper. The approximation error δi satisfies |δi| < δ̄i with
positive constant δ̄i. Denote

θ = max{‖θ1‖2, ‖θ2‖2, · · · , ‖θn‖2}, (5)

and
δ = max{δ̄1, δ̄2, · · · , δ̄n}. (6)

Besides, suppose A0∼1
i ∈ R1×2, i ∈ I[1, n] are a set of

matrices satisfying

ΦT
(
A0∼1
i

)
Pi + PiΦ

(
A0∼n−1
i

)
≤ −µiPi, i ∈ I[1, n], (7)

where 0 < µi ≤ −2Reλj
(
Φ
(
A0∼n−1
i

))
, j = 1, 2, and

Pi =
[
PFi PLi

]
∈ R2×2, i ∈ I[1, n],

are positive definite symmetric matrices.
For the second-order fully actuated strict-feedback system

(1), the tracking error variables are defined as

s1 = y1 − y0, (8)
si = xi − ᾱi, i ∈ I[2, n], (9)

where ᾱi is the output of a command filter with the virtual
control law αi being the input. Besides, the boundary layer
errors are defined as

z1i = ᾱi − αi, (10)
z2i = ˙̄αi − α̇i, i ∈ I[2, n]. (11)

In what follows, virtual control laws αi, i ∈ I[2, n], com-
mand filters and adaptive laws are constructed in n steps to
obtain the tracking control law u.
Step 1: the design of virtual control law α2.
From (1), (4), and (8)∼(10), the second-order derivative

of s1 is

s̈1 = f1

(
x

(0∼1)
1

)
+ g1x2 − ÿ0

= g1 (s2 + z12 + α2) + θT
1 ϕ1 + δ1 − ÿ0. (12)

Then the first virtual control law α2 is designed as

α2 = − 1

g1

(
A0∼1

1 s
(0∼1)
1 + h1 − ÿ0

)
, (13)
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h1 =
1

4a2
1

(
θ̂ ‖ϕ1‖2 + δ̂

)
PT

L1s
(0∼1)
1 , (14)

where a1 > 0, and θ̂ and δ̂ are the estimations of θ in (5) and
δ in (6), respectively. Substituting (13) and (14) into (12),
yields

s̈1 =−A0∼1
1 s

(0∼1)
1 + g1s2 + g1z12

+ θT
1 ϕ1 + δ1 − h1. (15)

Then we pass the virtual control signal α2 through a second-
order filter {

˙̄α2 = φ2

φ̇2 = −2ζ2ω2φ2 − ω2
2 (ᾱ2 − α2)

(16)

where ω2 > 0 and 0 < ζ2 ≤ 1. The outputs ᾱ2, ˙̄α2 = φ2,
and ¨̄α2 = −2ζ2ω2φ2 − ω2

2 (ᾱ2 − α2) are used in the next
step.

Step i (i ∈ I[2, n− 1]): the design of the virtual control
law αi+1.

From (1), (4), (9), and (11), the second-order derivative of
si is

s̈i = fi

(
x

(0∼1)
i

)
+ gixi+1 − ¨̄αi

= gi (si+1 + z2i+1 + αi+1) + θT
i ϕi + δi − ¨̄αi. (17)

Then the ith virtual control law αi+1 is designed as

αi+1 = − 1

gi

(
A0∼1
i s

(0∼1)
i + hi − ¨̄αi

)
, (18)

hi =
1

4a2
i

(
θ̂ ‖ϕi‖2 + δ̂

)
PT

Lis
(0∼1)
i , (19)

with ai > 0. Substituting (18) and (19) into (17), yields

s̈i =−A0∼1
i s

(0∼1)
i + gisi+1 + giz1(i+1)

+ θT
i ϕi + δi − hi. (20)

Then we pass the virtual control signal αi+1 through a
second-order filter{

˙̄αi+1 = φi+1

φ̇i+1 = −2ζi+1ωi+1φi+1 − ω2
i+1 (ᾱi+1 − αi+1)

(21)

where ωi+1 > 0 and 0 < ζi+1 ≤ 1. The outputs
ᾱi+1, ˙̄αi+1 = φi+1, and ¨̄αi+1 = −2ζi+1ωi+1φi+1 −
ω2
i+1 (ᾱi+1 − αi+1) are used in the next step.
Step n: the design of the actual control law u.
From (1) and (4), the second-order derivative of sn is

s̈n = fn

(
x(0∼1)
n

)
+ gnu− ¨̄αn

= gnu+ θT
nϕn + δn − ¨̄αn. (22)

Then the actual control law u is designed as

u = − 1

gn

(
A0∼1
n s(0∼1)

n + hn − ¨̄αn

)
, (23)

hn =
1

4a2
n

(
θ̂ ‖ϕn‖2 + δ̂

)∥∥∥s(0∼1)
n

∥∥∥2

‖PLn‖2 , (24)

with an > 0. Substituting (23) and (24) into (22), yields

s̈n = −A0∼1
n s(0∼1)

n + θT
nϕn + δn − hn. (25)

Besides, the tuning parameters θ̂ and δ̂ are updated by

˙̂
θ = τ1

n∑
i=1

1

4a2
i

∥∥∥s(0∼1)
i

∥∥∥2

‖PLi‖2‖ϕi‖2 − τ1ς1θ̂, (26)

˙̂
δ = τ2

n∑
i=1

1

4a2
i

∥∥∥s(0∼1)
i

∥∥∥2

‖PLi‖2−τ2ς2δ̂, (27)

where τ1, τ2, ς1, and ς2 are positive parameters.
By now, the details of the design of the adaptive neural-

networks control law with virtual control laws, command fil-
ters, and adaptive laws are presented. In the next section, the
stability of the resulted closed-loop of the system (1) under
the proposed control law is analyzed.

5 Stability Analysis

In this section, the system equations of the closed-loop
tracking system under the proposed control law are derived
at first, and then the stability analysis of the closed-loop sys-
tem is conducted.

In view of the boundary layer errors (10) and (11), and the
command filters (16) and (21), the dynamics of the boundary
layer errors can be obtained as

ż1i = z2i,

ż2i = −2ζiωiz2i − ω2
i z1i − α̈i − 2ζiωiα̇i, i ∈ I[2, n],

which can be written in a compact form

żi = Azizi − εi, (28)

with

zi =

[
z1i

z2i

]
, Azi =

[
0 1
−ω2

i −2ζiωi

]
, εi =

[
0

α̈i − 2ζiωiα̇i

]
.

It can be checked that Azi is Hurwitz, and then Lemma 3.1
can be used to obtain that there are positive definite matrices
Qi, i ∈ I[2, n], such that

AT
ziQi +QiAzi ≤ −µziQi, i ∈ I[2, n],

where 0 < µzi ≤ −2Reλj (Azi) for all j = 1, 2.
In view of (15), (20) and (25), the dynamics of the error

systems can be rewritten as

ṡ
(0∼1)
i =Φ

(
A0∼1

1

)
s

(0∼1)
i +

[
0

gisi+1

]
+

[
0

giz1(i+1)

]
+

[
0

θT
i ϕi+δi

]
−
[

0
hi

]
, i ∈ I[1, n− 1], (29)

ṡ(0∼1)
n = Φ

(
A0∼1
n

)
s(0∼1)
n +

[
0

θT
nϕn+δn

]
−
[

0
hn

]
. (30)

Besides, define the approximated errors

θ̃ = θ − θ̂, δ̃ = δ − δ̂. (31)

Then by (26) and (27), the dynamics of the approximated
errors can be obtained as

˙̃
θ =− τ1

n∑
i=1

1

4a2
i

∥∥∥s(0∼1)
i

∥∥∥2

‖PLi‖2‖ϕi‖2 + τ1ς1θ̂, (32)
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˙̃
δ =− τ2

n∑
i=1

1

4a2
i

∥∥∥s(0∼1)
i

∥∥∥2

‖PLi‖2+τ2ς2δ̂. (33)

The tracking control performance of the closed-loop sys-
tem is stated in the following theorem.

Theorem 1 For the closed-loop system composed of (28),
(29), (30), (32), and (33) under the proposed control law
(23), if Assumptions 1 and 2 are satisfied, then the tracking
errors si, i ∈ I[1, n] in (8) and (9), the boundary layer errors
zi, i ∈ I[2, n] in (10) and (11), and the approximation errors
θ̃ and δ̃ in (31) are uniformly ultimately bounded.

Proof. For the closed-loop system composed of (28), (29),
(30), (32), and (33) a Lyapunov function candidate is chosen
as

V = Vs + Vz +
1

2τ1
θ̃2 +

1

2τ2
δ̃2, (34)

where

Vs =
1

2

n∑
i=1

(
s

(0∼1)
i

)T

Pis
(0∼1)
i , (35)

and

Vz =
1

2

n∑
i=2

zT
i Qizi. (36)

Next, we aim to obtain the time derivative of V . For this end,
we derive V̇s and V̇z successively.

With the help of (29) and (30), it can be obtained from
(35) that

V̇s =
n∑
i=1

(
s

(0∼1)
i

)T

Piṡ
(0∼1)
i

=
1

2

n∑
i=1

(
s

(0∼1)
i

)T (
ΦT
(
A0∼1
i

)
Pi + PiΦ

(
A0∼1
i

))
s

(0∼1)
i

+
n−1∑
i=1

(
s

(0∼1)
i

)T

Pi

[
0

gisi+1 + giz1(i+1)

]

+
n∑
i=1

(
s

(0∼1)
i

)T

Pi

[
0

θT
i ϕi + δi

]

−
n∑
i=1

(
s

(0∼1)
i

)T

Pi

[
0
hi

]
. (37)

By using Young’s inequality and (7), it can be deduced that

V̇s ≤−
1

2
$1

n∑
i=1

(
s

(0∼1)
i

)T

Pis
(0∼1)
i

+
n∑
i=2

g2
i−1

4λmin (Pi)
(z1i)

T
Piz1i

+
n∑
i=1

1

4a2
i

(
θ̃ ‖ϕi‖2 + δ̃

)∥∥∥s(0∼1)
i

∥∥∥2

‖PLi‖2

+ 2
n∑
i=1

ai, (38)

where

$1 = min
i∈I[2,n−1]

{µ1 − 4λmax (P1) , µn,

µi − 4λmax (Pi)−
g2
i−1

2λmin (Pi)

}
.

In view of (28), it can be obtained from (36) that

V̇z =
1

2

n∑
i=2

zT
i

(
AT

ziQi +QiAzi

)
zi +

n∑
i=2

zT
i Qiεi

≤− µzi

2

n∑
i=2

zT
i Qizi +

n∑
i=2

λmax (Qi) z
T
i Qizi +

n∑
i=1

ε2
i

4

≤− 1

2

n∑
i=2

(µzi − 2λmax (Qi)) z
T
i Qizi +

n∑
i=1

M2
i

4
.

(39)

where Mi is the upper bound of ‖εi‖.
By using (32), (33), (38), and (39), the time derivative of

V satisfies

V̇ =V̇s + V̇z −τ−1
1 θ̃

˙̂
θ−τ−1

2 δ̃δ̂

≤− $1

2

n∑
i=1

(
s

(0∼1)
i

)T

Pis
(0∼1)
i − $2

2

n∑
i=2

zT
i Qizi

+ ς1θ̃θ̂ + ς2δ̃δ̂ + 2
n∑
i=1

ai +
n∑
i=1

M2
i

4
,

where

$2 = min
i∈I[2,n]

{µzi − 2λmax (Q1)− g2
i

2λmin (Qi+1)
}.

By using Young’s inequality, it can be derived that

ς1θ̃θ̂ ≤ ς1
2
θ̃2 − ς1

2
θ̂2,

ς2δ̃δ̂ ≤ ς2
2
δ̃2 − ς2

2
δ̂2.

Then there holds

V̇ ≤−$1Vs −$2Vz −
ς1
2
θ̂2 − ς2

2
δ̂2

ς1
2
θ̃2 +

ς2
2
δ̂2 + 2

n∑
i=1

ai +
n∑
i=1

M2
i

4

≤− αV + β, (40)

where

α = min {$1, $2, τ1ς1, τ2ς2} ,

β =
ς1
2
θ̃2 +

ς2
2
δ̂2 + 2

n∑
i=1

ai +
n∑
i=1

M2
i

4
.

Furthermore, by using comparison principle it can be con-
cluded from (40) that

0 ≤ V (t) ≤ β

α
+

(
V (0)− β

α

)
e−αt.

Therefore, s(0∼1)
1 , s(0∼1)

i , zi, i ∈ I[2, n], θ̃, and δ̃ are uni-
formly ultimately bounded.
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6 Conclusion

In this paper, the tracking control problem is addressed
for a class of second-order fully actuated strict-feedback
systems. The considered strict-feedback nonlinear systems
are faced with the problems of unknown nonlinear dynam-
ics, which are solved by employing the adaptive technique
and RBFNNs. With the aid of RBFNNs and adaptive tech-
nique, a novel NNs-based adaptive CFB control law is con-
structed. The proposed control law guarantees the uniformly
ultimately bounded of the closed-loop system.
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Abstract: This study explores a method for the dynamic modeling of soft robots, focusing on enhancing the deep learning-based
Lagrangian modeling approach through the attention mechanism, which enriches the training process by allocating focused
attention and analytical weighting to critical state features, thereby increasing the model’s sensitivity to changes in the robot’s
state. We compared our method through simulation, demonstrating that the model is effective in long-term prediction and noise
rejection.
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1 Introduction

Soft robots are an interdisciplinary field that intersects en-
gineering and biomechanics, demonstrating the enormous
potential in sensitive owing to the unique characteristics of
soft materials [1]. However, the inherent flexibility of soft
materials introduces complexity in their kinematics and dy-
namics analysis concurrently, making traditional methods for
evaluating its motion state insufficient [2, 3]. The inherent
nonlinear characteristics and extensive degrees of freedom
of flexible robots pose challenges and requires new modeling
method to facilitate its application.

The latest advances in deep learning have propelled the
capabilities of soft robots. Dong et al. demonstrated how to
customize convolutional neural networks to process sensory
data from soft robot skin, thereby enhancing environmental
interaction [4]. Keene et al. have made progress in apply-
ing recursive neural networks to predictive modeling of soft
robot dynamics, allowing for expected control actions [5].
However, due to the complex variability of soft material be-
havior, traditional deep learning methods often require a large
amount of data sets or a long training time, and these objec-
tive conditions are sometimes difficult to gather together.

As shown in [6], attention mechanism fundamentally
changes the field of machine learning by enabling the model
to selectively focus on the data most relevant to the task at
hand, providing a promising direction for overcoming these
data challenges. These mechanisms were initially popular-
ized in the field of natural language processing [7], they were
also used as sequence to sequence models, but have not been
fully explored in the context of robot control.

This paper proposes an innovative integration of atten-
tion mechanism into Lagrangian neural network (LNN) for
modeling soft robots. As demonstrated in [8], the Lagrangian
framework essentially explains the physical properties of mo-
tion and provides a natural fit for modeling soft robotic sys-
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This work is supported in part by the National Natural Science Foun-

dation of China under Grant 62303137, in part by the Special funding of
the China Postdoctoral Science Foundation under Grant 2023TQ0092, and
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LBH-Z20057.

tems. Our method is based on the works of Liu [9], who
introduced an LNN architecture for soft robots to achieve
high-precision prediction of their states but yet introduce at-
tention mechanisms.

By embedding attention in LNN, we aim to address the
challenge of effectively modeling the nonlinear and high-
dimensional dynamic characteristics of soft robots. As Wang
proposed in [10], the attention mechanism enhances the pre-
diction accuracy of models in the field of natural language.
Inspired by its impressive improvement, this paper introduces
the attention machine to the deep learning based modeling of
soft robots to improve the modeling accuracy and prediction
ability of the model. The potential benefits of this approach
include reducing the need for large datasets and improving
real-time response capabilities, which are crucial for deploy-
ing soft robots in real-world scenarios. The contributions of
this paper is summarised as : (i) Introduce a new attention
enhanced LNN architecture, (ii) demonstrate its advantages
over traditional LNN through simulation, (iii) and its gener-
alization was tested in a noisy environment.
2 Theoretical Basis and Related Work

The Lagrangian dynamics elucidates the motion of dy-
namic systems by balancing kinetic energy 𝑇 and potential
energy 𝑉 [11]. The Lagrangian function 𝐿 (𝑞, ¤𝑞) is defined
as 𝐿 (𝑞, ¤𝑞) = 𝑇 ( ¤𝑞) − 𝑉 (𝑞), providing a robust theoretical
framework for modeling the complex motion of mechani-
cal systems. This formula has become indispensable in the
context of soft robots, where the complex interactions be-
tween elastic materials and various components challenge
traditional rigid body dynamics.

Deep learning, as a subset of machine learning, has com-
pletely changed the way we model soft robots. Its advantage
lies in its ability to learn from sequence data, capture tempo-
ral dependencies and subtle patterns. In view of this, deep
learning has the potential to improve the traditional model-
ing methods of soft robot systems. It provides a method for
extracting complex high-dimensional data into actionable in-
sights and may also address issues such as the nonlinear and
dynamic characteristics of soft robots. Therefore, integrat-
ing deep learning techniques into the modeling process can
improve the prediction accuracy, adaptability, and efficiency
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of soft robot control systems.
The contribution of Liu in this regard is impressive, as

they used Physically Informed Neural Networks (PINNs) to
infer physically reasonable matrices from data [9]. By estab-
lishing deep learning models on the physical laws governing
robot motion, their approach embodies the synergistic effect
between data-driven methods and classical mechanics. How-
ever, although this method has many advantages, including
improved sample efficiency and model interpretability, there
is still room for improvement due to the need for a large num-
ber of datasets and training cycles, resulting in a decline in
long-term prediction accuracy.

Introducing the attention mechanism from the transformer
architecture into LNN is a method to improve the model. The
success of attention mechanisms in machine learning, espe-
cially in processing sequential data, has already proven their
potential in enhancing model focus and handling complex
patterns. In our framework, it is utilized to enhance the sen-
sitivity of LNNs to key system states, thereby enabling more
accurate predictions of complex dynamic behaviors. Our
model applies Lagrangian neural networks (LNN) within the
PINNs framework to determine the mass matrix M, dissi-
pation matrix D, and state transition matrix I from a large
dataset of soft robot states 𝑞 and inputs 𝑢. Subsequently, we
use attention layers to enhance this framework, combining
attention mechanisms acting on the physical derivation ma-
trix and the state and input data of soft robots. By refining
the attention related matrices 𝑄, 𝐾 , and 𝑉 , the accuracy of
the model has been improved.

The mathematical expression can be simplified as:

Attention(𝑄, 𝐾,𝑉) = softmax
(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉 (1)

where 𝑄, 𝐾 , and 𝑉 represent the query, key, and value,
respectively. In our application, the key is a combination
of the current state and input, while the query is the learned
physical matrix . This structure allows the model to focus
more on the parts of the system dynamics most relevant to
the current input and state.

Through this approach, the attention-enhanced LNN
model can predict the dynamic behavior of soft robots in dif-
ferent states more accurately than traditional LNNs, provid-
ing higher predictive accuracy and adaptability of the model.
3 Attention-Enhanced LNNs Design
3.1 Modeling Non-Conservative Forces in LNNs

Although traditional Lagrangian neural networks (LNNs)
perform well in system dynamics, real-world applications
often involve non conservative forces and require a new ap-
proach to cover this impact. We propose an extended LNN
framework:

The original equations of motion for LNNs stem from
the standard Lagrangian mechanics, where the dynamics are
fully described by conservative forces. Traditionally, the
Lagrangian L(𝑞, ¤𝑞) encapsulates the system’s total energy,
combining kinetic 𝑇 ( ¤𝑞)and potential 𝑉 (𝑞) energies. From
the Euler-Lagrange equation, we obtain the standard form of
the motion equation:

𝑑

𝑑𝑡

(
𝜕L
𝜕 ¤𝑞

)
− 𝜕L
𝜕𝑞

= 0 (2)

Considering the limitations of traditional Lagrangian neu-
ral networks (LNNs) in handling non conservative forces, a
new approach is needed to consider energy dissipation and
the impact of inputs on the system. Therefore, we propose
an enhanced framework that incorporates the effects of non
conservative forces and external inputs into the LNN This
is achieved by extending the classical Lagrangian mechanics
to include a dissipation matrix D(𝑞, ¤𝑞) and a state transition
matrix I(𝑞). The dissipation matrix accounts for energy
loss due to non-conservative forces, while the state transition
matrix models the influence of external control inputs on the
system.

Accordingly, the motion equation is modified to integrate
these matrices, providing a comprehensive representation of
the system’s dynamics under the influence of both conserva-
tive and non-conservative forces, as well as external inputs:

𝑑

𝑑𝑡

(
𝜕L
𝜕 ¤𝑞

)
− 𝜕L
𝜕𝑞

+ D(𝑞, ¤𝑞) ¤𝑞 = I(𝑞)𝜏 (3)

where 𝜏 denotes the external control inputs applied to the
system. To analyze the system’s dynamics, we derive the
mass matrix M(𝑞) by calculating the Hessian matrix 𝐻 (L)
of the Lagrangian L with respect to the generalized veloci-
ties ¤𝑞, which represents second-order partial derivatives and
encapsulates the system’s inertia.

𝐻 (L) =



𝜕2L
𝜕 ¤𝑞2

1

𝜕2L
𝜕 ¤𝑞1𝜕 ¤𝑞2

· · · 𝜕2L
𝜕 ¤𝑞1𝜕 ¤𝑞𝑛

𝜕2L
𝜕 ¤𝑞2𝜕 ¤𝑞1

𝜕2L
𝜕 ¤𝑞2

2
· · · 𝜕2L

𝜕 ¤𝑞2𝜕 ¤𝑞𝑛
...

...
. . .

...
𝜕2L

𝜕 ¤𝑞𝑛𝜕 ¤𝑞1
𝜕2L

𝜕 ¤𝑞𝑛𝜕 ¤𝑞2
· · · 𝜕2L

𝜕 ¤𝑞2
𝑛


(4)

where 𝑛 denotes for the number of system segments. The
mass matrix M(𝑞) is derived from this Hessian matrix :

M(𝑞) = 𝜕2L
𝜕 ¤𝑞2 (5)

We used the method of Moore-Penrose pseudo inverse to
invert the mass matrix and obtained the pseudo inverse of the
mass matrix for solving the acceleration of the system.

¥𝑞 = M−1 (𝑞) ·
(
I(𝑞)𝜏 − 𝜕L

𝜕𝑞
+ D(𝑞, ¤𝑞) ¤𝑞

)
(6)

This equation reflects the cumulative effect of both in-
ternal and external forces , including conservative and non-
conservative forces, as well as the influence of external con-
trol inputs 𝜏.

We modify the Euler-Lagrange equation by using the at-
tention mechanism:

¥𝑞 =

(
𝜕2L(𝑞, ¤𝑞)
𝜕 ¤𝑞2

)−1 (
Attention(𝜏) − 𝜕L(𝑞, ¤𝑞)

𝜕𝑞
− D(𝑞, ¤𝑞) ¤𝑞

)
(7)

Here, Attention(𝜏) denotes the application of the attention
mechanism to these forces, allowing the model to prioritize
the most influential factors dynamically. The Attention func-
tion is defined during the training of the neural network and
is tailored to identify and weigh the various forces acting on
the system.
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Fig. 1: The structure of the proposed neural networks

3.2 Encoder and Position Encoding
In our proposed architecture, the encoder is a sequence of

blocks, each refining the robot’s state representation through
operations that transcend traditional layer functions. The ini-
tial transformation, dubbed ’Input Embedding’, projects in-
put variables such as positions, velocities, and control inputs
onto a high-dimensional space. We apply Positional Encod-
ing (PE) to the input sequence consisting of the current state
𝑞, velocity ¤𝑞, and control input 𝑢:

𝐸 = Embedding(𝑞, ¤𝑞, 𝑢) (8)

PE is defined for each element in the sequence:

𝑃𝐸 (𝑝𝑜𝑠,2𝑖) = sin
(

𝑝𝑜𝑠

100002𝑖/𝑑model

)
(9)

𝑃𝐸 (𝑝𝑜𝑠,2𝑖+1) = cos
(

𝑝𝑜𝑠

100002𝑖/𝑑model

)
(10)

where 𝑝𝑜𝑠 represents the position in the sequence and 𝑖 cor-
responds to the dimension. The embedded input 𝐸𝑖 is then
combined with its positional encoding 𝑃𝐸𝑖 to form the initial
high-dimensional representation 𝐸 ′

𝑖
for the robot’s state. This

representation, acknowledging both the state and its sequence
position.

In the design of our neural architecture, the Multilayer
Perceptron (MLP) layers play a pivotal role in capturing the
nonlinear interactions within the robot’s state variables. Each
MLP layer, with its weights and biases, transforms the input
data into a more abstract representation. Following each lin-
ear transformation, a Rectified Linear Unit (ReLU) activation
function is applied, introducing the necessary non linearity:

ReLU(𝑥) = max(0, 𝑥) (11)

Negative inputs to the function are reset to zero, which can
be interpreted as deactivating the corresponding features or
neurons. This ensures that only the features with positive ac-
tivation contribute to the next layer, simplifying the learning
process and making it more efficient. By discarding nega-
tive activation, it encourages the model to focus on the most
salient features that are positively correlated with the robot’s
dynamic behavior, leading to a sparse and explainable feature
space.

The MLP refinement process consists of alternating layers
of linear transformations and ReLU activations, expanding
and compressing the embedded input data in a manner that
allows the network to construct a rich and intricate mapping

from the robot’s current state and inputs to its subsequent
state. This series of operations is formalized as follows:

𝐻1 = ReLU(W1𝐸
′
𝑖 + b1) (12)

𝐻2 = ReLU(W2𝐻1 + b2) (13)
...

𝐾 = ReLU(W𝑛𝐻𝑛−1 + b𝑛) (14)

where W 𝑗 and b 𝑗 represent the weights and biases of the
𝑗-th layer, 𝐻 𝑗 represents the output of the 𝑗-th layer, and 𝐾
denotes the final output of the MLP, serving as the output of
the encoder layer.

3.3 Decoder and State Prediction
By providing the key (K) for the attention mechanism, the

input of the decoder involves preprocessing the state data to
align with the decoder’s requirements. Three MLP layers
are utilized to approximate the kinetic energy matrix M,
dissipation matrix D, and state transition matrix I:

M̂ = 𝑀𝐿𝑃𝑀 (𝑞;Θ𝑀 ) (15)
D̂ = 𝑀𝐿𝑃𝐷 (𝑞, ¤𝑞;Θ𝐷) (16)

Î = 𝑀𝐿𝑃𝐼 (𝑞, 𝜏;Θ𝐼 ) (17)

These layers project the state variables onto a structured
form that encapsulates the robot’s dynamic properties. The
decoder then uses these matrices to perform attention-driven
predictions of the robot’s future state.

To calculate the attention scores, the decoder’s input query
(Q) interacts with the keys (K) obtained from the encoder:

Attentionscores = Softmax
(
𝑄𝐾𝑇

√
𝑑𝑘

)
(18)

where 𝑑𝑘 is the scaling factor to avoid overly large values
within the softmax function. The obtained attention scores
reflect the importance of each state variable in predicting
future dynamics. The predicted next state 𝑞next is then com-
puted as a weighted sum of the values V, guided by these
scores:

𝑞next = Attentionscores · 𝑉 (19)

This predicted state passes through additional layers in
the decoder, each enhancing the prediction with a non-linear
transformation:

𝑞′ = LayerNorm(FFN(𝑞next) + 𝑞next) (20)
𝑞predicted = LayerNorm(FFN(𝑞′) + 𝑞′) (21)

Finally, the decoder outputs a prediction of future states as
a probability distribution, selecting the state with the highest
likelihood as the next step:

𝑞future = Softmax(Linear(𝑞predicted)) (22)

Through this streamlined process, the decoder effectively
utilizes the dynamic models and attention mechanism to fore-
cast the system’s progression, enabling real-time adaptation
to complex dynamics.
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3.4 Incorporating Loss Functions for Network Training
and Regularization

To maintain compliance with physical principles and en-
sure the reliability of dynamic predictions, our framework in-
tegrates specific loss functions at various stages of the LNN.
These loss functions guide the network towards physically
plausible solutions and reinforce the accuracy of the learned
dynamics.

In the preprocessing process, a loss function is used to
ensure accurate approximation of quality, dissipation, and
input transformation matrix. The loss function is not directly
compared with the objective matrix, but rather obtains the
accuracy of predicted states by integrating these matrices
into the system’s motion equations. This method is consistent
with the physical informed properties of the LNN framework
and provides a robust approach for learning the dynamic
characteristics of the system:

𝐿preprocess = mean(∥forwardmodel (𝑞, 𝑞𝑑, 𝜏)−[𝑞next, 𝑞𝑑next] ∥2)
(23)

In this equation, forwardmodel denotes the forward model
that computes the predicted future states given the current
states 𝑞 and 𝑞𝑑, and the control inputs 𝜏, utilizing the ap-
proximated matrices M̂, D̂, and Î. The loss function min-
imizes the discrepancy between the predicted states and the
true next states, 𝑞next and 𝑞𝑑next, which are provided as part
of the training data. This discrepancy serves as a proxy to
the accuracy of the approximated matrices and the model’s
ability to capture the true dynamics of the system.

In the attention mechanism, we focus on the difference
between the predicted state of the system obtained by the
decoder and the actual subsequent state:

𝐿state prediction = ∥𝑞predicted − 𝑞actual next∥2 (24)

This loss function ensures that the model’s attention-driven
predictions are closed to the true system dynamics observed
in the data.

The composite loss function for the entire LNN, includ-
ing preprocessing, attention mechanism, and state prediction
phases :

𝐿composite = 𝐿state prediction + 𝐿physics(𝜃) + 𝐿matrix (25)

Here, 𝐿physics (𝜃) ensures the predictions adhere to physi-
cal principles, and 𝐿matrix encourages the structural integrity
of the dynamics matrices. The training process guided by
this composite loss function satisfies the laws of physics and
attention mechanisms. By optimizing this composite loss,
LNN has learned to further predict the future state of dy-
namic systems, ensuring accuracy and physical rationality.

4 Integrated Analysis and Implications
4.1 Simulation Results

In this section, we present a comprehensive analysis of our
simulation results, aiming to provide a unified perspective
on the performance of the Attention-Enhanced Lagrangian
Neural Network (LNN) compared to its Normal counterpart.
Our assessment spans various training epochs, noise robust-
ness checks, and long-term predictive capabilities. In our
Attention-Enhanced Lagrangian Neural Network (LNN), we

denote the number of encoder and decoder layers as 𝐸 and
𝐷 respectively, the size of the hidden layers as 𝐻, and the
number of self-attention heads as 𝐴. For the attention mech-
anism, we specify the dimensional of the ‘query‘, ‘key‘, and
‘value‘ projections as 𝑃. We report results on a model with
the following configuration: Attention-Enhanced LNN (E=3,
D=2, H=128, A=6, P=36).

Training was performed using the Adam optimizer with a
learning rate of 0.001, decaying by a factor of 0.96 every 100
epochs. To assess noise robustness, Gaussian noise of vary-
ing magnitudes was added to the input data, and the model’s
performance was monitored accordingly. Training was con-
ducted on a system equipped with a NVIDIA GTX 4090 Lap-
top GPU, with 16GB of VRAM, and an Intel i9-13980HX
CPU with 64 GB RAM. For the Attention-Enhanced LNN
model, convergence was achieved within approximately 150
seconds for one epoch of training on a dataset comprising
60000 samples. During the training phase, the peak GPU
memory utilization was recorded at 14.4 GB, with the GPU’s
average usage maintained at 96% throughout the duration of
training. In comparison to a conventional model without an
attention mechanism, our Attention-Enhanced LNN demon-
strated a 15% increase in training time per epoch, which we
attribute to the additional computations required for the atten-
tion mechanism. However, each epoch of our model is more
efficient in learning. Where a standard model may require
in excess of 5000 epochs to converge to an error precision
nearing 0.1, our method achieves similar accuracy within just
500 epochs. This reduction in the number of required epochs
showcases the efficacy of our attention mechanism, despite
the increase in per-epoch training time.

The empirical data, as encapsulated in Tab. 1 demonstrate
a improvement in trajectory adherence for the Attention-
Enhanced LNN. We observed that, as training epochs in-
creased from 200 to 500, the prediction error decreased ,
indicating an enhanced ability of the model to capture the
complex dynamics of the soft robotic arm. This reduction er-
ror decrease from 0.5784 to 0.0998, underscores the model’s
refined predictive accuracy over time.

Further understanding of the training process and the learn-
ing efficiency of the model can be obtained from Tab. 1 and
Fig. 3. These numbers show the learning curve trajectories
of attention enhancement LNN models at different training
stages. It is worth noting that Fig.2 shows the initial stage of
training, showing an imprecise prediction state as the model
begins to adapt to the complexity of the dataset. As the train-
ing progresses, Fig. 3 shows a more gradual improvement,
marking a shift in the model from learning basic dynam-
ics to improving its understanding of complex actions. The
characteristic of this stage is the smoothness of the learning
curve, indicating that as the model begins to converge to a ro-
bust representation of system dynamics, the learning process
tends to stabilize.

Tab. 2 enhances the comparative analysis by quantitatively
depicting the epochs needed to converge to a defined accu-
racy threshold. The Attention-Enhanced LNN, despite not
exhibiting a marked advantage in training time, requires sig-
nificantly fewer epochs to reach comparable precision lev-
els compared to the Normal LNN. However, the expedited
learning rate may also introduce a susceptibility to over fit-
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Table 1: Prediction Error Across Training Epochs

Training Way Attention-Enhanced Attention-Enhanced Attention-Enhanced Normal LNN Attention-Enhanced

Model (Width×Depth) 42×3,5×3,42×2 42×3,5×3,42×2 42×3,5×3,42×2 42×3,5×3,42×2 42×3,5×3,42×2
Sample Number 42000 42000 42000 42000 42000
Training Epoch 200 400 500 500 800
Prediction Error 0.57( ±1.1 × 10−3) 0.32( ±9.4 × 10−3) 0.09( ±8.5 × 10−3) 0.32( ±9.6 × 10−3) 0.36( ±6.5 × 10−3)

Table 2: Training Epoch Required to Achieve Different Accuracies

Normal LNN Attention-Enhanced LNN

Training Epoch 100 500 1000 5500 100 500 1000 5500
Training Time (s) 11873 58934 123343 659278 14366 70131 141647 811495
Simulation Time (s) 30 30 30 30 30 30 30 30
Prediction Error 3.7412 0.7862 0.5316 0.0992 0.8556 0.0998 0.3477 2.4642
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Fig. 2: Differences in positions under 200 training epochs.

ting, particularly at higher epoch counts. In our model with-
out sufficient regularization, it has been observed that for
the Attention-Enhanced LNN, the prediction error increases
with additional training beyond 500 epochs. This suggests
that the model begins to memorize the training data instead
of learning to generalize. The convergence patterns shown
in Figs. 4 and 5, as well as the training epoch data shown
in Tab. 2, collectively emphasize the enhanced learning effi-
ciency provided by attention enhanced LNN.

Figs. 4 and 5 provide a visual representation of this im-
provement, showing the Attention-Enhanced LNN’s trajec-
tory more closely aligning with the reference trajectory com-
pared to the Normal LNN. This alignment not only confirms
the quantitative results from Tab. 1 but also shows the quali-
tative enhancements in the model’s behavior. Although both
models show signs of divergence in their predicted trajecto-
ries as simulation time increases, it is evident that the model
with added attention mechanism has smaller errors.

4.2 Model Robustness and Generalization
The robustness against noise was tested by introducing

Gaussian white noise with a standard deviation of 0.05 into
our simulation environment. Our Attention-Enhanced LNN
showcased a advantage in noise resilience. Figs. 6 and 7
depict a subtle yet noticeable superiority in maintaining pre-
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Fig. 3: Differences in positions under 500 training epochs.

diction accuracy despite the added noise. The simulation
results collectively point out the effectiveness of integrating
attention mechanisms into LNN. These findings indicate that
attention enhanced LNNs are not only better at handling com-
plex dynamic behaviors, but also exhibit stronger resilience
to environmental noise, which may be a key feature for future
applications of fully actuated robot systems in the real world.
Our evaluation focuses particularly on the performance of
attention enhanced LNN in the presence of Gaussian noise
and its ability to maintain prediction accuracy at different
training stages. Tab. 2 , as well as Figs. 6 and 7, show a
data centric view. During the Gaussian noise interference
testing process, white noise with a standard deviation of 0.05
was introduced to test the model. Despite this disturbance,
attention enhanced LNN still exhibits relatively good noise
resistance. Fig. 6 illustrates this robustness, showing that un-
der the same noise conditions, the prediction error deviation
is smaller compared to normal LNN. In terms of general-
ization, the impact of training period on model performance
was quantified. As shown in Tab. 2, attention enhanced LNN
achieved lower prediction errors at an earlier stage, indicating
a more effective learning process. Fig. 7 further confirms this
point, despite the increase in noise in the training data, atten-
tion enhanced LNN shows consistent prediction accuracy.

Building on our initial findings regarding the noise re-
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Fig. 4: The velocity of the second segment under Attention-
Enhanced 500 training epochs (error 0.18)

0 5 10 15 20 25 30
time[s]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Se
co
nd
…
se
gm

en
t…

ve
lo
ci
ty

xreal

xpred

xreal

xpred

xreal

xpred

Fig. 5: The velocity of the second segment under normal
LNN 500 training epochs (error 0.52)

silience of the Attention-Enhanced Lagrangian Neural Net-
work (LNN). Notably, when introducing a higher level of
uniform noise with a standard deviation of 0.1 into the sim-
ulation environment, a marked increase in prediction error
was observed. This deterioration in performance can be at-
tributed to the more significant impact of noise contamination
on the training data, as illustrated in Fig. 8 where the error
increased to 2.13. Our study revealed that by augmenting
the training dataset size to ten times its original volume, the
model’s performance improved under identical noise condi-
tions. Fig. 9 showcases this enhancement, with the prediction
error notably reduced to 0.9. This improvement underscores
the critical role of extensive training data in enhancing model
resilience against noise contamination. It suggests that with
sufficient data, the Attention-Enhanced LNN can learn to
filter out noise-induced anomalies.

4.3 Attention Heat-maps and Dimensional Expansion
In the domain of soft robotics, the articulation and flexi-

bility afforded by each segment of a robotic arm necessitate
a multidimensional approach to dynamic modeling. Partic-
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Fig. 6: The velocity of the first segment under Attention-
Enhanced LNN (error 0.13)
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Fig. 7: The velocity of the first segment under Normal LNN
(error 0.27)

ularly, for a robotic arm comprised of 𝑛 segments, where
each segment is capable of movement in three-dimensional
space—expressed through translations and rotations along
the X, Y, and Z axes—the complexity of the system’s dy-
namics significantly increases. This threefold increase in
degrees of freedom (DOF) for each segment results in a total
of 3𝑛 DOFs for the entire arm.

The delineation of soft robotic arm dynamics through the
mass M, dissipation D, and state transition I matrices pro-
vides a universally applicable framework, adaptable across a
wide spectrum of robotic arms configurations. Regardless of
the driving mechanisms employed, the materials constituting
the arm, or the number of segments it comprises, this matrix
representation simplifies the complexity inherent in describ-
ing the motion of soft robotic systems. This unified approach
enables a consistent and coherent modeling of soft robotics
dynamics, facilitating the analysis and control of these highly
adaptable and complex systems.

To elucidate the operational dynamics of this mechanism,
we employed attention heat-maps. In the context of model-
ing the dynamics of a two-segment soft robotic arm, atten-
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Fig. 8: Uniform noise impact with standard training dataset
(error 2.13)
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Fig. 9: Uniform noise impact with standard training dataset
(error 0.94)

tion heat-maps provide visualizations of how specific input
features influence the system’s state transition matrix. Con-
trary to a broader interpretation of input contributions, each
heat-map focuses on the contribution of a single input fea-
ture—such as the external force applied in the X direction of
the second segment—towards the entire 6× 6 state transition
matrix I.

The axes of the heat-map correspond to the dimensions of
the state transition matrix, I, representing the robotic arm’s
dynamics. The horizontal and vertical axes both span the
matrix’s dimensions, reflecting the interrelation between the
applied input and the arm’s resultant states. Each cell within
the heat-map illustrates the magnitude of influence that the
selected input feature has on the corresponding element of the
state transition matrix. A brighter cell indicates a higher level
of contribution, signifying a stronger impact of the specific
input feature on the arm’s dynamic behavior. By examin-
ing heat-maps from different stages of the training process,
we observe a transition from an initially uniform or random
distribution of attention to a more focused allocation. In the
early training phase, as depicted by the heat-map at epoch
1, the attention allocation appears almost stochastic, lacking
any discernible pattern. As training progresses to epoch 30,
the heat-map begins to reveal emergent patterns of focused
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Fig. 10: Attention Distribution for X-Axis Input on Segment
2 at Epoch 1
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Fig. 11: Attention Distribution for X-Axis Input on Segment
2 at Epoch 30

attention. These nascent structures signify the model’s initial
steps towards recognizing the more influential input features.
By epoch 100, the heat-map displays a highly refined atten-
tion distribution, where the model’s focus is concentrated on
specific inputs that it has learned to associate with significant
impacts on the system’s behavior.

This focused exploration of attention heat-maps not only
demystifies the model’s adaptive learning mechanism but also
exemplifies the precision with which it discerns the influence
of individual input features on the robotic arm’s dynamics.

5 Conclusion
In summary, this study demonstrates that the dynamic sys-

tem modeling of soft robots has been substantially improved
by integrating attention mechanisms into Lagrangian neural
networks (LNNs). Our attention enhancement model shows
a significant improvement in prediction accuracy and robust-
ness against environmental noise, demonstrating its ability
to capture the complex behavior of soft robot systems. The
empirical results indicate that attention mechanism reduces
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2 at Epoch 100

computational requirements and improves long-term predic-
tive performance. This is consistent with our goal of develop-
ing models that are not only efficient in computing resources,
but also sufficiently versatile to facilitate real-world applica-
tions. Looking ahead to the future, there are several ways
for further research. One direct direction is to explore the
integration of more complex attention mechanisms, such as
sparse attention and local attention. The other direction is
to explore the location of adding attention mechanisms, such
as introducing attention mechanisms when training physical
matrices. In addition, the intersection of soft robots and
deep learning provides a new platform for innovative control
strategies. Future work may involve deploying these models
in real-time control systems and testing their performance in
physical environments.
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Abstract: In this paper, we consider the identification problem for linear parameter varying (LPV) systems with skewed and
asymmetric measurement noise. The shifted asymmetric Laplace (SAL) distribution and the expectation maximization (EM)
algorithm are combined to build the robust system identification framework. To overcome various types of outliers in the data
including the skewed and asymmetric noise, the skewness and tails of the SAL distribution are adaptively adjusted based on the
collected identification data. The maximum likelihood estimates (MLEs) of the parameters are produced by using the expectation
maximization algorithm, in which the system model and noise parameters are extracted directly from the collected identification
data. The effectiveness of the proposed algorithm is exhibited in the verification section.

Key Words: Robust global approach, LPV system identification, shifted asymmetric Laplace distribution, maximum likelihood

estimates

1 Introduction

Recently, system identification works efficiently for the

complex process modeling and it has been widely applied

for practical systems [1]. Compared with the conventional

modeling methods, the main advantages of system identi-

fication lie in: 1) It extracts the model parameters directly

from the recorded process data; 2) It skips exploring com-

plicated internal mechanism of the industrial processes [2–

4]. Therefore, numerous approaches for system identifica-

tion with different model structures have been presented in

the existing literature [5–7]. As the process data plays an

important role in system identification, the performance of

the identification methods is directly influenced by the data

quality [8–10]. It is easy to understand that the better da-

ta quality facilitates the identification methods and leads to

better performance.

But in practical settings, the pure identification data seem-

s to be almost impossible to collect [9–12]. The practical

issues such as unknown system delay, incomplete measure-

ments, the outliers and the quantized data may largely de-

grade the quality of the identification data [13–15]. Among

the identification issues, the outlier occupies a special po-

sition as it is frequently encountered in practical process-

es [13, 17–19]. The errors such as data recording or da-

ta transmission error, system sensor malfunction and un-

known external disturbance will introduce outliers into the

identification data and even part of the errors are inevitable

[11, 16]. During the identification procedure, a general ef-

fective way to process the outliers is using the heavy-tailed

distributions such as the Student’s t-distribution and Laplace

distribution to model the outliers in the measurements and

many robust identification approaches have been develope-

d [11, 13, 16, 18, 19]. In [18], the VB inference and the

Student’s t-distribution are combined to identify the piece-

This work was supported in part by the National Natural Science Foun-

dation of China (No. 62103134, 62373361), the China Postdoctoral Science

Foundation (2023M743776) and the National Key Research and Develop-

ment Program of China (2022YFB3304700).

wise continuous systems in the presence of outliers. The

proposed method can produce unbiased parameter estimates

and it is also robust to overfitting models. In [19], the robust

identification of nonlinear state-space system with outliers

is considered. The problem formulation is realized by using

the EM algorithm and the Laplace distribution is adopted to

ensure the robustness for outliers. Although the Student’s t-

distribution and Laplace distribution are shown to be robust

for various types of outliers, but both of them present sym-

metric statistical property, will them keep effective for the

skewed or asymmetric measurement noise?

Motivated by the above question, this paper consider-

s the identification of linear parameter varying (LPV) sys-

tems with skewed and asymmetric measurement noise. The

shifted asymmetric Laplace (SAL) distribution which has

skewed, asymmetric and heavy-tailed statistical property is

introduced to deal with the skewed and asymmetric measure-

ment noise, then a more generalized robust identification al-

gorithm (renamed as LPV-SAL) is proposed. The main con-

tributions of current paper are summarized as

1) Identification of LPV systems in the presence of skewed

and asymmetric measurement noise is realized based on

the robust SAL distribution;

2) The decomposition of the SAL distribution is applied

and it facilitates the computational efficiency of the pro-

posed algorithm;

3) The model and noise parameters are simultaneously i-

dentified from the identification data and the advantages

and disadvantages of the algorithm are clearly clarified.

In the following, the rest sections are arranged as: The

specific identification settings and the SAL distribution are

introduced in Section II. The mathematical formulations of

the proposed algorithm are detailedly presented in Section I-

II. The effectiveness and lackness are revealed from the veri-

fication tests in Section IV. The main results of current work

are summarized in Section V.
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2 Preliminaries

2.1 The Considered LPV System Model
In the following, let ut, vt and yt represent the input,

scheduling and output variables of the LPV system, respec-

tively. Then the considered system model is formulated as

A(vt)yt = B(vt)ut + δt, (1)

and

A(vt) = 1 + α1(vt)z
−1 + α2(vt)z

−2 + · · ·+ αnα
(vt)z

−nα ,

B(vt) = β1(vt)z
−1 + β2(vt)z

−2 + · · ·+ βnβ
(vt)z

−nβ .
(2)

Here the operator z−1 works as z−1yt = yt−1; nα and

nβ are the known system orders; {αi(vt)}i=1,2,··· ,nα
and

{βj(vt)}j=1,2,··· ,nβ
are the varying coefficients of the sys-

tem model. In majority literature, the model coefficients

αi(vt) and βj(vt) are represented as real meromorphic func-

tions of the scheduling variable vt and

αi(vt) = α0
i +

M∑
m=1

αm
i Πm(vt),

βj(vt) = β0
j +

N∑
n=1

βn
j Δn(vt), (3)

where Πm(vt) and Δn(vt) denote the basis meromorphic

functions. By substituting (2) and (3) into (1), then it has

yt = RT (vt)ϑ+ δt, (4)

where

R(vt) = [− yt−1 −Π1(vt)yt−1 · · · −ΠM (vt)yt−1 · · ·
− yt−2 · · · −ΠMyt−nα ut−1 Δ1(vt)ut−1 · · ·
ΔN (vt)ut−1 ut−2 · · ·ΔN (vt)ut−nβ

]T , (5)

ϑ = [α0
1 α

1
1 · · ·αM

1 α0
2 · · ·αM

nα
β0
1 β1

1 · · ·
βN
1 β0

2 · · ·βN
nβ

]T . (6)

2.2 The Shifted Asymmetric Laplace Distribution
During the past few decades, the robust distributions such

as the Student’s t-distribution and the Laplace distribution

are widely applied in system identification, soft sensing and

so on. Both of them have heavy-tailed statistical characteris-

tic with adjustable hyper-parameter which ensures their ro-

bust for various types of outliers. But both the Student’s t-

distribution and the Laplace distribution have the symmetric

statistical property which may fail to deal with the skewed

and asymmetric measurement noise. To solve this problem,

the shifted asymmetric Laplace (SAL) distribution is intro-

duced to model the measurement noise δt and a more gener-

alized robust algorithm is developed in this paper. Consider

the system noise δt follows the SAL distribution with zero

mean [20, 21]

δt ∼ SAL(δt|0, γ, Ω)

=
2 exp

( γ

Ω
δt

)
√
2πΩ

×
(

δ2t /Ω

2 + γ2/Ω

)1/4

×K1/2(λ), (7)

where γ represents the skewness parameter while Ω is the

scale parameter; K1/2(·) denotes the modified Bessel func-

tion of the third kind with order 1/2; λ is the substitution for

[21]

λ =
√
(2 + γ2/Ω)(δ2t /Ω). (8)

However, it will cause heavy computational burden if the

SAL distribution is applied directly in the mathematical

derivations of the identification method since its mathemat-

ical expression (as seen in (7)) is complicated. Fortunately,

the mathematical formulation of the SAL distribution can be

factored as [21]

δt ∼ SAL(δt|0, γ, Ω)

=

∫
p(δt|htγ, htΩ)p(ht)dht, (9)

where {ht}t=1,2,··· ,T is the introduced latent variable and

it cuts the SAL distribution into infinite weighted sub-

Gaussian pieces. That means

p(δt|htγ, htΩ) = N (δt|htγ, htΩ)

=
1√

2πhtΩ
exp

(
− (δt − htγ)

2

2htΩ

)
, (10)

where htΩ is seen as the varying variance of each sub-

Gaussian component. Moreover, the probability density

function (PDF) p(ht) is treated as the weight of each sub-

Gaussian component and it obeys [21]

p(ht) = exp(−ht). (11)

In the following, it is clearly shown that the decomposition

of the SAL distribution facilitates the derivations of the pro-

posed algorithm. According to (4), it is easy to find that

yt ∼ SAL(yt|RT (vt)ϑ, γ,Ω)

=

∫
p(yt|RT (vt)ϑ+ htγ, htΩ)p(ht)dht, (12)

and

p(yt|RT (vt)ϑ+ htγ, htΩ)

= N (yt|RT (vt)ϑ+ htγ, htΩ)

=
1√

2πhtΩ
exp

(
− [yt − (RT (vt)ϑ+ htγ)]

2

2htΩ

)
. (13)

3 Identification based on SAL distribution

As described above, the available identification data set is

summarized as C = {y1:T , v1:T , u1:T }; the model parameter

ϑ, the skewness parameter γ and the scale parameter Ω are

absorbed into the unknown parameter set as P = {ϑ, γ,Ω}.

The latent variable ht is introduced in the decomposition of

the SAL distribution, hence the unavailable data set is de-

fined as L = {h1:T }. This paper aims to identify the un-

known parameter set P according to the available data set

C in the presence of skewed and asymmetric measurement

noise and latent data L.

To overcome the challenges brought by the latent variable,

the EM algorithm is applied in this paper to produce accu-

rate parameter estimates. The EM algorithm offers an iter-

ative two-step optimization process wherein the expectation
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cost function is designed in the first step (renamed as E-step)

and the cost function is maximized to find the parameter es-

timates in the second step (renamed as M-step).

3.0.1 E-step to construct the cost function

Let Ps denote the identified parameter set in the sth itera-

tion of the EM algorithm, then the general expression of the

cost function in the (s+ 1)th iteration is

Q(P|Ps) = Ep(L|C,Ps){log p(C,L|P)}, (14)

where log p(C,L|P) is the log-likelihood function of the

complete system data (including both available and unavail-

able data set); p(L|C,Ps) represents the posterior PDF of the

unavailable data. That means the cost function is the con-

ditional expectation of the system log-likelihood function.

Moreover, the log-likelihood function log p(C,L|P) can be

simplified as

log p(C,L|P) = log p(y1:T , v1:T , h1:T , u1:T |P)

=
T∑

t=1

log p(yt|y1:t−1, vt, u1:t−1, ht,P)

+
T∑

t=1

log p(ht|P) + C1, (15)

where C1 = log p(v1:T , u1:T |P) is the constant. Consider

the latent variable ht, the desired function Q(P|Ps) is for-

mulated as

Q(P|Ps)

=

∫
p(ht|C,Ps)× log p(yt|y1:t−1, vt, u1:t−1, ht,P)dht

+

∫
p(ht|C,Ps)× log p(ht|P)dht + C1. (16)

According to (13), the PDF p(yt|y1:t−1, vt, u1:t−1, ht,P)
follows the Gaussian distribution. Then we have

log p(yt|y1:t−1, vt, u1:t−1, ht,P)

= −1

2
log(2πΩ)− 1

2
log ht − 1

ht

(yt −RT (vt)ϑ)
2

2Ω

− htγ
2

2Ω
+

γyt
Ω

− γRT (vt)ϑ

Ω
, (17)

and

log p(ht|P) = −ht. (18)

Based on the results in [21], we define two expectation

terms 〈ht〉 and
〈 1

ht

〉
here [21]

〈ht〉 =
∫

p(ht|C,Ps)htdht =

√
b

a
G1/2(

√
ab), (19)

and

〈 1

ht

〉
=

∫
p(ht|C,Ps)

1

ht
d =

√
a

b
G1/2(

√
ab)− 1

b
, (20)

where G1/2(
√
ab) is a unique function and it is defined as

[21]

G1/2(
√
ab) =

K3/2(
√
ab)

K1/2(
√
ab)

, (21)

and the notations a and b are defined as [21]

a = 2 +
(γs)2

Ωs
, (22)

b =
[yt −RT (vt)ϑ

s]2

Ωs
. (23)

With the help of (19)-(23), the integrals in (16) are calculated

as ∫
p(ht|C,Ps)× log p(yt|y1:t−1, vt, u1:t−1, ht,P)

= −1

2

T∑
t=1

〈log ht〉 − 1

2Ω

T∑
t=1

〈 1

ht

〉
[yt −RT (vt)ϑ]

2

− γ2

2Ω

T∑
t=1

〈ht〉+ γ

Ω

T∑
t=1

yt − γ

Ω

T∑
t=1

RT (vt)ϑ− T

2
log(2πΩ),

(24)

and

∫
p(ht|C,Ps)× log p(ht|P) = −

T∑
t=1

〈ht〉. (25)

Finally, the desired cost function Q(P|Ps) is consisted of

Q(P|Ps) = Q1(ϑ, γ,Ω) + C, (26)

where

Q1(ϑ, γ,Ω) = − 1

2Ω

T∑
t=1

〈 1

ht

〉
[yt −RT (vt)ϑ]

2 +
γ

Ω

T∑
t=1

yt

− γ2

2Ω

T∑
t=1

〈ht〉 − γ

Ω

T∑
t=1

RT (vt)ϑ− T

2
log(Ω),

(27)

and

C = C1 − T

2
log(2π)− 1

2

T∑
t=1

〈log ht〉 −
T∑

t=1

〈ht〉. (28)

3.0.2 M-step to optimize the cost function

In this part, the resulted cost function Q(P|Ps) in (26)

is maximized to find the optimal parameter estimates in the

(s + 1)th iteration of the EM algorithm. Since the term C
is not related to the unknown parameters, that means we can

optimize the function Q1(ϑ, γ,Ω) instead. As the parame-

ters ϑ, γ and Ω are correlated in Q1(ϑ, γ,Ω), the two-step

optimization idea should be introduced here. That means γ
and Ω should keep fixed when optimizing Q1(ϑ, γ,Ω) with

respect to ϑ and the same is for the remaining two cases.
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First, the partial derivative of Q(P|Ps) with respect to γ
is calculated and set to zero

∂Q(P|Ps)

∂γ
= 0 ⇐⇒ dQ1(ϑ

s, γ, Ωs)

dγ
= 0 =⇒

− γ

Ωs

T∑
t=1

〈ht〉+ 1

Ωs

T∑
t=1

yt − 1

Ωs

T∑
t=1

RT (vt)ϑ
s = 0.

(29)

Then the optimal skewness parmeter γs+1 is obtained as

γs+1 =

T∑
t=1

[yt −RT (vt)ϑ
s]

T∑
t=1

〈ht〉
. (30)

Second, to find the model parameter estimation ϑs+1, it is

derived that

∂Q(P|Ps)

∂ϑ
= 0 ⇐⇒ dQ1(ϑ, γ

s, Ωs)

dϑ
= 0 =⇒

1

Ωs

T∑
t=1

〈 1

ht

〉
[R(vt)yt −R(vt)RT (vt)ϑ]− γs

Ωs

T∑
t=1

R(vt) = 0

(31)

and we have

ϑs+1 =

T∑
t=1

(〈 1

ht

〉
yt − γs

)
R(vt)

T∑
t=1

〈 1

ht

〉
R(vt)RT (vt)

. (32)

Finally, to search for the scale parameter estimation Ωs+1,

it is derived that

dQ1(ϑ
s, γs, Ω)

dΩ
= − T

2Ω
+

1

2Ω2

T∑
t=1

〈 1

ht

〉
[yt −RT (vt)ϑ

s]2

+
(γs)2

2Ω2

T∑
t=1

〈ht〉 − γs

Ω2

T∑
t=1

[yt −RT (vt)ϑ
s] = 0,

(33)

and it is obtained that

Ωs+1 =
1

T

{
T∑

t=1

〈 1

ht

〉
[yt −RT (vt)ϑ

s]2 + (γs)2
T∑

t=1

〈ht〉

− 2γs
T∑

t=1

[yt −RT (vt)ϑ
s]

}
. (34)

The detailed derivations of the proposed algorithm are

completed and the core steps are organized into the Algo-

rithm 1 which is renamed as LPV-SAL for simplicity.

4 Verifications

In this section, the verification tests are designed to reveal

the effectiveness of the LPV-SAL algorithm. Consider the

following LPV system

A(vt)yt = B(vt)ut + δt, (35)

Algorithm 1 The LPV-SAL algorithm

Input: C = {y1:T , v1:T , u1:T }
Output: P = {ϑ, γ,Ω}

1: Set s = 1 and initialize Ps = P1;

2: repeat
3: E-step: to construct the cost function

4: Compute the expectations 〈ht〉 and
〈 1

ht

〉
via (19) and

(20);

5: Compute the necessary integrals via (24) and (25);

6: Construct the cost function in (26) - (28);

7: M-step: to optimize the cost function
8: Optimize the cost function via (29), (31) and (33), respec-

tively;

9: Update the parameters γ, ϑ and Ω via (30), (32) and (34),

respectively;

10: until convergence;

11: The acquired optimal parameters are P∗ = {ϑ∗, γ∗, Ω∗}.

where

A(vt) = 1 + α1(vt)z
−1 + α2(vt)z

−2,

α1(vt) = 1− 0.4vt, α2(vt) = 0.6− 0.5vt, (36)

and

B(vt) = β1(vt)z
−1 + β2(vt)z

−2,

β1(vt) = 0.5− 0.4vt, β2(vt) = 0.6− 0.3vt. (37)

That indicates the real model parameters are set as

[α0
1 α

1
1 α

0
2 α

1
2 β

0
1 β1

1 β0
2 β1

2 ]
T

= [1 − 0.4 0.6 − 0.5 0.5 − 0.4 0.6 − 0.3]T . (38)

To collect the identification data set, the Gaussian signal

ut = −1 + 2N (0, 1) and the sinusoidal signal vt =
0.5 sin(0.1πk) + 0.5 are set as the input and scheduling sig-

nals to excite the system and T = 500 data points are record-

ed. In the following, the existing Student’s t-distribution and

Laplace distribution based LPV system identification algo-

rithms (renamed as LPV-St and LPV-Lap) are used as the

reference algorithms to demonstrate the effectiveness of the

proposed LPV-SAL method.

4.1 Tests for the Outliers
To verify the robustness of the LPV-SAL algorithm for the

outliers, in the first test, 10% outliers uniformly distributed

in [−1.2, 1.2] are added to the pure outputs. The ideal and

the outlier-polluted outputs are compared in Fig. 1. Clear-

ly, part of the contaminated data points are far away from

the true values. Based on this deteriorated data quality, all

the LPV-SAL, LPV-St and LPV-Lap algorithms are execut-

ed and the resulted parameters are compared in Figs. 2 and 3.

In this comparison test, all the resulted parameters can con-

verge to the real values which demonstrates that all the three

algorithms can extract useful parameter information from the

deteriorated identification data.

Based on the estimation results above, it can be concluded

that

1) When 10% outliers uniformly distributed in [−1.2, 1.2]
are added to the outputs, all the LPV-SAL, LPV-St

and LPV-Lap algorithms can extract useful information
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Fig. 1: The pure and outlier-polluted output data
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Fig. 2: Comparison results of α1 and α2
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Fig. 3: Comparison results of β1 and β2

from the deteriorated data set and find true model pa-

rameters from the outlier-contaminated outputs, which

proves the robustness of the proposed LPV-SAL algo-

rithm at some degree;

2) But as seen in Figs. 2 and 3, the proposed LPV-SAL

algorithm has the slowest convergence speed because

the SAL distribution has to simultaneously adjust the

shape (skewness parameter) and tails (scale parameter)

to model the outliers, which makes proposed LPV-SAL

algorithm need more steps to estimate the parameters

accurately;

Table 1: The estimated parameters under different outlier

percentages after 100 iterations

True 5% 10% 15% 20% 25%

1 0.9999 0.9983 0.9977 0.9952 0.7189

-0.4 -0.4003 -0.4011 -0.4014 -0.3974 -0.4844

0.6 0.5999 0.5990 0.5981 0.5973 0.4241

-0.5 -0.5000 -0.5011 -0.4989 -0.4984 -0.4603

0.5 0.5001 0.5000 0.5002 0.4996 0.5118

-0.4 -0.4001 -0.3999 -0.3996 -0.3990 -0.4236

0.6 0.5999 0.5989 0.5980 0.5971 0.4459

-0.3 -0.3000 -0.2990 -0.3012 -0.2969 -0.1851

Although the robustness of the LPV-SAL algorithm has

been exhibited in the above tests, however, will it keep ef-

fective for worse data quality? In order to explore the max-

imum tolerance of the proposed LPV-SAL algorithm for the

considered outliers, two extra sets of tests are designed as

well. In the first set of tests, the amplitude of the uniform

distributed outliers is fixed at [−0.8, 0.8] while the outlier

percentages in the output data are varying from 5% to 25%.

After running 100 iterations, the estimated model parameters

under different outlier percentages are listed in Table 1.

In the second set of tests, the outlier percentages are fixed

at 10% while the amplitude of the uniform distributed out-

liers varies from [−0.8, 0.8] to [−2.4, 2.4]. After running

100 iterations, the identified model parameters with varying

outlier amplitude are compared in Table 2 as well.

Table 2: The estimated parameters with varying outlier am-

plitude after 100 iterations

True [-0.8, 0.8] [-1.6, 1.6] [-2.0, 2.0] [-2.4, 2.4]

1 0.9995 0.9982 0.9978 0.9702

-0.4 -0.4003 -0.4019 -0.4026 -0.6042

0.6 0.5996 0.5991 0.5990 0.5772

-0.5 -0.5001 -0.5011 -0.5032 -0.5895

0.5 0.4998 0.5007 0.5006 0.5095

-0.4 -0.4000 -0.4005 -0.3997 -0.4026

0.6 0.5997 0.5995 0.5991 0.5817

-0.3 -0.2999 -0.2996 -0.2989 -0.3126

Based on the results obtained from the two sets of tests, it

is found that

1) Throughout Table 1-2, the resulted parameter estimates

can converge closely to the corresponding true values

when the outlier percentages and outlier amplitude are

set in the proper range;

2) The estimation performance of the proposed LPV-SAL

algorithm is directly influenced by the data quality. As

seen in Table 1-2, with the increase of outlier percent-

ages or outlier amplitude which leads to worse identifi-

cation data quality, the identification performance of the

proposed LPV-SAL algorithm degrades in both the es-

timation accuracy and convergence speed. Obviously,

212  



the better data quality contributes to higher estimation

accuracy and faster convergence speed;

3) As compared in Fig. 4, too many or too large outlier-

s will distort the identification data which may destroy

the identification performance of the LPV-SAL algo-

rithm. As seen in Table 1-2, the proposed LPV-SAL al-

gorithm cannot extract accurate model parameters from

the distorted data since the useful model information is

largely ruined by the improper outliers. In summary,

the proposed LPV-SAL algorithm doesn’t have infinite

tolerance for the outliers and it cannot handle the out-

liers with improper percentages or amplitude;

0 100 200 300 400 500

−1
−0.5

0
0.5

1
1.5

O
ut

pu
t

Outputs with 25% outliers in [−0.8, 0.8]
True outputs

0 100 200 300 400 500
−3

−2

−1

0

1

2

3

Time

O
ut

pu
t

Outputs with 10% outliers in [−2.4, 2.4]
True outputs

Fig. 4: Comparison of the true and distorted outputs

4.2 Tests for the Asymmetric Noise
In this part, the capacity of the LPV-SAL algorithm for

handling the asymmetric noise is also tested. In order to find

the advantages of the proposed LPV-SAL algorithm, the ex-

isting LPV-St and LPV-Lap algorithms are also set as the ref-

erence algorithm. To design the verification tests, the SAL

distributed noise serves as the interferential term which is

added to the output data. The true skewness and scale pa-

rameters of the SAL distributed noise are set as γ = 0.04 and

Ω = 0.001. Then the resulted SAL distributed noise and its

corresponding statistical characteristics are both depicted in

Fig. 5. In this case, all the LPV-SAL, LPV-St and LPV-Lap

algorithms are performed and the identification performance

is compared in Figs. 6 and 7. In the proposed LPV-SAL

algorithm, the estimated skewness parameter and scale pa-

rameter are adaptively adjusted to approximate the external

noise. Then the estimated noise and the true noise are com-

pared in Fig. 8. To further reveal the superiority of the LPV-

SAL algorithm, the MC simulations for the LPV-SAL, LPV-

St and LPV-Lap algorithms are all performed as well. The

mean values and standard derivations (S.D.) of the identifi-

cation results obtained in the MC simulations are calculated

and compared in Table 3.

Based on the comparison identification performance, it

can be found that

1) As seen in Figs. 6 and 7, the proposed LPV-SAL al-

gorithm seems to be more suitable than the LPV-St and

LPV-Lap algorithms for dealing with the asymmetric

measurement noise since the resulted model parameter-
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Fig. 5: The SAL distributed noise
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Fig. 6: Comparison results of α1 and α2 under SAL noise
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s of the LPV-SAL algorithm have the highest estimation

accuracy;

2) As seen in Fig. 8, the estimated noise distribution of

the LPV-SAL algorithm is well matched with the real

noise distribution. That indicates in the identification

procedure, the skewness parameter and scale parame-
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Fig. 8: The real and estimated SAL distributed noise

Table 3: The comparison results of the MC simulations un-

der the SAL distributed noise

True LPV-SAL LPV-Lap LPV-St

1 0.9750±0.0012 0.8414±0.0010 0.8956±0.000021
-0.4 -0.4090±0.0012 -0.3655±0.0018 -0.4465±0.000036
0.6 0.5915±0.0019 0.5034±0.0010 0.5270±0.000015
-0.5 -0.4968±0.0020 -0.4906±0.0015 -0.5258±0.000022
0.5 0.4933±0.0007 0.5168±0.0005 0.5132±0.000005
-0.4 -0.3949±0.0009 -0.4120±0.0005 -0.4092±0.000008
0.6 0.5974±0.0011 0.5369±0.0008 0.5632±0.000009
-0.3 -0.3010±0.0012 -0.2441±0.0008 -0.2711±0.00001

ter of the LPV-SAL algorithm can be adaptively adjust-

ed to approximate the asymmetric measurement noise

which assures the robustness of the LPV-SAL algorithm

at some degree. That means in the proposed LPV-SAL

algorithm, the skewness parameter and scale parameter

can be adaptively extracted from the identification data,

so that the external system noise is well described by

the estimated SAL distribution;

3) The MC simulation results are listed in Table 3, the

estimated means of the LPV-SAL algorithm are much

closer to the true values than the other two algorithms.

That indicates the proposed LPV-SAL algorithm out-

performs the LPV-St and LPV-Lap algorithms in the

parameter estimation accuracy due to the LPV-St and

LPV-Lap algorithms are more sensitive to the SAL dis-

tributed noise. The advantages of the LPV-SAL algo-

rithm are demonstrated in this comparison test for han-

dling the SAL distributed noise.

5 Conclusions

In this work, a new robust LPV-SAL algorithm is pro-

posed for the identification of LPV systems with skewed and

asymmetric measurement noise. In the LPV-SAL algorithm,

the statistical property of the SAL distribution is adaptively

adjusted by the skewness parameter and the scale parame-

ter to resist the outlier-polluted or asymmetric measuremen-

t noise, which assures the robustness of the introduced al-

gorithm. The verification tests prove the robustness of the

LPV-SAL algorithm for the outliers and it outperforms the

existing LPV-St and LPV-Lap algorithms for the asymmet-

ric measurement noise. However, the main lackness of the

proposed LPV-SAL algorithm lies in

1) In the fair comparison test for the outliers, the proposed

LPV-SAL algorithm has the slowest convergence speed

than the LPV-St and LPV-Lap algorithms;

2) The proposed LPV-SAL algorithm doesn’t have infinite

tolerance for the outliers and it fails to estimate the ac-

curate model parameters when too many or too large

outliers existed in the output data;

3) The performance of the LPV-SAL algorithm degrades

quickly with the increase of outlier percentages which

means the proposed LPV-SAL algorithm is sensitive for

the outlier percentages.
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Abstract: This research addresses the tracking control problem for a class of multi-input multi-output networked systems charac-
terized by unknown nonlinear functions, mismatched disturbances, event-triggered inputs, and input coupling. A novel prescribed
performance control strategy and actuator update protocol are proposed to address this challenge. In contrast to existing results,
our approach requires the transmission of a binary signal (0 or 1) to the actuator. This not only reduces the quantity of data trans-
mission but also minimizes the number of transmitted bits, thereby saving communication costs. Furthermore, irrespective of
the unknown nonlinearities, disturbances, and measurement errors, the proposed method ensures both transient and steady-state
performance in output tracking. Simulation results are provided to validate the established theoretical conclusions.

Key Words: Event-triggered control, multiple-input multiple-output, nonlinear systems, prescribed performance control.

1 Introduction

In contemporary control applications, controllers are com-
monly implemented on digital platforms using sampled-data
control theory to design controllers and analyze closed-loop
stability. Typically, control tasks adhere to a time-triggered
paradigm. However, from a resource allocation standpoint,
periodic sampling may not be optimal, especially in scenar-
ios where executing control tasks during satisfactory system
operation is resource wasteful [1]. Networked control sys-
tems (NCSs) are a prime example, where controllers com-
municate with the physical process over a network. Ineffi-
cient use of communication resources and power is a critical
concern in NCS design. Implementing control signals re-
gardless of the plant’s status can lead to unnecessary network
utilization, causing high workloads.

To address resource limitations in NCSs and enhance
functionality, recent research [1–3] has rekindled interest in
event-triggered control (ETC). Within the ETC framework, a
predefined event-triggered scheduling scheme is employed,
invoking control task execution upon the occurrence of an
event rather than the passage of a specific time interval. This
paradigm proves particularly suitable for NCSs and embed-
ded systems [4]. Motivated by the advantages of ETC, a
wide array of communication-aware control strategies for
networked systems has been documented in the literature [5–
8].

While the previously discussed ETCs are conceptually ap-
pealing, there remain a couple of challenging issues that cur-
rently remain unresolved. The first issue pertains to signal
transmission bits. In efforts to mitigate communication bur-
dens, the majority of researchers have concentrated on re-
ducing the number of data transmissions [9–11]. Typically,
the control signal is encoded into a digital signal, often with
16 bits, before transmission begins. The challenge arises

This work was supported in part by the National Key Research and De-
velopment Program of China under Grant 2022YFB3305905, the National
Natural Science Foundation of China under Grant 62103093, the Xingliao
Talent Program of Liaoning Province of China under Grant XLYC2203130,
the Science and Technology Foundation of Liaoning Province of China un-
der Grant 2023-MS-087, and the Fundamental Research Funds for the Cen-
tral Universities of China under Grant N2108003.

in attempting to prevent distortion—namely, the larger the
magnitude of the control signal, the more bits the digital
signal requires, subsequently increasing the network band-
width.

The second one is associated with system performance
[12–14]. Although utilizing an event-triggered scheduling
scheme effectively reduces the data transmission frequency,
the resulting sampling-induced errors may affect the system
performance. On the other hand, input coupling poses addi-
tional challenges in the design of control systems, as the con-
trol inputs interact with each other, thus decoupling needs to
be considered when designing the controllers. In the pres-
ence of unknown nonlinear functions or disturbances or in-
put coupling, a consistent limit boundedness of the tracking
error or the system state can often be obtained [5, 7, 13, 15].
However, the size of the residual set cannot be determined
in advance because it is highly dependent on some unknown
terms of the system.

Recently, the prescribed performance control (PPC)
scheme was successfully planted in the ETC architecture
[16, 17]. This control strategy provides a systematic frame-
work for designing control laws that ensures the desired per-
formance characteristics [18, 19], such as settling time, over-
shoot, and robustness. Therefore, a large number of stud-
ies [20–22] on PPC of multiple input and multiple output
(MIMO) systems were performed. Nonetheless, the issue
about data transmission bits was not taken into account.

To overcome the above challenging problems, this pa-
per proposes a novel ETC strategy for a class of networked
MIMO systems. An initialization technique is introduced in
the PPC design, while event-triggered rules are utilized to
form an actuator update protocol. By this way, the following
advantages with respect to the existing results are obtained.

1) From beginning to end, only 1-bit update signal instead
of the real control signal needs to be transmitted by the
communication channel between the controller and the
actuator.

2) In lieu of UUB, the predesignated transient and steadys-
tate tracking behavior concerning the convergence rate
and the tracking accuracy is warranted.

3) The algorithm exhibits a low complexity level, ascribed
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to the absence of adaptive schemes, approximating
structures, and recursive computation of virtual control
signal derivatives.

2 System Description and Problem Formulation

2.1 Systems Description
A class of MIMO nonlinear systems are taken into con-

sideration
Ẋ = F (x) +G(x)U +D(t), (1)

where X = [x1, x2, · · · , xn]T ∈ Rn is the state; U =
[u1(t), u2(t), · · · , un(t)]T ∈ Rn is the inputs applied to
the plant; F (x) = [f1(x), f2(x), · · · , fn(x)]T ∈ Rn is
the continuous nonlinear functions; G(x) = [gij(x)] ∈
Rn×n is the virtual control coefficient matrix, where
gij(x) is the continuous nonlinear function; D(t) =
[d1(t), d2(t), · · · , dn(t)]T ∈ Rn is the unknown distur-
bances.

Further, we define

G′(x) =
1

2

(
G(x) +GT (x)

)
. (2)

For the subsequent development, a number of assumptions
are introduced.

Assumption 1 The matrix G′(x) is symmetric positive defi-
nite.

Assumption 2 The disturbances terms di(t), i = 1, · · · , n
are bounded.

2.2 Performance Function
In order to achieve the specified output tracking perfor-

mance, the performance function, p(t), is used to constrain
the tracking error. To accomplish this goal, the performance
function needs to satisfy:

1. p(t) is smooth and positive;
2. ṗ(t) ≤ 0 and |ṗ(t)| <∞;
3. p(0) = p0 and limt→+∞ p(t) = p∞;

where p0 and p∞ are the positive constants that can be deter-
mined by the designer. So, depending on the requirements
we can give the formula as follows.

pi(t) = (pi0 − pi∞)e−µit + pi∞, (3)

where µi is a positive constant.

2.3 Problem Formulation
The control goal for (1) is steering its output to track the

reference trajectory, R(t) = [r1(t), r2(t), · · · , rn(t)]T ∈
Rn, with

|xi(t)− ri(t)| < pi(t), ∀t ≥ 0, (4)

with i = 1, 2, · · · , n, and pi(t) is the performance function
in (3) introduced for each tracking error. A widely used as-
sumption is presented as follows.

Assumption 3 The reference meets ri(t) ∈ L∞ and ṙi(t) ∈
L∞ with i = 1, 2, · · · , n, wherein the bounds are not neces-
sarily known.

Problem 1 Design a controller for the MIMO nonlinear
system in (1), such that for any initial condition, the track-
ing performance in (4) is ensured and all the signals in the
control system are bounded.

3 Control Implementation

3.1 Controller Design
First of all, start with the definition of the tracking errors:

S = X −R, (5)

where S = [s1(t), s2(t), · · · , sn(t)]T . To avoid the control
signals with the large initial values, a tuning function ex-
ploited is introduced

ψ(t) =

 sin

(
π

2

t

τ

)
, t < τ,

1, t ≥ τ,

(6)

where τ > 0 is a free-design parameter. Apparently, ψ(t) is
continuously differentiable with respect to t. Then, we have
E = [e1(t), e2(t), · · · , en(t)]T , with

ei(t) = ψ(t)si(t), i = 1, 2, · · · , n. (7)

Next, we introduce a set of barrier functions to constrain
each error ei(t).

ηi(t) = tan

(
π

2

ei(t)

pi(t)

)
, (8)

where pi(t) is the performance funtion, i = 1, 2, · · · , n, with
pi0 > pi∞ > 0 and µi > 0, the parameters µi and pi∞
characterize the convergence rate and the ultimate bound of
the error ei(t), respectively. The parameter pi0 is chosen
such that

|ei(0)| < pi(0), i = 1, 2, · · · , n. (9)

Next, we construct an error transformation function

βi(t) =
1

pi(t)

1

ϕi(t)
, (10)

and

ϕi(t) = cos2(
π

2

ei(t)

pi(t)
), (11)

with i = 1, 2, · · · , n. Let

η = [η1(t), η2(t), · · · , ηn(t)]T , (12)

β =


β1(t)

β2(t)
. . .

βn(t)

 . (13)

Finally, we give the following control law

ν = −λβη, (14)

where ν = [ν1(t), ν2(t), · · · , νn(t)]T and λ > 0 is a con-
stant control gain.

3.2 Actuator Update Protocol
For control implementation with an inexpensive commu-

nication cost, the control signal computed based on (14) is
first quantized based on the following event-triggering rule:

tik+1 = inf {ti > tik : |zi(ti)| = ci} , (15)
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zi(ti) = νi(ti)− νi(tik), tik ≤ ti < tik+1, (16)

qi(tik) =

{
1, if zi(tik) = ci,

0, if zi(tik) = −ci,
(17)

where i = 1, 2, · · · , n; ti0 = 0; k = 0, 1, 2, . . . ; and ci > 0
is a fixed threshold specified by the designer. According to
the actuator update protocol for synthesizing control actions,
we have

ui(ti) = 0, ti0 ≤ t < ti1, (18)
ui(ti) = ui(tik−1) + ci(2qi(tik)− 1), tik ≤ ti < tik+1,

(19)

where i = 1, 2, · · · , n and k ∈ Z+.

Lemma 1 With (15)–(19), it holds that

ui(ti) = νi(tik), tik ≤ ti < tik+1, (20)

where k = 0, 1, 2, . . . and i = 1, 2, · · · , n.

Proof 1 On the basis of (15) and (16), one has

νi(tk+1) =

{
νi(tik) + ci, if zi(tik+1) = ci,

νi(tik)− ci, if zi(tik+1) = −ci,
(21)

where k = 0, 1, 2, . . . and i = 1, 2, · · · , n. By (17), (21) can
be rewritten as

νi(tik+1) = ci

k+1∑
j=1

(2qi(tij)− 1), k = 0, 1, 2, . . . (22)

With (18) and (19), it is obtained that

ui(ti) = ci

k+1∑
j=1

(2qi(tij)− 1), tik+1 ≤ ti < tik+2, (23)

where k = 0, 1, 2, . . . and i = 1, 2, · · · , n. Thereby,

ui(ti) = νi(tik+1), tik+1 ≤ ti < tik+2, (24)

with k = 0, 1, 2, . . . and i = 1, 2, · · · , n. Taking ui(ti0) = 0
and νi(ti0) = 0 into consideration, the result in Lemma 1 is
established. □

4 Theoretical Analysis

It is ready to establish the main result of this article.

Theorem 1 Under Assumption 1–3 and initial condition in
(9), applying the event-triggered PPC strategy presented in
(15)–(19) solves Problem 1.

Proof 2 What we need to verify is

|ei(t)| < pi(t), i = 1, 2, · · · , n, ∀t ≥ 0. (25)

Consider the relationship of counterfactuals for analysis.
According to (9), when t = 0, it is clear that the relation-
ship satisfying (25) can be obtained. Note that each xi and
each ri(t) are continuous in time. Therefore, each si(t) in
(5) is continuous in time. Notice from (6) that ψ(t) is contin-
uously differentiable. So ei(t) in (7) is continuous in time. If
|ei(t)| < pi(t), ηi(t) in (8) and βi(t) in (10) are continuous

in time. From a counterfactual perspective, the facts above
show that if (25) is violated, then there must exist t∗ > 0
such that

lim
t→t∗

|ei(t)| = pi(t), i ∈ {1, 2, · · · , n}, (26)

and
|ei(t)| < pi(t), i = 1, 2, · · · , n, t < t∗. (27)

Considering the coupling problem of the actual system, we
construct

V = ηT η. (28)

The derivative of V is given by

V̇ = 2ηT η̇, (29)

where η̇ = [η̇1(t), η̇2(t), · · · , η̇i(t), · · · , η̇n(t)]T with

η̇i(t) = βi(t)
π

2

(
ėi(t)−

ei(t)ṗi(t)

pi(t)

)
. (30)

Let

wi(t) =
ei(t)ṗi(t)

pi(t)
. (31)

So (29) becomes

V̇ = πηTβ(Ė −W ), (32)

where W = [w1(t), w2(t), · · · , wn(t)]
T . Substitute (1) and

(7) into (32) to get

V̇ = πηTβ(F (x) +G(x)U +D(t)− Ṙ(t)−W ). (33)

By (16) and (20), it is attained that

ui(t) = νi(tik) = νi(ti)− zi(ti), tik ≤ ti < tik+1, (34)

where k = 0, 1, 2, . . . and i = 1, 2, · · · , n. Notice from
(15) that zi(ti) induced by the event-triggered logic is both
bounded (i.e., |zi(ti)| ≤ ci ) and piecewise continuous in ti.
Therefore, the real control input U can be regarded as the
PPC signal ν corrupted by the bounded and piecewise con-
tinuous disturbances Z. Inserting (14) into (34), one further
has

U = −λβη − Z, (35)

where Z = [z1, z2, · · · , zn]T and |zi| ≤ ci with i =
1, 2, · · · , n. So we can obtain

V̇ = πηTβH − λπηTβG(x)βη, (36)

where

H = F (x) +D(t)− Ṙ(t)−W −G(x)Z. (37)

Note that ei(t), ψ(t), ri(t), ṙi(t), zi, di(t) with i =
1, 2, · · · , n are bounded on [0, t∗). Therefore, we can get the
boundedness of xi on [0, t∗). Due to the continuity of fi(·),
gij(·), F (x) and G(x) are bounded on [0, t∗). And since
both 1/pi(t) and ṗi(t) can be designed by the designer, they
are also bounded, so W is bounded on [0, t∗). Thus, H is
bounded on [0, t∗). Let

sup
t∈[0,t∗)

|H(t)| = H̄. (38)
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Therefore, we can get

V̇ ≤ H̄∥βη∥ − λπηTβ

(
G′(x) +

G(x)−GT (x)

2

)
βη.

(39)
Under Assumption 1, we can obtain from (39)

V̇ ≤ H̄∥βη∥ −B∥βη∥2, (40)

with B = 1
2πλḡ where ḡ = λminG

′(x). By the formula
(40), we can further obtain V̇ < 0 when

∥βη∥ > H̄

B
. (41)

Further analysis, we can know

∥βη∥2 = β2
1(t)η

2
1(t)+β

2
2(t)η

2
2(t)+ · · ·+β2

n(t)η
2
n(t). (42)

We can analyze it by unfolding it

(βi(t)ηi(t))
2 =

1

p2i (t)

1

ϕ2i (t)
η2i (t) ≥ q2i η

2
i (t), (43)

where qi = 1/pi(0) and i = 1, 2, · · · , n. Combining (42)
and (43), we can get

∥βη∥ > Q∥η∥, (44)

with Q = min {q1, q2, · · · , qn}. Therefore, we can conclude
that, V̇ < 0, as long as it satisfies

∥η∥ > H̄

QB
. (45)

Through the above analysis, we can draw a conclusion

∥η∥ ≤ max

{
∥η(0)∥, H̄

QB

}
, [0, t∗). (46)

And this means that ∥η∥ is bounded on [0, t∗). The map-
ping property of ηi(t) formulated in (8) manifests that for
each error variable ei(t) and any t < t∗, |ei(t)| does
not approach to the prescribed performance function pi(t),
i = 1, 2, · · · , n. This deduction contradicts deduction (26),
which means that the expected result in (25) can be estab-
lished. In other words, there is a set of positive numbers
κ = [κ1, κ2, · · · , κn]T that satisfy

|ei(t)| ≤ pi(t)− κi, ∀t ≥ 0. (47)

In combination with (11)-(14), (35) and (47), all the control
signals in the closed-loop system are bounded. The proof is
completed. □

5 Simulation Study

To demonstrate the effectiveness of the proposed con-
troller, consider the simulation of the following MIMO sys-
tem[
ẋ1
ẋ2

]
=

[
x21 + x1
x32 − 1.5x2

]
+

[
2 1
−1 2

] [
u1
u2

]
+

[
0.2 sin(t)
−0.1 cos(t)

]
,

where x1 and x2 are the state variables. The initial values
of the state variables of the system are x1(0) = 0.1 and

Fig. 1: The output x1 and the reference signal r1.

Fig. 2: The output x2 and the reference signal r2.

Fig. 3: The tracking error e1.

Fig. 4: The tracking error e2.
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Fig. 5: The control input u1.

Fig. 6: The control input u2.

Fig. 7: 1-bit signal q1(t1k) transmitted over the network.

Fig. 8: 1-bit signal q2(t2k) transmitted over the network.

Fig. 9: Sequence of transmission instants of the 1-bit signal
q1(t1k).

Fig. 10: Sequence of transmission instants of the 1-bit signal
q2(t2k).

x2(0) = −0.1. The start time and stop time are set to be
t = 0s and t = 10s, respectively, and the fundamental sam-
ple time is chosen as 0.001s. Envision the scenario where a
network is used to close the feedback loop. Under this situ-
ation, the periodic sampling control framework requires the
control signal to be sent 10000 times. The control objective
is to steer x1 and x2 to track the references r1(t) = sin(t)
and r2(t) = − sin(t), respectively. At the same time, let
them satisfy the following performance requirements:

|xi(t)− ri(t)| < (pi0 − pi∞)e−µit + pi∞, i = 1, 2.

Following Theorem 1, the controller is formed with τ =
0.4, p10 = p20 = 1, p1∞ = p2∞ = 0.04, µ1 = µ2 = 0.5,
c1 = c2 = 0.1 and λ = 1.4. It is applied to the above
system, and the simulation results are displayed in Figures
1–10. Aimed at evaluating the computational complexity,
several indices, such as the CPU time and the single-pass
run time (SPRT) for the algorithm are tested. The evolutions
of the system outputs and the references are exhibited in Fig.
1 and Fig. 2, and the corresponding errors are plotted in
Fig. 3 and Fig. 4. As predicted by the theoretical analysis,
the predefined transient and the steady-state performance of
the tracking errors are guaranteed, despite the absense of the
model information and the presence of the process distur-
bances. Fig. 5 and Fig. 6 show the real control inputs u1
and u2. The binary signals transmitted over the controller-
to-actuator network are shown in Fig. 7 and Fig. 8. And
the event-triggered times are listed in Fig. 9 and Fig. 10.
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It is calculated that the total number of events are 54 and
62, respectively, which are much less than 10000 needed for
sample-data control; and the minimal interexecution time is
0.025s, thus ruling out Zeno behavior. Accordingly, the sim-
ulation results clarify and verify the presented ETC policy.

6 Conclusion

This study investigates the communication-aware control
problem for a class of networked MIMO nonlinear systems
characterized by nonparametric uncertainties and unmatched
disturbances. We propose a novel control strategy composed
of an initialization technique, a prescribed performance con-
troller, and an event-triggered actuator update protocol to
address this challenge. In the framework of ETC: 1) only
1-bit of digital numbers is transmitted to the actuator for ex-
ecution of control tasks and 2) the user-specified transient
and steady-state performance of trajectory tracking is guar-
anteed, despite sampling-induced errors. Additionally, the
exploited control scheme is of significant simplicity, stem-
ming from the lack of adaptive or approximating structures
and compensation terms. Finally, the simulation results ver-
ify the effectiveness of the proposed method.
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Abstract: This paper focuses on a 6-DOF manipulator and studies how to reduce the trajectory operation time while ensuring
the continuity and stability during motion and improving the precision of trajectory tracking control. The manipulator system’s
kinematic model is developed through utilizing the D-H parameter approach. And the manipulator system’s dynamic model
is derived through the utilization of Lagrangian dynamics equations, and incorporate the theory of fully actuated system to
derive high-order fully actuated (HOFA) model of the system. The joint space interpolation trajectory is constructed by using
the 7th-order B-spline curve interpolation method to guarantee the continuity of velocity, acceleration, and jerk. Additionally, to
minimize the point-to-point operation time, the motion trajectory is optimized in conjunction with the PSO algorithm. Within
the HOFA system model’s framework, a direct parameterization approach is employed to design a trajectory tracking controller
which guarantee rapid and precise tracking of the trajectory designed for the manipulator. Ultimately, the proposed design
methods are validated through simulation experiments.

Key Words: High-order fully actuated system, 6-DOF manipulator, Time optimal, Jerk continuous, Trajectory tracking control

1 Introduction

Manipulators are widely utilized in diverse manufacturing
tasks such as assembly[1], spraying[2], palletizing[3], and
sorting[4]. To achieve precise operations, trajectory plan-
ning and tracking control strategies are crucial. Traditional
first-order state models struggle to accurately describe the
dynamic behavior of multi-degree-of-freedom manipulators
and overlook the coupling effects between joints. However,
high-order fully actuated system (HOFAS) control theory of-
fers more precise description of the manipulator’s dynamics,
addressing issues like jitter and swing and enables more ef-
fective control strategies[5].

The theory of fully actuated system control has demon-
strated remarkable superiority in dealing with a series of
complex issues such as nonlinearity, time variability, and
hysteresis. Duan[6] studied a two-link manipulator system,
verifying the feasibility of the HOFAS method on serial link
manipulators, but did not verify its feasibility on 6-DOF ma-
nipulators. Sun[7] designed a trajectory tracking controller
for a highly nonlinear and strongly coupled 6-DOF manip-
ulator utilizing the model of a HOFAS. This controller suc-
cessfully achieved precise trajectory tracking control for the
manipulator system, but the designed nonlinear disturbance
observer is only suitable for slow-varying internal and exter-
nal uncertainties, and its performance needs to be improved.

To sum up, there has been relatively limited research com-
bining HOFAS control theory with trajectory planning and
tracking control of manipulator systems, using time as an
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nology) (No. HBIRL202301, No. HBIRL202302), and Research Initiation
Fund (Wuhan Institute of Technology) (No. 23QD112), and the Graduate
Innovative Fund of Wuhan Institute of Technology (No. CX2023550)

optimization criterion. This paper will focus on time-optimal
and jerk-continuous trajectory planning and tracking control
research utilizing HOFAS control theory. By using the re-
search method and control strategy, the operation precision
can be effectively improved and enhance the performance.

2 System Model

2.1 Kinematic Model
The kinematic model is developed through the utilization

of the D-H parameter approach. Table 1 displays the model
parameters, αi and θi represent the angle of rotation around
the X axis and Z axis, ai and di signify the distance of trans-
lation along the X axis and Z axis, respectively.

Table 1: D-H Parameter Table for manipulator

Node αi(rad) ai(m) di(m) θi(rad)

1 0 0 0.0985 θ1

2 π/2 0 0.1215 θ2

3 0 0.408 0 θ3

4 0 0.376 0 θ4

5 −π/2 0 0.1025 θ5

6 π/2 0 0.094 θ6

With the coordinate transformations’ chain rule as the ba-
sis, the matrix representing the transformation between any
two adjacent links can be written as:

i−1Ti = R (xi, αi−1)T (xi, ai−1)R (zi−1, θi)T (zi−1, di)
(1)

The total transformation matrix for the end effector con-
cerning the base coordinates is detailed as:

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6 (2)

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications 
May 10-12, 2024, Shenzhen, China

222  



2.2 Fully Actuated Model based on Dynamic Model
Due to the presence of various internal and external uncer-

tainties, It is possible to denote the dynamic model through:

M(q)q̈ +D(q, q̇)q̇ +G(q) = τ + τd(q, q̇) (3)

where q stands for the angular position. M(q) denotes the
positive definite inertia matrix. q̇ denotes the angular veloc-
ity. D(q, q̇) corresponds to the coefficient matrix associated
with the Coriolis and centrifugal force vectors. q̈ states the
angular acceleration. The matrix G(q) denotes the gravita-
tional term. τ refers to the input torque of the control. τd
indicates the combined internal and external uncertainties.

According to the theory of fully actuated systems[5], the
manipulator described by the Lagrange equation is a second-
order fully actuated system:

A2(θ, q, q̇)q̈ +A1(θ, q, q̇)q̇ +A0(θ, q, q̇)q

+ ξ(θ, q, q̇) = B(θ, q, q̇)u
(4)

In equation (4), A2(θ, q, q̇), A1(θ, q, q̇), A0(θ, q, q̇) ∈
Rn×n represent coefficient matrixs, B(θ, q, q̇) ∈ Rn×n

stands for input matrix, q ∈ Rn represents state vector,
u ∈ Rn represents control vector, vector ξ(θ, q, q̇) as a non-
linear term, and θ = θ(t) ∈ Rl represents the parameter
vector. The equation (4) corresponds to equation (3).
3 Trajectory Planning and Tracking Control

3.1 Jerk-Continuous Trajectory Planning
To construct trajectory, utilizing 7th-order B-spline curve

(BSC) interpolation approach, the expression is as follows:

p(u) =
n∑

i=0

diBi,7(u) i = 0, 1, · · · , n (5)

where Bi,7(u) is the basis function, and di represents the
control vertices. The 1st, 2nd, and 3rd derivatives of p(u)
stand for velocity, acceleration, and jerk at the normalized
time node vector u ∈ (ui, ui+1), respectively.

Discretizing the trajectory, the discrete Cartesian position
points are converted to a position-time sequence through in-
verse kinematics:

N = (pi, ti) i = 0, 1, · · · , n (6)

In equation (6), ti is the time node. The control ver-
tices are solved in a matrix form. It is possible to denote
it through:

An · dn = pn (7)
where An represents the coefficient matrix, dn = [di,0
di,1 · · · di,n+1 di,n+2 · · · di,n+6]

T and pn = [pi,0
pi,1 · · · pi,n Vi,s Vi,e Ai,s Ai,e Ji,s Ji,e]

T are control
points and positions respectively.

Due to the BSCs’ convex hull property containing control
points, it can be inferred that the constraints on the 7th-order
BSCs’ control points satisfy: max

(∣∣d1mi

∣∣) ≤ kvcm i = 1, 2, · · ·, n+ 6
max

(∣∣d2mi

∣∣) ≤ kacm i = 2, 3, · · ·, n+ 6
max

(∣∣d3mi

∣∣) ≤ kjcm i = 3, 4, · · ·, n+ 6
(8)

where vcm,acm, jcm respectively represent the constraints
on joint velocity, acceleration, and jerk of the manipulator,
d1mi, d

2
mi, d

3
mi are calculated based on the De-Boor recur-

sive formula. Therefore, the kinematic constraints have been
transformed into constraints on the control vertices.

3.2 Time Optimization Via PSO algorithm
The goal of PSO algorithm is to minimize the time re-

quired for the manipulator to complete a trajectory within
the constrained velocity range of each joint[8].

f(x) = min
n−1∑
i=0

ti (9)

max
i=1,2,··· ,n+6

{|d1mi(x)|} − vcm ≤ 0

max
i=2,3,··· ,n+6

{|d2mi(x)|} − acm ≤ 0

max
i=3,4,··· ,n+6

{|d3mi(x)|} − jcm ≤ 0

(10)

In equation (10), x = [x0, x1, · · · , xn−1]
T , xi = ∆ti =

ti+1 − ti, i = 0, 1, · · · , n− 1, ∆ti has a lower bound.
The PSO algorithm is utilized for settling the optimization

issue with nonlinear constrained outlined in (10). And PSO
algorithm’s schematic in accordance with figure.

Fig. 1: PSO Algorithm

3.3 Tracking Controller Design
The trajectory tracking controller for the manipulator is

developed via the direct parameter approach within the
framework of a HOFAS model: u = uc + uf

uc = B−1(θ, q, q̇)ξ(θ, q, q̇)
uf = K0(θ, q, q̇)q +K1(θ, q, q̇)q̇ + v

(11)

In equation (11), uc represents the compensatory
controller, and uf represents the state feedback con-
troller, K0(θ, q, q̇), K1(θ, q, q̇) ∈ R6×6 denote feedback
gain matrixs, and v represents the external signal.
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Fig. 2: Structure diagram of the fully actuated control system

Convert it into the following first-order system:

Ẋ = AcX+Bcv (12)

where X =
[
q q̇

]T
,Bc =

[
0 A−1

2 B
]T

,

Ac =

[
0 In

−A−1
2 (A0 −BK0) −A−1

2 (A1 −BK1)

]
According to the defined expected system performance, if

the canonical form F ∈ R2n×2n and ∃Z ∈ Rn×2n satisfy:

detVe(Z,F ) ̸= 0 (13)

In equation (13), it has the following relation: Ve(Z,F ) =[
V (Z,F ) V c

∞
]
, V (Z,F )=

[
Z ZF

]
, V represents

the finite eigenvectors associated with F , V c
∞ denotes gener-

alized infinite eigenvector matrix,
[
V V c

∞
]

serves as the
overall eigenvector matrix. To increase the speed of tracking
the target trajectory in the system, the performance index is
expressed:

J(F,Z) = ∥V ∥
∥∥V −1

∥∥ (14)

The matrix Z can be obtained by minimizing J , and then
substituting Z and F into equation (15):{ [

K0 K1

]
= WV −1(Z,F )

W = B−1(A2ZF 2 +A1ZF +A0Z)
(15)

Equation (15) determines the value of K0 and K1, thereby
obtaining the desired first-order steady-state system.
4 Simulation

4.1 Obtaining Trajectories Towards the Target
In an effort to prove the practicability of PSO algorithm

to plan trajectories that minimize time, Matlab is used for
simulation experiments. The position sequence required for
each joint of the manipulator is shown in Table 2.

Set Vmax = [100 95 100 150 130 110], Amax =
[45 40 75 70 90 80], Jmax = [60 60 55 70 75 70].
the PSO algorithm for optimizing time-efficient trajectories.
Utilizing 50 iterations and a swarm comprised of 50 parti-
cles, the number of particles in the swarm to 50. Set the
inertia weight to 0.5, the individual learning factor to 1, and
the social learning factor to 2.

From the simulation results (Fig.3), it can be observed that
the start-stop velocities and accelerations are zero, which ful-
fills the set requirements. Additionally, the curves in Fig.3(b-
d) are continuous without any abrupt changes, and they com-
ply with the kinematic constraints, ensuring smooth motion.
Using the PSO algorithm to find the best motion time while
adhering to kinematic constraints, the maximum time re-
quired to execute the trajectory is 39.60 s, which is relatively
short and meets the requirements.

Table 2: Sequence of joint positions

Joint1 Joint2 Joint3 Joint4 Joint5 Joint6

M1 16.99 -33.12 43.89 25.70 110.36 -25.95

M2 17.23 -13.88 47.70 60.69 105.23 -28.51

M3 17.88 -19.60 55.23 79.05 103.25 -16.05

M4 14.39 -28.46 63.88 75.21 97.78 -5.21

M5 11.25 -41.72 68.35 72.70 86.04 6.50

M6 3.100 -45.34 72.41 67.45 79.94 12.20

M7 -20.13 -42.69 79.65 53.54 72.76 16.24

M8 -25.78 -40.34 82.17 47.80 78.16 13.55

Fig. 3: Trajectory Plot of Joint

4.2 Trajectory Tracking Control
In an effort to test and verify the significance of the control

algorithm. Matrix F is selected according to the anticipated
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system feature configuration and is a diagonal matrix con-
taining eighteen elements. If we set the standard type F : F =
diag( - 50, - 50, - 50, - 100, - 100, - 100, - 90, - 90, - 90, - 45,
- 45, - 45). According to the optimization function equation
(14), use the fmincon solver in Matlab software to obtain Z.

Fig. 4: Joint 1-3 Angle Tracking

The direct parameter method control model is constructed
to control the manipulator system, and the results of track-
ing the reference trajectory of each joint of the manipula-
tor are plotted, as shown in Fig.4-Fig.5. From the experi-
mental results, it is evident that the system may quickly fol-
low the target trajectory within 3 seconds. And manipulator
can quickly respond to the designed time-optimal and jerk-
continuous reference trajectory and achieve precise tracking.

5 Conclusion

This paper focuses on the 6-DOF manipulator and analy
its kinematic model and fully actuated model. A trajectory
planning scheme via the BSC interpolation approach and
employ the PSO algorithm for obtaining the best desired
trajectory. With the foundation in the fully actuated system
control theory, a trajectory tracking controller has been in-
troduced employing the direct parameter method to track the
desired trajectory. The problem of the optimal time and jerk
continuous trajectory planning and tracking control of the
manipulator is solved, and the continuity and tracking pre-
cision of the trajectory are improved. And better results are
achieved in the aspects of trajectory time and tracking error.

Fig. 5: Joint 4-6 Angle Tracking
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Abstract: In this paper, an inner-loop control method based on the integral reinforcement learning (IRL) algorithm is proposed
to address the challenges of uncertain inverter model parameters and strong disturbances caused by nonlinear and unbalanced
loads. Firstly, the mathematical model of an LC-type off-grid inverter is established in the d-q axis, and the off-grid inverter
voltage control problem is transformed into an H∞ tracking problem by introducing the augmented system. The reference
signal of the inverter output voltage, together with the original state, are defined as the state of the augmented system. An initial
control gain along with exploration noises are conducted on the inverter to collect augmented state data and disturbance data
(output current). Then, by utilizing the principles of zero-sum game theory, the tracking Hamilton-Jacobi-Isaacs (HJI) equation
is derived, and the IRL algorithm is proposed to solve this equation. The Kronecker products containing state values, control
inputs, and disturbance values are calculated based on the measurement data, and the iterative inverter voltage control strategy is
derived. Next, it is proven that the proposed control policy ensures the asymptotic stability of the augmented system and satisfies
the L2 gain condition. Finally, the effectiveness of the proposed algorithm is verified through simulation.

Key Words: Off-grid Inverter, Voltage Control, Model-free Integral Reinforcement Learning, H∞ Control

1 Introduction

The scarcity of traditional fossil energy and environmen-
tal pollution have emerged as major obstacles to global e-
conomic development. In response, renewable energy and
distributed power generation have gained prominence due to
their reduced pollution, high reliability, and energy utiliza-
tion efficiency [1] [2]. Microgrid technology, which facilitates
the effective utilization of renewable energy and distributed
power generation, has consequently become a focal point of
research. Microgrid can operate in grid-connected or off-
grid modes[3]. When operating off-grid, the presence of non-
linear and unbalanced loads introduces significant perturba-
tions to the inverter system, leading to a degradation in out-
put voltage quality and potential system instability. Hence,
it is crucial to develop effective control strategies to enhance
the disturbance immunity of microgrid inverter systems.

In recent years, numerous scholars have proposed con-
trol methods aimed at suppressing disturbances to improve
the disturbance suppression performance of inverters. These
methods include model-free predictive control, repetitive
control, and active disturbance rejection control (ADRC).
The model-free predictive control (MFPC) method enhances
prediction robustness by employing hyperlocal models, au-
toregressive input models[4], and look-up table (LUT)[5]in
place of traditional prediction models, thus improving over-
all robustness. However, the control performance of the
MFPC method based on hyperlocal and autoregressive in-
put models is influenced by the number of voltage and cur-
rent data cycles. On the other hand, the LUT-based MF-
PC method is straightforward in principle and easy to im-
plement, achieving robust current prediction by storing and
updating current gradients under each vector’s action in the
control cycle[6]. However, the necessity of updating current

This work was supported in part by the Natural Science Foundation
of Jiangsu Province under Grant BK20221112, and in part by the Key Re-
search and Development projects in Shanxi Province(202202100401002).
(Corresponding Author: Xiaomin Liu)

gradients under unapplied vectors in this approach may lead
to stagnation in gradient updating and increased prediction
errors.

Repetitive control is a waveform control method based on
the principle of internal mode, utilizing the system’s math-
ematical model in feedback to describe external signal dy-
namics and achieve precise tracking performance while ef-
fectively suppressing periodic disturbances. However, it
may struggle to effectively track non-periodic disturbances
and exhibits delayed response with poor dynamic perfor-
mance. ADRC achieves precise system control by introduc-
ing an suppression observer to estimate and counteract ex-
ternal disturbances and internal model errors in real time.
However, this method faces challenges related to difficult
parameter adjustment, high computational complexity, and
insufficient robustness.

The inverter voltage control problem can be framed as a
reference voltage tracking and disturbance suppression is-
sue. H∞ control focuses on mitigating the impact of exter-
nal, randomly varying, and intricate disturbances on system
performance. The designed controller not only achieves dy-
namic stability and robust control of the system but also op-
timizes the performance index. For off-grid inverters, con-
troller design needs to account for parameter fluctuations,
uncertainties, and load-induced perturbations, aligning with
the objectives of H∞ control theory. The technology based
on reinforcement learning (RL) has also been used to pro-
vide a model-free solution for the H∞ control problem. An
online Q-learning algorithm for designingH∞ tracking con-
trollers for unknown discrete systems was introduced in [7]
and applied to a single-phase voltage source inverter. How-
ever, applying a discrete method to a continuous inverter sys-
tem may lead to approximation errors and numerical stability
issues. Particularly, if the sampling frequency is improperly
chosen, it can potentially cause signal distortion and aliasing
effects, leading to additional requirements for controller de-
sign and implementation. A multi-loop H∞ control scheme
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was presented in [8], where variable load conductance was
treated as model uncertainty within the inverter model. How-
ever, this method assumes that the load conductance varies
within a specific set and does not consider the optimality of
the control system. The above methods suffer from complex
parameter design, high computational complexity, and lack
of robustness.

In this paper, we present an online model-free integral re-
inforcement learning (IRL) algorithm for addressing the off-
grid inverter voltage control problem. The key contributions
are as follows:

1) A novel framework for continuous inverter voltage
inner-loop control is introduced, integrating H∞ control and
the IRL algorithm. The quality of inverter output voltage is
effectively ensured in the presence of unknown parameters
and load disturbances within the framework.

2) The off-grid inverter voltage control problem is trans-
formed into an H∞ tracking control problem for the aug-
mented system, and a model-free IRL algorithm based on the
zero-sum game concept is developed to eliminate reliance on
the inverter model.

3) The stability of the inverter system is rigorously estab-
lished under the influence of the controller, and the impact of
load variations on the inverter voltage is limited to a certain
level of attenuation.

2 Microgrid Inverter Modeling and Problem De-
scription

2.1 Microgrid Inverter Modeling
The structure of the off-grid inverter system is illustrat-

ed in Fig. 1. In this paper, the inverter is filtered by a LC
type filter, with Lf , Cf and Rf representing the filter in-
ductor, the filter capacitor and the filter inductor parasitic
resistance, respectively. The meaning of the variable is as
follows: uabc, uoabc, iLabc, ioabc, u∗od and u∗oq represents the
three-phase output voltage of the bridge arm side of the in-
verter, the three-phase output voltage of the bridge arm side
of the inverter, the three-phase output current of the filter
inductor, the component of the inverter output three-phase
voltage in the d-q axes, respectively.

Rf

a

b

c

Lf

Cf

load
Udc

uabc iLabc uoabc ioabc

uoabc

uod、uoq

model-free IRL 

controller

u*
od、u*

oq

PWM 

modulation
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iLabc

iod、ioq

iLd、iLq

Fig. 1: Block diagram of three-phase inverter control struc-
ture

Based on the off-grid inverter structure depicted in Fig. 1,
the mathematical model of the LC-type off-grid inverter in

the dq coordinate system is established as follows

diLd
dt

=
ud
Lf
− uod
Lf
− Rf iLd

Lf
+ ωiLq

diLq
dt

=
uq
Lf
− uoq
Lf
− Rf iLq

Lf
− ωiLd

duod
dt

=
iLd
Cf
− iod
Cf

+ ωuoq

duoq
dt

=
iLq
Cf
− ioq
Cf
− ωuod

(1)

where ud and uq represent the inverter bridge arm side volt-
age components in the d-q axes, uod and uoq denote the in-
verter output voltage components in the d-q axes, iLd and
iLq signify the filtering inductor currents in the d-q axes, iod
and ioq indicate the output currents in the d-q axes, and ω
is the angular frequency of the grid voltage. Equation (1) is
expressed as the state space equation in the following form{

ẋ = Ax+Bu+Dd

y = Cx
(2)

where x(t) =
[
uod uoq iLd iLq

]T
is the s-

tate vector, u =
[
uid uiq

]T
is the input vec-

tor, d =
[
iod ioq

]T
is the disturbance vector,

y=
[
uod uoq

]T
is the output vector. The state matrix

A =


0 ω 1/Cf 0
−ω 0 0 1/Cf
−1/Lf 0 −Rf/Lf ω

0 −1/Lf −ω −Rf/Lf

. The in-

put matrix B =

[
0 0 1/Lf 0
0 0 0 1/Lf

]T
. The disturbance

matrix D =

[
−1/Cf 0 0 0

0 −1/Cf 0 0

]T
. The output

matrix C =

[
1 0 0 0
0 1 0 0

]T
.

2.2 Problem Description
The inverter reference voltage complies with

u̇∗o = Fu∗o (3)

where u∗o =
[
u∗od u∗oq

]T
. Then the tracking error between

the system output and the reference signal can be described
as

e(t) = y − u∗o = Cx− u∗o (4)

Define the augmented system state as X (t) =[
uod uoq iod ioq u∗od u∗oq

]T
, then the augmented

system as {
Ẋ = ΓX +Mu+Nd

Y = C1X
(5)

where

Γ =


0 ω 1/Cf 0 0
−ω 0 0 1/Cf 0
−1/Lf 0 −Rf/Lf ω 0

0 −1/Lf −ω −Rf/Lf 0
0 0 0 0 F

,
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M =

[
0 0 1/Lf 0 0 0
0 0 0 1/Lf 0 0

]T
,

N =

[
−1/Cf 0 0 0 0 0

0 −1/Cf 0 0 0 0

]T
, C1 =[

C −I
]T

.
Define the L2 gain condition for the augmented system as

follows ∫ ∞
t

e−α(τ−t)
(
Y TQY + uTRu

)
dτ

≤ γ2
∫ ∞
t

e−α(τ−t)
(
dT d

)
dτ

(6)

Define the tracking cost function

J (u, d) =∫ ∞
t

e−α(τ−t)
(
Y TQY + uTRu− γ2dT d

)
dτ

(7)

Thus, the H∞ voltage control problem is to find a con-
troller as

u = KX (8)

such that the following holds:
1) The closed-loop system satisfies the attenuation condi-

tion (6).
2) The tracking error dynamics (4) with d = 0 is asymp-

totically stable.
The solvability of the H∞ control problem is equivalent

to the solvability of the following zero-sum game

V ∗ (X (t)) = J (u∗, d∗) = min
u

max
d

J (u, d) (9)

where J is defined in (7), V ∗ (X (t)) is the optimal value
function. Thus, the H∞ problem can be reformulated as a
zero-sum game problem. This 2-player zero-sum game con-
trol problem has a unique solution if a game theoretic saddle
point exists, ie, if the following Nash condition holds:

V ∗ (X (t)) = min
u

max
d

J (u, d) = max
d

min
u
J (u, d) (10)

The value function (9) in terms of the augmented system
(5) is expressed as

V (X (t)) = X(t)
T
PX (t) = J (u, d) (11)

Using the value function (15) for the left-hand side of (7),
and differentiating (7) along with the trajectories of the aug-
mented system. We obtain the augmented LQT Bellman e-
quation as follows:

(ΓX +Mu+Nd)
T
PX+

XTP (ΓX +Mu+Nd)− αXTPX

+ Y TQY + uTRu− γ2dT d = 0

(12)

and the corresponding Hamiltonian equation is

H (V, u, d) = Y TQY + uTRu− γ2dT d−
αV + V TX (ΓX +Mu+Nd) = 0

(13)

Using the stationary conditions ∂H (V, u, d) /∂u =
0, ∂H (V, u, d) /∂d = 0, the optimal control input and the
worst-case disturbance input can be obtained as

u∗ = −R−1MTPX (14)

d∗ = γ−2NTPX (15)

Substituting (14) and (15) into (12) gives the following
tracking HJI equation and tracking game algebraic Riccati
equation (GARE)

H (V ∗, u∗, d∗) , Y TQY + V ∗TX Γ− αVX
− V ∗TX MTR−1MV ∗X + γ2V ∗TX NNTV ∗X = 0

(16)

XTCT1 QC1X + 2XTPΓX − αXTPX

−XTPMR−1MTPX + γ−2XTPNNTPX = 0
(17)

3 Design of Model-free H∞ Tracking Controller
With Discount Factor

3.1 Computational Adaptive Optimal Control Design
With Completely Unknown Dnamics

Under steady-state conditions, modeling uncertainties or
unforeseen changes in the structure or parameters of the
controlled system significantly impact the controller perfor-
mance [9]. Therefore, we propose a model-free algorithm
with a discount factor to address the voltage control problem
of the inverter system.

According to [10], we rewrite the augmented system (5)
as {

Ẋ = ΓiX +M (u+KiX) +N (d− LiX)

Y = C1X
(18)

where Γi = Γ−MKi +NLi, then the corresponding Bell-
man equation is

e−αδtX(t+ δt)
T
PiX (t+ δt)−X(t)

T
PiX (t)

= −
∫ ∞
t

e−α(τ−t)X(τ)
T
QiX (τ) dτ

+ 2

∫ ∞
t

e−α(τ−t)(u+KiX)
T
RKi+1Xdτ

+ 2γ2
∫ ∞
t

e−α(τ−t)(d− LiX)
T
Li+1Xdτ

(19)

where Qi = CT1 QC1 +KT
i RKi − γ2LTi Li.

We define the following two operators:

P̂ =
[
p11, 2p12, · · · , 2p1n, p22, 2p23, · · · , 2p(n−1)n, pnn

]T
X̄ =

[
x21, x1x2, · · · , x1xn, x22, x2x3, · · · , xn−1xn, x2n

]T
then we have

X(t+ δt)
T
PiX (t+ δt)−X(t)

T
PiX (t)

=
(
X̄ (t+ δt)− X̄ (t)

)
P̂

.
In addition, by Kronecker product representation, we have

δXX =


e−α(t1−t0)

(
X̄ (t1)⊗ X̄ (t1)

)
−
(
X̄ (t0)⊗ X̄ (t0)

)
,

e−α(t2−t1)
(
X̄ (t2)⊗ X̄ (t2)

)
−
(
X̄ (t1)⊗ X̄ (t1)

)
, · · ·


T

(20)

IXX =

[∫ t1

t0

e−α(τ−t0)(X ⊗X)dτ,∫ t2

t1

e−α(τ−t1)(X ⊗X)dτ, . . .

]T (21)
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IXU =

[∫ t1

t0

e−α(τ−t0)(X ⊗ u)dτ,∫ t2

t1

e−α(τ−t1)(X ⊗ u)dτ, . . .

]T (22)

IXD =

[∫ t1

t0

e−α(τ−t0)(X ⊗ d)dτ,∫ t2

t1

e−α(τ−t1)(X ⊗ d)dτ, . . .

]T (23)

Then, for any given stabilizing gain matrix Ki, (19) im-
plies the following matrix form of linear equations

ψi


∧
P i

vec (Ki+1)
vec (Li+1)

 = θi (24)

where ψi =

 δXX
−2IXX

(
In ⊗KT

i R
)
− 2IXU (In ⊗R)

2γ2IXX
(
In ⊗ LTi

)
− 2γ2IXD

,

θi = −IXXvec (Qi).
Notice that if ψi has full column rank, (23) can be directly

solved as follows
∧
P i

vec (Ki+1)
vec (Li+1)

 =
(
ψTi ψi

)−1
ψTi θi (25)

Algorithm 1 presents a model-free IRL for H∞ tracking
control of inverter output voltage algorithm.

Algorithm 1 Model-free IRL for H∞ tracking control of
inverter output voltage

Step 1 Use u = K0X + e as the input over the time interval
[t0,t1], where e is the detection noise.

Step 2 Equations (20), (21), (22), and (23) are derived by
capturing the values of output voltage, current, filter
inductor current, and output voltage at the bridge arm
side of the inverter.

Step 3 Solve for Pi, Ki+1 and Li+1 from (24).
Step 4 If ||Pi − Pi−1|| > ξ, let i = i+ 1 and repeat Step 3.
Step 5 Derive an approximate optimal control strategy

u∗ = Ki+1X (26)

3.2 Performance Analysis
In this section, we first demonstrate that the control solu-

tion (8) satisfies the disturbance attenuation condition, and
then we discuss the stability of the tracking error dynamic-
s without the disturbance. An upper bound on the discount
factor that asymptotically stabilizes the output voltage of the
inverter system has been provided.

Theorem 1: If Γi = Γ−MKi+NLi is stable, solving for
Pi in (19) is equivalent to finding a solution to the underlying
Lyapunov

Γi
TPi + PiΓi − αPi − PiMR−1MTPi

+ γ−2PiNN
TPi + CT1 QC

T
1 = 0

(27)

Proof : Proof omitted for brevity, and the details can refer
to [11].

Remark 1. Although the same solution is obtained
whether solving the (27) or (19), (19) can be solved with-
out using any knowledge of the system matrix Γ.

It follows from Theorem 1 that if Gammai stable at each
iteration, the algorithm (19) is equivalent to algorithm (27)
without using knowledge of the system internal dynamics.

Theorem 2: Consider the H∞ tracking control problem
as a two-player zero-sum game problem with the perfor-
mance function (7). Then, the pair of strategies (u∗,d∗) de-
fined in (14) and (15) provides a saddle point solution to the
game.

Proof : The proof is similar to that in [12] and is omitted
here for brief.

Theorem 3 (L2-gain): Assume that there exists a continu-
ous positive-semidefinite solution V ∗(X) to the tracking HJI
(13). Then, u∗ in (26) makes the closed-loop system (5) to
have L2-gain less than or equal to γ.

Proof : The Hamiltonian (13) for the optimal value func-
tion V ∗, and any control policy u and disturbance policy d
become

H (V ∗, u, d) = Y TQY + uTRu− γ2dT d−
αV + V ∗TX (ΓX +Mu+Nd) = 0

(28)

On the other hand, using (14) - (16), one has

H (V ∗, u, d) = H (V ∗, u∗, d∗) +

(u− u∗)TR (u− u∗) + γ2(d− d∗)T (d− d∗)
(29)

Based on the HJI (19), we have H (V ∗, u∗, d∗) = 0.
Therefore, (28) and (29) give

Y TQY + uTRu− γ2dT d− αV ∗

+ V ∗TX (ΓX +Mu+Nd)

= −(u− u∗)TR (u− u∗)− γ2(d− d∗)T (d− d∗)

(30)

Substituting the optimal control policy u = u∗ in the
above equation comes to

Y TQY + u∗TRu∗ − γ2dT d− αV ∗

+ V ∗TX (ΓX +Mu∗ +Nd)

= −γ2(d− d∗)T (d− d∗) ≤ 0

(31)

Multiplying both the sides of this equation by e−α(τ−t),
and defining V̇ ∗ = V ∗TX (Γ +Mu∗ +Nd) as the deriva-
tive of V ∗ along the trajectories of the closed-loop system, it
gives

d

dt

(
e−αtV ∗ (X)

)
≤ e−αt

(
−Y TQY − u∗TRu∗ + γ2dT d

) (32)

Integrating from both the sides of this equation yields

e−αTV ∗ (X (T ))− V ∗ (X (0))

≤
∫ T

0

e−ατ
(
−Y TQY − u∗TRu∗ + γ2dT d

)
dτ

(33)

for every T>0 and every d ∈ L2[0,∞). Since V ∗ (.) ≥ 0
the above equation comes to∫ T

0

e−ατ
(
Y TQY + u∗TRu∗

)
dτ

≤
∫ T

0

e−ατ
(
γ2dT d

)
dτ + V ∗ (X (0))

(34)
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This completes the proof.
Theorem 4 (Stability of the optimal solution and upper

bound for α): Consider the augmented system (5) and define

Sl = γ−2DDT

Ql = CTQC
(35)

then, the control policy (21) makes the error system dynamic
(5) asymptotically stable if

α ≤ α∗ = 2
∥∥∥(SlQl)

1/2
∥∥∥ (36)

Proof : Proof omitted for brevity, and the details can refer
to [13].

4 Simulation

In order to verify the effectiveness and rationality of
the proposed algorithm, we conduct simulation in the Mat-
lab/Simulink.

4.1 Simulation parameter
The parameters of the inverter model are presented in Ta-

ble 1. For a given sinusoidal frequency of f=50Hz, we have
ω=2πf=100π.

Table 1: Parameters of the Three-Phase Off-Grid Inverter
Parameter Numerical Value

DC voltage Vdc(V) 400
inverter-side filter inductance Lf (mH) 2

inductance equivalent resistance Rf (Ω) 0.2
filter capacitor Cf (F) 25

d-axis desired output voltage u∗od(V ) 110
√

2

q-axis desired output voltage u∗oq(V) 0
switching frequency fs(kHz) 10

4.2 Simulation result
For the H∞ output tracking control problem of the

inverter, we select γ=20, Q = 1000I2, R = I2, where I
represents the unit matrix. By employing Algorithm 1 for
online learning, the P-value converges after 16 iterations

P ∗=


0.0568 0.0000 0.0632 -0.0001 -0.0567 0.0000
0.0000 0.0568 0.0001 0.0632 -0.0005 -0.0000
0.0632 0.0001 0.1431 -0.0001 -0.0652 0.0000
-0.0001 0.0632 -0.0001 0.1433 -0.0011 -0.0000
-0.0567 -0.0005 -0.0652 -0.0011 102.1086 -0.0000
0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000

,

the K-value converges

K∗=
[

31.6389 -0.0148 71.5165 -0.0352 -32.6006 -0.0000
0.0143 31.6386 0.0032 71.5145 -0.5760 0.0000

]
,

the L-value converges

L∗=
[

-0.0142 0.0000 -0.0158 0.0000 0.0142 0
0.0000 -0.0142 0.0000 -0.0158 0.0001 0

]
.

Fig. 2 illustrates the convergence of the control gain K,
where Kold represents the value of K calculated in the pre-
vious iteration.

We employ the algorithm 1 on the three-phase inverter,
and the tracking trajectory is depicted in Fig. 3, demonstrat-
ing good tracking performance. The initial 0.5s is the learn-
ing phase and after 0.5s, the inverter output signals uod and
uoq promptly track the reference signals u∗od and u∗oq .
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Fig. 2: Convergence of the control gain to its optimal value
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Fig. 3: Tracking performance of the model-free H∞ control

To assess the robustness of the proposed algorithm under
unbalanced and nonlinear loads, we substitute the learned
K∗ values into Simulink for verification.

From 0∼0.1s, a three-phase symmetrical 10Ω resistive
load is applied, followed by the introduction of a three-phase
unbalanced load at t=0.1s. The resulting output voltage and
current waveforms are depicted in Fig. 4, indicating a brief
dynamic process.

During the same time of 0∼0.1s, a three-phase symmetri-
cal 10Ω resistive load is employed concurrently with a diode
rectifier circuit connected to the resistor as a nonlinear load.
The rectifier has a resistive load of 53Ω, inductance of 3mH,
and capacitance of 3000µF. At t=0.1s, when the merger oc-
curs, the resulting output voltage and current waveforms are
depicted in Fig. 5.

From Figs.4 and 5, it is evident that the proposed control
strategy exhibits commendable dynamic characteristics and
steady-state performance for both unbalanced and nonlinear
loads.
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a) Inverter output voltage waveform uoabc

b) Inverter output current waveform ioabc

Fig. 4: Three-phase voltage and current waveforms with un-
balanced load

b) Inverter output current waveform ioabc

a) Inverter output voltage waveform uoabc

Fig. 5: Three-phase voltage and current waveforms with
nonlinear load

5 Conclusion

The IRL-basedH∞ output tracking control method is pro-
posed for off-grid inverter voltage control with unknown
dynamics and external disturbances in this paper. Via col-
lecting input-output data of the inverter system, the model-
free IRL algorithm is proposed for solving the HJI equation.
The stability and optimality of the resulting solution are ana-
lyzed, and an upper bound for the discount factor is found to
assure the stability of the control solution found by solving
the tracking HJI equation. The simulation results demon-
strate excellent disturbance suppression in the presence of
unbalanced and nonlinear loads.
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On designing interval observer for discrete-time positive fuzzy
Markov jump systems with bounded disturbance input
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Abstract: This paper deals with the design problem of interval observer for discrete-time positive fuzzy Markov jump sys-
tem (FMJS) with bounded disturbance input. For such a system, a mode-dependent Luenberger-like fuzzy interval observer is
constructed to estimate the upper and lower bounds of the system state in real time. The upper-bounding and lower-bounding es-
timation error systems are formulated by two positive FMJSs. Using the fuzzy-dependent linear co-positive function method and
the linear programming technique, some solvable conditions for stochastic l1-gain performance analysis and interval observer
design of the two estimation error systems are derived, respectively. Some numerical results are used to validate the design
effectiveness.
Key Words: Positive fuzzy Markov jump systems, Stochastic l1-gain performance analysis, Fuzzy interval observer design,
Linear programming

1 Introduction

Interval observers are widely used to handle the interval
state estimation problems of systems in the presence of un-
certainties and/or bounded disturbance inputs, which aim at
providing the real-time upper and lower bounds of interested
system states simultaneously as close as possible. Compared
with the classic state estimation methods like Luenberger ob-
server, the typical advantages of interval observer lie at the
ability of real-time range monitoring and high robustness.
In light of these advantages, it is promising and interesting
to apply interval observers for monitoring the system oper-
ation of several practical systems such as vehicles, aircraft
and electrical grids. To mention a few, a distributed inter-
val observer was designed in [1] to detect the operational
status of side-slip angle and yaw rate for a networked vehi-
cle subject to randomly occurring stealthy attacks. In [2],
a functional interval observer was designed for a two-tank
system to monitor the liquid levels of two tanks in real time.
An interval observer was applied to detect and isolate faults
occurring in the communication system of a group of four
F-18 aircrafts in [3].

In practical systems, there exist some unavoidable and
considerable phenomena such as positivity, randomness, and
various modeling nonlinearities. To be more specific, system
positivity denotes the non-negative state evolution of sys-
tems under the non-negative initial state and external input.
The positivity feature is identified in many practical systems
such as communication network systems [4] and traffic con-
trol systems [5]. Furthermore, due to the abrupt changes in
system structure and parameters or the random fault of sig-
nals and equipments, positive Markov jump linear systems
(MJLSs) are put forward to characterize the positivity and
randomness features of practical systems such as the pest’s
structured population dynamic model [6] and networked dy-
namic model in epidemiology [7]. Moreover, it is well rec-

This work was partly supported by the National Natural Science Foun-
dation of China under 62373220, the Shandong Provincial Natural Science
Foundation of China under Grant ZR2023MF011, and the Science Cen-
ter Program of National Natural Science Foundation of China under Grant
62188101.

ognized that most of practical systems are essentially nonlin-
ear and Takagi-Sugeno fuzzy model is a prevalent universal
approximator for nonlinear systems. In this sense, positive
T-S fuzzy system and fuzzy Markov jump system (FMJS)
are two classes of typical systems to be concerned.

In the existing literature, interval observer design of pos-
itive linear systems with uncertain and bounded disturbance
was carried out in [8] based on the monotone system the-
ory. A mode-dependent Luenberger-like interval observer of
positive MJLSs was designed in [9] and the design results
were derived in terms of linear programming (LP). The in-
terval state estimation problem of positive T-S fuzzy systems
was investigated in [10] and l1-gain performance optimiza-
tion was applied for evaluating the accuracy of estimation.
A Luenberger-like interval observer of FMJS was proposed
in [11]. Reviewing the existing works, one can conclude that
the interval state estimation problem of positive FMJS has
not been solved so far, although such a system involves the
positivity, randomness, and nonlinearity together.

Based on the above discussion, we focus on the design
problem of interval observer for positive FMJSs in this pa-
per. Clearly, the positive FMJSs can be degenerated into ei-
ther positive T-S fuzzy systems [10], positive MJLSs [9], or
positive linear systems [8]. For the positive FMJS, a mode-
dependent and fuzzy-rule-dependent Luenberger-like inter-
val observer is presented. Then some conditions are de-
rived by using the co-positive Lyapunov function method
and the LP technique, which can ensure the upper-bounding
and lower-bounding estimation error systems to be posi-
tive, and stochastically internally stable with l1-gain perfor-
mance. Due to the generality of the designed interval ob-
server, the proposed results can be applied for positive T-S
fuzzy systems, positive MJLSs, and positive linear systems
as special cases. A numerical example is provided to show
the effectiveness of the interval observer design method.

Notations: The relation A (or x) ⪰ 0 (⪯ 0,≺ 0) means
that all elements of a matrix A (or a vector x) are non-
negative (nonpositive, negative). E{·} expresses the math-
ematical expectation of {·}. For a matrix A ∈ Rm×n,
[A]uv, [A]c,v, [A]r,u stand for the (u, v) scalar entry, the
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v-th column of A, the u-th row of A, respectively. [x]i rep-
resents the i-th entry of a vector x. ∥x∥1, ∥v∥l1 , l+1 and 1n

are consistent with the meaning of the symbols in [6].

2 Problem statement and preliminaries

Consider the discrete-time FMJS described by
Plant Rule i : IF θ1(k) is µi1, θ2(k) is µi2, · · · , θp(k) is
µip, THEN x(k + 1) = Ai,rkx(k) +Bi,rkω(k)

y(k) = Ci,rkx(k) +Di,rkω(k)
x(0) = x0

(1)

where i ∈ Ψ = {1, 2, . . . , s} and s is the number of IF-
THEN fuzzy rules. µie(i = 1, 2, . . . , s; e = 1, 2, . . . , p)
are the fuzzy sets, and θ(k) = [θ1(k), θ2(k), · · · , θp(k)] de-
notes the premise variable vector. x(k) ∈ Rn, ω(k) ∈ Rnω ,
y(k) ∈ Rny denote the system state, the disturbance input
and the measured output, respectively. {rk, k ∈ N} is the
discrete-time Markov process which takes values in a finite
set Γ = {1, 2, . . . , N}. The transition probability matrix is
Λ = [πlt]N×N with πlt = Pr{rk+1 = t|rk = l}, where

πlt ≥ 0 for l, t ∈ Γ, and
N∑
t=1

πlt = 1, ∀l ∈ Γ. Ai,l, Bi,l,

Ci,l, Di,l are known constant matrices with appropriate di-
mensions.

The FMJS (1) can be rewritten by
x(k + 1) =

s∑
i=1

hi(θ(k)){Ai,lx(k) +Bi,lω(k)}

y(k) =
s∑

i=1

hi(θ(k)){Ci,lx(k) +Di,lω(k)}

x(0) = x0

(2)

where

hi(θ(k)) =
νi(θ(k))
s∑

i=1

νi(θ(k))
, νi(θ(k)) =

p∏
e=1

µie(θe(k)),

µie(θe(k)) ∈ [0, 1] denotes the grade of membership
of θe(k) in µie(i = 1, 2, . . . , s; e = 1, 2, . . . , p) and
s∑

i=1

hi(θ(k)) = 1, hi(θ(k)) ≥ 0.

The following definitions, lemma, and assumptions are
given for preliminaries.

Definition 1. The FMJS (2) is a positive system, if for any
initial state x0 ⪰ 0 and ω(k) ⪰ 0, ∀k ∈ N, and any initial
mode r0, the conditions x(k) ⪰ 0, y(k) ⪰ 0, ∀k ∈ N hold.

Lemma 1. [12] The FMJS (2) is a positive system if and
only if Ai,l ⪰ 0, Bi,l ⪰ 0, Ci,l ⪰ 0, Di,l ⪰ 0, ∀i ∈ Ψ,
l ∈ Γ.

Definition 2. The positive FMJS with ω(k) = 0 is said to be

stochastically internally stable, if
∞∑
k=0

E{∥x(k)∥1|x0, r0} <

∞ holds for every initial condition (x0, r0) with x0 ∈ Rn
+.

Definition 3. For γ ≥ 0, the positive FMJS (2) is said to be
stochastically internally stable with l1-gain performance γ,
if

1) the positive FMJS (2) is said to be stochastically inter-
nally stable with ω(k) = 0.

2) under zero initial condition, ∥y∥l1 ≤ ∥ω∥l1 holds for
all nonzero ω(k) ∈ l+1 .

Remark 1. If N = 1, the positive FMJS (2) reduces to a
positive Markov jump system [6], [13]. If s = 1, the pos-
itive FMJS (2) reduces to a positive T-S fuzzy system [10].
In addition, Definition 1-3 and Lemma 1 still hold for the
degenerate systems.

For the positive FMJS, the following general assumptions
are provided.

Assumption 1. The initial state x0 satisfies 0 ⪯ x0 ⪯ x0 ⪯
x0, where x0 and x0 are known lower and upper bounds for
the initial conditions.

Assumption 2. The disturbance input ω(k) satisfies ω(k) ⪯
ω(k) ⪯ ω(k), ∀k ∈ N and some known ω, ω ∈ l+1 .

3 Main results

To achieve the real-time estimates of upper and lower
bounds of x(k), by using the boundary information
ω(k), ω(k) and y(k), one constructs the following fuzzy
Luenberger-like observers
Rule i : IF θ1(k) is µi1, θ2(k) is µi2, · · · , θp(k) is µip,
THEN

x(k + 1) =(Ai,l − Li,lCi,l)x(k) + (Bi,l − Li,lDi,l)ω(k)

+ Li,ly(k)

x(k + 1) =(Ai,l − Li,lCi,l)x(k) + (Bi,l − Li,lDi,l)ω(k)

+ Li,ly(k)
(3)

where x(k) and x(k) are the estimated upper and lower
bounds of x(k), and Li,l is the interval observer gain ma-
trix to be designed.

Similar to the modeling process from (1) to (2), the
observer (3) can be rewritten as

x(k + 1) =
s∑

i=1

hi(θ(k))
{
(Ai,l − Li,lCi,l)x(k)

+ (Bi,l − Li,lDi,l)ω(k) + Li,ly(k)
}

x(k + 1) =
s∑

i=1

hi(θ(k))
{
(Ai,l − Li,lCi,l)x(k)

+ (Bi,l − Li,lDi,l)ω(k) + Li,ly(k)
}
.

(4)
Due to the fact that 0 ⪯ x(k) ⪯ x(k) ⪯ x(k), the observer
(4) should be a positive system.

Theorem 1. Let Assumption 1-2 be satisfied, observer (4) is
said to be an interval observer for the positive FMJS (2), if
there exists a matrix Li,l such that Ai,l − Li,lCi,l ⪰ 0 and
Bi,l − Li,lCi,l ⪰ 0, ∀i ∈ Ψ, l ∈ Γ.

Proof. Denote the estimation errors of upper and lower
bounds as e(k) = x(k) − x(k), e(k) = x(k) − x(k). One
gets the following estimation error systems

e(k + 1) =
s∑

i=1

hi(θ(k))
{
(Ai,l − Li,lCi,l)e(k)

+ (Bi,l − Li,lDi,l)
(
ω(k)− ω(k)

)}
e(0) = e0

(5)
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e(k + 1) =

s∑
i=1

hi(θ(k))
{
(Ai,l − Li,lCi,l)e(k)

+ (Bi,l − Li,lDi,l)
(
ω(k)− ω(k)

)}
e(0) = e0

(6)

It is clear that (i) ω(k)−ω(k) ⪰ 0, ω(k)−ω(k) ⪰ 0, ∀k ∈ N
and (ii) e(0) ⪰ 0, e(0) ⪰ 0 since x(0) ⪯ x(0) ⪯ x(0).
Notice that Ai,l −Li,lCi,l ⪰ 0 and Bi,l −Li,lCi,l ⪰ 0, ∀i ∈
Ψ, l ∈ Γ. Using Lemma 1, we can get e(k) ⪰ 0, e(k) ⪰ 0,
∀k ∈ N. As a result, x(k) ⪯ x(k) ⪯ x(k) holds, ∀k ∈
N.

Usually, a satisfied interval estimation accuracy cannot be
ensured by the interval observer (4) that is simply designed
by Ai,l − Li,lCi,l ⪰ 0 and Bi,l − Li,lCi,l ⪰ 0. To obtain
an expected estimation effect, we propose an l1-gain perfor-
mance optimization result by the following theorems.

Theorem 2. Suppose that Ai,l − Li,lCi,l ⪰ 0 and
Bi,l−Li,lCi,l ⪰ 0, ∀i ∈ Ψ, l ∈ Γ hold . For a given
γ > 0, the estimation error systems (5)-(6) are stochas-
tically internally stable and satisfy ∥e∥l1 < γ∥ω − ω∥l1 ,
∥e∥l1 < γ∥ω−ω∥l1 , if there exist vectors pi,l ⪰ 0, such that

p̃Ti,l(Aj,l − Lj,lCj,l)− pTj,l + 1T
n ≺ 0, (7)

p̃Ti,l(Bj,l − Lj,lDj,l)− γ1T
nω

≺ 0, (8)

where p̃i,l =
N∑
t=1

πltpi,t, i, j = 1, 2 · · · s, l ∈ Γ.

Proof. Construct the fuzzy-dependent linear co-positive

Lyapunov function as V (e(k), rk)=
s∑

i=1

hi(θ(k))p
T
i,rk

e(k),

with pi,rk ≻ 0. Let the mode at time k be i, that is, rk = l.
At time k + 1, the system may jump to any mode rk+1 = t.
Thus, one gets that

∆V = E
{
V (e(k + 1), rk+1)

∣∣e(k), l}− V (e(k), l)

= E
{ s∑

i=1

hi(θ(k + 1))pTi,rk+1
e(k + 1)

∣∣e(k), l}
−

s∑
i=1

hi(θ(k))p
T
i,le(k)

= E
{ s∑

i=1

s∑
j=1

hi(θ(k + 1))hj(θ(k))p
T
i,rk+1

×
[
(Aj,l − Lj,lCj,l)e(k) + (Bj,l − Lj,lDj,l)

× (ω(k)− ω(k))
]∣∣∣e(k), l}−

s∑
j=1

hj(θ(k))p
T
j,le(k)

=
s∑

i=1

s∑
j=1

hi(θ(k + 1))hj(θ(k))
N∑
t=1

πltp
T
i,t

×
[
(Aj,l − Lj,lCj,l)e(k) + (Bj,l − Lj,lDj,l)

× (ω(k)− ω(k))
]
−

s∑
j=1

hj(θ(k))p
T
j,le(k)

=

s∑
i=1

s∑
j=1

hi(θ(k + 1))hj(θ(k))

{[
p̃Ti,l(Aj,l − Lj,lCj,l)

− pTj,l

]
e(k) + p̃Ti,l(Bj,l − Lj,lDj,l)(ω(k)− ω(k))

}
.

When ω(k) = 0, one has that

∆V (e(k), rk) =
s∑

i=1

s∑
j=1

hi(θ(k + 1))hj(θ(k))×[
p̃Ti,l(Aj,l − Lj,lCj,l)− pTj,l

]
e(k).

From (7), p̃Ti,l(Aj,l − Lj,lCj,l)− pTj,l ⪯ 0 holds. Define

η = min
i,j∈Ψ, l∈Γ, m=1,2,...,n

{
−
[
p̃Ti,l(Aj,l−Lj,lCj,l)−pTj,l

]
m

}
.

It follows that

∆V (e(k), rk) ≤ −η∥e(k)∥l1 ,

which is equivalent to

E
{
V (e(k + 1), rk+1)

∣∣e(k), l} ≤ V (e(k), l)− η∥e(k)∥l1 .
(9)

Taking mathematical expectation E{·|e0, r0} on the both
sides of (9) yields

E{E{V (e(k + 1), rk+1)|e(k), l}|e0, r0}
= E{V (e(k + 1), rk+1)|e0, r0}.

Further, for ∀T ∈ N, one obtains

E{V (e(T + 1), rT+1|e0, r0}

≤ V (e0, r0)− η
T∑

k=0

E{∥e(k)∥l1 |e0, r0},

which implies that
∞∑
k=0

E{∥e(k)∥l1 |e0, r0} ≤ 1

η
V (e0, r0) < ∞.

Thus system (5) is stochastically internally stable. Let

J = ∥e∥1 − γ∥w − ω∥1 = 1T
ne
e(k)− γ1T

nω
(ω(k)− ω(k))

=
[
1T
ne
e(k)− γ1T

nω
(ω(k)− ω(k)) + ∆V (e(k), rk)

]
−∆V (e(k), rk)

=
s∑

i=1

s∑
j=1

hi(θ(k + 1))hj(θ(k))
{[

p̃Ti,l(Aj,l − Lj,lCj,l)

− pTj,l + 1T
ne

+ ε1T
ne

]
e(k) +

[
p̃Ti,l(Bj,l − Lj,lDj,l)

− γ1T
nω

]
(ω(k)− ω(k))

}
− ε1T

ne
e(k)−∆V (e(k), rk).

It can be derived from (7) that there exists a sufficiently small
ε such that

p̃Ti,l(Aj,l − Lj,lCj,l)− pTj,l + 1T
ne

+ ε1T
ne

⪯ 0. (10)

Using (8) and (10), one gets

1T
ne
e(k)+ε1T

ne
e(k)<γ1T

nω
(ω(k)−ω(k))−∆V (e(k), rk).

(11)

It follows that
T∑

k=0

∥e(k)∥1 + ε
T∑

k=0

∥e(k)∥1

< γ
T∑

k=0

∥ω(k)− ω(k)∥1 − V (e(T + 1), rT+1).

(12)
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Let T → ∞ and take mathematical expectation E{·|e0, r0}
on the both sides of (12). One has

∞∑
k=0

E{∥e(k)∥1}+ ε
∞∑
k=0

E{∥e(k)∥1}

< γ
∞∑
k=0

E{∥ω(k)− ω(k)∥1}.

Thus, one gets ∥e∥l1 < γ∥ω − ω∥l1 . Similarly, it can be
derived from (7)-(8) that ∥e∥l1 < γ∥ω − ω∥l1 holds, which
completes the proof.

Based on the conditions of Theorem 2, one can get the
following design result of gain matrix Li,l.

Theorem 3. Let Assumption 1-2 be satisfied. For a given
scalar γ > 0, there exists an interval observer (4) for the
positive FMJS (3) and the resulting positive estimation error
systems (5)-(6) are stochastically internally stable with l1-
gain performance γ, if there exist positive vectors zl ∈ Rn,
and vectors qσj,l ∈ Rny , such that

[AT
j,l]c,σ[z̃l]σ − CT

j,lq
σ
j,l ⪰ 0, (13)

[BT
j,l]c,σ[z̃l]σ −DT

j,lq
σ
j,l ⪰ 0, (14)

AT
j,lz̃l − CT

j,l

nx∑
σ=1

qσj,l − zl + 1n ≺ 0, (15)

BT
j,lz̃l −DT

j,l

nx∑
σ=1

qσj,l − γ1nω ≺ 0, (16)

where z̃l =
N∑
t=1

πltzt, σ ∈ 1, 2, ..., n, j ∈ Ψ, l ∈ Γ.

More over, the gain matrix Lj,l can be computed by

Lj,l =
[ q1j,l
[z̃l]1

q2j,l
[z̃l]2

· · ·
qnj,l
[z̃l]n

]T
, j ∈ Ψ, l ∈ Γ. (17)

Proof. It is clear that

[Aj,l − Lj,lCj,l]
T

= AT
j,l − CT

j,lL
T
j,l

=
[
[AT

j,l]c,1 [AT
j,l]c,2 · · · [AT

j,l]c,n

]
−
[CT

j,lq
1
j,l

[z̃l]1

CT
j,lq

2
j,l

[z̃l]2
· · ·

CT
j,lq

n
j,l

[z̃l]n

]
=

[
[AT

j,l]c,1 −
CT

j,lq
1
j,l

[z̃l]1
[AT

j,l]c,2 −
CT

j,lq
2
j,l

[z̃l]2
· · ·

[AT
j,l]c,n −

CT
j,lq

n
j,l

[z̃l]n

]
.

(18)

From 1
[z̃l]σ

> 0 and inequality (13), one gets

[AT
j,l]c,σ −

CT
j,lq

σ
j,l

[z̃l]σ
⪰ 0.

Thus Aj,l − Lj,lCj,l ⪰ 0 holds. With the above derivation,
we can also get Bj,l − Lj,lDj,l ⪰ 0. Therefore, the estima-
tion error systems satisfy the conditions of Theorem 1. Ap-
plying Theorem 1, we know that (4) is an interval observer
for the positive FMJS (3).

Defining pj,l = zl, we can get

p̃j,l =
N∑
t=1

πltpj,t =
N∑
t=1

πltzt = z̃l, j = 1, 2 · · · s, l ∈ Ω.

From (17), one can obtain

LT
j,lz̃l =

n∑
σ=1

qσj,l. (19)

Combining the above equation with (15), (16), one can see
that

AT
j,lz̃l − CT

j,lL
T
j,lz̃l − zl + 1n ≺ 0,

BT
j,lz̃l −DT

j,lL
T
j,lz̃l − γ1nω

≺ 0,

which are equivalent to the following conditions

(Aj,l − Lj,lCj,l)
T p̃i,l − pj,l + 1n ≺ 0,

(Bj,l − Lj,lDj,l)
T p̃i,l − γ1nω

≺ 0.

Therefore, inequality (7) and (8) hold. By Theorem 2, one
can get that the error systems are stochastically stable and
satisfy ∥e∥l1 < γ∥ω − ω∥l1 , ∥e∥l1 < γ∥ω − ω∥l1 .

In order to achieve better results for interval estimation,
it is necessary to optimize γ. Use Theorem 3 to solve the
following optimization problem

min γ

s.t. (13) − (16).
(20)

4 A Numerical Example

Consider the following positive FMJS
Rule 1 : IF θ(k) is µ1, THEN{

x(k + 1) = A1,rkx(k) +B1,rkω(k),
y(k) = C1,rkx(k) +D1,rkω(k),

Rule 2 : IF θ(k) is µ2, THEN{
x(k + 1) = A2,rkx(k) +B2,rkω(k),
y(k) = C2,rkx(k) +D2,rkω(k),

where

A1,1 =

[
0.6 0.2
0.1 0.3

]
, A1,2 =

[
0.8 0.7
0 0.5

]
,

A2,1 =

[
0.4 0.1
0.5 0.3

]
, A2,2 =

[
0.2 0.8
0.4 0

]
,

B1,1 =

[
0.7
0.25

]
, B1,2 =

[
0.5
0.06

]
,

B2,1 =

[
0.5
0.3

]
, B2,2 =

[
0.5
0.7

]
,

C1,1 =
[
0.1 0.1

]
, C1,2 =

[
0.1 0.2

]
,

C2,1 =
[
0.2 0.4

]
, C2,2 =

[
0.2 0.1

]
,

D11 = 0.3, D12 = 0.4, D21 = 0.1, D22 = 0.2,

and the normalized membership functions are given as

h1(θ(k)) =
1 + sinx1(k)

2
, h2(θ(k)) =

1− sinx1(k)

2
.
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Fig. 1: Real state [x(k)]1 and its interval estimations.

Fig. 2: Real state [x(k)]2 and its interval estimations.

The transition probability matrix of the system is set to be

Λ =

[
0.4 0.6
0.5 0.5

]
.

By solving the optimization problem (20) together with The-
orem 3, one can compute the optimized l1-gain performance
γmin = 0.7176 and

L1,1 =

[
1.3863

0

]
, L1,2 =

[
1
0

]
, L2,1 =

[
0.25
0.75

]
, L2,2 =

[
1
0

]
.

Under Assumption 1-2, the disturbance input and its up-
per and lower bounds are assumed to be ω(k) = 0.4cos(k)+
0.2sin(5k) + 0.7, ω(k) = 0.4cos(k) + 0.9, ω(k) =
0.4cos(k) + 0.5, the initial state is set to be x(0) =
[1 0.7]T , and the initial estimations are chosen as x(0) =
[1.3 1.2]T , x(0) = [0.7 0.2]T .

Fig.1 and Fig.2 depict the trajectories of [x(k)]1 and its
interval estimation, and the trajectories of [x(k)]2 and its
interval estimation, respectively, which show that the pro-
posed interval observer can estimate the variation range of
the state in real time with satisfactory accuracy. Fig.3 and

Fig.4 show the trajectories of the upper bound error [e(k)]i
and the lower bound error [e(k)]i when ω(k) = 0, which
implies that the estimation error systems are stochastically
internally stable. Under the zero initial condition, one can
calculate that ∥e∥l1

∥ω−ω∥l1
= 0.6707 < 0.7176 and ∥e∥l1

∥ω−ω∥l1
=

0.6707 < 0.7176, which means that the estimation error sys-
tems satisfy the prescribed l1-gain performance γ.

Fig. 3: The trajectories of [e(k)]1 and [e(k)]2.

Fig. 4: The trajectories of [e(k)]1 and [e(k)]2.

5 Conclusion

In this paper, a general design method of fuzzy interval
observer has been proposed for positive FMJSs. The de-
sign conditions, which can ensure the interval estimation er-
ror systems to be positive and stochastically instable with
a given l1-gain performance, have been derived by using a
fuzzy-dependent linear co-positive Lyapunov function and
linear programming methods. A numerical example has
been given to validate the design method. In future, it would
be interesting to design interval observers for general FMJSs
with bounded disturbance input and to apply interval ob-
servers for fault detection issues.
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Abstract: This paper consider the robust covariance intersection fusion Kalman filtering problems for steady-state multi-sensor
systems with noise variances uncertainties. Based on the conservative upper bounds of noise variances, a fast sequential
covariance intersection (SCI) robust Kalman filter is presented, which only require solving the optimization of several
one-dimension nonlinear cost functions. And then the robust accuracy relations of these robust Kalman filters are proved. It is
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1 Introduction
It is well known that to compute the optimal weights

requires to know the cross-covariance among the local
Kalman filtering errors [1-3], however, in many practical
applications, the variances and cross-covariances of the
local filtering errors are unknown or uncertain, or the
computation of the cross-covariances is very complex and
difficult [4]. In order to overcome the above limitation, the
covariance intersection (CI) fusion method has been
presented in [5-7] and has been widely applied in many
fields, for example, the simultaneous localization and
mapping (SLAM) , remote sensing, rocket tracking ,
spacecraft estimation and vehicle localization and so on.
The CI fuser is obtained by the convex combination of the
local estimators, and it has the advantages that the fused
estimation problems can be solved for multisensor systems
with unknown variances and cross-covariances of local
filtering errors, and the computation of the
cross-covariances is completely avoided. However, its
disadvantage is that the conservative upper bounds of the
unknown local filtering error variances are assumed to be
known, i.e., the consistent estimation problem of the
unknown local filtering error variances was not solved.

Based on the batch processing method, the batch
covariance intersection (BCI) fusion Kalman filter with
exactly known model parameters and noise variances is
presented [8], which needs to solve the high-dimensional
nonlinear optimization problem, so that a larger
computation burden and higher complexity are required. In
order to reduce the computation burden and complexity, by
the sequential procession method, a sequential covariance
intersection (SCI) fusion Kalman filter is presented in [9] for
multisensor systems with noise variances to be known
exactly.
In this paper, we will focus on the covariance intersection

(CI) fused robust Kalman filtering for multisensor systems

*This work is supported by the Basic Scientific Research fee foundation
of Heilongjiang Provincial Colleges and Universities under Grant
2022-KYYWF-1040.

with uncertainties of noise variances, based on the classical
Kalman filtering method and the conservative upper bounds
of noise variances, the batch covariance intersection (BCI)
fusion robust Kalman filter is presented and its robustness is
proved. In order to reduce the complexity and computational
burden, a sequential covariance intersection (SCI) fusion
robust Kalman filter is proposed based on several recursive
two-sensor CI fusion robust Kalman filters, which only
requires to solve the optimization of several one-dimension
nonlinear cost function [10]. This paper also proves that the
robust accuracy of SCI fuser and BCI fuser are higher than
that of each local robust Kalman filter, so they have good
performance.
The optimal SCI fusion Kalman filter [11] for multisensor

system with exactly known noise variances is extended to
the robust SCI fusion Kalman filter for multisensor systems
with noise variances uncertainties. The deterministic
accuracy relations in [11] are extended to the robust
accuracy relations. The geometric interpretation of the
robust accuracy relations are given based on the variances
ellipses and a Monte-Carlo simulation example shows the
correctness of the proposed robust accuracy relations.

1.1 Problem Formulation

Consider the steady-state multi-sensor uncertain
system with noise variances uncertainties

     1x t x t w t    

      , 1, ,i i iy t H x t v t i L    

where t is the discrete time,   nx t R is the state, L is the

number of sensors,   im
iy t R is the measurement of the

thi subsystem,   rw t R is the input noise and   im
iv t R

is the measurement noise of the thi sensor.  ,  and iH
are known constant matrices with appropriate dimensions.
 is the state transition matrix,  is the input transition
matrix and iH stand for the measurement transition matrix.
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Assumption 1.  w t and  iv t are uncorrelated white
noises with zeros mean and unknown uncertain actual
variances Q and iR ,respectively.

 
      Τ 0

Ε
0j tk

i i ij

w t Q
w k v k

v t R



    

    
      



where E denotes the mathematical expectation operator, the
superscript T denotes the transpose. ij is the Kronecker 

function,  1, 0ii ij i j    .
Assumption 2. Q and iR are known conservative upper

bounds of Q and iR , respectively, i.e.
, i iQ Q R R   1, ,i L  

in the sense that A B means that 0B A  is a
semi-positive definite matrix.

2 The Robust BCI Fusion Kalman Filters
For the two-sensor uncertain systems with the

Assumptions 1-2, applying the CI fused algorithm [12], the
CI fusion robust steady-state Kalman filter with the
conservative upper bounds Q and iR of noise variances is
presented as following

       1 1
1 1 2 2ˆ ˆ ˆ| | 1 |CI CIx t t P P x t t P x t t       

 
11 1

1 21CIP P P 
        0,1 

where  ˆ |ix t t are the actual local robust Kalman filters, the
weight minimizes the cost function J as

   
  11 1

1 20,1 0,1
min min tr min tr 1CIJ P P P

 
 

 

 
      

where the symbol tr denotes the trace of matrix, for the
one-dimensional nonlinear cost function(7), the optimal
weight  can be obtained by gold section method or
Fibonacci method.

When the number of the sensor is larger than two,
i.e. 3L  . The batch covariance intersection (BCI) fusion
robust Kalman filter is presented by the convex combination
as
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which J can be obtained by “fimincon” function in Matlab.
This needs to solve a L dimensional nonlinear convex
optimization problem, so that the larger computational
burden is required.

The actual BCI fusion filtering error variance
   TE | |BCI BCI BCIP x t t x t t     is given by

1 1

1 1

L L

BCI BCI i i ij j j BCI
i j

P P P P P P  

 

 
  

 
 

  TT T
ij i ij j n i i n j jP P Q I K H             , i j

(12)

3 The Robust SCI Fusion Kalman Filters
In order to reduce the complexity and computational

burden, the sequential covariance intersection (SCI) robust
Kalman fuser is presented based on the 1L  two-sensor CI
fused robust Kalman filters, and it can be realized by a
recursive two-sensor CI fusers. Its structure is shown in
Fig.1.

Based on the two-sensor CI fused algorithm, the SCI
fusion robust steady-state filter with the conservative error
variances Q and iR is presented as follows

       

       

1
1 1

1
1 1

ˆ ˆ| |

ˆ1 |

CIi CIi i CI i CI i

i i i

x t t P P x t t

P x t t
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      1, , 1i L  

     1ˆ ˆ| |SCI CI Lx t t x t t   1SCI CI LP P  

     10ˆ ˆ| |CIx t t x t t   
1 1

10CIP P  

and the parameters i is determined by minimizing the
performance index J as

      11 1
110,1

min tr min tr 1
i i

CIi i i iCI iJ P P P
 

 


 


      

The optimization problem is equal to the 1L 
one-dimensional optimization problems (7).

Fig .1 The structure of the SCI fusion robust Kalman filters

4 The Robust Accuracy Analysis

Definition 1. The robust accuracy of a robust Kalman
filter is defined as the trace of a minimal or less-conservative
upper bound of its actual filtering error variances, while its
actual accuracy is defined as the trace of its actual filtering
error variance.
The local, BCI and SCI fused Kalman filters have the

robustness, and the actual and robust accuracies have
following relations.

1 1ˆ ,x P

2 2ˆ ,x P
1 1ˆ ,CI CIx P

3 3ˆ ,x P

ˆ ,L Lx P
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Theorem 1. The robust accuracy comparison of the
local and the fused Kalman filters is given by

, ,i i BCI BCI SCI SCIP P P P P P   

tr tri iP P  1, ,i L  
tr trBCI BCIP P  tr trSCI SCIP P 

tr trBCI iP P  1, ,i L  
tr trBCI SCIP P 

tr trSCI iP P  1, ,i L  
Proof. It is similar to the proof in [11], therefore omitted.
Remark 1. The accuracy relations (19) mean that for all

admissible uncertainties of variances satisfying (4), the
actual accuracies tr P , 1, , , ,L BCI SCI   of the local or
fused steady-state Kalman filter are globally controlled
by tr P , therefore the robust accuracy tr P is also called the
global accuracy of a robust Kalman filter. The robustness of
the local and fused filters means that the robust
accuracy tr P is independent of arbitrarily variances
satisfying (4).
Remark 2. Theorem 1 shows that iP is the minimal upper

bound of iP in the matrix inequality sense. tr BCIP is the
minimal upper bound of tr BCIP in the trace inequality sense.
From (21) and (22) yields that tr tr tr ,SCI SCI iP P P 

1, ,i L  , so that tr SCIP is a less-conservative upper bound

of tr SCIP . The smaller tr P (or tr P ) means the higher
robust (or actual) accuracy. From (19)-(22), we conclude
that the robust accuracy of the robust SCI fuser is higher
than that of each local robust Kalman filter, and the robust
accuracy of the BCI fuser is higher than that of the SCI fuser.
The actual accuracies of a robust Kalman filter are higher
than its robust accuracy for all admissible uncertainties.

5 Sensitivity Problem

For the SCI fusion robust Kalman filter, the fused
schemes are different with respect to different orders of
sensors. For example, in the case with 3L  , there are three
fused structure as shown in Fig.2, the problem is that
whether the SCI fused robust accuracy is sensitive with
respect to the fused orders of sensors. The following two
sensor simulation examples will show that the robust
accuracy of the SCI fuser is not very sensitive with respect
to the orders of the sensors.

(a) The order 1: SCI123

(b) The order 2: SCI132

(c) The order 3: SCI231

Fig.2 the fused orders of the SCI fusers in the 3L  case

6 Simulation Examples

Consider a 3-sensor tracking system with noise
variances uncertainty

     1x t x t w t    

      , 1, 2,3i i iy t H x t v t i   
2

0 0

0

1 0.5
,

0 1
T

T


 
  

    
   



 1 1 0H   2 2H I   3 1 0H  

where 0 0.25T  is the sampled period,

      T
1 2,x t x t x t    is the state,  1x t and  2x t are the

position and velocity of target at time 0tT .  iy t is the

measurement,  w t and  iv t are independent Gaussion

white noises with zero mean and unknown variances Q and

iR respectively, Q and iR are conservative upper bounds of
Q and iR satisfying , i iQ Q R R  . In the simulation, we
take 1Q  , 0.8Q  , 1 0.8R  , 1 0.65R  ,

2 (8,0.36)R diag , 2 (6,0.25)R diag , 3 0.5R  ,

3 0.45R  .
The robust and actual accuracy comparisons are shown in

Table 1. From Table1, we see that the SCI fused robust
accuracy 123tr SCIP , 132tr SCIP and 321tr SCIP are close or equal to the
BCI fused robust accuracy tr BCIP , and the accuracy of the
SCI fuser is not very sensitive with respect to the orders of
sensor, and we also see that the actual accuracy of the SCI
fuser 123tr SCIP , 132tr SCIP and 321tr SCIP are close to or equal to the
actual accuracy of the BCI fuser tr BCIP , they are all higher

1 1ˆ ,x P

2 2ˆ ,x P
1 1ˆ ,CI CIx P

3 3ˆ ,x P 123 123ˆ ,SCI SCIx P

1 1ˆ ,x P

3 3ˆ ,x P
1 1ˆ ,CI CIx P

2 2ˆ ,x P 132 132ˆ ,SCI SCIx P

2 2ˆ ,x P

3 3ˆ ,x P

1 1ˆ ,x P
231 231ˆ ,SCI SCIx P

1 1ˆ ,CI CIx P
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than the robust accuracy of each local filter, which verify the
steady-state robust and actual accuracy relations (19)-(22).

Table 1. The robust accuracy comparison of local and fused

steady-state Kalman filters

1trP 2trP 3trP tr BCIP

0.5538 0.5245 0.4390 0.3602

1tr P 2tr P 3tr P tr BCIP

0.4465 0.3815 0.3723 0.1717

123tr SCIP 132tr SCIP 231tr SCIP

0.3971 0.3648 0.3648

123tr SCIP 132tr SCIP 231tr SCIP

0.1759 0.1795 0.1795

In order to give a geometric interpretation of the
accuracy relations, the accuracy comparison of the
covariance ellipses is shown in Fig 3-5. From Fig 3-5, we
see that the ellipses of the actual variances iP  1,2,3i  are
enclosed in that of the conservative variances iP ,
respectively, which verify the robustness (18). The ellipse of
actual BCI and SCI fused variance BCIP and SCIiP

 123,i  132,231 is respectively enclosed in that
of BCIP and SCIiP , which verifies the robustness (18).
Moreover, we see that the ellipse of BCIP is close to or equal
to SCIiP , the robust ellipse of BCIP is close to or equal to SCIiP ,
which means that the robust accuracy of the SCI fuser are
close to that of the BCI fuser.

Fig.3 The accuracy comparison of iP , 1,2,3, 123,i SCI BCI

Fig.4 The accuracy comparison of iP , 1,2,3, 132,i SCI BCI

Fig.5 The accuracy comparison of iP , 1,2,3, 231,i SCI BCI

In order to verify the above theoretical accuracy
relations, taking 200N  runs, the mean square error
(MSE) curves of the local and fused robust Kalman filters
are shown in Fig.6. From Fig.6, we see that when t is
sufficiently large, we have the accuracy relations

 MSE tri it P  1,2,3, ,i BCI SCI 

and the curves of  MSE i t are close to the straight lines

corresponding to tr iP , which verifies the robust accuracy
relations (19)-(22).
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Fig.6 The comparison of
 MSE i t and tr iP , 1,2,3, 123, 132, 231,i SCI SCI SCI BCI

7 Conclusions

A minimax robust estimation approach of designing the
robust local, BCI and SCI fused Kalman filters has been
presented for the multisensor system with uncertain noise
variances. Its basic principle is that for the worst-case
conservative system with the upper bounds of noise
variances, under the unbiased linear minimum variance
(ULMV) optimal estimation rule, the conservative local,
BCI and SCI fused steady-state Kalman filters with the
unavailable conservative measurements were presented.
They have the robustness such that their actual filtering error
variances or the traces of the variances are guaranteed to
have a minimal or less-conservative upper bound.
The concepts of the robustness, robust and actual

accuracy have been presented. The robust accuracy relations
of the local and fused Kalman filters are proved. It is proved
that the robust accuracy of the SCI fuser is lower than that of

the BCI fuser, and is higher than that of each local robust
Kalman filter.
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Abstract: Due to the unreliability of communication channels, a packet may be delayed even lost during the transmission.
At each moment, the data processing center may receive one or multiple data packets or nothing at all. Therefore, this paper
investigates the filters which are applied to uncertain singular system with d-step random transmission delays and packet dropout.
Applying the singular value decomposition (SVD) method and the fictitious noise approach, the original singular system is
transformed to new standard system only with fictitious noises. Further, the time-varying filters of original state for the singular
system are obtained according to the relations of the new and original system. A simulation example about circuits system
verifies the correctness and effectiveness of the proposed results.

Key Words: singular system, packet dropout, random transmission delay, Kalman filter

1 Introduction

State estimation [1], also known as filtering, is a funda-
mental problem in control system theory. Given its impor-
tance, state estimation has been extensively studied in the
last few decades. Wiener filtering and Kalman filtering [2]
are two important ways to solve the optimal filtering prob-
lem. Kalman filter is an algorithm that uses the state equation
of linear system to optimally estimate the state of the system
through the system input and output observation data. Due to
its recursive structure and good performance, Kalma filtering
has been one of the most popular and widely used method,
and is applied in many fields such as communication, navi-
gation, guidance, and control.

Singular system [3], also known as descriptor system, is
regarded as one of the effective tools for describing real sys-
tems. Singular systems are closer to the practical applica-
tions, and after years of development, singular systems have
become a popular research direction and an important branch
of theory. It is more widely used in the singular perturba-
tion systems, electronic network systems, decision systems,
complex large-scale systems, etc. Singular systems have
wide applications, including in circuits and systems, because
singular systems are more suitable for describing large and
complex systems. The state estimation problems of the sin-
gular systems have received great attention in the last few
years.

Singular systems, because of their inherent characteristics,
result in the fact that many methods and approaches dealing
with normal state space models cannot be directly used in
singular systems. This makes the problem of state estimation
for singular systems more complex and has also received ex-
tensive attention. However, the development of theoretical
studies of singular systems is based on the theory of stan-
dard systems. In [4], for the linear stochastic singular system
with multiplicative noise and colored additive noises, the op-
timal time-varying Kalman filtering and prediction problems
are addressed. In [5], for the multisensor descriptor systems,
three optimal fused descriptor Kalman estimators weighted
by block diagonal matrices are given by three different rules

to determine the diagonal matrices. The development of the-
oretical studies of singular systems is based on the theory of
standard systems. The main methods of transforming sin-
gular systems into standard normal systems include the sin-
gular value decomposition (SVD) method by converting the
descriptor system into a reduced-order standard system, and
full-order estimation method based on the maximum likeli-
hood (ML) estimation method [6]. In this paper, the reduced
order filtering method based on singular value decomposi-
tion (SVD) is used to deal with the filtering problem of sin-
gular system.

In recent years, the problem of estimation in networked
control systems and sensor networks has attracted much at-
tention due to its wide range of applications in sensor local-
ization [7], signal processing and control. As we all know,
the random transmission delays and packet dropouts occur
inevitably during data transmission through communication
networks due to the limited communication bandwidth or
network congestion. Thus, it is particularly important to
consider the impact of this uncertainty on practical engineer-
ing applications [8]. For systems with both random delays
and packet losses, some estimators have been presented. In
Ref. [9], distributed fusion filters are proposed for sensor
networks with transmission delay and packet dropout com-
pensation and with fading measurements. In Ref. [10], re-
cursive distributed fusion estimation for multi-sensor sys-
tems with multiple random transmission delays and packet
dropouts. Due to random delays and packet losses, one or
more packets may, or may not, reach the data processing cen-
ter at each moment. In this paper, assume that the sampling
and sending rates of the sensor and the receiving rate of the
filter are synchronous and clock driven. In order to avoid
network congestion, the packet is sent over the network to
the data processing center only once at each moment, and
thus a packet can be received at most once. This is a much
more common situation in networked systems, and by using
a set of Bernoulli distributed random variables, a new model
is developed to describe these phenomena.

The structure of this paper is organized as follows. In
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Section 2, a singular system is proposed and take Bernoulli
variables to describe d-step random transmission delay and
packet dropout. In Section 3, the new reduced order sin-
gular standard state space model is obtained. In Section 4,
we present the time-varying filtering algorithm for the new
model. In Section 5, a simulation example about circuits
system is provided. Finally, the conclusion is given.

2 Problem Formulation

Consider a linear stochastic uncertain singular system
with d step transmission delay and packet dropout:

Mx (k + 1) = Φx (k) + Γw (k) , (1)
z (k) = Hx (k) + v (k) , (2)

where x(k) ∈ Rn is the system state, w(k) ∈ Rr and v(k)
∈ Rm are the process noise and measurement noise respec-
tively, z(k) ∈ Rm is the measurement output to be transmit-
ted to the filter through networks, M , Φ and Γ are known
constant matrices which have suitable dimensions.

Assume that the sampling and sending rates of the sensor
and the receiving rate of the filter are synchronous and clock
driven. There exist the bounded d-step transmission delay
and possible consecutive packet dropout during data trans-
mission from the sensor to the filter through the network.
The idea of d-step transmission delay is similar to the Rice
fading, and both mean that the controller/filter can receive
the measured data transmitted d times before. Unlike Rice
fading, the measured datas received by the filter in this arti-
cle are constant, and their probability density function do not
follow the Rice distribution. In addition, any packet whose
transmission delays are more than d steps is considered as
being lost. To avoid network congestion, packets on the sen-
sor side are sent only once at a time. Then, the following
model for the measurements received by the filter is adopted:

y (k) =


ζ0 (k) z (k)

(1− ζ0 (k − 1)) ζ1 (k) z (k − 1)
...

d−1∏
i=0

(1− ζi (k − d+ i)) ζd (k) z (k − d)

 ,
(3)

where ζi(k), i = 0, 1, ..., d are mutually uncorre-
lated Bernoulli random variables with known probabili-
ties, and are uncorrelated with other random variables, i.e.,
Prob {ζi (k) = 1} = αi, Prob {ζi (k) = 0} = 1 − αi,
0 ⩽ αi ⩽ 1, i = 0, 1, ..., d, where the notation ”Prob” de-
notes the probability, ”E” presentes the expectation of ran-
dom variables.
Remark 1.Model (3) describes the random d-step trans-

mission delays and multiple packet losses in networked sys-

tems, in which the packet losses can be consecutive. To fur-
ther clarify the model, Table 1 shows the data transmission
case for d = 2. From Table 1, it is observed that z(3) and
z(5) are lost, z(1), z(2), z(7), z(8) and z(10) are received
on time, z(4) and z(9) are received with one-step delay, z(6)
is received with two-step delay. In addition, the estimator re-
ceives no data packet at k = 3, k = 4, k = 6 and k = 9,
and one data packet at k = 1, k = 2, k = 5 and k = 7, two
data packets at k = 8 and k = 10. When the estimator does
not receive any data, the measurement values are set to zero
automatically. The data information in each packet comes
from different times, so the estimator cannot add up the re-
ceived data. Thus, model (3) can describe the phenomena
of random transmission delays and packet losses in the net-
worked systems. Furthermore, multiple packets may arrive
at the data processing center at the same time.

Remark 2. For the model (3), using the probability dis-
tribution, it is easily obtained that the on-time reception rate
of a packet is p0 = Prob{ζ0 (k) = 1} = α0, the i-step delay

rate is pi =
i−1∏
k=0

(1 − αk)αi, 1 ⩽ i ⩽ d and the packet loss

rate is σ = 1−
i∑

k=0

pk, i = 1, 2, ..., d.

The following Assumptions are adopted throughout the
whole text.

Assumption 1. M is a singular matrix, rank (M) = n1,
n1 < n, and the system is regular,

detM = 0, (4)

where ”det” and ”rank” denote determinant and rank of the
matrix.

Assumption 2. The system is completely observable,
for arbitrary complex number s,

rank

[
sM − Φ
H

]
= n, rank

[
M
H

]
= n. (5)

Assumption 3. w(k) and v(k) are uncorrelated white
noises with zero means, and their variances are R and Q.
Assumption 4. The initial state x(0) are uncorrelated

with w(k), v(k), and ζi(k), i = 0, 1, ..., d and E[x(0)] = µ0

and covariance matrices E[(x(0) − µ0)(x(0) − µ0)
T] = P0,

where "T" denotes matrix transpose.
3 The New State Space Model

Based on Assumption 1 and Assumption 3, the matrix
M is a sigular matrix. Applying singular value decompo-
sition (SVD) method to the state space model, there are non-
singular matrices V and U such that

VMU =

[
M1 0
M2 0

]
. (6)

Table 1: Data transmission in network

k 1 2 3 4 5 6 7 8 9 10

ζ0(k) 1 1 0 0 0 0 1 1 0 1
ζ1 (k) 0 0 0 0 1 0 0 0 0 1
ζ2 (k) 0 0 0 0 0 0 0 1 0 0

y(k)

z(1)0
0

 z(2)0
0

 00
0

 00
0

  0
z(4)
0

 00
0

 z(7)0
0

 z(8)0
z(6)

 00
0

 z(10)z(9)
0
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Define

V ΦU =

[
Φ11 0
Φ21 Φ22

]
, V Γ =

[
Γ1

Γ2

]
,HU =

[
H1 H2

]
.

(7)
Then there exists

x (k) = U
[
xT1 (k) xT2 (k)

]T
, (8)

where the reduced-order state x1(k)∈Rn1 and x2(k)∈Rn2 ,
n1+n2=n. From (1), (2), (7) and (8), the new structure of
system (1) and (2) can be obtained as follows:[
M1 0
M2 0

] [
x1 (k + 1)
x2 (k + 1)

]
=

[
Φ11 0
Φ21 Φ22

] [
x1 (k)
x2 (k)

]
+

[
Γ1

Γ2

]
w (k) , (9)

z (k) = H1x1 (k) +H2x2 (k) + v (k) . (10)

Then, from (7), (8) and assuming that Φ22 is non-singular,
(9) can be rewritten as

x1 (k + 1) =M−1
1 Φ11x1 (k) +M−1

1 Φ12x2 (k)

+M−1
1 Γ1w (k) , (11)

x2 (k) = Bxx1 (k) +Bww (k) , (12)

with

Bx = Φ−1
22

(
M2M

−1
1 Φ11 − Φ21

)
,

Bw = Φ−1
22

(
M2M

−1
1 Γ1 − Γ2

)
. (13)

Substituting (12) into (10) and (11) yields the new reduced
order state space model

x1 (k + 1) = Axx1 (k) + Γww (k) , (14)

z (k) = Hxx1 (k) +Hww (k) + v (k) , (15)

where

Ax =M−1
1 Φ11, Γw =M−1

1 Γ1, (16)
Hx = H1 +H2Bx,Hw = H2Bw. (17)

In order to avoid the complicated derivation, we introduce
some new variables as follows.

Define ζ̃i (k) as

ζ̃i (k) = ζi (k)− αi, i = 0, 1, · · · , d, (18)

and using (18) we can easily have

E
[
ζ̃i (k)

]
= 0,E

[
ζ̃2i (k)

]
= αi (1− αi) . (19)

Define

zal (k) =
l−1∏
i=0

(1− ζi (k + i)) z (k) , l = 1, 2, . . . , d, (20)

then we have that

za1 (k) = (1− ζ0 (k)) z (k)

= (1− ζ0 (k))Hxx1 (k) + (1− ζ0 (k))Hww (k)

+ (1− ζ0 (k)) v (k) ,

za2 (k − 1) = (1− ζ0 (k − 1)) (1− ζ1 (k)) z (k − 1)

= (1− ζ1 (k)) za1 (k − 1) ,

...
zad (k − d+ 1) = (1− ζd−1 (k)) za(d−1) (k − d+ 1) .

(21)

Substituting (18) and (21) into (3) yields

y (k) =


ζ0 (k) z (k)

ζ1 (k) za1 (k − 1)
...

ζd (k) zad (k − d)

 =


α0Hxx1 (k) + ζ̃0 (k)Hxx1 (k) + ζ0 (k)Hww (k) + ζ0 (k) v (k)

α1za1 (k − 1) + ζ̃1 (k) za1 (k − 1)
...

αdzad (k − d) + ζ̃d (k) zad (k − d)

 . (22)

Define the new argumented state and noise as

xa (k) =
[
xT1 (k) zTa1 (k − 1) · · · zTad (k − d)

]T
,

va (k) = J1 (k)xa (k) + ζ0 (k) J2w1 (k) ,

w1 (k) =
[
wT (k) vT (k)

]T
, (23)

with

J1 (k) = diag
(
ζ̃0 (k)Hx, ζ̃1 (k) Im, · · · , ζ̃d (k) Im

)
,

J2 =

[
HT
w 0 · · · 0

Im 0 · · · 0

]T
. (24)

From (23) and (24), the measurement y(k) given by (22) can

be rewritten as

y (k) = Haxa (k) + va (k) , (25)

with

Ha =


α0Hx 0 · · · 0
0 α1Im · · · 0
...

...
. . .

...
0 0 · · · αdIm

 . (26)

From (13), (21) and the augmented state xa(k) as in (23),
the new augmented state equation can be rewritten as
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x1 (k + 1)
za1 (k)

za2 (k − 1)
...

zad (k − d+ 1)

 =


Axx1 (k) + Γww (k)

(1− α0)Hxx1 (k)− ζ̃0 (k)Hxx1 (k) + (1− ζ0 (k)) (Hww (k) + v (k))

(1− α1) za1 (k − 1)− ζ̃1 (k) za1 (k − 1)
...

(1− αd−1) za(d−1) (k − d+ 1)− ζ̃d−1 (k) za(d−1) (k − d+ 1)

 . (27)

Define

Φa =


Ax · · · 0 0

(1− α0)Hx · · · 0 0
...

. . .
...

...
0 · · · (1− αd−1) Im 0

 ,

wa (k) = J3 (k)xa (k) + (1− ζ0 (k)) J4w1 (k)

+ ζ0 (k) J5w1 (k) ,

J3 (k) =


0 · · · 0 0

−ζ̃0 (k)Hx · · · 0 0
...

. . .
...

...
0 · · · −ζ̃d−1 (k) Im 0

 ,

J4 =

[
ΓT
w HT

w 0 · · · 0
0 Im 0 · · · 0

]T
,

J5 =

[
ΓT
w 0 0 · · · 0
0 0 0 · · · 0

]T
. (28)

From (27) and (28), the new augmented state space model
is obtained as

xa (k + 1) = Φaxa (k) + wa (k) . (29)

From (25) and (29), the standard state space model is re-
builded with correlated fictitution noises. Then the follow-
ing key work is to obtain the variance and cross-variance of
wa(k) and va(k).
Theorem 1. For the system (29) with Assumptions 3,

the state second-order moment Xa(k) = E[xa(k)x
T
a (k)]

satisfies the following recursive Lyapunov equation:

Xa (k + 1) = ΦaXa (k)Φ
T
a + α0 (1− α0) Je1Xa (k) J

T
e1

+
d−1∑
t=1

αt (1− αt)Ct+1Xa (k)C
T
t+1

+ (1− α0) J4QW1J
T
4 + α0J5QW1J

T
5 . (30)

with

Je1 =

[
0 −HT

x 0 · · · 0
0

]T
,

Ct = diag (0, · · · ,−Im, · · · , 0) , (31)

where the −Im in Ct is the (t + 1)th row block and tth col-
umn block of J3(k), t = 2, 3, · · · , d.
Proof . Using QW1 = E[w1(k)w

T
1 (k)], we can obtain

that

QW1 = diag (R,Q) . (32)

Based on (31), the stochastic parameter matrix J3(k) can be
rewritten as

J3 (k) = ζ̃0 (k) Je1 +
d−1∑
t=1

ζ̃t (k)Ct+1, (33)

Substituting (33) into wa(k) as in (28), we can obtain that

wa (k) =ζ̃0 (k) Je1xa (k) +
d−1∑
t=1

ζ̃t (k)Ct+1xa (k)

+ (1− ζ0 (k)) J4w1 (k) + ζ0 (k) J5w1 (k) .
(34)

Substituting (34) into (29), there is

xa (k + 1) =Φaxa (k) + (1− ζ0 (k)) J4w1 (k)

+
d−1∑
t=1

ζ̃t (k)Ct+1xa (k) + ζ̃0 (k) Je1xa (k)

+ζ0 (k) J5w1 (k) . (35)

Since xa(k), w1(k) and ζ̃t(k)(t = 0, 1, · · · , d) are uncorre-
lated with each other, and w1(k), ζ̃t(k)(t = 0, 1, · · · , d) are
white noise with varianceQW1, αt(1−αt), t = 0, 1, · · · , d.
Using (35) and Xa(k + 1) = E[xa(k + 1)xTa (k + 1)] yield
(30). This proof is completed.

Based on Theorem 1 and (34), it is easily obtained
QW (k) = E[wa(k)w

T
a (k)] as follows:

QW (k) =α0 (1− α0) Je1Xa (k) J
T
e1 + α0J5QW1J

T
5

+
d−1∑
t=1

αt (1− αt)Ct+1Xa (k)C
T
t+1

+ (1− α0) J4QW1J
T
4 . (36)

Similar to J3(k) in (33), the stochastic parameter matrix
J1(k) in (24) can be rewritten as

J1 (k) = ζ̃0 (k) Je2 +
d∑
l=1

ζ̃l (k)Cl+1, (37)

with

Je2 = diag (Hx, 0, · · · , 0) ,
Cl = diag (0, · · · , Im, · · · , 0) , (38)

where the Im in Cl is the lth row block and lth column block
of J1(k), l = 2, 3, · · · , d+ 1.

Substituting (38) into va(k) as in (23), we can obtain that

va (k) =ζ̃0 (k) Je2xa (k) +
d∑
l=1

ζ̃l (k)Cl+1xa (k)

+ ζ0 (k) J2w1 (k) . (39)
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Since xa(k), w1(k) and ζ̃t(k)(t = 0, 1, · · · , d) are un-
correlated with each other. Using (39) and QV (k)= E[va(k)
vTa (k)], yields

QV (k) =α0 (1− α0) Je2Xa (k) J
T
e2 + α0J2QW1J

T
2

+
d∑
l=1

αl (1− αl)Cl+1Xa (k)C
T
l+1. (40)

Then using SWV (k)=E[wa(k)vTa (k)], we can obtain

SWV (k) =α0 (1− α0) Je1Xa (k) J
T
e2 + α0J5QW1J

T
2

+
d−1∑
t=1

αt (1− αt)Ct+1Xa (k)C
T
t+1. (41)

4 The Time-varying filter for the Singular System

In this section, we derive the linear time-varying filter for
the singular system (1) - (3).

Theorem 2. Under Assumptions 1-4, the time-varying
filter for singular system (1) - (3) could be obtained as

x̂ (k|k) = U01x̂a (k|k) + U02ŵa (k|k) , (42)
x̂a (k|k) = Φax̂a (k − 1|k − 1) +K (k) ε (k) , (43)

ŵa (k|k) = Kw (k) ε (k) , (44)

Kw (k) = SWV (k)Q−1
ε (k) , (45)

ε (k) = y (k)−HaΦax̂a (k − 1|k − 1) , (46)

K (k) = P (k|k − 1)HT
a Q

−1
ε (k) , (47)

Qε (k) = HaP (k|k − 1)HT
a +QV (k) , (48)

P (k|k) =ΦaP (k − 1|k − 1)ΦT
a +QW (k − 1)

−K (k)HaΦaP (k − 1|k − 1)ΦT
a

−K (k)HaQW (k − 1) , (49)

Pwa (k|k) =Kw (k)QV (k)KT
w (k)−Kw (k)ST

WV (k)

+Kw (k)HaP (k|k − 1)HT
a K

T
w (k)

+QW (k)− SWV (k)KT
w (k) , (50)

and the filtering error variance is given as

Px (k|k) =U01P (k|k)UT
01 + U02Pwa (k)U

T
02

− U01K (k)ST
WV (k)UT

02

− U02SWV (k)KT (k)UT
01, (51)

where

U01 = U

[
In1 (0)n1×m (0)n1×m
Bx (0)r×m (0)r×m

]
,

U02 = U

[
(0)n1×r (0)n1×m (0)n1×m
Bw (0)r×m (0)r×m

]
, (52)

QW (k) and SWV (k) is presented by (36) and (41).
Proof . Applying projection theory, we easily have

x̂a (k|k) =E
{
xa (k) ε

T (k)
} [

E
{
ε (k) εT (k)

}]−1
ε (k)

+ Φax̂a (k − 1|k − 1) , (53)

ŵa (k|k) =E
{
wa (k) ε

T (k)
} [

E
{
ε (k) εT (k)

}]−1
ε (k)

+ ŵa (k|k − 1) . (54)

The innovation variance Qε(k), the gain matrix K(k) and
Kw(k) are defined as

Qε (k) = E
[
ε (k) εT (k)

]
, (55)

K (k) = E
[
xa (k) ε

T (k)
]
Q−1
ε , (56)

Kw (k) = E
[
wa (k) ε

T (k)
]
Q−1
ε . (57)

Then, substituting ŵa(k|k− 1) = 0, (55), (56) and (57) into
(53) and (54) leads to (43) and (44).

From the definition of the innovation, it follows that

ε (k) = y (k)− ŷ (k|k − 1) = y (k)−Hax̂a (k|k − 1) .
(58)

Substituting x̂a (k|k − 1) = Φax̂a (k − 1|k − 1) into (58)
yields (46). Since x̃a(k|k − 1), x̂a(k|k − 1) and va(k) are
uncorrelated with each other. Substituting (25) and (58) into
(55) yields (48). Then substituting (48) into (56) and (57)
yields (47) and (45).

The filtering and prediction error are given as x̃a(k|k) =
xa(k) − x̂a(k|k) and x̃a(k|k − 1) = xa(k) − x̂a(k|k −
1). Since x̃a(k|k) is uncorrelated with wa(k). Applying
P (k|k)= E[x̃a(k|k) x̃Ta (k|k)] and P (k|k− 1)=E[x̃a(k|k−
1)x̃Ta (k|k − 1)] can obtain

P (k|k − 1) = ΦaP (k − 1|k − 1)ΦT
a +QW (k − 1) ,

(59)

P (k|k) = P (k|k − 1) +K (k)HaP (k|k − 1)HT
a K

T (k)

− P (k|k − 1)HT
a K

T (k)−K (k)HaP (k|k − 1)

+K (k)QV (k)KT (k) . (60)

Substituting (59) into (60) yiels (49). Since x̃a(k|k − 1)
is uncorrelated with wa(k) and va(k), using (44), (46) and
Pwa(k|k) = E[w̃a(k|k)w̃T

a (k|k)] yields (50).
From the definitions of xa(k) and wa(k) could obtain that

x1 (k) =
[
In1 (0)n1×m (0)n1×m

]
xa (k) ,

w (k) =
[
Ir (0)r×m

]
wa (k) . (61)

From (12), (8) could deduce that

x (k) = U01xa (k) + U02wa (k) , (62)

where U01 and U02 is defined as (52). Substituting (61) into
(62) and taking projection yields (42). Subtracting (42) from
(62), the filtering error of (42) is given as

x̃ (k|k) = x (k)− x̂ (k|k) = U01x̃a (k|k) + U02w̃a (k) .

(63)

Therefore, we can obtain (51) with Px(k|k) =
E[x̃(k|k)x̃T(k|k)], i.e.,

Px (k|k) =E
[
U01x̃a (k|k) x̃Ta (k|k)UT

01

]
+ E

[
U02w̃a (k) w̃

T
a (k)UT

02

]
+ E

[
U01x̃a (k|k) w̃T

a (k)UT
02

]
+ E

[
U02w̃a (k) x̃

T
a (k|k)UT

01

]
. (64)
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Since wa(k) is uncorrelated with xa(k) and x̂a (k|k − 1),
x̃a(k|k) is uncorrelated with ŵa(k|k). Using (44) and (58),
Pxw(k|k) = E

[
U01x̃a (k|k) w̃T

a (k)UT
02

]
can be rewritten

as

Pxw (k|k) = E
[
U01x̃a (k|k) (wa (k)− ŵa (k|k))T UT

02

]
= E

[
U01x̃a (k|k)wT

a (k)UT
02

]
= E

[
U01 (xa (k)− x̂a (k|k))wT

a (k)UT
02

]
= −E

[
U01K (k) va (k)w

T
a (k)UT

02

]
= −U01K (k)ST

WV (k)UT
02. (65)

Substituting (65) into (64) yields (51). This proof is com-
pleted.
Corollary Under assumptions 3 and 4, it is assumed

that the system (1)-(3) is observable and controllable. Ha,
Q−1
V (k) and Φa are bounded. Take any two different

initial values x̂(i)(0|0) and P (i)(0|0) (i = 1, 2) of the
Kalman filter. If the observation datas y(k) of the filter are
bounded, then the Kalman filter is asymptotically stable, i.e.,
∥x̂(1)(k|k)− x̂(2)(k|k)∥→ 0, t→ ∞.

5 Simulation Example

Taking the circuits system presented in reference [5] into
consideration. Define the state x(k) = [ue1(k),ue2(k),i1
(k), i2(k)]

T, the symbol ue(k) represents the voltage source
which is considered as the control input at time k, i(k) is
the electric current of the voltage and the amperage of the
currents flowing over it. w(k) and v(k) are the white noise
with zero means and variance Rw,Qv .

According to the Euler’s approximation, we can get that
the state space model (1)-(3) have parameter matrices as

Γ =
[
0 0 0 −1

]T
,H =

[
0 1 0 0

]
, (66)

M =


C1 0 0 0
0 C2 0 0
0 0 −L 0
0 0 0 0

 , D =


0 0 0 1
0 0 1 0
−1 1 0 0
1 0 R R

 ,
(67)

Φ =M + T0D. (68)

In simulation, we take ue(k) = 0, R = 4Ω, C1 = 2mF,
C2 = 4mF, L = 1mH, Rw = 0.6. Qv = 2.22, T0 = 0.09
and α0 = α1 = α2 = 0.9, d = 2. The simulation results are
shown in Fig.1 and Fig.2.

Fig.1 gives the curves of time-varying filter x̂3(k|k) of
the x3(k). From Fig.1, the every component of time-varying
filter can effectively follow the true state component x3(k).
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Fig. 1: State curves of x3 (k) and x̂3 (k|k).

Taking ρ = 100 Monte Carlo simulation runs. The mean
square error curves is shown in Fig.2. In Fig.2, MSE(k|k)
respresents the mean squared error of time-varying filter,
trP (k|k) denotes the trace of the filtering error variance.
From this figure, the effectiveness of the presented algorithm
in this paper is shown.
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Fig. 2: MSE curves of time-varying filter.

6 Conclusion

In this paper, the time-varying filtering problem has been
solved for the uncertain singular system with d-step random
transmission delays and packet dropout. A new standard
system is presented by using singular value decomposition
(SVD) approach and the fictitious noise approach. Then
based on this system, the time-varying filters are presented.
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Abstract: To increase the control method diversity of permanent magnet synchronous motor (PMSM) servo control system, and 

improve the dynamic response performance of speed and anti-disturbance ability, this paper proposes a control method for 

PMSM based on fully actuated systems theory (FAST) and applies it to the speed control of PMSM. After analyzing the 

mathematical model of PMSM satisfies with fully actuated characteristic, the fully actuated control method applied to PMSM is 

proposed according to FAST, the feedback controller and compensation controller are designed respectively. The eigenvalues of 

the pole assignment matrix of the system are set to conjugate form, and the effects of the real and imaginary parts of the conjugate 

eigenvalues on the performance of the control system are verified by simulation. Compared with PI control and sliding mode 

control for different time-varying disturbances, simulation results show that the proposed method has high design flexibility and 
strong robustness. 

Key Words: Fully actuated systems theory, Permanent magnet synchronous motor, Speed control, Controller design 

1 Introduction 

Permanent magnet synchronous motor (PMSM) has the 

characteristics of high power factor, small size, high 

reliability and low vibration noise. It is widely used in 

intelligent manufacturing, CNC machine tools, new energy 

vehicles, energy generation and aerospace. For PMSM 

vector control, the traditional control method is PI control, 

its design is simple and can be effectively applied to 

practical engineering. Since PMSM models have strong 

coupling, nonlinear, easy to be affected by parameter 

perturbation and external disturbance, PI control cannot 

achieve high precision anti-disturbance performance. 

With more applications of PMSM, high-performance 

PMSM control methods are urgently needed. At present, the 

modern control theory methods applied to PMSM include 

sliding mode variable structure control, active disturbance 

rejection control, predictive control and so on. Sliding mode 

control (SMC) improves the anti-disturbance performance 

and control accuracy of the system, but it has some 

shortcomings such as controller chattering and less smooth 

convergence process. Active disturbance rejection control 

has good control performance for PMSM parameter 

perturbation and load variation, but the differentiator 

controller will be affected by noise and has shortcomings in 

time response. A PI controller parameter self-tuning and 

optimization method based on the combination of model and 

rule was proposed in [1] to address the issue wherein the PI 

controller parameter self-tuning depends on the accuracy of 

motor parameters and system model. An adaptive sliding 

mode control method based on neural networks for PMSM 

was introduced in [2]. Combining the advantages of sliding 

mode control and neural networks, this method has excellent 
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dynamic performance and robustness. A fast super twisting 

sliding mode control for PMSM was proposed in [3], which 

address the shortcomings of the classical super twisting 

algorithm, such as slow convergence speed and the 

dependency on disturbance boundary information for 

parameter selection. A model-free predictive current control 

was mentioned in [4], which established a super-local model 

of PMSM and combined model predictive control with 

model-free control. The traditional control method and 

optimal control algorithm are combined in the above 

research, achieving good results of PMSM control. 

Duan[5] proposed a parameterization high-order fully 

actuated control method, and introduced a method to 

transform nonlinear systems into pseudo-linear systems. The 

feedback control law of pseudo-linear systems was designed, 

so that nonlinear closed-loop systems were transformed into 

time-invariant linear systems with specific structures. 

Controllers for linear and nonlinear parts of the physical 

model of the controlled system are designed separately, 

which reduced the difficulty of designing control commands 

and ensured the integrity of the physical model. Parameter 

design method can configure the system’s degree of freedom, 

and design the characteristic polynomial matrix of the 

closed-loop system to achieve the desired performance, 

meeting the requirements of system control performance. A 

method of pseudo-linearization for nonlinear systems was 

proposed by Duan[7], which directly transformed them into 

linear time-invariant systems. This transformation offered 

high design flexibility and the capability to autonomously 

configure the closed-loop poles of the system. A fully 

actuated control system approach was applied in [9], 

tackling the attitude control problem of a flexible spacecraft. 
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the guidance control system in intercepting highly 

maneuverable targets during sliding-turn missile 

interception was proposed in [10], combining the fully 

actuated systems with backstepping methods. A parameter-

adaptive synchronous control strategy was introduced in [11] 

within the context of hydraulic machine tool control. This 

strategy, based on the fully actuated systems methods, 

involved designing parameterized controllers to attain 

stability of the closed-loop system. The application of high-

order fully actuated system methods to nonlinear model 

predictive control and tracking optimization is carried out in 

[12]. The fully actuated characteristics are utilized to 

eliminate the nonlinear dynamics of the system, and the 

nonlinear optimization problems are equivalently 

transformed into a series of easily linear convex 

optimization problems. The FAST is currently widely 

applied in various control models, yielding promising results 

in theoretical validation. 

This paper builds on the fully actuated systems theory and 

introduces a novel approach to speed control for PMSM. It 

compares the motor speed response and disturbance 

rejection capability with PI and SMC control for PMSM. 

Through simulations, it validates the effectiveness of the 

proposed method in controlling PMSM. 

2 The Mathematical Model of PMSM. 

This model is based on a surface-mounted PMSM, with 

its axisdq −  equivalent inductance satisfying d qL L= . To 

simplify the analysis, the following assumptions are made: 

1. Neglect the effects of core magnetic saturation, 

hysteresis, and eddy currents on the motor. 

2. The stator winding produces a sinusoidal distribution 

of the magnetic field along with the permanent magnet, with 

a 120° electrical phase difference between the three winding 

phases. 

3. Disregard the damping effects on the rotor and the 

permanent magnets. 

In axisdq −  coordinate system, the mathematical model 

for a PMSM satisfies 0di =  , and its vector control is as 

follows: 
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where ,d qu u  and ,d qi i  are the voltages and currents of 

axisdq −  respectively; sR  is the stator resistance; p  is the 

pole number; ω  is the rotor mechanical angular speed, and 

θ  is the rotor mechanical angular position; eT  and LT  are 

electromagnetic torque and load torque respectively; Bη  is 

the viscous damping coefficient; tK  is torque coefficient; 

fψ  is the magnetic flux of the permanent magnet. 
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Fig. 1: Block Diagram of PMSM Control System 

 

3 Controller Design of Second-order Fully 

Actuated Systems 

Consider a second-order nonlinear system model: 

 2 1 0( , , ) ( , , ) ( , , )

( , , ) ( , , )

A x x x A x x x A x x x

x x B x x u

θ θ θ

ξ θ θ

+ + +

=

& && & & &

& &
 (6) 

where 2 1 0( , , ) ( , , ) ( , , ) n nA x x A x x A x xθ θ θ ×∈& & & ， ， are system 

matrixes, , , nx x x ∈&& &   are state vectors, nθ ∈   is parameter 

vector, ( , , ) n nB x xθ ×∈&   is system input matrix, 

( , , ) nx xξ θ ∈&   is a parameter vector, and nu R∈  is control 

law. If the equation satisfies assumptions of fully-actuated 

systems theory in [6], a controller can be designed for the 

system model to transform the corresponding closed-loop 

system into a linear time-invariant system with the desired 

output. 

Design the following controller for system (6): 

 
c fu u u= +  (7) 

Due to the presence of the nonlinear term ( , , )x xξ θ &  in the 

system, to conform it to pseudolinear system characteristics, 

cu  is primarily used to compensate and eliminate the impact 

brought by the inherent nonlinear terms in the system design. 

 1( , , ) ( , , )cu B x x x xθ ξ θ−= & &  (8) 

The feedback controller 
fu  is used to stabilize the 

system. 

 ( , , ) ( , , )fu K x x X x x vθ θ= +& &  (9) 
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where 2

0 1[ ( , , ) ( , , )] n rK K x x K x xθ θ ×= ∈& &   is feedback 

gain matrix, 2[  ]T nX x x= ∈&   is system state vector, v  

represents the external reference input. In this design, v  

serves as the rotational speed input. 

Therefore, for the control problem of the second-order 

system (6), it transforms into satisfying the fully actuated 

conditions for the given nonlinear system. For any given 

matrix 
2 2n nF R ×∈  with negative real part eigenvalues, 

solving non-singular matrix 2 2n nV R ×∈  and gain matrix 

0 1( , , ), ( , , )K x x K x xθ θ& & , such that: 

 1 ( , , )cV A x x V Fθ− =&  (11) 

Define a set: 
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where 
2n nZ ×∈  is free parameter matrix, 

2 2n nF ×∈  is 

system pole placement matrix. If and only if F ∈Γ , the 

solution of the controller can be transformed into the 

following form: 
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Solve the Sylvester equation for equation (6): 
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The stability problem of the system is transformed into 

solving equation (10). The gain matrix K  is as follows: 

 1

0 1[ ( , , ) ( , , )]K K x x K x x WVθ θ −= =& &  (16) 

Adjusting matrix Z  or matrix F enables optimizing the 

performance of the closed-loop system, and there exists a 

matrix Z  with adjustable margins. 

The system state feedback controller 
fu is determined by 

the free parameter matrix Z  and the system pole placement 

matrix F , and equation (16) provides its composition 

method. By optimizing the coefficients of the similar matrix 

F  and the free parameter matrix Z  within a certain range, 

the system achieves better performance in the closed-loop. 

Consequently, we obtain the feedback controller
fu , which 

is optimized according to specified requirements. 

To maintain the response and stability performance of the 

parameterized system, optimization criteria must be set for 

the closed-loop linear time-invariant system equation (10). 

The smaller the sensitivity of the eigenvalues for the linear 

time-invariant system, the better its control performance. 

The sensitivity of the closed-loop system's eigenvalues is 

chosen as the optimization criterion: 

 1
( , )opt optJ J F Z V V

−= =  (17) 

We select the 2-norm for computation and optimization, 

transforming it into a constrained nonlinear programming 

problem. 
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The feedback controller 
fu  can be obtained by the 

matrices V and W ,which are solved by the optimized 

matrices Z  and F . 

4 PMSM Controller Design  

Considering the mathematical model of the PMSM given 

by equations (1)-(5), setting the system matrix 2
( , )A θ θ&  as 

the identity matrix yields a second-order nonlinear system 

concerning the rotor mechanical angular position: 
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where system input matrix 
f

3
,det( ) 0

2
B p B

J
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1r n= = . Therefore, this system is fully actuated. 

The design of a system feedback controller  is based on 

equations (9)-(10). Setting the conjugate negative 

eigenvalues of the system pole placement matrix F as 

( ), ,i Rλ µ λ µ +− ± ∈ , and setting the initial free parameter 

matrix 2

0

n nZ R ×∈  as a matrix formed by identity diagonal 

matrix. 
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According to the optimization criterion of the closed-loop 

system eigenvalue sensitivity in equation(17), using the 

'fmincon' optimization function, while keeping the system 

pole placement matrix F  constant, optimize the free 

parameter matrix Z to obtain the feedback controller 
fu . 

From equation (19), ( , ) LT

J
ξ θ θ =&& &  can be deduced. 

Combined with equation (8), the controller cu  can be 

obtained: 

 1( , ) L
c

T
u B

J
θ θ−= && &  (21) 

The load torque LT  is externally forced, and all other 

variables in cu  are intrinsic motor characteristics. hence, cu  

is positively correlated with the load torque LT . 

For the second-order nonlinear system of the motor's rotor 

mechanical angular position given by equation (19), the 

control variable is 
qi . According to equation (7), configure 

the motor controller: 

 
q c fi u u= +  (22) 

where external reference input v  of 
fu  serves as the 

control input for the rotational speed. 

5 Simulation results 

To validate the effectiveness of this control method, 

simulations are conducted comparing the FAST controller 

with PI controller and SMC controller. Using the same 

PMSM model, with the given speed of 1000 / minr , the 

detailed parameters for the PMSM are as shown in Table 1. 

Table 1: Parameters of PMSM 

Parameter Name (Unit) Value 

Stator Resistance /sR Ω  0.05 

Equivalent Inductance /L H  0.00795 

Moment of Inertia 2/ (kg )J m⋅  0.011 

Rotor Flux f / (V s)ψ ⋅  0.192 

Pole Pairs P  4 

Damping Coefficient / (N m )B sη ⋅ ⋅  0.001417 

The motor introduces a constant rigid load of 50 N m⋅  at 

0.05 seconds and removes it at 0.1 seconds, compared the 

response speed and robustness of different control methods, 

the simulation results are shown in Figure 2. 

 
Fig. 2: Speed response curves 

 

From Figure 2, it is evident that the PI controller exhibits 

a faster response speed compared to the SMC and FAST 

controllers. However, the PI controller experiences 

significant short-term speed fluctuations when subjected to 

external disturbances. In contrast, the FAST controller 

demonstrates superior disturbance rejection performance, 

the speed does not undergo substantial changes and recovers 

within a short period after external disturbances. 

To analyze the impact of different system pole placement 

matrices on the control performance of various FAST 

controllers, parameter simulations are conducted using 

matrices with different eigenvalues for the FAST controller. 

The motor introduces a constant rigid load of 50 N m⋅  at 

0.2 seconds and removes it at 0.3 seconds. 

The real part coefficients λ  of the eigenvalues for the 

system pole placement matrix F  are set to 10, 30, 50, 100, 

200, while the imaginary part coefficient µ  is set to 50. 

Then, the real part coefficient λ  of the eigenvalues for the 

system pole placement matrix F  is set to 50, while the 

imaginary part coefficients µ  are set to 10, 30, 50, 100, 200. 

The simulation results are shown in Figure 3 and Figure 4 

respectively. 

 
Fig. 3: Speed response curves for different real part 

eigenvalues 
 

From Figure 3 simulation results, when the real part 

coefficient is severe smaller than the imaginary, it produces 

percent overshoot and steady-state error. When the real part 

of the system pole placement matrix eigenvalues is greater 

than the imaginary part, the speed control system of the 

PMSM exhibits significant damping in response, with 

minimal overshoot. However, when the real part of the 

system pole placement matrix eigenvalues is smaller than 
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the imaginary part, the speed control system shows faster 

response but suffers from considerable overshoot, speed 

oscillations, and a slightly longer settling time to reach time-

invariant. 

 
Fig. 4: Speed response curves for different imaginary part 

eigenvalues 
 

From Figure 4, it can be observed that for identical real 

part eigenvalues, the influence of different imaginary part 

eigenvalues on the speed control system of the PMSM 

manifests primarily in response speed, overshoot, and speed 

oscillations. The time taken for the system to converge to a 

steady state is similar across variations. External 

perturbations minimally affect the speed response and 

exhibit a consistent trend in speed variations. 

6 Conclusion  

This paper designs a second-order FAST controller based 

on the mathematical model of PMSM in the axisdq −  

coordinate system. Configuring the system pole placement 

matrix eigenvalues as conjugate roots, simulations are 

performed to validate various combinations of real and 

imaginary parts of the eigenvalues. Simulation analysis is 

conducted on the FAST controller in comparison to 

traditional PI and SMC controllers concerning changes in 

load torque. According to the simulations, for the second-

order PMSM FAST controller, configuring the system pole 

placement matrix eigenvalues as conjugate roots achieves 

both underdamped and overdamped responses. The FAST 

controller exhibits a certain level of disturbance rejection 

against external sudden load torque disturbances. 
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Abstract: The performance and durability of proton exchange membrane fuel cell (PEMFC) system are greatly associated with 

the oxygen excess rate (OER). However, the strongly nonlinear, coupling with numerous unavailable internal states PEMFC 

system pose a challenge to the OER control. To address it, this paper proposed an observer-based cascaded sliding mode 

controller. The cascaded controller is composed of the outer loop for oxygen excess ratio tracking and inner loop for compressor 

flow rate regulation, providing the accurate and fast control of OER. In addition, an injection term-based nonlinear observer is 

developed to estimate the unmeasurable states in the solution of control procedure. The comparative simulation with current 

control strategies is executed, the results demonstrate a more accurate and fast control of proposed method by the enhancement 

of mean absolute percentage error (MAPE) and regulation time with 5.73% and 6.98s.  

Key Words: Proton exchange membrane fuel cell, Oxygen excess ratio, Sliding mode, Injection term. 

1 Introduction 

The proton exchange membrane fuel cell (PEMFC) is 

regarded as a potential alternative power source due to its 

high-energy efficiency and zero-carbon footprint. During 

the operation the PEMFC system, different parameters need 

to be accurately controlled, and one of the most important is 

oxygen excess ratio (OER). On one hand, the parasitic 

power can be significantly reduced by the desired value 

control of OER. On the other hand, the starvation fault can 

be avoided by a fast-dynamic performance regulation. 

However, the nonlinear PEMFC system increase the precise 

control efforts to ensure the optimal performance. Therefore, 

the control strategy for OER is significant and imminent [1]. 

So far, numerous researches have been devoted on the 

OER control of PEMFC systems. Chen [2] proposed a 

feedback linearization controller is for the air supply 

subsystem of PEMFC, the experiment results demonstrate 

the method could avoid starvation phenomenon and reduce 

parasitic power consumption. To achieve the maximum net 

power, an exponential approach-based sliding mode variable 

structure is proposed and applied to real-time operation by 

Li [3], the results indicate about a 2% enhancement of net 

power. Liu [4] utilized the supply manifold model to observe 

the cathode gas pressure via an extended state observer 

(ESO), and the OER is regulated by sliding mode controller. 

Guo [5] proposed an adaptive dynamic surface controller for 

OER tracking, and the robustness and reliability toward 

faulty states are conducted by an experiment of hardware-

in-the-loop platform. Deng [6] proposed a weighted fusion 

control including active disturbance rejection control 

(ADRC) algorithm and fuzzy self-tuned PID for the OER 

control, improving dynamic performance with guaranteed 

accuracy. To minimize OER tracking error, Zhu [7] 

proposed near-optimal controller based on nonlinear model 

and verify the method with a 5 kW PEMFC test platform. 

While various researches have been devoted to control the 

OER of PEMFC system, there are still several critical 

* This work was supported by the National Key Research and 
Development Program of China under contract 2022YFB4003800, and 

challenges: Generally, the optimal OER indicates maximum 

net power is controlled as a constant, which ranges from 2.0-

2.5. However, the optimal OER is related to the output 

power. Moreover, most existing methods aren’t ideal for 

achieving fast dynamics response issue of OER. At last, the 

internal states of PEMFC are hard to obtain in real 

implementation of control strategy. Therefore, this paper 

proposed an observer-based cascaded sliding mode 

controller. The outer of the controller is for OER tracking, 

and the compressor flow rate regulation is achieved by inner 

loop. Moreover, an injection term-based observer is 

developed to estimate the unmeasurable states. 

The remainder of this paper is organized as follows. 

Section 2 describes the PEMFC modeling procedure. 

Section 3 introduces the methodology of observer and 

controller design. The simulation results and discussion are 

presented in Section 4. Finally, the conclusions are 

summarized in section 5. 

2 PEMFC Modeling 

A PEMFC system is the device that converts the chemical 

energy of the fuel directly into electrical energy. Generally, 

the PEMFC system is equipped with balance of plant (BOP), 

such as mass flow controller, humidifier, and heat exchanger. 

The mass flow controllers ensure the mass flow rate and 

pressure of hydrogen and air supply manifold. The heat 

generated by stack brought out through heat exchanger. 

Meanwhile, the extra heat is for the regulation of inlet 

humidity by humidifier. A typical PEMFC system is shown 

in Fig. 1. According to the sixth-order model [8], whose state 

vector is [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6]
𝑇 = [𝜔𝑐𝑝 , 𝑃𝑠𝑚, 𝑚𝑠𝑚,𝑚𝑂2

, 𝑚𝑁2
,

𝑃𝑟𝑚]
𝑇a model simplification is introduced.

The following parameter fusion is considered due to the 

similar value of  𝑅𝑂2  𝑎𝑛𝑑 𝑅𝑁2 (259.8 and 296.8, respectively): 

{

𝑚𝑂2 ⋅
𝑅𝑂2𝑇𝑠𝑡

𝑉𝑐𝑎
+𝑚𝑁2 ⋅

𝑅𝑁2𝑇𝑠𝑡

𝑉𝑐𝑎
≈ 𝜅(𝑚𝑂2 +𝑚𝑁2)

𝑚ca = 𝑚𝑂2 +𝑚𝑁2 + 𝑝𝑣 ⋅
𝑉𝑐𝑎

𝑅𝑁2 ⋅ 𝑇𝑠𝑡

(1) 
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Fig. 1: Structure diagram of PEMFC system 

 

where 𝑇𝑠𝑡  is the operating temperature of the stack,  𝑅𝑂2 , 

𝑅𝑁2 , 𝑅𝑣   are the oxygen, nitrogen and water vapor gas 

constants,  𝑚ca is the cathode gas mass, 𝑉𝑐𝑎  is the volume of 

the cathode cavity, 𝑃𝑣 is the saturated water vapor pressure. 

Conclusively,  𝑚ca is defined as a new state variable 𝑥5. 

Then the new state vector is expressed as : 𝑋 =

[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5]
𝑇 = [𝜔𝑐𝑝, 𝑃𝑠𝑚 , 𝑚𝑠𝑚, 𝑃𝑟𝑚, 𝑚𝑐𝑎]

𝑇
  , and the 

state-space equation is shown accordingly:  

{𝑋
•

(𝑡) = 𝑓(𝑥) + 𝐵 ⋅ 𝑢(𝑡) + 𝑆 ⋅ 𝐼𝑠𝑡(𝑡)

𝑦(𝑡) = 𝐶 ⋅ 𝑥
(2) 

where vector fields 𝑓(𝑥) ,  𝐵, and  𝑆 are given as follows:  

𝑓(𝑥) =

[
 
 
 
 
𝑓1(𝑥1, 𝑥2)
𝑓2(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)

𝑓3(𝑥2, 𝑥5)
𝑓4(𝑥4, 𝑥5)

𝑓5(𝑥2, 𝑥4, 𝑥5) ]
 
 
 
 

 𝐵 =

[
 
 
 
 
 
𝜂𝑐𝑚𝑘𝑡
𝐽𝑐𝑝𝑅𝑐𝑚
0
0
0
0 ]

 
 
 
 
 

 𝑆 =

[
 
 
 
 
 

0
0
0

−𝑛
𝑀𝑂2

4𝐹
0 ]

 
 
 
 
 

  

where 𝑓𝑖(𝑥)(𝑖 = 1 ∼ 5)  represents the continuous vector 

function and the detail can be found in the [9]. 

Meanwhile, the output 𝑦(𝑡) is designed as  

𝑦(𝑡) = [ℎ1, ℎ2, ℎ3] = [𝜔𝑐𝑝, 𝑃𝑠𝑚, 𝜆𝑂2] (3) 

where 𝜆𝑂2 is the OER, which is defined as follows: 

𝜆𝑂2 =
𝑊𝑂2,𝑐𝑎,𝑖𝑛

𝑊𝑂2,𝑟𝑒𝑎𝑐𝑡
= 𝑊(𝑃𝑠𝑚,𝑚𝑐𝑎 , 𝐼𝑠𝑡) (4) 

= 𝐾𝜆(𝑝𝑠𝑚 −
𝑚𝑐𝑎𝑝𝑣,𝑐𝑎𝑅𝑁2𝑇𝑠𝑡

𝑀𝑂2𝑉𝑐𝑎
− 𝑝𝑣,𝑐𝑎) 

where 𝑊𝑂2,𝑐𝑎,𝑖𝑛 and 𝑊𝑂2,𝑟𝑒𝑎𝑐𝑡 are oxygen mass flow into the 

PEMFC and the mass flow utilized for power generation, 

and  𝐾𝜆 is OER coefficient. 

Notable, it’s worth noting from Eq. (4) that the cathode 

gas mass 𝑚ca can’t be obtained directly. Therefore, the OER 

is an unmeasurable parameter, and the accurate observation 

is a base for control. However, an improper control of OER 

would result in whether the starvation or extra parasitic 

power. To address it, this paper proposed a sliding mode 

control method based on an injection term-based observer, 

and the design procedure is shown in following. 

3 methodology 

The strongly nonlinear PEMFC system, coupling with 

unmeasurable internal states pose a challenge to the accurate 

and fast OER control. However, the OER in current research 

is assumed as a known. Moreover, the traditional control is 

not ideal for achieving accurate and fast tracking. Therefore, 

a sliding mode control strategy with cascaded control 

structure for OER is proposed, the external controller is to 

calculate the reference flow rate of compressor and the 

motor voltage is obtained by inner controller, providing the 

accurate and fast control of OER, as it depicted in Fig.2. In 

addition, an injection term-based nonlinear observer is 

developed to estimate the unmeasurable states in the solution 

of control procedure. The detail design procedure is shown 

in following. 

3.1 Injection Term-based Nonlinear Observer 

The proposed nonlinear observer can be expressed as: 

�̇̂� = 𝑓(�̂�) +

[
 
 
 
 
 𝜂𝑐𝑚

𝑘𝑡
𝐽𝑐𝑝𝑅𝑐𝑚

0
0
0
0 ]

 
 
 
 
 

𝑉𝑐𝑚 +

[
 
 
 
 
 
0
0
0

−𝑛
𝑀𝑂2

4𝐹
0 ]

 
 
 
 
 

𝐼𝑠𝑡 + 𝑂𝑠𝑞
−1(�̂�)𝐵𝐺𝑣 (5) 

 

where 𝑂𝑠𝑞(�̂�)  and 𝐵𝐺  denote the observability matrix and 

coupling matrix. 𝑂𝑠𝑞(�̂�) can be described as: 

𝑂𝑠𝑞(�̂�) = [
𝜕ℎ1(�̂�)

𝜕�⃗�
⋯
𝜕𝐿𝑡

𝑟1−1ℎ1(�̂�)

𝜕�⃗�
 
𝜕ℎ2(�̂�)

𝜕�⃗�
⋯
𝜕𝐿𝑡

𝑟2−1ℎ2(�̂�)

𝜕�⃗�
 ]
5×5

𝑇

(6) 

PEMFC System

Error injection Observer model

u

+
—

Injection term-based observer

External controller Inner controller

*

cpW

Sliding mode control

cpW

—

+

2s1s



*

,cp smw p  

 

Fig. 2: Control diagram of proposed method. 
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where 𝐿𝑡
𝑟1ℎ1(𝑥) denotes the 𝑟1𝑡ℎ  Lie derivative of  ℎ1(𝑥) 

along 𝑓(𝑥) , 𝑟1 = 2, 𝑟2 = 3  are the observable index of  

𝑥1, 𝑥2 respectively. 

𝑣  is output injection vector defined as 𝑣 =
[𝑣1 𝑣2 𝑣3 𝑣4 𝑣5]

𝑇 ∈ 𝑅5 

The output injection vector of [𝑣1 𝑣2]
𝑇 can be defined as: 

{
𝑣1 = −𝛼1|𝑒1|

1
2𝑠𝑖𝑔𝑛(𝑒1)

𝑣2 = −𝜆1∫𝑠𝑖𝑔𝑛(𝑒1)𝑑𝑡
(7) 

where 𝛼1 = 0.01, 𝜆1 = 1.  

The output injection vector of [𝑣3 𝑣4 𝑣5]
𝑇 is: 

{

𝑣3 = −�̄�3𝑠𝑖𝑔𝑛(𝑒2)

𝑣4 = −�̄�4𝑠𝑖𝑔𝑛(𝑒2)

𝑣5 = −�̄�5𝑠𝑖𝑔𝑛(𝑒2)

(8) 

where �̄�3 =
1

3
, �̄�4 =

2

3
, �̄�5 = 1,  

Thus, the state variables are reconstructed as �̂� =

[�̂�𝑐𝑝, �̂�𝑠𝑚, �̂�𝑠𝑚, �̂�𝑟𝑚, �̂�𝑐𝑎]
𝑇
. 

3.2 Sliding mode controller 

• External loop: Take the first time-derivative of 𝜆𝑂2 = ℎ3 

ℎ̇̂3 = 𝑘𝜆(�̇̂�2 − 𝑘1�̇̂�5 − 𝑐1) (9) 

where �̇�2 and �̇�5 is expressed as [9]: 

{
�̇̂�2 = 𝑔1(𝑥2)𝑊𝑐𝑝(𝑥1, 𝑥2) + 𝑔2(𝑥2, �̂�5)

�̇̂�5 = 𝑓5(𝑥2, �̂�4, �̂�5)
(10) 

The sliding variable can be defined as: 𝑠1 = ℎ̂3 − ℎ3_𝑟𝑒𝑓 

where ℎ3_𝑟𝑒𝑓  is the reference of OER, whose derivative is 

assumed as zero, and the �̇�1 is shown as: 

�̇�1 = ℎ̇3 = 𝑔1(𝑥2)𝑊𝑐𝑝(𝑥1, 𝑥2) + 𝑔3(𝑥2, �̂�4, �̂�5) (11) 

where 𝑊𝑐𝑝(𝑥1, 𝑥2) is the mass flow rate of compressor, and 

the known function 𝑔3(𝑥2, �̂�4, �̂�5) = 𝑔2(𝑥2, �̂�5) +
𝑓5(𝑥2, �̂�4, �̂�5) . Therefore, the desired 𝑊𝑐𝑝(𝑥1, 𝑥2)  is 

calculated by considering the convergence and stability of 

the system: 

𝑊𝑐𝑝𝑟𝑒𝑓
(𝑥1, 𝑥2) =

1

𝑔1
[−𝜎(𝑠1) − 𝑔3(𝑥2, �̂�4, �̂�5)] (12) 

Utilizing the super twisting algorithm for 𝜎(𝑠1) 

𝜎(𝑠1) = 𝛼6|𝑠1|
1
2𝑠𝑖𝑔𝑛(𝑠1) + 𝜆6∫𝑠𝑖𝑔𝑛(𝑠1)𝑑𝑡 (13) 

• Inner loop: The compressor motor current 𝑢 is calculated 

in this loop. The sliding variable 𝑠2 is assumed as: 
𝑠2 = 𝑊𝑐𝑝(𝑥1, 𝑥2) −𝑊𝑐𝑝𝑟𝑒𝑓

(𝑥1, 𝑥2) (14) 
where 𝑊𝑐𝑝(𝑥1, 𝑥2) is defined as follows: 

𝑊𝑐𝑝(𝑥1, 𝑥2) = 𝑐6𝑥1 + 𝑐7𝑥2 

Take the first time-derivative of 𝑊𝑐𝑝(𝑥1, 𝑥2): 

�̇�𝑐𝑝(𝑥1, 𝑥2) = −𝑐8𝑥1 −
𝑐9
𝑥1
[(
𝑥2
𝑐3
)
𝑐4

− 1]𝑊𝑐𝑝(𝑥1, 𝑥2) + 𝑐10𝑢 

                    +𝑐7𝑔1(𝑥2)𝑊𝑐𝑝(𝑥1, 𝑥2) + 𝑐7𝑔2(𝑥2, �̂�5) (15) 

= 𝑐10𝑢 + 𝑔4(𝑥1, 𝑥2, �̂�5) 

where 𝑐7 − 𝑐10  are constant parameter, the function 

𝑔4(𝑥1, 𝑥2, �̂�5) is assumed as a known. 

Take the first time-derivative of 𝑠2: 

�̇�2 = 𝑐10𝑢 + 𝑔4(𝑥1, 𝑥2, 𝑥5) − �̇�𝑐𝑝𝑟𝑒𝑓
(𝑥1, 𝑥2) (16) 

= 𝑐10𝑢 + 𝑔4(𝑥1, 𝑥2, 𝑥5) − �̇�𝑐𝑝_𝑟𝑒𝑓(𝑥1, 𝑥2) 

It’s notable that the sliding variable 𝑠2 has relative degree 

1 with respect to the control input 𝑢. Therefore, the internal 

controller is designed as: 

𝑢 =
1

𝑐10
(−𝑘1𝑠𝑖𝑔𝑛(𝑠2) − 𝑘2𝑠2 − 𝑔4 + �̇�𝑐𝑝_𝑟𝑒𝑓) (17) 

4 Simulation and Analysis 

To validate the cascaded control strategy based on sliding 

mode observer. This section is composed of two parts: 

observer and control performance validation. All the 

simulations are executed in MATLAB R2023a and the key 

simulation parameter utilized in simulation can be found in 

table Ⅰ. As it shown in Fig. 3 (a), the current variation is set 

to verify the dynamic switching performance of proposed 

control strategy.  Moreover, it’s known that the air 

compressor accounts for up to 80% of parasitic losses in 

PEMFC systems [10]. To elucidate the relationship between 

OER and net power at various current densities, the 

following simulation approach assumed the compressor as 

the sole parasitic consumer: 1) Initialize current at 90 A; 2) 

Increment motor voltage by 5 V up to its rating, recording 

steady-state data during each cycle; 3) Increase current by 

10 A and repeat step 2 until reaching 220 A. The peak net 

power was fitted at each current density, as depicted in Fig. 

3 (b). Therefore, the optimal OER determined for the given 

operating current is developed accordingly, and the detail 

fitted results are shown in following: 

𝜆(𝐼𝑠𝑡) = 2.8 −
0.3 × 𝐼𝑠𝑡(𝑡)

100
(18) 

220A

90A

(b)

(a)

 
Fig. 3: Systematic simulation conditions. (a) Stack current 

variation. (b) Net power vs. OER. 

Table 1: Simulation Parameters  

4.1 Observer Verification 

Fig. 4 represents the observation results of sliding mode 

observer, which is executed under the operating conditions 

Parameter Value 
Number of cells of the stack 𝒏 381 

Compressor and motor inertia  𝑱𝒄𝒑 5 × 10−5 𝐾𝑔 ⋅ 𝑚2 

Motor constant  𝒌𝒕 0.0225 𝑁 ⋅ 𝑚 ⋅ 𝐴−1 

Motor constant  𝒌𝒗 0.0153 𝑉 ⋅ 𝑠 ⋅ 𝑟𝑑−1 

Single stack cathode volume 𝑽𝒄𝒂 0.01 𝑚3 

Supply manifold volume 𝑽𝒔𝒎 0.02 𝑚3 

Cathode outlet orifice 𝑲𝒄𝒂,𝒐𝒖𝒕 2.7 × 10−4 𝐾𝑔 ⋅ (𝑃𝑎 ⋅ 𝑠)−1 

Cathode inlet orifice 𝑲𝒔𝒎,𝒐𝒖𝒕 3.6 × 10−4 𝐾𝑔 ⋅ (𝑃𝑎 ⋅ 𝑠)−1 
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of Fig. 3 (a). During load transients, the OER exhibits 

overshoot and oscillatory behavior, most prominently at 40 

s when the current spikes by 80 A representing the maximum 

load disturbance. This positive correlation between 

overshoot severity and mutation degree highlights the 

underlying oxygen mass flow mismatch precipitating such 

deviations. Specifically, sudden load changes desynchronize 

the demanded and supplied oxygen flows. Rapid and precise 

tracking of the resulting OER fluctuation enables 

reconciliation to optimal OER reference trajectories through 

appropriate control actuation. Effectively compensating for 

these disturbances necessitates an observer capable of 

accurately and swiftly estimating anomalies in the present 

OER behavior stemming from abrupt current shifts. In 

addition, from the enlarged figure of 4(a), the observation of 

the proposed observer can track the reference in 1s. Fig. 4(b) 

depicts the corresponding tracking error of the OER, from 

which the steady-state errors are equal to zero for different 

current conditions. In addition, the maximum deviation at 

40s is positive 0.8. In conclusion, the results demonstrate the 

brilliant observation performance with low error and fast 

response. 

(b)

(a)

 
Fig. 4: The observation results of SMO. (a) oxygen excess ratio. 

(b) estimation error of oxygen excess ratio.  

4.2 Simulation Results 

In the actual operating of the PEMFC system, the optimal 

OER, which represents the maximum net power output, can 

be diverse under different load requirements. The optimal 

OER of the PEMFC system in this paper is designed 

according to the simulation results of Fig. 3 (b), and the 

verification of net power between constant OER=2.2 and 

optimal one shown in Eq. (18) is worked out. As depicted in 

Fig. 5, there is a comprehensive enhancement in net power 

for the optimal OER. From the enlarged figure, the net power 

is increased about 200W by optimal control at 40 – 80 s, and 

that for 80 – 120 s is 30W. It’s notable that the power 

enhancement decreases with the rising current, which are 

1.1%, 0.55%, 0.10%, and 0.06% at the four operating 

conditions shown in Fig .3(a). The reason can be found in 

Fig .3(b), the optimal OER presents a negative trend with 

current, and the optimal OER of 200A is about 2.2, which is 

close to the current at 80 – 120 s. Conclusively, the fitted 

optimal OER can achieve a nearly 1.1% enhancement of net 

power output.  

 

Fig. 5: Comparative results of net power between constant and 

optimal OER.  

(a)

(b)

 

Fig. 6.  Comparative control results among proposed, PI, and ADRC 

method. (a) oxygen excess ratio. (b) tracking error of oxygen excess ratio. 

To validate the effectiveness of proposed control strategy, 

the comparative simulation with proportional integral (PI) 

control and active disturbance rejection control (ADRC) is 

executed.  As it illustrated in Fig. 6, the performance of OER 

is presented. From the Fig. 6(a), it seems that overall three 

methods achieve a good tracking performance. However, the 

load switching dynamic performances vary with different 

methods, the proposed sliding mode methods processes the 

fastest tracking time from the enlarged figure. Meanwhile, 

the estimation error is shown in Fig. 6(b), where the 

deviations of total three methods converge to zero. However, 

the maximum negative deviation (MND) of PI, ADRC, and 

proposed methods are 0.79, 0.75, and 0.67, respectively. The 

results indicate the response degree when the load 

transforms, a too large value if MND would lead to the 

oxygen starvation fault, damaging the state of health (SOH) 

of the PEMFC stack. 
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To describe the performance of these controllers more 

comprehensively, this paper introduces several evaluation 

indexes, as shown in table Ⅱ. MAPE and RMSE, which 

represent the average percentage error and the root-mean-

square error shown in following: 

 

{
  
 

  
 𝑀𝐴𝑃𝐸 =

100%

𝑛
∑|

𝑦𝑖
𝛬
− 𝑦𝑖
𝑦𝑖

|

𝑛

𝑖=1

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖

𝛬

− 𝑦𝑖)
2

𝑛

𝑖=1

(19)  

Overshoot represents the proportion of decrease/increase 

of the OER during the first pulse at the instant of load 

increase/decrease. Moreover, 𝑡𝑠  stands for the regulation 

time, referring to the shortest time for the state variable to 

return the new equilibrium state. From the table Ⅱ, it can be 

seen that the MAPE and RMSE of proposed method are 

0.560% and 0.442, respectively. The MAPE is reduced by 

0.41% and 5.731% with PI and ADRC. Meanwhile, those 

for RMSE are 0.014 and 0.141. In addition, the overshoots 

have not appeared in ADRC and proposed method, and 𝑡𝑠 
for PI, ADRC, and proposed method are 1.213 s, 7.410 s, 

and 0.412 s. The lowest regulation time implies a more 

transient overshoot time and therefore could prolong the 

lifetime of PEMFC system. The results demonstrate that 

proposed sliding mode control gives a more accurate control 

and fast response. 

Table 2: Summary of Simulation Condition 

Method MAPE RMSE Overshoot 𝒕𝒔 
PI 0.970% 0.058 2.237% 1.213𝑠 

ADRC 6.291% 0.185 0 7.410𝑠 
Proposed 𝟎. 𝟓𝟔𝟎% 𝟎. 𝟎𝟒𝟒 𝟎 𝟎. 𝟒𝟏𝟐𝐬 

5 Conclusion 

In this paper, an observer-based cascaded sliding mode control 

for oxygen excess ratio (OER) of PEMFC system is designed, 

observer-based cascaded sliding mode controller. The outer of the 

controller is for OER tracking, and the compressor flow rate 

regulation is achieved by inner loop. Moreover, an injection term-

based nonlinear observer is developed to estimate the 

unmeasurable states. The key results are summarized as follows. 

1) The relationship between OER and net power at various current 

densities is obtained, indicating a nearly 1.1% enhancement of 

net power output. 

2) The injection term-based observer is designed, providing an 

accurate estimate of unmeasurable states. 

3) The cascaded sliding mode controller is developed, demonstrate 

a more accurate and fast control of proposed method by the 

enhancement of mean absolute percentage error (MAPE) and 

regulation time with 5.73% and 6.98s. 

The future research is targeted to the real-time implementation 

in the PEMFC test beach. 

References 

 [1] Li Q, Xiao X, Pu Y, et al. Hierarchical optimal scheduling 

method for regional integrated energy systems considering 

electricity-hydrogen shared energy[J]. Applied Energy, 2023, 349: 

121670. 

[2] Chen J, Liu Z, Wang F, et al. Optimal oxygen excess ratio 

control for PEM fuel cells[J]. IEEE Transactions on control 

systems technology, 2017, 26(5): 1711-1721. 

[3] Li Q, Yang W, Yin L, et al. Real-time implementation of 

maximum net power strategy based on sliding mode variable 

structure control for proton-exchange membrane fuel cell system[J]. 

IEEE Transactions on Transportation Electrification, 2020, 6(1): 

288-297. 

[4] Liu J, Gao Y, Su X, et al. Disturbance-observer-based control 

for air management of PEM fuel cell systems via sliding mode 

technique[J]. IEEE Transactions on Control Systems Technology, 

2018, 27(3): 1129-1138. 

[5] Guo X, Fan N, Dong Z, et al. Adaptive Prescribed 

Performance Control for PEM Fuel Cell Air Supply Systems with 

Unknown Air Compressor Faults[J]. IEEE Transactions on 

Industrial Electronics, 2023. 

[6] Deng Z, Chen Q, Zhang L, et al. Weighted cascade control 

for proton exchange membrane fuel cell system[J]. International 

Journal of Hydrogen Energy, 2020, 45(30): 15327-15335.  

[7] Zhu Y, Zou J, Li S, et al. An adaptive sliding mode observer 

based near-optimal OER tracking control approach for PEMFC 

under dynamic operation condition[J]. International Journal of 

Hydrogen Energy, 2022, 47(2): 1157-1171. 

[8] Pilloni A, Pisano A, Usai E. Observer-based air excess ratio 

control of a PEM fuel cell system via high-order sliding 

mode[J] ． IEEE Transactions on Industrial Electronics，2015，

62(8): 5236-5246． 

[9] Talj R J, Hissel D, Ortega R, et al. Experimental validation of 

a PEM fuel-cell reduced-order model and a moto-compressor 

higher order sliding-mode control[J]. IEEE Transactions on 

Industrial Electronics, 2009, 57(6): 1906-1913. 

[10] Deng H, Li Q, Chen W, et al. High-order sliding mode 

observer based OER control for PEM fuel cell air-feed system[J]. 

IEEE Transactions on Energy Conversion, 2017, 33(1): 232-244. 

258  



A Differentiable QP-based Learning Framework for
Safety-Critical Control of Fully Actuated AUVs

Yongchao Jiang, Chenggang Wang, Ziqi He, Lei Song
Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

E-mail: cgwang-auv@sjtu.edu.cn

Abstract: This paper tackles the safety-critical control problem of the fully actuated autonomous underwater vehicle (AUV)
in the presence of unknown disturbances. Specifically, a differentiable quadratic program (QP)-based learning framework that
integrates fully connected layers and high order control barrier function (HOCBF) is proposed to avoid the obstacle. The safety-
critical loss is designed by considering the quantified safety violations to resist unknown disturbances during the training process.
In the control loop, a first-order high-gain disturbance observer (DOB) is employed to estimate the unknown dynamics associated
with the forward invariance condition. This approach effectively diminishes the system’s conservativeness by compensating for
the bounded estimation error of the DOB. The simulation results demonstrate that the proposed framework enables the AUV to
satisfy safety requirements in the presence of unknown disturbances, while reducing the dependence of the system performance
on artificial parameters by adaptively regulating the class K functions through neural network outputs.

Key Words: Fully actuated AUV, Differentiable QP, Control barrier function, Safety-critical control, Disturbance observer

1 Introduction

Autonomous underwater vehicles (AUVs) are effective
operation equipment for expanding the utilization of ma-
rine resources and the development of marine science due
to their autonomy and intelligence [1]. However, AUVs are
typically required to operate within complex marine envi-
ronments characterized by unanticipated disturbances dur-
ing the mission execution. Herein, factors such as varying
seabed topography, the presence of extraneous obstacles, and
even the inadvertent actions of team members [2], may sig-
nificantly threaten the operational safety of the AUV. There-
fore, ensuring the safety of AUVs through obstacle avoid-
ance techniques is important for the successful execution of
the mission.

Obstacle avoidance of AUVs in unknown marine environ-
ments is usually achieved by local path planning. However,
the lack of consideration of nonlinear dynamics, high com-
putational burden, and local optimality constrain the appli-
cation of existing methods [3, 4]. In recent years, Control
Barrier Function (CBF) - based methods [5] have been de-
veloped to avoid obstacles for AUVs because of their con-
venient combination with nonlinear dynamics and excellent
real-time performance. However, inaccurate model informa-
tion due to unknown current disturbances still lead to the
failure of obstacle avoidance [6].

To overcome the unknown disturbance for ensuring the
safety of AUV, various robust CBFs have been proposed
[7, 8]. However, most of them use “worst-case” distur-
bances to compensate for CBF forward invariance condi-
tions, leading to unnecessarily conservative behavior of the
system. Input-to-State Safety [9] describes the variation law
of invariant set with unknown bounded disturbances. The

This work was supported in part by the Oceanic Interdisciplinary Pro-
gram of Shanghai Jiao Tong University under Grant SL2022MS010 and
Grant SL2022MS008, in part by the Joint Fund of Equipment Pre-Research
and Ministry of Education under Grant 8091B022235, in part by the Na-
tional Natural Science Foundation of China under Grant 62303316, in part
Key Laboratory Fund of National Defense Science and Technology under
Grant 2022JCJQLB03308, and in part by the Science Center Program of
National Natural Science Foundation of China under Grant 62188101.

concept of Tunable Input-to-State Safety [10] builds upon
the work of [9] by employing a continuous function that
monotonically increases over CBF to mitigate conservative
behavior when the state is far from the safe set boundary.
Nevertheless, both Input-to-State Safety and Tunable Input-
to-State Safety still involve compensating for “worst-case”
disturbances. Robust CBFs based on Disturbance Observer
(DOB) [11, 12] significantly reduce the conservativeness of
the system. They estimate CBF conditions through DOB and
utilize the exponentially decaying error boundness of the es-
timation results to compensate for the CBF condition. How-
ever, the performance of the DOB-based method depends
on manual parameters significantly. Moreover, tuning the
parameters manually is a intractable process, especially for
systems with high-order relative degrees [13]. This leads to
considerable human uncertainty in the performance of the
system. To alleviate this problem, α-net is proposed [13]
to tune the class K functions adaptively so that the systems
with high-order relative degrees can avoid obstacles in the
novel environments, while it ignores the effects of unknown
disturbances.

To address the problem above, this paper proposes a
differentiable quadratic program (QP)-based safety-critical
framework to avoid the obstacle under the disturbance for
AUVs. Specifically, we combine differentiable QP with
fully-connected layers to construct the training framework.
Then, the safety-critical loss function is designed to resist
unknown disturbances by considering the quantified safety
violations. And the first-order high-gain DOB is used to esti-
mate the unknown term of CBF forward invariant condition
to reduce the conservativeness. The simulation results on
AUV obstacle avoidance demonstrate that the proposed ap-
proach enables the fully-connected layers to adaptively out-
put parameters of class K function overcoming unknown dis-
turbances without manual adjustment process of the param-
eters. The main contributions of this paper are summarized
as follows:

• A robust safety-critical framework based on differen-
tiable QP is proposed for AUVs to ensure obstacle
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avoidance in the presence of unknown disturbances. In
contrast to the robust CBF-based methods referenced
in [7–12], the proposed approach employs a learning
framework to optimize the parameters of the forward
invariance condition, achieving a more effective adap-
tation to environmental conditions and AUV dynamics.

• The quantified safety violations are incorporated into
the safety-critical loss function to resist disturbance in
the training process, where the first-order high-gain
DOB is leveraged to alleviate the conservativeness. The
simulation results demonstrate that the safety-critical
loss mitigates the safety violations effectively, and
DOB diminishes the effect of unknown disturbances by
compensating for its bounded estimation error of the
safety condition derived by HOCBFs.

2 Preliminaries and problem formulation

Consider a disturbed nonlinear control affine system

ẋ = f(x) + g(x)(u+ d(t)), (1)

where x ∈ X ⊂ Rn represents the system state, u ∈ Rm is
the control input, f : Rn → Rn, g : Rn → Rn×m are locally
Lipschitz continuous functions, and d(t) : R≥0 → Rm is the
unknown input disturbance.

Suppose that the safe set C of the system is defined as
a 0-superlevel set of a continuously differentiable function
h(x) : X → R

C ≜ {x ∈ X ⊂ Rn : h(x) ≥ 0}, (2)

∂C ≜ {x ∈ X ⊂ Rn : h(x) = 0}, (3)

Int(C) ≜ {x ∈ X ⊂ Rn : h(x) > 0}. (4)

The set C is forward invariant if for any initial state x0 =
x(0) ∈ C, x(t) ∈ C for all t ∈ [0, tmax). The system (1) is
safe w.r.t. the safe set C.

2.1 Control Barrier Function
Definition 1 (Control Barrier Function (CBF) [17]):

Let C ⊂ X be the 0-superlevel set of a continuously differ-
entiable function h : X → R with ∂h

∂x ̸= 0 when h(x) = 0.
The function h is a CBF for (1) w.r.t. C if there exists
α ∈ K∞,e and u ∈ Rm such that for all x ∈ C,

ḣ(x, u, d) = Lfh(x) + Lgh(x)(u+ d) ≥ −α(h(x)), (5)

where Lfh(x) = ∂h(x)
∂x f(x), Lgh(x) = ∂h(x)

∂x g(x) are the
Lie derivatives of h w.r.t. f, g. α : R → R is a continuous
extended class K∞ function and it is strictly monotonically
increasing with α(0) = 0 and limr→∞ α(r) = ∞. For sys-
tem (1), if h(x) is a control barrier function, any Lipschitz
continuous controller satisfying (5) renders the set C forward
invariant.

Definition 2 (Relative Degree [15]): The relative degree
of a continuously differentiable function h(x) w.r.t. system
(1) is the number of times we need to differentiate it along
the dynamics of (1) until the control u explicitly shows.

Definition 1 can only be used in the case of relative degree
r = 1, while the relative degree of the fully actuated AUV
dynamics is r = 2 for obstacle avoidance. When relative
degree r > 1, high order control barrier function (HOCBF)

[15] can be used. For a h(x) with relative degree r, we define
a sequence of functions ψi : Rn → R, i ∈ {1, 2, ..., r}:

ψi(x) = ψ̇i−1(x) + αi(ψi−1(x)), i ∈ {1, 2, ..., r}, (6)

where ψ0(x) = h(x), αi(·) presents (m − i)th order dif-
ferentiable class K function. A sequence of sets Ci, i ∈
{1, 2, ..., r} are further defined:

Ci = {x ∈ X ⊂ Rn : ψi−1(x) ≥ 0}, i ∈ {1, 2, ..., r}. (7)

Definition 3 (High Order Control Barrier Function
(HOCBF) [15]): Let C1, ..., Cm be defined by (7) and
ψ1(x), ..., ψr(x) be defined by (6). h(x) : Rn → R is a
HOCBF for system (1) if there exist (r− i)th order differen-
tiable class K functions αi, i ∈ {1, ..., r − 1} and a class K
function αr such that for all x ∈ C1∩, ...,∩Cr,

sup
u∈Rm

[Lr
fh(x) + Lr−1

f h(x)(u+ d(t))] ≥

−O(h(x))− αr(ψr−1(x)),
(8)

where O(h(x)) =
∑r−1

i=1 Li
f (αr−i ◦ ψr−i−1)(x). Any Lip-

schitz continuous controller that satisfies the constraint (8)
renders C1∩, ...,∩Cr forward invariant. In this paper, we
consider the case that αi is linear function. Therefore, (8)
can be rewritten as follows:

sup
u∈Rm

[Lr
fh(x) + Lr−1

f h(x)(u+ d(t))] ≥ −Kαη(x), (9)

where Kα ∈ Rr is a row vector, η(x) =
[h(x), ḣ(x), ḧ(x), ..., hr−1(x)]T .

Remark 1 : From the above definitions, it is obvious that
the unknown disturbances d(t) make the inequalities (5) and
(9) difficult to maintain during the evolution of the system
(1). Furthermore, the process of designing and tuning row
vector Kα is intractable and heuristic. Most of existing ro-
bust CBFs do not consider this problem, which limits their
application. The differentiable convex optimization layer
[14] provides a solution to address this problem through a
learning-based approach because of the linearity of input in
the safety condition (9). Therefore, this paper proposes a
differentiable QP-based robust safety-critical control frame-
work to overcome disturbances and simplify the parameter
tuning process.

2.2 Differentiable QP
The safe controller can be obtained by solving the

quadratic programming problem with (5) or (9) as a con-
straint (CBF/HOCBF-QP) [16]:

u∗(x) = argmin
u

∥ u− k(x) ∥2

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x)),
or

Lr
fh(x) + LgLr−1

f h(x)u ≥ −Kαη(x),

(10)

where k(x) represents the Lipschitz continuous nominal
controller, u∗(x) is the safe controller. Differentiable QP
represents that the solution of the optimization problem (10)
can be backpropagated through. This enables (10) to be en-
coded as differentiable optimization layers [14] within deep
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learning architectures. The end to end model helps to con-
struct the HOCBF-QP that satisfies the safety requirement
and improve control performance. This paper combines dif-
ferentiable QP and fully-connected layers to construct robust
safety-critical control framework.

2.3 First-Order High-Gain Disturbance Observer
The first-order high-gain disturbance observer is used to

estimate the unknown term of the CBF forward invariance
condition. Specifically, for the system (1), we consider the
system output y = w(x), and w : X → R is a continuously
differentiable function, then we have,

ẏ = Lfw(x) + Lgw(x)u︸ ︷︷ ︸
vd

+Lgw(x)d︸ ︷︷ ︸
wd

= vd + wd,

(11)

where wd = Lgw(x)d is the unknown term that needs to be
estimated. Then we can define the first-order high-gain input
disturbance observer as:

ŵd = kby − ξ, (12)

ξ̇ = kb(vd + ŵd), (13)

where kb ∈ R > 0 is the gain, ξ ∈ R is an auxiliary vari-
able. The estimation error is bounded when wd is Lipschitz
continuous according to [12].

2.4 Problem formulation
Consider the disturbed fully actuated AUV dynamics in a

two-dimensional horizontal environment:

Mν̇ + C(ν)ν +D(ν)ν = τ + d(t),

ρ̇ = R(ρ)ν,
(14)

where ν = [vx, vy, r]
T denotes the velocities of surge, sway,

and yaw in the body reference frame, ρ = [ρx, ρy, ϕ]
T de-

notes the absolute position and orientation in the inertial ref-
erence frame. M is the inertia matrix, C(ν) is the Coriolis
and centripetal matrix, D(ν) is the hydrodynamics damping
matrix, τ ∈ R3 denotes the generalized total thrust forces
and moment, d(t) denotes the unknown disturbance coming
from ocean currents, andR(ρ) is the rotation matrix depend-
ing on the heading orientation ϕ,

R(ρ) =

 cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

 , (15)

M = diag(Mx,My,Mϕ), D(ν) = diag(Xvx
, Yvy

, Nr) +
diag(Dvx |vx|, Dvy |vy|, Dr|r|), τ = [Fvx , Fvy , Fr]

T . The
nonlinear control affine form of AUV model can be written
as:

ẋ =

[
R(ρ)ν

−M−1(C(ν)ν +D(ν)ν)

]
︸ ︷︷ ︸

f(x)

+

[
03×3

M−1

]
︸ ︷︷ ︸

g(x)

(τ + d(t)),

(16)
where x = [νT , ρT ]T . The objective is to design the differ-
entiable QP-based robust safety-critical control framework
to guarantee the safety of the AUV during obstacle avoid-
ance, while reducing the impact of uncertainty on the perfor-
mance of obstacle avoidance caused by manual parameters.

Specifically, the AUV starts from the initial position ρ0, to
reach the target position ρd, and avoids the obstacle during
the movement under the unknown disturbance without the
manual tuning process of class K functions.

3 Main results

In this section, the differentiable QP-based robust safety-
critical control framework for AUV dynamics and the train-
ing algorithm are introduced.

3.1 DOB design for AUV dynamics
For system (1), the rth -order time derivative of h(x) with

relative degree r is

hr(x, u, d) = Lr
fh(x) + LgLr−1

f h(x)u︸ ︷︷ ︸
vd

+LgLr−1
f h(x)d︸ ︷︷ ︸
wd

.

(17)
Therefore, the DOB to estimate wd is designed as:

ŵd = kbh
r−1(x)− ξ, (18)

ξ̇ = kb(Lr
fh(x) + LgLr−1

f h(x)u+ ŵd). (19)

Then, (17) can be rewritten as:

hr(x, u, d) = Lr
fh(x) + LgLr−1

f h(x)uvd
+ ŵd + e, (20)

where e = wd − ŵd is the estimation error. When wd is Lip-
schitz continuous with Lipschitz constant Lh, the estimation
error e(t) satisfies [12],

|e(t)| ≤
(
|e(0)| − Lh

kb

)
e−kbt +

Lh

kb
≤ |d(t)|. (21)

Hence, with DOB to estimate the unknown dynamics of
the safety condition derived by HOCBF, we rewrite the in-
equality (9) as,

Lr
fh(x) + LgLr−1

f h(x)u+ ŵd ≥ −Kαη(x). (22)

In this paper, the objective is to compensate for the bounded
estimation error e(t) by adjusting Kα so that the system ob-
tains lower conservativeness.

When the system is unnecessarily conservative, the obsta-
cle avoidance trajectory will be far away from the obstacle,
meaning that the AUV sacrifices too much control perfor-
mance for safety. Therefore, the DOB is used to reduce the
conservativeness during the obstacle avoidance. Suppose the
location of the obstacle is [obx, oby] with the safety distance
of Dsf . We design the CBF as:

h(x) = (ρx − obx)
2 + (ρy − oby)

2 −D2
sf . (23)

Given the fully-actuated dynamics of AUV in (14), it is ob-
vious that Lgh(x) = 0,LgLfh(x) ̸= 0, and the relative-
degree r = 2. Substituting r = 2 into (18), (19) yields the
first-order high-gain DOB for AUV dynamics.

3.2 Differentiable QP for robust safety-critical control
As mentioned in the previous section, the HOCBF-QP is

capable being encoded as a differentiable convex optimiza-
tion layer combined with fully-connected layers. We design
a deep neural network consisting of a fully connected layer
and a differentiable convex optimization layer to construct
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Fig. 1: Differentiable QP combined with fully connected
layers

the learning framework, as shown in Fig.1. The mathemati-
cal model of the differentiable QP is formulated as (24).

u∗(k(x), e, ρ0) = argmin
u

∥ u− k(x) ∥2

s.t. Lr
fh(x) + LgLr−1

f h(x)u+ ŵd ≥ −Kα(e, ρ0; θ)η(x),

(24)

where u∗(k(x), e, ρ0) is the solution of the differentiable QP.
ŵd represents the estimation result of DOB. Kα(e, ρ0; θ) is
the output of the fully-connected layers. θ is the weights of
the fully-connected layers. [e, ρ0] is the input of the fully-
connected layers, where e represents the environment infor-
mation including the location of the obstacle and the safety
distance, ρ0 represents the initial position of AUV.

The proposed framework utilises fully-connected neural
networks to adaptively adjust Kα to resist unknown pertur-
bations and simplify the parameter design process. Specif-
ically, due to the estimation of the unknown dynamics by
the DOB, the problem is transformed into a compensation of
the estimation error using Kα, which makes the system less
conservative.

3.3 Training algorithm

Fig. 2: Differentiable QP-based robust safety-critical control
framework

The differentiable QP-based robust safety-critical control
framework and the training algorithm are shown in Fig.2 and
Algorithm 1 respectively. We assume that the environmen-
tal information follows a certain probability distribution Pe,
and the initial position of AUV follows a certain probability
distribution P0. Sampling different environments and AUV
initial positions as inputs [ej , ρ0,j ] to the fully connected lay-
ers. The outputs are r-dimensional vectors Kα. Then we
can construct the differentiable QP-based control loop com-
bined with the DOB. The nominal controller is to achieve

Algorithm 1: Training algorithm for robust safety-
critical control

Input : Environment distribution Pe, initial position
distribution P0 of AUV, simulation state update
rate ∆t, simulation time horizon T , Iteration
number trainingsteps, Number of sample
environments n, Learning rate β.

Output: The parameters Kα

1 Training process;
2 for i← 1 to trainingsteps do
3 for j ← 1 to n do
4 Sample new environment: ej ∼ Pe, ρ0,j ∼ P0

for t← 0 to T
∆t

do
5 Calculate the differentiable QP (24) to

obtain u∗(k(x), e, ρ0);
6 Update system states ρt;

7 Obtain system state trajectory Γj(ρt);
8 Calculate loss function Loss(Γj);
9 Update the weights

θnew = θold − β∇θLoss(Γj);

the control objective. The loss function Loss is calculated
based on the state trajectory Γj(ρt). Specifically, for AUV
dynamics, The loss function is calculated based on the ob-
stacle avoidance trajectory. Finally, the network parameters
θ are updated by gradient backpropagation.

3.4 The design of safety-critical loss
In the context of obstacle avoidance missions involving

AUVs , the safety-critical loss function is designed based on
two main considerations: the length of the trajectory to guar-
antee control performance and the distance between AUV
and obstacle to guarantee safety. Therefore, we design the
safety-critical loss as

Loss =

T
∆t∑
t=0

(∥ρt − ρgoal∥2 + γReLU(−h(x)), (25)

where ρgoal represents the target position of AUV, γ is an ar-
tificial parameter indicating the level of importance. The first
term reflects the length of the obstacle avoidance trajectory,
which we want to be as short as possible. The second term
quantifies the degree of deviation from safety constraints in
the avoidance trajectory, as illustrated in Fig.3. Our objective
is to minimize this deviation to the greatest extent possible.
It is obvious that the second term is zero when h(x) > 0,
i.e., the AUV is safe, while the second term is punished sig-
nificantly when h(x) < 0, i.e., the AUV collides with the
obstacle. The shaded region denotes safety violation due to
unknown disturbances. As the training process proceeds, the
output of the fully-connected layer allows the AUV to over-
come unknown disturbances to avoid obstacles with a short
avoidance trajectory.

The differentiable QP-based robust safety critical control
framework is designed based on α-net proposed by [13] to
resist unknown disturbances by adaptively tuning class K
functions. The safety-critical loss function is specifically
designed to incorporate penalties for safety violations. As
training progresses, the incidence of these safety violations
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Fig. 3: Safety violation in obstacle avoidance mission sce-
nario

is expected to diminish. The functionality of DOB is to re-
duce conservativeness because of its bounded estimation er-
ror [12]. After training, the fully-connected neural network
will output the parameters of Kα that can resist unknown
disturbances adaptively.

4 Numerical Simulations

In this section, we consider the obstacle avoidance sce-
nario of the AUV dynamics under unknown disturbances
d(t) = [4 sin(0.2t), 4 sin(0.2t), 0.15 sin(0.2t)]T . We sup-
pose that the initial position of AUV and environment infor-
mation follow Gaussian distribution ρX , ρY ∼ N (0.5, 0.5),
obX ∼ N (8, 0.5), obY ∼ N (6, 0.5), Dsf ∼ N (2, 0.5). The
target position of AUV is [12, 12]. The physical parameters
of AUV dynamics are set as Mx = 283.6, My = 593.2,
Mϕ = 29, Xvx

= 26.9, Yvy
= 35.8, Nr = 3.5, Dvx

=
241.3, Dvy = 503.8, Dr = 76.9. The Algorithm parameters
are set as trainingsteps = 15, n = 10, γ = 20000.

To validate the effectiveness of the proposed approach, we
train our proposed model and the baseline model proposed
by [13] that does not consider the unknown disturbance. The
loss evolution of the proposed approach is shown in Fig.4.
It is evident that the initial value of the loss is substantial,
attributable to significant safety violations. As the training
process proceeds, the loss values converge, implying that
the safety violation problem due to unknown disturbances
is mitigated.

Fig. 4: The evolution of Loss

Fig.5 (a), (c) present the AUV obstacle avoidance trajec-
tories under the proposed framework. Fig.5 (b), (d) present

the trajectories under the baseline model. Fig.6 is the cor-
responding h(x(t)). In the scenario of (a), (b), the ini-
tial position of AUV is [0.27m, 0.70m], the position of
the obstacle is [7.83m, 5.92m], and the safety distance is
2.88m. In the scenario of (c), (d), the initial position of
AUV is [−0.09m, 0.07m], and the position of obstacle is
[8.20m, 5.46m], the safety distance is 1.86m. It is obvious
that the differentiable QP-based robust safety-critical con-
trol framework allows the AUV to overcome unknown dis-
turbances and avoid the obstacle safely and smoothly, while
the baseline model makes the AUV fail to avoid the obstacle.

(a) (b)

(c) (d)

Fig. 5: The comparison of AUV obstacle avoidance trajecto-
ries

(a) (b)

(c) (d)

Fig. 6: The comparison of h(x(t)) during AUV obstacle
avoidance

Table 1: Safety Rates when Using Different Models
Label Model Safety Rate
(A) Baseline 8%(46)
(B) Baseline + Safety-critical Loss 100%(0)
(C) Baseline + DOB + Safety-critical Loss 100%(0)

Table 1 shows the safety rates of AUVs in 50 sampled dif-
ferent environments when different approaches are used. We
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can see that the AUV can not avoid the obstacle in most en-
vironments with the baseline model. On the other hand, the
models with the safety-critical loss guarantee the safety of
AUV in all environments, validating the effectiveness of the
safety-critical loss. It is worth noting that both model (B) and
(C) improve the safety rate of AUV. This is because the main
effect of DOB is to reduce the conservatism of the system
and does not directly affect the safety of the AUV. The main
advantage brought by DOB is the transformation from direct
compensation for unknown perturbations to compensation
for bounded estimation errors, which reduces the impact of
unknown perturbations. Fig.7 presents the comparison in the
value of h(x(t)) during obstacle avoidance using model (B)
and (C) in different environments. The shaded areas indicate
intervals between maximum and minimum values. The red
and blue curve indicate the mean values. It is evident that
the value of h(x) is closer to zero with DOB to estimate the
unknown dynamics of safety condition, which indicates that
DOB mitigates the effect of unknown perturbations during
obstacle avoidance. This suggests that system conservatism
can be effectively reduced by compensating for bounded es-
timation errors instead of unknown dynamics directly.

Fig. 7: The evolution of h(x(t)) when using model (B) and
(C)

5 Conclusions

In this paper, a differentiable QP-based robust safety-
critical control framework is proposed to avoid the obstacle
for fully actuated AUV under disturbances. The HOCBF
is used to generate the safety constraint for differentiable
QP, which is combined with the fully-connected layers to
construct the training framework for mitigating the impact
of artificial parameters on system performance. Moreover,
the safety-critical loss function is designed by considering
the quantified safety violations to resist the unknown distur-
bance during the training process. The first-order high-gain
DOB is employed to reduce the conservativeness by com-
pensating for bounded estimation errors. The simulation re-
sults on AUV obstacle avoidance demonstrate that the pro-
posed training framework enables AUV to avoid the obsta-
cle under disturbances while reducing the effect of human
uncertainty from artificial parameters.
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Abstract: In this paper, a variant of the target defense game is introduced, which involves two equal-speed agents and two targets.
The agents do not possess a distinct role as either the defender or the intruder. Rather, each agent is tasked with protecting its
own target while simultaneously attempting to breach the opponent’s target. This paper proposes a solution to the Game of Kind
through the construction of barrier surfaces, which divide the space into two winning regions and a confronting region. The
proposed optimal strategies ensure that the values of the barrier functions remain unchanged during the game. Finally, some
simulations are studied to verify the effectiveness of the proposed optimal strategies. The game in this paper can provide a basis
for more practical problems involving adversarial games, such as security systems and racing.

Key Words: Game of Kind, Mutual attack-defense game, Barrier surface, Optimal strategies, Winning region

1 Introduction

In recent decades, many adversarial-related problems
have been proposed and attempted to be solved in the fields
of aerospace, automatic control, robotics, etc [1]. One pop-
ular approach to modeling scenarios involving conflicts be-
tween multiple agents is the pursuit-evasion games (PEGs).
Isaacs [2] made pioneering contributions to the study of
PEGs, proposing various different pursuit-evasion conflicts.
A concise summary of the current research progress in PEGs
is provided in [3].

Within the various different PEGs research, the target de-
fense game is recognized as a popular branch, which in-
volves two teams: the defender team is tasked with protect-
ing the target while the intruder team attempts to breach it.
The target defense game may concern various types of tar-
gets, including a point target [4], a line target [5], a circular
target [6], and arbitrary convex sets [7, 8]. In certain scenar-
ios, the target itself can be moving, referred to as an active
target [9, 10]. Two other variations are the perimeter defense
game [11, 12] and the reconnaissance game [13], in which
the defender is to patrol along the boundary for the former
and the intruder is to reconnaissance the target region and
then return to the safe zone for the latter.

In Isaacs’ pioneer work [2], two important concepts were
introduced: the Game of Kind and the Game of Degree.
The former indicates the results of the game, while the lat-
ter gives the actual strategies for the corresponding Game
of Kind. A common solution for Games of Kind is by de-
termining the barrier surface, as in recent work [14, 24] on
solving the equal-speed multi-player problem and the task
assignment problem in the reach-avoid game, respectively.
While in other works [5, 25] not only solve the Game of
Kind but synthesize the saddle-point strategies, thus provid-
ing a complete solution to the Game of Degree as well. The
primary objective of this paper is to employ geometric meth-
ods to construct so-called barrier surfaces to solve the Game
of Kind for a novel mutual attack-defense game scenario.

This work was supported by the National Science and Technology Ma-
jor Project under grant 2022ZD0119702.

The barrier is a surface that demonstrates the characteristics
of semi-permeability, dividing the state space into disjoint
regions. And the geometric techniques, such as the Apollo-
nius circle [14] and the Voronoi diagram [15], are commonly
utilized for both qualitative and quantitative analysis of the
winning regions and optimal strategies.

This paper focuses on proposing a solution to the Game
of Kind by constructing barrier surfaces for two equal-speed
agents who guard their own target and breach the opponent’s
target. For such problems, Isaacs proposed various method-
ologies for the construction of barriers in [2]. A classical
method for constructing barriers is to start from a point on
the boundary of the usable part of the target set and then in-
tegrate the retrogressive path equations (RPEs). However,
the solution of RPEs tends to be analytically challenging for
multi-agent systems. Thus, the following methods were pro-
posed to solve such complicated problems: the first approach
[16] is to divide the complex game into several sub-games,
followed by analyzing the optimal behaviors of each player
in each sub-games. The second approach [17] is to use ex-
plicit strategy methods. And the last approach is a numerical
approximation method for solving the HJI equation. An ex-
ample is the reachable set [18], which is the zero sub-level
set of the viscosity solution of a time-dependent HJI partial
differential equation and is often used to solve problems with
complex constraints. Other approximation methods, such
as reinforcement learning [19, 20], are commonly used for
multi-agent in complex scenarios.

Based on these existing studies, this paper addresses a
novel variant of target defense games, namely the mutual
attack-defense game. Unlike the work in [21], which used
Isaacs’s method to construct natural barriers, this paper uti-
lizes geometric methods to construct barrier surfaces and
provides explicit expressions. The most related work [22]
addresses the construction of barrier surfaces in a football
differential game with a line segment target region. In con-
trast, this paper tackles a more practical scenario where each
agent has to perform simultaneous tasks, i.e., guarding its
own target and breaching the opponent’s target.

The contributions of this paper are as follows:
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• a novel variant of target defense game is introduced,
namely mutual attack-defense game;

• a novel partitioning method for Game of Kind is ad-
dressed, where the space is divided through multiple
barrier surfaces involving winning regions and a con-
fronting region;

• the optimal strategies for both agents in the entire state
space have been thoroughly analyzed by groups of nu-
merical simulations.

The paper is organized as follows: Section II defines the
mutual attack-defense game in detail. Section III focuses on
the construction of barrier surfaces and proposes the optimal
strategies for both agents. In Section IV, some simulations
are conducted to verify their effectiveness. Section V con-
cludes with possible future work.

2 Problem Formulation

Consider a mutual attack-defense game (MADG) in the
plane R2 with two agents A1, A2 and two targets T1, T2.
Note that this paper does not explicitly distinguish the roles
of both agents between the intruder and the defender. At any
moment, each agent may choose either invasion or defense.
Assume that the targets are circular regions with the same
radius r and that the distance between two target centers is
2d. The orthogonal bisector (OBS) of the line connecting
target centers separates the plane into two parts, which are
denoted as S1 and S2, respectively. Without loss of gener-
ality, the problem can be placed in the Cartesian coordinate
system as shown in Fig. 1, where the target centers are fixed
on the x-axis and their corresponding OBS is on the y-axis.

The states of agents are specified by x1 = (x1, y1) and
x2 = (x2, y2), respectively. And the complete state is de-
noted as x := (x1, y1, x2, y2) ∈ R4. The controls of A1 and
A2 are the instantaneous heading angles, where u1 = ϕ and
u2 = ψ. The dynamics ẋ = f(x,u1,u2) are specified by
the system of ordinary differential equations:

ẋ1 = v1 cosϕ, ẏ1 = v1 sinϕ,

ẋ2 = v2 cosψ, ẏ2 = v2 sinψ,
(1)

where v1, v2 are the velocities of the first and second agents,
respectively. Consider a realistic scenario in this paper. If
agents collide, the wreckage of the agent belonging to its
guarding space can be repaired and put back into use again.
This can be simplified to a scenario where the outcome of
the collision depends entirely on the position of two agents.
That is, a collision occurring in S1 might result in A1’s win,
and vice versa. The targets are centered at (−d, 0) and (d, 0)
and the disjoint advantageous regions are denoted as S1 =
{(x, y) ∈ R2| x < 0} and S2 = {(x, y) ∈ R2| x > 0}, and
the target regions are denoted as T1 = {(x, y) ∈ R2|(x −
d)2+y2 ≤ r2} and T2 = {(x, y) ∈ R2|(x+d)2+y2 ≤ r2},
respectively. The background of the problem considered in
this paper is all based on the following assumptions.

Assumption 1.

(a) The distance between two target centers is larger than
the diameter of each target region, i.e., d > r;

(b) Both agents have the same maximum velocity vmax, i.e.,
v1 = v2 = vmax;

(c) The initial states satisfy x1 ∈ S1 and x2 ∈ S2;

(d) Each agent has complete information about each other
and considers a non-anticipative information structure.

Fig. 1: An example of the MADG in the Cartesian coordi-
nate system, where the green point representsA1 and the red
point represents A2. The two dashed lines represent the pos-
sible actions taken by the two agents. The two target regions
have the same radius r, and the distance between the target
centers is 2d.

The outcome of the game depends on the choice of pa-
rameters, as in Assumption 1, where (a) ensures that the
two targets do not intersect, (b) and (c) ensure the fairness
of the game, and (d) assumes both agents do not know the
opponent’s current decision. Note that the so-called non-
anticipative information structure refers to the fact that play-
ers do not have access to future information when making
their current decisions. The assumptions made in this paper
are commonly adopted and facilitate the following analysis.
However, further advancements are required to address more
complex and general issues.

Traditional target defense games typically have one of two
outcomes: either the agent invades or is captured by the ad-
versary. However, in MADG there would be an additional
terminal set of draw, that is, the game will terminate under
one of the following conditions:

T := T1
⋃

T2
⋃

TC , (2)

where

T1 = {x1,x2 ∈ R2|x1 ∈ T2 ∧ x2 /∈ T1},
T2 = {x1,x2 ∈ R2|x1 /∈ T2 ∧ x2 ∈ T1}

(3)

represent the outcome of A1 breaches T2 and A1 breaches
T1, respectively. And

TC = {x1,x2 ∈ R2|x1 = x2 = 0, y1 = y2} (4)

represents the outcome of a draw for A1 and A2. The draw
scenario will be discussed in more detail later in Section 3.

3 Main Result

In this section, barrier surfaces are constructed to deter-
mine the winning regions and a confronting region. Addi-
tionally, optimal strategies are proposed to ensure the values
of the barrier equations remain unchanged.

This paper addresses two agents with the same speed;
thus, the dominance region for both agents can be directly
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obtained through the OBS. The initial states of A1 and A2

are known, the OBS can be written as y = mx+ n with

m = −x1 − x2
y1 − y2

, n =
x21 + y21 − x22 − y22

2(y1 − y2)
. (5)

Definition 1. Consider the MADG with two equal-speed
agents A1 and A2. The barrier surfaces can be obtained
and consist of the following components:

B1(x) = r − d2,

B2(x) = r − d1,

B3(x) = d2 − d1,

(6)

where r denotes the target radius; d1 = |−dm+n|√
1+m2

and d2 =
|dm+n|√
1+m2

are the distances from the centers of T1 and T2 to the
OBS. B1(x) and B2(x) are the distances from the centers of
T1 and T2 to the OBS. B3(x) is the difference between the
distances of the centers of T1 and T2 from the OBS.

Lemma 1. The entire state-space of MADG can be divided
into three different terminal sets according to B1(x), B2(x)
and extra judgments, as shown in Table 1.

Proof. Firstly, simultaneous satisfactions of B1(x) > 0 and
B2(x) < 0 imply that the OBS only intersects with T2. At
this moment, there is at least one point where both agents
can reach T2 at the same time, i.e., this initial state indicates
the winning region of A1. Vice versa, when B1(x) < 0 and
B2(x) > 0, the only difference is to judge the OBS with
respect to T1.

Secondly, satisfying both B1(x) < 0 and B2(x) < 0
implies that the OBS intersects with neither T1 nor T2. In
this special case, additional judgments are required. The pa-
rameter − n

m is the intersection of the OBS with the x-axis.
When −d < − n

m < d, it indicates that the OBS is between
the two target centers. There would not exist strategies that
could ensure victory for one side, i.e., a confronting region.
Thus, the terminal set at this point is TC . When − n

m < −d,
it means the OBS is located outside the two target centers
and indicates that the T1 region is completely in the domi-
nance region of A2, thus there is more than one point that
could make A2 win. Thus, the terminal set at this point is
T2. When − n

m < d, vice versa.
Thirdly, meeting the B1(x) > 0 and B2(x) > 0 implies

that the OBS intersects with both T1 and T2, where an auxil-
iary condition of B3(x) is also required to analyze possible
outcomes. Indeed, in such a scenario where B3(x) < 0, it
implies that the OBS is closer to the center of T2. Conse-
quently, there exists a point on the boundary of T2 that is
relatively closer to the OBS compared to any point on the
boundary of T1. This relatively closer point on the bound-
ary of T2 becomes more reachable, enabling them to reach it
simultaneously. The case is similar when B3(x) > 0.

A special case needs to be considered when y1 = y2,
because (5) does not exist at this point. In this case, the
difference lies in the definitions of d1 and d2, which can
be denoted as d

′

1 and d
′

2, respectively. Furthermore, d
′

1 =
|x1+x2

2 + d|, and d
′

2 = |x1+x2

2 − d| denote the distance from
the centers of T1 and T2 to the OBS, respectively. The OBS
is updated based on the relationship between y1 and y2 and

Table 1: Different terminal sets for y1 ̸= y2
B2(x) < 0 B2(x) > 0

B1(x) < 0
−d < − n

m
< d TC

T2− n
m

> d T1

− n
m

< −d T2

B1(x) > 0 T1
B3(x) < 0 T1

B3(x) > 0 T2

can now be expressed as x = x1+x2

2 . The analysis bears a
strong resemblance to that of Lemma 1, it is omitted here.

Lemma 2.

1. Consider the case when y1 ̸= y2. When B1(x) > 0 and
B2(x) < 0, the optimal aimpoint is

x∗ =
d−mn−

√
(1 +m2)r2 − (dm+ n)2

1 +m2
,

y∗ =
dm+ n−m

√
(1 +m2)r2 − (dm+ n)2

1 +m2
.

(7)

When B1(x) < and B2(x) > 0, the optimal aimpoint is

x∗ =
−d−mn+

√
(1 +m2)r2 − (dm− n)2

1 +m2
,

y∗ =
−dm+ n+m

√
(1 +m2)r2 − (dm− n)2

1 +m2
.

(8)

When B1(x) < 0 and B2(x) < 0, the optimal aimpoint
will be further determined by the relation of − n

m to d. When
−d < − n

m < d, the optimal aimpoint is

x∗ = 0, y∗ = n. (9)

When − n
m < −d, the optional aimpoint is

x∗ = −d+ r

√
(x2 + d)2

(x2 + d)2 + y22
,

y∗ =
y2r

x2 + d

√
(x2 + d)2

(x2 + d)2 + y22
.

(10)

And when − n
m > d, the optional aimpoint is

x∗ = d− r

√
(x1 − d)2

(x1 − d)2 + y21
,

y∗ = − y1r

x1 − d

√
(x1 − d)2

(x1 − d)2 + y21
,

(11)

When B1(x) > 0, B2(x) > 0, and B3(x) < 0, the optimal
aimpoint can be set as (11), and when B1(x) > 0, B2(x) >
0, and B3(x) > 0, the optimal aimpoint is the same as (10).
2. Consider the case when y1 = y2. When B1(x) > 0 and
B2(x) < 0, the optimal aimpoint is

x∗ =
x1 + x2

2
, y∗ = ±

√
r2 −

(
x1 + x2

2
− d

)2

. (12)

When B1(x) < 0 and B2(x) > 0, the optimal aimpoint is

x∗ =
x1 + x2

2
, y∗ = ±

√
r2 −

(
x1 + x2

2
+ d

)2

. (13)
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When B1(x) < 0 and B2(x) < 0, the optimal aimpoint
will be further determined by the relation of 2d to d

′

1 and
d

′

2. When 2d = d
′

2 − d
′

1, the optional aimpoint (x∗, y∗) is
same to (9), and when 2d = d

′

1 − d
′

2, the optional aimpoint
(x∗, y∗) is same to (10).

Proof. The optimal aimpoint ensures that the advantage of
both sides remains constant during the match, if it indicates
a point on the barrier surface. The solution of the optimal
aimpoint is related to the semi-permeability of the barrier
surfaces, i.e., by means of B1(x) and B2(x), the plane can
be partitioned into the region where someone is likely to win.
When only satisfying B1(x) > 0 or B2(x) > 0, it implies
that there is a probability that A1 or A2 would win. And
when both B1(x) > 0 and B2(x) > 0 hold, it is further nec-
essary for B3(x) to determine which side is the real winner.

Consider the case y1 ̸= y2 first. Based on these anal-
ysis, when B1(x) > 0 and B2(x) < 0, the optimal aim-
point can be solved when the OBS intersects with T2. Vice
versa, when B1(x) < 0 and B2(x) > 0, the optimal aim-
point can be solved when the OBS intersects with T1. When
B1(x) < 0 and B2(x) < 0, the optimal aimpoint is fur-
ther determined again by the relation of − n

m to d. When
−d < − n

m < d, the optimal aimpoint is toward the intersec-
tion of the OBS with y-axis. And when − n

m < −d, there
are more than one aimpoint that could make A2 win; in fact,
there is a time advantage for A2 to move to any point on
T1, and the strategies in this case can be specified to move
toward the center of T1. When − n

m > d, the analysis is sim-
ilar to above. When B1(x) > 0, B2(x) > 0 and B3(x) < 0,
the optimal aimpoint is same to (11), and when B3(x) > 0,
the optimal aimpoint is same to (10).

Then consider the case y1 = y2. When B1(x) > 0
and B2(x) < 0, let us consider the sign of y1. And when
B1(x) < 0 and B2(x) > 0, let us consider the sign of y2.
WhenB1(x) < 0 andB2(x) < 0, the optional aimpoint will
be further determined the relation of 2d to d

′

1 and d
′

2. When
2d = d

′

2 − d
′

1, there are more than one aimpoints that could
makeA2 win, the optional aimpoint (x∗, y∗) is same to (10),
and when 2d = d

′

1 − d
′

2, the optional aimpoint (x∗, y∗) is
same to (11).

Theorem 1. The optimal headings of both agents are con-
stant under optimal play and trajectories are straight lines.

Proof. The optimal control inputs can be easily obtained,
where the Hamiltonian is

min
ϕ

max
ψ

H = λx1
cosϕ+λy1 sinϕ+λx2

cosψ+λy2 sinψ,

(14)
and the co-state is λT = (λx1

, λy1 , λx2
, λy2). In addition,

the co-state dynamics are λ̇x1
= λ̇y1 = λ̇x2

= λ̇y2 = 0.
Thus, all co-states and the optimal headings are constant.
Therefore, the optimal trajectory is a straight line.

Theorem 2. Consider the MADG with two equal-speed
agents A1 and A2. The optimal state feedback strategies

Fig. 2: The figure illustrates the case where x2 is fixed at
(3,−8) and depicts the terminal sets defined in Section 2.

for both agents are

cosϕ∗ =
x∗ − x1√

(x∗ − x1)2 + (y∗ − y1)2
,

sinϕ∗ =
y∗ − y1√

(x∗ − x1)2 + (y∗ − y1)2
,

cosψ∗ =
x∗ − x2√

(x∗ − x2)2 + (y∗ − y2)2
,

sinψ∗ =
y∗ − y2√

(x∗ − x2)2 + (y∗ − y2)2
,

(15)

where x∗ and y∗ vary across different cases, it allows for the
derivation of more specific conclusions by considering the
distinct terminal sets obtained from Table 1 and the different
optimal aimpoints described in Lemma 2.

Proof. Lemma 1 provides how to partition the terminal sets
in the whole state space, and Lemma 2 gives the optimal aim-
points or optional aimpoints, which are in different positions
dividing by barrier surfaces. And Theorem 1 further proves
that the optimal trajectories are straight lines. Therefore, the
optimal strategies of both A1 and A2 should be directed to
the location of the optimal aimpoint or the optional aimpoint
(x∗, y∗) in Lemma 2.

Remark 1. The barrier surfaces can be solved when y1 <
y2, as done in [14] and [22]. By fixing A2’s position,
the barrier surface corresponding to A1’s position can be
demonstrated in R2, as shown in Fig. 2. Since Assumption
1. (c) holds, the curves all lie in the left of the y-axis.

4 Simulation

The simulations conducted in this section aim to validate
the relationship between constructed barrier surfaces and op-
timal strategies. In Section III, a detailed analysis of equal-
speed agents dividing the winning or confronting regions via
barrier surfaces was presented, and the optimal strategies for
both agents are given. Several simulations are conducted to
verify the effectiveness of the proposed optimal strategies.
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Table 2: Examples for different initial states of A1 and A2

x1 x2 B1(x) B2(x) T (x∗, y∗)

(-2, 0) (3, -8) -3.70 0.76 T1 (6.52, -0.24)
(5, 12) (3, -8) 0.92 -6.40 T2 (-6.51, -0.21)
(-8, 0) (3, -8) -4.64 -5.30 TC (0, -0.56)

First, define the fundamental parameters r = 1.5 and
d = 8, i.e., both target radii are 1.5 and centered at (−8, 0)
and (8, 0), respectively. Then, fix A2 on x2 = (−3, 8) con-
sistent with Fig.2 and consider the initial states of A1 as
(−2, 0), (−5, 12), and (−8, 0), respectively. Both agents be-
gin the game with given initial states and follow the optimal
strategies in Theorem 1. Both agents start the game with the
given initial state and follow the optimal strategies in The-
orem 1. The initial states of the game and the termination
states of the game are shown in Figs 3, 4 and 5. The bar-
rier functions are also observed at the same time. It can be
seen that the values of the barrier functions remain constant
during the game. Based on the full information available for
both agents, the barrier function for initial states can be cal-
culated as shown in Table 2.

Fig. 3: The optimal trajectories with initial states x1 =
(−2, 0) and x2 = (3,−8) are shown in the left. And the
barrier functions ofB1(x) andB2(x) are shown in the right.
The blue dots and red dots represent the initial state and ter-
minal state of A1 and A2, respectively. The blue and red
arrows indicate the direction of the A1 and A2 optimal tra-
jectories, respectively, while the red star indicates the opti-
mal point in this case.

Fig. 4: The optimal trajectories with initial states x1 =
(−5, 12) and x2 = (3,−8) are shown in the left. And the
barrier functions ofB1(x) andB2(x) are shown in the right.
The blue dots and red dots represent the initial state and ter-
minal state of A1 and A2, respectively. The blue and red
arrows indicate the direction of the A1 and A2 optimal tra-
jectories, respectively, while the red star indicates the opti-
mal point in this case.

Fig. 5: The optimal trajectories with initial states x1 =
(−8, 0) and x2 = (3,−8) are shown in the left. And the
barrier functions ofB1(x) andB2(x) are shown in the right.
The blue dots and red dots represent the initial state and ter-
minal state of A1 and A2, respectively. The blue and red
arrows indicate the direction of the A1 and A2 optimal tra-
jectories, respectively, while the red star indicates the opti-
mal point in this case.

As stated in Section 3, the barrier functions characterize
the degree of advantage for both agents of the game. There-
fore, ensuring the invariance of the barrier functions during
the game process can make the advantages of both sides re-
main unchanged, i.e., the optimal states, corresponding to
the optimal strategies, are reached. In addition, the case of
y1 = y2 is obvious and will not be analyzed and discussed
here due to space limitations.

The above three simulations correspond to different ter-
minal sets: T1, T2, and TC . Next, the other two possi-
ble scenarios are supplemented in Fig 6 and Fig 7, respec-
tively. First, consider the case when x1 = (−0.01, 0.3)
and x2 = (0.05, 0.9). This scenario involves an auxiliary
condition of B3(x) that is also required to analyze possible
outcomes. Consistent with the above analysis, the barrier
functions are also constant in this case.

Finally, consider the special case when x1 = (−1, 10)
and x2 = (1, 6). This case involves the need to determine
the relationship of − n

m to d to support the analysis of possi-
ble outcomes. In this case, an optional strategy is to find the
shortest path for the more advantaged player, while the other
player’s strategy can only aim for the same point but cannot
complete the interception. This is a special case in this pa-
per that goes beyond the solution of the optimal strategies
via the invariance of the value of the barrier functions. How-
ever, through simulation, one can see that the victory of the
dominant agents is obvious. Interestingly, in the setting of
this paper, there is no terminal outcome in which one side
captures the other; precisely so, through the initial positions
of the two sides of the game, the direct inference of the game
outcome can be completed and the optimal strategies of both
sides can be obtained by the barrier functions.

5 Conclusion

In this paper, a new game, called MADG, is introduced
and the Game of Kind of MADG is solved: the barrier sur-
faces are constructed and the optimal strategies are proposed.
In contrast to previous work, the barrier surfaces of a variant
of the target defense game are explicitly obtained in closed
form. Barrier surfaces are constructed to co-partition the pla-
nar surface, intelligently dividing the entire space into two
winning regions and a confronting region. The proposed op-
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Fig. 6: The optimal trajectories with initial states x1 =
(−0.01, 0.3) and x2 = (0.05, 0.9) are shown in the left. And
the barrier functions of B1(x), B2(x), and B3(x) are shown
in the right. The blue dots and red dots represent the initial
state and terminal state of A1 and A2, respectively. The blue
and red arrows indicate the direction of the A1 and A2 opti-
mal trajectories, respectively, while the red star indicates the
optimal point in this case.

Fig. 7: The optional strategies with initial states x1 =
(−1, 10) and x2 = (1, 6) for both agents are shown in the
left. The blue dots and red dots represent the initial state
and terminal state of A1 and A2, respectively. The blue and
red arrows indicate the direction of the A1 and A2 optional
trajectories, respectively, while the red star indicates the op-
tional point in this case.

timal strategies ensure the consistency of the values of the
barrier functions. The effectiveness of the proposed optimal
strategies is also verified through simulations.
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Abstract—This paper handles the finite-horizon non-fragile
H∞ state estimator design issue for nonlinear time-varying
systems under integral measurements suffering from randomly
occurring denial-of-service (DoS) attacks. Stochastic nonlinear-
ities are utilized to reflect nonlinearity in the system state,
which are characterized by the statistical property. Integral
measurements, based on previous and current system states,
are used to characterize time delays or interval time that exist
during actual signal acquisition. DoS attacks are considered in
the measurement transmission, whose randomly occurrence is
described by employing a Bernoulli-distributed random sequence.
Non-fragility of the estimator is involved to reflect gain variations
during the actual operation of the estimator. The aim of this
paper is to develop a state estimation approach such that the
estimation error dynamics achieves the H∞ performance. Utiliz-
ing the stochastic analysis and the completing squares method, a
necessary and sufficient condition is presented for the existence
of an ideal H∞ estimator. The time-varying gain parameters
of the estimator are obtained by solving a set of coupled
backward recursive Riccati difference equations. Ultimately, the
effectiveness of the derived estimation method is verified by a
simulation example.

Index Terms—Non-Fragile H∞ State Estimation, Integral
Measurements, Randomly Occurring Denial-of-Service Attacks,
Nonlinear Time-Varying Systems, Riccati Difference Equations

I. INTRODUCTION

Over the decades, with their development/popularization as
well as their wide applications in military, medical, power grid,
aerospace and transportation control, nonlinear networked con-
trol systems have drawn more and more researchers’ attention
[1], [13], [17], [18], [23]. Internal states of the systems play a
vital role for studies, which is unknown and cannot be obtained
directly. State estimation (SE) is to estimate the unknown
true system state by using known damaged/noise-interfered

∗ Corresponding author. E-mail address: crystal ddy@126.com (D. Dai).
This work was supported in part by the National Natural Science Foundation
of China under Grants U21A2019, 62203105, 62073070 and 62103096, the
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ZDYF2022SHFZ105, the Hainan Provincial Joint Project of Sanya Yazhou
Bay Science and Technology City of China under Grant 2021JJLH0025, the
Natural Science Foundation of Heilongjiang Province of China under Grant
YQ2023F003, and the Alexander von Humboldt Foundation of Germany.

measurements, and a great deal of research effort has been
done on solving such SE problem for nonlinear systems [19],
[22], [27]. For example, a SE method has been proposed in
[27] for a class of multi-rate nonlinear systems under the
FlexRay protocol. In real life, in addition to the system non-
linearity, the possibly exhibited time-varying characteristics of
the systems has attracted researchers’ interest gradually due to
the rapid development of industry. For instance, time-varying
parameters have been used as a very important indicator to
reflect the rapid change of the system [11], [24], [33].

Noting that the description correctness of the measurement
signal may directly determine the estimate accuracy of system
state, then a rational/adequate measurement description is nec-
essary. In most research results, it is generally conceived that
the value of the system measurement output depends merely
on the current system state. Nevertheless, this viewpoint does
not fully hold in actual systems. In some engineering appli-
cations (e.g., nuclear fusion and chemical reactions), it has
been found that the measurement contains both the current
state information and state information in the past periods
due to the existence of network interference, disconnection,
poor operating conditions, or intermittent sensor failure [3],
[20], [30]. More specifically, such measurement outputs have
been known as the integral measurements, which have been
modeled by containing not only the current system state
but also the previous ones. A few SE studies have been
accomplished by taking account of integral measurements, see
[8], [10], [26], [28] and the references therein.

Due to the structural characteristics of the networked control
systems, the data are unavoidably vulnerable to cyber attacks
during the network information interaction. The attacker at-
tempts to obstruct the normal network information transmis-
sion by sending a large amount of false data or preventing
the information receipt, which deteriorates the system per-
formance. Compared to spoofing attacks and replay attacks,
denial-of-service (DoS) attacks have been frequently used by
opponents, and have been ranked as a source of the most
serious security incidents causing economic losses [2], [6].
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Research on DoS attacks has been put emphasis on in recent
years [7], [15], [29]. For example, the H∞ SE issue has been
dealt with in [29] for discrete-time memristive neural networks
subject to randomly occurring DoS attacks.

During the actual execution of estimators, the truly uti-
lized gains may fluctuate from the predetermined ones due
to computational rounding errors or various noises. Such a
phenomenon may lead to the fragility of the estimation error
dynamics system, degrade the system performance or even
destabilize the system. In particular, non-fragility has already
aroused researchers’ focus, which involves gain variations in
the construction of the estimator model, and the corresponding
research results have been reported in [14], [31]. It is worth
mentioning that, so far, the finite-horizon non-fragile SE
issue has not been adequately investigated yet for stochastic
nonlinear systems with integral measurements in the case
of randomly occurring DoS attacks, much less the case of
establishing a necessary and sufficient condition to ensure that
the H∞ estimator may exist, which arises the main motivation
of this work.

Based on the above discussion, this paper is devoted to
realizing the finite-horizon non-fragile H∞ SE for nonlinear
systems with integral measurements affected by DoS attacks.
The main contributions of this paper are stressed in the fol-
lowing points: 1) the model in concern is quite comprehensive,
containing stochastic nonlinearities, time-varying parameters,
DoS attacks, integral measurements and gain variations, and
depicts the complex real systems closely; 2) the H∞ SE
issue is firstly settled for nonlinear time-varying systems with
integral measurements, DoS attacks and gain variations; and
3) a necessary and sufficient condition is presented to ensure
the existence of non-fragile estimators by adopting stochastic
analysis technique and the completing squares method (CSM).

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, consider the following type of time-varying
nonlinear systems over the finite horizon r ∈ [0, N ]:

xr+1 =h (r, xr) +Arxr +Brωr

zr =Lrxr. (1)

where xr ∈ Rnx is the system state vector; zr ∈ Rnz
represents the output of the state that needs to be estimated;
and ωr ∈ Rnω is the disturbance input, which belongs to
l2[0, N ]. Ar, Br and Lr represent given time-varying matrices
with suitable dimensions.

We describe the stochastic nonlinear function h (r, xr)
(h(r, 0) = 0) via the statistical characteristics as follows:

E {h (r, xr) |xr } = 0,

E
{
h (j, xj)h

T (r, xr) |xr
}

= 0, r 6= j,

E
{
h (r, xr)h

T (r, xr) |xr
}
,

q∑
l=1

Θl,rE
{
xTr Γ̄l,rxr

}
(2)

where Θl,r and Γ̄l,r are given matrices having appropriate
dimensions, and q stands for the number of independent state
elements.

Remark 1: Nonlinearities are common in practical time-
varying control systems due to bandwidth constraints, random
component failures, and sudden perturbations of the external
environment, which pose a significant challenge for us to study
the related problems for nonlinear systems. So far, several
different types of nonlinear descriptions have appeared in the
research, such as Lipschitz-type nonlinearity [34], nonlinearity
with uncertain dead-zone [32], nonlinearity function with
inequality constraints [25], and general sector nonlinearity
[12]. Stochastic nonlinearity is used in this paper with known
statistical characteristics, and such a nonlinear description can
represent a class of well-studied nonlinearities.

The measurement signal with integral measurements is
described as follows:

yr = Cr

s∑
q=0

xr−q +Drνr (3)

where yr ∈ Rny means the measurement output of the system;
νr ∈ Rnν is the measurement noise which belongs to l2[0, N ];
s represents the interval of integral measurement or the time
interval for data collection; and Cr and Dr are given time-
varying matrices with suitable dimensions.

Remark 2: It is worth noting that the integral measurement
phenomena are common in practical cases, such as chemical
reaction processes, optical signals and nuclear signals [9].
As these cases are typically characterized by small varia-
tions between adjacent sampling points, traditional sampling
methods have no practical meaning in terms of the measured
value obtained at the current time step. In continuous systems,
noticing the existence of integral measurements, the measure-
ment output not only depends on the current system state,
but also may be proportional to the integral of the system
state in a given previous time period. This is the origin of
the name “integral measurement”. In discrete systems, the
measurement output of the system is in proportion to the sum
of the system states in a given past time period. As shown
in the measurement model (3), the measurement output yr is
constituted by both the current state xr and the sum of the
system states at the time steps xr−s, · · · , xr−2, xr−1.

By defining x̄r ,
[
xTr xTr−1 · · · xTr−s

]T
, we get the

following delay-free system

x̄r+1 =Īh
(
r, ĪT x̄r

)
+ Ārx̄r + B̄rωr

zr =L̄rx̄r

yr =C̄rx̄r +Drνr (4)

where

Ī , [I 0 · · · 0︸ ︷︷ ︸
s

]T , B̄r , [BTr 0 · · · 0︸ ︷︷ ︸
s

]T ,

Ār ,


Ar 0 0 · · · 0
I 0 0 · · · 0
0 I 0 · · · 0
...

...
. . . . . .

...
0 0 · · · I 0


(s+1)×(s+1)

,
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L̄r , [Lr 0 · · · 0︸ ︷︷ ︸
s

], C̄r , [ Cr · · · Cr︸ ︷︷ ︸
s+1

].

In view of the characteristic of randomly occurring DoS
attacks, the measurement signal received by the estimator is
as follows:

ỹr = αryr (5)

where ỹr is the actual measurement output under the DoS
attacks. The stochastic variable αr indicates whether the
DoS attacks occur, which belongs to the following Bernoulli
distribution on the interval [0, 1]:

Prob {αr = 0} = 1− ᾱ, Prob {αr = 1} = ᾱ

where ᾱ > 0 is a given scalar. αr = 0 (αr = 1) indicates that
the system is (not) subject to DoS attacks. Based on (5), we
have ỹr = yr when αr = 1; and ỹr = 0 when αr = 0.

In light of the perturbation to actual gain values, we model
the following time-varying non-fragile estimator for system
(1):

x̂r+1 = (Kr + ∆Kr) x̂r + (Gr + ∆Gr) ỹr

ẑr =L̄rx̂r (6)

where x̂r and ẑr are the estimates of the state x̄r and the output
zr, respectively; and Kr and Gr are the estimator gains to be
designed. ∆Kr and ∆Gr denote the gain variations and have
the following norm-bounded multiplicative form:

∆Kr = M1,rF1,rN1,r,∆Gr = M2,rF2,rN2,r (7)

where M1,r, N1,r, M2,r and N2,r are given matrices with
suitable dimensions, and F1,r, F2,r mean unknown matrices
that satisfy FT1,rF1,r 6 I , FT2,rF2,r 6 I .

Letting er , x̄r − x̂r, ze,r , zr − ẑr and α̃r , ᾱ − αr,
the estimation error can be obtained from (1), (4) and (6) as
follows:

er+1 =(Ār − ᾱ(Gr + ∆Gr)C̄r + α̃r(Gr + ∆Gr)C̄r − (Kr

+ ∆Kr))x̄r − ᾱ(Gr + ∆Gr)Drνr + Īh
(
r, ĪT x̄r

)
+ α̃r (Gr + ∆Gr)Drνr + B̄rωr + (Kr + ∆Kr) er

ze,r =L̄rer. (8)

To facilitate follow-up discussion, letting [r ,
[
x̄Tr eTr

]T
,

ω̄r ,
[
ωTr νTr

]T
, we obtain the following dynamic system:

[r+1 =Îhh(r, Îe[r) + α̃rĂr[r + Âr[r + B̂rω̄r + α̃rB̆rω̄r

ze,r =L̂r[r (9)

where

Îh ,

[
Ī
Ī

]
, Îe ,

[
Ī
0

]T
, Âr ,

[
Ār 0
AG,r Kr + ∆Kr

]
,

AG,r , Ār − ᾱ (Gr + ∆Gr) C̄r − (Kr + ∆Kr) ,

Ăr ,

[
0 0

(Gr + ∆Gr) C̄r 0

]
, B̆r , diag{0, (Gr + ∆Gr)Dr},

B̂r ,

[
B̄r 0
B̄r −ᾱ (Gr + ∆Gr)Dr

]
, L̂r ,

[
0 L̄r

]
.

In this paper, we aim to design a non-fragile state estimator
(6) and ensure that the output estimation error ze,r in (9)
fulfills the following H∞ performance constraint:

W , E

{
N−1∑
r=0

‖ze,r‖2 − %2
N−1∑
r=0

‖ω̄r‖2
}
− %2[T0 S[0 < 0

(10)

where S > 0 is a given weighting matrix, and % > 0 is a given
disturbance attenuation level.

In terms of (7), an effective way to address the gain
variations in (9) is to view them as a source of interference. In
this paper, we are to resist the effect of all disturbances on the
estimation error according to the prescribed H∞ performance
constraint. Rewrite (9) to get:

[r+1 =Îhh(r, Îe[r) +A1,r[r + α̃rA2,r[r

+ M̃1,rω̃r + α̃rM̃2,rω̃r

ze,r =L̂r[r (11)

where

A1,r ,

[
Ār 0

Ār − ᾱGrC̄r −Kr Kr

]
, A2,r ,

[
0 0

GrC̄r 0

]
,

B2,r , diag{0, GrDr}, Nc,r , N2,rC̄r, Nd,r , N2,rDr,

M̃1,r ,
[
B1,r −ᾱM̄2,r −ᾱM̄2,r M̄1,r

]
,

M̃2,r ,
[
B2,r M̄2,r M̄2,r 0

]
, M̄1,r , diag{0,M1,r},

ω̃r ,
[
ω̄Tr (F̃2C,r[r)

T (F̃2D,rω̄r)
T (F̃1,r[r)

T
]T
,

F̃1,r ,

[
0 0

−F1,rN1,r F1,rN1,r

]
, B1,r ,

[
B̄r 0
B̄r −ᾱGrDr

]
,

F1,r ,

[
0 0

−N1,r N1,r

]
, M̄2,r , diag{0,M2,r},

F̃2C,r ,

[
0 0

F2,rNc,r 0

]
, F2C,r ,

[
0 0

Nc,r 0

]
,

F̃2D,r ,

[
0 0

F2,rNd,r 0

]
, F2D,r ,

[
0 0

Nd,r 0

]
.

Furthermore, we yield the following formula from (10):

W̄ ,E

{N−1∑
r=0

‖ze,r‖2 − %2
N−1∑
r=0

(‖ω̃r‖2 − ‖F2C,r[r‖2

− ‖F2D,rω̄r‖2 − ‖F1,r[r‖2)

}
− %2[T0 S[0 < 0. (12)

III. MAIN RESULTS

For promoting the following study, several lemmas are given
beforehand.

Lemma 1: For the noise signal ω̃r and initial state [0, regard
[r as a proper solution of the system (11) over the time horizon
[0, N ]. Then, one obtains:

W1 ([0, ω̃r)

,E

{N−1∑
r=0

‖ze,r‖2 − %2
N−1∑
r=0

(‖ω̃r‖2 − ‖F2C,r[r‖2
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− ‖F2D,rω̄r‖2 − ‖F1,r[r‖2)

}
=E

{
[T0 P0[0 − [TNPN [N

}
+
N−1∑
r=0

E
{
[̄Tr Ω̃r+1[̄r

}
. (13)

Furthermore, if |Ω22,r+1| 6= 0 for all r ∈ [0, N − 1], and by
selecting ω̃r , Ω−122,r+1Ω

T
12,r+1[r, one further yields

W2 (Zr, ω̃r) ,
N−1∑
r=0

E
{
‖ze,r‖2 + ‖Zr‖2

}
=E

{
[T0 P0[0 − [TNPN [N

}
+
N−1∑
r=0

E
{
[̃Tr ψ̃r+1[̃r

}
. (14)

where {Pr > 0}06r6N and {Qr > 0}06r6N denote two
groups of matrices and

Ω̃r+1 ,

[
Ω11,r+1 − Pr ∗
ΩT12,r+1 −Ω22,r+1

]
, Cr ,

[
−I I
−ᾱC̄r 0

]
,

ψ̃r+1 ,

[
ψ11,r+1 ∗
ψT1,r+1 ψ2,r+1

]
,Ar ,

[
Ār 0
Ār 0

]
, [̄r ,

[
[r
ω̃r

]
,

[̃r ,

[
[r
Zr

]
,Zr ,

[
0

XrCr[r

]
, ψ2,r+1 , Qr+1 + I,

Ω11,r+1 , tr
[
ÎTh Pr+1ÎhΓl,r

]
ÎTe

q∑
l=1

Θl,r Îe + α̂AT2,rPr+1

×A2,r +AT1,rPr+1A1,r + %2FT2C,rF2C,r + %2FT1,r

× F1,r + L̂Tr L̂r, Ω12,r+1 , AT1,rPr+1M̃1,r,

Ω22,r+1 , %2I − M̃T
1,rPr+1M̃1,r − α̂M̃T

2,rPr+1M̃2,r

− %2S̃TFT2D,rF2D,rS̃, Ξr+1 , Ω−122,r+1Ω
T
12,r+1,

ψ11,r+1 , ψr+1 + L̂Tr L̂r −Qr,Xr ,
[
Kr Gr

]
,

ψr+1 , tr
[
ÎTh Qr+1ÎhΓl,r

]
ÎTe

q∑
l=1

Θl,r Îe + α̂
(
A2,r + M̃2,r

×Ξr+1

)T
Qr+1

(
A2,r + M̃2,rΞr+1

)
+
(
M̃1,rΞr+1

+Ar
)T
Qr+1

(
Ar + M̃1,rΞr+1

)
, α̂ , ᾱ− ᾱ2,

ψ1,r+1 ,
(
Ar + M̃1,rΞr+1

)T
Qr+1, S̃ ,

[
I 0 0 0

]
.

Proof : Letting Vr , [Tr+1Pr+1[r+1 − [Tr Pr[r, based on the
system (11), one sees

E {Vr}
=E
{
hT (r, Îe[r)Î

T
h Pr+1Îhh(r, Îe[r) + [Tr A

T
1,rPr+1A1,r[r

}
+ E

{
2[Tr A

T
1,rPr+1M̃1,rω̃r + α̂[Tr A

T
2,rPr+1A2,r[r

}
+ E

{
ω̃Tr M̃

T
1,rPr+1M̃1,rω̃r + α̂ω̃Tr M̃

T
2,rPr+1M̃2,rω̃r

}
− E

{
[Tr Pr[r

}
. (15)

Taking the nonlinearity and the nature of matrix trace into
consideration, we obtain:

E
{
hT (r, Îe[r)Î

T
h Pr+1Îhh(r, Îe[r)

}
=E

{
tr
[
hT (r, Îe[r)Î

T
h Pr+1Îhh(r, Îe[r)

]}
=E

{
tr
[
ÎTh Pr+1Îh

]
h(r, Îe[r)h

T (r, Îe[r)
}

=E

{
[Tr Î

T
e

q∑
l=1

tr
[
ÎTh Pr+1ÎhΓl,r

]
Θl,r Îe[r

}
. (16)

According to (15) and (16), combining
∑N−1
r=0 E‖ze,r‖2

with the zero term
∑N−1
r=0 E

{
Vr−Vr

}
+%2

∑N−1
r=0 E

{
‖ω̃r‖2−

‖F2C,r[r‖2 − ‖F2D,rω̄r‖2 − ‖F1,r[r‖2
}

−
%2
∑N−1
r=0 E

{
‖ω̃r‖2−‖F2C,r[r‖2−‖F2D,rω̄r‖2−‖F1,r[r‖2

}
,

and noticing ω̄r = S̃ω̃r, we can derive that:
N−1∑
r=0

E
{
‖ze,r‖2

}
=%2

N−1∑
r=0

E
{
‖ω̃r‖2 − ‖F2C,r[r‖2 − ‖F2D,rω̄r‖2 − ‖F1,r[r‖2

}
+ E

{
[T0 P0[0 − [TNPN [N

}
+
N−1∑
r=0

E
{
[̄Tr Ω̃r+1[̄r

}
. (17)

Similarly, taking Zr ,
[
0 (XrCr[r)T

]T
into account, we

obtain

A1,r[r = Ar[r + Zr. (18)

Under |Ω22,r+1| 6= 0 for all r ∈ [0, N − 1], selecting ω̃r ,
Ω−122,r+1Ω

T
12,r+1[r, we can conclude that

N−1∑
r=0

E
{
‖ze,r‖2

}
=
N−1∑
r=0

E
{
[Tr L̂

T
r L̂r[r

}
+
N−1∑
r=0

E
{
‖Zr‖2

− ‖Zr‖2
}

+

N−1∑
r=0

E {Vr − Vr}

=
N−1∑
r=0

E
{
[̃Tr ψ̃r+1[̃r

}
−
N−1∑
r=0

E
{
‖Zr‖2

}
+ E

{
[T0 P0[0 − [TNPN [N

}
. (19)

It is obvious to show that (13) and (14) are guaranteed through
(17) and (19), respectively.

Under the specified performance constraint (12), we begin
to propose a necessary and sufficient condition for the design
of the time-varying non-fragile estimator (6) by using CSM
and proof of contradiction.

Lemma 2: Given the perturbation rejection level % > 0
and the weighting matrix S > 0. For the nonlinear time-
varying system (1)-(5), the performance constraint (12) is
fulfilled if and only if there exists a set of real-valued matrices
{Xr}06r6N and a set of matrices {Pr > 0}06r6N (with the
final condition PN = 0) that make the following backward
recursive Riccati difference equation (RRDE):

Ω11,r+1 +Ω12,r+1Ω
−1
22,r+1Ω

T
12,r+1 = Pr (20)

holds with

Ω22,r+1 > 0 and P0 < %2S. (21)

Proof : Sufficiency: For matrices {Pr > 0}06r6N in (20),
taking (17) into consideration, we obtain

N−1∑
r=0

E
{
‖ze,r‖2

}
− %2

N−1∑
r=0

E
{
‖ω̃r‖2 − ‖F2C,r[r‖2

274  



− ‖F2D,rω̄r‖2 − ‖F1,r[r‖2
}

=E
{
[T0 P0[0 − [TNPN [N

}
+
N−1∑
r=0

E
{
[Tr (Ω11,r+1 − Pr) [r

+ 2[Tr Ω12,r+1ω̃r − ω̃Tr Ω22,r+1ω̃r
}

=E
{
[T0 P0[0 − [TNPN [N

}
+
N−1∑
r=0

E
{
[Tr (Ω11,r+1 − Pr

+Ω12,r+1Ω
−1
22,r+1Ω

T
12,r+1)[r

}
+
N−1∑
r=0

E{−(ω̃r − ω̃∗r )T

×Ω22,r+1(ω̃r − ω̃∗r )}

=
N−1∑
r=0

E
{
−(ω̃r − ω̃∗r )TΩ22,r+1(ω̃r − ω̃∗r )

}
+ E

{
[T0 P0[0 − [TNPN [N

}
(22)

where ω̃∗r , Ω−122,r+1Ω
T
12,r+1[r.

Because of Ω22,r+1 > 0 and P0 < %2S, for all nonzero ω̃r,
we can acquire from (20) and PN = 0 that

W̄ <

N−1∑
r=0

E
{
‖ze,r‖2

}
− [T0 P0[0 − %2

N−1∑
r=0

E
{
‖ω̃r‖2

− ‖F2C,r[r‖2 − ‖F2D,rω̄r‖2 − ‖F1,r[r‖2
}

=−
N−1∑
r=0

E
{

(ω̃r − ω̃∗r )TΩ22,r+1(ω̃r − ω̃∗r )
}
< 0, (23)

which corresponds to (12).
Necessity: At this part, we need to verify that, if (12) is

met, then for all nonzero ({ω̃r} , [0), there exists a feasible
solution {Pr > 0}06r6N to (20) with (21). Take account of
the final condition PN = 0, (20) is always solved backward
if Ω22,r+1 > 0 and P0 < %2S for r ∈ [0, N − 1], which indi-
cates that (20) stops recursion for some r = K ∈ [0, N − 1] if
Ω22,K+1 or %2S−P0 has one or more non-positive eigenvalues.

The subsequent portion of this proof is derived through
contradiction. Supposing that Ω22,r+1 or %2S − P0 owns one
or more non-positive eigenvalues at some point r = K ∈
[0, N − 1], which means that we want to verify that W̄ < 0
cannot be fulfilled.

Case 1: We want to verify

λι(Ω22,r+1) 6 0,∀r ∈ [0, N − 1], ι = 1, . . . , nw ⇒ W̄ > 0
(24)

where λι(Ω22,r+1) represents the ιth eigenvalue of Ω22,r+1.
To simplify the presentation, we see the non-positive eigen-

value of Ω22,r+1 at the time step K as λK (λK 6 0). Then, in
the following part, we are to employ λK 6 0 to represent that
there is some ({ω̃r} , [0) 6= 0 which causes W̄ > 0. Firstly,
choose [0 , 0 and ω̃r = 1) 0, if r ∈ [0,K); 2) ψK, if r = K;
and 3) ω̃∗r , if r ∈ (K, N) where ψK is the eigenvector of
Ω22,K+1 corresponding to λ(K).

For 0 6 k < K, according to system (11) with [0 = 0,
h(0, r) = 0 and ω̃r = 0, we gain [r = 0 (0 6 k < K), so that
ω̃∗r , Ω−122,r+1Ω

T
12,r+1[r = 0 (0 6 r 6 K).

Through (22) and ω̃r, we yield

K−1∑
r=0

E
{
‖ze,r‖2

}
− %2

K−1∑
r=0

E
{
‖ω̃r‖2 − ‖F2C,r[r‖2

− ‖F2D,rω̄r‖2 − ‖F1,r[r‖2
}

= 0, (25)

E
{
‖ze,K‖2 − %2(‖ω̃K‖2 − ‖F2C,K[K‖2 − ‖F2D,Kω̄K‖2

− ‖F1,K[K‖2) + VK − VK
}

=E
{
− ω̃TKΩ22,K+1ω̃K − [TK+1PK+1[K+1

}
, (26)

and
N−1∑
r=K+1

E{‖ze,r‖2} − %2
N−1∑
r=K+1

E
{
‖ω̃r‖2 − ‖F2C[r‖2

− ‖F2Dω̄r‖2 − ‖F1[r‖2
}

=E
{
[TK+1PK+1[K+1 − [TNPN [N

}
−

N−1∑
r=K+1

E{(ω̃r − ω̃∗r )TΩ22,r+1(ω̃r − ω̃∗r )
}

=E
{
[TK+1PK+1[K+1

}
. (27)

We then deduce from (25)-(27) that

W̄ = −ω̃TKΩ22,K+1ω̃K = −ψTKΩ22,K+1ψK = −λK‖ψK‖2 > 0.

Case 2: We need to testify

Ω22,r+1 > 0 and P0 > %2S, ∀r ∈ [0, N ]⇒ W̄ > 0. (28)

Choose ω̃r , ω̃∗r . One derives from (22) that

W̄ =E
{
[T0 P0[0 − [TNPN [N

}
− %2[T0 S[0

+
N−1∑
r=0

E
{
− (ω̃r − ω̃∗r )TΩ22,r+1(ω̃r − ω̃∗r )

}
=
{
[T0
(
P0 − %2S

)
[0
}
.

For [0 6= 0, we easily discover that W̄ > 0, which contradicts
to the condition W̄ 6 0. The proof is now complete.

Based on Lemma 2, we are ready to present the design
algorithm of the non-fragile estimator (6).

Theorem 1: Take a nonlinear time-varying stochastic sys-
tems (1)-(5) into consideration. For a specific disturbance
attenuation level % > 0 and matrix S > 0, the non-fragile
estimator (6) fulfills the performance constraint (12) if (20)
and the subsequent RRDE:

ψr+1 + L̂Tr L̂r − ψ1,r+1ψ
−1
2,r+1ψ

T
1,r+1 = Qr (29)

holds for a set of solutions {Pr, Qr, Gr,Kr}06r6N−1 con-
forming to

PN = QN = 0, (30)

ψ2,r+1 > 0, Ω22,r+1 > 0, P0 < %2S, (31)

X ∗r = [K∗r G∗r ] = arg min
Xr

‖N̆TXrCr + ψ−12,r+1ψ
T
1,r+1‖F

(32)
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where N̆ = [0 I], ‖·‖F is the Frobenius norm, and additional
pertinent parameters are displayed in Lemma 1.
Proof : First, provided that there exists {Pr}0≤k≤N−1 fulfilling
(20) and (31), it gets readily from Lemma 2 that system
(11) meets the performance constraint (12). In such a cir-
cumstance, the worst-case disturbance could be expressed by
ω̃∗r , Ω−122,r+1Ω

T
12,r+1[r. Then, through adopting the worst-

case disturbance and CSM, we attain from Lemma 1 that

W2 (Zr, ω̃r)

=E
{
[T0 P0[0 − [TNPN [N

}
+
N−1∑
r=0

E
{
[Tr (ψr+1 + L̂Tr L̂r −Qr

− ψ1,r+1ψ
−1
2,r+1ψ

T
1,r+1)[r + (Zr −Z∗r )Tψ2,r+1(Zr −Z∗r )

}
6
N−1∑
r=0

E
{
[Tr (ψr+1 + L̂Tr L̂r −Qr − ψ1,r+1ψ

−1
2,r+1ψ

T
1,r+1)

× [r + ‖N̆TXrCr + ψ−12,r+1ψ
T
1,r+1‖2F ‖ψ2,r+1‖F ‖[r‖2

}
+ E

{
[T0 P0[0 − [TNPN [N

}
(33)

where Zr , −ψ−12,r+1ψ
T
1,r+1[r. Furthermore, the gain param-

eters Kr and Gr are shown to satisfy (29) and (32), thus, the
proof is accomplished.

Remark 3: It is worth noting that in this part, we obtain
a necessary and sufficient condition in Theorem 1 for the
existence of the estimator (6) using Lemmas 1 and 2, which
satisfies the performance constraint (12). More precisely, on
one hand, the performance constraint (12) can be satisfied if
there exists a solution to the backward RRDEs (20) and (29)
satisfying (31) and (32). On the other hand, if the system
(11) meets the performance constraint (12), then the backward
RRDEs (20) and (29) have a solution that meets (31) and (32).

For enhancing the convenience of implementation, the gain
parameters Kr and Gr can be computed by using the Moore-
Penrose pseudoinverse, which will be discussed in the follow-
ing theorem.

Theorem 2: Set the disturbance rejection level % > 0, the
constants ϑr > 0 and σr > 0, and the matrix S > 0.
The system (11) meets the H∞ performance constraint (12)
for all nonzero {ω̃r}06r6N−1 if there is a set of solutions
{Pr, Qr, Gr,Kr}06r6N−1 to the following RRDEs:

Ω11,r+1 + Ω̄12,r+1Ω̄
−1
22,r+1Ω̄

T
12,r+1 = Pr, (34)

ψ̄r+1 + L̂Tr L̂r − ψ̄1,r+1ψ
−1
2,r+1ψ̄

T
1,r+1 = Qr (35)

with

PN = QN = 0, (36)

ψ2,r+1 > 0, Ω̄22,r+1 > 0, P0 < %2S, (37)

X ∗r = Υ †1,r+1Υ2,r+1C†r , (38)

Fr 6 σrI (39)

where † is the Moore-Penrose pseudoinverse [21], and

M̃1,r ,
[
B̄11,rB̄12,r − ᾱM̄2,r − ᾱM̄2,rM̄1,r

]
,

M̃2,r ,
[
0 B̄2,r M̄2,r M̄2,r 0

]
, S̄ ,

[
0 I

]
,

B̄11,r ,

[
B̄r 0
B̄r 0

]
, B̄12,r ,

[
0 0
0 −ᾱϑ−1r I

]
,

Ω̄12,r+1 , AT1,rPr+1M̃1,r, S̆ ,
[
I 0 0 0 0

]
,

Ω̄22,r+1 , %2I − M̃T
1,rPr+1M̃1,r − α̂M̃T

2,rPr+1M̃2,r

− %2S̆TFT2D,rF2D,rS̆ − σrS̆T S̆,

ψ̄1,r+1 ,
(
Ar + M̃1,rΞ̄r+1

)T
Qr+1, B̄2,r , diag{0, ϑ−1r I},

Fr , %2ϑ2rS̄
TDT

r G
T
r GrDrS̄, Ξ̄r+1 , Ω̄−122,r+1Ω̄

T
12,r+1,

ψ̄r+1 , tr
[
ÎTh Qr+1ÎhΓl,r

]
ÎTe

q∑
l=1

Θl,r Îe +
(
Ar + M̃1,r

× Ξ̄r+1

)T
Qr+1

(
Ar + M̃1,rΞ̄r+1

)
+ α̂(A2,r + M̃T

2,r

× Ξ̄r+1)Qr+1

(
A2,r + M̃2,rΞ̄r+1

)
,

Υ1,r+1 ,
(
I + ψ−12,r+1Qr+1M̃1,rΩ̄

−1
22,r+1M̃

T
1,rPr+1

)
N̆T ,

Υ2,r+1 , −ψ−12,r+1Qr+1

(
I + M̃1,rΩ̄

−1
22,r+1M̃

T
1,rPr+1

)
Ar.

Proof : Let ν̂r ,
[
0 (ϑrGrDrνr)

T
]T

where
ϑr > 0 is used to provide additional degrees of
freedom in the estimation process. By choosing
ω̆r ,

[
ω̄Tr ν̂Tr (F2C,r[r)

T (F2D,rω̄r)
T (F1,r[r)

T
]T

,
we rewrite system (11) as follows:

[r+1 = Îhh(r, Îe[r) +A1,r[r + α̃rA2,r[r

+ M̃1,rω̆r + α̃rM̃2,rω̆r, (40)

ze,r = L̂r[r. (41)

Besides, in terms of Lemma 1 in [10], we know that (38) is
a solution to the following optimization problem:

min
Xr
‖Υ1,r+1XrCr − Υ2,r+1‖F ,

which could be expressed further as

min
Xr
‖N̆TXrCr + ψ−12,r+1ψ̄

T
1,r+1‖F . (42)

Through (17) and Theorem 1, supposing that there is a
family of solutions to the RRDEs (34) and (35) with (36)-
(39), we deduce the following formula:

N−1∑
r=0

E
{
‖ze,r‖2

}
=
N−1∑
r=0

E
{
[Tr (Ω11,r+1 − Pr + Ω̄12,r+1Ω̄

−1
22,r+1Ω̄

T
12,r+1)[r

− (ω̆r − ω̆∗r )T Ω̄22,r+1(ω̆r − ω̆∗r )
}

+ %2
N−1∑
r=0

E{‖ω̃r‖2

− ‖F2C,r[r‖2 − ‖F2D,rω̄r‖2 − ‖F1,r[r + ν̂r‖2}+ E{[T0

× P0[0 − [TNPN [N} −
N−1∑
r=0

E{σr(S̆ω̆r
)T (

S̆ω̆r)}

<%2
N−1∑
r=0

E
{
‖ω̃r‖2 − ‖F2C,r[r‖2 − ‖F2D,rω̄r‖2 − ‖F1,r
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× [r‖2
}

+
N−1∑
r=0

E{ω̃Tr S̃T
(
Fr − σrI

)
S̃ω̃r}+ %2[T0 S[0

(43)

where ω̆∗r , Ω̄−122,r+1Ω̄
T
12,r+1[r.

By combining with (39), it could be inferred from (43) that

N−1∑
r=0

E
{
‖ze,r‖2

}
<%2

N−1∑
r=0

E
{
‖ω̃r‖2 − ‖F2C,r[r‖2 − ‖F2D,r

× ω̄r‖2 − ‖F1,r[r‖2
}

+ %2[T0 S[0. (44)

We then derive that the non-fragile estimator (6) guarantees
that the system (11) meets the performance constraint (12).

Remark 4: By applying the CSM, the non-fragile estimator
(6) has been designed for the time-varying system (1)-(5). The
presentation of Theorem 2 includes all the key elements of the
nonlinear system such as time-varying parameters, parame-
ters involving in integral measurements, statistics information
about the stochastic nonlinearities, probabilistic information
about randomly occurring DoS attacks, and matrices in gain
variations. Gains of the non-fragile estimator (6) are expressed
in (38) by utilizing the Moore-Penrose pseudoinverse. It is
worth mentioning that a necessary and sufficient condition
is put forward in this paper for designing the non-fragile
estimator (6).

IV. SIMULATION RESULTS

Considering a nonlinear time-varying stochastic system (1)
over the time horizon r ∈ [0, 100], and a set of parameters are
used as follows:

s = 2, % = 1,M1,r = M2,r =
[
I I I

]T
, S = 2I,

Ar =

[
−0.01 sin (3r) 0.02

0.03 0.03

]
, Cr =

[
0.4 0.6 sin (5r)
0.3 −0.4

]
,

Lr =

[
0.3 0.1
0.5 0.2

]
, N2,r =

[
0.3 0.3
0.3 0.3

]
, Br =

[
0.2
0.4

]
,

Dr =

[
0.2
0.5

]
, N1,r =

[
0.3 0.3 0.3 0.3 0.3 0.3
0.3 0.3 0.3 0.3 0.3 0.3

]
.

Choose the following stochastic nonlinear function:

h(r, xr) =

[
0.1
0.3

]
(0.2x1,rε1,r + 0.3x2,rε2,r)

where xℵ,r (ℵ = 1, 2) stands for the ℵth element of xr, and
ε℘,r ∼ N (0, 1) (℘ = 1, 2) are uncorrelated Gaussian white
noise sequences. It is demonstrated that h(r, xr) fulfills

E {h(r, xr)|xr} = 0,

E
{
h(r, xr)h

T (r, xr)|xr
}

=

[
0.1
0.3

] [
0.1
0.3

]T
E
{
xTr

[
0.04 0

0 0.09

]
xr

}
.

We calculate the parameters of the non-fragile estimator (6)
by σr = 0.25 and ϑr = 2.5. The initial values for the
system state and the estimator state are chosen as x0 =[
0.2 −0.2

]T
, x−1 =

[
0.2 −0.1

]T
, x−2 =

[
0.3 −0.1

]T

and x̂0 =
[
0 0.1 0.2 0.2 0.1 0.2

]T
. Set the noise sig-

nals as ωr = 0.3 cos(3r)e−0.01r and νr = 0.2 sin(9r)e−0.01r.
Simulation curves are drawn in Figs. 1-2. Fig. 1 indicates the
norm of the estimation error (i.e., ‖ze,r‖2) for different attack
probabilities 1− ᾱ, which reveals that the smaller the value of
ᾱ (i.e., the bigger the occurrence probability of DoS attack),
the bigger the norm of the estimation error. Fig. 2 illustrates
the estimation performance Ψr for different ᾱ with

Ψr =
Σr
τ=0E

{
‖ze,τ‖2

}
Σr
τ=0W̆τ + [T0 S[0

where W̆τ , ‖ω̃τ‖2−‖F2C,τ [τ‖2−‖F2D,τ ω̄τ‖2−‖F1,τ [τ‖2
and r = 0, 1, . . . , N −1. From Fig. 2, we know that Ψr < %2,
that is, the developed estimation method is able to meet the
H∞ performance constraint (12). We also see from Fig. 2 that
the smaller the value of ᾱ (i.e., the bigger the occurrence prob-
ability of DoS attack), the worse the estimation performance.
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ᾱ = 0.1
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V. CONCLUSION

In this paper, the finite-horizon non-fragile H∞ state esti-
mation has been realized for stochastic nonlinear time-varying
systems under integral measurements affected by denial-of-
service attacks. Integral measurements and randomly occur-
ring DoS attacks have been taken into account, and gain
variations of the estimator have been involved in advance.
A necessary and sufficient condition has been set up to
ensure the existence of an ideal estimator, fulfilling the H∞
performance constraint, via stochastic analysis and CSM.
The time-varying gain parameters of the estimator have been
attained by solving a set of coupled backward recursive Riccati
difference equations. Finally, a confirmatory simulation has
been conducted to illustrate the effectiveness of the developed
finite-horizon security-guaranteed non-fragile H∞ estimation
method. Future research directions may include extending the
acquired estimation approach to the estimation problem for
other systems, such as nonlinear systems subject to covert
attacks [16], hybrid attacks [4], or bit errors [5].
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Abstract: In this paper, the collaborative path tracking problem of under-actuated multiple unmanned ships is studied, aiming at
improving the accuracy and stability of the path tracking of unmanned ships. Firstly, the mathematical model of the under-actuated
multi-unmanned ship is established, and its kinematic characteristics and control difficulty are analyzed. Then, an enhanced cooperative
control strategy is adopted to enable multiple unmanned ships to cooperate to complete the path tracking task. The effectiveness and
superiority of this control strategy are verified by simulation experiments. The results show that compared with the traditional control
methods, the proposed collaborative control strategy can significantly improve the path tracking accuracy and stability of unmanned
ships, and enhance the collaborative performance of multiple unmanned ships.
Key Words: Cooperative control strategy; path tracking control；vehicle dynamics mode

1 Introduction
The ocean occupies two-thirds of the earth's surface, is

one of the most important features of the earth's surface, and
is also an important resource for human survival and
sustainable development. With the continuous growth of
population and the depletion of land resources, all countries
have begun to pay attention to the development and
utilization of Marine space and resources, especially the
development of unmanned ship technology[1-2]. Unmanned
ship is a miniaturized, multi-purpose, intelligent unmanned
ocean transport platform that can sail by remote control or
autonomous navigation. Due to its characteristics of low
cost, small size, high speed and high intelligence, unmanned
ships can carry out long-term and large-scale Marine
operations in complex and dangerous Marine environments,
which is an important reflection of the national Marine
scientific and technological strength[3].
The unmanned ship vehicles (USVs) formation

cooperative control technology can be applied to various
Marine operations, such as environmental monitoring,
hydrology and geographic investigation, maritime search
and rescue and ship replenishment. The application of this
technology can not only improve operational efficiency[4]
and reduce personnel risks, but also has great significance
for environmental protection and sustainable
development[5].
However, achieving accurate path tracking and stable

coordination of multiple unmanned vessels is a challenging
task. Due to the dynamic characteristics of unmanned ships
and the influence of external interference, it is necessary to
study an effective control strategy to solve the cooperative
path tracking problem of under-actuated multi-unmanned
ships. This is not only a hot issue in current research, but
also a difficult issue in future research.
Therefore,this paper will study the problem of

________________
*This work is supported by National Natural Science Foundation of

China under Grant 62103289.

under-actuated multi-unmanned ship cooperative path
tracking, propose effective control strategies and methods,
and provide theoretical support and technical guidance for
practical applications.
This paper studies the cooperative path tracking problem

of multiple unmanned ships with globally known path
information, and some research results have been obtained
in related work [6-10]. The decentralized formation control
scheme for fleets with a small amount of inter-ship
communication is proposed and studied in literature [6]. The
control objective of each ship is to maintain its position in
the formation relative to the formation reference point,
which follows a predefined path. Literature [7] studies the
cooperative path tracking problem under discrete-time
periodic communication, and proposes the cooperative
updating law of distributed path parameters, which
effectively solves the communication limitation problem in
practical applications. Literature [8] presents a collaborative
path tracking algorithm based on neural network adaptive
dynamic surface control technology, and introduces
dynamic surface control technology to greatly reduce the
complexity of the algorithm. In the study of path tracking on
closed curves, some research results have been obtained[9-11].
[9] studies the tracking problem of multiple robots on
multiple closed curves, and obtains synchronous formation
formation by adopting arc length consistency method.
Literature [10] studies the problem of guiding a series of
underdriven ship formation to track a set of closed tracks
and realize attitude synchronization, and proves that when
the topology of inter-ship communication is bidirectional, it
is asymptotically stable. Literature [11] studies the
coordinated path tracking problem of multi-agent systems,
and proposes feedback linearization to stabilize it. These
research results are all aimed at the situation where multiple
robots track multiple closed curves. In the existing
collaborative path tracking studies of unmanned ships, the
common assumption is that the global reference speed is
known. However, in practical applications, due to
bandwidth limitations or security concerns, it is not possible
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to guarantee that every ship has direct access to reference
speed information. In order to solve this problem and avoid
the assumption of global reference speed, distributed
observers are applied to the cooperative control of
multi-agent systems. Distributed observers provide each
agent with the ability to independently estimate its speed
and position without relying on global reference speed
information. In this way, collaborative path tracking can be
achieved even in the absence of global reference speed
information. [12] shows that the explicit expression of the
controller gain matrix is parameterized according to solver
conditions so that the drive system and the response system
can be exponentially synchronized. The applicability of the
proposed design method is verified by numerical examples.
[13] proves that each agent can follow the active leader with
the help of the explicitly constructed common Lyapunov
function (CLF).
Inspired by previous studies, aiming at the cooperative

path tracking problem of under-actuated unmanned ships
guided by multiple paths, this paper combined LOS
guidance and multi-agent consistency method [14], and
proposed a collaborative path tracking method based on path
parameter consistency. This method is more suitable for
practical application, and can make the path parameters tend
to be synchronized, so as to realize the synchronous
formation on multiple paths. In other words, through this
method, multiple unmanned ships can be made to maintain
consistent parameters on their respective paths, so as to
achieve multi-ship collaborative path tracking and
synchronous formation.

2 Model Description
As shown in Figure 1, the multi-unmanned boat system

consists of N underactuated following unmanned boats and
a single target unmanned boat, then the target unmanned
boat is represented as

   
   

0 0 0 0 0

0 0 0 0 0

0 0

cos sin

sin cos

x u v

y u v
r

 

 



  
  
  (1)

In the formula, 0 0 0, ,x y  respectively represent the
X-axis coordinate, Y-axis coordinate and yaw Angle of the
target unmanned vehicle in the earth coordinate system.

0 0 0u r v denote the longitudinal velocity, transverse drift
velocity and bow angular velocity of the target unmanned
vehicle in the unmanned vehicle body coordinate system.

The design of this paper is based on the condition that the
actual motion speed and direction of the unmanned ship can
be measured, so the kinematics model of the unmanned ship
is rewritten as
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Fig.1 Cooperative target tracking of multiple USVs

Among them, 2 2 0i i iU u v   it's the actual velocity of
the ship, iw i i    is the actual direction of the ship's
motion,i  tan 2 /i i ia v u  it's a sideslip Angle,

and id i   The given parameterized path of the i

unmanned ship is expressed as     ,id i id ix y  , i is path
parameter.

The tangent Angle on the i path can be expressed
as  tan 2 ,id id ida y x   ,among   /id id i ix x      ,

  /id id i iy y      For the i unmanned ship in

position  ,i ix y , longitudinal tracking error and lateral
tracking error can be expressed in path tangential coordinate
system as
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So the dynamic equation of iex iey and iW can be
rewritten as
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(3)

The control objective of this paper is to solve the
cooperative path tracking problem of multi-path
guidance.At the kinematic level, the guidance forward
velocity irU and guidance angular velocity irr are designed
to make the unmanned ship track the parametric
path     ,id i id ix y  ，And get synchronized formation
formation. Specifically, the control objective can be divided
into two tasks.
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(1) Path tracking tasks:

lim 0, lim 0ie iet t
x y

 
  (4)

(2)Parameter coordination tasks:

lim 0i jt
 


 

(5)

1,..., , 1,..., ,i N j N i j   。

Fig.2 Cooperative path following of multiple USVs

3 Coordinated path tracking by multiple
unmanned ships
The path tracking controller of the i unmanned ship

includes the motion controller and the dynamics controller.
This section focuses on the design of the motion controller.
The motion control includes the guidance law and the
collaborative algorithm based on neighbor information. The
guidance law calculates the given velocity and angular
velocity, which enables the unmanned ship to track the
given reference path. The collaborative algorithm adjusts its
own path parameter update speed based on the path
parameter information of neighboring ships, thereby
achieving path parameter coordination among ships and
obtaining an ideal formation effect.

3.1 Guidance law design

Firstly, the guidance law of a single unmanned ship is
designed based on LOS guidance method, which makes
each unmanned ship track the given parameterized path. To
be specific,The given values of forward velocity irU and
yaw angular velocity irr are designed.
Define

ie iW ir

i s iv

  

 

 


  

ir is the guidance course Angle; sv is the reference
speed; i is the variable to be designed. On the basis of (3),
the dynamic equation of path tracking error can be rewritten
as follow
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 sini i ir idU    .

The guidance law of unmanned ship i is as follows
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Since the design of this section is based on kinematics and
does not consider dynamics, the following assumption is
made in the dynamics loop:

Assumption 1 The unmanned ship perfectly tracks the
given forward velocity and the given yaw angular velocity,

, .i ir i irU U r r 

Substitute (6) into (5), the error equation is obtained. The
dynamic equation of error is
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3.2 Path parameter update rate design

The i law designed in this section makes the path
parameters synchronized, so as to achieve synchronous
formation formation. Define the cooperative error based on
neighbor information as
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3.3 Stability analysis

The following theorem illustrates the stability of
closed-loop systems:

Theorem 1 Considering the motion equation (1) of an
unmanned ship, under the condition of satisfying
assumption 1, the guidance law (7) and the collaborative
update law (8) ensure that the origin
   , , , 0,0,0,0ie ie ie ix y e  of the closed-loop system (9) is
globally uniformly asymptotically stable.

Proof Construct the following Lyapunov function
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Take the derivative of this, and apply the(9)Substituting
can be obtained
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According to the above can be obtained the Origin of
(9)    , , , 0,0,0,0ie ie ie ix y e  is globally uniformly
asymptotically stable. Because 0e
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So the control goal is achieved.

Remark 1 Most of the current collaborative path tracking
methods are proposed for fully actuated ships, while in
practical applications, most unmanned ships are
underactuated. Compared to fully actuated ships,
underactuated ships have a simpler structure and easier
operation, but there are non-integrable second-order
nonholonomic constraints in the mathematical model, which
brings challenges to the design of the controller. The
collaborative path tracking method proposed in this paper is
designed for underactuated ships, and has the advantages of
simplicity, intuition, and efficiency.

4 Numerical simulation
Parameter design guideline, the control parameters are

selected as follows:

1

2 3

80, 10, 1500, 0.005, 80,

80, 2, 6, 1500
i i i i iu

ir i i iu

k k k k

k k k
       

    

4 5

1500, 3, 0.01, 3,
5, 1, 1, 1, 3

ir i ier i

i i iu ir i

k
k k


  

     

    

Simulation results are shown in Figs. 3-6.

Fig. 3 x-direction of ASV

Fig. 4 y-direction of ASV
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Fig. 5 Cross track errors

Fig. 3 and Fig. 4 show the positions of ASV. Fig. 5shows
the lateral tracking errors, which are all within an acceptable
range. Fig. 6 shows the update of path parameters. After a
period of adjustment, the path parameters of the ship
gradually synchronized, achieving consistency control of
the path parameters. In other words, by updating the path
parameters, the ships ultimately reach a synchronized state,
which enables them to maintain consistent paths.

Fig. 6The evolution path variable

5 Conclusions
In this paper, the problem of collaborative path tracking

of underactuated multi-unmanned ships is studied in depth,
and a reinforced collaborative control strategy is proposed.
This strategy aims to improve the path tracking accuracy,
stability, and collaborative performance of multiple
unmanned ships. Simulation experiments are conducted to
verify the effectiveness and superiority of this strategy. The
experimental results show that the unmanned ships using
this strategy have significantly improved path tracking and
stability performance, and the collaborative performance
among multiple unmanned ships has also been enhanced.
Additionally, this strategy exhibits good robustness and can
adapt to various environmental and condition changes.

Whether in calm sea conditions or complex and changing
sea conditions, this strategy can maintain high control
accuracy and collaborative performance. In the future, we
will continue to explore the problem of collaborative path
tracking of underactuated multi-unmanned ships, striving to
further improve the control accuracy and collaborative
performance of unmanned ship groups. We hope to provide
more reliable and efficient technical support for practical
applications through continuous research and innovation,
and promote the wider application of unmanned ship
technology in marine operations.
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Abstract: It is a pendent problem to accomplish dynamic event-triggered tracking for uncertain nonlinear systems (UNS) with
unmeasured state and unmatched control input by feat of backstepping technique. In this article, we present a control solution
to deal with the issue under backstepping frame. First, a fuzzy-based state observer is established to estimate unmeasured
states of the system. Then, a dynamic variable is integrated into the dynamic event-triggered protocol to achieve dynamic
triggering threshold parameter. Such operation can help to further decrease triggering events and economy network resource.
The formulated dynamic event-triggered scheme provides a feasible solution for UNS. Finally, theoretical finding is authenticated
by simulation comparative analysis.

Key Words: Dynamic event-triggered adaptive control, state observer, backstepping technique, fuzzy control, uncertain nonlin-
ear systems.

1 Introduction

Most of the actual physical systems contain nonlinearity,
strong coupling, uncertainty, randomness, and other compre-
hensive properties. Therefore, designing the controller of
nonlinear systems is a long-term and challenging problem.
The backstepping technique has emerged as an effective
approach to address the challenges posed by nonlinearity.
To handle uncertainties existing in uncertain nonlinear sys-
tems (UNS), numerous adaptive control techniques ground
on fuzzy logic or neural networks have been researched.
These approximation-based intelligent control methods have
gained significant attention in control territory with many
important results being reported.

The fuzzy control method is a promising tactic for solving
the nonlinear control problem in recent years. Since Zadeh
proposed fuzzy set theory in 1965 [1], it has revealed ex-
cellent performance in different areas and has been broadly
employed in control design. In [2], fuzzy-based control so-
lutions were constructed for UNS, which with unknown dy-
namics. In [3], fuzzy-based finite-time control method was
investigated for high-order multi-agent UNS. These methods
are highly effective in achieving control objectives without
requiring knowledge of the dynamic system model in ad-
vance. It’s worth noting that all the aforementioned methods
are state feedback control, which means they require direct
measurement of all states. However, due to the complexity of
the environment, only partial state information is available,
and some of it cannot be measured directly. Therefore, we
can use a fuzzy observer to accurately estimate unmeasured
states based on output signals. In [4], the observer-based
fuzzy backstepping output feedback controller was investi-
gated for nonlinear systems with unmeasured states. More-
over, these accomplishments were utilized to tackle chal-
lenges in UNS. Remark that the aforementioned results uti-
lize the time-triggered control (TTC) approach, which em-
ploys a fixed-cycle data transfer method. While the TTC

This work was supported in part by the Shandong Provincial Natu-
ral Science Foundation (ZR2023QF039), by the Qingdao Natural Science
Foundation (23-2-1-123-zyyd-jch).

method is straightforward to implement, it consumes plenti-
ful network resources and may result in network congestion.

To address this issue and enhance network resource
utilization by minimizing unnecessary data transmission,
Åström firstly proposed the event-triggered control (ETC)
method [5]. Different from TTC, ETC determines whether
to transmit data and update control signals by designing an
event-triggered mechanism (ETM) according to system per-
formance. In the paper [6], a strategy for adaptive control
based on events was proposed for the purpose of strict feed-
back UNS. This method employed the adaptive backstep-
ping technique and designed the event-triggered mechanism
and the controller in parallel, and the event-triggered mea-
surement error is compensated effectively. Based on [6], the
ETC of strict feedback UNS has received comprehensive at-
tention and produced a large number of research results [7].
It is important to note that the above ETM are static which
means that the threshold parameter is typically fixed in the
constructed event-triggered conditions. Compared to static
ETM, dynamic ETM [8, 9] introduces a dynamic variable
to adjust the threshold parameters dynamically, thus the uti-
lization efficiency of communication resources can be im-
proved. In [10], a dynamic ETC scheme was submitted for
strict-feedback UNS, which can achieve the control objec-
tive when the system state can be measured.

The existing dynamic ETC methods are mainly focused
on linear systems, first-order UNS, and higher-order UNS
with standard form. However, there have been limited re-
ports on dynamic ETC results for strict feedback UNS with
unmeasured states. The presence of unmeasured states poses
significant challenges to designing dynamic ETC strategies.

This paper presents a fuzzy-based adaptive dynamic ETC
approach for UNS. By developing a fuzzy state observer,
the unavailable state is estimated. Using these observed
states, we exploit a feedback-based adaptive dynamic event-
triggered output feedback control law. The major innova-
tions of the presented scheme are extracted as follows:

(1) In the process of control design, a fuzzy-based state
observer is utilized to estimate unavailable states. By in-
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corporating fuzzy approximation technique, an adaptive re-
cursive backstepping framework is employed to exploit an
output feedback control strategy.

(2) This method introduces a dynamic threshold param-
eter into the event-triggered mechanism and then builds a
dynamic event-triggered controller. When the signals from
the controller to the actuator satisfy the dynamic triggering
condition, they are transmitted. Compared to existing static
event-triggered mechanisms, this method reduces the num-
ber of events transmitted through the actuator network chan-
nel.

(3) Different from the existing works, this paper designs a
dynamic ETM for UNS to reduce the data transmission bur-
den. To address more general strict feedback UNS, a fuzzy-
based output feedback controller is devised using backstep-
ping technique. It is proven that all signals of the close-loop
systems by applying the designed scheme are bounded and
without Zeno behavior.

2 Preliminaries and problem formulation

2.1 System Depiction
Consider the following strict-feedback nonlinear systems:

ẋ1 = x2 + Ψ1(X1) + d1,
ẋ2 = x3 + Ψ2(X2) + d2,
...
ẋn = u+ Ψn(Xn) + dn,
y = x1,

(1)

where x1, · · · , xn are system states and Xi =
(x1, · · · , xi)T (i = 1, 2, ..., n); u ∈ R is the control
input; y ∈ R is the system output; Ψi(Xi) ∈ R denote
nonlinear functions, which are unknown and smooth; di
denotes the disturbance of the system, which are bounded.

2.2 Fuzzy logic systems
Lemma 1: Define a function Ψ(x) on a compact set Ω,

which is continuous. Then for any ` > 0, there lives a fuzzy
logic system (FLS) such as:

sup
x∈Ω

∣∣Ψ(x)− θTϕ(x)
∣∣ 6 `, (2)

where θ is the weight vector, ` denotes the fuzzy approxima-
tion error, ϕ(x) = [ϕ1(x), ϕ2(x), ..., ϕn(x)]

T is the fuzzy
basis function vector which is chosen as:

ϕi (xi) =

∏j
i=1 µF l

i
(xi)∑n

l=1

(
Πj

i=1µF l
i

(xi)
) , (3)

where F l
i (i = 1, ..., j; l = 1, ..., n) is the fuzzy set, n >

1 is the number of fuzzy rule and µF l
i

is the membership
function.

3 Fuzzy dynamic event-triggered control design

According to Lemma 1, any smooth function can be ap-
proximated by FLS in a compact space. Thus, we can ap-
proximate the nonlinear terms in 1 as:

Ψi (Xi | θi) = θT
i ϕi (Xi) ,

Ψ̂i(X̂i | θi) = θT
i ϕi(X̂i), 1 6 i 6 n (4)

where X̂i = (x̂1, x̂2, . . . , x̂i)
T
.

The FLS minimum approximation errors ωi and approxi-
mation errors δi are defined as

ωi = Ψi(Xi)− Ψ̂i(X̂i | θ∗i ), δi = Ψi(Xi)− Ψ̂i(X̂i | θi),
(5)

where θ∗i is the optimal parameter vector.
Denote ω′i = ωi + di and δ′i = δi + di(i = 1, 2, . . . , n).
Assumption 1: The reference signal yr and its first n-th

order derivatives are bounded and continuous.
Assumption 2: di(i = 1, 2, . . . , n) denotes the distur-

bance of the system, which is bounded.
Assumption 3: Assume that there exist constants ω′i0 and

δ′i0(i = 1, 2, . . . , n), which are known and satisfy |ω′i| ≤
ω′i0, |δ′i| ≤ δ′i0.

3.1 Fuzzy state observer design
Design following fuzzy state observer:

˙̂x1 = x̂2 + k1(y − ŷ) + Ψ̂1(X̂1|θ1),
˙̂x2 = x̂3 + k2(y − ŷ) + Ψ̂2(X̂2|θ2),
...
˙̂xn = u+ kn(y − ŷ) + Ψ̂n(X̂n|θn),
ŷ = x̂1,

(6)

where ki is an observer parameter to be determined, x̂i and
ŷ are estimated state xi and output y, and ki, i = 1, . . . , n
are chosen to make the matrix A Hurwitz,

A =

 −k1

... I
−kn 0 . . . 0

 .
There exists a positive matrix P = PT > 0 that satisfies

ATP + PA = −2Q, where Q > 0 is a given positive-
definite symmetric matrix.

Let εi = xi− x̂i, i = 1, . . . , n be the observer error, then:
ε̇1 = ε2 + δ′1 − k1ε1,
ε̇2 = ε3 + δ′2 − k2ε1,

...
ε̇n = δ′n − knε1.

. (7)

From 7, we can earn:

ε̇ = Aε+ δ, (8)

where δ = [δ′1, δ
′
2, . . . , δ

′
n]T .

3.2 Dynamic event-triggered adaptive controller design
Then, an observer-based dynamic ETC algorithm will be

devised via applying backstepping technique. The coordi-
nate transformations are exhibited as:{

z1 = y − yr,
zi = x̂i − αi−1 − y(i−1)

i i = 2, . . . , n,
(9)

where z1 is the stabilization error, zi are virtual errors and
αi denotes the virtual control law.

Step 1: Ground on (9),

ż1 = ẋ1 − ẏr
= x2 + Ψ1(X1) + d1 − ẏr
= ε2 + x̂2 + ω1 + Ψ̂1(X̂1 | θ∗1) + d1 − ẏr
= ε2 + z2 + α1 + θ̃T1 ϕ1(x̂1) + θT1 ϕ1(x̂1) + ω′1, (10)
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where θ̃1 = θ∗1 − θ1.
Consider the Lyapunov function:

V1 =
1

2
εTPε+

1

2
z2

1 +
1

2γ1
θ̃T1 θ̃1, (11)

where γ1 > 0 is a constant.
Calculating V̇1 yields

V̇1 =εTP (Aε+ δ) + z1ż1 −
1

γ1
θ̃T1 θ̇1

=
1

2
εT
(
ATP + PA

)
ε+ εTPδ + z1ż1 −

1

γ1
θ̃T1 θ̇1

=− εTQε+ εTPδ + z1

[
z2 + α1 + θT1 ϕ1 (x̂1) + ω′1

]
+ z1ε2 +

1

γ1
θ̃T1

(
γ1z1ϕ1 (x̂1)− θ̇1

)
. (12)

Employing Young’s inequality yields

εTPδ + z1ε2 ≤ ‖ε‖2 +
1

2
z2

1 +
1

2
‖Pδ‖2. (13)

From (13), there is

V̇1 ≤− (λmin(Q)− 1)‖ε‖2 + z1 [z2 +
1

2
z1 + θT1 ϕ1 (x̂1)

+α1 + ω′1] +
1

2
‖Pδ‖2 +

1

γ1
θ̃T1

(
γ1z1ϕ1 (x̂1)− θ̇1

)
.

(14)

From (14), α1 and θ̇1 are generated as:

α1 = −c1z1 −
1

2
z1 − θT1 ϕ1 (x̂1)− ω′10 tanh

(
ω′10z1

k

)
,

(15)

θ̇1 = γ1z1ϕ1 (x̂1)− σ (θ1 − θ10) , (16)

where c1 > 0, σ > 0, k > 0 and θ10 are constants.
Using the property of the hyperbolic tangent function

tanh(·), we can get the following inequality:

z1ω
′
1 − z1ω

′
10 tanh

(
ω′10z1

k

)
≤ 0.2785k , k′. (17)

Inserting (15)-(17) into (14) yields

V̇1 ≤− (λmin(Q)− 1)‖ε‖2 − c1z2
1 + z1z2

+
1

2
‖Pδ‖2 +

σ

γ1
θ̃T1 (θ1 − θ10) + k′. (18)

Step 2: From (9), we have

ż2 = ˙̂x2 − α̇1 − ÿr
=z3 + α2 + k2ε1 + θ̃T2 ϕ2(X̂2) + θT2 ϕ2(X̂2) + ω′2

− δ′2 −
∂α1

∂y

(
x̂2 + ε2 + θT1 ϕ1 (x̂1) + δ′1

)
− ∂α1

∂yr
ẏr

− ∂α1

∂x̂1

(
x̂2 + θT1 ϕ1 (x̂1) + k1ε1

)
− ∂α1

∂θ1
θ̇1

=z3 + α2 +H2 + θ̃T2 ϕ2(X̂2) + ω′2 − δ′2

− ∂α1

∂y
(ε2 + δ′1) , (19)

where θ̃2 = θ∗2 − θ2, and H2 is denoted in the following
form:

H2 =k2ε1 + θT2 ϕ2(X̂2)− ∂α1

∂y

(
x̂2 + θT1 ϕ1 (x̂1)

)
− ∂α1

∂yr
ẏr

− ∂α1

∂x̂1

(
x̂2 + θT1 ϕ1 (x̂1) + k1ε1

)
− ∂α1

∂θ1
θ̇1.

To stabilize equation (19), we select a control Lyapunov
function as:

V2 = V1 +
1

2
z2

2 +
1

2γ2
θ̃T2 θ̃2, (20)

where γ2 > 0 is a constant.
Calculating V̇2 yields

V̇2 =V̇1 + z2ż2 −
1

γ2
θ̃T2 θ̇2

≤− (λmin(Q)− 1)‖ε‖2 − c1z2
1 +

1

2
‖Pδ‖2

+
σ

γ1
θ̃T1 (θ1 − θ10) + k′ + z2 [z1 + z3 + α2

+H2 + ω′2]− z2δ
′
2 − z2

∂α1

∂y
ε2 − z2

∂α1

∂y
δ′1

+
1

γ2
θ̃T2

(
γ2z2ϕ2(X̂2)− θ̇2

)
. (21)

Using Young’s inequality, we receive

− z2δ
′
2 − z2

∂α1

∂y
ε2 − z2

∂α1

∂y
δ′1

≤ 1

2
z2

2 + ‖ε‖2 + z2
2

(
∂α1

∂y

)2

+
1

2
δ′21 +

1

2
δ′22 , (22)

Then,

V̇2 ≤− (λmin(Q)− 2)‖ε‖2 − c1z2
1 +

1

2
‖Pδ‖2

+
σ

γ1
θ̃T1 (θ1 − θ10) + k′ + z2 [z1 + z3 + α2 +H2

+ ω′2 +
1

2
z2 +

(
∂α1

∂y

)2

z2] +
1

2
δ′21 +

1

2
δ′22

+
1

γ2
θ̃T2

(
γ2z2ϕ2(X̂2)− θ̇2

)
. (23)

From (23), α2 and θ̇2 are generated as:

α2 =− c2z2 − z1 −H2 −
1

2
z2 −

(
∂α1

∂y

)2

z2

− ω′20 tanh

(
ω′20z2

k

)
, (24)

θ̇2 =γ2z2ϕ2(X̂2)− σ (θ2 − θ20) , (25)

where c2 > 0 and θ20 are design parameters. By incorporat-
ing (24), (25) into (23),

V̇2 ≤− (λmin(Q)− 2)‖ε‖2 − c1z2
1 − c2z2

2 + z2z3

+
1

2
‖Pδ‖2 +

1

2
δ′21 +

1

2
δ′22

+
2∑

i=1

σ

γi
θ̃Ti (θi − θi0) + 2k′. (26)
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Step i (i=3,...,n): Similar to the above derivation process, we
adopt the Lyapunov function:

Vi = Vi−1 +
1

2
z2
i +

1

2γi
θ̃Ti θ̃i, (27)

where γi > 0 are constants.
The αi and θ̇i are generated as:

αi =− cizi − zi−1 −Hi −
1

2
zi −

(
∂αi−1

∂y

)2

zi

− ω′i0 tanh

(
ω′i0zi
k

)
, (28)

θ̇i =γiziϕi(X̂i)− σ (θi − θi0) , (29)

where ci > 0 and θi0 are constants, θ̃i = θ∗i − θi, and Hi is
denoted in the following form:

Hi =kiε1 + θTi ϕi(X̂i)−
∂αi−1

∂y

(
x̂2 + θT1 ϕ1 (x̂1)

)
−

i−1∑
j=1

∂αi−1

∂y
(j−1)
r

y(j)
r −

i−1∑
j=1

∂αi−1

∂x̂j
(x̂j+1 + kjε1

+θTj ϕj(X̂j)
)
−

i−1∑
j=1

∂αi−1

∂θj
θ̇j .

In this step, we will create an adaptive controller and an
adaptive updating law as follows:

ν(t) =αn + y(n)
r , (30)

θ̇n =γnznϕn(X̂n)− σ (θn − θn0) . (31)

A dynamic event-triggered mechanism is given in such
form:

u(t) =ν (tk) , t ∈ [tk, tk+1) , (k ∈ z+) (32)

tk+1 = inf

{
t ∈ R | |e(t) |≥ bl +

1

al
ξ

}
, (33)

where al, bl > 0 are constants, e(t) = ν(t) − u(t) denotes
the measurement error, tk is the update time of the controller.
During the time period t ∈ [tk, tk+1), there exists a value
ν̄ > 0 that satisfies |u(t)− ν(tk)| ≤ ν̄. The dynamic thresh-
old parameter ξ is designed as:

ξ̇ = −ρlξ + al (bl − |e(t)|) . (34)

Lemma 2 [11]: Based on the equation (34), the dynamic
threshold parameter ξ satisfies

0 ≤ ξ ≤ albl
ρl

.

3.3 Stability analysis
Now, we will expound on the stability analysis under the

designed observer-based dynamic ETC scheme. The Theo-
rem 1 is given as follows:

Theorem 1: If the closed-loop system includes the UNS
(1) and the dynamic ETM (30)-(33), subject to Assumptions
1 − 3. We can ensure the boundedness of all signals, pre-
venting any occurrence of Zeno behavior.

Proof : Consider total Lyapunov function:

V =
1

2
εTPε+

1

2

n∑
i=1

zi
2 +

1

2

n∑
i=1

1

γi
θ̃Ti θ̃i. (35)

From (35), we can calculate

V̇ =εTP ε̇+
n∑

i=1

ziżi −
n∑

i=1

1

γi
θ̃Ti θ̇i

≤− (λmin(Q)− (n− 1)) ‖ε‖2 + zn(u− ν)

+ zn

(
αn + knε1 + θTnϕn(X̂n) + ω′n − α̇n−1

)
− znδ′n −

n−1∑
i=1

ciz
2
i + znzn−1 +

1

2
‖Pδ‖2

+
n−1∑
i=1

σ

γi
θ̃Ti (θi − θi0) +

(n− 2)

2
δ′21 +

n−1∑
i=2

1

2
δ′2i

+ (n− 1)k′ +
1

γn
θ̃Tn

(
γnznϕn(X̂n)− θ̇n

)
. (36)

Operating Young’s inequality, we have:

V̇ ≤− (λmin(Q)− (n− 1)) ‖ε‖2 +
1

2
z2
n +

1

2
ν̄2

+ zn

(
αn + knε1 + θTnϕn(X̂n) + ω′n − α̇n−1

)
− znδ′n −

n−1∑
i=1

ciz
2
i + znzn−1 +

n−1∑
i=1

σ

γi
θ̃Ti (θi − θi0)

+
1

2
‖Pδ‖2 +

(n− 2)

2
δ′21 +

n−1∑
i=2

1

2
δ′2i

+ (n− 1)k′ +
1

γn
θ̃Tn

(
γnznϕn(X̂n)− θ̇n

)
. (37)

With (28) and (29), (37) implies

V̇ ≤− (λmin(Q)− n) ‖ε‖2 −
n∑

i=1

Ciz
2
i +

1

2
ν̄2

+
1

2
‖Pδ‖2 +

n∑
i=1

σ

γi
θ̃Ti (θi − θi0) +

(n− 1)

2
δ′21

+
n∑

i=2

1

2
δ′2i + nk′, (38)

where Ci = ci (i = 1, . . . , n−1), Cn = cn− 1
2 are positive

constants.
According to Young’s inequality, one can derive the fol-

lowing result

n∑
i=1

σθ̃Ti (θ∗i − θi0)

γi

≤1

2

n∑
i=1

σθ̃Ti θ̃i
γi

+
1

2

n∑
i=1

σ

γi
‖θ∗i − θi0‖

2
. (39)
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We can rewrite equation (38) as:

V̇ ≤− (λmin(Q)− n) ‖ε‖2 −
n∑

i=1

Ciz
2
i −

n∑
i=1

σ

γi
θ̃Ti θ̃i

+
1

2

n∑
i=1

σ

γi
θ̃Ti θ̃i +

1

2

n∑
i=1

σ

γi
‖θ∗i − θi0‖

2
+

1

2
ν̄2

+
(n− 1)

2
δ′210 +

1

2

(
1 + ‖P‖2

) n∑
i=2

δ′2i0 + nk′. (40)

Then,
V̇ ≤ −℘V + ∆, (41)

where

℘ = min

{
2 (λmin(Q)− n)

λmax(P )
, 2C1, · · · , 2Cn, σ

}
, (42)

∆ =
1

2

n∑
i=1

σ

γi
‖θ∗i − θi0‖

2
+

1

2
ν̄2 +

(n− 1)

2
δ′210

+
1

2

(
1 + ‖P‖2

) n∑
i=2

δ′2i0 + nk′. (43)

Then, the system stability is ensured.
We can prove that there exists constant t∗ > 0 where ∀k ∈

z+, {tk+1 − tk} ≥ t∗. Because e(t) = ν(t) − u(t), ∀t ∈
[tk, tk+1), we have

d

dt
|e| = d

dt
(e ∗ e) 1

2 = sign(e)ė ≤ |ν̇|. (44)

From (30), we have

ν̇ = α̇n. (45)

We can conclude that there exists a positive number % > 0
such that |ν̇| ≤ %, since ν̇ is a function of bounded variables.
By utilizing the fact that e(tk) = 0 and limt→tk+1

e(t) =
bl + bl/ρl, we can obtain a lower bound for the inter-
execution intervals t∗ which satisfy t∗ ≥ (bl + bl/ρl)/%.
Furthermore, it is possible to prevent the emergence of Zeno
behavior.

4 Simulation studies

To prove the efficacy of the presented scheme, we examine
the system:  ẋ1 = x2 + x1e

−0.5x1 ,
ẋ2 = u+ x1 sin

(
x2

2

)
,

y = x1.
(46)

Choosing fuzzy membership functions as

µFl
i

(
¯̂xi
)

=
2∏

i=1

exp

[
− (x̂i − 3 + l)

2

16

]
, (l = 1, . . . , 5)

where ¯̂xi = [x̂1, x̂i]
T
, (i = 1, 2).

Defining fuzzy basis functions as

ϕij

(
¯̂xi
)

=
µFj

i

(
¯̂xi
)

∑5
n=1

∏2
i=1 exp

[
− (x̂i−3+n)2

16

] , (j = 1, . . . , 5).

The FLSs are

θT
1 ϕ1 (x̂1) =

5∑
j=1

θT
1jϕ1j (x̂1) , (47)

θT
2 ϕ2 (x̂1, x̂2) =

5∑
j=1

θT
2jϕ2j (x̂1, x̂2) . (48)

The reference signal yr = 0.5 sin(t), and we have chosen
the specific parameters for the design, c1 = 8, c2 = 5, k1 =
7, k2 = 3, γ1 = γ2 = 0.1, σ = 0.01, ε10 = ε20 = 0.1,
κ = 0.01, al = 0.02, bl = 0.01, ρl = 0.4.

The positive matrix P =

[
0.5625 −0.5000
−0.5000 0.5703

]
, Q = I2.

The initial conditions are

x1(0) = 0, x2(0) = 0.1, x̂1(0) = 0, x̂2(0) = 0.2, ξ(0) = 0,

θ1(0) = [−0.6, 0, 0.5, 0, 0.6], θ2(0) = [0.4, 0, 0.1,−0.1, 0].

The simulation images are exhibited in Figs.1-5. Fig 1
shows that the state x1 can successfully track the reference
signal yr. Fig 2 and Fig 3 are the system states and observer
states. The control signal is presented in Fig 4.

To compare the performance of the dynamic ETC scheme,
which reduces event numbers, we compared it with the fuzzy
static ETC scheme. The controller’s relevant parameters re-
main the same. As illustrated in Fig 5, a comparison is
made between the event-triggered time intervals of the fuzzy
dynamic ETC scheme and the fuzzy static ETC scheme.
This comparison demonstrates that the fuzzy dynamic ETC
scheme has fewer triggers and longer trigger intervals than
the fuzzy static ETC scheme.
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Fig. 1: Curves of the system state x1 and yr.

In Table 1, we can see the number of transmission events
for three different schemes. The data demonstrates that the
proposed fuzzy dynamic ETC solution performs similarly to
the time-driven and fuzzy static ETC schemes, while also
reducing the communication burden.

Table 1: Comparison results
Control method Transmission events number
TTC 3000
Fuzzy static ETC 2072
Fuzzy dynamic ETC 1048
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Fig. 2: Curves of the system state x1 and observer state x̂1.
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Fig. 3: Curves of the system state x2 and observer state x̂2.

5 Conclusion

This paper presents an observer-based dynamic fuzzy con-
trol scheme for UNS. The recursive design process is un-
folded by using backstepping technique. The dynamic ETM
is constructed to promote resource utilization efficiency.
The devised observer-based dynamic ETC strategy not only
achieves control assignment of UNS with unavailable states
but also successfully avoids Zeno behavior. The simulation
comparison and analysis show that the present scheme can
further reduce data transmission.
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The Autonomous Flight of an Indoor Quadrotor Using Onboard
Vision
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Abstract: In this paper, a vision detection and tracking system is designed to force a quadrotor to achieve the automation flight
in the indoor environment based on the on-board vision system. The LED lamp belt is installed on the wall inside as the tracking
target for the quadrotor. The coordination control law is designed to track the LED lamp in the straight part as well as the bent
part. Moreover, the converging analysis of the tracking control algorithm is given and collision avoidance between the quadrotor
and the tunnel is guaranteed. Furthermore, the vision detection system is designed to provide the input signal for the controller,
which is obtained by solving relative pose between the quadrotor and the LED. Finally, the proposed control and detection
schemes are validated in the experiments on a real quadrotor platform.

Key Words: Quadrotor, Automation flight, Tracking, Collision avoidance

1 Introduction

With the contributions both in military and civilian, un-
manned aerial vehicles (UAVs) have gained great interest-
ing among the research community. As an important subset
of UAVs, quadrotors have become popular recently due to
their small size and maneuverability, which have found po-
tentially application in reconnaissance, surveillance, disaster
management and emergency aid [1–3].

The development of quadrotor navigation and control
technologies in indoor or enclosed environments has been
an active area of research. There is lots of work on control
or navigation system design based on the indoor localization
system. Examples include: balancing a pendulum [4]; ag-
gressive maneuvers, such as flight through windows [5] or
flips [6]; ball juggling with a racket [7] and so on. However,
the indoor localization system is usually expensive and does
not suit for narrow and dark environment, especially for the
unknown environment, such as tunnel, disaster area, and so
forth. Therefore, Many efforts have been made to perform
the automation flight of the quadrotor with on-board sensor.
[8] developed a nonlinear vision-based controller for grasp-
ing maneuvers using vision. In [9], the authors proposed
a stochastic differential equation-based exploration algorith-
m to enable exploration in three-dimensional indoor envi-
ronments with a payload constrained micro-aerial vehicle.
[10] presented control system and collision detection sys-
tem design for a quadrotor using a Kinect sensor. In [11],
an onboard monocular vision system is developed for au-
tonomous takeoff, hovering and landing of a Micro Aerial
Vehicle (MAV).

Since tracking is an important and fundamental problem
of automation flight of the UAVs, many works have been per-
formed to achieve tracking task by using various methods. In
[12], the authors provided a nonlinear controller for tracking
control of a quadrotor unmanned aerial vehicle based on a
globally defined model of the quadrotor UAV rigid body dy-

This work is supported in part by National Natural Science Foundation
(NNSF) of China under Grant 61973055 and the Fundamental Research
Funds for the Central Universities under Grant 2023NSFSC0511.

namics. In [13], the authors proposed a dynamic feedback
control strategy for controlling an unmanned rotorcraft and
making it follow a desired smooth reference trajectory. How-
ever, in [12] and [13], only numerical simulations were pro-
vided. [14] presented an optimization-based iterative learn-
ing approach for trajectory tracking and the approach was
successfully applied to quadrotor vehicles, where a prede-
fined trajectory was involved. In [15], a vision-based posi-
tion control method was proposed for the position stabiliza-
tion of a quadrotor UAV, where the helicopter X-Y-Z position
was estimated with respect to a landing pad on the ground.
Considering the requirement of practical application, track-
ing flight with more flexible task or in more complicated en-
vironment should be investigated.

Recently, the automation flight control of the quadrotor
in tunnel-like environment has attracted much attention due
to the important applications including exploration, surveil-
lance, rescue, etc. However, the automation flight control
of the quadrotor in such environment is difficult due to the
limited space, dark environment, weak signal, etc. In this pa-
per, we take a step to investigate the navigation and control
of a quadrotor in indoor environment (such as tunnel, store-
house, etc) based on the on-board vision system, where the
LED lamp belt is installed on the wall as the leading mark.

To follow two moving points on LED lamp belt, the
quadrotor is requested to keep fixed distance and coincident
velocity with the moving LED belt, thus a coordination con-
trol method is needed. In this paper, a simple and achievable
coordination control algorithm is proposed to track the LED
lamp, which is further applied combining with vision detec-
tion algorithm for a real quadrotor platform. To achieve real
tracking flight of the quadrotor, the relative distance between
the LED belt and the quadrotor is required, which is obtained
by solving the relative pose in real-time by using the Monoc-
ular cameral. Concretely, the position of the LED lamp is
first obtained by taking the photo of the LED lamp using the
vision system. Then, the relative pose between the quadrotor
and the LED is calculated by solving the PNP (Perspective
N Points) problem. Furthermore, the obtained relative pose
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is sent to the controller to get the output. We then apply the
developed algorithms to a real quadrotor platform to demon-
strate the effectiveness of the proposed control schemes.

The contributions of our paper are given as follows. First,
an automation flight problem in indoor environment based
on on-board vision is investigated and performed for a real
quadrotor platform. The developed methods can be extended
for other tasks, for example, inspection and rescue in tunnel-
like environment. Second, a coordination control algorithm
is proposed which is simple and easy to implement for re-
al quadrotor platform. Third, in contrast to the commercial
products, the developed system is open source, which is easy
for secondary development.

The remainder of this paper is organised as follows. The
automation flight problem based vision system is formulated
in Section 2. In Section 3, the tracking control algorithm is
designed to follow the LED lamp either in the straight part or
the curve part. In Section 4, the moving velocity direction of
the LED and the relative distance between the adjoint point
and the quadrotor are obtained, which are required as the in-
put of the controller. The actual implementation results, as
well as the analysis on the overall performance, are given in
Section 5 to verify the superiority of the designed intelligent
flight system. Finally, in Section 6, we draw some conclud-
ing remarks.

2 Formulation of the Problem

We install two parallel LED lamp belts on the right wal-
l indoors, where the distance between two lamp belts are
known and the space between two light is fixed. The LED
lamp belts are shown in Figure 1.

Fig. 1: The diagram of LED belt.

In Figure 1, each lamp belt is moving rightward in the
way of water lights, and at each moment, there are only t-
wo lamps working on each LED lamp belt. In addition, the
moving orders of the two lamp belts are same. Thus, at each
moment, four LED lamps are working and the form and the
size of the working lamps kept fixed. As shown in Figure
2, the reference frame is defined as follows: origin is locat-
ed at the centroid of the rectangle, the positive direction of
x-axis is the moving direction of the LED belt, and y-axis is
the vertical direction of the LED belt. Thus, the reference
coordinates of four lamps are known.

This paper considers the problem of control and guidance
system design for the quadrotor equipping with IMU and
camera to achieve automation flight in indoor environmen-
t.

Fig. 2: The frame of LED plane.

Suppose that there is no curve in the vertical section of
the tunnel, and r1, r2 are two moving points on one LED
lamp belt and r′1, r′2 are the moving points on another LED
lamp belt. The velocities of r1, r2, r′1 and r′2 are constant
and known. We aim to design the control system by which
the quadrotor flights keeing the same height and certain dis-
tant with the lamp belt. Suppose that the quadrotor look-
s at the four moving points simultaneously, r = r2 − r1,
ra = (r1 + r2)/2, rb = (r1

′ + r′2)/2 and r̄ = (ra + rb)/2.
r̂ is the adjoint point of r̄, satisfying

r̂ =

{
r̄+d r×z

‖r×z‖ , ‖r × z‖ 6= 0,

r̄+d (r×z)−

‖(r×z)−‖ , ‖r × z‖ = 0.

Here, z =
[

0 0 1
]T

; (r × z)− is the left limit of
r × z when the quadrotor enters the vertical tunnel.

Remark 1 Since there is no curve in the vertical segmen-
t of the tunnel, that is, (r × z)/‖r × z‖ is same when the
quadrotor just enters the vertical segment and just departs
from the vertical segment.

3 The design of the control system

Assume that the quadrotor has achieves velocity control.
We introduce the following control law to perform tracking
task for the moving points:

ẋ = v
r

‖r‖
+Kv (r̂ − x) (1)

Here, x is the position of the quadrotor; v, r,r̂ are given
as mentioned earlier; Kv is larger than zero, which is an un-
known value to be determined. In order to avoid collision
with the tunnel, Kv is usually selected according to the ve-
locity v of LED lamp, the distance d between adjoint point
and lamp belt, and the curvature of the tunnel.

Before showing the converging analysis of the tracking
algorithm, we introduce the following Lemma.

Lemma 1 If

ξ̇ = −kξ + l
η

‖η‖
, ‖ξ0‖ = a, a >

l

k

Then ξ is uniformly ultimate bounded. Here, ξ and η are
time-varying vectors; k, l and a are constants greater than
zero.

Proof. Solving

d ‖ξ‖
dt

= −k ξ
Tξ

‖ξ‖
+ l

ηTξ

‖η‖ ‖ξ‖
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we have,

‖ξ‖ = e−kt ‖ξ0‖+

∫ t

0

e−k(t−τ)l ηTξ
‖η‖‖ξ‖dτ

From the assumption of the Lemma, we obtain

‖ξ‖ ≤ e−kta+l

∫ t

0

e−k(t−τ)dτ = e−kta+
l

k

(
1− e−kt

)
≤ a

.

Theorem 1 Suppose that the curvature radius of the tunnel
is ρ, the moving velocity of the LED lamp belt is v, and the
distance between the adjoint point and the LED lamp belt
is d. Then, the quadrotor is able to keep the flight distance
with the adjoint point not more than d when choosing Kv ≥
vd/ρl .

Proof. Since the maximal deviation between the velocity
of adjoint point and the velocity of LED lamp occurs in the
horizontal tunnel, we have

˙̂r = v
ρ± d
ρ

r

‖r‖
(2)

where± denotes that± (r̄ − r̂) points the center of the turn-
ing circle. From equation (1), we have

ẋ = v

(
1± d

ρ
∓ d

ρ

)
r

‖r‖
+Kv (r̂ − x)

Substituting equation (2) into the above equation, we obtain
that

ẋ− ˙̂r = ∓vd
ρ

r

‖r‖
+Kv (r̂ − x)

Let e = x− r̂, we get

ė = ∓vd
ρ

r

‖r‖
−Kve

From Lemma 1, we know that the quadrotor can keep the
flight distance with adjoint point not more than l, only if
Kv ≥ vd/ρl.

Remark 2 Since straight line can be viewed as circle with
infinite curvature radius, the convergence of the control
method holds for the straight part of the tunnel. Actual-
ly, it can be proved that when the control method given by
equation (1) is applied for the straight part of the tunnel,
the quadrotor can achieve accurate tracking for the adjoint
point.

Remark 3 Suppose that the distance between the initial po-
sition of the quadrotor and the adjoint point is less than d. If
the control method given by equation (1) is applied, the col-
lision between the quadrotor and the tunnel can be avoided.
Actually, if let l = d in Theorem 1, it can be easily obtained
that the quadrotor can keep the flight distance not more than
d from the adjoint point, that is, the quadrotor can avoid
collision with the tunnel.

4 Tracking Flight of the Quadrotor Platform

According to the input of the controller, two data are re-
quired for the real automation flight, including the moving
velocity direction r

‖r‖ of the LED and the relative distance
(r̂ − x) between the adjoint point and the quadrotor. In the
following, we will first solve the relative pose between the
quadrotor and the LED in real-time by using the Monocular
cameral, and then by considering the real-time attitude angle
of the quadrotor, the velocity direction r

‖r‖ and the relative
distance (r̂ − x) can be obtained.

The corresponding pixel coordinates of four lamps are
first obtained by the camera, which are denoted as pi =
[ui, vi], i = 1, ..., 4. Then a PNP (Perspective N Points)
problem is constructed.

PNP problem: When the reference coordinates of N char-
acteristic points and the corresponding N pixel points are
known, how to obtain the pose of the camera or the quadrotor
by calculating the projection relation.

In the following, we will show the solving procedure in
detail.

4.1 The relative pose calculation between the quadrotor
and the LED lamp plane

According to the obtained pixel coordinates of the LED
lamp, we will solve the relative pose between the quadrotor
and the LED lamp plane. Here, the pose transformational
matrix is denoted as T , which can be expressed as:

T=

[
R t
0T 1

]

Here, submatrix R is 3*3 dimensional, which denotes rota-
tion matrix of the imaging coordinate system under the LED
lamp coordinate system; vector t is 3*1, which denotes the
coordinate of the centroid of the quadrotor in the LED lamp
coordinate system.

In this paper, the PNP problem is constructed as a non-
linear least-squares problem defined on lie algebra, and the
relative pose T between the quadrotor and the guiding LED
lamp is obtained by minimizing the reprojection error. Here,
the reprojection error denotes the error between the real pixel
coordinates of one point in the space and its pixel coordinate
obtained by solving the projection equation of pinhole cam-
era. The diagram is shown in Figure 3.

Here, Pi = [Xi, Yi, Zi] denotes the reference coordinate
of each LED lamp, pi = [ui, vi] denotes the pixel coordi-
nate of the LED lamp obtained by camera, and p̂i = [ûi, v̂i]
denotes the pixel coordinate obtained by reprojection of Pi
according to pose.

To facilitate the calculation of the least-squares problem,
we describe the relative pose by using lie algebra ξ. ξ is a
6*1 dimensional vector, which is related to transformational
matrix T by an exponential mapping, that is, T = exp(ξ).
For brief, the specific form of the mapping is not discussed
in this paper.

According to the projection equation of pinhole camera,
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Fig. 3: The diagram of prerejection error.

we have: sûi
sv̂i
s

 = K exp(ξ)


Xi

Yi
Zi
1



=

 fx 0 cx
0 fy cy
0 0 1

 exp(ξ)


Xi

Yi
Zi
1

 (3)

Here, K is the reference matrix of the camera. fx, fy are the
camera focuses and [cx, cy] are the pixel coordinates of the
optical center, which can be obtained by camera calibration.
s is the scale factor, which can be eliminated when calculat-
ing.

Remark 4 It is worth noting that equation (3) includes the
transformation between homogenous coordinate and nonho-
mogeneous coordinate. For simplicity, the detailed descrip-
tion is not provided.

To reduce the effect of the noise and get more stable pose
estimate, we assume that the poses of three serial frames of
image are unchanged. Thus, we construct a least-squares
problem by summing the reprojection error of each frame
of the three serial frames for four LED lamps. Then the
best pose estimate can be found by minimizing the following
function:

ξ∗ = arg min
ξ

1

2

n∑
i=1

∥∥∥∥pi − 1

s
K exp(ξ)Pi

∥∥∥∥2
2

Here we apply the Gauss-Newton method to solve the
above optimization problem. Thus, we need to calculate the
Jacobian Matrix J of error item on the optimization variable
ξ. First, denote P ′ = exp(ξ)P = [X ′, Y ′, Z ′]T , the phys-
ical meaning of which is transforming P defined in LED
reference frame to camera frame according to pose ξ. Then
according to the pinhole camera model, we have, sû

sv̂
s

 =

 fx 0 cx
0 fy cy
0 0 1

 X ′

Y ′

Z ′



Pre-multiply ξ by disturbance δξ, and then consider the
derivative of error on disturbance. By using chain rule, we
have:

∂e

∂δξ
= lim
∂ξ→0

e(δξ ⊕ ξ)
δξ

=
∂e

∂P ′
∂P ′

∂δξ

Here, ⊕ denotes the premultiplying by disturbance. The
first item is the derivative of error on projective point. Obvi-
ously, it is true that

∂e

∂P ′
= −

[
∂û
∂X′

∂û
∂Y ′

∂û
∂Z′

∂v̂
∂X′

∂v̂
∂Y ′

∂v̂
∂Z′

]
= −

[
fx
Z′ 0 − fxX

′

Z′2

0
fy
Z′ − fyY

′

Z′2

]

The second item is the derivative of the transformed point
on lie algebra, then we have

∂P ′

∂δξ
=
[
I −P ′∧

]
=

 1 0 0 0 Z ′ −Y ′
0 1 0 −Z ′ 0 X ′

0 0 1 Y ′ −X ′ 0


Therefore, we have:

J =
∂e

∂P ′
∂P ′

∂δξ

= −

[
fx
Z′ 0 − fxX′

Z
′2 − fxX′Y ′

Z
′2 fx + fxX

′2

Z
′2 − fxY ′

Z′

0
fy
Z′ − fyY

′

Z
′2 −fy − fyY

′2

Z
′2

fyX
′Y ′

Z
′2

fyX
′

Z′

]

Thus, by solving ξ, we can obtain the transforming matrix
T .

4.2 Coordinate transformation
Noting that the pose T solved by the above PNP prob-

lem is in the reference coordinate system of four LED plane,
which is inconsistent with the coordinate system of the con-
troller. The details can be seen in Figure 4.

Fig. 4: Diagram of the frame.

For this, the rotation matrix R is transformed as Euler an-
gle form. Then three corresponding angles are denoted as θx,
θy , θz which are respectively, the rotary angles of quadrotor
related to axis x, y, z of LED coordinate system. The trans-
lation part is denoted as t =

[
tx ty tz

]T
, and adjoint

point r̂ is located on Z axis direction with distance to LED
lamp belt as d. We know that when the quadrotor flights sta-
bly, θx approaches to zero, while θy is corresponding to the
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included angle between the imaging plane and the LED lam-
p plane, which is controlled to zero. Thus, we only consider
the effect of θz in the coordinate transformation, which will
be called as climbing angle since it describes the climbing
angle of the LED belt. Subsequently, the control input used
in this paper can be described as

(r̂ − x) =

 − cos θz sin θz 0
0 0 1

sin θz cos θz 0

 tx
ty
tz

−
 0
d
0


r

‖r‖
=

 cos θz
0

sin θz


5 The experimental results

In this work, we use a MAV (micro air vehicle) platform
developed by our lab to perform the experiment. As shown
in Figure 5, it is a quadrotor equipped with detecting system
and sensor systems used to measure the flight state of the
quadrotor. The sensor systems include inertial navigation
system (IMU) used for attitude estimation, magnetometer
and position sensor for position calculation. The ultrason-
ic sensor and airborne laser radar are applied as the position
sensor, and two-dimensional reconstruction is not involved.
The detecting system includes camera, data processor and
WiFi module. The software of the flight control system is
developed in Windows, and and is programmed in the IAR
Integrated Development Environment. The software of the
vision detection system is developed in ROS, and is pro-
grammed in the Qt Integrated Development Environment.

Fig. 5: MAV platform.

By using the developed methods, the quadrotor can
achieve tracking flight for the leading LDE lamps, which is
shown in Figure 6.

Figure 7 shows the variation of climbing angle θz with
time in the real flight test. It can be seen that θz is stable
during the flight process. It also can be found that the LED
belt starts to climb at 7 second with the climbing angle as 20
degrees, which is coincident with the situation arranged in
the real test place.

Figure 8 shows the variation of the position error between
the quadrotor and the adjoint point in the real flight. It can
be seen that there is a big error between them in the X axis
direction at the beginning. Then the error reduces and ap-
proaches to zero when the quadrotor starts tracking the LED

Fig. 6: Tracking effect.

Fig. 7: The relative altitude between the quadrotor and the
LED belt.

belt. After a small vibration, the error keeps around zero.
Since the LED belt moves forward 10cm discretely after 0.4
second, the error is serrate on the X axis. Furthermore, the
errors on the Y axis and Z axis are keeping among a small
range. It can be seen that the error on the Y axis starts serrate
oscillation, since the LED belt starts to climb at 7 second,
however, the whole error is kept around zero. In general, the
whole position errors between the quadrotor and the adjoint
point can quickly converge to zero and remain stable. This
shows that the developed system is feasible.

Fig. 8: The position errors between the current position x
and adjoint point r̂.

294  



6 Conclusions

Automation flight control of the quadrotor in the indoor
environment is investigated in this paper. We have proposed
an control algorithm for tracking the moving target in an in-
door environment by a quadrotor equipping with IMU and
camera. The proposed control algorithm can track the mov-
ing point on the straight plane or curved surface, by which
the collision avoidance can be achieved. The vision detec-
tion system is designed to solve the desired control input,
where the relative pose between the quadrotor and the guid-
ing LED lamp is obtained by solving the PNP problem. The
designed guidance and control system has been successfully
implemented on an autonomous quadrotor platform and the
experiments show the excellent performance.

The paper is the first step to investigate the automation
flight of the quadrotor in the unknown environment, where
the LED lamp is used as the leading mark. In the future, the
developed vision detection system and tracking control algo-
rithm can be used to construct fully automation flight algo-
rithm, which is able to be applied for exploring in unknown
environment or constructing a monocular visual SLAM sys-
tem.
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Abstract: In this paper, the problem of output feedback predictive steering control for path tracking in autonomous vehicles
is studied based on interval type-2 fuzzy-model-based approach. Due to the complex road conditions and different maneuvers,
the vehicle experiences fluctuations in velocity, and furthermore, certain physical characteristics of the vehicle are not accessible
for control. The suggested approach involves the utilization of fuzzy modeling techniques to develop an interval type-2 T-S
fuzzy model that captures the vehicle’s lateral dynamics, taking into account the longitudinal velocities velocity change. A
Longberg observer is developed for the state estimate and the corresponding conditions for the estimation error to be confined
within a minimal ellipsoidal robust positively invariant set are proposed, which is involved in an H∞-type cost function of
predictive control to further improve the transient output feedback control performance. Then, an interval type-2 fuzzy-model-
based predictive controller is established by addressing a Min-max optimization problem. Finally, in order to demonstrate the
effectiveness of proposed methods, some validation results with Carsim/MATLAB joint simulation are provided.

Key Words: Autonomous Driving, Fuzzy Control, Interval type-2, Model Predictive Control

1 Introduction

In recent decades, autonomous driving technology has
emerged as a prominent research focus within the auto-
mobile industry and academic fields. Typically, the au-
tonomous driving system comprises four distinct functional
modules, namely, environment perception, decision mak-
ing, path planning, and tracking control [1, 2]. Among the
four modules, tracking control, as a crucial component of
autonomous driving systems, has attracted a lot of interest
within the control community [3]. In the existing litera-
ture, multiple control techniques have been proposed for ve-
hicle steering control, such as, PID control, model predic-
tive control (MPC), H∞ control, and fuzzy logic control [4–
6]. To mention a few, in [7], a nested proportional-integral-
derivative (PID) steering controller is developed to handle
the problem of path-tracking in the presence of unpredictable
road curvature and vehicle physical parameters. In [8], a
MPC path-tracking controller with switching tracking error
is provided which could ensure the vehicle’s stability under
both normal and high-speed situations.

The T-S fuzzy modeling approach is widely used in non-
linear system related investigations within the classic con-
trol discipline. The approach relies on fuzzy logic princi-
ples and utilizes sector nonlinearity to approximate a non-
linear system with a collection of linear subsystems. In the
case of nonlinear systems represented by T-S fuzzy systems,
the model predictive control (MPC) technique is commonly
employed to formulate an online optimization problem. In
[9], the authors provide two algorithms, namely online and
offline robust fuzzy model predictive control (RFMPC), for
handling the challenges posed by persistent disturbances and
parameter uncertainties in a nonlinear system. In [10], in or-
der to deal with the issue of vehicle path tracking, the author
employs T-S fuzzy modeling technology to effectively han-
dle the variations of parameters caused by changes in longi-
tudinal velocity.

Howerver the membership function of type-1 T-S fuzzy

system exclusively focuses on the nonlinearity generated by
the system, but ignoring the possible uncertainty associated
with the system parameters. For this reason, interval type-
2 T-S fuzzy system addresses system nonlinearity and pa-
rameter uncertainty through the incorporation of upper and
lower membership functions and a relative weight function
[11, 12]. Motivated by the above control issues, consider-
ing the system nonlinearity, parameter uncertainty and actu-
ator constraints, this paper proposes an output feedback pre-
dictive steering control method for automatic vehicle path
tracking based on an interval type-2 T-S fuzzy model.

Initially, to account for the parameter changes resulting
from the variation of longitudinal velocity over a period of
time, a real-time updated interval type-2 T-S fuzzy model T-
S fuzzy model for the original system is proposed. In this
model, the upper and lower bound membership functions
of the system are adjusted based on the vehicle prediction
range, acceleration, and deceleration. Then a path tracking
system based on an observer is constructed. The control
technique under consideration is described in terms of lin-
ear matrix inequalities (LMIs). On this basis, a robust fuzzy
model predictive path tracking algorithm is proposed. The
effectiveness and advantages of the proposed path tracking
method is successfully verified through Carsim/Matlab joint
simulation.

The rest of the paper is organized as follows. In Section
II, an interval type-2 T-S fuzzy vehicle model for path track-
ing is presented and some preliminaries are introduced. In
Section III, the observer-based predictive controller is de-
veloped. The simulation to demonstrate the path tracking
performance are given in Section IV. Finally, conclusion are
provided in Section V.

2 PRELIMINARIES AND PROBLEM FORMU-
LATION

2.1 Vehicle Lateral Dynamics
To facilitate the following system analysis and synthesis,

the widely used generic single track or bicycle model of the
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vehicle dynamics is adopted in this paper, as shown in Fig.
1 [13]. The meanings of the symbols involved are shown in
Table I.

Fig. 1: Look-ahead path tracking based on single-track
model

Table 1: Vehicle model parameters

Symbol Description

m vehicle mass(kg)

vx vehicle longitudinal speed(m/s)

vy vehicle lateral speed(m/s)

lf , lr distances from CG to the front and rear axles(m)

Iz yaw moment of inertia(kg· m2)

Cf , Cr front and rear cornering stiffnesses(N/rad)

αf , αr front and rear tire slip angles(rad)

β sideslip angle at CG(rad)

ψ yaw angle(rad)

δ wheel steering angle(rad)

φ relative yaw angle(rad)

Ls vehicle preview distance(m)

yL preview lateral deviation(m)

Additionally, we consider the lateral dynamics of the ve-
hicle is controlled by the front wheel steering angle δ. Then
by employing the small steering angle assumption, the ve-
hicle lateral dynamics can be characterized by the following
equations:

m
(
v̇y + vxψ̇

)
= Fyf + Fyr,

Izψ̈ = lfFyf − lrFyr.
(1)

It can be easily calculated vy = vx tanβ. Since
β is small during the driving process, it approximately
has tanβ ≈ β. Besides, the effect of tire longitudi-
nal force on lateral motion can be neglected and the tire
forces Fyf and Fyr can be linearly approximated Fyf =

2Cfαf = 2Cf (δ −
(
vy + lf ψ̇

)
/vx) and Fyr = 2Crαr =

2Cr(−
(
vy − lrψ̇

)
/vx). Substituting it into (1), the follow-

ing description for the vehicle lateral dynamics has:

β̇ = −ψ̇ +
2Cf

mvx
(δ − β − Lf ψ̇

vx
) +

2Cr

mvx
(−β +

Lrψ̇

vx
),

ψ̈ =
2LfCf

mvx
(δ − β − Lf ψ̇

vx
)− 2LrCr

mvx
(−β +

Lrψ̇

vx
).

(2)

We consider the lateral error between the vehicle and the
road to follow at a look-ahead distance Ls. Furthermore, the
following relationship holds according to vehicle kinemat-
ics:

ẏL = βvx + Lsψ̇ + vxφ. (3)

The vx is a mutable variable. Hence, by integrating (2)
with (3) described above, it is possible to get the vehicle path
tracking system as follows:

ẋ(t) = Ã(t)x(t) + B̃(t)u(t) + D̃(t)ω(t), (4)

Ã(t) =


−2Cf−2Cr

mvx

2lrCr−2lfCf

mv2
x

− 1 0 0

2lrCr−2LfCf

Iz

−2L2
fCf−2L2

rCr

Izvx
0 0

0 1 0 0
vx ls vx 0

 ,

B̃(t) =


2Cf

mvx
2LfCf

Iz
0
0

 , D̃(t) =


0
0

−vx
0

 .
where x(t) = [β(t) ψ̇(t) φ(t) yL(t)]

T is the state vector,
ω(t) = 1/d(t) is the road curvature, and the steering angle δ
is the control input u(t).

The measurement of vehicle sideslip angle β is usually un-
available in practice. Therefore, the measured system output
equation is defined as follows:

y(t) = Cx(t) =

 0 1 0 0
0 0 1 0
0 0 0 1

x(t) (5)

2.2 Type-2 T–S Fuzzy Model
In order to simplify the problem description, we convert

the continuous-time dynamics model into a discrete-time
model by dividing it into discrete intervals with a sampling
period of T . Therefore, we have the following discrete-time
parameter varying dynamics with external disturbance:

x(k + 1) = A(k)x(k) +B(k)u(k) +D(k)ω(k)

y(k) = Cx(k) (6)

where A(k) = 1 + TÃ, B(k) = TB̃, D(k) = TD̃, C = C.
The input of the front wheel system is the steering angle and
δ is subject to saturation umin ≤ u ≤ umax. Furthermore,
we assume the disturbance satisfies ω ∈ W := {ω|ωTω ≤
γ2}. Assume the vehicle speed changes during cruising, i.e.,
vxmin ≤ vx(t) ≤ vxmax. In order to address the changing
lateral dynamics of the vehicle, we utilize type-2 T-S fuzzy
modeling approach. This allows us to present a discrete-
time T-S fuzzy representation of the lateral dynamics in the
following manner:

Fuzzy Rule i: If f1(vx(k)) is F i
1 and f2(vx(k)) is F i

2 and
f3(vx(k)) is F i

3, Then{
x(k + 1) = Aix(k) +Biu(k) +Diω(k)
y(k) = Cx(k), i = 1, 2, 3, ..., r,

(7)

where f1(vx(k)) = vx(k), f2(vx(k)) = 1
vx(k)

, f3(vx(k)) =
1

v2
x(k)

are premise variables, F i
1, . . . , F

i
3 are the inter-

val type-2 T–S fuzzy set of Rule i, and the sys-
tem matrices Ai, Bi, Di are known for each fuzzy rule.
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The firing interval corresponding to the ith rule is
hi(vx(k)) = [hi(vx(k)), hi(vx(k))], where hi(vx(k)) =
p∏

j=1

µF i
j
fj(vx(k)) and hi(vx(k)) =

p∏
j=1

µ
F i

j

fj(vx(k)) are

the lower and upper grades of membership, respectively;
µF i

j
fj(vx(k)) ∈ [0, 1] and µ

F i
j

fj(vx(k)) ∈ [0, 1] are the

lower and upper membership functions, respectively. Then
the inferred interval type-2 T-S fuzzy model is defined as

x (k + 1) =
r∑

i=1

hi (vx(k)) (Aix (k) +Biu (k) +Diw (k))

(8)
where hi(vx(k)) =hi(vx(k))vi(vx(k))+hi(vx(k))vi(vx(k)),
r∑
i

hi(vx(k)) = 1 and vi(vx(k)) + vi(vx(k)) = 1, in which

vi(vx(k)) ∈ [0, 1] and vi(vx(k)) ∈ [0, 1] are nonlinear
functions.

To decrease the conservativeness of the results, one might
implement the suggested variable change [14], due to the
high interdependence of the three premise variables.

vx =
v0v1

v1 + v0ϱ
,
1

vx
=

1

v0
+

1

v1
ϱ,

vx ∼= v0

(
1− v0

v1
ϱ

)
,
1

v2x
∼=

1

v20

(
1 + 2

v0
v1
ϱ

)
(9)

where v0 = 2vxminvxmax

vxmin+vxmax
, v1 = 2vxminvxmax

vxmin−vxmax
and ϱ is the

new premise variable satisfing ϱmin ≤ ϱ ≤ ϱmax, ϱmin =
−1, ϱmax = 1, and

vx =

{
vxmin, if ϱ = ϱmin

vxmax, if ϱ = ϱmax
(10)

System (7) can be represented in the type-2 T-S fuzzy
form as follows:{

x(k + 1) = A(ϱ)x(k) +B(ϱ)u(k) +D(ϱ)w(k)
y(k) = Cx(k)

(11)

where ·(ϱ) = ·(ϱ(k)) and A(ϱ) = h1(ϱ)A(vxmax) + h2(ϱ)A(vxmin)
B(ϱ) = h1(ϱ)B(vxmax) + h2(ϱ)B(vxmin)
D(ϱ) = h1(ϱ)D(vxmax) + h2(ϱ)D(vxmin)

(12)

The range of vehicle speed within a certain time interval
can be predicted and obtained based on the measured longi-
tudinal speed at the current time. One may assume that there
is a maximal acceleration and deceleration for the vehicle,
which are denoted as amax and amin, respectively. Subse-
quently, the longitudinal velocity vx within each narrow fi-
nite horizon of length N satisfies

NTsamin ≤ vx (k +N)− vx (k) ≤ NTsamax (13)

The following lower and upper membership functions are
formed in this horizon

h1(ϱ) = (1 + v1 (1/(vx +NTsamax)− 1/v0))/2
h1(ϱ) = (1 + v1 (1/(vx +NTsamin)− 1/v0))/2

h2(ϱ) = 1− h1(N)

h2(ϱ) = 1− h1(N)

Thus, the system (7) is rewritten as

x (k + 1) =
2∑

i=1

2∑
j=1

vij (ϱ)(Aijx (k) +Biju (k) +Dijw (k))

(14)

where 
A11 = h1(ϱ)A(vxmax)
A12 = h1(ϱ)A(vxmax)

A21 = h2(ϱ)A(vxmin)
A22 = h2(ϱ)A(vxmin)

3 MAIN RESULTS

Definition 1 (Robust Positive Invariance(RPI)): Consider
a discrete-time system with a state feedback control law:

x(k + 1) = Adx(k) +Ddω(k) (15)

where x(k) is state vector, ω(k) is external disturbance. If
∀x(k) ∈ Γ it holds x(k + 1) ∈ Γ for all admissable ω(k).
Then the set Γ is called a RPI set for the close-loop control
system.

Lemma 1 [14]: The ellipsoidal set Γ := {x | xTPx ≤ ξ}
where P > 0 is an RPI set of the system (15) if for all h
satisfying hi > 0 and

∑2
i=1 hi = 1,

1

ξ
x(k + 1)TPx(k + 1) ≤ 1

ξ
x(k)TPx(k) (16)

holds under the condition

1

ξ
x(k)TPx(k) ≥ 1

γ2
ω(k)Tω(k) (17)

Definition 2 (Input-to-state stability(ISS)): For a discrete-
time system x(k+1) = f(x(k), u(k)), it is ISS if there exist
a KL-function β and a K function σ such that

|x (k, x0, u)| ≤ β (|x0| , k) + ρ(∥u∥)

where x0 is the initial state vector, u is the input sequence
{u(0), u(1), ..., u(k − 1)}, and k is the time instant.

Definition 3 (ISS-Lyapunov function): A function V (x)
is called an ISS-Lyapunov function for system x(k + 1) =
f(x(k), u(k)) if there exist K∞function α1, α2, α3 and a
Kfunction σ such that

α1(|x|) ≤ V (x) ≤ α2(|x|),
V (f(x(k), u(k)))− V (x) ≤ −α3(|x|) + σ(|u|). (18)

Lemma 2 [15]: If system x(k+1) = f(x(k), u(k)) admits
a continuous ISS-Lyapunov function, then it is ISS.

3.1 Observer Design
The absence of convergence to zero in the state estima-

tion error is related to the existence of external disturbances.
Hence, we posit that the estimation error is confined to a
small ellipsoidal robust positively invariant (RPI) set as the
temporal horizon approaches infinity. In order to achieve this
objective, the following state observer is presented:

x̂(k + 1) = A(ϱ)x̂(k) +B(ϱ)u(k) + L(ϱ)(y(k)− ŷ(k))
(19)

298  



where ŷ(k) = Cx̂(k), and L(ϱ) :=
∑2

i=1 hiLi. Denote
e(k) := x(k)− x̂(k) as the observation error with respect to
the actual state, the dynamics of e(k) can be derived as:

e(k + 1) = (A(ϱ)− L(ϱ)C)e(k) +D(ϱ)ω(k). (20)

Consider an ellipsoidal set Γe := {e(k) | e(k)TPee(k) ≤
1}. With the employment of the S-procedure, Γe is an RPI
set if there exists a positive scalar λ such that(

e(k + 1)TPee(k + 1)− e(k)TPee(k)
)

− λ

(
1

γ2
ω(k)Tω(k)− e(k)TPee(k)

)
≤ 0. (21)

Substituting the observer error system state equation (20)
into (21) and collecting the state vector [e(k)T , ω(k)T ]T ,
we have[

(−1 + λ)Pe 0
0 −λ/γ2

]
+

[
(A(ϱ)− L(ϱ)C)

T

D(ϱ)T

]
Pe [A(ϱ)− L(ϱ)C D(ϱ)] ≤ 0.

(22)

Applying the Schur complement to (22) and multiplying
both sides with diag{I, I, Pe}, one has (−1 + λ)Pe ⋆ ⋆

0 −λ/γ2I ⋆
A(ϱ)− L(ϱ)C D(ϱ) −P−1

e

 ≤ 0 (23)

According to (12), (21) should be satisfied for all h satis-
fying

∑2
i=1 hi = 1. Considering the nonlinear term −P−1

e ,
via the matrix variable transformation, the above inequality
can be written as (−1 + λ)Pe ⋆ ⋆

0 −λ/γ2I ⋆
PeAi −WiC PeDi −Pe

 ≤ 0 (24)

where Wi = Pe ∗ Li.
To guarantee the optimality of estimation results, the size

of the ellipsoidal set Γe should be minimized. We minimize
the size of RPI set Γe := {e(k) | e(k)TPee(k) ≤ 1} by
maximizing Pe. To this end, we have the following con-
strained problem

min
Pe,Wi,λ

−det (Pe) , s.t. (30). (25)

The observer gains and the minimal RPI set can be obtained
by solving the above problem.

3.2 Controller design
In this section, an robust fuzzy MPC control strategy is

proposed to optimize the system performance. The path
tracking task can be formulated into the following optimal
control problem. Under the bounded curvature ω(k), the
finite-horizon objective function can be established as

J∞(k) :=
N∑
i=0

ℓ(k + i | k), (26)

where ℓ(k+i | k) := x̂T (k+i | k)Qx̂(k+i | k)+uT (k+i |
k)Ru(k+ i | k)−τeT (k+ i | k)Pee(k+ i | k) is stage cost;
and x̂(k+ i|k), u(k+ i|k), e(k+ i|k) are the predicted state,
control input, and state estimation error at the ith predicted
time instant; and Q and R are positive definite matrices, τ
is a positive scalar, and Pe has been determined in the last
section.

Theorem 1: Consider the observer-based path tracking
system, if there exist a positive definite matricesX , matrices
Y , G and positive scalars ξ, τ , such that the following con-
strained optimization problem is feasible, and the observer
system (19) for the interval type-2 T-S fuzzy system (11) is
input-to-output stable,

min
ξ,X,Gj ,Yj

ξ

s.t. (28), (29), (30), (31)
(27)


X −G−GT ⋆ ⋆ ⋆ ⋆

0 −τξPe ⋆ ⋆ ⋆
2AlG+ 4BlYl 2ξLlC −X ⋆ ⋆

QG 0 0 −ξQ 0
2RKl 0 0 0 −ξR

 ≤ 0

(28)


X −G−GT ⋆ ⋆

0 −τξPe ⋆
(AlG+ 2BlYj) + (AjG+ 2BjYl) ξ(Ll + Lj)C −X

QG 0 0
R(Yj + Yl) 0 0

⋆ ⋆
⋆ ⋆
⋆ ⋆

−ξQ 0
0 −ξR

 ≤ 0

(29)

[
M ⋆
Y T
j Gj +GT

j −X

]
≥ 0 (30)

[
1 ⋆

x̂(k) X

]
≥ 0. (31)

where j, l = 1, 2, 3, 4 and P = ξX−1. Besides, we use∑4
l=1 vl denote

2∑
i=1

2∑
j=1

vij , so the feedback law is u(k) =

K(ϱ)x̂(k), K(ϱ) =
∑4

l=1 vlKl, where
∑4

l=1 vl = 2 and
Kl = YlG

−1.
Proof: We define a positive definite function V (x) :=

x̂TPx̂ , P > 0 such that

V (x̂(k + i+ 1 | k))− V (x̂(k + i | k)) ≤ −ℓ(k + i | k)
(32)

By summing up both sides of the above inequality from i =
0 to i = N , we have JN (k) =

∑N
i=0 ℓ(k+ i | k) ≤ V (x̂(k |

k)). Thus, V (x̂(k | k)) is an upper bound of the infinite
cost function JN (k). The notation ∥x∥P represents

√
xTPx,

where P is a positive definite matrix, while ∥x∥2 represents
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√
xTx. Substituting u(k) = K(ϱ)x̂(k) and system (19) into

(32), one has[
(−P +Q+K(ϱ)TRK(ϱ) 0

0 −τPe

]
+

[
(A(ϱ) +B(ϱ)K(ϱ))

T

(L(ϱ)C)
T

]
P⋆ ≤ 0. (33)

Considering the maximum velocity variation, and A(ϱ) =
A(ϱ(k + N)) is chosen to describe the system equation in
the predictive time domain, one has

4∑
l=1

4∑
j=1

vlvj


−P ⋆ ⋆
0 −τPe ⋆

2Al + 4BlKj 2LlC −P−1

Q 0 0
2RKj 0 0

⋆ ⋆
⋆ ⋆
⋆ ⋆

−Q 0
0 −R

 ≤ 0.

(34)

With the equality
L∑
l=1

L∑
j=1

ϕlj =
L∑

l=1

ϕll + 2
L∑

l<j

ϕlj+ϕjl

2 , a

sufficient condition for the above inequality is obtained.
Substituting P = ξX−1 , multiplying both sides with
diag{GT , I, I, I, I}, and applying the dilation lemma
−GTX−1G ≤ X − GT − G [16], we get the condi-
tions (28) and (29). The inequality equation (30) is the in-
put constraint. In (30) M is a symmetric matrix with the
ith diagonal element Mii ≥ u2i,max, i = 1, 2, ...,m. To
minimize V (x̂(k)), the following problem is considered:
min ξ, subject to V (x̂(k)) ≤ ξ. The proof of ISS is as
follows. Since the matrix P is positive definite, the V (x̂)
satisfies

ρmin∥x̂(k)∥2 ≤ Vk(x̂(k)) ≤ ρmax∥x̂(k)∥2 (35)

where ρmin and ρmax are the minimal and maximal eigen-
values of P . Correspondingly, form inequality (32) the fol-
lowing inequality can be obtained:

Vk(x̂(k + 1))− Vk(x̂(k))

<− x̂T (k)Qx̂(k)− x̂T (k) ∥K(ϱ)∥2R x̂(k) + τ∥e(k)∥2Pe
.

(36)

The inequalities (35) and (36) imply that V ∗
k (x̂(k)) is an ISS-

Lyapunov function. According to Lemma 2, it can be proved
that the observer system (19) is input-to-output stable with
respect to the estimation error.

4 Simulations

In this section, some experimental results are presented to
illustrate the effectiveness of controller. In Carsim/Simulink
co-simulation, a C-Class Hatchback vehicle is considered
to be controlled as the autonomous driving car, and m =
1537.7kg ·m2, lf = 1.015m, lr = 1.895m, Iz = 1537.7kg ·
m2, Cαf = 82725.89N/rad, Cαr = 80725.89N/rad. Fig.

Fig. 2: Carsim/Simulink joint simulation structure diagram.

Fig. 3: Reference trajectories.

2 shows the structure of the path-tracking simulation sys-
tem. In the simulation. the input constraint is − 20π

180 ≤
δ(t) ≤ 20π

180 , preview distance Ls = 3m and it is assumed
that |ω| ≤ 0.05. In offline computation of state observer
design, the observer gains and the minimal RPI set can be
obtained,

L1 =


0.1938 0.0000 −0.3095
−1.7988 0.0000 0.5318
0.0499 1.0000 0.0001
0.1851 0.3000 1.0004

 ,

L2 =


−0.1735 0.0000 0.2211
0.2424 0.0000 0.5350
0.0500 1.0000 0.0000
−0.0777 1.6500 1.5557

 ,

Pe =


172.3538 33.7272 0.0000 −58.4032
33.7272 42.7988 0.0000 −36.8249
0.0000 0.0000 0.0000 0.0000

−58.4032 −36.8249 −0.0000 83.0459

 .
The initial condition is selected as x(0) = [0, 0, 0, 0]T .

We choose x̂(0) = [0, 0, 0, 0.5]T . In the stage cost, Q =
diag[0.5, 0.0001, 0.1, 1] and R = 1 are chosen and vij =
0.5.

In order to verify the tracking capabilities of the proposed
method to handle a wide range of vehicle speed variations,
we set minimum vehicle speed to 33.6km/h and maximum
allowable speed to 100km/h. The real vehicle speed is shown
in Fig. 4(a). In Fig. 4(b), the lateral offset is shown, from
which it can be easily seen that the lateral offset is bounded
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(a) (b)

Fig. 4: (a) The vehicle longitudinal velocity. (b) The lateral
offset.

Fig. 5: The lateral offset of type-1 an type-2 fuzzy MPC.

by 0.4 and −0.4m. The proposed interval type-2 T-S fuzzy
MPC method is compared with the traditional MPC method
based on the type-1 T-S fuzzy model and the vehicle speed is
set to shift between 33 and 80km/h. The results is shown in
Fig. 5. In Fig. 6, the measured and estimated state variables
of the tracking system are illustrated.

Fig. 6: The state estimation results.

5 Conclusion

This work examines the use of observer-based output
feedback predictive steering control to autonomous driving
systems with actuator restriction. The nonlinear vehicle lat-
eral model is represented using the interval type-2 T-S fuzzy
modeling technique, taking into account the presence of pa-
rameter variations. The determination of the minimal el-
lipsoidal RPI set for the state estimation error and the ob-
server gains can be achieved by offline computation within
the framework of T-S fuzzy system theory. By minimizing
the upper limit of cost function in an online manner, the sys-

tem performance can be optimized. The efficiency of the
proposed design techniques is demonstrated through a col-
laborative simulation using Carsim and Matlab.
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Abstract: This paper investigates the fault diagnosis problem for leader-following multi-agent systems (MASs) subject to actua-
tor faults and communication interferences based on belief rule base (BRB). By designing a sliding mode controller, the system’s
consistency under communication interferences is achieved. Then a novel BRB-based fault diagnosis method is proposed to
diagnose faults in MASs, and the faulty agents can be diagnosed accurately. Ultimately, the effectiveness of the proposed method
is verified by simulation studies.

Key Words: Fault diagnosis, Multi-agent systems (MASs), Belief rule base (BRB), Sliding mode control

1 Introduction

In recent years, multi-agent systems (MASs) have a wide
range of applications including transportation industry, mili-
tary equipment and many other fields [1–3]. Due to the com-
plexity of MASs, the failure of agents is almost inevitable
[4]. Since an agent affects its adjacent agents through the in-
formation interaction, the fault in a single agent may lead to
the failure of the entire MAS. Hence, to improve the safety
and reliability of these systems, fault diagnosis of MASs has
been a hot research topic [5–7]. Broadly speaking, fault di-
agnosis methods can be categorized into two types: those
based on analytical models and those independent of mod-
els.

Model-based methods utilize the mathematical model and
the system’s measurement data to generate the residual sig-
nal to characterize the fault, and then achieve fault diagno-
sis. In [5], the authors introduced a fault detection scheme
utilizing unknown input observers (UIOs), which solely rely
on local measurements. However, when isolating multiple
faults, the computational burden of each node will be in-
creased. For the MAS with nonlinear dynamics, the authors
in [8] used the output information of adjacent agents to con-
struct a nonlinear fault observer to achieve fault diagnosis.

The above-mentioned model-based fault diagnosis meth-
ods rely on exact knowledge of analytical model of MASs.
While in practice, MASs often suffer from unpredictable in-
terferences, and thus the exact analytical model of the sys-
tems cannot be obtained. In this case, model-based fault di-
agnosis methods may become inapplicable.

Further subdivisions of model-independent methods in-
clude data-driven methods and expert knowledge-based

This work was supported in part by the Natural Science Funds
for Excellent Young Scholars of Hebei Province in 2022 under Grant
F2022202014; in part by Science and Technology Research Project of Col-
leges and Universities in Hebei Province under Grant BJ2020017; in part
by the Undergraduate Education Teaching Reform Research and Practice
Project under Grant 202302015; in part by National Natural Science Foun-
dation of China under Grant No. 62203365; in part by China Postdoctoral
Science Foundation under Grant No. 2023M742843; in part by Aeronau-
tical Science Foundation under Grant 2023Z034053; in part by the State
Key Laboratory of Robotics and Systems of Harbin Institute of Technology
under Grant SKLRS-2023-KF-09.

methods. The data-driven methods mainly use the histori-
cal working data and the fault data of the system, which are
not limited by the model. In addition, BP neural networks
and random forest are also commonly used in fault diagno-
sis [9, 10]. Among them, methods based on BP neural net-
work and methods based on random forest each have their
own advantages in fault diagnosis. It should be noted that
the data-driven methods require the states of a system in all
the working situations, which are difficult to fully obtain in
practice.

In practice, the inaccuracy of fault diagnosis results
caused by the complexity of the environment requires fur-
ther research. BRB was proposed by Yang et al. [11], which
can well process small sample data and make up for the lack
of data volume. Therefore, BRB has its unique advantages
for situations where there is a lack of fault samples in prac-
tical scenarios. Observably, the majority of fault diagnosis
methods based on BRBs primarily address the fault diagno-
sis issue within individual systems [12].

This paper aims at the consensus and fault daignosis prob-
lem for leader-following MASs subject to communication
interferences. These settings make the problem more chal-
lenging and meaningful. To dispose of this problem, firstly,
a novel sliding model control strategy that takes communi-
cation interferences into account is developed. Then, by ex-
tracting the characteristics of the system’s outputs, a BRB-
based fault diagnosis model is established. Different from
the single system fault diagnosis model [12, 13], the model
proposed in this paper effectively diagnose faults in a MAS
with multiple agents.

2 Problem formulation and preliminaries

Considering a leader-following MAS. The interaction be-
tween the leader and followers is described by graph G, and
G represents the interaction between the followers. A =
[aij ]N×N represents the adjacency matrix of graph G, B =
diag{b1, . . . , bN} is the adjacency matrix between the leader
and followers. The Laplacian matrix of graph G related to
the adjacency matrix A is represented by L = [lij ]N×N , and

lij =

{∑N
j=1 aij , i = j

−aij , i ̸= j
.
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The dynamic model of the ith follower can be described
as follows:{

ẋi(t) = vi(t)

v̇i(t) = ui(t) + f (t, xi(t), vi(t)) + di(t)
(1)

and describing the output of the followers as

yi(t) = µi(t)xi(t), i = 1, . . . , N (2)

where xi(t) ∈ Rn, vi(t) ∈ Rn and f (t, xi(t), vi(t)) de-
note position, velocity and nonlinear term of follower i, re-
spectively. ui(t) represents the controller input, di(t) is the
external interference, and µi(t) is the multiplicative commu-
nication interference.

Consider a tracking problem with only one leader. The
dynamics of the leader is as follows:{

ẋ0(t) = v0(t)

v̇0(t) = u0(t) + f (t, x0(t)v0(t)) .
(3)

Assumption 1. [14, 15] For the studied system (1), the
external interference di(t) and the communication interfer-
ence µi(t) are supposed to be bounded and µi(t) > 0. There
exist positive constants d̄, µ̄, µiM , such that ∥di(t)∥ ≤ d̄,
∥µi(t)∥ ≤ µ̄, and µi(t) satisfies |µ̇i(t)| ≤ µiM .

Assumption 2. For the nonlinear term f(·), there exist
two non-negative numbers h1, h2, so that the following for-
mula holds:

∥ f(t, xi(t), vi(t))− f(t, x0(t), v0(t)) ∥2
≤ h1 ∥ xi(t)− x0(t) ∥2 −h2 ∥ vi(t)− v0(t) ∥2 .

(4)

Lemma 1. [16] (Barbalat’s Lemma) If f : [0,∞] → R
is uniformly continuous and lim

t→∞

∫ t

0
f(τ)dτ exists, then

lim
t→∞

f(t) = 0 holds.
Lemma 2. [17] Considering a nonlinear system, choose

Lyapunov function V (x) and real numbers h1 > 0 , 0 <
h2 < 1. V (x) satisfies V (x) > 0 and V̇ (x) + h1V

h2(x) ≤
0. At the same time, an estimate of the convergence time
is given, satisfying T (x0) ≤ V 1−h2 (x0)

h1(1−h2)
. Then, the system

satisfies finite time stability at x = 0.
The following problems are the main research objectives.

Problem 1: Uncertainty in MASs with communication
interferences.

Due to the uncertainty and unpredictability of the commu-
nication interferences, an accurate mathematical model of a
MAS is difficult to obtain. These will lead to the inaccuracy
and unreliability of fault diagnosis results.
Problem 2: Lack of samples of faulty status of MASs.

Since faults are small probability events in practice, thus,
the faulty data from real scenarios is difficult to obtain di-
rectly. Therefore, there is a problem of insufficient samples
under fault conditions.
Problem 3: Construction of fault diagnosis framework
for MAS in communication interference environment.

The fault diagnosis model should fully consider the influ-
ence of communication interferences and the lack of samples
when MAS fails. Moreover, the complexity and computation
should not be too large.

3 Consistency controller design

3.1 Consistency error system
The consistency errors of the ith follower are defined as

follows:
exi(t) =

N∑
j=1

aij [xi(t)− xj(t)] + bi [xi(t)− x0(t)]

evi(t) =
N∑
j=1

aij [vi(t)− vj(t)] + bi [vi(t)− v0(t)]

(5)

and then, denote xi(t) = xi(t)−x0(t), vi(t) = vi(t)−v0(t),
x =

[
xT
1 (t), . . . , x

T
N (t)

]T
, v =

[
vT1 (t), . . . , v

T
N (t)

]T
. The

consistency error system (5) can be rewritten as{
ex = [(L+B)⊗ In] · x
ev = [(L+B)⊗ In] · v

(6)

where ex =
[
eTx1

(t), . . . , eTxN
(t)
]T

, and ev =[
eTv1

(t), . . . , eTvN
(t)
]T

.
Define F = [fT(t, x1(t), v1(t)), . . . , f

T(t, xN (t), vN (t))],
f = 1N ⊗ f(t, x0(t), v0(t)), d = [dT1 (t), . . . , d

T
N (t)]T,

u = [uT
1 (t), . . . , u

T
N (t)]T. Then the consistency error

system can be described as{
ėx = ev

ėv = (L+B)⊗ In · (u+ d+ F − f − 1N ⊗ u0).

(7)
If L + B is invertible, the consistency problem of the

leader-following MAS is equivalent to the asymptotically
stable problem of the consistency error system (7).

3.2 Sliding mode control
According to the system described in (7), the sliding mode

controller is designed as

ui(t) =(lii + bi)
−1[−

N∑
i̸=j,j=1

aijuj − cµi(t)evi
(t)

− cµiMexi
(t) + biu0 − γsgn (Si(t))]

(8)

where c > 0, γ0 > 0, ϵ = ∥L + B∥∥(L + B)−1∥, and
γ = ϵ

(
h1∥ex∥+ h2∥ev∥+ ∥L+B∥d

√
N + γ0

)
.

Then the sliding surface Si(t) is designed as

Si(t) = evi
(t) + cµi(t)exi

(t) (9)

with µi(t) satisfying Assumption 1. It is noted that signals
transmitted between followers will be affected by communi-
cation interferences. Therefore, µi(t) can be used to describe
the effects of communication interferences on the value of
the relative measurement errors.

Denote S =
[
ST
1 (t), . . . , S

T
N (t)

]T
, and µ =

diag{µ1(t), . . . , µN (t)}, (9) can be written as the fol-
lowing simple form:

S = ev + cµex. (10)

Next, define b = [b1, . . . , bN ]
T, the control strategy (8)

can then be expressed in the following simplified form:

u = (L+B)−1 ⊗ [−cµev − cµiMex − b⊗ u0 − g(s)]
(11)

and g(s) = γ
[
sgnT(S1), . . . , sgn

T(SN )
]T

.
Theorem 1. Consider the leader-following MAS (1) and
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(3), with which conmunication topology has a spanning tree.
Then under Assumption 1-2 and the control strategy (11),
the consensus of the MAS can be obtained.

Proof: Consider the following Lyapunov function:

V (t) =
1

2
S(t)ST(t). (12)

Based on (11), by deriving the Lyapunov function, we can
get

V̇ (t) =ST(t) · [cµev + cµ̇ex + (L+B)⊗ In · (F − f

+ d) + (L+B)⊗ In · (u− 1N ⊗ u0)].
(13)

According to the properties of norm and Assumption 2,
the following inequality is obtained:

∥F − f∥ =

∥∥∥∥∥∥
 ∥f(t, x1(t), v1(t))− f(t, x0(t), v0(t))∥

. . .
∥f(t, xn(t), vn(t))− f(t, x0(t), v0(t))∥

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
 h1∥x1(t)∥+ h2∥v1(t)∥

. . .
h1∥xn(t)∥+ h2∥vn(t)∥

∥∥∥∥∥∥
≤ h1∥x∥+ h2∥v∥

(14)
then we can get
∥(L+B)⊗ In · (F − f)∥ ≤∥(L+B)∥(h1∥x∥+ h2∥v∥)

≤ϵ(h1∥ex∥+ h2∥ev∥)
(15)

and we can also obtain another item of (13)

(L+B)⊗ In · (u− 1N ⊗ u0)

=− cµev − cµiMex − b⊗ u0 − g(s)− 1N ⊗ u0.
(16)

Substituting (15) and (16) into (13), then

V̇ (t) ≤ ∥S∥∥(L+B)⊗ ·(F − f + d)∥ − ST g(s)

≤ [ϵ(h1∥ex∥+ h2∥ev∥) + ∥(L+B)d̄
√
N∥ − γ0]∥S∥

≤ −γ0∥S∥ ≤ −1

2
γ0V

1
2 (t).

(17)
Then, as per Lemma 2, it can be deduced that the con-

troller enables the system to reach the sliding mode surface
within a finite time and maintains its trajectory on it.

On the sliding surface S = 0, namely, ev = −cµex, thus

ėx = −cµex. (18)

Consider the following Lyapunov function:

V (t) =
1

2
eTx ex. (19)

Because of c > 0 and in accordance with Assumption 1,
we can derive

V̇ (t) =− cµeTx ex = −2cµV (t)<0. (20)

According to (20) and Lemma 1 in [16], one can ob-
tain that when t → ∞,

∫ t

0
µ(t)eTx (τ)ex(τ)dτ ≤V (0)

2c , then
one can obtain for all t ≥ 0,

∫ t

0
eTx (τ)ex(τ)dτ is bounded.

Then, it is easily to know that both ex(t) and ev(t) are con-
tinuously differentiable, therefore, according to Barbalat’s
Lemma, one can obtian that limt→∞ ex(t)

Tex(t) = 0 holds,
that is to say, when t → ∞, the consensus errors of the posi-
tion converge to 0. Furthermore, we can draw the following

conclusion:

lim
t→∞

∫ t

0

e2v(τ)dτ = lim
t→∞

∫ t

0

ė2x(τ)dτ

=
1

2
lim
t→∞

[
e2x(t)− e2x(0)

]
.

(21)

Therefore, according to (21), one can obtain
lim
t→∞

∫ t

0
e2v(τ)dτ exists, thereby lim

t→∞
e2v(t) = 0 holds

on the basis of Lemma 1. Consequently, lim
t→∞

ev(t) = 0 can
be inferred. Based on the above proofs, it can be obtained
that when t → ∞, both ex(t) and ev(t) will converge to
zero.
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Fig. 1: Fault diagnosis modeling of MAS.

4 Fault diagnosis for the leader-following MAS
based on BRB

4.1 Inference process of BRB-based fault diagnosis
model

Fig. 1 shows the proposed fault diagnosis framework.
Consider the case where only followers fail, the dynamics
of the ith follower with fault can be described as{

ẋi(t) = vi(t)

v̇i(t) = ui(t) + di(t) + f (t, xi(t), vi(t)) + σi(t)
(22)

where σi(t) represents fault of follower i. It should be noted
that when the ith follower is in the absence of fault, σi(t) =
0, and otherwise, σi(t) ̸= 0.

To establish the model, the input to the fault diagnosis
model consists of the distance between the position tracking
trajectories of each follower, which is extracted as follows:

distanceij =|(xi1 − x01)− (xj1 − x01)|,
i, j ∈ {1, . . . , N}, i < j.

(23)

Next, denote the distance as the antecedent attribute of the
BRB model, described as

y∗p(t) =distanceij , p ∈ {1, . . . ,Mk} (24)

where Mk = N(N−1)
2 is the number of antecedent attributes

used in the kth rule.
Then, drawing inspiration from the traditional BRB de-

signed for a single system [11], this paper constructs a BRB-
based fault diagnosis model for followers, with the expres-
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sion of the kth rule as
Rk :If y∗1 is Ak

1 ∧ y∗2 is Ak
2 ∧ . . . ∧ y∗Mk

is Ak
Mk

,

then Ū is {(D1, β1,k) , . . . , (DQ, βQ,k)}

(q ∈ {1, . . . , Q}, k ∈ {1, . . . , L},
Q∑

n=1

βn,k ≤ 1),

with attribute weight δkp
, and rule weight θk,

(25)
where the pth characteristic of the MAS y∗p is the input of
the kth rule, Ak

p is the referential value, Ū represents the
final result of the fault diagnosis model, βq,k represents the
belief degree corresponding to the qth fault status under the
kth belief rule, and Q is the number of consequents used in
the kth rule. If

∑Q
q=1 βq,k = 1, the kth rule is considered to

be complete; otherwise, it is incomplete.
The analysis-based ER algorithm is used to infer BRB in

the fault diagnosis model. Due to space limitations, the im-
plementation process of the model is briefly described be-
low:
Step 1: Obtain the matching degree.

For y∗p , its matching degree αk
p to the attribute referential

value can be calculated as follows:

akp =


Al+1

p −y∗
p

Al+1
p −Al

p

, k = l if Al
p ≤ y∗p ≤ Al+1

p

y∗
p−Ak

p

Al+1
p −Al

p

, k = l + 1

0, k = 1, . . . , |yp| (k ̸= l, l + 1)

(26)

Step 2: Calculate the activation weight of the kth rule.
According to the akp and θk obtained previously, the acti-

vation weight wk of the kth rule is computed as follows:

wk =
θk
∏Mk

p=1

(
ajp
)δ̄p∑L

l=1 θl
∏Mk

p=1

(
akp
)δ̄p , L∑

k=1

wk = 1 (27)

where δ̄p is the relative weight of attribute p.
Step 3: Combine the activated belief rules.

Assume that k rules are activated. Use the ER algorithm to
combine rules to generate belief degree for different output
results. Then the belief degree of the qth consequent βq is
obtained through calculation.
Step 4: Generate final output.

The final output result is generated based on the belief
degree of different output results. The specific process can
be described as:

Û(t) =

Q∑
q=1

Dqβq. (28)

4.2 Optimization model for the developed fault diagno-
sis model

Since the MAS suffers from unpredictable communica-
tion interferences, the uncertainty of the expert knowledge
is inevitable, and will affect the choice of the initial parame-
ters. Hence, inspired by [12], the projection covariance ma-
trix adaptation evolution strategy (P-CMA-ES) is used to op-
timize the fault diagnosis model.

The optimization model of the BRB-based fault diagnosis

model can be described as follows:
minMSE (θk, βq,k, δp)

s.t.

0 ≤ θk ≤ 1,

0 ≤ βq,k ≤ 1,

Q∑
q=1

βq,k = 1

(29)

where MSE (θk, βq,k, δp) represents the mean square error
(MSE) between the actual output and the expected output,
described as

MSE (θk, βq,k, δp) =
1

T

T∑
t=1

(Uexpected − Uactual)
2 (30)

where Uexpected represents the expected output, Uactual rep-
resents the actual output of the system, and T represents the
number of observation samples.

5 Case study

A. Fault diagnosis method design

Consider a leader-following MAS and the communication
topology of the system is represented in Fig. 2.

3

2

1

0

Fig. 2: Communication topology.

Then, the related matrices can be obtained as follows:

A =

 0 1 0
1 0 1
0 1 0

 ,L =

 1 −1 0
−1 2 −1
0 −1 1

 . (31)

The dynamics of the ith follower with fault is given in
(22), where the external disturbance di(t) = 0.5 sin(0.5it),
and the fault is described as σ(t) = [1.2, 0.5, 1.5]T.

The dynamics of the leader is given in (3), where u0 =
[cos(t), sin(2t)]T.

The initial states of the model are as follows: x0(0) =
[−1, 2]T, x1(0) = [6, 5]T, x2(0) = [2,−4]T, and x3(0) =
[−4, 8]T; v0(0) = [2,−6]T, v1(0) = [−2, 0]T, v2(0) =
[4, 2]T, and v3 = [6,−5]T, and parameters in Section 3 are
choosen as c0 = 0.6, c = 4, h1 = h2 = 0.01.

Fig. 3(a) shows the trajectories errors of the position in
x-axis of followers under normal conditions. Fig. 3(b)-(d)
present the trajectories of position when three followers mal-
functioned in turn. It can be seen that there exists a devia-
tion between the faulty follower and other normal followers.
Choose the position trajectories errors at t ∈ [10, 12]s as the
initial data, and the characteristics of the model can be de-
fined as

y∗1 = |(x11 − x01)− (x21 − x01)|,
y∗2 = |(x11 − x01)− (x31 − x01)|,
y∗3 = |(x21 − x01)− (x31 − x01)|.

(32)

The semantic values for y∗1 are L1, M11, M12 and H1,
for y∗2 are L2, M2 and H2, and for y∗3 are L3, M3 and H3.
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Fig. 3: States of agent under fault.

According to the position of the faults, the status of MAS
are: normal (N), follower 1 fault (F1), follower 2 fault (F2)
and follower 3 fault (F3). The reference points and values
are shown in Table 1 and Table 2.

Table 1: The referential points and values of y∗1 , y∗2 and y∗3 .

y∗
1

Referential points L1 M11 M21 H1

Referential values -0.001 0.9 0.9 1.001

y∗
2

Referential points L2 M2 H2

Referential values -0.001 0.2 1.001

y∗
3

Referential points L1 M3 H3

Referential values -0.001 0.45 1.001

Table 2: Status of the MAS.

Status
Referential points N F1 F2 F3

Referential values 0 1 2 3

The kth belief rule of the model is given as

Rk : If y∗1 is Ak
1 ∧ y∗2 is Ak

2 ∧ y∗3 is Ak
3 ,

then Ū is {(N, β1,k) , (F1, β2,k) , (F2, β3,k)

(F3, β4,k)}

(
Q∑

q=1

βq,k ≤ 1

)
, k ∈ {1, . . . , 27}.

(33)

B. Simulation results

The simulation results on the position and velocity track-
ing trajectories are shown in Fig. 4. The tracking errors of
position and velocity are shown in Fig. 5. The consensus
errors of the position and the velocity are shown in Fig. 6.

Next, according to the inference process in Section 4.1,
combine the activated rules with ER algorithm, and then op-
timize each parameter. In the P-CMA-ES part, the iteration
number is set to 100.

From Fig. 7, it is clearly shown that the testing results are
almost consistent with the real status.

C. Comparative studies

To demonstrate the effectiveness of the proposed fault di-
agnosis method, comparisons with BP neural network and
random forest are conducted. By taking the average of 10
times training and testing, Table 3 shows the accuracy of
each method under normal samples and small samples.

It is concluded that whether under normal samples or un-
der small samples, the model proposed in this paper is higher
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Fig. 4: Tracking trajectories.
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Fig. 5: Tracking errors.
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Fig. 6: Consensus error of followers.

Table 3: Accuracy comparison between BRB and other
methods.

Method Noamal samples Small samples
BRB 98.5% 96.67%
BP Neural Network 80.025% 54.325%
Random Forest 80.725% 36.9%

than the other two methods, especially under small samples.

6 Conclusion

In this paper, a consistency controller based on sliding
mode control strategy is designed, which could deal with
the nonlinear term and communication interferences. When
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Fig. 7: The diagnostic output of the BRB-based model are
compared with real values.

the followers in the MAS are faulty, a new fault diagno-
sis method based on BRB is proposed for leader-following
MASs. Future research can be directed towards the fault di-
agnosis problem of more complex MASs.
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Abstract: The research presented in this paper delves into the finite-time control problem of Takagi-Sugeno (T-S) fuzzy systems
with partly measurable premise variables. Firstly, through the application of the H∞ analysis technique and the local stabilization
analysis method, the synthesis conditions for the observer have been derived. The state estimation error can be limited to
a pre-specified area, allowing the estimation error to be controlled more effectively and this aspect is pivotal for the design
of the subsequent finite-time controller. Then, a finite-time controller is constructed by using measurable premise variables,
which improves the transient performance of the system compared with the traditional parallel distribution compensation (PDC)
controller. In the end, the efficacy of the proposed strategy is substantiated through a simulation example.

Key Words: Finite-time, Partly measurable premise variables, T-S fuzzy systems, Local nonlinear model.

1 Introduction

The T-S fuzzy model approach is an effective technique
for dealing with nonlinear systems, whose core idea is to
use some local linear sub-models to approximate the orig-
inal nonlinear model. In recent years, T-S fuzzy systems
have derived many meaningful researches, including stabil-
ity analysis [1], observer design [2] and controller design.

In the above researches, the stability analysis and con-
troller design of T-S fuzzy systems mostly focus on Lya-
punov asymptotic stability, which is defined within an infi-
nite time scale. However, within certain real world engineer-
ing contexts, there is a greater need for the control within
a finite time scale. As a result, finite-time stability is pro-
posed, necessitating the system’s state to converge to zero
or an infinitesimal vicinity within a predetermined finite du-
ration. At present, there are some studies on the finite-time
control problems of T-S fuzzy systems [3].

Simultaneously, during the stability analysis of T-S fuzzy
systems, the local stabilization problem has also received a
lot of attentions. The core idea of the local stabilization is
to limit the system state within a certain region, which co-
incides with the idea of the T-S fuzzy model method, so the
study of the local stabilization problem of T-S fuzzy systems
is of considerable significance. However, most of these pa-
pers use local stabilization method to limit the state of the
system to improve the stability of the system, while this pa-
per improves the performance of the observer by limiting the
observation error.

Another problem studied in this paper is the partly mea-
surable premise variables. In practical applications, due to

This work was supported in part by the Opening Project of Robotic
Satellite Key Laboratory of Sichuan Province, the Joint Fund of Science and
Technology Department of Liaoning Province and State Key Laboratory of
Robotics under Grant 2022-KF-22-08, and the National Natural Science
Foundation of China under 62003069.

the unobservability of some system states, the premise vari-
ables composed of these states are likewise unmeasurable.
At present, there are some methods for dealing with the
problem of the partly measurable premise variables. One
way [4] to do this is to use an observer to estimate the unmea-
surable state of the system, then construct an approximation
of the unmeasurable premise variables, and finally convert
the estimation error of the premise variable to the state esti-
mation error by applying Lipschitz conditions. Inspired by
this approach, the finite-time control problem of T-S fuzzy
systems with partly measurable premise variables is studied
in this paper.

The principal contributions of this study can be summa-
rized as follows:

1) Based on the H∞ analysis method and the local stabi-
lization analysis method, the synthesis conditions of the
observer are derived. This observer is able to control
the estimation error more effectively, which is benefi-
cial for subsequent controller design.

2) The finite-time control problem of T-S fuzzy systems
with partly measurable premise variables is investigated
and the transient response speed of the system has been
improved.

The remainder of this paper is structured as follows:
Section 2 provides the system description and preliminary
knowledge. Section 3 details the derivation of synthesis con-
ditions of the observer. Section 4 outlines the construction
of a controller utilizing the measurable premise variables to
achieve finite-time control. Section 5 presents an example to
demonstrate the method’s effectiveness. Section 6 concludes
the paper.

Notation: Diag [λ1 ... λs] refers to a diagonal matrix,
where λ1,···,λs are the elements of the principal diagonal.
An asterisk “∗” is exploited to denote a term that is in-
duced by symmetry. The convex hull of the two points is
co {x, y} = {h1x+ h2y : h1 + h2 = 1, hi ⩾ 0}.
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2 System Description and Preliminaries

The nonlinear system considered in this paper is repre-
sented by the following T-S fuzzy model:

Plant Rule i :
IF ξ1(t) is Mi1 and ξ2(t) is Mi2, ··· , ξp(t) is Mip

THEN ẋ(t) = Aix(t) +Biu(t) +Diω(t) +Gφ(t)

y(t) = Cx(t) (1)

where x(t) ∈ Rnx , u(t) ∈ Rnu and y(t) ∈ Rny denote the
system state vector, the control input vector and the output
vector, respectively; ω(t) ∈ Rnω and φ(t) ∈ Rnφ denote
the external disturbance vector and the local nonlinear term,
respectively; ξ(t) = [ ξ1(t), ξ2(t), ··· , ξp(t) ] is the premise
variable vector; Mij(1 ≤ i ≤ r, 1 ≤ j ≤ p) are the fuzzy
sets; r is the number of the fuzzy rules and p is the number of
the premise variables; The matrices Ai, Bi, C, Di and G are
defined as constant real matrices of appropriate dimensions.

Meanwhile, assume that the premise variables ξi (i = 1,
··· , p0) are measurable and the other premise variables ξi
(i = p0 + 1, ··· , p) are unmeasurable. The model (1) is
equivalent to the following model by the separation method
in [5].

ẋ(t) =

rη∑
i=1

rλ∑
j=1

ηi(ξη(t))λj(ξλ(t))[ Aijx(t) +Biju(t)

+Dijω(t) ] +Gφ(t)

y(t) = Cx(t) (2)

where rη and rλ are the numbers of the fuzzy rules
of the measurable and unmeasurable premise variables;
ηi(ξη(t)) and λj(ξλ(t)) are normalized membership func-
tions (NMFs) which depend on the measurable premise vari-
ables ξη(t) and the unmeasurable premise variables ξλ(t),
respectively.

It is noted that
rη∑
i=1

ηi(ξη(t)) = 1 ,
rλ∑
i=1

λj(ξλ(t)) = 1 and
rη∑
i=1

rλ∑
j=1

ηi(ξη(t))λj(ξλ(t)) = 1 . For simplicity, let
rη∑
i=1

ηi =

rη∑
i=1

ηi(ξη(t)) =
rη∑
i=1

ηi(x(t)) and
rλ∑
j=1

λj =
rλ∑
j=1

λj(ξλ(t)) =

rλ∑
j=1

λj(x(t)) .

Assumption 1. [6]: The nonlinearities φi(t) ∈ R (1 ≤
i ≤ s) are sector-bounded nonlinear functions and satisfy
the property φi(t) ∈ co {0, Eix(t)} (1 ≤ i ≤ s).

Remark 1. [7]: The condition φi(t) ∈ co {0, Eix(t)} in
Assumption 1 implies that:

φi(t)(Eix(t)− φi(t)) ⩾ 0 (3)

where Ei = [E1, E2,···, Es]T .

An example is provided to elucidate Assumption 1 and
condition (3): x(t) = [ xT1 (t) xT2 (t) ]T and φ(t) =
sin(x1(t)), where x1(t) ∈ [−π

2 ,
π
2 ]. It is clear to see that

φ(t) satisfies Assumption 1, i.e.,

φ(t) ∈ co {0, x1(t)} = co {[ 0 0 ]x(t), [ 1 0 ]x(t)} .

At the same time, the inequality (3) is satisfied for the term
φ(t) and E = [ 1 0 ].

3 Design of the Observer

In order to estimate the state in system (2), an observer is
constructed as follows:

˙̂x(t) =

rη∑
i=1

rλ∑
j=1

η̂iλ̂j [ Aij x̂(t) +Biju(t) +Gφ̂(t)

+ Lij(y(t)− ŷ(t)) ]

ŷ(t) = Cx̂(t)

(4)

where x̂(t), ŷ(t) and φ̂(t) are the estimations of the state,
the output and the local nonlinear term, respectively; η̂i =
ηi(x̂(t)) and λ̂j = λj(x̂(t)) are the NMFs depend on the
estimation of the system state; Lij are the observer gain ma-
trices to be determined later.
Combining (2) and (4) and defining e(t) = x(t) − x̂(t) and
φ̃(t) = φ(t)− φ̂(t), the following estimation error dynamic
is got:

ė(t) =

rη∑
i=1

rλ∑
j=1

η̂iλ̂j [ (Aij − LijC)e(t) +Dijω(t)

+Gφ̃(t) + ∆(t) ]

(5)

where ∆(t) =
rη∑
i=1

rλ∑
j=1

ηiλj [ Aijx(t) + Biju(t) + Dijω(t) +

Gφ(t) ]−
rη∑
i=1

rλ∑
j=1

η̂iλ̂j [Aijx(t)+Biju(t)+Dijω(t)+Gφ(t) ] .

To get the main results, some useful assumptions and def-
initions are given.

Assumption 2. [8]:The term ∆(t) and the local nonlinear
term φ̃(t) satisfy the following Lipschitz conditions:

∥∆(t)∥ ≤ κ1∥x(t)− x̂(t)∥ = κ1∥e(t)∥ (6a)
∥φ̃(t)∥ ≤ κ2∥x(t)− x̂(t)∥ = κ2∥e(t)∥ (6b)

Remark 2. Assumption 2 is often used to solve the problems
where the premise variables are partly measurable, and it
requires a low rate of change of the dynamic ∥∆(t)∥ and
∥φ̃(t)∥.

Assumption 3. The admissible set of external disturbance
ω(t) is giving as follows:

W=

{
ω(t)∈Rnω :

∫ ∞

0

ωT (s)ω(s)ds≤ϖ,ωT (t)ω(t)≤ ω̄2

}
where ϖ > 0 and ω̄ > 0 are two known scalars and ϖ
indicates the upper bound of the integration of ω(t) in time
0 to ∞; the set W illustrates that the system is subject to an
integral-bounded disturbance and the external disturbance
has a definite upper bound.

Definition 1. The pre-specified region of system (5) is :

Q = {e(t) ∈ Rnx : |kie(t)| < ψi, 1 ≤ i ≤ nx} (7)

where ki denotes a row vector where the ith element is one
and the other elements are zero.

Definition 2. [9]: The ellipsoid is shown below:

P(P,
β

α
) =

{
e(t) ∈ Rnx | eT (t)Pe(t) ≤ β

α

}
(8)

where P > 0, α and β are two positive scalars.
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Lemma 1. [10]: Based on Definition 1 and Definition 2, for
the two sets P(P, βα ) and Q, if the following condition holds:[α

βψ
2
q kq

∗ P

]
> 0, q = 1, ···, nx (9)

then P(P, βα ) ⊆ Q where kq , ψq and P are defined in (7)
and (8).

One purpose of designing the observer is to determine the
observer gain matrices Lij (1 ≤ i ≤ rη , 1 ≤ j ≤ rλ) in
order to limit the state of the error dynamic to the given sets,
i.e., e(t) ∈ Q; Another purpose is to make the error dynamic
satisfy the following H∞ performance index under the zero
initial condition:∫ ∞

0

eT (s)e(s)ds < γ2
∫ ∞

0

ωT (s)ω(s)ds (10)

where γ is a given positive scalar.
To fulfill the above purposes, the design conditions of the

observer (4) are presented in Theorem 1.

Theorem 1. For given positive scalars κ1, κ2, α, β, ω̄, ψn

and γ, if there exist the matrices P > 0 and Mij such that
the following LMIs hold for ∀ 1 ≤ i ≤ rη, 1 ≤ j ≤ rλ:

Φii < 0

Φij +Φji

2
< 0 (11)

Ψii < 0

Ψij +Ψji

2
< 0 (12)[α

βψ
2
n kn

∗ P

]
> 0, 1 ≤ n ≤ nx (13)

where

Φij =

[Θ1ij PDij PG P

∗ − β

ω̄2 I 0 0

∗ ∗ −I 0
∗ ∗ ∗ −I

]
Ψij =

[
Θ2ij PDij PG P

∗ −γ2I 0 0
∗ ∗ −I 0
∗ ∗ ∗ −I

]
Θ1ij=PAij−MijC+AT

ijP−CTMT
ij+αP+(κ1+κ2)I

Θ2ij=PAij−MijC+AT
ijP−CTMT

ij+I+(κ1+κ2)I

Then the local stabilization of the error dynamic (5) can be
realized and the error dynamic satisfies theH∞ performance
index shown in (10). Moreover, the observer gain matrices
can be derived by Lij = P−1Mij .

Proof. Initially, the Lyapunov function is selected as fol-
lows:

V1(t) = eT (t)Pe(t) (14)

The derivative of V1(t) can be derived as

V̇1(t) = ėT (t)Pe(t) + eT (t)P ė(t)

=

rη∑
i=1

rλ∑
j=1

η̂iλ̂j [ e
T (t)P (Aij − LijC)e(t)

+ eT (t)(Aij − LijC)
TPe(t) + 2eT (t)PDijω(t)

+ 2eT (t)PGφ̃(t) + 2eT (t)P∆(t) ] (15)

If (11) holds, then we have

rη∑
i=1

rλ∑
j=1

η̂iλ̂jΞ
TΦijΞ < 0 (16)

where Ξ = [eT (t) ωT (t) φ̃T (t) ∆T (t)]T and Φij is defined
in Theorem 1.
Based on the inequalities (6a), (6b), (15) and (16), the sub-
sequent inequality can be deduced:

V̇1(t) + αV1(t)−
β

ω̄2
ωT (t)ω(t) < 0 (17)

Once the condition (17) is satisfied, the following inequality
can be obtained:

d

dt
(eαtV1(t)) ≤ eαt

β

ω̄2
ωT (t)ω(t) (18)

According to the method in [9], it can be concluded that if
the initial condition of the state guarantees V1(0) < (β/α),
then we have the following condition:

V1(t) ≤
β

α
(19)

Then, using the method in [11], we can get that the estima-
tion error of the system (5) can be restricted into the given
region (7) if the condition (13) holds.

Similar to the proof in (17), the following inequalities can
be obtained from (6a), (6b) and (12):

V̇1(t) + eT (t)e(t)− γ2ωT (t)ω(t) < 0 (20)

Under zero initial condition, the error estimation satisfies∫ ∞

0

eT (s)e(s)ds < γ2
∫ ∞

0

ωT (s)ω(s)ds ≤ γ2ϖ (21)

which implies that the H∞ performance index (10) can be
satisfied. The proof is completed.

Remark 3. From Theorem 1, we can infer that when ω(t) =
0, our method can guarantee that the system (5) is asymp-
totically stable and when ω(t) ̸= 0, this method uses H∞
technique to ensure that the influence of ω(t) on the ob-
server performance is reduced and the estimation error e(t)
is bounded on the integration from 0 to ∞. At the same time,
Theorem 1 can also realize the local stabilization of the er-
ror dynamic (5), and the every component of the estimation
error e(t) can be controlled separately. The observer con-
ditions derived by the H∞ method and the local stabiliza-
tion method ensure the effective control of the estimation er-
ror e(t), which is crucial for the subsequent finite-time con-
troller design.

4 Design of the Finite-Time Controller

The finite-time controller is synthesized in this section to
stabilize the system (2). The structure of the controller can
be represented as follows:

u(t) =

rη∑
l=1

ηl(ξη(t))Klx̂(t) (22)
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Remark 4. Inspired by [12], the measurable premise vari-
able is used in the construction of the controller (22), thereby
relaxing the stabilization conditions of the T-S fuzzy system
(23).

Substituting the control law (22) into the system (2), the
closed-loop system is obtained as follows:

ẋ(t) =

rη∑
i=1

rλ∑
j=1

rη∑
l=1

ηiλjηl[ (Aij +BijKl)x(t) + D̄ijlω̄(t)

+Gφ(t) ] (23)

where D̄ijl = [−BijKl Dij ] and ω̄(t) = [ eT (t) ωT (t) ]T .
To get the main results, some useful assumptions and defini-
tions are given.

Assumption 4. The Bij considered in this paper is a con-
stant matrix, i.e., Bij = B, ∀ 1 ≤ i ≤ rη , 1 ≤ j ≤ rλ.

Definition 3. [13]: For some positive scalars a1, ω̃, Tc and
symmetric positive matrix Rc, the closed-loop system (23) is
finite-time bound subject to (a1 a2 ω̃ Tc Rc), ∀t ∈ [0 Tc], if
there exists scalar a2 > a1, such that:

sup
−t0≤s≤0

{
xT (s)Rcx(s), ẋ

T (s)Rcẋ(s)
}
≤ a1

⇒ xT (t)Rcx(t) ≤ a2

The purpose of designing controller is to determine the
controller gain matrices Kl, l ∈ [1, rη], such that the closed-
loop system (23) is finite-time bounded.

Then, the gain matrices Kl of the controller (22) will be
obtained by Theorem 2.

Theorem 2. For positive scalars a1, a2, ω̃, δ, ϵ, Tc and pos-
itive definite matrix Rc, if there exist matrices Q > 0, Nl,
Λ > 0 with Λ = diag[λ1 ... λs]s×s and scalar c such that
the following LMIs hold for ∀ 1 ≤ i ≤ rη , 1 ≤ j ≤ rλ and
1 ≤ l ≤ rη:

Ωiji < 0

Ωiji

r − 1
+

Ωijl +Ωlji

2
< 0, i ̸= l (24)

Rc < Q < cRc (25)

ϵω̃ + ca1 − a2e
−δTc < 0 (26)

where Υijl = QAij +Nl +AT
ijQ+NT

l − δQ

Ωijl =


Υijl −Nl QDij QG+ ETΛ
∗ −ϵI 0 0
∗ ∗ −ϵI 0
∗ ∗ ∗ −2Λ


Then, closed-loop system (23) is finite time bounded and the
controller parameters can be obtained by

Kl = (BTB)−1BTQ−1Nl (27)

Proof. Initially, the Lyapunov function is delineated as fol-
lows:

V2(t) = xT (t)Qx(t) (28)

The derivative of V2(t) can be derived as

V̇2(t) = ẋT (t)Qx(t) + xT (t)Qẋ(t)

=

rη∑
i=1

rλ∑
j=1

rη∑
l=1

ηiλjηl[ x
T (t)Q(Aij +BijKl)x(t)

+ xT (t)(Aij +BijKl)
TQx(t) + 2xT (t)QD̄ijlω̄(t)

+ 2xT (t)QGφ(t) ] (29)

Based on Assumption 1, the following inequality can be ob-
tained:

φT (t)ΛEx(t)− φT (t)Λφ(t) > 0 (30)

where Λ = diag[λ1 ... λs]s×s.
Construct the inequality shown below:

V̇2(t)− δV2(t)− ϵω̄T (t)ω̄(t) < 0 (31)

where δ and ϵ are given positive scalars.
From (30), it is clear to be seen that the condition (31) is
satisfied if the following condition holds:

V̇2(t)− δV2(t)− ϵω̄T (t)ω̄(t)

+ 2 [ φT (t)ΛEx(t)− φT (t)Λφ(t) ] < 0
(32)

Then, based on (29), the condition (32) is equivalent to the
following inequality:

rη∑
i=1

rλ∑
j=1

rη∑
l=1

ηiλjηlΞ̄
T Ω̄ijlΞ̄ < 0 (33)

where

Ξ̄ = [ xT (t) ω̄T (t) φT (t) ]T , Ω̄ijl =

[
Σijl QD̄ijl QG+ETΛ
∗ −ϵI 0
∗ ∗ −2Λ

]
Σijl = QAij +AT

ijQ+QBijKl + (BijKl)
TQ− δQ

Combining D̄ijl = [−BijKl Dij ] in (23), lettingQBijKl =
Nl and using the method in [14], we can get (24). So it
is clear to be seen that the condition (31) is satisfied if the
condition (24) holds.
Once the condition (31) is satisfied, the inequality is derived
as follows:

d

dt
(e−δtV2(t)) ≤ ϵe−δtω̄T (t)ω̄(t) (34)

Then, the following inequality can be derived:

V2(t) ≤ (V2(0) + ϵω̃)eδt ≤ (V2(0) + ϵω̃)eδTc (35)

where ω̃ is a scalar and indicates the upper bound of the in-
tegration of ω̄(t) from 0 to t.

Inspired by [15], let Q = R
1
2
c Q̄R

1
2
c , λ1 = λmin(Q̄), λ2 =

λmax(Q̄), where λmin(Q̄) and λmax(Q̄) represent the min-
imum and maximum eigenvalues of Q̄, respectively.
From Definition 3, the following inequality can be obtained:

V2(0) = xT (0)Qx(0) = xT (0)R
1
2
c Q̄R

1
2
c x(0)

≤ λ2x
T (0)Rcx(0) ≤ λ2a1

(36)
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Combining (28), (35) and (36), the following inequality can
be obtained:

λ1x
T (t)Rcx(t) ≤ V2(t) = xT (t)Qx(t)

= xT (t)R
1
2
c Q̄R

1
2
c x(t)

≤ (λ2a1 + ϵω̃)eδTc

(37)

At the same time, if the condition (25) is satisfied, the fol-
lowing inequality can be obtained:

λ1 > 1, λ2 < c (38)

And if the condition (26) is satisfied, the following inequality
can be obtained:

(ca1 + ϵω̃)eδTc ≤ a2 (39)

Combining (38) and (39), we can have

(λ2a1 + ϵω̃)eδTc ≤ λ1a2 (40)

Combining (37) and (40), the inequality is derived as fol-
lows:

xT (t)Rcx(t) ≤ a2 (41)

From Definition 3, it can be seen that if (41) holds, then the
closed-loop system (23) is finite-time bounded. This com-
pletes the proof.

Remark 5. It should be noted that the condi-
tion

∫ t

0
ω̄T (s)ω̄(s)ds ≤ ω̃ is used in (35), where

ω̄(t) = [eT (t) ωT (t)]T . The H∞ performance index
(10) guaranteed by Theorem 1 shows that e(t) is integrally
bounded, and from Assumption 3, ω(t) is also integrally
bounded. Therefore, the integral of ω̄(t) from 0 to t
has an upper bound, which is set to ω̃, so the condition∫ t

0
ω̄T (s)ω̄(s)ds ≤ ω̃ holds. It follows that the design of

the observer in Theorem 1 is crucial to the design of the
controller in Theorem 2.

5 Simulation

In this section, an example is given to demonstrate the
efficiency of the proposed method.

Consider the nonlinear plant as follows:

ẋ1(t) =− 0.5x1(t) + x2(t)

ẋ2(t) = x21(t)− x1(t) + 0.3x22(t)− x2(t)

+ 0.5sin(x1(t)) + u(t) + 0.5ω(t)

y = x1(t)

(42)

where u(t) and ω(t) are the control input and the exter-
nal disturbance, respectively. Select x1(t) and x2(t) as the
premise variables and assume that x1(t) ∈ [−π

2 ,
π
2 ] and

x2(t) ∈ [−1, 1].
In this paper, to decrease the number of fuzzy rules of

the controller, the term sin(x1(t)) is extracted to φ(t). Ac-
cording to [6], φ(t) ∈ co {0, x1(t)} and E = [1 0] can
be obtained. Thus, φ(t) satisfies Assumption 1. Then the

following T–S fuzzy system can be obtained:

ẋ(t) =
2∑

i=1

2∑
j=1

ηiλj [Aijx(t) +Biju(t) +Dijω(t) +Gφ(t)]

y(t) =Cx(t) (43)

where η1 =
π − 2x1(t)

2π
, η2 =

π + 2x1(t)

2π
,

λ1 =
1− x2(t)

2
, λ2 =

1 + x2(t)

2
,

A11 =

[
−0.5 1

−π
2 − 1 −1.3

]
, A12 =

[
−0.5 1

−π
2 − 1 −0.7

]
,

A21 =

[
−0.5 1
π
2 − 1 −1.3

]
, A22 =

[
−0.5 1
π
2 − 1 −0.7

]
,

B11 = B12 = B21 = B22 =

[
0
1

]
, C =

[
1 0

]
,

D11 = D12 = D21 = D22 =

[
0
0.5

]
, G =

[
0
0.5

]
.

It is observed fromC = [ 1 0 ] that only the premise variable
x1(t) is obtainable. Thus, the membership functions η1 and
η2 can be obtained, while λ1 and λ2 cannot be obtained.

In this paper, the objective area Q is set to be
{e(t) : |e1(t)| < 1.5, |e2(t)| < 1.5}, i.e., ψ1 = ψ1 = 1.5.
Besides, choosing κ1 = κ2 = 0.1, α = 1, β = 1, ω̄ = 0.5
and γ = 5, the parameters can be deduced by Theorem 1,
which is articulated as follows:

L11 =

[
16.1567
18.1022

]
, L12 =

[
18.9261
22.7836

]
, L21 =

[
13.092
15.4344

]
,

L22 =

[
15.8682
20.1189

]
, P =

[
3.0894 −0.8605
−0.8605 0.7082

]
.

Choosing a1 = 1, a2 = 10, ω̃ = 1, δ = 0.5, ϵ = 1, Tc = 3,
and Rc = I2, the following parameters can be obtained by
Theorem 2:

K1 =
[
0.0507 −0.8303

]
,K2 =

[
−0.0883 −0.8373

]
.

It can be seen that the initial condition needs to meet V1(0) <
(β/α). Assuming that the initial value x1(0) = 0, x2(0) =
1, x̂1(0) = 0 and x̂2(0) = 0, then we can have e(0) =
[ 0 1 ]T . Substituting P and e(0) into (14) yields 0.7082 =
V1(0) = eT (0)Pe(0) < (β/α) = 1. Consequently, the
initial condition ensures V1(0) < (β/α).
Furthermore, it is assumed that the disturbance ω(t) is in the
following form:

ω(t) =

{
0.2sin(t), 9 ≤ t ≤ 11

0, otherwise.
(44)

The simulation outcomes are delineated in Fig.1-Fig.3. Fig.1
shows that the state estimation error (5) and it can be seen
from Fig.1 that the observer (4) can estimate the system
state well. Fig.2 and Fig.3 show the state responses and
the control signals using the finite-time control method and
the parallel distributed compensation (PDC) method, where
the conditions (25) and (26) are not used, respectively. As
can be seen from Fig.2, the system state response based on
the finite-time controller in this paper can be stabilized more
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quickly, so the finite-time controller in this paper is superior
to the traditional PDC controller. Based on the above anal-
ysis, it can be concluded that the finite-time control can be
achieved by using the proposed method.
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Fig. 1: State estimation error
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Fig. 2: State response using the finite-time controller and
the PDC controller
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Fig. 3: Diagram of control signals using the finite-time
controller and the PDC controller

6 Conclusion

In the present study, the issue of finite-time control for the
T-S fuzzy system with partly measurable premise variables
has been investigated. Firstly, a T-S fuzzy model with a lo-
cal nonlinear term is established, in which the premise vari-
ables are categorized into measurable premise variables and
unmeasurable premise variables. Then, the synthesis condi-
tions of the observer based on the H∞ analysis method and

the local stabilization analysis method are given. This in-
creases the robustness of the observer to the external distur-
bance. Then, a finite time controller is constructed by using
measurable premise variables, and this reduces the time it
takes for the system state to stabilize. Finally, the effective-
ness of the proposed strategy is proved by a simulation.
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Abstract: In this paper, we adopt a linear time-invariant (LTI) two-degree-of-freedom (2-DOF) control system as our subject of
control. An input-output response estimation method and a controller design method based on response estimation are proposed.
First, using the initial input-output data of a closed-loop system to estimate the response when updating controller parameters.
Second, the controller parameters are updated by optimizing the objective function based on the estimated response data. Finally,
numerical examples verify the effectiveness of the proposed method. Unlike traditional data-driven design methods based on
reference models, the proposed controller design method does not require a reference model, which solves the problem of the
difficulty of selecting a suitable reference model. Additionally, the response after the controller update can be estimated in
advance before being applied to the real machine system. Avoiding the wear and tear or damage of the machine caused by the
direct real machine test when the designed controller is not ideal, meanwhile saving the experimental cost.

Key Words: 2-DOF control system, Response estimation, Data-driven, Controller design

1 Introduction

For the control method based on the plant model, as long
as the modeling is accurate enough, the required control per-
formance can be achieved by setting the controller according
to the needs. However, the system is typically time-varying,
nonlinear, and uncertain, making it difficult to obtain an ac-
curate plant model. In addition, with the development of
modern industry, companies are becoming larger and larger,
production, equipment, and processes are becoming more
and more complex, and the generation of vast amounts of
data is increasing. Sometimes, the plant model cannot be
obtained. From this, the data-driven control method is pro-
posed.

Data-driven control, also known as model-free control, is
a control method that does not rely on the plant model of the
controlled object itself but uses only measured input and out-
put data sets to design the controller. Optimal control param-
eters can be obtained without repeated experiments and trial-
and-error, and development costs are greatly reduced. Data-
driven control theories and methods have been widely used.
Typical one-degree-of-freedom (1-DOF) data-driven control
methods include Iterative Feedback Tuning (IFT) [1], Vir-
tual Reference Feedback Tuning (VRFT) [2], Noniterative
Correlation-based Tuning (NCbT) [3] and Fictitious Refer-
ence Iterative Tuning (FRIT) [4]. The 2-DOF control sys-
tem can improve reference tracking and disturbance rejec-
tion performance at the same time. FRIT [5] [6] and VRFT
[7] have been extended to 2-DOF control systems. How-
ever, for these data-driven methods, optimal objective func-
tions are based on a given reference model. The reference
model is used to describe the desired control performance
after controller tuning. Choosing a suitable reference model
is difficult when the information about the plant is unknown.
Therefore, a proposed method does not require a reference

This work was supported by JSPS KAKENHI Grant Number
JP22K04028.

model and instead considers the time-domain performance
index as an optimization target. Reference model-free tun-
ing is currently implemented for 1-DOF control systems [8].
This reference model-free controller tuning method has not
been extended to 2-DOF control systems.

Data-driven control design differs from model-based de-
sign in that the response of the closed-loop system cannot
be evaluated in advance. The designed controllers can only
be verified by applying them to a real machine system. This
is a trial-and-error tuning process, and repeated experiments
are expensive. In addition, for closed-loop systems, data-
driven methods do not always obtain the controller parame-
ters that can stabilize the system. When the reference model
or controller structure is unreasonably selected, unsuitable
controller parameters may be tuned. The machine may be
damaged using unsuitable controller parameters. Therefore,
a response estimation method is proposed. The reference
[8] offers a response estimate method for the 1-DOF con-
trol system that only uses the initial closed-loop input-output
data. The estimated response data is then used to adjust the
feedback controller parameters, and the controller was up-
dated reference model-free. However, this reference model-
free controller design approach based on response estima-
tion has yet to be implemented for the 2-DOF control sys-
tem. Estimated Response Iterative Tuning (ERIT)[9] is a
controller parameters tuning method based on response es-
timation for 2-DOF control systems, which has been widely
used [10][11]. However, the ERIT method only estimates
the feedforward controller output response and updates the
feedforward controller parameters. It does not estimate the
feedback controller output response and updates the feed-
back controller parameters, which cannot improve the dis-
turbance rejection performance.

Based on the above, the contributions of this paper can be
summarized as follows:

1) Propose a response estimate method for the 2-DOF con-
trol system that only uses the initial closed-loop input-
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output data. The response of the controller update can
be estimated in advance before being applied to the real
machine system.

2) A new reference model-free controller parameter tun-
ing method is designed based on the response estima-
tion approach, which solves the problem of the diffi-
culty of selecting a suitable reference model.

The rest of this paper is organized as follows. Section
2 introduces the data-based response estimation method for
the 2-DOF control system. Section 3 presents a reference
model-free controller design approach based on the response
estimation method. The numerical simulation in Section 4
verifies the effectiveness of the proposed method. Section 5
concludes the paper.
2 Data-Based Response Estimation Method

This section describes the 2-DOF control system response
estimation methods. Consider a discrete-time LTI system
with two controllers in Fig.1. Here, G(z) is the discrete-time
controlled object, which is unknown, r(k) is the reference
signal, d(k) is the disturbance signal, u(k) is the plant input
signal and y(k) is the plant output signal, Cfb(z, θ) is the
feedback controller, Cff (z, ρ) is the feedforward controller,
where θ = [θ0 θ1 . . . θn−1]

T and ρ = [ρ0 ρ1 · · · ρn−1]
T

are two parameter vectors of both n-dimensional.
It is assumed that the initial feedback con-

troller Cfb0(z, θ
0) and initial feedforward controller

Cff0(z, ρ
0) can stabilize the system in Fig.1. The

initial input-output data {u0(k), y0(k)}k=0,1,....,N−1

is obtained by the reference signal sequence
r = [r(0) r(1) . . . r(N − 1)]T ∈ RN and the ini-
tial controller parameters θ0 =

[
θ0 θ1 · · · θn−1

]T
and

ρ0 = [ρ0 ρ1 · · · ρn−1]
T via once closed-loop exper-

iment. Here, the initial input data sequence is u0 =
[u0(0) u0(1) ... u0(N − 1)]T ∈ RN and the initial output
data sequence is y0 = [y0(0) y0(1) ... y0(N − 1)]T ∈ RN .

Fig. 1: 2-DOF control system.

2.1 Open-Loop System Response Estimation Method
A brief review of the response estimation method for

open-loop systems is given before introducing the proposed
closed-loop response estimation method for ease of under-
standing.

The open-loop system input-output response,
which is estimated using initial input-output
data{u0(k), y0(k)}k=0,1,....,N−1. The input-output re-
lationship between u(k) and y(k) is given as

y(k) = G(z)u(k). (1)

According to the references [8][12], for the arbitrary input
signal u∗(k) , we can estimate the output response as

y(k) = Y U−1u∗(k),

where u∗ = [u∗(0)u∗(1)...u∗(N − 1)]T is an arbitrary input
sequence,

Y =


y0(0) 0 · · · 0
y0(1) y0(0) · · · 0

...
...

. . .
...

y0(N − 1) y0(N − 2) · · · y0(0)

 ∈ RN×N ,

U =


u0(0) 0 · · · 0
u0(1) u0(0) · · · 0

...
...

. . .
...

u0(N − 1) u0(N − 2) · · · u0(0)

 ∈ RN×N .

2.2 Closed-Loop System Response Estimation Method
The closed-loop input-output response is estimated

using the first step obtained initial input-output data
{u0(k), y0(k)}k=0,1,....,N−1. In Fig.1, the transfer function
of the closed-loop system from reference signal r(k) to out-
put signal y(k) is given as

Tyr(z) =
Y (z)

R(z)
=

(Cff + Cfb)G(z)

1 + CfbG(z)
, (2)

Thus, based on equations (1) and (2), the output signal y(k)
related to r(k) is given as

y(k) =
(Cff + Cfb)G(z)

1 + CfbG(z)
r(k).

The input signal u(k) is given as

u(k) = Cffr(k) + Cfb(r(k)− y(k)).

The closed-loop transfer function of the disturbance input
of a 2-DOF control system is only related to the feedback
controller. The transfer function of the closed-loop system
from disturbance signal d(k) to output y(k) is given as

Tyd(z) =
Y (z)

D(z)
=

G(z)

1 + CfbG(z)
.

Thus, the output signal y(k) related to d(k) is given as

y(k) =
G(z)

1 + CfbG(z)
d(k).

Introduce a fictitious disturbance signal [8][13] as in Fig.2
to make the proposed estimation method suitable for non-
minimum phase controller structures.

The fictitious disturbance signal for an arbitrary controller
Cfb(z, θ) is defined as

d̄(k, θ) = Cfb(z, θ)y0 + u0. (3)

The input-output data of the plant is fixed to
{u0(k), y0(k)}k=0,1,....,N−1 for an arbitrary stable con-
troller. As similar for open-loop system and references
[8][12], the output sequence for the arbitrary reference
signal r∗(k) can be estimated as

ymr(k) = (Cff (z, ρ
∗) + Cfb(z, θ

∗))Y D
−1

r∗(k), (4)
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The input sequence for the arbitrary reference signal r∗(k)
can be estimated as

umr(k) = (Cff (z, ρ
∗) + Cfb(z, θ

∗))UD
−1

r∗(k), (5)

The output sequence for the arbitrary disturbance signal
dsup(k) can be estimated as

ymd(k) = Y D
−1

dsup(k), (6)

The input sequence for the arbitrary disturbance signal
dsup(k) can be estimated as

umd(k) = UD
−1

dsup(k), (7)

where dsup(k) is the disturbance signal to be suppressed
(usually, the disturbance is unknown but bounded). The
user can arbitrarily assign disturbance signal dsup(k) =
[dsup(0) dsup(1) ... dsup(N − 1)]T , Cff (z, ρ

∗) is the
updated feedforward controller, Cfb(z, θ

∗) is the up-
dated feedback controller, the arbitrary reference signal
r∗(k)=

[
r∗(0) r∗(1) . . . r∗(N − 1)]T ,

Y =


y0(0) 0 · · · 0
y0(1) y0(0) · · · 0

...
...

. . .
...

y0(N − 1) y0(N − 2) · · · y0(0)

 ∈ RN×N ,

U =


u0(0) 0 · · · 0
u0(1) u0(0) · · · 0

...
...

. . .
...

u0(N − 1) u0(N − 2) · · · u0(0)

 ∈ RN×N ,

D̄ =


d̄(0) 0 · · · 0
d̄(1) d̄(0) · · · 0

...
...

. . .
...

d̄(N − 1) d̄(N − 2) · · · d̄(0)

 ∈ RN×N .

The following 3-step algorithm organizes the above re-
sponse estimation approach.

Step 1: obtain a set of initial input and output data
{u0(k), y0(k)}k=0,1,....,N−1 via a closed-loop system exper-
iment

Step 2: calculate the fictitious disturbance signal d̄(k) by
equation (3)

Step 3: estimate the closed-loop system output response
for arbitrary reference signal, disturbance input signal, and
arbitrary controllers by equations (4)-(7).

Fig. 2: Fictitious disturbance signal feedback system.

3 Controller Design Based on the Response Esti-
mation Method

Generally, data-driven controller design methods are
based on model matching. Selecting an appropriate refer-
ence model is difficult when the plant model is unknown,
and the control system is complex. Unlike the controller pa-
rameter tuning method based on model matching, we con-
sider the constraint of the time-domain performance index
(rising time, setting time, etc.) as optimization objectives
in designing the controller instead of using reference model
matching.

In the proposed method, controller parameters θ∗ and ρ∗

are determined by solving the following optimization prob-
lem:

(θ∗, ρ∗) = argmin
(θ,ρ)

J(θ, ρ),

J(θ, ρ) = α1tr1 + δ1ts1 + α2tr2 + δ2ts2,

s.t.

{
uL(k) < umr(k) < uU (k)

yL(k) < ymr(k) < yU (k),

where α1, δ1, α2, and δ2 are weighting factors. The perfor-
mance index in the time domain is interrelated and mutually
restrictive. Thus, the weighted average method is used to as-
sign weight. The time domain performance index rising time
tr1 and setting time ts1 are calculated by the estimated re-
sponse data ymr(k). The rising time tr2 and setting time ts2
are calculated by the estimated response data ymd(k). uL(k)
and uU (k) are the lower and the upper bounds for the input,
respectively. yL(k) and yU (k) are the lower and the upper
bounds for the output, respectively. The optimal controller
parameters are obtained by optimizing the above objective
function through a nonlinear solver.

4 Simulation Example

A simulation example is presented to verify the proposed
method. Consider the non-minimum phase discrete-time lin-
ear transfer function G(z) is given as

G(s) =
1

0.5s2 + 5s+ 1
, G(z) = Z(G(s)).

The discrete-time feedback controller structure is given as

Cfb(z, θ) = αT (z)θ =
[
1 1

1−z−1
z−1

1−z−1

]θ0θ1
θ2

 .

The discrete-time feedforward controller structure is given
as

Cff (z, ρ) = βT (z)ρ =
[
1 z−1

z

] [ρ0
ρ1

]
.

The initial controller parameters are given as

θ0 =
[
0.43 0.12 0.07

]T
, ρ0 =

[
0.03 0.01

]T
.

In the simulation, sampling time T = 0.5s. The num-
ber of data length N = 200. Reference signal r(k) = 1.
dsup(k) = 1 in the feedback control parameter tuning to sup-
press a constant value disturbance. To verify the proposed
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response estimate and the effect of disturbance rejection, we
set d(k) = 1.0 as a disturbance input signal when t ≥ 10s.

According to the initial output data response in Fig.3, we
aim to achieve more minor overshoot, shorter setting time,
and rising time. The objective function is given as

J = ts1 + ts2,

Constraints for the upper and the lower bounds are given for
parameter tuning as

uL = −2.5 (0s ≤ t ≤ 100s),

uU = 2.5 (0s ≤ t ≤ 100s),

yU =

{
1.0 (0s ≤ t < 6.5s)
1.01 (6.5s ≤ t < 100s),

yL =


0 (0s ≤ t < 1.5s)
0.5 (1.5s ≤ t < 3.5s)
0.96 (3.5s ≤ t < 6.5s)
0.99 (6.5s ≤ t ≤ 100s).

Update the controller parameters subject to satisfying the
above multi-objective constraints.

Table 1 shows that the updated feedforward controller pa-
rameters are ρ∗ = [−8.9 − 8.76]T , and the updated feed-
back controller parameters are θ∗ = [6.6 4.92 − 1.27]T . In
the time domain, the output response setting time is shorter
than before tuning, stabilizing the system faster. MSE1 is the
mean-square error between the true output and the estimated
output for reference tracking. MSE2 is the mean-square er-
ror between the true output and the estimated output for dis-
turbance rejection. The values of MSE1 and MSE2 are both
minimal, which means the actual output values are consis-
tent with the response estimate values, which proves the ef-
fectiveness of the proposed response estimation method.

Table 1: Results of the proposed method

symbol Initial Tuned

Feedforward controller ρ0 0.03 -8.9
parameters ρ1 0.01 -8.76

Feedback controller θ0 0.43 6.6
parameters θ1 0.12 4.92

θ2 0.07 -1.27

Setting time ts1(s) 27 3.48
Setting time ts2(s) 42.05 14.17

Mean-square error MSE1 - 3× 10−27

Mean-square error MSE2 - 5.1× 10−30

Fig. 3 shows that the overshoot, the rising time, and the
setting time become shorter after tuning, making the system
stabilize faster. The reference tracking performance and the
disturbance rejection performance are simultaneously im-
proved. In Fig. 3 and Fig. 4, the input-output of the proposed
tuned method based on response estimation (blue solid line)
is consistent with the true input-output of the plant (red dot-
ted line). The effectiveness of the proposed response estima-
tion method and controller design method is verified.

Fig. 5 shows that the error value between the estimated
output and the actual output is extremely small, which can
be ignored. We can prove that the response estimated output

(a) Set-point response

(b) Disturbance response

Fig. 3: Result of output responses.

(a) Set-point response

(b) Disturbance response

Fig. 4: Result of input responses.

value is consistent with the true output value. In addition,
Fig. 6 intuitively shows the effectiveness of the proposed re-
sponse estimation method through the curves of the true out-
put minus the initial output and the response estimate output
minus the initial output value.

5 Conclusion

This paper proposed a reference model-free data-driven
controller design and response estimated approach. First,
the response estimation method is proposed, which requires
only a set of initial input-output data to estimate the out-
put response during the controller update process. Sec-
ond, a new controller design method is proposed, taking the
time-domain performance index as the optimization objec-
tive without needing a reference model. Numerical examples
verify the effectiveness of the proposed method. The effect
of noise on the system should be considered in future work.
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Currently, the method only applies to SISO linear systems
and can be extended to T-S fuzzy[14] and MIMO systems in
the future.

(a)

(b)

Fig. 5: (a) Error between the estimated output and the true
output of set-point response. (b) The error between the esti-
mated output and the true output of disturbance response.

References
[1] H. Hjalmarsson, M. Gevers, S. Gunnarsson and O. Lequin,

Iterative feedback tuning: theory and applications. IEEE Con-
trol Systems Magazine, 1998, 18(4): 26–41.

[2] M. C. Campi, A. Lecchini and S. M. Savaresi, Virtual refer-
ence feedback tuning: a direct method for the design of feed-
back controllers. Automatica, 2002, 38(8):1337–1346.

[3] A. Karimi, K. van Heusden and D. Bonvin, Non-iterative
data-driven controller tuning using the correlation approach,
in 2007 European control conference (ECC), 2007. p.
5189–5195.

[4] S. Soma, O. Kaneko, and T. Fujii, A new method of controller
parameter tuning based on input-output data–Fictitious Ref-
erence Iterative Tuning (FRIT)–. IFAC Proceedings Volumes,
2004, 37(12): 789–794.

[5] T. Sakata, O. Kaneko, and T. Fujii, Parameter tuning of two-
degree of freedom controllers using FRIT for the tracking
property and the feedback properties. Transactions of the In-
stitute of Systems, Control and Information Engineers, 2007,
20(11):419–429.

[6] O. Kaneko, Y. Yamashina, and S. Yamamoto, Fictitious ref-
erence tuning of the feed-forward controller in a two-degree-
of-freedom control system. SICE journal of control, measure-
ment, and system integration, 2011, 4(1): 55–62.

[7] A. Lecchini, M. C. Campi, and S. M. Savaresi, Virtual refer-
ence feedback tuning for two degree of freedom controllers.
International Journal of Adaptive Control and Signal Pro-
cessing, 2002, 16(5): 355–371.

[8] T. Sakatoku, K. Yubai, D. Yashiro, and S. Komada, Data-
Driven Controller Tuning with Closed-Loop Response Esti-
mation. IEEJ Transactions on Electrical and Electronic En-
gineering, 2021, 16(10): 1397–1406.

[9] O. Kaneko, T. Nakamura, and T. Ikezaki, A New Approach
to update of feedforward controller in the two-degree-of-

(a)

(b)

Fig. 6: (a) True output minus initial output (the solid line)
and estimated output minus initial output (the dotted line)
of set-point response. (b) True output minus initial output
(the solid line) and estimated output minus initial output (the
dotted line) of disturbance response.

freedom control system—A Proposal of estimated response
iterative tuning (ERIT)—. Transactions of the Society of In-
strument and Control Engineers, 2018, 54(12): 857–864.

[10] Y. Fujimoto, Estimated response iterative tuning with signal
projection. IFAC Journal of Systems and Control, 2022, 19:
100179.

[11] O. Kaneko, and T. Nakamura, Data-driven prediction of
2DOF control systems with updated feedforward controller,
in 2017 56th Annual Conference of the Society of Instrument
and Control Engineers of Japan (SICE), 2017. p. 259–262.

[12] T. Sakatoku, K. Yubai, D. Yashiro, and S. Komada, Estima-
tion of Closed-Loop Response Using Input and Output Data.
IEEJ Transactions on Electronics, Information and Systems,
2021, 141(3), 396–397.

[13] T. Hori, K. Yubai, D. Yashiro, and S. Komada, Data-driven
H∞ controller tuning for sensitivity minimization. Interna-
tional Journal of Advanced Mechatronic Systems, 2017, 7(6),
337–349.

[14] W. Ren, S. Komada, K. Yubai, and S. Guo, Zonotopic in-
terval estimation for discrete-time Takagi-Sugeno fuzzy sys-
tems with a delayed nonquadratic framework. Journal of the
Franklin Institute, 2022, 359(8), 3883–3909.

318  



Optimized State Estimation for Complex Networks with Sensor
Fault and Probability-Based Quantization

Hongchun Chu, Chaoqing Jia, Cai Chen∗, Kun Chi and Tao Lei
Harbin University of Science and Technology, Harbin 150080, P. R. China

E-mail: chencailee@hrbust.edu.cn

Abstract: This paper investigates the optimized state estimation (OSE) problem for uncertain coupled delay complex networks
(UCDCNs) subject to sensor fault and probability-based quantization. A random variable with known statistical characteristics
and a uniformed distributed random parameter are adopted respectively to describe the model uncertainty and sensor fault. Taking
the bandwidth-limited channel into account, a probability-based quantization strategy is employed to process transmitted data.
A coupled-delay-dependent predictor-estimator is constructed to guarantee that the covariance upper bounds of prediction error
(PE) and estimation error (EE) can be obtained by resolving recursive matrix equations and the predictor-estimator gain (PEG)
can be determined via optimizing the trace of the covariance upper bound of EE (CUBEE). Finally, an efficient example is
presented to demonstrate the validity of the developed OSE algorithm.

Key Words: Optimized State Estimation, Coupled Delay Complex Networks, Sensor Fault, Probability-Based Quantization

1 Introduction

The past few decades have seen the widespread develop-
ment of complex networks, which are composed of mutually
coupled smart units with individual characteristics. Up to
now, such networks have been applied in many fields, such
as brain networks, social networks, traffic networks and so
on. It should be pointed out that the state estimation plays
a significant role in the dynamical analyses for complex net-
works, as mentioned [1–4]. Especially, the Kalman-type op-
timized state estimation (OSE) methods have appealed many
attention, which are usually executed by online recursion
in the sense of minimum mean-square error. For example,
an OSE approach to a class of quantized coupled complex
networks subject to incomplete measurements and amplify-
and-forward relay has been introduced in [5]. Neverthe-
less, a relay-parameter-dependent covariance upper bound
of estimation error (CUBEE) has been presented and the
predictor-estimator-gain (PEG) has been designed to mini-
mize such upper bound. Based on the topologies of complex
networks and uncertain external environment, the communi-
cation delay and model uncertainty may be occurred general-
ly. Hence, the OSE method for a class of uncertain coupled
delay complex networks (UCDCNs) has been addressed to
satisfy the actual requirement.

Due to the configuration with low-capacity sensor, the da-
ta may be incomplete or invalid during measurements, which
means that sensor fault occurs. In the framework state esti-
mation algorithm, Bernoulli distributed random variables are
frequently employed to characterize the phenomenon of sen-
sor fault, see e.g. [6, 7]. If the sensor fault occurs (namely
Bernoulli distributed random variable is equal to zero), the
measurement data are usually missing. However, actually,
the sensor fault may lead to the partial missing of measure-
ment data. The outlier-resistant OSE problem has been tack-
led in [8] for a class of time-varying complex networks with
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cailee@hrbust.edu.cn.
This work was supported in part by the Postdoctoral Science Foundation
of Heilongjiang Province of China under Grant LBH-Z22199 and the Fun-
damental Research Foundation for Universities of Heilongjiang Province
under Grant 2022-KYYWF-0141.

time-correlated fading scenario, where a certain saturation
technique has been employed in predictor-estimator to re-
lieve the influence of outliers caused by attacks or mutated
environment. In this paper, a uniformly distributed random
variable is utilized to describe the data degeneration caused
by sensor fault.

Taking the deployment of wireless networks with limited
resources into account, quantization technique is a universal
way to reduce the size of data packet. Currently, according
to quantization principle, the quantization can be primarily
divided into logarithmic quantization [9] and uniform quan-
tization [10]. Generally speaking, an OSE problem has been
resolved for a class of time-delayed stochastic system in the
simultaneous presence of protocol schedule and data quanti-
zation, where Taylor expansion has been adopted in [11] to
handle model nonlinearity. In addition, the quantization may
be executed within a stochastic range [12], i.e., probability-
based quantization. Consequently, this paper aims revealing
the influence from probability-based quantization on the OS-
E algorithm for a class of UCDCNs.

Summarizing the aforementioned introductions, this pa-
per is devoted to developing an OSE method for UCDC-
Ns suffering from sensor fault and probability-based quan-
tization. The main difficulties encountered here can be
organized into (1) how to develop an easy-to-implement
OSE method for UCDCNs dealing with sensor fault and
probability-based quantization simultaneously; (2) how to
derive a CUBEE involving coupled delay and quantization
parameter; and (3) how to determine PEG in a proper way
with the help of minimizing the trace of CUBEE. The corre-
sponding contributions can be listed as: (1) an attractive OSE
method is proposed for UCDCNs, which can handle the sen-
sor fault and probability-based quantization; (2) a CUBEE is
obtained by resolving matrix equations recursively; and (3)
a selected PEG is parameterized via minimizing the trace of
CUBEE.

Notations: The notations used here are considerably stan-
dard. Specifically, ∥ · ∥ is the Euclidean norm. The notation
PT signifies the transpose of matrix P and P−1 stands for
the inverse operation of P . The symbol H > 0 or H ≥ 0
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means thatH is symmetric and positive or semi-positive def-
inite. I and 0 stands for the well-dimensioned unit matrix
and zero matrix respectively.

2 Problem Formulation

Consider the following UCDCNs with S units

xκ,θ+1 = (Aκ,θ + zκ,θA⃗κ,θ)xκ,θ + ωκκ,θΠxκ,θ

+

s∑
ρ=1

ωκρ,θΠxρ,θ−τ +Bκ,θξκ,θ, (1)

yκ,θ = ϕκ,θCκ,θxκ,θ + σκ,θ, ρ ̸= κ (2)

where xκ,θ ∈ Rnxκ stands for the model state, yκ,θ ∈
Rny describes the sensor measurement. Π and Oκ,θ =
[ωκγ,θ]S×S characterize the outer coupling and inner cou-
pling parameters respectively. τ denotes coupled delay,
Aκ,θ, A⃗κ,θ, Bκ,θ and Cκ,θ are well-dimensioned known ma-
trices. zκ,θ is a random variable following E{zκ,θ} = 0 and
E{z2κ,θ} = 1, ξκ,θ is a model noise with mean 0 and variance
∆κ,θ > 0, and σκ,θ is adopted to describe the noise from
sensor measurement with mean 0 and variance Σκ,θ > 0.
ϕκ,θ is a random variable obeying uniform distribution with-
in interval [0, 1] to characterize sensor fault.

Actually, the data collected by sensors are usually man-
aged by a quantizer. Let yκ,θ = [y

(1)
κ,θ, y

(2)
κ,θ, . . . , y

(ny)
κ,θ ]T ,

whose quantization function can be described by

Q(yκ,θ) = [Q1(y
(1)
κ,θ), Q2(y

(2)
κ,θ), . . . , Qny (y

(ny)
κ,θ )]T .

For each element in Q(yκ,θ), the quantization level is ex-
pressed by

Q(l)
κ =

{
~(l)κ,r

∣∣~(l)κ,r , rϵ(l)κ , ϵ
(l)
κ > 0, r = 0,±1,±2, . . .

}
.

If ~(l)κ,r ≤ y
(l)
κ,θ ≤ ~(l)κ,r+1 (l = 1, 2, . . . , ny) hold, then the

probability-based quantization can be described by

Prob
{
Ql(y

(l)
κ,θ) = ~(l)κ,r

∣∣℘(l)
κ

}
= 1− ℘(l)

κ ,

Prob
{
Ql(y

(l)
κ,θ) = ~(l)κ,r+1

∣∣℘(l)
κ

}
= ℘(l)

κ ,

where ℘(l)
κ =

y
(l)
κ,θ−~(l)

κ,r

ϵ
(l)
κ

. Define probability-based quantiza-

tion error q(l)κ,θ = Ql(y
(l)
κ,θ) − y

(l)
κ,θ. It is obvious to obtain

that

Prob
{
q
(l)
κ,θ = −℘(l)

κ ϵ
(l)
κ

∣∣℘(l)
κ

}
= 1− ℘(l)

κ ,

Prob
{
q
(l)
κ,θ = (1− ℘(l)

κ )ϵ(l)κ
∣∣℘(l)
κ

}
= ℘(l)

κ .

In terms of [12], we can derive that E
{
q
(l)
κ,θ

}
= 0,

E
{(

q
(l)
κ,θ

)2}
≤ 0.25

(
ϵ
(l)
κ

)2
and E

{
q
(l1)
κ,θ q

(l2)
κ,θ

}
= 0 with

l1 ̸= l2.
Based on the probability-based quantized output, coupled

delay and sensor fault, the following predictor-estimator is
constructed recursively

x̂κ,θ+1|θ = (Aκ,θ + ωκκ,θΠ)x̂κ,θ|θ

+

s∑
ρ=1

ωκρ,θΠx̂ρ,θ−τ |θ−τ , (3)

x̂κ,θ+1|θ+1 = x̂κ,θ+1|θ + ψκ,θ+1[Q(yκ,θ+1)

−ϕ̄κ,θ+1Cκ,θ+1x̂κ,θ+1|θ], (4)

where x̂κ,θ+1|θ and x̂κ,θ+1|θ+1 characterize the prediction
and estimation respectively. ϕ̄κ,θ+1 stands for the expec-
tation of random parameter ϕκ,θ+1 and ψκ,θ+1 denotes the
predictor-estimator gain (PEG) to be determined later.

Set eκ,θ+1|θ = xκ,θ+1 − x̂κ,θ+1|θ and eκ,θ+1|θ+1 =
xκ,θ+1 − x̂κ,θ+1|θ+1 as the prediction error (PE) and esti-
mation error (EE) respectively. According to the considered
UCDCNs and constructed predictor-estimator, the PE and
EE can be respectively calculated by

eκ,θ+1|θ = (Aκ,θ + ωκκ,θ)ẽκ,θ|θ + zκ,θA⃗κ,θxκ,θ

+
s∑
ρ=1

ωκρ,θeρ,θ−τ |θ−τ +Bκ,θξκ,θ, (5)

and

eκ,θ+1|θ+1 = xκ,θ+1 − x̂κ,θ+1|θ − ψκ,θ+1[Q(yκ,θ+1)

−ϕ̄κ,θ+1Cκ,θ+1x̂κ,θ+1|θ]

= eκ,θ+1|θ − ψκ,θ+1[Q(yκ,θ+1)− yκ,θ+1

+yκ,θ+1 − ϕ̄κ,θ+1Cκ,θ+1x̂κ,θ+1|θ]

= eκ,θ+1|θ − ψκ,θ+1qκ,θ+1

−ψκ,θ+1[ϕκ,θ+1Cκ,θ+1xκ,θ+1

−ϕ̄κ,θ+1Cκ,θ+1xκ,θ+1

+ϕ̄κ,θ+1Cκ,θ+1eκ,θ+1|θ + σκ,θ+1]

= Λκ,θ+1eκ,θ+1|θ − ψκ,θ+1qκ,θ+1

−Φ̃κ,θ+1ψκ,θ+1Cκ,θ+1xκ,θ+1

−ψκ,θ+1σκ,θ+1

= Λκ,θ+1eκ,θ+1|θ − ψκ,θ+1Ξκ,θ+1, (6)

where Λκ,θ+1 = I − ϕ̄κ,θ+1ψκ,θ+1Cκ,θ+1, Ξκ,θ+1 =

qκ,θ+1+ ϕ̃κ,θ+1Cκ,θ+1xκ,θ+1+σκ,θ+1, ϕ̃κ,θ+1 = ϕκ,θ+1−
ϕ̄κ,θ+1 and qκ,θ+1 = [q

(1)
κ,θ+1, q

(2)
κ,θ+1, . . . , q

(ny)
κ,θ+1]

T .
This paper aims to (a) deriving the covariances of PE and

EE with the help of (5) and (6), (b) determining the covari-
ance upper bounds of PE and EE recursively by resolving
matrix equations, and (c) designing PEG in the variance-
constrained index.

3 Main Results

First of all, the covariances of PE and EE are respectively
presented in the following theorem.

Theorem 1 The covariance recursions regarding PE and
EE can be calculated by

Ωκ,θ+1|θ

= E
{
eκ,θ+1|θe

T
κ,θ+1|θ

}
= (Aκ,θ + ωκκ,θΠ)Ωκ,θ|θ(Aκ,θ + ωκκ,θΠ)T

+E
{
z2κ,θA⃗κ,θxκ,θx

T
κ,θA⃗

T
κ,θ

}
+Bκ,θ∆κ,θB

T
κ,θ

+E
{( s∑

ρ=1

ωκρ,θΠeρ,θ−τ |θ−τ

)( s∑
ρ=1

ωκρ,θΠ
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×eρ,θ−τ |θ−τ
)T}

+ E
{
(Aκ,θ + ωκκ,θΠ)

×ẽκ,θ|θ
( s∑
ρ=1

ωκρ,θΠeρ,θ−τ |θ−τ

)T}

+E
{( s∑

ρ=1

ωκρ,θΠeρ,θ−τ |θ−τ

)
×ẽTκ,θ|θ(Aκ,θ + ωκκ,θΠ)

T

}
(7)

and

Ωκ,θ+1|θ+1

= E
{
eκ,θ+1|θe

T
κ,θ+1|θ

}
= Λκ,θ+1Ωκ,θ+1|θΛ

T
κ,θ+1 + ψκ,θ+1E

{
Ξκ,θ+1

×ΞTκ,θ+1

}
ψTκ,θ+1. (8)

Proof: The proof of this theorem is omitted here. �
Remark 1 Up to now, the covariances of PE and EE are
respectively given specifically. However, it is hardly to ob-
tain accurate values of (8) due to the comprehensive con-
siderations of sensor fault, model uncertainty as well as
probability-based quantization. On the other hand, the trace
of (8) in this paper functions as a optimal index, which re-
sults in the design of PEG without possibility. Accordingly,
it is essential to obtain an upper bound of (8) for the subse-
quent analysis and design.

The following theorem is devoted to giving the expression
of CUBEE. In addition, the PEG is determined by minimiz-
ing the trace of CUBEE.

Theorem 2 Consider the UCDCNs in (1)-(2) and the con-
structed predictor-estimator in (3)-(4). For given scaling pa-
rameters α1 > 0, α2 > 0, α3 > 0, α4 > 0 and α5 > 0, if
the following recursive matrix equations

Xκ,θ+1|θ = (1 + α1)(Aκ,θ + ωκκΠ)Xκ,θ|θ(Aκ,θ

+ωκκΠ)
T + A⃗κ,θΘ⃗κ,θ|θA⃗

T
κ,θ + (1 + α−1

1 )

×
s∑

m=1

ωmκ,θ

s∑
ρ=1

ωκρ,θΠXρ,θ−τ |θ−τΠ
T

+Bκ,θ∆κ,θB
T
κ,θ (9)

and

Xκ,θ+1|θ+1 = Λκ,θ+1Xκ,θ+1|θΛ
T
κ,θ+1 + ψκ,θ+1

×
[
0.25(1 + α3 + α4)Eκ,θ+1

+
1 + α−1

3

12
Cκ,θ+1Θ⃗κ,θ+1|θC

T
κ,θ+1

+(1 + α−1
4 )Σκ,θ+1

]
ψTκ,θ+1, (10)

where

Θ⃗κ,θ|θ = (1 + α2)Xκ,θ|θ + (1 + α−1
2 )x̂κ,θ|θx̂

T
κ,θ|θ,

Θ⃗κ,θ+1|θ = (1 + α5)Xκ,θ+1|θ + (1 + α−1
5 )x̂κ,θ|θx̂

T
κ,θ|θ,

Eκ,θ+1 =



(
ϵ
(1)
κ

)2
0 0 0

0
(
ϵ
(2)
κ

)2
0 0

0 0
. . . 0

0 0 0
(
ϵ
(ny)
κ

)2


,

with initial condition Xκ,0|0 = Ωκ,0|0 > 0 have solutions
Xκ,θ+1|θ > 0 and Xκ,θ+1|θ+1 > 0, then Xκ,θ+1|θ+1 is an
upper bound of Ωκ,θ+1|θ+1, i.e., Ωκ,θ+1|θ+1 ≤ Xκ,θ+1|θ+1.
In addition, if the PEG is selected as

ψκ,θ+1 = ϕ̄κ,θ+1Xκ,θ+1|θC
T
κ,θ+1

×
{
ϕ̄2κ,θ+1Cκ,θ+1Xκ,θ+1|θC

T
κ,θ+1

+
1 + α3 + α4

4
Eκ,θ+1 +

1 + α−1
3

12

×Cκ,θ+1Θ⃗κ,θ+1|θC
T
κ,θ+1

+(1 + α−1
4 )Σκ,θ+1

}
, (11)

then the trace of CUBEE can be minimized.

Proof: To begin with, the covariance upper bound of PE
is obtained. By means of fundamental inequality MN T +
NMT ≤ αMMT +α−1NN T with α > 0 being a scaling
parameter, M and N being well-dimensioned matrices, one
has

E
{
(Aκ,θ + ωκκ,θΠ)ẽκ,θ|θ

( s∑
ρ=1

ωκρ,θΠ

×eρ,θ−τ |θ−τ
)T}

+ E
{( s∑

ρ=1

ωκρ,θΠeρ,θ−τ |θ−τ

)
×ẽTκ,θ|θ(Aκ,θ + ωκκ,θΠ)T

}
≤ α1(Aκ,θ + ωκκ,θΠ)Ωκ,θ|θ(Aκ,θ + ωκκ,θΠ)T

+α−1
1 E

{( s∑
ρ=1

ωκρ,θΠeρ,θ−τ |θ−τ

)

×
( s∑
ρ=1

ωκρ,θΠeρ,θ−τ |θ−τ

)T}
, (12)

where α1 > 0 is a scaling parameter. Substitute (12) into (7)
leading to

Ωκ,θ+1|θ

≤ (1 + α1)(Aκ,θ + ωκκ,θΠ)Ωκ,θ|θ(Aκ,θ + ωκκ,θΠ)
T

+E
{
z2κ,θA⃗κ,θxκ,θx

T
κ,θA⃗

T
κ,θ

}
+Bκ,θ∆κ,θB

T
κ,θ

+(1 + α−1
1 )E

{( s∑
ρ=1

ωκρ,θΠeρ,θ−τ |θ−τ

)

×
( s∑
ρ=1

ωκρ,θΠeρ,θ−τ |θ−τ

)T}
. (13)

Notice that

E
{
xκ,θx

T
κ,θ

}
= E

{
(x̂κ,θ|θ + eκ,θ|θ)(x̂κ,θ|θ + eκ,θ|θ)

T
}
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≤ (1 + α2)Ωκ,θ|θ + (1 + α−1
2 )

×x̂κ,θ|θx̂Tκ,θ|θ
, Θκ,θ|θ (14)

and

E
{( s∑

ρ=1

ωκρ,θΠeρ,θ−τ |θ−τ

)( s∑
ρ=1

ωκρ,θΠ

×eρ,θ−τ |θ−τ )T
}

≤
s∑

m=1

ωmκ,θ

s∑
ρ=1

ωκρ,θΠΩρ,θ−τ |θ−τΠ
T , (15)

where α2 > 0 is a scaling parameter. On the basis of (14)
and (15), we have

Ωκ,θ+1|θ

≤ (1 + α1)(Aκ,θ + ωκκ,θΠ)Ωκ,θ|θ(Aκ,θ + ωκκ,θΠ)T

+A⃗κ,θΘκ,θ|θA⃗
T
κ,θ +Bκ,θ∆κ,θB

T
κ,θ

+(1 + α−1
1 )

s∑
m=1

ωmκ,θ

s∑
ρ=1

ωκρ,θΠ

×Ωρ,θ−τ |θ−τΠ
T . (16)

Furthermore, the CUBEE will be given in the following
proof. It is easy to have

ψκ,θ+1E
{
Ξκ,θ+1Ξ

T
κ,θ+1

}
ψTκ,θ+1

= ψκ,θ+1E
{
qκ,θ+1q

T
κ,θ+1 + ϕ̃2κ,θ+1Cκ,θ+1xκ,θ+1

×xTκ,θ+1C
T
κ,θ+1 +Σκ,θ+1 + ϕ̃κ,θ+1qκ,θ+1x

T
κ,θ+1

×CTκ,θ+1 + ϕ̃κ,θ+1Cκ,θ+1xκ,θ+1q
T
κ,θ+1

+qκ,θ+1σ
T
κ,θ+1 + σκ,θ+1q

T
κ,θ+1

}
ψTκ,θ+1

≤ ψκ,θ+1E
{
(1 + α3 + α4)qκ,θ+1q

T
κ,θ+1

+
1 + α−1

3

12
Cκ,θ+1xκ,θ+1x

T
κ,θ+1C

T
κ,θ+1

+(1 + α−1
4 )Σκ,θ+1

}
ψTκ,θ+1. (17)

Similar to (14), we know

E
{
xκ,θ+1x

T
κ,θ+1

}
= E

{
(eκ,θ+1|θ + x̂κ,θ+1|θ)(eκ,θ+1|θ + x̂κ,θ+1|θ)

T
}

≤ (1 + α5)Ωκ,θ+1|θ + (1 + α−1
5 )x̂κ,θ+1|θ

×x̂Tκ,θ+1|θ

, Θκ,θ+1|θ, (18)

where α5 > 0 is a scaling parameter. Take the quantization
error into account leading to

E
{
qκ,θ+1q

T
κ,θ+1

}
≤ 1

4
Eκ,θ+1, (19)

where Eκ,θ+1 is defined in Theorem 2. According to (17)-
(19) results in

Ωκ,θ+1|θ+1 ≤ Λκ,θ+1Ωκ,θ|θΛ
T
κ,θ+1 + ψκ,θ+1

×
{
1 + α3 + α4

4
Eκ,θ+1 +

1 + α−1
3

12

×Cκ,θ+1Θκ,θ+1|θC
T
κ,θ+1

+(1 + α−1
4 )Σκ,θ+1

}
ψTκ,θ+1. (20)

Considering (9), (10), (16), (20) as well as mathematical in-
duction, we can conclude that Ωκ,θ+1|θ+1 6 Xκ,θ+1|θ+1.

Finally, the PEG will be designed for the purpose of min-
imizing the trace of CUBEE. Calculating ∂trace(Xκ,θ+1|θ+1)

∂ψκ,θ+1
,

we have

∂trace(Xκ,θ+1|θ+1)

∂ψκ,θ+1

= −2ϕ̄κ,θ+1Λκ,θ+1Xκ,θ+1|θC
T
κ,θ+1

+2ψκ,θ+1

{
1 + α3 + α4

4
Eκ,θ+1

+
1 + α−1

3

12
Cκ,θ+1Θ⃗κ,θ+1|θC

T
κ,θ+1

+(1 + α−1
4 )Σκ,θ+1

}
ψTκ,θ+1. (21)

Letting ∂trace(Xκ,θ+1|θ+1)

∂ψκ,θ+1
= 0, we can arrive at

ψκ,θ+1 = ϕ̄κ,θ+1Xκ,θ+1|θC
T
κ,θ+1

×
{
ϕ̄2κ,θ+1Cκ,θ+1Xκ,θ+1|θC

T
κ,θ+1

+
1 + α3 + α4

4
Eκ,θ+1 +

1 + α−1
3

12

×Cκ,θ+1Θ⃗κ,θ+1|θC
T
κ,θ+1

+(1 + α−1
4 )Σκ,θ+1

}
. (22)

Up to now, the proof is completed. �
Remark 2 By handling model uncertainty, sensor fault and
quantization error, a CUBEE with a recursive form is con-
cretized. Subsequently, select PEG to minimize the trace of
CUBEE instead of (8) at each step. It should be noted that
the developed OSE algorithm for UCDCNs can be imple-
mented via online recursive computation.

4 An Illustrative Example

This section aims to illustrating the validity of the intro-
duced OSE algorithm by means of a numerical simulation.
For κ = 1, 2, 3, the model parameters are respectively cho-
sen as

A1,θ =

 0.04 0.04 0.08
−0.04 −0.2 0.2
0.16 −0.08 0.2

 ,
A2,θ =

 0.5 0.2 0.5
0.2 0.4 0.5
0.1 0.2 0.5

 ,
Ã3,θ =

 0.1 0.3 0.2
0.3 0.2 0.5
0.4 0.2 0.6

 ,
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Â3,θ =

 0.1sin(0.2θ) 0 0
0 0.2cos(0.1θ) 0
0 0 0

 ,
A3,θ = Ã3,θ + Â3,θ,

A⃗κ,θ =

 0.1 0 0
0 0.1 0
0 0 0.1

 ,
Oκ,θ =

 −12 6 6
6 −12 6
6 6 −12

× 10−3,

Πκ,θ =

 0.2 0 0
0 0.2 0
0 0 0.2

 ,
B1,θ =

[
−1 0.5 0.5

]T
,

B2,θ =
[
−0.5− 0.8sin(0.5θ) −0.3 −0.6

]T
,

B3,θ =
[
0.4 −0.5 0.1

]T
.

C1,θ =

[
0.1 0.1 0.1
−1 −0.1 −2

]
,

C2,θ =

[
−1− 0.2cos(0.6θ) 0.8 2

1.8 −0.9 0.5

]
,

C3,θ =

[
2 −2 1

−0.5 1 0.6

]
.

The initial values are chosen as X1,0|0 = X2,0|0 =
X3,0|0 = 5I3, x̂1,0|0 = [0 0.2 0.2]T , x̂2,0|0 = [2 0.4 1]T

and x̂3,0|0 = [1 0.8 0.4]T . Other elements are parameter-
ized by α1 = α2 = 0.6, α3 = 0.2, α4 = 0.8, α5 = 0.4,
Eκ,θ = diag{0.5 0.5}, ∆κ,θ = 0.4, Σκ,θ = 0.1 and τ = 4.

Let xκ,θ = [x1κ,θ x2κ,θ x3κ,θ]
T with estimation x̂κ,θ|θ =

[x̂1κ,θ x̂2κ,θ x̂3κ,θ]
T . The simulation results are presented

in Figs. 1-3. Fig. 1 depicts the state and estimation of 1th.
Fig. 2 gives the state and estimation of 2th. Fig. 3 denotes
the state and estimation of 3th.

Fig. 1: x1,θ and its estimation.

5 Conclusions

In this paper, the OSE state estimation problem has been
investigated for UCDCNs suffering from coupled delay, sen-
sor fault and probability-based quantization. The mod-
el uncertainty and sensor fault have been considered ade-
quately, which have been characterized by random variable

Fig. 2: x2,θ and its estimation.

Fig. 3: x3,θ and its estimation.

with known probabilities. In addition, a probability-based
quantization technique has been adopted to accommodate
bandwidth-limited channels. A novel predictor-estimator
has been constructed to ensure the existence of CUBEE.
Consequently, the trace of CUBEE has been minimized by
selecting proper PEG. Finally, a simulation has been car-
ried out to illustrate the effectiveness of the developed OSE
scheme.
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Abstract: The fuzzy reduced-based filtering problem within autonomous vehicles featuring dynamic positioning systems is
employed via an enhanced event-triggered scheme. A reduced-based filtering approach is proposed capable of approximating
the original high-order model with a given system performance level. The stability analysis is solved by employing the memory-
based event-triggered scheme. Thus the usage of network transmission computational resources is saved effectively.

Key Words: Autonomous vehicles, fuzzy model, filtering, memory-based event-triggered mechanism

1 Introduction

The filtering problems of dynamical systems have been
considered widely, specifically in relation to their ability to
estimate system states even when the inputs are noisy. Nu-
merous applicable results have been obtained in this area
[1, 2]. Furthermore, considerable attention has been at-
tached towards estimation techniques, where the Kalman
filtering method emerging as one of the most widely used
approaches [3]. Consequently, various enhanced method-
s have been discussed, including finite-time filtering [4],
adaptive filtering [5], fault detection filtering [6], filtering-
ing [7], and H2 filtering [8]. This paper focuses on ad-
dressing the T-S fuzzy reduced filtering issues through an
improved memory-based event-triggered scheme, where the
transformation from the sampled signal to the filter relies on
a predefined event-triggered condition [1,9,10]. By employ-
ing an efficient memory-based event-triggered communica-
tion scheme, the utilization of computational resources and
communication bandwidth during network transmission is
optimized, and the system dynamics is converted to an error-
dependent time-delay system effectively.

Autonomous vehicles have gained significant attention in
recent decades due to their capability to perform a wide
range of high-risk tasks in challenging marine environments
without human intervention [11]. These vehicles are capable
of operating in harsh or inaccessible areas, offering increased
versatility and maneuverability, especially in shallow water-
s such as riverine and coastal regions [12]. Their ability to
navigate and carry out tasks in these environments makes
them highly valuable in various fields of application [13,14].
A Dynamic Positioning system (DPS) refers to a marine ves-
sel equipped with a computer-controlled system, employing
Dynamic Positioning (DP) technology to uphold its horizon-
tal position and heading [15, 16]. This technology is used

This work is supported by the National Natural Science Foundation of
China (62173051,62203225); the Natural Science Foundation of Jiangsu
Province (BK20220443); the Natural Science Foundation of the Jiangsu
Higher Education Institutions of China (22KJB120005); and the Startup
Foundation for Introducing Talent of the Nanjing University of Information
Science and Technology (2022r102).

in various types of vessels such as offshore support vessel-
s, cruise ships, and shuttle tankers [17, 18]. Compared to
conventional vessels that rely on anchor mooring for po-
sition control, DPS offers higher positioning accuracy and
flexibility. This advantage has led to increased interest in
the control problem associated with DPS. Researchers and
engineers have been actively investigating and addressing
the challenges of controlling DPS to ensure optimal perfor-
mance and safety in marine operations [19, 20].

Note that there is a lack of research in the area of H2 fil-
tering and memory-based event-triggered schemes for T-S
fuzzy based DP of autonomous vehicles. The aim is to de-
velop methods and techniques to enhance the filtering pro-
cess in such systems, taking into account the specific char-
acteristics and challenges associated with DP of autonomous
vehicles.

2 System Description

Consider T-S fuzzy-based dynamic positioning system for
autonomous vehicles [19] is presented in the following form:

Fuzzy Model Rule i: IF ψ1(t) is fi1,· · · ,ψn(t) is fin
,THEN ẋi(t) =Aix(t) +Biω(t), i = 1, 2, . . . , n

yi(t) =Cix(t),
zi(t) =Eix(t),

(1)

where fij denote the fuzzy set, n denotes the number of rule,
ψ1(t),. . .,ψn(t) are premise variables.

Assumed that ψ(t) ∈ [−π/2, π/2], the overall system is
derived as



ẋ(t) =
N∑
i=1

ρi(θ(t))[Aix(t) +Biω(t)],

y(t) =
N∑
i=1

ρi(θ(t))Cix(t),

z(t) =
N∑
i=1

ρi(θ(t))Eix(t),

(2)
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where

ρi(θ(t)) =
ϱi(z(t))
N∑
i=1

ϱi(z(t))

> 0, N = 3,

ϱi(θ(t)) =
n∏
j=1

fij(θj(t)),
N∑
i=1

ρi(θ(t)) = 1,

θ(t) = [θ1(t), θ2(t), . . . , θn(t)],

A1 =


0 0 0 1 −α 0
0 0 0 α 1 0
0 0 0 0 0 1
b11 0 0 a11 0 0
0 b22 b23 0 a22 a23
0 b32 b33 0 a32 a33

 ,

A2 =


0 0 0 β −1 0
0 0 0 1 β 0
0 0 0 0 0 1
b11 0 0 a11 0 0
0 b22 b23 0 a22 a23
0 b32 b33 0 a32 a33

 ,

A3 =


0 0 0 β 1 0
0 0 0 −1 β 0
0 0 0 0 0 1
b11 0 0 a11 0 0
0 b22 b23 0 a22 a23
0 b32 b33 0 a32 a33

 ,

B1 =B2 = B3 =


0 0 0
0 0 0
0 0 0
d11 0 0
0 d22 d23
0 d32 d33

 ,

where fij(θj(t)) is the membership grade of θj .
Consider the networked communication environment, a

reduced-order dynamic filter is constructed here:
� Filter:
Rule i : IF θ1(t) is fi1, . . . , and θp(t) is fin, THEN{

ẋr(t) = Arixr(t) +Briy(t),

zr(t) = Erixr(t),
(3)

where xr(t) ∈ Rl and zr(t) ∈ Rm are the estimation condi-
tions l ≤ n; Ari, Bri, and Eri are matrices to be designed.
Therefore, the filter can be rewritten as

ẋr(t) =
N∑
i=1

ρi
(
θ(t)

){
Arixr(t) +Briy(t)

}
,

zr(t) =

N∑
i=1

ρi
(
θ(t)

){
Erixr(t)

}
.

(4)

Assume that the triggered instant sequences are
t0T, t1T, t2T, . . . , where t0 is the initial time. Denote
y(t) as y(tkT + nT ), and y(tkT ) is the lasted transmit-
ted instant. Assume that there exist transmission delays

τk ∈ [0, τ̃). Then, it can derived that there is no triggering
for any t ∈ [slT + τk, sl+1T + τk+1), and

J
(
y, ϑ
)
> 0. (5)

For t ∈ [tkT + τk, tk+1T + τk+1), denote
∆0 , [tkT + τk, tkT + τ̃ + T ),

∆dj , [tkT + τ̃ + djT, tkT + τ̃ + djT + T ),

∆d , [tkT + dT + τ̃ , tk+1T + τk+1),

(6)

and

ek(t) ,

 0, t ∈ ∆0,
y(tkT )− y(tkT + djT ), t ∈ ∆dj ,
y(tkT )− y(tkT + dT ), t ∈ ∆d.

Then, for t ∈ [tkT+τk, tk+1T+τk+1), the memory-based
ETM can be rewritten as

J(y, ϑ) = ϑ
(
t− τ(t)

)
+ ϵ

{
εyT

(
t− τ(t)

)
Φy
(
t− τ(t)

)
−Σm−1

l=0 µle
T
k−l(t)Φek−l(t)

}
> 0, (7)

with ek−l(t) = y(tk−1T )−y(tk+ j)T ) , ek(t) = y(tkT )−
y((tk+j)T ) , µl ∈ (0, 1](l = 0, 1, . . . ,m−1), Σm−1

l=0 µl = 1
the dynamic variable ϑ(t) is transformed as

ϑ̇(t) = εyT
(
t− τ(t)

)
Φy
(
t− τ(t)

)
− Σm−1

l=0 µle
T
k−l(t)

×Φek−l(t)− µϑ
(
t− τ(t)

)
, ϑ(t0) = ϑ0,

Considering the behavior of ZOH, the input of the filtering
can be further formulated as

y(t) = y
(
t− τ(t)

)
+ ek(t), t∈

[
tkT + τk, tk+1T + τk+1

)
.

Then it follows that

ẋr(t) =
N∑
i=1

ρi
(
θ(t)

){
Arixr(t)

+Bri
[
y(t− τ(t))− ek(t)

]}
,

zr(t) =
N∑
i=1

ρi
(
θ(t)

){
Erixr(t)

}
.

Therefore, the corresponding filtering error system can be
obtained as

ξ̇(t) =
N∑
i=1

N∑
j=1

ρi
(
θ(t)

)
ρj
(
θ(t)

){
Ã0ξ(t) + B̃0w(t)

+Ã1ξ(t− τ(t)) + C̃1ek
(
t
)}
,

er(t) =
N∑
i=1

N∑
j=1

ρi
(
θ(t)

)
ρj
(
θ(t)

){
Ẽ1ξ(t)

}
,

(8)

where ξ(t) ,
[
x(t)
xr(t)

]
, er(t) , z(t)− zr(t).

Ã0 =

[
Ai 0
0 Afj

]
, Ã1 =

[
0 0

BriCi 0

]
, B̃0 =

[
Bi
0

]
,

C̃1 =

[
0
Bri

]
, Ẽ1 =

[
Ei −Eri

]
,
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3 Main Results

3.1 Performance Analysis
The following theorem presents sufficient conditions for

the asymptotic stability of system (8) with an H2 perfor-
mance.

Theorem 1 Consider parameters µ > 0, ϵ > 0, ε > 0,
γ > 0, and µl > 0, l = 0, 1, 2, . . . ,m − 1, system in (8) is
asymptotically stable with a given H2 level γ if there exist
matrices P > 0, Q > 0, R > 0, Z > 0, Φ > 0, such that,
for all i, j = 1, 2, . . . , r,

2

r − 1
Υii +Υij +Υji < 0, (9)

Υii < 0, (10)[
−P ẼT1

⋆ −γ2I

]
< 0, (11)

where

Υii ,

 Ξ̃ τM Γ̃T1 P ε̃Γ̃T2
⋆ Υii22 0
⋆ ⋆ Υii33



Ξ̃ ,



Ξ11 Ξ12 0 Ξ14 0 Ξ16 0m−1 Ξ18

⋆ Ξ22 Ξ23 Ξ24 Ξ25 0 0m−1 0
⋆ ⋆ Ξ33 0 Ξ35 0 0m−1 0
⋆ ⋆ ⋆ Ξ44 0 0 0m−1 0
⋆ ⋆ ⋆ ⋆ Ξ55 0 0m−1 0
⋆ ⋆ ⋆ ⋆ ⋆ Ξ66 0m−1 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Ξ66 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −I


,

Ξ11 , PÃ0 + ÃT0 P +Q+R− 4

τ(t)
Z,Ξ23 , − 2

τ(t)
Z

Ξ12 , PÃ1 −
2

τ(t)
Z,Ξ22 , −Q− 4

τ(t)
Z − 4

τM − τ(t)
Z

Ξ14 , τ(t)P +
6

τ(t)
Z,Ξ25 , (τM − τ(t))P +

6

τM − τ(t)
Z

Ξ16 , PC̃1,Ξ24 , 6

τ(t)
Z − τ(t)P,Υ33 , ε̃(Φ− 2I)

Ξ33 , −R− 4

τM − τ(t)
Z,Ξ55 , − 12

τM − τ(t)
Z

Ξ35 , −(τM − τ(t))P +
6

τM − τ(t)
Z,Ξ18 , PB̃0

Ξ44 , − 12

τ(t)
Z,Ξ66 , −ε̃µ0ΦΞ77 , −ε̃X ⊗ Φ

Γ̃1 , [Ã0 Ã1 0 0 0 C̃1 0m−1 B̃0]

Γ̃2 , [0 C 0 0 0 0 0m−1 0],Υ22 , τM (Z − 2P )

Ẽi , [Ei 0], Γ̃3 , [Ẽi 0 0 0 0 0 0]

X , diag
[
µ1 . . . µm−1

]
, ε̃ , (µϵ+ 1)ε.

Proof 1 Construct the following Lyapunov function

V (t) , V1 + V2 + V3 + V4 + V5, (12)

where

V1(t) , ξ̄T (t)P̄ ξ̄(t),

V2(t) ,
∫ t

t−τ(t)
ξT (s)Qξ(s)ds

V3(t) ,
∫ t

t−τM
ξT (s)Rξ(s)ds

V4(t) ,
∫ t

t−τM

∫ t

q

ξ̇T (s)Zξ̇(s)dsdq

V5(t) , ϑ(t),

where P̄ , diag{P, P, P} > 0, Q > 0, R > 0, Z > 0,
and Φ > 0 are matrices to be constructed. By differentiating
V (t), we obtain:

V̇ (t) ≤ φT (t)Ξφ(t), (13)

where

ξ̄(t) ,
[
ξ(t)

∫ t
t−τ(t) ξ(s)ds

∫ t−τ(t)
t−τM ξ(s)ds

]T
φ(t) , [ξ(t) ξ(t− τ(t)) ξ(t− τM )

1

τ(t)

∫ t

t−τM
ξT (s)ds

1

τM − τ(t)

∫ t−τ(t)

t−τM
ξ(s)ds ey(t)]

T

ey(t) ,
[
ek(t) ek−1(t) . . . ek−m+1(t)

]T
,

Ξ , Ξ1 + Ξ2 + τMΓT1 ZΓ1 + ε̃ΓT2 ΦΓ2,

and

Ξ1 ,



Θ11 Θ12 0 τ(t)P 0 PC̃1 0m−1

⋆ −Q 0 −τ(t)P Θ25 0 0m−1

⋆ ⋆ −R 0 Θ35 0 0m−1

⋆ ⋆ ⋆ 0 0 0 0m−1

⋆ ⋆ ⋆ ⋆ 0 0 0m−1

⋆ ⋆ ⋆ ⋆ ⋆ µ0Φ 0m−1

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ X ⊗ Φ



Ξ2 ,


Υ11 Υ12 0 Υ14 0 0m
⋆ Υ22 Υ23 Υ24 Υ25 0m
⋆ ⋆ Υ33 0 Υ35 0m
⋆ ⋆ ⋆ Υ44 0 0m
⋆ ⋆ ⋆ ⋆ Υ55 0m
⋆ ⋆ ⋆ ⋆ ⋆ 0m×m


with

Γ1 , [Ã0 Ã1 0 0 0 C̃1 0m−1]

Γ2 , [0 C 0 0 0 0 0m−1]

Θ11 , PÃ0 + ÃT0 P +Q+R,Θ12 , PÃ1,Υ11 , − 4

τ(t)
Z

Θ25 , (τM − τ(t))P,Θ35 , −(τM − τ(t))P

Υ12 , − 2

τ(t)
Z,Υ14 , 6

τ(t)
Z,Υ22 , − 4

τ(t)
Z − 4

τM − τ(t)
Z

Υ23 , − 2

τM − τ(t)
Z,Υ24 , 6

τ(t)
Z,Υ25 , 6

τM − τ(t)
Z

Υ33 , − 4

τM − τ(t)
Z,Υ35 , 6

τM − τ(t)
Z

Υ44 , − 12

τ(t)
Z,Υ55 , − 12

τM − τ(t)
Z
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It shows that Ξ < 0,it turns out that V̇ < 0.
For the H2 performance, here define:

J (t) ,
∫ ∞

0

−wT (t)w(t)dt

,
∫ ∞

0

[
− wT (t)w(t) + V̇ (t)

]
dt, (14)

Notice that
0 ≤ (P − Z)Z−1(P − Z)

and
0 ≤ [I − Φ−1]Φ[I − Φ−1]

It can be obtained that Υ < 0. Therefore, we can get that

−wT (t)w(t) + V̇ (t) < 0. (15)

Besides, since

ẼT1 Ẽ1 − γ2P < 0. (16)

It follows that for all t > 0

eTr (t)er(t) < γ2
∫ ∞

0

wT (t)w(t)dt. (17)

Therefore, the proof is completed.

3.2 Filtering Design
The following theorem presents criteria for addressing the

H2 filtering issue in system (8) through the linearization
technique.

Theorem 2 Consider parameters µ > 0, ϵ > 0, ε >
0,τM > 0,γ > 0, and µl > 0, l = 0, 1, 2, . . . ,m − 1, if
there exist matrices W > 0, V > 0, U > 0,H > 0,Q > 0,
R > 0, Z > 0, P > 0, Φ > 0, and the filter Ãri, B̃ri, Ẽri
such that the following matrix are met for i, j = 1, 2, . . . , r:

2

r − 1
Υ̃ii + Υ̃ij + Υ̃ji < 0, (18)

Υ̃ii < 0, (19) −P1 −YW ETi

⋆ −WT −ẼTri
⋆ ⋆ −γ2I

 < 0, (20)

where

Υ̃ii ,

 ˜̃Υ τM Γ̄T1 ε̃Γ̄T2
⋆ Υ̃22 0

⋆ ⋆ Υ̃33



˜̃Υii ,



˜̃Υii11 ˜̃Υii12 0 ˜̃Υii14 ˜̃Υii15 ˜̃Υii16
⋆ ˜̃Υii22 0 ˜̃Υii24 0 0

⋆ ⋆ ˜̃Υii33 0 0 0

⋆ ⋆ ⋆ ˜̃Υii44 0 0

⋆ ⋆ ⋆ ⋆ ˜̃Υii55 0
⋆ ⋆ ⋆ ⋆ ⋆ −I


,

with

˜̃Υii11 ,

 ˜̃Υii1111 ˜̃Υii1112
⋆ ˜̃Υii1122

 , ˜̃Υii12 ,

 ˜̃Υii1211 ˜̃Υii1212˜̃Υii1221 ˜̃Υii1222


˜̃Υii14 ,

 ˜̃Υii1411 ˜̃Υii1412
⋆ ˜̃Υii1422

 , ˜̃Υii22 ,

 ˜̃Υii2211 ˜̃Υii2212
⋆ ˜̃Υii2222


˜̃Υii15 ,

[
YB̃ri 0m−1

B̃ri 0m−1

]
, ˜̃Υii16 ,

[
VBi

WTYTBi

]
˜̃Υii24 ,

 ˜̃Υii2411 ˜̃Υii2412
⋆ ˜̃Υii2422

 , Υ̃ii22 ,
[

Υ̃ii2211 Υ̃ii2212
⋆ Υ̃ii2222

]
˜̃Υii1111 , VAi +ATi V+ Q̄1 + R̄1 − 4τM Z̄1˜̃Υii1112 , YÃri +ATi YW+ Q̄2 + R̄2 − 4τM Z̄2˜̃Υii1122 , Ãri + ÃTri + Q̄3 + R̄3 − 4τM Z̄3,

˜̃Υii1212 , −2τM Z̄2˜̃Υii1211 , YB̃riCi − 2τM Z̄1,
˜̃Υii1221 , B̃riCi − 2τM Z̄

T
2˜̃Υii1222 , −2τM Z̄3,

˜̃Υii1411 , 1

τM
V+ 6τM Z̄1

˜̃Υii1412 , 1

τM
YW+ 6τM Z̄2,

˜̃Υii1422 , 1

τM
WT + 6τM Z̄3

˜̃Υii2211 , −Q̄1 − 4τM Z̄1,
˜̃Υii2212 , −Q̄2 − 4τM Z̄2˜̃Υii2222 , −Q̄3 − 4τM Z̄3,
˜̃Υii2411 , 6τM Z̄1 −

1

τM
V,

˜̃Υii2412 , 6τM Z̄2 −
1

τM
YW, ˜̃Υii2422 , 6τM Z̄3 −

1

τM
WT

˜̃Υii33 , −R̄, ˜̃Υii44 , −12τM Z̄,
˜̃Υii55 , ε̃X̃ ⊗ Φ̄

Υ̃ii2211 , τM Z̄1 − 2V, Υ̃ii2212 , τM Z̄2 − 2YW
Υ̃ii2222 , τM Z̄3 − 2WT , Υ̃ii33 , ε̃(Φ̄− 2I),

Γ̄1 ,
[

VAi YÃri YB̃riCi 0 0 0 Γ̂1

WTYTAi Ãri B̃riCi 0 0 0 Γ̂2,

]
Γ̂1 ,

[
YB̃ri 0m−1 VBi

]
,

X̃ , diag
[
µ0 µ1 . . . µm−1

]
Γ̂2 ,

[
B̃ri 0m−1 WTYTBi

]
Γ̄2 ,

[
0 Ci 0 0 0 0m
0 0 0 0 0 0m

]
then the reduced-based filtering with H2 performance is pro-
posed. The filter parameters in (7) are computed as[

Ari Bri
Eri 0

]
=

[
W−1 0

0 I

][
Ãri B̃ri

Ẽri 0

]
. (21)

Proof 2 Here define matrix P as:

P ,
[
P1 YP2

⋆ P3

]
, (22)

where

Y = [Ir×r 0r×(n−r)]
T ,

P1 ∈ Rn×n, P2 ∈ Rr×r, P3 ∈ Rr×r.
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Assume that P2 is nonsingular. Here define:

U ,
[
I 0
0 P−1

3 PT2

]
,V , P1,W , P2P

−1
3 PT2 , (23)

and[
Ãri B̃ri

Ẽri 0

]
,
[
P2 0

0 I

][
Ari Bri
Eri 0

][
P−1
3 PT2 0

0 I

]
.

(24)

Then, we can get

UTPÃ0U,
[

VAi YÃri
WTYTAi Ãri

]
,UTPC̃T1 ,

[
YB̃ri
B̃ri

]

UT ÃT0 PU,
[

ATi V ATi YW
ÃTriYT ÃTri

]
UTPÃT1 U,

[
YB̃riCi 0

B̃riCi 0

]
,UTPU ,

[
V YW

WTYT WT

]
UTPB̃T0 ,

[
VBi

WTYTBi

]
,UT ẼT1 ,

[
ETi
−ẼTri

]
(25)

By applying congruence transformations to equations (9),
(10), and (11) with appropriate matrices,

diag
{

U U U U U I I U I I
}
,

diag
{

U U U U U I I U I I
}
,

diag
{

U I
}
,

respectively, we can obtain that (18)–(20) are met if (23)–
(25) are established. Thus, the asymptotic stability for sys-
tem (8) with a H2 performance is guaranteed. Since (24)
can be rewritten as[

Ari Bri

Eri 0

]
,
[

(P−T
2 P3)

−1W−1 0

0 I

]
[
Ãri B̃ri

Ẽri 0

][
P−T
2 P3 0

0 I

]
. (26)

It shows (Ari, Bri, Eri) in (8) can be defined with (26). Be-
sides, if P−T

2 P3 = I is guaranteed, (21) is derived. There-
fore, the proof is completed.

4 Conclusion

This paper proposes a solution to the filtering problem
of dynamic positioning for autonomous vehicles. The T-
S fuzzy modeling and an improved event-triggered scheme
are employed to address this challenge. Specifically, for au-
tonomous vehicle systems with a high dimension, a filtering
is proposed to approximate the original high-order model of
the system while maintaining a pre-specified level of perfor-
mance. The stability analysis of the system is conducted. By
employing the memory-based event-triggered scheme, the
utilization of computational resources and communication
bandwidth during network transmission is optimized effec-
tively.
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Abstract: The development of location-based services (LBS) promotes the rapid growth of location data, which also leads to an
increasing threat to location privacy. Existing location obfuscation techniques focus on two-dimensional planes that may generate
off-road locations. In this paper, we propose an Adaptive Cloaking Region Obfuscation (ACRO) mechanism to protect vehicles’
location privacy in road networks. The proposed ACRO mechanism employs route distances to measure the indistinguishability
of vehicles in road networks. The ACRO mechanism perturbs vehicle locations to obfuscated cloaking regions based on the route
distance between two cloaking regions. The ACRO mechanism adaptively tunes location privacy budgets according to drivers’
privacy requirements. Comprehensive experiments confirm that the proposed ACRO mechanism effectively protects location
privacy in road networks.

Key Words: Differential Privacy, Location Privacy, Vehicular Networks, Obfuscation

1 Introduction

Location-based services (LBS) enhance vehicular appli-
cations with location data, posing risks to drivers’ location
privacy [1]. LBS servers access drivers’ geographical loca-
tions, making them vulnerable. Adversaries can infer per-
sonal information through unauthorized access or by eaves-
dropping communications between LBS servers and drivers.
Vehicles, constrained by road networks and traffic rules, are
particularly susceptible to being tracked.

To safeguard the location privacy of LBS users, obfusca-
tion mechanisms apply differential privacy by introducing
controllable noise to the location data, trading off accuracy
for privacy [4]. This method is apt for services where pre-
cise location is not critical. Nevertheless, obfuscation mech-
anisms predominantly utilize Euclidean distance for obfus-
cation [5]. This approach may not accurately reflect true dis-
tances in road networks, potentially leading to the creation
of unrealistic off-road obfuscations. Furthermore, achieving
an optimal balance between data utility and location privacy
requires fine-tuning privacy levels.

In this paper, we propose the Adaptive Cloaking Region
Obfuscation (ACRO) mechanism for enhanced location pri-
vacy in road networks. ACRO introduces Road Network-
Indistinguishability (RN-I), focusing on route differences to
guide the selection of obfuscated locations. An adaptive pri-
vacy budget setting (APBS) algorithm adjusts privacy levels
based on location sensitivity, offering a nuanced approach to
balancing data utility and privacy.

The contributions of this paper are summarized as follows.

1) We propose the new ACRO mechanism to protect
drivers’ location privacy in road networks. The ACRO
achieves RN-I and adaptively adjusts the privacy bud-
gets based on the personalized sensitive locations.

2) We evaluate the ACRO mechanism on simulated road
networks and compare it with existing two-dimensional
mechanisms [8–10]. Experiment results show that the
ACRO mechanism outperforms in terms of efficiency,
privacy-preserving level, and data utility.

1.1 Related Work
Differential privacy (DP) serves as the foundation for ob-

fuscation strategies, ensuring individual data remains indis-

tinct within published datasets [14]. Andrés et al. introduced
Geo-Indistinguishability, which applies the Laplace mecha-
nism to achieve privacy on a 2D plane [15]. This method
effectively manages privacy with sparse location updates.
Hua et al. enhanced this approach by reducing computa-
tional demands through the use of additional servers, allow-
ing for obfuscation with minimal calculation [9]. Another
approach decreases computational efforts by grouping loca-
tions, thereby obfuscating similar locations identically [16].

In road networks, the Graph-Exponential Mecha-
nism (GEM) and discretization techniques adapt Geo-
Indistinguishability for more complex environments [8].
GEM considers road network connections as obfuscation
targets, directly applying Geo-Indistinguishability, while
discretization methods measure indistinguishability using
route distances. However, their practical implementation
faces challenges in interval settings due to varying road
lengths.

Adaptive mechanisms focus on personalizing privacy pro-
tection by considering the proximity and sensitivity of loca-
tions, assigning higher privacy levels to locations closer to
previously obfuscated points [10]. However, these methods
often overlook the nuanced privacy correlations among sen-
sitive locations within road networks, indicating potential for
further refinement in privacy-preserving techniques.

The rest of the paper is organized as follows. Section 2
describes the system model. Section 3 presents and analyzes
the proposed ACRO mechanism. The evaluation of the pro-
posed mechanism is provided in 4, followed by conclusions
in Section 5.

2 System Model

2.1 Road Network Model
In the context of navigating road networks, drivers fre-

quently utilize location-based services (LBS) while adhering
to traffic regulations. Due to concerns over the trustworthi-
ness of LBS providers, drivers are hesitant to share precise
location information. To mitigate this, drivers can adopt ob-
fuscation mechanisms, allowing them to report altered lo-
cations and points of interest to LBS. This enables them to
secure the services they need without compromising their
actual location. Subsequently, drivers can sift through the
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returned data from LBS to identify information that aligns
with their interests.

Within our framework, the road network is conceptual-
ized as a weighted and directed graph, denoted as G. Nodes
within this graph, represented by c, correspond to real-world
geographic locations and include various types of road con-
nections such as turns, intersections, furcates, and joins. The
weights of edges reflect the lengths of the roads they repre-
sent. In the actual road networks, each node or connection
generates a “cloaking region” (notated as cr) encompassing
itself and the adjoining roads. The distance between any two
cloaking regions is measured by the route distance connect-
ing the two respective nodes within those regions.

The implementation of obfuscation mechanisms for loca-
tion privacy protection leads to a reduction in data utility for
drivers. This impact is quantified using “shift distance,” a
metric that gauges the utility of obfuscated location data. A
lower shift distance signifies enhanced data utility, translat-
ing to more accurate results from LBS. Traditional obfusca-
tion methods, as seen in existing literature (e.g., [9, 10]), pri-
marily address obfuscation within two-dimensional spaces,
where shift distance is calculated as the Euclidean distance
between the true location and its obfuscated counterpart. Di-
verging from these approaches, our study concentrates on
road networks, redefining shift distance in this specific con-
text as follows:

Definition 1 (Shift Distance) The shift distance, denoted
as dG(cr0, cr

′
0), represents the minimum route distance

dG(c0, c′0) between a connection c0 within the actual cloak-
ing region cr0 and a connection c′0 within the obfuscated
cloaking region cr′0. This relationship is expressed by the
equation:

dG(cr0, cr
′
0) := dG(c0, c

′
0). (1)

2.2 Adversary Model
This study addresses threats from both external and inter-

nal passive attackers, as depicted in Fig. 1. External attack-
ers can intercept messages between Road-Side Units (RSUs)
and LBS, capturing vehicle identities (IDs) and locations.
Internal attackers, in collusion with LBS servers, gain unau-
thorized access to vehicle communications. These adver-
saries aim to track vehicles to deduce drivers’ personal de-
tails by analyzing intercepted messages.

Adversaries seek to associate drivers’ LBS IDs with their
vehicles to monitor their movements using LBS data. This
strategy initially determines the actual cloaking regions
where drivers are located. Subsequently, adversaries analyze
traffic data within these regions to link IDs with specific ve-
hicles.

For the estimation of cloaking regions, it is assumed that
adversaries know the drivers’ past movements and the em-
ployed obfuscation strategy. They calculate the likelihood of
any given cloaking region cr1 being the driver’s actual loca-
tion when a cloaked region cr′0 is reported in an LBS request,
as given by:

Pr[cr1|cr′0] =
Pr[cr′0|cr1] Pr[cr1]∫

cr in G Pr[cr′0|cr] Pr[cr]dcr
, (2)

where Pr[cr] denotes the probability of the driver being in
cr based on previous routes, and Pr[cr′0|cr] represents the

likelihood of reporting cr′0 given the driver’s true location
cr.

The Adversary Estimation Error (AEE), which quantifies
the accuracy of an adversary’s location guess versus the ac-
tual location, serves as a metric for evaluating the effective-
ness of obfuscation mechanisms in protecting location pri-
vacy. The AEE is the route distance between the estimated
cloaking region ĉr0 and the actual region cr0, as illustrated
in Fig. 2. The expected AEE is:

AEE =
∑

ĉr0 in G

dG(cr0, ĉr0) Pr[ĉr0|cr′0]. (3)

3 Proposed Adaptive Cloaking Region Obfusca-
tion Mechanism

This section introduces the Adaptive Cloaking Region
Obfuscation (ACRO) mechanism, designed to enhance
drivers’ location privacy within road networks by leveraging
Road Network-Indistinguishability (RN-I) [20]. RN-I uti-
lizes route distances to assess the indistinguishability among
vehicles, forming the basis of our ACRO mechanism. This
method obfuscates actual locations into generalized areas
when drivers request services from LBS, ensuring that ad-
versaries cannot deduce the vehicles’ precise locations from
the altered data. By grouping vehicles in proximate loca-
tions, ACRO further complicates the adversaries’ attempts
at tracking.

ACRO comprises two primary algorithms: the Cloaking
Region Obfuscation (CRO) algorithm, which obfuscates the
real cloaking region based on a determined privacy budget,
and the Adaptive Privacy Budget Setting (APBS) algorithm,
which calculates this budget.

3.1 Defining Road Network-Indistinguishability
Unlike traditional Geo-Indistinguishability mechanisms

that protect privacy in two-dimensional spaces by distorting
actual locations with differential privacy, RN-I specifically
addresses privacy within road networks. RN-I ensures that
the likelihood of identifying any two actual cloaking regions
within a specified radius as the source of an obfuscated re-
gion is bounded, providing a measure for on-road privacy
preservation.

3.2 Mechanics of Cloaking Region Obfuscation
Vehicles execute the CRO algorithm locally, which in-

volves identifying the nearest road connection and selecting
an obfuscated cloaking region based on predefined probabili-
ties. This process ensures that the actual location is replaced
with a generalized area, further protecting the driver’s pri-
vacy. The algorithmic steps of CRO include mapping the
vehicle’s location to a cloaking region, generating an obfus-
cation region around this point, and selecting a new cloaking
region based on the obfuscation probabilities. The vehicle
then picks a random location within this new region as its
obfuscated location to report to LBS.

An illustrative in Fig. 2, the example shows a vehicle at lo-
cation l0 employing the CRO algorithm to safeguard its loca-
tion before communicating with LBS. The process involves
confirming the cloaking region’s central connection, gener-
ating an obfuscation region, and selecting an obfuscated lo-
cation within this region based on the given probabilities.
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Fig. 1: Adversary model. Adversaries cover a part of a network to eavesdrop on the transmitted LBS messages.

Fig. 2: An example of the proposed CRO algorithm. An ac-
tual location l0 is mapped to the cloaking region covered by
the nearest adjacent connection c0 of l0. Then, in the ob-
fuscation region R2 with radius r and center c0, a cloaking
region of connection c′0 is selected based on the obfuscation
probability distribution of all the cloaking regions in R2. Fi-
nally, an obfuscated location l′0 is randomly selected in the
obfuscated cloaking region cr′0 of connection c′0. ĉ0 is the
adversary’s estimated connection.

This method ensures that even if adversaries can approxi-
mate a vehicle’s cloaking region, they cannot precisely track
the vehicle’s movements.

3.3 Adaptive Privacy Budget Setting Algorithm
The proposed adaptive algorithm can automatically

change privacy budgets for different locations after drivers
input their sensitive locations. The lowest privacy budget is
assigned to sensitive locations for the best protection results.
The privacy budgets for the insensitive locations are refined
to suppress statistical disparities from the sensitive locations,
especially for those close to the sensitive locations.

The weighted and directed graph G is divided into g seg-
ments, i.e., G = {G1, G2, · · · , Gg}. The LBS determines
the size and the number of segments. The proposed APBS
algorithm weights all connections based on the initial sen-
sitive locations of the drivers. The maximum connection
weight of a segment determines its privacy budget. The
ACRO mechanism then utilizes the segment’s privacy bud-
get as the privacy budget of the locations in the segment.

The proposed APBS algorithm calculates the weights of
connections hop-by-hop from the sensitive locations. Let
Cm = {cm1 , cm2 , · · · } denote the set of m-hop connections.
Starting from a sensitive location, drivers can arrive at the
i-th m-hop connection cmi through at least (m − 1) con-

nections. The following calculation steps of the connection
weights are illustrated as follows:

• Initialization: A value of 1 is assigned as the initial
value for the weights of the sensitive locations and the
connections adjacent to the sensitive locations. Other
connections are assigned the value of the weights as the
threshold δ. ϵ0 is the initialized privacy budget.

• Weight Calculation: The weights of connections are
computed in a hop-by-hop mode. For example, the
weight of connection set C3 is calculated after comput-
ing the previous connection set C2. The calculation pro-
cess starts from C2 and does not end until all the weights
of the connections Cm equal to δ. Multiple (m − 1)-
hop connections that are adjacent to cmi have impact on
the weight of connection cmi (m ≥ 2). The APBS cal-
culates all possible weights from the adjacent (m− 1)-
hop connections of cmi and treats the maximum value
of weights as Wcmi

. The possible weights W a
cmi

of cmi
are computed by cm−1

a , where cm−1
a is an (m− 1)-hop

connection near to cmi , as given by

W a
cmi

=

Dmax−Dcm
i

+2

dG(cm−1
a ,cmi )

×Wcm−1
a∑

cmj ∈Am
a ,j ̸=i

1
dG(cm−1

a ,cmj )
+

Dmax−Dcm
i

+2

dG(cm−1
a ,cmi )

, (4)

where Dcmi
denotes the degree of connection cmi , which

is the sum of the out-degree and in-degree; the max-
imum degree of connections in the segment is repre-
sented as Dmax; Am

a denotes a set of m-hop connec-
tions which are close to the connection cm−1

a . There are
at least two degrees of connections in road networks to
regard road networks as the strong-connected directed
graphs. The Wcmi

is able to use the maximum of differ-
ent W a

cmi
, i.e., Wcmi

= maxcm−1
a

(W a
cmi

).
• Finalization: A segment’s weight WGi

is defined by
the maximum weight of connections in that segment.
The segment’s privacy budget is computed by its weight
WGi , i.e, ϵGi =

ϵ0
WGi

.

There are two key parameters in (4): the degree of the con-
nection Dcmi

and the shortest route distance dG(cm−1
a , cmi ) to

the connections of the last hop. Compared with the high-
degree connections, the low-degree connections implicate
more precise travel directions by providing fewer choices.
Hence, the low-degree connections require high privacy pro-
tection capability. The connections around the sensitive lo-
cations also need high privacy protection capability than
those far away from the sensitive locations.
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4 Experimental Results

In this section, we evaluate the ACRO mechanism with
simulated road networks. Connections in the simulated road
networks are evenly distributed.

4.1 Location Privacy Protection
We first compare the AEE of the CRO mechanism with

a connection obfuscation mechanism [8] and 2D Laplace
mechanism [9, 10]. The 2D Laplace mechanism treats a road
network as a 2D plane and employs the Euclidean distance
metrics. The connection obfuscated mechanism in [8] maps
the vehicle’s actual location to the connection and obfuscates
the connection in the obfuscation region. We build a simu-
lated road network as a segment with 4000 m length and
width. The connections in the simulated road network are
evenly distributed with 50 connections per km2. The privacy
budgets of the segment are set to 0.1, 0.5, 1, 5, and 10 for
simulating different privacy-preserving requirements. The
obfuscation radius is set to 600 m. We select a set of center
connections1 in the simulated road network to ensure obfus-
cated candidates of the connections are evenly distributed in
obfuscation regions.

Experimental results reveal that the ACRO mechanism
protects location privacy better than the connection obfus-
cated mechanism [8] and 2D Laplace mechanism in road
network (e.g., [9, 10]), as shown in Fig. 3. The AEE in
Fig. 3 is the expectation AEE. The obfuscation radius is 600
m. The connection obfuscated mechanism achieves a simi-
lar AEE as the 2D Laplace mechanism when ϵ = 0.1. The
AEE of the connection obfuscated mechanism is shorter than
that on 2D Laplace mechanism. The obfuscated cloaking
regions are indistinguishable for adversaries after selecting
random locations in the cloaking regions because different
cloaking regions have overlapping area. The ACRO mech-
anism achieves the longest AEE among the three mecha-
nisms. The AEE of the three mechanisms decreases when ϵ
increases. The mechanism selects a close connection with a
high probability when using route distance as a metric rather
than Euclidean distance. Thus, the decreasing trend of the
connection obfuscated mechanism is faster than its counter-
parts. The AEE of the ACRO mechanism under the five ϵ
cases outperforms the other two mechanisms.

Fig. 3: The comparison of the AEE.

The comparison of expectation shift distance between
ACRO mechanism and 2D Laplace mechanism is shown

1(For example, 1400 ≤ x ≤ 2600, 1400 ≤ y ≤ 2600 when radius
r = 700 m.)

Fig. 4: The comparison of the shift distance.

in Fig.4. The obfuscation region is 600 m. The node density
is 50 connections per km2. The shift distance is measured
by the shortest route distance between the actual and obfus-
cated cloaking regions. The expectation shift distance of the
ACRO mechanism and 2D Laplace mechanism are similar
when ϵ = 0.1. The reason is that the probability of selecting
a cloaking region as the obfuscated cloaking region is ap-
proximately uniform when ϵ = 0.1. The ACRO mechanism
outperform the 2D mechanism regarding to the expectation
of the shift distance. This is because the ACRO mechanism
has a high probability of selecting a close cloaking region as
the obfuscated cloaking region. However, this does not re-
duce the privacy-preserving capability of the ACRO mecha-
nism.

(a) Comparison of AEE

(b) Comparison of shift distance

Fig. 5: Comparison of the ACRO mechanism and 2D
Laplace mechanism.

We compare the ACRO mechanism with the 2D Laplace
mechanism [9, 10]. Fig. 5 compares the expectation AEE
and shift distance of the ACRO mechanism and the 2D
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Laplace mechanism with GeoLife GPS Trajectories. All the
segments use the same privacy budget ϵ in the ACRO mech-
anism for comparison purposes. As shown in Fig. 5, the
ACRO mechanism can achieve longer expectation AEE and
shorter expectation shift distance than the mechanism in [9],
especially in the case of a high privacy budget. The gap
between the two mechanisms grows when the privacy bud-
get increases. The ACRO mechanism can achieve a shorter
expectation shift distance when ϵ is higher. The average
shift distance measured by the route distance can be longer
than the obfuscation radius because the route distance is no
shorter than the Euclidean distance. The ACRO mechanism
has a similar average shift distance with the 2D Laplace
mechanism under ϵ = 0.1. The reason is that locations are
obfuscated with similar probabilities in the two mechanisms
when the privacy budget is 0.1. When the privacy budget
is 10, the average shift distance and the average AEE with a
400 m radius are similar to those with a 700 m radius. This is
because the obfuscated locations are close to actual cloaking
regions in the case of low privacy requirements (high ϵ). The
difference between shift distances under the two radiuses
decreases with the increasing privacy budget, as shown in
Fig. 5(b). This is because both mechanisms are likely to
select close locations as the obfuscation results under high
privacy budgets. The shift distance of the ACRO mechanism
is shorter than the 2D Laplace mechanism in road networks.

Fig. 6: The privacy budget of multiple connections on the
road is impacted by the number of connections, the route
distance to the first connection v11 , and the degree of each
connection.

4.2 Personalization Algorithm
We evaluate the privacy budget of multiple connections

on a continuous road affected by the number of connections,
the route distance to the first connection c11, and the degree of
connections. We evaluate the privacy budget of each connec-
tion with the assumption that a 1000 m road starts from a 1-
hop connection whose five or eleven connections are evenly
spaced. The m-th connection on the road is the first m-hop
connection cm1 (1 ≤ m ≤ 5 or 1 ≤ m ≤ 10). Other pa-
rameters are as follows, Dmax = 10,

∑
i≥2

1

dG(cj1,c
j+1
i )

= 1
100

(1 ≤ j ≤ m − 1), and ϵ0 = 0.1. As shown in Fig. 6, the
privacy budget of a connection increases with the same route
distance when the number of connections on the road grows.
The degree of a connection influences the privacy budget
allocation. Its privacy budget increases faster than its low-
degree counterparts if a connection has a high degree. Some
mechanisms set a global privacy budget [17] or only con-
sider the distance between two connections [18]. Compared

with our personalization algorithm, the privacy budgets of
the mechanisms developed in [18] and [17] increase faster,
as shown in Fig. 6. Unlike the mechanisms (e.g., [17, 18])
which do not capture the connection degree, the proposed
personalization algorithm ensures that a connection can in-
herit more privacy protection from the sensitive location.

4.3 Implementation
The ACRO mechanism is efficient with the time com-

plexity of O(1) for LBS requests that can be used for time-
sensitive LBS applications. Before LBS requests, the ACRO
mechanism can build a constant connection perturbation ta-
ble by running the personalization algorithm and connection
perturbation algorithm with a given road network, drivers’
sensitive locations, and other parameters. The size of the
connection perturbation table is O(n2), where n is the num-
ber of connections in the road network. During the LBS
requests, the time complexity of generating an obfuscated
location is O(1) because the connection-interval obfusca-
tion runs constant-time table lookups to determine the ob-
fuscated connections and locations. The 2D Laplace mecha-
nisms [9, 10] can only obfuscate locations in real-time in-
stead of preparing intermediate obfuscation results in ad-
vance. The reason is that the 2D Laplace mechanisms use
the distances from drivers’ accurate locations.

5 Conclusion

In this paper, we proposed the RN-I to evaluate
obfuscation-based location privacy-preserving mechanisms
in road networks. We proposed the ACRO mechanism to
protect the location privacy of vehicles. The proposed ACRO
mechanism allocated privacy budgets to different locations
based on drivers’ requirements. With the calculated privacy
budgets, the proposed ACRO mechanism obfuscated actual
locations of the cloaking region where drivers are located.
The proposed ACRO mechanism similarly obfuscated vehi-
cles that locate in the same cloaking region. Each vehicle
was obfuscated according to the cloaking region in which
the driver was located. An adaptive algorithm was devel-
oped to customize the privacy budgets of connections based
on the sensitive locations specified by drivers. The proposed
ACRO mechanism was proved to achieve RN-I and validated
through comprehensive experiments.

Appendices

Privacy Analysis
In this subsection, we prove that the CRO algorithm sat-

isfies the RN-I. When an adversary intercepts an obfuscated
location in an LBS request, the adversary first estimates ob-
fuscated cloaking region. Then, the adversary infers the ac-
tual cloaking region with the estimated obfuscated cloak-
ing region. Finally, the adversary tries to identify the tar-
get’s identity for future tracking. The ACRO mechanism can
protect location privacy under this adversarial model as the
mechanism satisfies the RN-I.

Theorem 1 The ACRO mechanism satisfies the (ϵ,r)-RN-
Indistinguishability that any two cloaking regions in an ob-
fuscation region are (ϵ,r)-RN-Indistinguishable.
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Proof
The cloaking region obfuscation in the ACRO mechanism

is formulated as given by

Pr[cr′0|cr0] =
1∑

cr in R2

e−
ϵ
2dG(cr0,cr)

e−
ϵ
2dG(cr0,cr

′
0), (5)

The location of a cloaking region is represented by the
center connection. Let f(cr0) =

∑
cr in R2

e−
ϵ
2dG(cr0,cr). With

the actual location cr0, given another actual location cr1 and
its nearest adjacent connection cr1 in R2, we have

Pr[cr′|cr0]
Pr[cr′|cr1]

=
f(cr1)

f(cr0)
e

ϵ
2 (dG(cr1,cr

′)−dG(cr0,cr
′)), (6)

where cr′ is the obfuscated cloaking region. c′ is the center
connection of cr′. Due to the triangle inequality in road net-
works, dG(cr0, cr1) ≥ dG(cr1, c

′) − dG(cr0, c
′). Then, we

have
Pr[cr′|cr0]
Pr[cr′|cr1]

≤ f(cr1)

f(cr0)
e

ϵ
2dG(cr0,cr1). (7)

By employing the triangle inequality, we have
e−

ϵ
2dG(cr1,cr) ≤ e−

ϵ
2 (dG(cr0,cr)−dG(cr0,cr1)). Therefore,∑

cr in R2

(
e−

ϵ
2dG(cr1,cr) − e−

ϵ
2 (dG(cr0,cr)−dG(cr0,cr1))

)
≤ 0,

(8)
which can be rewritten as∑
cr in R2

e−
ϵ
2dG(cr1,cr)−e

ϵ
2dG(cr0,cr1)

∑
cr in R2

e−
ϵ
2dG(cr0,cr) ≤ 0.

(9)
Based on the definition of f(cr0), we have

f(cr1)− e
ϵ
2dG(cr0,cr1)f(cr0) ≤ 0. (10)

Thus, the following inequality holds,

f(cr1)

f(cr0)
≤ e

ϵ
2dG(cr0,cr1). (11)

Combining (7) and (11), we have

Pr[cr′|cr0]
Pr[cr′|cr1]

≤ e
ϵ
2dG(cr0,cr1)e

ϵ
2dG(cr0,cr1) = eϵdG(cr0,cr1),

(12)
which satisfies RN-I.

□
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privacy for unknown mobility behaviors. in 2019 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P), IEEE,
2019: 416-431.

[3] S. Narain, A. Ranganathan, G. Noubir, Security of GPS/INS
based on-road location tracking systems. in 2019 IEEE Sym-
posium on Security and Privacy (SP), IEEE, 2019: 587-601.

[4] Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu,
D. Niyato, K.-Y. Lam, Local differential privacy-based feder-
ated learning for internet of things. IEEE Internet of Things
Journal, IEEE, 2020; 8(11): 8836-8853.

[5] Q. A. Arain, I. Memon, Z. Deng, M. H. Memon, F. A. Mangi,
A. Zubedi, Location monitoring approach: multiple mix-zones
with location privacy protection based on traffic flow over road
networks. Multimedia Tools and Applications, Springer, 2018;
77: 5563-5607.

[6] J. Zhang, F. Yang, Z. Ma, Z. Wang, X. Liu, J. Ma, A decen-
tralized location privacy-preserving spatial crowdsourcing for
internet of vehicles. IEEE Transactions on Intelligent Trans-
portation Systems, IEEE, 2020; 22(4): 2299-2313.

[7] B. Ma, X. Wang, X. Lin, Y. Jiang, C. Sun, Z. Wang, G. Yu,
Y. He, W. Ni, R. P. Liu, Location Privacy Threats and Protec-
tions in Future Vehicular Networks: A Comprehensive Review.
arXiv preprint arXiv:2305.04503, 2023.

[8] S. Takagi, Y. Cao, Y. Asano, M. Yoshikawa, Geo-graph-
indistinguishability: Protecting location privacy for LBS over
road networks. in IFIP Annual Conference on Data and Appli-
cations Security and Privacy, Springer, 2019: 143-163.

[9] J. Hua, W. Tong, F. Xu, S. Zhong, A geo-indistinguishable lo-
cation perturbation mechanism for location-based services sup-
porting frequent queries, IEEE Trans. Inf. Forens. Secur., 2017,
13(5):1155-1168.

[10] R. Al-Dhubhani, J. M. Cazalas, An adaptive geo-
indistinguishability mechanism for continuous LBS queries,
Wirel. Netw., 2018, 24(8):3221-3239.

[11] L. Hou, N. Yao, Z. Lu, F. Zhan, Z. Liu, Tracking Based Mix-
Zone Location Privacy Evaluation in VANET. Trans. Vehic.
Technol., IEEE, 2021.

[12] A. K. Das, A. Tabassum, S. Sadaf, D. Sinha, K-anonymity
scheme for privacy preservation in location-based services on
IoT environment. Int Jour. Auto. Contr., Inderscience Publish-
ers (IEL), 2021; 15(3): 340-362.

[13] S. Zhang, B. Duan, Z. Chen, T. Ni, H. Zhong, Regionalized
location obfuscation mechanism with personalized privacy lev-
els. arXiv preprint arXiv:2102.00654, 2021.

[14] L. Wang, D. Zhang, D. Yang, B. Y. Lim, X. Han, X. Ma,
Sparse Mobile Crowdsensing With Differential and Distortion
Location Privacy. IEEE Trans. Inf. Forens. Secur., IEEE, 2020;
15: 2735-2749.

[15] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis,
C. Palamidessi, Geo-indistinguishability: Differential privacy
for location-based systems. in Proc. of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, 2013:
901-914.

[16] C. Qiu, A. C. Squicciarini, C. Pang, N. Wang, B. Wu, Loca-
tion privacy protection in vehicle-based spatial crowdsourcing
via geo-indistinguishability. IEEE Trans. Mob. Comput., IEEE,
2020.

[17] V. K. Yadav, S. Verma, S. Venkatesan, Efficient and Secure
Location-Based Services Scheme in VANET, IEEE Trans. Veh.
Technol., 2020, 69(11):13567-13578.

[18] I. Ullah, M. A. Shah, A. Khan, G. Jeon, Privacy-preserving
multilevel obfuscation scheme for vehicular network, Trans.
Emerg. Telecommun. Technol., 2020, e4204.

[19] X. Li, H. Zhang, Y. Ren, S. Ma, B. Luo, J. Weng, J. Ma,
X. Huang, PAPU: Pseudonym Swap With Provable Unlinka-
bility Based on Differential Privacy in VANETs, IEEE Internet
Things J., 2020, 7(12):11789-11802.

[20] B. Ma, X. Lin, X. Wang, B. Liu, Y. He, W. Ni,
R. P. Liu, New cloaking region obfuscation for road network-
indistinguishability and location privacy, in Proceedings of the
25th International Symposium on Research in Attacks, Intru-
sions and Defenses, 2022:160-17.

336  



Air Supply Control for PEM Fuel Cells Under Hamiltonian
Framework: A Segmentation Approach

Lalitesh Kumar 1 Jian Chen∗ 2 Xinyu Li 2 Zhongliang Li 3

1. Lalitesh Kumar is with the College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
E-mail: 11932075@zju.edu.cn

2. Jian Chen∗ and Xinyu Li are with the State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical
Engineering, Zhejiang University, Hangzhou 310058, P. R. China.

E-mail: ∗jchen@zju.edu.cn (∗corresponding author), 12325060@zju.edu.cn
3. Zhongliang Li is with the University of Franche-Comte, UTBM, CNRS, institut FEMTO-ST, FCLAB, Belfort, France.

E-mail: zhongliang.LI@univ-amu.fr

Abstract: In this paper, a novel multi-input multi-output nonlinear model of proton exchange membrane fuel cells air supply
subsystem under port-Hamiltonian framework is proposed-based on the segmentation of the cathode flow channel. The model
consists of inlet valve, cathode flow channel, and back pressure valve to regulate the air supply. In this model, the valve open-
ings are regarded to be inputs to the air-supply subsystem, and the valve orifices are modeled as a linear approximation from
the characteristics curves of the solenoid valves. In addition, the developed model’s energy balance, dissipativity, and passivity
properties are proved and discussed in details in this work. Furthermore, a passivity-based control action is designed to track the
desired pressures trajectories in port-Hamiltonian framework with explicit stability analysis. Finally, the designed control action
can minimize the tracking error of distributed pressures in the segments and also prove the effectiveness of the proposed model,
as depicted with simulation results.

Key Words: PEM Fuel Cells, Passivity, Dissipativity, Port-Hamiltonian Systems, Trajectory Tracking Control.

1 Introduction

The proton exchange membrane (PEM) fuel cells are the
electrochemical machine which converts the hydrogen en-
ergy into electrical energy. The PEM fuel cells are cleaner
and sustainable source of energy which produce only water
as the byproduct unlike the conventional or fossil fuels [1,2].
Because of high energy density and abundant availability of
hydrogen, the fuel cells can have longer driving cycles and
thus, it can replace the batteries in future [3]. There are many
advantages of fuel cells such as low operating temperature,
high efficiency, less warm-up time, and no environmental
contamination [3, 4]. There are many control loop problems
to deal in the PEM fuel cells such as air/fuel supply sub-
system, water management, temperature management, and
fault tolerant control [5]. In this paper, the air supply control
loop problem has been investigated in a new perspectives. In
the literature, the researchers have investigated on the prob-
lems such as the control of compressor power [6], compres-
sor speed [7], throttle valve opening [8], oxygen excess ratio
control [9], and flow rate through the cathode channel [6]. In
a recent published research, the authors have also incorpo-
rated ejectors based model to control the air-supply subsys-
tem and oxygen excess ration of the PEM fuel cells [10,11].
Furthermore, the delay-based governor model is introduced
in [3] to control the air-supply of PEM fuel cells. However,
in all of the previous published works they have proposed
a complex model which may involve more costs in design-
ing the ejectors or governes or the throttle valves. Also, the
mathematical representation of the models are very complex
in those research which involves the governor, ejectors, and
the throttle valves. Instead of using the governors, throttle
valves, and throttle valves, the simple inlet and back pres-

This work was supported by the Key Research and Development Pro-
gram of Zhejiang Province under Grant 2021C01098.

sure valves are much more convenient to deal with mathe-
matically by approximating the valves characteristics as the
linear equations.

By keeping the mathematical complexity in the mind, in
view of the published literature, we have proposed a less
complex mathematical model in this paper which gives the
comparable control results. In this paper, a segmentation
concept is used to model and control the PEM fuel cell
air-supply subsystem in a passivity-based port-Hamiltonian
(pH) framework. The passivity-based concept is a very good
mathematical tool to incorporate in the fuel cell like complex
systems which involves the gaseous energy flow. The pas-
sivity concept deals with the energy balancing, dissipativity,
and the system passivity which are very useful unified math-
ematical tools to establish and analyze the complex systems
stability [12–14]. The passivity-based concept is integrated
with port-Hamiltonian systems to add more beauty to deal
with the complex systems such as PEM fuel cells [15–17].

The thoroughgoing and rigorous study of the related pub-
lished literature uncovers that the passivity-based pH con-
cept for PEM fuel cells is rarely investigated. In addition, the
segmentation-based concept for the modeling of PEM fuel
cells air-supply systems has not been exploited in the liter-
ature. However, for the hydrogen supply flow channels, the
segmentation-based concepts have been used in some litera-
ture to control the fuel supply [18] and to study the segmen-
tation scalability [19]. Moreover, the segmentation concept
has been used to study the water transport [20] and predict-
ing the distribution of current density [21,22]. With this mo-
tivation, in this paper, a segmentation concept has been used
to model and control the air-supply subsystem of PEM fuel
cells in pH framework. To the best of authors’ knowledge
and belief, none of the work has been done on the investiga-
tion of PEM air-supply subsystems modeling and control on
segmentation concept in pH framework. The major contri-
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butions of this paper are encapsulated as follows:
• In this paper, a nonlinear model of the PEM air-supply

system-based on the segmented concept is proposed in
pH framework. The cathode flow channel is the fuel
cell is partitioned into n-segments and the pressure dy-
namics of each segments are modeled. The solenoid
valves’ characteristic curves are linearly approximated
in order to model the openings of the inlet and back
pressure valve orifices.

• Furthermore, the energy balance, dissipativity, and the
passivity of the segmented cathode channel model of
PEM fuel cell is investigated in details. In addition,
in this work, a passivity-based nonlinear control is de-
signed in pH framework to control the pressure dynam-
ics of the segmented cathode channel.

• Furthermore, the explicit stability has been established
and thoroughly analyzed in this article. The effective-
ness of the proposed control design is shown with the
simulation results and discussions.

The remaining portion of the paper is organized into the fol-
lowing sections as follows: Section II describes the model-
ing of the segmented cathode channel of the PEM fuel cell
systems in port-Hamiltonian framework. Section III reports
the passivity-based trajectory tracking control design for the
segmented air-supply subsystems. In addition, a detailed
analysis of the energy balancing, dissipativity, and passivity
of the proposed segmented PEM fuel cell air-supply subsys-
tem are presented. Furthermore, the stability is established
and analyzed explicitly in this section. Section IV contains
the simulation results and its detailed analysis. Finally, the
paper culminates with a brief conclusion in Section V.

2 Model Development

In this section, a nonlinear model of PEM fuel cell air-
supply subsystem is developed based on the segmentation
concept. The schematic of segmented cathode channel with
n segments is shown in Fig. 1. The following assumptions
are made for the model development:
A1. The cathode channel is supposed to be 100 % humidi-

fied.
A2. Each segments volume are same and operation of the

anode channel is normal.
A3. Properties of the distributed parameters in each seg-

ments are the same.
A4. The temperatures are perpetuated to an acceptable limit

and are measurable at the inlet and the output of the
cathode channel.

A5. The compressor and the supply manifold are not in-
cluded in the schematic and hence, it is supposed that
incoming pressure to the inlet valve remains constant.

2.1 Inlet valve orifice model
The solenoid valve used at the inlet of cathode channel can

be modeled in terms of the valve opening. For the supercrit-
ical region, the inlet valve (Bürkert 2875) can be modeled as
follows [23]:

QN1 =
257P0kv1√

T1ρN
(1)

where QN1 is the flow rate to the first segment of the cathode
channel. The pressure P0 is input to the inlet valve which

Fig. 1: Segmented Fuel Cell Air-Supply Subsystem

is remains constant throughout the fuel cell operation. Fur-
thermore, kv1 is the linear function of the valve opening, T1
is the temperature measurement at the cathode inlet, and ρN
is the standard density in kg/m3. The expression of kv1 as
a function of orifice opening θv1 can be obtained from its
characteristic curve as follows [23]:

kv1 = kvs1 [0.95+0.12744(θv1 −8)] . (2)

2.2 Cathode channel model
The n-channel cathode model can be obtained in terms of

pressure dynamics. The segments of the cathode channel are
represented as S1,S2, ...,Sn and the model of each segments
are obtained as follows:
Segment S1:

Ṗca,1 =
RaTca,1

Ma,ca,1Vca,1
[Wca,in,1 −Wca,out,1]−

RO2Tca,1

Ma,ca,1Vca,1
WO2,react,1

(3)
where Wca,in,1 = QN1 and Wca,out,1 can be obtained as fol-
lows:

Wca,out,1 = kca,out,1 [Pca,1 −Pca,2]

Segment S2:

Ṗca,2 =
RaTca,2

Ma,ca,2Vca,2
[Wca,in,2 −Wca,out,2]−

RO2Tca,2

Ma,ca,2Vca,2
WO2,react,2

(4)
where Wca,in,2 = Wca,out,1 and, Wca,out,2 can be obtained as
follows:

Wca,out,2 = kca,out,2 [Pca,2 −Pca,3]

Segment Sn:

Ṗca,n =
RaTca,n

Ma,ca,nVca,n
[Wca,in,n −Wca,out,n]−

RO2Tca,n

Ma,ca,nVca,n
WO2,react,n

(5)
where Wca,in,n = Wca,out,n−1, Wca,out,n = QN2, and WO2,react,i
can be obtained as follows:

WO2,react,i =
ncellMO2,i

4F
Ist,i for i = 1,2, ...,n.

The flow rate QN2 can be obtained from the back pressure
valve orifice model in the following subsection.

2.3 Back pressure valve orifice model
The back pressure solenoid valve (Bürkert 3285) used at

the outlet of cathode channel can be modeled in terms of the
valve opening in the subcritical region as follows [23]:

QN2 =
514kv2

√
Patm (Pca,3 −Patm)√

T2ρN
(6)
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where QN2 is the flow rate of the back pressure valve. The
variable Patm is the atmospheric pressure. Furthermore, kv2 is
the linear function of the valve opening, T2 is the temperature
measurement at the cathode outlet, and ρN is the standard
density in kg/m3. The valve opening function kv2 can be
obtained from its characteristic curve as follows [23]:

kv2 = kvs2 [0.91+0.12796(θv2 −8)] (7)

where θv2 is opening of the back pressure valve.

Remark 1. Although the paper deals with the n segment
cathode channel model, but for the control design and simu-
lations, we have considered the three segments model taking
care of computational effort and model complexity. How-
ever, the number of segments plays an important role in
determining the closed-loop system performance in case of
state-feedback control. If it’s desired to analyze the open-
loop performance, the number of segments can be increased
to reduce the error between the spatially distributed pres-
sures. However, for online operation of the system in case of
state feedback control, the computational burden has to be
considered.

2.4 Compact stat-space Hamiltonian model
The port-Hamiltonian is a unified framework of some

mathematical tools under one roof to represent and deal with
a dynamical stat-space model. The air-supply system de-
scribed in previous section can be modeled in pH framework
as follows [15]:

ẋ = f (x)+g(x)u+ζ

y =C(x)∇H(x)
(8)

where x ∈Rn is the state-vector which comprises of the seg-
ments pressure, u ∈ Rm,m < n is the control action, ζ is the
internal disturbance in the system which are the function of
segments stack currents, and H : Rn → R is the open-loop
Hamiltonian function. In addition, the function f (x) can
be defined as f (x) ≜ [J(x)−R(x)]∇H(x), where the inter-
connection matrix J(x) poses the skew-symmetric property
J(x) =−JT (x) and the damping matrix R(x) is a symmetric
matrix having positive definite (R(x) = RT (x) > 0) or pos-
itive semi-definite property (R(x) = RT (x) ≥ 0). The func-
tions f (x), J(x), and R(x) for the air-supply subsystem of the
PEM fuel cell can be obtained as follows:

f (x) =


−c1c3 c1c3 0
c3c5 −c5c6 −c5c7

0.1137c9c10

(√
x3−Patm

x2
1

)
c7c9 −c7c9

,

J(x) =


0 c1c3 −0.1137c9c10

(√
x3−Patm

x2
1

)
−c1c3 0 −c5c7

0.1137c9c10

(√
x3−Patm

x2
1

)
c5c7 0

,

R(x) =


c1c3 −0.1137c9c10

(√
x2

3(x3−Patm)

x4
1

)
0 0

0 c5c6 − c3(c1 + c5)
x1
x2

0

0 0 c7

(
c9 − (c9 − c5)

x2
x3

)
.

The matrix R(x) would be positive definite in the do-

main x ∈ Rn|x1 < a1
1−
√

1−4Γ2Patm
2Γ2 , x2 < a2

1−
√

1−4Γ2Patm
2Γ2 ,

x3 <
1−
√

1−4Γ2Patm
2Γ2 with a1 =

c5c6c9
c3(c9−c5)(c1+c5)

and a2 =
c9

c9−c5
.

Also, the input matrix function g(x), disturbance signal ζ ,
and the output matrix C(x) can be represented as follows:

g(x) =
[

0.12744c1c2 0 0
0 0 −0.12796c9c10

√
x3 −Patm

]T

,

ζ ≜
[
ζ1 ζ2 ζ3

]T
=
[
−0.06952c1c2 − c4Ist,1 −c8Ist,2 −c11Ist,3

]T
,

C(x) =
[

1 0 0
0 0 1

]
.

where Ist,1 = Ist,2 = Ist,3 = I. The state vector x, the control
input u, and the output y in (8) are defined as follows:

x ≜
[
x1 x2 x3

]T
=
[
Pca,1 Pca,2 Pca,3

]T
,

u ≜
[
u1 u2

]T
=
[
θv,1 θv,2

]T
,

y ≜
[
y1 y2

]T
=
[
Pca,1 Pca,2

]T
,

Besides, the auxiliary variables ci, i = 1,2...,11 are defined
in the appendix. Furthermore, the dissipative closed-loop
pH system can be obtained by designing a palatable state-
feedback controller u = Λ(x) [15, 24]:

ẋ = [Jd(x)−Rd(x)]∇Hd(x) (9)

which is a stable closed-loop air-supply system if the con-
dition x∗ = arg min Hd(x) has been satisfied for the de-
sired equilibrium x∗, where ∇Hd(x)≜ ∇H(x)+∇Ha(x) and
∇Ha(x) is gradient of the assigned Hamiltonian. Also,
the functions Jd(x) = J(x) + Ja(x) is skew-symmetric and
Rd(x) = R(x)+Ra(x) positive semi-definite, with Ja(x) and
Ra(x) are the assigned matrices having the same properties
that of J(x) and R(x). In pH framework, an acceptable con-
trol law u = Λ(x) must satisfy the following matching con-
dition [24]:

f (x)+g(x)Λ(x)+ζ = [Jd(x)−Rd(x)]∇Hd(x). (10)

which satisfy some certain conditions defined as follows
[24]:

• The pH structure of the system must be preserved.
• The integrability condition ∇Ha(x) = [∇Ha(x)]

T .
• The equilibrium condition ∇Ha(x∗) = ∇H(x∗) at x =

x∗.
• The stability condition ∇Ha(x∗)> ∇2H(x∗) at x = x∗.

Moreover, the equilibrium state x∗ of the closed-loop
air-supply subsystem (9) of PEM fuel cell is stable
asymptotically if the largest invariant set contained in{

x ∈ Rn| [∇Hd(x)]
T Rd(x)∇Hd(x) = 0

}
= x∗ in the esti-

mated domain {x ∈ Rn|Hd(x)≤ κ}.

Remark 2. The desired trajectory dynamics of closed-loop
system is obtained as follows:

ẋd = [Jd(xd)−Rd(xd)]∇Hd(xd). (11)

Define Fd(x) ≜ Jd(x) − Rd(x), the function Fd(xd) +
FT

d (xd) ≤ 0 as Fd(x) + FT
d (x) = −2Rd(xd) and Rd(xd) is

a positive definite function, and the desired damping ma-
trix Rd(x) ≥ 0. Also, if Hd(xd) =

1
2 xT

d xd defined the desired
Hamiltonian at x = xd then, ∇H(x)−∇Hd(xd) = x− xd .
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3 Control design in pH framework

The assigned matrices Ja(xd) and Ra(xd) to obtain the
matching condition for interconnection and damping assign-
ment passivity-based control (IDA-PBC), are considered as
follows:

Ja(xd) =

 0 −c3c5 0
c3c5 0 −c7c9

0 c7c9 0

,Ra(xd) =

c1c3 0 0
0 c5c6 0
0 0 c7c9

.
These assigned matrices are utilized to calculate the de-

sired interconnection (Jd(xd)) and damping (Rd(xd)) matri-
ces as discussed in the previous section. Define the tracking
error system as e ≜ x− xd , with xd as the desired state vec-
tor. Then, the matching condition (10) can be modified as
follows:

f (x)+g(x)Λ(x)+ζ − ẋd = [Jd(xd)−Rd(xd)]∇Hd(x,xd)
(12)

where the Hamiltonian Hd(x,xd) is defined as

Hd(x,xd) =
1
2
(x− xd)

T (x− xd). (13)

Therefore, the control action can be designed as follows:

u = Λ(x) =(gT (x)g(x))−1gT (x) [(Jd(xd)−Rd(xd))∇H(x,xd)

− f (x)−ζ + ẋd ]
(14)

which is utilized to obtain the controllers u1 and u2 as fol-
lows:

u1 =
1

0.12744c1c2
[c1c3(x1 − x2 −2e1 + e2)− c3c5e2 + ẋ1d −ζ1

+

(
0.1137c9c10

√
x3 −Patm

x2
1

)(
e1x3

x1
− e3

)]
(15)

u2 =
(x3 −Patm)

− 1
2

0.12796c9c10

[
c7c9

(
x2 − x3 − e2 −2e3 −

e3x2

x3

)
+0.1139c9c10

√
x3 −Patm

(
1− e1

x1

)
+ζ3 − ẋ3d

−c5c7

(
e2 −

e3x2

x3

)]
(16)

where e = [e1,e2,e3]
T and xd = [x1d ,x2d ,x3d ]

T . By substi-
tuting (14) into (12), the closed-loop error dynamics can be
obtained as follows:

ė = [Jd(xd)−Rd(xd)]∇Hd(x,xd) (17)

3.1 Energy balance, dissipativity, and passivity
The Hamiltonian H(x) of the segmented cathode channel

PEM fuel cell can be defined as follows:

H =
1
2

xT x (18)

where the state vector x is defined in the previous section.
The time derivative of the Hamiltonian H(x) can be obtained
as follows:

Ḣ = ∇HT (x)ẋ (19)

which can be further modified as

Ḣ =−∇HT (x)R(x)∇H(x)+∇HT (x)g(x)u+∇HT (x)ζ
(20)

which again can be modified as follows:

Ḣ =−C−1C∇HT (x)R(x)∇H(x)+C−1yT g(x)u+C−1C∇HT (x)ζ .
(21)

Since the first term is negative, the following inequality can
be obtained:

Ḣ ≤C−1yT g(x)u+C−1C∇HT (x)ζ . (22)

After integrating both sides of the above inequality, the fol-
lowing expression can be obtained for the energy function in
form of the Hamiltonian:

H(x(t))−H(x(0))≤
∫ t

0

(
C−1yT g(x)u+C−1C∇HT (x)ζ

)
dt.

(23)

Remark 3. The energy of the segmented PEM fuel cells can
be balanced if there exists a dissipative function Γ(x(t)) such
that the initial energy follows the inequality

H(x(0))≤−
∫ t

0
Γ(x(t)dt. (24)

Following the inequalities (23) and (24), the following ex-
pression can be obtained:

H(x(t))≤
∫ t

0

(
C−1yT g(x)u+C−1C∇HT (x)ζ

)
dt −

∫ t
0 Γ(x(t)dt.

(25)

Assumption 1. In the segmented cathode PEM fuel cell,
there has been sufficient dissipation through Γ(x(t)) such
that ∫ t

0

(
C−1yT g(x)u

)
dt −

∫ t

0
Γ(x(t)dt ≤ 0. (26)

Then, the expression in (25) can be modified as follows:

H(x(t))≤
∫ t

0

(
C−1yT g(x)u−Γ(x(t)

)
dt +

∫ t
0 C−1C∇HT (x)ζ dt.

(27)
The first term of the above expression is negative always fol-
lowing the condition (26), therefore, the system is proved to
dissipative and for that reason it is passive with appropriate
energy balance.

3.2 Stability analysis
The time derivative of the desired closed-loop Hamilto-

nian defined in (13) can be obtained as follows:

Ḣd(x,xd) = (x− xd)
T (Jd(xd)−Rd(xd))∇Hd(x,xd) (28)

which can be further modified as

Ḣd(x,xd) =−∇HT
d (x,xd)Rd(xd)∇Hd(x,xd) (29)

which can be further modified as

Ḣd(x,xd)≤−2λHd(x,xd) (30)

where λ = infx∈D (eig(Rd(xd))). Consequently, the follow-
ing inequality can be obtained:

Hd(x,xd)≤ Hd(x(0),xd(0))e−2λ t (31)

which means that the closed-loop Hamiltonian Hd(x,xd)
converge to the desired trajectories exponentially. Conse-
quently, the segmented cathode PEM fuel cell with state-
feedback controller u = Λ(x) is stable exponentially.
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Table 1: Values of PEMFC parameters used in the simulation

Physical Variables Values with Units

P0 3×105 Pa

Patm 1.01×105 Pa

Ra 8.314 J/molK

RO2 8.313 J/molK

F 96485 c/s

T1 433 K

T2 443 K

ncell 180

Fig. 2: The stack current I

Fig. 3: Control input u1

4 Simulation Results and Discussion

In this section, the simulation results are analyzed and dis-
cussed in details for the proposed PEM fuel cell segmented
cathode air-supply subsystem modeling and control under
pH framework. The control design parameters are selected
as follows: kvs1 = 2.5, kvs2 = 2.5, ρN = 1.293, kca,out,1 =
0.026, and kca,out,2 = 0.26. The volumes of the cathode chan-
nel are considered equal for the simulation purpose in this
paper and is selected as Vca1 = Vca2 = Vca3 = 0.0061

3 m3. In
addition, the temperatures in the cathode channels are con-
sidered same and selected as Tca1 = Tca2 = Tca3 = 453K. The
physical parameters of the system model are shown in Table
1.

In Fig. 3, the control input u1 and in Fig. 4, the control
input u2 are shown which shows that the inputs are within
[0,1]. The control inputs determine the adequate flow rates
of the oxygen into the cathode channel segments. There are
more transients in the control input u1 at time 321 sec, 471
sec, and 799 sec as compared to control input u2. The con-
trol actions also ensure the proper, balanced, and fast enough
oxygen flow to fulfill the air supply to the cathode channel.

In Fig. 5 and Fig. 6, the tracking of distributed pressures
in segments S1 and S3 are depicted. It can be seen that the

Fig. 4: Control input u2

Fig. 5: Tracking of first segment pressure Pca,1

Fig. 6: Tracking of third segment pressure Pca,3

Fig. 7: Error e1 between actual and desired pressures of first
segment

Fig. 8: Error e3 between actual and desired pressures of third
segment

tracking of Pca,1 is smooth and close to the desired values for
the time intervals of the current defined. The error between
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the time intervals [471,601] sec and [701,799] sec are more
as compared to other time intervals, which means the track-
ing are not perfect in these time intervals. In other words,
it can be analyzed that the tracking of first segment pressure
distribution is exhibiting more error if the current increases
beyond 100 amps. The error can be verified from the Fig. 7.

Similarly, the tracking of the third (output) segment pres-
sure Pca,3 can be seen in Fig. 6, in this figure, we can see
that the error is more during the time interval [471,601] sec
which depicts that the tracking of pressure distribution is not
very smooth in this interval in the third segment. Also, the
error can ve verified in Fig. 8 and again this can be depicted
in case of higher current of more than 100 amps. In addi-
tion, the spikes in peak overshoots are of very high magni-
tudes and the transients period lasts longer when the current
increases beyond this value. In a nutshell, it can be con-
cluded that the air supply can be controlled through the in-
let and back pressure valves without considering compressor
and supply manifold dynamics, not affecting the PEM fuel
cells operation and performance.

5 Conclusion

In this paper, a new nonlinear model of the PEM fuel
cell air supply subsystem is proposed and developed in port-
Hamiltonian framework. In this model, we have considered
the inlet and back pressure valves openings as the control in-
puts to the segmented cathode PEM fuel cell system. The
model’s energy balance, dissipativity and passivity are ana-
lyzed in details. Furthermore, a state feedback control action
is designed for the developed model in pH framework with
explicit stability analysis. We have simulated the closed-
loop model for analyzing the tracking error, control action,
and pressure distribution tracking in the segmented cathode
flow channels. The simulation results are included to show
the effectiveness of the proposed new segmented cathode air
supply model of the PEM fuel cell systems in pH framework
along with the designed state-feedback pH control action.
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Abstract: In this paper, the problem of designing a parameter-scheduled state-feedback controller for LPV systems is inves-
tigated. First, the concept of finite-time stability are extended, introducing shifting specifications. Then, by using parameter-
dependent Lyapunov-Krasovskii functional, a new delay-dependent finite-time stability criterion is derived. Moreover, based on
the criterion, sufficient conditions for the design of stabilizer are provided, which can guarantee the closed-loop system shifting
finite-time stable. By using the existing parameters, the controller can be designed in such a way that different values of these
parameters imply different characteristics of the finite-time stability property. In this way, the performance of the control system
can be varied during its operation. With the help of the efficient interior-point algorithms, both analysis and synthesis conditions
are formulated in terms of linear matrix inequalities (LMIs).

Key Words: LPV Systems, Time-delay systems, Finite-time control, Linear matrix inequalities

1 Introduction

In recent years, there has been significant interest in the
research of linear parameter-varying (LPV) systems. Such
systems are particularly appealing in that they provide a sys-
tematic means of computing gain-scheduled controller. On
the other hand, time delays inevitably exist in a lot of prac-
tical systems [1–3]. Its presence may cause the instability
and oscillatory response of the systems. The stability anal-
ysis and controller design of the time-delay systems are of
great importance for both theoretical and practical aspects
[4]. In many engineering systems, time delays are known
functions of varied operating conditions or real-time mea-
surable system parameters. Motivated by the LPV control
methodology, LPV systems with time delays have attracted
an increasing interest from many researchers, and some ele-
gant results have been obtained[5–7].

It is worth pointing out that the results mentioned previ-
ously are all derived in the sense of Lyapunov, which studies
the behavior of its state variables over an infinite time inter-
val. As a matter of fact, in many practical applications [8, 9],
the main concern is the behavior of the system states over a
fixed finite time interval. To this end, the concept of finite-
time stability arises naturally, which is concerned with the
quantitative behavior over a finite time interval [10]. Sub-
sequently, as the significance became more apparent, many
worthwhile results on finite-time stability and finite-time sta-
bilization have been reported for a wide variety of systems,
ranging from continuous systems [11], to discrete systems
[12], to switched systems [13], to stochastic systems [14], as
well as to multi agent systems [15].

Recently, the idea of shifting specifications has been

This work was supported in part by the National Natural Science Foun-
dation of China under Grant 62203190, in part by the Natural Science
Foundation of Jiangsu Province under Grant BK20210922, in part by the
Lianyungang Postdoctoral Foundation under Grant LYG20220009, and in
part by the Lianyungang Science and Technology Plan (Social Development
and Basic Research Plan) project under Grant JCYJ2327.

paid attention to as an extension of some control problems
[16, 17]. This idea relies on introducing some varying pa-
rameters, or using the existing ones, to schedule the con-
troller such that different values of these parameters imply
different performances. From a practical point of view, rea-
sons for which this problem can be of interest include all
situations where some performance degradation could be de-
sirable [17].

In this paper, we consider the shifting finite-time con-
trol problem for LPV systems subject to parameter-varying
time delays. First, by the usage of the parameter-dependent
Lyapunov-Krasovskii functional, sufficient conditions for
finite-time stability of LPV systems with parameter-varying
delays are derived. Then, based on the finite-time stabil-
ity analysis, the state feedback controller for the finite-time
stabilization is obtained. By virtue of the efficient interior-
point algorithms, the proposed results of synthesis problems
are formulated in the form of LMIs. Finally, an example is
also given to show the validity of the developed methods.

2 Problem Formulations

Consider a class of LPV system with parameter-varying
time delays as follows

ẋ (t) = A (θ (t))x (t) +Ad (θ (t))x (t− d (θ (t)))

+B (θ (t))u (t) , (1a)
x (τ) = φ (τ) , τ ∈ [−d, 0] , (1b)

where x (t) ∈ R
n is the state vector, u (t) ∈ R

m is the input
vector. The initial function φ (t) : [−d, 0] → R

n is a given
continuous vector valued function. d (·) : Rl → R is a differ-
entiable scalar function, which is denoted as the parameter-
varying delay. The state-space matrices A (·), Ad (·), B (·)
and the time delay d (·) are known continuous functions of
the time-varying parameter vector θ (·) : R → R

l ∈ Θv ,
where Θv denotes the set of allowable parameter trajectories
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defined as

Θv :=

⎧⎨
⎩ θ ∈ C(R,Rl)

∣∣ θ(t) ∈ Θ,
∣∣∣θ̇i(t)∣∣∣ ∈ [vi, v̄i] ,

i = 1, 2, · · · , l, ∀t ≥ 0

⎫⎬
⎭ ,

(2)
in which Θ is a compact subset of Rl, vi, v̄i, i = 1, 2, · · · ,
l are known scalars and θ =

[
θ1 θ2 · · · θl

]T, i.e., the
time-varying parameter trajectories and the variation rates of
the time-varying parameters are bounded. The states of the
system are assumed to be immeasurable. For convenience,
we denote θ(t) as θ and sym{A} = A+AT in the following
context.

For system (1), we make the following assumptions.
A1. The function d(·) is bounded and the function t−d(t)

is monotonically increasing, that is,

0 ≤ d(t) ≤ d < ∞, ḋ(t) ≤ d̄ < 1, ∀t ≥ 0. (3)

A2. At each time instant t, the parameter θ(t) is accessible
to be measured.

Remark 1 Assumption A1 is common for time-delay sys-
tems, see e.g. [19, 22]. According to Assumption A1, the
time delay d(·) is dependent on parameter vector θ. Since
θ is restricted to lie on the given parameter set Θv , it is
reasonable to assume that d(θ(t)) is bounded. Moreover,
the rate of variation of the parameter vector θ is assumed
to be bounded by d̄. This allows us to use the parameter-
dependent Lyapunov-Krasovskii functionals and can reduce
the conservativeness of the synthesis results [22].

The idea of finite time stability concerns the boundedness
of the state of a system over a finite time interval for given
initial conditions. This concept has been formalized in [18],
extending the original formulation provided by [11]. In this
paper, the following concepts on shifting finite-time stability
LPV system with parameter-varying time delays are intro-
duced as follows.

Definition 1 Given a positive definite matrix R, three
vector-valued functions T (p(t)), c1 (p(t)), c2 (p(t)) with
0 < c1 (p(t)) < c2 (p(t)), time-delay LPV system (1) with
u = 0 is said to be shifting finite-time stable with respect to
(c1 (p(t)) , c2 (p(t)) , T (p(t)) , R,Θv) if for any θ ∈ Θv

sup
−d≤δ≤0

xT(δ)Rx(δ) ≤ c1 (p(t))

⇒ xT(t)Rx(t) ≤ c2 (p(t)) , (4)
∀t ∈ [0, T (p(t))] , ∀p(t) ∈ Π.

Remark 2 The concept of Definition 1 is the extension of
finite-time stability from [11, 18, 19]. It combines the
parameter-dependent characteristics of LPV systems such
that different values of these parameters imply different per-
formances. From a practical point of view, this problem can
be of interest.

The following lemmas are useful for establishing our main
results.

Lemma 1 [20]There exists a symmetric matrix X such that[
P1 +X Q1

QT
1 R1

]
> 0,

[
P2 −X Q2

QT
2 R2

]
> 0,

if and only if ⎡
⎣ P1 + P2 Q1 Q2

QT
1 R1 0

QT
2 0 R2

⎤
⎦ > 0.

Lemma 2 [21]Let θ, Λ and Γ be defined as

θ
Δ
=
[
θ1 θ2 · · · θl

]T
, (5)

Λ
Δ
=
{
(η1, · · · , ηl)| ηi ∈

[
θi, θ̄i

]
, i = 1, 2, · · · , l} , (6)

Γ
Δ
=
{
(ξ1, · · · , ξl)| ξi ∈

{
θi, θ̄i

}
, i = 1, 2, · · · , l} . (7)

Assume that a scalar-valued quadratic function f : Λ →
R is defined by

f(θ)
Δ
= a0 +

∑
i

aiθi +
∑
i<j

bijθiθj +
∑
i

ciθ
2
i , ∀θ ∈ Λ. (8)

If f(θ) is multiconvex, i.e., ∂2f(θ)
∂θ2

i
≥ 0, i = 1, 2, . . . l, then

f(θ) ≤ 0 ∀θ ∈ Λ if and only if f(α) ≤ 0, ∀α ∈ Γ.

The main objective of this paper is to design a parameter-
dependent state feedback controller for LPV system (1) such
that the corresponding closed-loop system is shifting finite-
time stable with respect to (c1 (p) , c2 (p) , T (p) , R,Θv).

3 Main Results

In this section, we will give the main results of this paper,
which consists of shifting finite-time stability analysis and
control synthesis for time-delay LPV systems (1).

3.1 Shifting Finite-time Stability Analysis
Consider the following LPV system

ẋ (t) = A (θ)x (t) +Ad (θ)x (t− d (θ)) , (9a)
x (τ) = φ (τ) , τ ∈ [−d, 0] . (9b)

We discuss the problem of shifting finite-time stability
analysis for the time-delay LPV system described by (9).
The following theorem presents the shifting finite-time sta-
bility conditions for the system (9).

Theorem 1 Consider the delayed LPV system (9a) with the
initial data (9b) and suppose that the parameter-varying de-
lay d (t) satisfying (3). If there exists a continuously differen-
tiable matrix function P (θ) > 0, positive definite matrices
Q, Z, matrices Li, i = 1, 2,

X =

[
X11 X12

∗ X22

]
≥ 0 (10)

with appropriate dimensions, and constants α ≥ 0 such that[
Π11 Π12

∗ Π22

]
< 0, (11)

⎡
⎣ X11 X12 L1

∗ X22 L2

∗ ∗ Z

⎤
⎦ > 0, (12)

λ2+λ3
ead − 1

α
+λ4

eαd − αd− 1

α2
≤ c2 (p)λ1

c1 (p) eαT (p)
, (13)
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hold for any θ ∈ Θv , where

λ1 = inf
θ∈Θv

λmin

(
R− 1

2P (θ)R− 1
2

)
, (14a)

λ2 = sup
θ∈Θv

λmax

(
R− 1

2P (θ)R− 1
2

)
, (14b)

λ3 = λmax

(
R− 1

2QR− 1
2

)
, (14c)

λ4 = λmax

(
R− 1

2ZR− 1
2

)
, (14d)

Π11 = sym {P (θ)A(θ)}+ dAT(θ)ZA(θ)− αP (θ)

+Ṗ (θ) +Q+ dX11 + sym {L1} ,
Π12 = P (θ)Ad(θ) + dAT(θ)ZAd(θ) + dX12 + LT

2 − L1,

Π22 = −
(
1− ḋ(θ)

)
Q+ dAT

d (θ)ZAd(θ)− sym {L2}
+dX22,

then the delayed LPV system (9) is shifting finite-time stable
with respect to (c1 (p) , c2 (p) , T (p) , R, Θv).

Proof. Choose the Lyapunov-Krasovskii functional candi-
date as follows:

V (x, θ) = V1(x, θ) + V2(x, θ) + V3(x, θ),

where

V1(x, θ) = xT(t)P (θ)x(t),

V2(x, θ) =

∫ t

t−d(θ)

xT(s)eα(t−s)Qx(s)ds,

V3(x, θ) =

∫ 0

−d

∫ t

t+σ

ẋT(s)eα(t−s)Zẋ(s)dsdσ.

For any θ ∈ Θv , taking the derivative of Vi(x, θ), i =
1, 2, 3 with respect to t along the trajectories of system (9)
yields

V̇1(x, θ) = xT (t)AT (θ)P (θ)x(t) + xT(t)Ṗ (θ)x(t)

+xT (t− d (θ))AT
d (θ (t))P (θ)x(t)

+xT(t)P (θ)Ad (θ (t))x (t− d (θ))

+xT(t)P (θ)A (θ)x (t) , (15)

V̇2(x, θ) ≤ xT(t)Qx(t) + α

∫ t

t−d(θ)

xT(s)eα(t−s)Qx(s)ds

−
(
1− ḋ(θ)

)
xT(t− d(θ))Qx(t− d(θ)), (16)

V̇3(x, θ) ≤ α

∫ 0

−d

∫ t

t+σ

ẋT(s)eα(t−s)Zẋ(s)dsdσ

−
∫ t

t−d(θ)

ẋT(s)eα(t−s)Zẋ(s)ds

+dxT(t− d(θ))AT
d (θ)ZAd(θ)x(t− d(θ))

+dxT(t)AT(θ)ZAd(θ)x(t− d(θ))

+dxT(t− d(θ))AT
d (θ)ZA(θ)x(t)

+dxT(t)AT(θ)ZA(θ)x(t). (17)

Let ξT(t) =
[
xT(t) xT(t− d(θ))

]
. Obviously, it is

true that for any matrix X ≥ 0

dξT(t)Xξ(t)−
∫ t

t−d(θ)

ξT(t)Xξ(t)ds ≥ 0, (18)

that is,

0 ≤ dξT(t)Xξ(t)−
∫ t

t−d(θ)

ξT(t)Xξ(t)ds

= d
[
xT(t) xT(t− d(θ))

]
X

× [ xT(t) xT(t− d(θ))
]T

−
∫ t

t−d(θ)

[
xT(t) xT(t− d(θ))

]
×X

[
xT(t) xT(t− d(θ))

]T
ds

= xT(t)dX11x(t) + xT(t)dX12x(t− d(θ))

+xT(t− d(θ))dXT
12x(t)

+xT(t− d(θ))dX22x(t− d(θ))

−
∫ t

t−d(θ)

[
xT(t)X11x(t) + xT(t)X12x(t− d(θ))

+xT(t− d(θ))X22x(t− d(θ))

+xT(t− d(θ))XT
12x(t)

]
ds. (19)

From the Leibnitz-Newton formula, for any matrices Li,
i = 1, 2, we have

2
[
xT(t)L1 + xT(t− d(θ))L2

][
x(t)− ∫ t

t−d(θ)
ẋ(s)ds− x(t− d(θ))

]
= 0,

that is,

xT(t)
(
L1 + LT

1

)
x(t) + xT(t− d(θ))L2x(t)

+xT(t)LT
2 x(t− d(θ))− 2xT(t)L1

∫ t

t−d(θ)
ẋ(s)ds

−2xT(t− d(θ))L2

∫ t

t−d(θ)
ẋ(s)ds− xT(t)L1x(t− d(θ))

−xT(t− d(θ))LT
1 x(t)− xT(t− d(θ))L2x(t− d(θ))

−xT(t− d(θ))LT
2 x(t− d(θ)) = 0.

(20)
Combining (15)-(20), and according to the expressions of

Π11, Π12, Π22 and ξ(t), we have

V̇ (x, θ)− αV (x, θ)

≤ ξ(t)T
[

Π11 Π12

ΠT
12 Π22

]
ξ(t)−

∫ t

t−d(θ)

⎡
⎣ x(t)

x(t− d(θ))
ẋ(s)

⎤
⎦T

×
⎡
⎣ X11 X12 L1

XT
12 X22 L2

LT
1 LT

2 Z

⎤
⎦
⎡
⎣ x(t)

x(t− d(θ))
ẋ(s)

⎤
⎦ ds. (21)

Further, from (11), (12) and (21), we can obtain

V̇ (x, θ) ≤ αV (x, θ). (22)

Note that condition (22) can be rewritten as

V̇ (x, θ)

V (x, θ)
≤ α. (23)

Integrating (23) from 0 to t, with t ∈ [0, T ] yields

lnV (x, θ)−lnV (x (0) , θ) =

∫ t

0

V̇ (x, θ)

V (x, θ)
dt ≤

∫ t

0

αdt = αt.

(24)
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By simplifying (24), we have

V (x, θ) ≤ eαtV (x (0) , θ) . (25)

On one hand,

V (x, θ) ≥ xT(t)P (θ)x(t)

= xT(t)R
1
2R− 1

2P (θ)R− 1
2R

1
2x(t)

≥ λmin

[
R− 1

2P (θ)R− 1
2

]
xT(t)Rx(t). (26)

On the other hand,

V (x(0), θ)

≤ xT(0)P (θ(0))x(0) +

∫ 0

−d

xT(s)e−αsQx(s)ds

+

∫ 0

−d

∫ 0

σ

ẋT(s)e−αsZẋ(s)dsdσ

≤ λmax

[
R− 1

2P (θ(0))R− 1
2

]
xT(0)Rx(0)

+λmax

[
R− 1

2QR− 1
2

]
sup

−d≤τ≤0
xT(τ)Rx(τ)

(
eαd − 1

α

)
+λmax

[
R− 1

2ZR− 1
2

]
sup

−d≤τ≤0
ẋT(τ)Rẋ(τ)

×
(
eαd − αd− 1

α2

)
≤ Λ sup

−d≤τ≤0
x̄T(τ)Rx̄(τ), (27)

where Λ = λmax

[
R− 1

2P (θ(0))R− 1
2

]
+ λmax

[
R− 1

2QR− 1
2

]
×

(
eαd−1

α

)
+

λmax

[
R− 1

2ZR− 1
2

] (
eαd−αd−1

α2

)
.

Λ = λmax

[
R− 1

2P (θ(0))R− 1
2

]
+ λmax

[
R− 1

2QR− 1
2

]
×(

eαd−1
α

)
+ λmax

[
R− 1

2ZR− 1
2

] (
eαd−αd−1

α2

)
The combination of (25)-(27) results in

λmin

[
R− 1

2P (θ)R− 1
2

]
xT(t)Rx(t)

≤ eαtΛ sup
−d≤τ≤0

x̄T(τ)Rx̄(τ),

that is,

xT(t)Rx(t) ≤
eαtΛ sup

−d≤τ≤0
xT(τ)Rx(τ)

λmin

[
R− 1

2P (θ)R− 1
2

] .

From (14a)-(14d), it is followed that

xT(t)Rx(t)

≤
{
λ2 + λ3

(
eαd − 1

α

)
+ λ4

(
eαd − αd− 1

α2

)}

×eαT (θ)

λ1
sup

−d≤τ≤0
xT(τ)Rx(τ).

According to Definition 1 and (13), it implies that
if sup

−d≤τ≤0
x̄T(τ)Rx̄(τ) ≤ c1 (p), then xT(t)Rx(t) ≤

c2 (p). Then we can conclude that the delayed LPV
system (9) is shifting finite-time stable with respect to
(c1 (p) , c2 (p) , T (p) , R,Θv). The proof is completed.

3.2 Control design
In the following, we will consider the problem of shifting

finite-time control synthesis for time-delay LPV system.
For control of the above system (1), we intend to design

a parameter-dependent state-feedback controller in the fol-
lowing form

u(t) = K(θ)x(t) (28)

where K(θ) is the parameter-dependent state feedback
gain.

With this controller (28) applied to the system (1), the
closed-loop system is obviously obtained as follows

ẋ (t) = Ac(θ)x(t) +Ad (θ)x (t− d (θ)) (29a)

where
Ac(θ) = A (θ) +B (θ)K(θ) (30)

The following theorem will give the designed controller
for shifting finite-time control synthesis of time-delay LPV
system (1).

Theorem 2 Consider the delayed LPV system (1), and sup-
pose that the parameter-varying delay d (θ) satisfying (3). If
there exist continuously differentiable positive definite ma-
trix functions X (θ), continuously matrix functions Y (θ),
positive definite matrices W , Z̃, and constants α ≥ 0, n1,
n2, such that (13) and⎡
⎢⎢⎢⎢⎣

Γ11 Γ12 Γ13 0 X(θ)

∗ Γ22 n2WAT
d (θ) −dZ̃ 0

∗ ∗ −1/dZ̃ 0 0

∗ ∗ ∗ −dZ̃ 0
∗ ∗ ∗ ∗ −W

⎤
⎥⎥⎥⎥⎦ < 0, (31)

hold for any θ ∈ Θv , and

λ1 = inf
θ∈Θv

λmin

(
R− 1

2X−1(θ)R− 1
2

)
, (32a)

λ2 = sup
θ∈Θv

λmax

(
R− 1

2X−1(θ)R− 1
2

)
, (32b)

λ3 = λmax

(
R− 1

2W−1R− 1
2

)
, (32c)

λ4 = λmax

(
R− 1

2 Z̃−1R− 1
2

)
, (32d)

Γ11 = −αX(θ) − Ẋ(θ) −
n2
1

(
1−

l∑
i=1

(
{vi, v̄i} ∂d(θ)

∂θi

))
W + A(θ)X(θ) +

B(θ)Y (θ) + n1Ad(θ)W + X(θ)AT (θ) + Y T (θ)BT (θ) +
n1WAT

d (θ),

Γ12 = −n1n2

(
1−

l∑
i=1

(
{vi, v̄i} ∂d(θ)

∂θi

))
W +

Ad(θ)n2W +X(θ)− n1W,
Γ13 = X(θ)AT (θ) + Y T (θ)BT (θ) + n1WAT

d (θ),

Γ22 = −n2
2

(
1−

l∑
i=1

(
{vi, v̄i} ∂d(θ)

∂θi

))
W −2n2W, then

there exists a parameter-dependent controller such that the
closed-loop system (29a) is shifting finite-time stable with
respect to (c1 (p) , c2 (p) , T (p) , R, Θv). In this case, the
controller is constructed as (28), where the controller gain
K (θ) = Y (θ)X−1 (θ).
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Proof. Based on the results in the previous subsection,
we know that the closed-loop LPV system (29a) is shifting
finite-time stable, if there exists a continuously differentiable
matrix function P (θ) > 0, positive definite matrices Q, Z,
matrices Li, i = 1, 2, X , and constants α ≥ 0 such that (12),
(13), and [

Π̃11 Π̃12

∗ Π22

]
< 0, (33)

where X is defined in (10) and

Π̃11 = sym {P (θ)Ac(θ)}+ dAT
c (θ)ZAc(θ)− αP (θ)

+Ṗ (θ) +Q+ dX11 + sym {L1} ,
Π̃12 = P (θ)Ad(θ) + dAT

c (θ)ZAd(θ) + dX12 + LT
2 − L1,

Π22 = −
(
1− ḋ(θ)

)
Q+ dAT

d (θ)ZAd(θ)− sym {L2}
+dX22.

From Schur complement lemma, and by Lemma 1, the
satisfactory of (12) and (33) is equivalent to the fact that the
following inequality⎡

⎢⎢⎣
Ψ11 Ψ12 AT

c (θ) −dL1

ΨT
12 Ψ22 AT

d (θ) −dL2

Ac(θ) Ad(θ) − (dZ)
−1

0
−dLT

1 −dLT
2 0 −dZ

⎤
⎥⎥⎦ < 0, (34)

holds, where

Ψ11 = sym {P (θ)Ac(θ)} − αP (θ) + Ṗ (θ) +Q+ sym {L1} ,
Ψ12 = P (θ)Ad(θ) + LT

2 − L1,

Ψ22 = −
(
1− ḋ(θ)

)
Q− sym {L2} .

Let

Ψ =

[
Ψ11 Ψ12

ΨT
12 Ψ22

]

Ω =

[ −αP (θ) + Ṗ (θ) +Q 0

0 −
(
1− ḋ(θ)

)
Q

]

Ãc =

[
Ac (θ) Ad(θ)

I −I

]
, L̃ =

[
P (θ) 0
LT
1 LT

2

]
Then,

Ψ = Ω+ L̃TÃc + ÃT
c L̃.

Let

L̃−1 =

[
P−1(θ) 0
N1 N2

]
.

Remark that

Ṗ−1(θ) = −P−1(θ)Ṗ (θ)P−1(θ).

Using Schur complement lemma, and pre-multiplying
by diag

{
L̃−T, I, Z−1

}
and post-multiplying by

diag
{
L̃−1, I, Z−1

}
on both sides of (34) give rise

to ⎡
⎢⎢⎢⎢⎣

Ω11 Ω12 Ω13 0 P−1(θ)
∗ Ω22 NT

2 AT
d (θ) −dZ−1 0

∗ ∗ −1/dZ−1 0 0
∗ ∗ ∗ −dZ−1 0
∗ ∗ ∗ ∗ −Q−1

⎤
⎥⎥⎥⎥⎦ < 0,

(35)

where Ω11 = −αP−1(θ) − Ṗ−1(θ) −
NT

1

(
1− ḋ(θ)

)
QN1 + Ac (θ)P

−1(θ) + Ad(θ)N1 +

P−1(θ)AT
c (θ) +NT

1 AT
d (θ),

Ω12 = −NT
1

(
1− ḋ(θ)

)
QN2 + Ad(θ)N2 + P−1(θ) −

NT
1 ,
Ω13 = P−1(θ)AT

c (θ) +NT
1 AT

d (θ),

Ω22 = −NT
2

(
1− ḋ(θ)

)
QN2 −N2 −NT

2 .

Choose
N1 = n1Q

−1, N2 = n2Q
−1.

Then, by substituting (30) into the aforementioned in-
equality and letting

X(θ) = P−1(θ), Y (θ) = K(θ)X(θ),W = Q−1, Z̃ = Z−1,

we can get that (35) is equivalent to the following inequality⎡
⎢⎢⎢⎢⎣

Σ11 Σ12 Γ13 0 X(θ)

∗ Σ22 n2WAT
d (θ) −dZ̃ 0

∗ ∗ −1/dZ̃ 0 0

∗ ∗ ∗ −dZ̃ 0
∗ ∗ ∗ ∗ −W

⎤
⎥⎥⎥⎥⎦ < 0, (36)

Σ11 = −αX(θ) − Ẋ(θ) − n2
1

(
1− ḋ(θ)

)
W +

A(θ)X(θ) + B(θ)Y (θ) + n1Ad(θ)W + X(θ)AT (θ) +
Y T (θ)BT (θ) + n1WAT

d (θ),

Σ12 = −n1n2

(
1− ḋ(θ)

)
W + Ad(θ)n2W + X(θ) −

n1W,

Σ22 = −n2
2

(
1− ḋ(θ)

)
W − 2n2W.

By employing Lemma 2, it is easily verified that (36) is
equivalent to (31). Further, condition (14) is converted to
(32). Then, the proof is finished.

Further, by using Schur complement lemma, it is easy to
verify that if the following conditions

λ∗
1R

−1 ≤ X (θ) ≤ R−1, (37a)

λ∗
2R

−1 ≤ W ≤ λ∗
3R

−1, (37b)

λ∗
4R

−1 ≤ Z̃ ≤ λ∗
5R

−1, (37c)⎡
⎢⎢⎣

c2(p)e
−αT (p)

√
c1(p)

√
c1(p) (eαd − 1) /α

∗ λ∗
1 0

∗ ∗ λ∗
2

∗ ∗ ∗√
c1(p) (eαd − αd− 1) /α2

0
0
λ∗
4

⎤
⎥⎥⎦ ≥ 0, (37d)

hold for some positive numbers λ∗
i , i = 1, 2, · · · , 5, then

(13) is guaranteed.
It is noted that the LMI conditions (31), (37a) and (37d)

involve an infinite-dimensional convex problem due to their
dependence on parameters θ, and thus, the task of determin-
ing the controller is numerically intractable. To overcome it,
a finite set of basis functions are employed, which can ap-
proximate the parameter-dependent matrix functions, X (θ)
and Y (θ) that appear in the conditions (31), (37a) and (37d).
Hence, in order to obtain a finite number of LMI conditions,

347  



we choose the structures of matrix functions X (θ) and Y (θ)
as follows:

X (θ) =
s∑

j=1

fj (θ)Xj , (38)

Y (θ) =
s∑

j=1

gj (θ)Yj, (39)

where s is a known positive number, Xj , j = 1, 2, · · · , s are
symmetric matrices, Yj , j = 1, 2, · · · , s are matrices with
appropriate dimensions, and fj (·), gj (·), j = 1, 2, · · · , s
are the chosen basis functions.

4 Conclusion

In this paper we tackled the shifting finite-time control
problem for LPV system with parameter-varying time de-
lays. By using parameter-dependent Lyapunov-Krasovskii
functional approach, a new delay-dependent shifting finite-
time stability criterion is derived. Sufficient criteria on finite-
time stabilization via state feedback are provided in terms of
LMIs.
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Abstract: Networked robotic systems with fully-actuated characteristics are currently widely used, but control design using this
feature has not received enough attention. In this paper, we consider the coordination control problem of networked robotic
systems via a fully-actuated system approach. To this end, the dynamics of the robotic systems is firstly transformed to a fully-
actuated system model. Then a coordination controller is proposed, where several similar extension forms are also given. By
using the direct parametric method, the stability conditions are given. The approach offers a complete flexibility that can be used
to enhance the system’s performance.

Key Words: Networked robotic systems, coordination control, fully-actuated system approach, direct parametric method.

1 Introduction

The development of networked robotic systems has be-
come a hot point in modern technology. The significance of
such a kind of system lies in its ability to realize collabora-
tive work among multiple robots and conduct remote com-
munication and coordination through the Internet or other
networks [1–4]. This collaborative control not only improves
the efficiency and flexibility of the robot system, but also ex-
pands its application fields. In various fields such as manu-
facturing, medical care, and rescue, the collaborative control
of networked robotic systems can promote the completion of
tasks, improve production efficiency, and play an important
role in dangerous or inaccessible environments [5–7].

Generally, networked robotic systems are modeled as
second-order nonlinear systems. Typical one such as Euler-
Lagrange system, can capture the integral dynamic behavior
[8–10]. There are many benefits to using the Euler-Lagrange
equation to model networked robotic systems, especially its
regressor parameter characteristics that make it easy to deal
with model parameter uncertainties [11–13]. Many impres-
sive results have been achieved using this approach. It is
worth noting that actuator dynamics in these works are of-
ten approximated as a zero-order systems. However, when
demanding rapid and highly precise movements, the actua-
tors cannot be simplified as a zero-order model. Instead, a
first- or second-order model becomes necessary to optimize
the overall system performance, which results in that the
integrated system emerges from the cascading of the plant
and the actuator system. This essentially third-order system
brings additional difficulties to coordinated control design.

To achieve coordinated control design for such cascaded
systems, a common approach involves initially transform-
ing the system into a state space and then applying con-
trol techniques to this altered first-order system. However,
due to the time-varying or highly nonlinear nature of the

This work is supported in part by National Natural Science Founda-
tion of China under Grant 62103352 and Grant 62033011, in part by Hebei
Natural Science Foundation under Grant F2023203056, and also partially
supported by the 8th batch of post-doctoral Innovative Talent Support Pro-
gram BX20230150.

networked robotic systems, the traditional first-order system
theory often falls short in guaranteeing complete stability for
the closed-loop system. Recently, the fully-actuated system
approach has attracted the attention of scholars [14–16]. By
transforming the system as a high-order fully-actuated sys-
tem model, a direct parametric approach is proposed, which
brings several benefits, including linearized closed-loop sys-
tems, arbitrarily configurable closed-loop system eigenval-
ues, etc [17–19]. However, how to use this method to
achieve collaborative control design of networked robotic
systems has not been well explored.

Inspired by above discussions, this paper aims to solve
the coordinated control problem of networked robotic sys-
tems using a fully-actuated system approach. To this end,
the following two questions should be answered. The first
question is what information is needed to implement the col-
laborative task. Existing direct parametric methods require
the use of zero-order, first-order, and second-order deriva-
tives of state information. Is this necessary? The second
question is whether the introduction of the Laplacian matrix
will affect the parametric design process. In the process of
collaborative control of networked robotic systems, since the
control gain is generally coupled with the Laplacian matrix,
can the parametric method eliminate the influence of system
nonlinearity through gain design? The purpose of this pa-
per is to answer these two questions. We first transform the
networked robot system into a high-order fully-actuated sys-
tem model, then discuss several different schemes of collab-
orative control design, and finally use the direct parametric
method to give the system stability conditions.

2 Problem Statement and Preliminaries

2.1 Graph Theory and Notations
This part introduces the concept of a Lagrangian network

represented by a directed graph featuring a spanning tree.
The directed graph, denoted as G = (N , E), comprises
the sets of vertices and edges, which are denoted by N =
{1, 2, ..., N} and E ⊆ {(i, j)|i, j ∈ N , i ̸= j}, respectively.
Specifically, (i, j) ∈ E signifies that node j can receive in-
formation from node i but not the other way around. The
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Table 1: Notations and Symbols

Symbols

R,R+ Real and positive real number set

R
n,Rn×n n-dimensional vector and matrix space

C Complex number set

In ∈ R
n×n n-dimensional identity matrix

∥·∥ Euclidian norm of a vector or a matrix

λk(A) k-th eigenvalues of the matrix A

ρ(A) Spectral radius of the matrix A

Re(λk(A)) Real part of λk(A)

ℑ(λk(A)) Imaginary part of λk(A)

ℓ Imaginary unit, ℓ2 = −1

AH Hermitian adjoint matrix of A

paper defines A = [aij ] ∈ RN×N and D = diag(
∑N

i=1 aij)
as the weighted adjacency matrix and degree matrix of the
graph G, respectively. Here, aij > 0 for any (i, j) ∈ E ,
and aij = 0 otherwise. The Laplacian matrix of G, denoted
as L(G) = D − A or simply L, is established. If a vertex
within the graph G can reach all other vertices through di-
rected paths, it implies the presence of a directed spanning
tree in G. In this paper, we suppose that there exists a di-
rected spanning tree in the robotic network G = (N , E). For
simplicity, some mathematical symbols used later are given
in Table 1.

2.2 Networked Robotic Systems
In this paper, the networked robotic systems are modeled

by an Euler-Lagrange equation as follows

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +Gi(qi) = τi, i ∈ N (1)

where qi, q̇i ∈ Rn are the generalized position and veloc-
ity of the i-th subsystem, respectively. The system matrix
Mi(qi) ∈ Rn×n, Ci(qi, q̇i) ∈ Rn×n, Gi(qi) ∈ Rn are posi-
tive definite inertia matrix, centripetal and coriolis torques
matrix, and gravitational torque matrix, respectively. For
brevity, the parameters in the brackets of these matrix will
be omitted in subsequent derivation. τi ∈ Rn is the control
torque. Although system (1) has some impressive properties
[20], they are not always available and will not be considered
to be used in this paper.

Generally, the control torque can be simplistically seen
as the output of a proportional actuator, making the entire
system model akin to equation (1). Yet, when the robot’s
mechanics are lightweight and demand swift motions, the
actuator can’t be simplified into a basic zero-order model
anymore. In such scenarios, the motor dynamics necessitate
a description using a first- or second-order dynamical model.
To illustrate, let’s assume the motor dynamics follow a first-
order linear model

τ̇i = Aaτi + ui, (2)

where Aa and ui are the coefficient matrix and control input
of the actuator of the i-robot, respectively. Specifically, the
component of each actuator can be expressed as

τ̇k = akτk + uk, k = 1, 2, . . . ,m, (3)

where τk and uk, k = 1, 2, . . . ,m, are the torque and in-
put voltage of the k-th individual motor, and ak, k =
1, 2, . . . ,m, are a series of negative parameters.

One common approach to achieve the coordinated con-
trol of the combined system described by equations (1) and
(2) involves initially simplifying the system into a first-order
state space configuration. Subsequently, control methods de-
signed for first-order systems are applied. This process ul-
timately requires handling a first-order system of dimension
3n. However, in contrast to this conventional method, our
paper adopts a high-order system approach. For the sake of
simplicity, this paper utilizes the first-order actuator model
(2). The control objective is summarized as follows.

Control objective: Consider the following cascaded
robotic systems{

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +Gi(qi) = τi, i ∈ N
τ̇i = Aaτi + ui.

(4)

Design a control signal ui for each robot such that the fol-
lowing coordination objective can be achieved

lim
t→∞

|qi − qj | = 0, lim
t→∞

q̇i = 0. (5)

3 High-Order Fully-Actuated Model for Net-
worked Robotic Systems

In this section, the networked robotic systems is firstly
transformed into a high-order fully-actuated model. From
(1), the differentiations of system matrices are

d

dt
(Miq̈i) =

dMi

dt
q̈i +Mi

...
q i, (6)

d

dt
(Ciq̇i) =

dCi

dt
q̇i + Ciq̈i. (7)

Then also differentiating the left-hand side of (1), it yields

d

dt
(Miq̈i + Ciq̇i +Gi)

=
dMi

dt
q̈i +Mi

...
q i +

dCi

dt
q̇i + Ciq̈i +

d

dt
Gi

= Mi
...
q i +

(
dMi

dt
+ Ci

)
q̈i +

dCi

dt
q̇i +

d

dt
Gi.

In addition, the following actuator dynamics can be derived
from (2),

τ̇i = Aa(Miq̈i + Ciq̇i +Gi) + ui. (8)

Then the closed-loop system can be expressed as

Mi
...
q i +

(
dMi

dt
+ Ci

)
q̈i +

dCi

dt
q̇i +

d

dt
Gi

= AaMiq̈i +AaCiq̇i +AaGi + ui.

Then the system dynamics (1) is rewritten as the following
third-order model

Ai3(qi, q̇i)
...
q i +Ai2(qi, q̇i)q̈i

+Ai1(qi, q̇i)q̇i + ηi(qi, q̇i) = ui, (9)
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where

Ai3(qi, q̇i) = Mi,

Ai2(qi, q̇i) =
dMi

dt
+ Ci −AaMi,

Ai1(qi, q̇i) =
dCi

dt
−AaCi,

ηi(qi, q̇i) =
d

dt
Gi −AaGi.

4 Coordinated Control Design

4.1 Controller design
In this section, the coordination control problem for sys-

tem (1) is transformed into the system in (9). As stated in
[17], the coordinated controller is also designed with two
parts,

ui = uic + uif , (10)

where uic is used to compensate the term ηi(qi, q̇i) in (9),
which is given by

uic = ηi(qi, q̇i), (11)

while uif is designed to achieve the coordination objective,
which can be designed as

uif = Ki0(qi, q̇i)q̈i +Ki1(qi, q̇i)q̇i

+K2(qi, q̇i)
∑n

j=1
aij(qi − qj)+

+K3(qi, q̇i)
∑n

j=1
aij(q̇i − q̇j)

+K4(qi, q̇i)
∑n

j=1
aij(q̈i − q̈j) + vi, (12)

where Kim(qi, q̇i),Kr(qi, q̇i) ∈ Rn×n, m = 0, 1, r =
2, 3, 4, are piecewise continuous gain matrices to be de-
signed, qj is the state of the j-th robot. It can be seen
that the proposed controller contains six parts, where the
terms containing collaborative interactions

∑n
j=1 aij(qi −

qj),
∑n

j=1 aij(q̇i − q̇j), and
∑n

j=1 aij(q̈i − q̈j) are used
to achieve coordination of the networked robotic systems,
while the terms Ki0(qi, q̇i)q̇i and Ki1(qi, q̇i)q̈i are used to
compensate for the inherent nonlinearity of the i-th robotic
system. vi is an external signal that can be used to achieve
additional control design.

Under the controller (12), the closed-loop system can be
written as

Ai3(qi, q̇i)
...
q i +Ai2(qi, q̇i)q̈i +Ai1(qi, q̇i)q̇i

= Ki0(qi, q̇i)q̈i +Ki1(qi, q̇i)q̇i

+K2(qi, q̇i)
∑n

j=1
aij(qi − qj)+

+K3(qi, q̇i)
∑n

j=1
aij(q̇i − q̇j)

+K4(qi, q̇i)
∑n

j=1
aij(q̈i − q̈j) + vi, (13)

where Aim(qi, q̇i), m = 1, 2, 3, are given in (9). Then the
stacked form of (13) can be written as

A3
...
q +A2q̈ +A1q̇

= (L ⊗K2)q + (K1 + (L ⊗K3))q̇

+ (K0 + (L ⊗K4))q̈ + v, (14)

where the stacked system and control gain matrices are de-
fined as

A3 = diag{Ai3(qi, q̇i)}, A2 = diag{Ai2(qi, q̇i)},
A1 = diag{Ai1(qi, q̇i)}, v = [v1, ..., vn],

K0 = diag{Ki0},K1 = diag{Ki1}.

As mentioned above, to compensate for the effects of the
terms A2q̈ and A1q̇, the control gain matrices K1 and K3

are designed as

K0 = A2, K1 = A1. (15)

Then equation (14) can be rewritten as
...
q =A−1

3 [(L ⊗K4)]q̈ +A−1
3 [(L ⊗K3)]q̇

+A−1
3 (L ⊗K2)q +A−1

3 v. (16)

Next, we introduce two subspaces whose direct sum re-
sults in CnN . Through the state projection of system (16)
onto these two subspaces, the coordination issue is trans-
formed into stability analysis related to various subsystems
linked to the eigenvalues of the Laplacian matrix L. Con-
sider λi(i = 1, 2, . . . , N) as the eigenvalues of the Lapla-
cian matrix L within the directed topology G. Here, λ1 = 0
alongside its associated eigenvector ū1 = 1, and the order-
ing follows: Re (λ1) ⩽ Re (λ2) ⩽ · · · ⩽ Re (λN ). Let
U−1LU = J , where U = [ū1, ū2, . . . , ūN ], and J denotes
the Jordan canonical form of L. Define cl(l = 1, 2, . . . , n) as
linearly independent n-dimensional real vectors, the follow-
ing two subspaces on CnN is introduced. Let pj = ūi ⊗ cl
with j = (i− 1)n+ l, i = 1, 2, . . . , N , and l = 1, 2, . . . , n.
A coordination subspace is defined as C(U), which spanned
by p1, p2, . . . , pn. Additionally, a complementary coordi-
nation subspace is denoted as C(U), which is spanned by
pn+1, pn+2, . . . , pnN . Then for any vector z ∈ C(U), we
have z = 1 ⊗ c̄ with c̄ being a n-dimensional vector. Since
pj(j = 1, 2, . . . , Nd) are linearly independent, it derives
that C(U)⊕ C(U) = CnN , where ⊕ means the direct sum.

Then define q̃(t) =
(
U−1 ⊗ In

)
q(t) =[

q̃H1 (t), q̃H2 (t), . . . , q̃HN (t)
]H

, equation (14) can be rewritten
as

...
q̃ = A−1

3 [(J ⊗K4)]¨̃q +A−1
3 [(J ⊗K3)] ˙̃q

+A−1
3 (J ⊗K2)q̃ +A−1

3 ṽ. (17)

Define J = diag{0, J̄} with J̄ = diagλi, i = 2, 3, . . . , N .
Let q̄(t) =

[
q̃H2 (t), . . . , q̃HN (t)

]H
, then system (17) can be

rewritten as follows
...
q̃ 1(t) = A−1

3i ṽ1, (18)
...
q̄ (t) = A−1

3 [(J̄ ⊗K4)]¨̄q +A−1
3 [(J̄ ⊗K3)] ˙̄q

+A−1
3 (J̄ ⊗K2)q̄ +A−1

3 v̄. (19)

According to the Theorem 1 in [21], the following lemma
can be directly obtained.

Lemma 1 The coordination objective of system (17) can be
achieved if and only if the following system are asymptoti-
cally stable.

...
η i(t) =λiA

−1
3i K4η̈i(t) + λiA

−1
3i K3η̇i(t)

+ λiA
−1
3i K2ηi(t) +A−1

3i v̄i, i = 2, 3, . . . , N.
(20)
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Now the coordination control problem of networked robotic
systems is transformed into the stabilization problem of sys-
tem (20). Then define q̆i =

[
ηTi (t), η̇

T
i (t), η̈

T
i (t)

]T
, equation

(20) can be rewritten as

˙̆qi = Acq̆i +Bcv̄i, (21)

where the system matrices Ac and Bc are

Ac =

 0 In 0
0 0 In

λiA
−1
3i K2 λiA

−1
3i K3 λiA

−1
3i K4

 ,

Bc =

 0
0

A−1
3

 .

Then the directly parametric method proposed in [17] can
be used to provide the control gain matrices. Specifically,
choosing any matrix F ∈ R3n×3n related to your desired
stabilization objective, which satisfy

F =
{
F | F ∈ R

3n×3n, and ∃Z ∈ R
n×3n ,

s.t. detV (Z,F ) ̸= 0}.

where V ∈ R3n×3n is a constant nonsingular matrix such
that

V −1AcV = F. (22)

Note that as shown in [17], F is nonempty. Then the system
matrix Ac can be expressed as

Ac = V FV −1, (23)

which means that the triple of gain matrices Kim ∈ Rn×n,
m = 0, 2, 4, can be directly derived. The matrix V can be
expressed as

V = V (Z,F ) =

 Z
ZF
ZF 2

 . (24)

which is a full-rank matrix. Then the following theorem is
given.

Theorem 1 For the networked robotic systems modeled by
(4) under the proposed controller (10) with (11) and (12),
then the control objective (5) can be achieved if the control
gain matrices satisfy

Ki0 = Ai2,Ki1 = Ai1,

[λiK2, λiK3, λiK4] = A3iZF 3V −1(Z,F ), (25)

where Z ∈ Rn×3n is an arbitrary parameter matrix as
shown in (24).

Remark 1 More details on the proof of Theorem 1 can re-
fer to [21]. The main idea of the controller design in (10)
is to design appropriate control gain matrices, the inher-
ent nonlinearity of the system is compensated and coordi-
nated control of the robotic systems is achieved. That means
the second question in Introduction is answered in this part.
From (12), it can be seen that the zero-order, first-order, and
second-order derivatives of state information of the robotic
systems are all used in the proposed controller, which is con-
sistent with existing direct parametric methods.

4.2 Discussion on the coordination controller design
To be formally consistent with existing direct paramet-

ric methods, the zero-order, first-order, and second-order
derivatives of state information of the robotic systems are
all used in the proposed controller (12). However, these in-
formation may not be available in any time. Next, we will
discuss other possible forms of the coordination controllers
to answer the first question in Introduction.

To achieve collaborative control of networked robotic sys-
tems, a straightforward idea is to only use the relative states
to design controller, such as

uif =Ki0(qi, q̇i)
∑n

j=1
aij(qi − qj)

+Ki1(qi, q̇i)
∑n

j=1
aij(q̇i − q̇j)

+Ki2(qi, q̇i)
∑n

j=1
aij(q̈i − q̈j) + vi. (26)

However, it is not difficult to see that this form of cooper-
ative controller has difficulty in compensating the inherent
nonlinearity of the system through gain design since the con-
trol gain and Laplacian matrix are coupled with each other.
Thus the first two parts in (12) are necessary and inevitable.
Then alternative control schemes can be designed as

uif =Ki0(qi, q̇i)qi +K1(qi, q̇i)
∑n

j=1
aij(qi − qj)

+Ki2(qi, q̇i)q̇i +K3(qi, q̇i)
∑n

j=1
aij(q̇i − q̇j)

+Ki4(qi, q̇i)q̈i +K5(qi, q̇i)
∑n

j=1
aij(q̈i − q̈j) + vi,

(27)

where the controller (12) can be seen as a special case of (27)
with Ki0(qi, q̇i) = 0. Under controller (27), the closed-loop
system is given as

A3
...
q +A2q̈ +A1q̇

= [K0 + (L ⊗K1)]q + [K2 + (L ⊗K3)]q̇

+ [K4 + (L ⊗K5)]q̈ + v. (28)

According to the analysis of Theorem 1, the following corol-
lary is given.

Corollary 1 For the networked robotic systems modeled by
(4) under the proposed controller (10) with (11) and (27),
then the control objective (5) can be achieved if the control
gain matrices satisfy

Ki0 = Ai2,Ki2 = Ai1,

[λiK1, λiK3,K4 + λiK5] = A3iZF 3V −1(Z,F ), (29)

where Z ∈ Rn×3n is an arbitrary parameter matrix as
shown in (24).

In this case, the introduction of K4 in (27) provides an addi-
tional degree of freedom in control gain design.

Obviously, the other one important degenerate forms of
(27) can be expressed as

uif =Ki0(qi, q̇i)q̇i +Ki1(qi, q̇i)q̈i

+K2(qi, q̇i)
∑n

j=1
aij(qi − qj) + vi, (30)
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which can be seen as a minimal implementation of (27). Un-
der controller (30), the closed-loop system is given as

A3
...
q +A2q̈ +A1q̇

= K0q̇ +K1q̈ + (L ⊗K2)q + v. (31)

Intuitively, the inherent nonlinearity of the system can be
counteracted by choosing K0 = A1 and K1 = A2, but
this makes the design of control gain K2 complex and loses
some design freedom. Next, we still analyze along the idea
of direct parametric method of fully-actuated system. The
closed-loop system under (31) can be expressed as

...
q =A−1

3 (K0 −A1)q̇ +A−1
3 (K1 −A2)q̈

+A−1
3 (L ⊗K2)q +A−1

3 ṽ. (32)

Choosing the control gain matrices K0 and K1 as

K0 = A1 +G0,K1 = A2 +G1. (33)

Then (17) can be rewritten as

...
q = A−1

3 G0q̇ +A−1
3 G1q̈ +A−1

3 (L ⊗K2)q +A−1
3 ṽ.

(34)

Then the following the following corollary is given.

Corollary 2 For the networked robotic systems modeled by
(4) under the proposed controller (10) with (11) and (31),
then the control objective (5) can be achieved if the control
gain matrices satisfy

Ki0 = Ai1 +G0,Ki1 = Ai2 +G1,

[G0, G1, λiK2] = A3iZF 3V −1(Z,F ), (35)

where Z ∈ Rn×3n is an arbitrary parameter matrix as
shown in (24).

Remark 2 In fact, we ignored several situations in the
above analysis, namely the cases that Ki0(qi, q̇i) = 0,
K3(qi, q̇i) = 0, K5(qi, q̇i) = 0 and Ki0(qi, q̇i) = 0,
K5(qi, q̇i) = 0. These cases can be easily extended by
analysis above results. It is worth noting that the signif-
icant benefits brought by the controller (30) are that only
generalized position information of the neighboring robots
is required. In this case, the user can easily be allowed to
further consider other issues such as communication delay
and communication bandwidth constraints. In addition, this
also answers the first question in Introduction, the ith robot’s
own zero-order, first-order, and second-order derivatives of
state information is necessary in direct parametric method
of fully-actuated system, while only the generalized position
information of the neighboring robots is enough in coordi-
nation controller design.

5 Conclusions

In this paper, the coordination control problem of the net-
worked robotic systems is considered using a fully-actuated
system method. By transforming the Enler-Lagrange sys-
tem model into a fully-actuated system, several coordination
control schemes are proposed and analyzed. By using the
direct parametric method, the stability conditions for control

gain matrices are directly given. The approach offers a com-
plete flexibility that can be used to enhance the system’s per-
formance. In the future, we will further consider the impact
of communication delay and disturbances in a fully-actuated
system framework. In addition, how to realize coordinated
control of fully-actuated high-order nonlinear systems is also
an important research direction.
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一种固定时间的二阶多智能体系统分布式最优一致性算法
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摘   要: 随着人工智能技术和通信技术的快速发展，面向分布式多智能体系统的分布式优化问题得到广泛关注. 本文针对无向网络

下二阶多智能体系统的分布式优化问题设计一种固定时间收敛优化算法. 首先，本文利用基于符号函数的滑模理论实现智能体速

度量固定时间收敛至目标值，将二阶智能体分布式优化问题转化为一阶智能体分布式优化问题. 其次，借助滑模理论实现智能体

固定时间实现梯度和为零. 然后，本文利用成本函数二阶导信息设计一种初始自由固定时间时间收敛算法. 最后结合案例仿真说

明本文所设计算法的有效性. 
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Abstract: With the rapid development of artificial intelligence technology and communication technology, the distributed 

optimization problem for distributed second-order multi-agent systems has received extensive attention. In this paper, a specified 

time convergence optimization algorithm is designed for the distributed optimization problem of multi-agent systems under 

undirected networks. Firstly, the sliding mode theory is used to achieve fixed-time convergence of the agent speed to the target 

value, transforming the second-order agent-distributed optimization problem into a first-order agent-distributed optimization 

problem. Secondly, with the help of the sliding mode theory, the agent realizes that the gradient sum is zero at a fixed time. Then, 

this paper uses the second derivative information of the cost function to design an initialization-free fixed-time convergent 

algorithm. Finally, the effectiveness of the algorithm designed in this paper is illustrated by case simulation. 

Key Words: Fixed-time, Distributed optimization, Multi-agent systems, Zero-gradient-sum 

1 引言 

多智能体系统分布式优化是一种涉及多个分布

式智能体的优化问题，这些智能体需要通过分布式计

算和通信来合作解决优化问题.与集中式优化问题相

比，分布式优化问题中不存在中央控制单元，具有较

强的可扩展性和鲁棒性
[1-3]

.最优一致性问题作为分布

式优化问题的典型应用之一，旨在实现所有智能体决

策变量一致，并最小化所有智能体成本函数和
[4]
.随着

多智能体系统一致性技术发展，许多优秀算法被设计

出来，包括两大类: 离散时间算法和连续时间算法
[5]
. 

在离散时间算法方面, Nedic首次将梯度下降策

略与多智能体系统一致性结合，设计一类分布式优化

算法实现无向和有向网络下的最优一致性问题
[6-7]

.然

而其中采用的时变递减步长降低了算法收敛速度. 

*此项工作分别得到大连理工大学工业装备智能控制与优化教育部

重点实验室开放基金、国家自然科学基金创新研究群体科学基金和国

强行将时变递减步长变为固定步长, 则上述算法仅

能收敛至最优解邻域，而无法精确收敛至最优解. 为

此, 施伟等利用各智能体历史信息实现对梯度函数

的精确跟踪,在固定步长下获取线性收敛
[8]
.随后，该

梯度跟踪技术被推广至各种情形,包括有向网络
[9]
、加

速优化
[10]

等.不同于上述依赖于梯度的方法，一种依

赖于成本函数二阶导信息的零梯度和算法被设计出

来
[11]

.但是上述算法依然是线性收敛. 

 近年来，随着信息物理系统技术的发展,越来越

多学者尝试将智能体动力学特性融入算法设计，开发

连续时间算法
[12]

.借助完备的Lyapunov理论或微分包

含理论等给出更强的收敛结论，例如有限时间收敛、

固定时间收敛等
[13]

.Wu等利用符号函数与零梯度和

方法设计一类有限时间收敛的最优一致性算法
[14]

.然

而其收敛时间依赖于系统初始状态.为消除算法收敛

家自然科学基金资助，项目批准号：LICO2022TB02、61921004和
62173057. 
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时间对初始状态的依赖，Ning等设计一类固定时间收

敛算法
[15]

.然而，上述文献仅能处理梯度函数线性可

分的分布式凸优化问题.为此,Liu等利用时基生成器

设计一类预设时间最优一致性算法
[16]

.然而上述算法

仅能收敛至分布式优化问题的次优解.为求解分布式

最优一致性问题的精确解，文献[17]设计一种两阶段

分布式优化算法，其中第一阶段实现智能体固定时间

收敛至局部最优解,第二阶段借助多智能体一致性策

略和成本函数二阶导信息实现智能体固定时间收敛

至全局最优解. 然而上述算法需分阶段执行. 为实现

上述两阶段同步执行, 文献[18]借鉴滑模控制策略，

设计一种初始自由固定时间分布式优化算法. 

基于上述讨论，可以发现现有研究成果多讨论一

阶多智能体系统.时等
[19]

利用跟踪控制实现二阶多智

能体系统的固定时间最优一致性.然而该文献要求智

能体间传递成本函数的梯度值,容易造成隐私泄露.

故本文拟设计一种新型固定时间收敛的最优一致性

算法，贡献点总结如下:与传统零梯度和算法[11]相

比,本文所设计算法能够实现固定时间收敛，且智能

体状态无需满足梯度和为零约束. 

本文后续结构安排如下：第2节进行问题描述和

算法设计，第3节开展算法收敛性分析，第4节进行案

例仿真，第5节总结全文. 

2 问题描述及算法设计 

本小节首先进行问题描述，随后基于网络图论和

多智能体一致性技术进行算法设计. 

2.1  问题描述 

在最优一致性问题中，各智能体拥有仅自己可知

的决策变量 ix  和局部成本函数 ( ) :i if x = → . 其数

学模型可归纳如下：

1

      min ( ) ( )

. .  , , 1,2,...,

n

i i
x

i

i j

f x f x

s t x x i j n

=

=

= =


     (1) 

其中系统总成本函数表示为所有局部成本函数之和. 

所有智能体协同合作共同最小化总成本函数. 此外，

各智能体动力学特性描述如下： 

i i

i i

x v

v u

=

=
 (2) 

其中 iu 为控制策略， iv 为智能体速度量。

为实现上述目标，各智能体需通信合作，以此建

立合适的控制策略. 为此，针对上述 n 多智能体系统，

其无向通信网络可由符号 ( , , )G V A E 表示，其中

{1,2,..., }V n= 表示智能体节点集、E V V  表示智能体

间通信链路集合、 : [ ] n n

ijA a =  表示智能体间通信权

重或伴随矩阵. 若智能体 i 和智能体 j 存在通信链路，

则有 1ij jia a= = . 反之 0ija = .本文假设各智能体不存

在自环，则有 0iia = . 若任意两智能体间存在一条通

路，则网络G 是联通的.此外，网络G 的拉普拉斯矩

阵 :[ ] n n

ijL l  定义为
1

, , .
n

ii ij ij ij

j

l a l a i j
=

= = − 

假设1 存在正实数 i 使得 20 ( ) ,i i if x i V     . 

假设2 网络G 为无向连通图. 

引理1
[20]

 若系统 ( ( )), nx g x t x=  满足 (0) 0g = ，且存在

一 Lyapunov 函 数 ( )V x 使 得 ( ) ( )p qV V x V x  − − ，

, ,0 1, 1p q     ，则上述系统在固定时间内收敛至原

点，且收敛时间上界满足 

1 1

(1 ) ( 1)
T

p q 
 +

− −
  (3) 

引 理 2
[21]

 对 非 负 实 数 1 2, ,..., nq q q ， 则 有 结 论

1 1

( )
n n

p p

i i

i i

q q
= =

  和 1

1 1

( )
n n

m m m

i i

i i

q n q−

= =

  ，其中 0 1, 1p m   . 

2.2  算法设计 

基于多智能体系统一致性技术，算法设计如下： 

sig ( ) sig ( ) o

i i i iu e e u = − − + (4)

其中 o

i i ie v u= − , o

iu 定义如下：

(2 1

1 1

( ( )) sig ( ) sig ( )

  sig ( ) sig ( )

o

i i i i i

n n

ij i j ij i j

j j

u f x s s

a x x a x x

 

 

−

= =

=  − −


− − − − 


 

 (5) 

其中控制参数 ,  为正实数，辅助变量 is 定义为

0
1 1

( )

sig ( ) sig ( )

i i i

n nt

ij i j ij i j

j j

s f x

a x x a x x d  
= =

= 

+ − + − 
  (6) 

函数 sig ( )  定义为 sig ( ) sign( )
  =    . 公式(6)中辅助变

量 is 实现零梯度和特性. 

3 算法收敛性分析 

接下来，定理1对算法(2)进行收敛性分析. 

定理1 若假设1和2成立，则算法(2)在固定时间内收敛

至最优，且系统初始值可任意选取.  

证明. 定理1收敛性分析分如下三步: I) 智能体 i 在固

定时间 1T 内收敛至指定速度 o

iu ；II) 智能体 i 在固定时

间 12T 内收敛至梯度和为零；III) 智能体 i 在固定时间

1 22T T+ 内收敛至全局最优解. 

步骤1. 首先，由算法(4)可知 

sig ( ) sig ( )i i ie e e = − −    (7) 

令Lyapunov函数 1V 为

2

1

1

2
iV e=    (8) 

对函数 1V 求微分，可得
1 1

1

1 1 1 1

2 2 2 2
1 12 2

i iV e e

V V

 

   

+ +

+ + + +

= − −

= − −

    (9) 
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则由引理1可知，算法(4)在固定时间 1T 内实现速度量

跟踪至指定值 o

iu ，且 1T 满足以下条件

1

2

1 1

2

2 1

1
2 ( 1)

T






−

−
 +

−
−

       (10) 

步骤2. 当 1t T 时，公式(4)改写为 

sig ( ) sig ( )i i is s s = − −        (11) 

令Lyapunov函数 2V 为 

2

2

1

2
iV s=    (12) 

同理，可得 
1 1

2

1 1 1 1

2 2 2 2
1 12 2

i iV s s

V V

 

   

+ +

+ + + +

= − −

= − −

       (13) 

则由引理1可知，算法(4)在固定时间 12T 内实现梯度和

为零. 

步骤3. 当 12t T 时，公式(4)改写为 

2 1

1 1

( ( )) sig ( ) sig ( )
n n

i i i ij i j ij i j

j j

x f x a x x a x x −

= =

 
=  − − − − 

 
  (14) 

基 于 假 设 2 ， 可 得
1

d
( ) 0

d

n

i i

i

f x
t =

 = ， 可 知

1

1

( ) 0, 2
n

i i

i

f x t T
=

 =  . 令Lyapunov函数 3V 为 

T

3

1

( ( ) ( ) ( )( ))
n

i i i i i i

i

V f x f x f x x x 

=

= − −  − (15)

由假设1可知，
2

1

3

1

Tmax

2

2

( )

n

jn
ji

i

i

x

V x
n

x Lx
L







=

=

 −






    (16) 

其中 max max i
i

 = . 对函数 2V 求微分，可得 

 

( )

 
( )

( )

1 1

2

1 1 1 1

1

22

1 1

1

22

1
1 12

1
T 2

1

2

1

12
T 2

1

2

1

2
2

1

2

1

2

1

2 ( 1)

1

2

2

( 1)

( )

2

n n n n
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i j i j
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n n
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V a x x a x x

a x x

a x x

n n
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+
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−
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−

= − − − −

 
 − − 

 

 
− − 

 −
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1 1
1 12 2
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− +
+ +
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则由引理1可得，算法(4)在固定时间 1 22T T+ 内收敛至

问题(1)最优解，且收敛时间 2T 满足以下条件 

( )

 

( )

13 1 1

22 2 2
maxmax

2 1 3 1

2 2 22 2

( 1)2

( ) (1 ) 2 ( ) ( 1)

n n
T

L L

  

  



   

+− + −

+ − +

−
 +

− −

         (18) 

4 案例仿真 

接下来本文提供一无向环形通信网络下的五节

点多智能体系统作为仿真对象，每个智能体的成本函

数定义为 2( ) ( ) , 1,2,3,4,5i i if x x i i= − = . 控制参数设定为

0.2, 1.8 = = ，系统初始状态设置为 (0) [1,2,2,3,4]x = . 可

见本文所设计初始状态并不是各智能体局部最优解. 

则算法(4)的仿真轨迹如图1和图2所示. 从图2可以看

出，本文所设计算法(4)在固定时间 12 4.88T = s内实现

梯度和为零. 从图2可以看出，本文所设计算法能够在

固定时间内收敛至最优解 3x = . 通过上述案例可以发

现，本文所设计算法能够实现二阶多智能体系统的固

定时间最优一致性控制. 

图 1: 本文仿真案例智能体状态 ix 轨迹 

图 2: 本文仿真案例智能体辅助变量 is 轨迹 
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5 总结 

本文针对二阶多智能体系统设计一种初始自由

固定时间分布式最优一致性算法.基于滑模控制原理，

所设计辅助变量在固定时间内满足系统梯度和为零

特性.其次，借助零梯度和方法设计一种固定时间收

敛非线性控制策略.最后利用符号函数实现智能体速

度量在固定时间内跟踪至指定值.最后借助数值仿真

案例说明本文所设计算法的有效性. 然而，本文并没

有将智能体局部约束考虑进来.未来，我们继续探讨

固定时间收敛的分布式约束优化问题. 
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Nonlinear Multi-Agent Systems
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Abstract: This paper studies the consensus problem of high-order fully actuated (HOFA) nonlinear multi-agent systems (MASs),
and develops a novel hybrid event-triggering mechanism (HETM) by means of the HOFA system approach. Under a mild
condition that inside of a certain agent, the system state is always accessible for controller, while the state information of other
agents is obtained via networked communication, we convert the given HOFA nonlinear MAS into a general linear MAS by
pre-eliminating all the nonlinear dynamics by using the full-actuation structure of agent itself. Compared with existing related
results, which address the nonlinearities by sacrificing closed-loop consensus performance of MAS, the HOFA system approach
greatly simplifies the control model and the Lyapunov stability analysis. Then, to reduce the communication frequency, a HETM
is designed for the HOFA nonlinear MASs, which guarantees a strictly positive minimum inter-event time (MIET) to make its
implementation be proper on digital platform. A numerical example is provided in the simulation results to testify the control
effectiveness.

Key Words: High-order fully actuated nonlinear system, Event-triggered control, Multi-agent systems

1 Introduction

Over the past few years, multi-agent systems (MASs) have
attracted great research enthusiasm from many scholars aca-
demic communities, due to its wide applications in smart
grids, sensor networks, and multiple robots [1–3]. Regarding
the consensus control of MASs, the complex nonlinearities
and strong uncertainties would undoubtedly pose challenges
to the consensus controller design for nonlinear MASs. To
address this issue, the usual idea is to model the nonlinear
MASs into first-order state-space model firstly, then substi-
tuting the nonlinearities of every agent into the consensus
analysis of whole MAS and eliminating all the nonlinear
dynamics by sacrificing closed-loop consensus performance
[4, 5]. It should be pointed out that as early as in the first
modelling step, all the background information is removed
from the original physical model [6–9] in the sense that the
nonlinear dynamics of a certain agent cannot be addressed
by itself, instead has to be addressed in analysis for MAS
consensus. As a result, despite up to date there are many re-
sults for nonlinear MASs, in certain complicated cases, the
closed-loop consensus cannot be realised yet [6].

As is stated in [6, 7], most nonlinear systems can be ei-
ther physically modelled as or converted into HOFA systems,
then the full-actuation property could provide a great deal of
convenience for the control of an HOFA system in the sense
that by using the full-actuation structure, the nonlinear term
in nonlinear MASs, no matter how complicated, can be eas-
ily eliminated as long as the nonlinear term is measurable.
On this basis, the practical control model of nonlinear MASs
can be much simplified as a constant linear MAS system, the
desired closed-loop group dynamics can be realised easily,
which might provides a new idea to the control of nonlinear
MASs.

This work was supported by Hebei Natural Science Foundation un-
der F2022203040; Natural Science Foundation of China under 62073277,
62188101, U22A2050; Central Government Guided Local Science and
Technology Development Fund Project under 226Z0301G; Hebei Innova-
tion Capability Improvement Plan Project under 22567619H; and Basic In-
novation Research Project under 2022LGZD008.

In the context of networked control, communication
among agents is performed via network, but the network re-
sources are limited in general. How to reduce the commu-
nication frequency of MASs while guaranteeing the desired
consensus performance has immediately been a hotspot. In
this regard, event-triggered control have been widely studied
to reduce the usage of communication resources, see [10, 11]
for a recent overview, since information transmission is only
performed when it is needed or necessary. However, one fun-
damental problem that should be considered when designing
event-triggering mechanisms is to exclude Zeno behavior. In
many existing result, introducing an additional exponential
decay term to exclude Zeno behavior is conventional [12–
14]. Despite this can theoretically proving that the inter-event
intervals are larger than 0, the intervals may become more
and more small as time goes by. In practice, it is expected
that not only Zeno behavior is avoided, but also the minimum
inter-event time (MIET) is strictly positive [15]. Thus, it is
crucial to design appropriate event-triggering mechanism for
the HOFA nonlinear MASs.

Given the above observations, this paper studies the con-
sensus problem of HOFA nonlinear MASs, and develops a
novel hybrid event-triggering mechanism (HETM) by means
of the HOFA system approach. The main contributions of
this paper are twofold: 1) a new HOFA consensus con-
trol protocol is proposed for the nonlinear MASs by pre-
eliminating all the nonlinear dynamics by using the full-
actuation structure of agent itself, which is completely dif-
ferent from addressing the nonlinear dynamics by sacrificing
closed-loop consensus performance of MAS [4, 5]; 2) to re-
duce the communication frequency, a HETM is designed for
the HOFA nonlinear MASs, which guarantees a strictly pos-
itive MIET to make its implementation be proper on digital
platform.

Notations: The notations used in this paper is standard.
The set of real (integer) numbers is denoted by R (N) and
R≥0 denotes nonnegative reals. Rn and Rn×n denote the
set of n-dimensional vectors and n× n real matrices respec-
tively. By ‖·‖, we denote the Euclidean norm. ⊗ denotes the
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Kronecker product. For a vector xi ∈ Rn, i = 1, · · · , N ,
(x1, · · · , xN ) represents the augmented vector by stacking
x1 to xN , and we define the following symbols as in [9],

x(0∼n) =


x
ẋ
...

x(n)

 , x(0∼n)
1∼N =


x

(0∼n)
1

x
(0∼n)
2

...
x

(0∼n)
N

 .
Besides, the identity matrix is denoted by Ir, or in short I ,
and

A =


0 I

. . .
I

0 0 0 0

 , B =


0
0
...
I

 .
2 Preliminaries and Problem Formulation

2.1 Graph Theory
In this paper, communication connections among agents

are described by a weighted graph G = (V, E ,A) with V =
{1, 2, · · · , N} being the node set, E ⊆ V × V the edge set,
and A = [aij ]N×N the adjacency matrix. If agent i ∈ V can
always access to agent j ∈ Ni along edge (j, i) ∈ E , then
aij = 1, otherwise, aij = 0, where Ni = {j ∈ V : Eij ∈ E}
denotes the neighbor set of agent i. No self-loop exists, so it
has aii = 0. The edge sequence (i, i1), (i1, i2), · · · , (ip, j)
constitutes a path from agent i to agent j, and if for any i, j ∈
V , there is such a path from agent i to agent j, then the graph
G is said to be connected. Define the in-degree matrix as
D = diag{d1, d2, · · · , dN}, where di =

∑N
j=1 aij . The

Laplacian matrix is obtained as L = D − A. In this paper,
we suppose that the communication graph G is undirected
and connected.

Lemma 1 [16]. For the Laplacian matrix L associated with
undirected and connected graph G, let λi(L) denote the
eigenvalues ofL, then it holds the property that 0 = λ1(L) <
λ2(L) ≤ ... ≤ λN (L). Moreover, there is a unitary matrix U
such that UTLU = Λ , diag{0, λ2(L), · · · , λN(L)}.

2.2 Problem Formulation
This paper considers the consensus control of high-order

fully actuated (HOFA) multi-agent systems, which has the
following system dynamics [6]

x
(n)
i = fi(x

(0∼n−1)
i ) + gi(x

(0∼n−1)
i , ui) (1)

where xi, ui ∈ Rr, i ∈ V denote the system state and con-
trol input, respectively. fi(·): Rnr × R≥0 → Rr and gi(·):
R(n+1)r → Rr are available continuous nonlinear vector
functions. Besides, it is assumed that the following mapping:

hi = gi(x
(0∼n−1)
i , ui) (2)

forms a differential homeomorphism from ui to hi for all
x

(0∼n−1)
i and ui, t ≥ 0, then, according to the definitions

given in [6], it can be known that the nonlinear MAS is fully
actuated, and there always exists its inverse mapping:

ui = g−1
i (hi) (3)

such that the desired closed-loop system dynamics can be
attained by properly designing mapping input hi.

Remark 1 The above HOFA system dynamics (1) can be
used to represent a great deal of physical and theoretical sys-
tems as it has been proved in [6–9] that most nonlinear sys-
tems can be modelled as, or converted into HOFA systems.
A huge convenience provided by the full-actuation feature
for control is that the HOFA system approaches can elim-
inate easily the nonlinearities, no matter how complicated
they are, theoretically [6], and eventually produce a constant
linear closed-loop system. The effectiveness for single sys-
tems’ control has been well studied in [6–9], and along this
line, this paper tends to further investigate the positive ef-
fectiveness of pre-eliminating nonlinearities for the MASs by
utilising HOFA system approach.

Networked control has been one of the most prevalent im-
plementation methods for the distributed control of MASs. In
this paper, we suppose that the communication among agents
are performed through network in event-triggered fashion,
while inside of a certain agent, its states can always be ac-
cessible for the controller. On this basis, in view of the full-
actuation theory [6], the controller of the given HOFA non-
linear MAS can be immediately written as

u∗i =θK
∑
j∈Ni

(x
(0∼n−1)
i − x̄(0∼n−1)

ji )

hi=−fi(x(0∼n−1)
i , t) + u∗i

ui=g−1
i (hi)

(4)

where θ > 0 is a positive scalar, u∗i denotes the desired
closed-loop dynamics of MAS.

Define the measurement error for the sent out information
as

e
(0∼n−1)
ij = x̄

(0∼n−1)
ij − x(0∼n−1)

i , (5)

where{
˙̄x
(0∼n−1)
ij (t) = 0, t ∈ [tik, t

i
k+1),

x̄
(0∼n−1)
ij (t+) = x

(0∼n−1)
i (t), t ∈ {tik},

(6)

denotes the triggered state in zero-order-hold manner, that
can be received and adopted by the neighbor agents j ∈ Ni.
Note that the received state is the same for any j1, j2 ∈ Ni
without considering the delay effects, that is, x̄(0∼n−1)

ij1
=

x̄
(0∼n−1)
ij2

, thus we denote e
(0∼n−1)
i := e

(0∼n−1)
ij for all

j ∈ Ni. Notation x̄(0∼n−1)
ij (t+) represents the right-hand

jump value of a discontinuous variable. The set of {tik}
denotes the sequence of triggering instants, which is de-
termined according to the following hybrid event-triggering
mechanism (HETM)

tik+1 = inf
t
{t > tik + τmiet|ηi ≤ 0}, (7)

where ηi is a dynamic variable, which evolves along

η̇i = Ψi(ηi, e
(0∼n−1)
i , x

(0∼n−1)
i , x̄

(0∼n−1)
ji ), (8)

where Ψi(·) is an internal functions depending on locally
available variables.

Based on the HETM-based HOFA control protocol (4) and
(7), the part of the closed-loop system can be expressed in the
following constant linear closed-loop system form

ẋ
(n)
i = u∗i , (9)
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and in the state space form

ẋ
(0∼n−1)
i = Ax

(0∼n−1)
i +Bu∗i . (10)

There exists such a fact that the pair (A,B) is everlasting
controllable, which again reflects the full-actuation feature
of the HOFA nonlinear MASs.

Define δ(0∼n−1)
i = x

(0∼n−1)
i − 1

N

∑N
m=1 x

(0∼n−1)
m , it fol-

lows that δ(0∼n−1)
1∼N = (M ⊗ Inr)x

(0∼n−1)
1∼N , where M =

IN − 1
N 11T . Then, from (10) and (4), it obtains

δ̇
(0∼n−1)
1∼N =(IN ⊗A)δ

(0∼n−1)
1∼N + (ML⊗BK)x

(0∼n−1)
1∼N

− (MA⊗BK)e
(0∼n−1)
1∼N

=(IN ⊗A+ L ⊗ θBK)δ
(0∼n−1)
1∼N

− (MA⊗ θBK)e
(0∼n−1)
1∼N , (11)

and from (5), it obtains

ė
(0∼n−1)
i =−Ax(0∼n−1)

i − (Li ⊗ θBK)x
(0∼n−1)
1∼N

+ (Ai ⊗ θBK)e
(0∼n−1)
1∼N , (12)

or, in compact form

ė
(0∼n−1)
1∼N =− (IN ⊗A+ L ⊗ θBK)x

(0∼n−1)
1∼N

+ (A⊗ θBK)e
(0∼n−1)
1∼N , (13)

whereML = LM, Li and Ai denote the i-th row of matri-
ces L and A, respectively. Note that according to the update
law (6), it is known that measurement error e(0∼n−1)

ij is dis-

continuous, and has jump dynamics e(0∼n−1)
ij (t+) = 0 at

t = tik.

Remark 2 Compared with [6], the constant matrices
A0, · · · , An−1 ∈ Rr×r associated with desired closed-loop
stable of a single system is omitted in (9), this is because
the HOFA nonlinear MASs are no more concerned with one
certain subsystem’s stability. Instead, the control objective
of HOFA nonlinear MASs turns into achieving group con-
sensus. Notice from the first-order state space form (10)
that (A,B) is controllable, so the desired closed-loop con-
sensus dynamics of HOFA nonlinear MASs can always be
achieved via designing u∗i . Based on these discussions, it
can be observed that through eliminating nonlinearities in
multi-agent system, the HOFA approach simplifies the con-
trol model of nonlinear MASs and make the control problem
be much clearer, which is first main feature we want to spec-
ify. The other one is that compared with taking the nonlin-
earities into consensus analysis, and then cancelling them by
utilising the distributed gains [4, 5], pre-eliminating these
nonlinearities by HOFA approach with utilising the agent’s
own information could greatly reduce the derivation difficul-
ties, see the proof for linear MASs (10).

In this paper, the control objective is to design the
HETM-based HOFA control protocol (4) and (7) for the
HOFA nonlinear MASs (1) to achieve full-state consen-
sus in the sense that for any initial states x

(0∼n−1)
i (0),

limt→∞

∥∥∥x(0∼n−1)
i − x(0∼n−1)

j

∥∥∥ = 0,∀ i, j ∈ V .

3 Hybrid Model

To construct a suitable closed-loop state for analysis, we
need to to incorporate some variables, which have jump dy-
namics, such as measurement error (5) and timer variable.

As a result, the conventional continuous-time system model
is improper. In this section, a hybrid system model, as advo-
cated in [17–19], will be constructed to express the complete
closed-loop system dynamics. The general form of hybrid
systems is given by

H :

{
ξ̇ = F (ξ), if ξ ∈ F,
ξ+ ∈ J(ξ), if ξ ∈ J,

(14)

where F (ξ), J(ξ) represent the flow dynamics and jump dy-
namics respectively, and F and J are the corresponding flow
set and jump set. ξ(t+) is abbreviated as ξ+.

Define the closed-loop state as

τ = (τ1, · · · , τN ) ∈ RN ,
η = (η1, · · · , ηN ) ∈ RN ,

ξ = (δ
(0∼n−1)
1∼N , e

(0∼n−1)
1∼N , τ, η) ∈ X,

where τi, i ∈ V is the timer variable, having flow dynamics
τ̇i = 1 within [tik, t

i
k+1), and jump dynamics τ+ = 0 at

triggering instants t = tik. X := {(δ(0∼n)
1∼N , e

(0∼n)
1∼N , τ, η) ∈

RnrN × RnrN × RN≥0 × RN≥0}.
Based on (11), (13) and (8), the flow dynamics is given as

ξ̇ = F (ξ), if ξ ∈ F, (15)

with

F (ξ) =


δ̇

(0∼n−1)
1∼N
ė

(0∼n−1)
1∼N

1N
Ψ

 , (16)

where Ψ = (Ψ1, · · · ,ΨN ). The flow set is defined as F =⋂N
i=1 Fi, where Fi := {ξ ∈ X|τi < τmiet ∨ ηi > 0}.
The jump dynamics is given by

ξ+ ∈
N⋃
i=1

Ji(ξ), if ξ ∈ J, (17)

and

Ji(ξ) =


δ

(0∼n−1)
1∼N

(I − Λi ⊗ Inr)e1∼N
(I − Λi)τ

η

 , (18)

where Λi ∈ RN×N is a diagonal matrix with only the ii-th
entry being 1, all the rest are 0. The jump set is defined as
J :=

⋃N
i=1 Ji with Ji := {ξ ∈ X|τi ≥ τmiet ∧ ηi ≤ 0},

By now, the hybrid system model has been developed
in (15)-(18) for the HOFA nonlinear MASs (1). Next, we
present the stability definition for this hybrid system.

Definition 1 Given the hybrid system (15)-(18), the set {ξ ∈
X|δ(0∼n−1)

1∼N = 0, e
(0∼n−1)
1∼N = 0, η = 0} is said to be uni-

formly globally asymptotically stable (UGAS) if there ex-
ists a function β ∈ KL such that, for any initial condition
ξ(0) ∈ X, the following condition holds∥∥∥(δ

(0∼n−1)
1∼N (t), e

(0∼n−1)
1∼N (t), η(t)

∥∥∥
≤ β

(∥∥∥δ(0∼n−1)
1∼N (0), e

(0∼n−1)
1∼N (0), η(0)

∥∥∥ , t) . (19)
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4 Main Results

Before presenting the main results, we first introduce an
auxiliary function φi(t) : R≥0 → R≥0

φ̇i(τi) = −s(τi)
(
σ̄1φ

2
i (τi) + σ̄2φi(τi) + σ̄3

)
, (20)

the switching signal s(τi) = 1 if τi < τmiet, and s(τi) = 0
if τi ≥ τmiet. Notice that the decline of φi(τi) from φi(0) >
0 to 0 could always guarantee a minimum inter-event time
(MIET) τmiet for the adjacent events.

Theorem 1 Given the HOFA nonlinear MAS (1), if the de-
signed HOFA controller (4) and the HETM in (7) satisfy the
following conditions:

1) the control matrix of u∗i is K = −BTP with P being
the solution to Riccati equation;

2) the gain of u∗i satisfies θ≥ 4λ2
2(L)+(4+16γ)λ2(L)+1

4λ2
2(L)

;
3) the parameters of auxiliary function φi are

σ̄1 = 3λmax(Γ)/λmin(P ), σ̄2 = 0 and σ̄3 =
2‖A2‖λmax(Γ)/λmin(P ), the value range of MIET be-
longs to τmiet ∈ (0, τm], where

τm =


2
ϑarctan 2σ̄1ϑφ(0)

ϑ2+σ̄2
2+2σ̄1σ̄2φ(0)

, σ̄2
2 < 4σ̄1σ̄3

4σ̄1φ(0)
σ̄2
2+2σ̄1σ̄2φ(0)

, σ̄2
2 = 4σ̄1σ̄3

2
ϑarctanh −2σ̄1ϑφ(0)

ϑ2+σ̄2
2+2σ̄1σ̄2φ(0)

, σ̄2
2 > 4σ̄1σ̄3

(21)
where ϑ =

√
sign(ϑσ)ϑσ , ϑσ = 4σ̄1σ̄3 − σ̄2

2; and
4) the dynamics of ηi is Ψi(·)=−(1−s(τi))(3φ2

i (τmiet)+

2‖A2‖ + 2γdi)
λmax(Γ)
λmin(P ) (e

(0∼n−1)
i )TPe

(0∼n−1)
i +

γ
∑
j∈Ni

(x
(0∼n−1)
i −x̄(0∼n−1)

ji )Γ(x
(0∼n−1)
i −x̄(0∼n−1)

ji );
then, the asymptotic consensus of HOFA nonlinear MASs (1)
can be achieved.

Proof: Consider the candidate Lyapunov function

V = V1 + V2 +
N∑
i=1

ηi, (22)

where

V1 =(δ
(0∼n−1)
1∼N )T (L ⊗ P )δ

(0∼n−1)
1∼N ,

V2 =
N∑
i=1

φi(e
(0∼n−1)
i )TPe

(0∼n−1)
i .

Take derivative to V1 along (11), it obtains that

V̇1 =(δ
(0∼n−1)
1∼N )T

(
L ⊗ (PA+ATP )

)
δ

(0∼n−1)
1∼N

− 2θ(δ
(0∼n−1)
1∼N )T (LL ⊗ Γ) δ

(0∼n−1)
1∼N

+ 2θ(δ
(0∼n−1)
1∼N )T (LA⊗ Γ) e

(0∼n−1)
1∼N

≤(δ
(0∼n−1)
1∼N )T

(
L ⊗ (PA+ATP − Γ)

)
δ

(0∼n−1)
1∼N

+ (δ
(0∼n−1)
1∼N )T (L ⊗ Γ) δ

(0∼n−1)
1∼N

− θ(δ(0∼n−1)
1∼N )T (LL ⊗ Γ) δ

(0∼n−1)
1∼N

+ θ(e
(0∼n−1)
1∼N )T (AA⊗ Γ) e

(0∼n−1)
1∼N . (23)

In light of Lemma 1, we know that there is a unitary ma-
trix U such that UTLU = Λ , diag{0, λ2(L), · · · , λN(L)}.
Denote ϕ(0∼n−1)

1∼N = (L ⊗ Inr)δ
(0∼n−1)
1∼N and δ̃

(0∼n−1)
1∼N =

(UT ⊗ IN )δ
(0∼n−1)
1∼N , we have

(δ
(0∼n−1)
1∼N )T (L⊗Γ) δ

(0∼n−1)
1∼N

=(δ̃
(0∼n−1)
1∼N )T (Λ⊗Γ) δ̃

(0∼n−1)
1∼N

=
N∑
i=2

λi(L)(δ̃
(0∼n−1)
i )TΓδ̃

(0∼n−1)
i

≤ 1

λ2(L)

N∑
i=2

λ2
i (L)(δ̃

(0∼n−1)
i )TΓδ̃

(0∼n−1)
i

=
1

λ2(L)
(ϕ

(0∼n−1)
1∼N )T (IN ⊗ Γ)ϕ

(0∼n−1)
1∼N . (24)

Then, according to Riccati equation, it has

V̇1 ≤− (δ
(0∼n−1)
1∼N )T δ

(0∼n−1)
1∼N

+
( 1

λ2(L)
− θ
)

(ϕ
(0∼n−1)
1∼N )T (IN ⊗ Γ)ϕ

(0∼n−1)
1∼N

+ (e
(0∼n−1)
1∼N )T (AA⊗ Γ) e

(0∼n−1)
1∼N . (25)

Taking derivative to V2 along (12) gives that

V̇2 =
N∑
i=1

φ̇i(e
(0∼n−1)
i )TPe

(0∼n−1)
i

−
N∑
i=1

φi(e
(0∼n−1)
i )T (PA+ATP )x

(0∼n−1)
i

+ 2
N∑
i=1

φi(e
(0∼n−1)
i )T (Li ⊗ Γ)x

(0∼n−1)
1∼N

− 2
N∑
i=1

φi(e
(0∼n−1)
i )T (Ai ⊗ Γ)e

(0∼n−1)
1∼N . (26)

For the second term of (26), it has

−
N∑
i=1

φi(e
(0∼n−1)
i )T (PA+ATP )x

(0∼n−1)
i

≤
N∑
i=1

φ2
i (e

(0∼n−1)
i )T (PA+ATP )e

(0∼n−1)
i

+
N∑
i=1

1

4
(x

(0∼n−1)
i )T (PA+ATP )x

(0∼n−1)
i

≤
N∑
i=1

φ2
i (e

(0∼n−1)
i )TΓe

(0∼n−1)
i +

1

4
(x

(0∼n−1)
i )TΓx

(0∼n−1)
i

≤
N∑
i=1

φ2
i (e

(0∼n−1)
i )TΓe

(0∼n−1)
i

+
1

4λ2
2(L)

(ϕ
(0∼n−1)
1∼N )T (IN ⊗ Γ)ϕ

(0∼n−1)
1∼N , (27)

for the third term of (26), it has

2
N∑
i=1

φi(e
(0∼n−1)
i )T (Li ⊗ Γ)x

(0∼n−1)
1∼N

≤
N∑
i=1

φ2
i (e

(0∼n−1)
i )TΓe

(0∼n−1)
i +‖(L ⊗K)x

(0∼n−1)
1∼N ‖2

≤
N∑
i=1

φ2
i (e

(0∼n−1)
i )TΓe

(0∼n−1)
i

+ (ϕ
(0∼n−1)
1∼N )T (IN ⊗ Γ)ϕ

(0∼n−1)
1∼N , (28)
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for the fourth term of (26), it has

− 2
N∑
i=1

φi(e
(0∼n−1)
i )T (Ai ⊗ Γ)e

(0∼n−1)
1∼N

≤
N∑
i=1

(φ2
i + ‖A2‖)(e(0∼n−1)

i )TΓe
(0∼n−1)
i . (29)

Then, substitute the above three inequalities into (26), it
gives that

V̇2 =
N∑
i=1

φ̇i(e
(0∼n−1)
i )TPe

(0∼n−1)
i

+
N∑
i=1

(3φ2
i + ‖A2‖)λmax(Γ)

λmin(P )
(e

(0∼n−1)
i )TPe

(0∼n−1)
i

+
(

1 +
1

4λ2
2(L)

)
(ϕ

(0∼n−1)
1∼N )T (IN ⊗ Γ)ϕ

(0∼n−1)
1∼N .

(30)

Finally, summing up (25) and (30), it leads to

V̇ ≤− (δ
(0∼n−1)
1∼N )T δ

(0∼n−1)
1∼N +

N∑
i=1

(
η̇i −γ

∑
j∈Ni

(x
(0∼n−1)
i −x̄(0∼n−1)

ji )Γ(x
(0∼n−1)
i −x̄(0∼n−1)

ji )
)

−
(
θ − 4λ2

2(L) + (4 + 16γ)λ2(L) + 1

4λ2
2(L)

)
× (ϕ

(0∼n−1)
1∼N )T (IN ⊗ Γ)ϕ

(0∼n−1)
1∼N

+
N∑
i=1

(
φ̇i + (3φ2

i + 2‖A2‖+ 2γdi)
λmax(Γ)

λmin(P )

)
× (e

(0∼n−1)
i )TPe

(0∼n−1)
i

≤0, (31)

where the last inequality is guaranteed by the conditions in
Theorem 1.

Notice that there is a piecewise continuous term V2 in Lya-
punov function (22), thus we consider the following jump
case at every triggering instants t = tik (i.e. τi ≥ τmiet and
φ(τi) > 0). In this case, it has V + − V = φi(0) · 0 −
φi(τmiet)(e

(0∼n−1)
i )TPe

(0∼n−1)
i ≤ 0, which implies that it

does not lead to non-monotonic phenomenon.
By now, from (31) and the above analysis, it can be con-

cluded that the Lyapunov function (22) is persistently de-
crease upon the whole time domain, thus the hybrid system
(15)-(18) is UGAS and the event-based asymptotic consen-
sus of HOFA nonlinear MASs (1) is achieved.

This completes the proof. �

5 Numerical example

Fig. 1: Connection relationship.

In this section, a simulation example borrowed from [20]
is given to show the effectiveness of the proposed method.
The HOFA nonlinear MAS is composed of six pendu-
lum systems, their connection relationship is represented by
graph Fig.1. The agents’ dynamics in form of (1) is repre-
sented as ẍi = − gl sin(xi) − k

m ẋi + ui, where m = 0.5,
l = 4.9, k = 0.5 and g = 9.8 are, respectively, the mass of
bob, the length of rod, the coefficient of friction, and the ac-
celeration due to gravity. According to Theorem 1, the con-
troller is designed as (4), and the control gain and system pa-
rameters are selected asK = [0.3162 0.8558], θ = 4.75, and
ηi(0) = 0.1. The MIET is τmiet = 0.1s. Then, for any initial
states xi(0) = −0.1∗i+0.7 and ẋi(0) = 0.1∗i, i = 1, · · · , 6,
the consensus of HOFA nonlinear MAS is achieved, see Figs.
2-5 for more details. Fig. 2 and Fig. 3 present the state tra-
jectories of ẋi and xi, i = 1, · · · , 6, which illustrate that the
asymptotic consensus of HOFA nonlinear MASs is achieved.
Fig. 4 shows the triggering sequence of using the proposed
HETM, it can be found that in between any adjacent events,
there always exists a MIET τmiet = 0.1s. Fig. 5 shows the
evolution of the triggering condition ηi.

0 5 10 15
Time

0

0.1

0.2

0.3

0.4

0.5

0.6 ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

Fig. 2: Trajectories of state ẋi|i=1,··· ,6.

0 5 10 15
Time

0

0.2

0.4

0.6

0.8

1

1.2 x1

x2

x3

x4

x5

x6

Fig. 3: Trajectories of state xi|i=1,··· ,6.

Fig. 4: The triggering sequence.

6 Conclusion

In this paper, the consensus problem of HOFA nonlin-
ear MASs is studied. Under a mild condition the HOFA
nonlinear MAS is converted into a general linear MAS by
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Fig. 5: Trajectories of dynamic variable ηi|i=1,··· ,6.

pre-eliminating all the nonlinear dynamics by using the full-
actuation structure of agent itself. This simplifies the actual
control model and the Lyapunov stability analysis. More-
over, a HETM is designed for the HOFA nonlinear MASs
to reduce the communication frequency while guaranteeing
a strictly positive MIET for the uncertain triggering events.
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Integral Adaptive Sliding Mode Control for Vehicle Platoon with
Disturbance Observer
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Abstract: This article proposes an integral adaptive sliding mode control (IASMC) strategy that combines adaptive reaching
laws and disturbance observers (DO) for vehicle platoon system subject to unknown disturbance. The objective is to ensure the
string stability and make the spacing error between any front and rear vehicles in the platoon be zero, which means that the
vehicles are driven at the expected spacing. To achieve it, the bidirectional (BD) topology and the constant time headway (CTH)
policy are employed. Then, an adaptive smoothed sliding mode reaching law is constructed to eliminate the chattering issue.
The unknown disturbances can be estimated by the designed DO. Meanwhile, the Lyapunov method is applied to the analysis
and proof of the stability of the designed IASMC strategy, and the Laplace transform is used in the proof of the string stability.
Finally, based on simulation, it can be seen that the availability and superiority of the designed strategy can be verified.

Key Words: Platoon control, Adaptive law, Sliding mode control, Observer.

1 Introduction

Recently, the issues of vehicle platoon control have been
extensively investigated owing to its benefits to reduce en-
ergy, increase traffic capacity and improve vehicle safety [1].
Making the spacing error between any front and rear vehicles
in the platoon be zero and satisfying the string stability are
the main objectives of platoon control [2]. The specific im-
plementation of vehicle platoon control can date back to the
PATH project in 1986 [3].

It is well known that spacing policy and information flow
topology are extremely important for platoon control. The
spacing policy is divided into two types: constant and vari-
able. Since constant spacing policy is not conducive to
the string stability, the advantages of variable spacing pol-
icy (VSP) are reflected. The VSP that changes with veloc-
ity can be seen as utilizing a filter, then the target position
of current vehicle is basically obtained by applying a filter
to the position of its preceding vehicle [4]. Moreover, the
two most commonly used VSPs are variable time headway
(VTH) and constant time headway (CTH), respectively [5].
Since the underdeveloped communication technology in the
early days, the predecessor following (PF) topology has nat-
urally become the most commonly used topology in vehicle
platoon control [6], but the PF topology would make it diffi-
cult to ensure the string stability.

Due to the rapid expansion of multi-agent systems and
vehicle-to-vehicle communications [7], [8], there are in-
creasing attempts to use other forms of topology for platoon
control. By passing information from the leader to all other
following vehicles, the string stability can be ensured. Us-
ing the predecessor-leader following topology, an adaptive
spacing policy was proposed to achieve the string stability in
[9]. However, this topology will undoubtedly cause greater
time delay problems [10]. Since the VTH policy is not con-
tributive to the security and stability, the CTH policy and the

This work was supported in part by the National Natural Science Foun-
dation of China under Grant 61973139 and Grant 61473138; and in part by
the Fundamental Research Funds for the Central Universities under Grant
JUSRP22014.

bidirectional (BD) topology are adopted to better achieve the
string stability in this paper.

Since interconnected vehicles are inevitably subject to
various unknown disturbances while driving, this will cause
the stability and the string stability to be affected. To solve
the issues arising from unknown disturbances, an H∞-based
controller for different topologies and different spacing poli-
cies was developed in [11]. In [12], by combining a min-
max objective function with a target calculator, it realized
interference suppression through model predictive control.
In addition, sliding mode control (SMC) has been exten-
sively investigated owing to its robustness to external un-
known disturbances. In [13], an adaptive compensation term
was constructed and combined with SMC to compensate for
the nonlinear uncertainties. Different from the above meth-
ods, in order to effectively estimate unknown disturbances,
disturbance observers (DO) are used in this article.

In [14], to alleviate the chattering issue of SMC, a con-
tinuous sliding mode surface (SMS) containing a sign func-
tion was designed. Subsequently, based on the coupled slid-
ing surface (CSS), an integral SMC strategy was proposed.
However, it performed unsatisfactorily when the initial spac-
ing error between adjacent vehicles is nonzero. Therefore, to
eliminate the impact, a modified CTH policy was adopted.
In [15], a reaching law with multi power was constructed to
alleviate the chattering issue of SMC. Since the above meth-
ods cannot completely eliminate chattering, this article raises
an integral adaptive sliding mode control (IASMC) strategy
combined with adaptive reaching law based on CSS.

Unlike reference [13], the proposed adaptive law is ap-
plied to the smoothed sliding mode reaching law, based
on this, the chattering problem of SMC can be effectively
avoided. And the DO in this paper can effectively estimate
the unknown disturbances directly, eliminating the need to
estimate the boundaries of the disturbances. Then, to ensure
the stability and achieve control objectives, combining the
CTH policy and DO, the IASMC strategy is proposed.

This article is structured as follows. Section II intro-
duces the dynamics of connected vehicles and outlines the
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control objectives based on CTH policy. In section III, the
IASMC strategy utilizing DO and combined with CSS based
on BD topology is proposed, then the stability is proved and
the string stability is ensured. Based on simulation results
presented in Section IV, the availability and superiority of
the IASMC strategy are demonstrated. The conclusions are
summarized in Section V.

2 Vehicle Dynamics and Problem Formulation

2.1 Vehicle Dynamics
Considering there are N + 1 vehicles, with N followers

and one leader in a platoon on a straight road. Define x0(t)
and v0(t) as the position and the velocity of the leader. Then,
the relationship of them is represented by

ẋ0(t) = v0(t). (1)

The dynamic of the ith follower is{
ẋi(t) = vi(t),

v̇i(t) =
1
mi

ui(t) + ζi(t),
(2)

where mi > 0 donotes the mass of the ith (i = 1, 2, . . . , N )
following vehicle, xi(t), vi(t) and ui(t) represent the posi-
tion, velocity and control input, respectively, and ζi(t) de-
notes the unknown disturbance, which involves external re-
sistance, acceleration disturbance.

Lemma 1 (Barbalat). Define Φ(t) : [0,∞)→ R as a uni-
formly continuous function, if limt→∞

∫ t

0
Φ(τ)dτ < ∞,

then limt→∞ Φ(t) = 0.

Lemma 2 (Uniformly Ultimately Bounded (UUB) [16]).
For a system ẋ(t) = f(x), assume there are constants ι > 0
and ϕ > 0 such that a positive definite Lyapunov function
V (x) can make V̇ (x) ≤ −ιV (x) + ϕ hold, it implies the
system is UUB.

Lemma 3 ( [17]). Consider a system ẋ(t) = f(x), assume
there are constants κ1 > 0, κ2 > 0 and 0 < κ3 < 1 such
that V̇ (x) ≤ −κ1V (x)− κ2V

κ3(x), where V (x) ≥ 0 is a
function, it implies the system can locally converge within
a fast finite-time for any arbitrary initial state x(0). The
settling time is denoted as

T ≤ 1
κ1(1−κ3)

ln
(

κ1V
1−κ3 (x(0))+κ2

κ2

)
.

Assumption 1. ζi(t) is bounded, that is, ∥ζ(t)∥ ≤ ξ and
∥ζ̇(t)∥ ≤ ζ, where ξ > 0 and ζ > 0 are unknown, ζ(t) =
[ζ1(t), ζ2(t), . . . , ζN (t)]T .

2.2 Control Objective

Fig. 1: Platoon scenario with CTH policy.

Based on the CTH policy, we can define the spacing error
ei(t) as

ei(t) = di(t)− χi(t)− hivi(t), (3)

where di(t) = xi−1(t)−xi(t), χi(t) and χi(t)+hivi(t) de-
note the real distance, stationary distance and expected dis-
tance between adjacent vehicles, respectively. In addition,
hi > 0 is a constant, representing the time headway.

In order to ensure traffic throughput during driving and
the safety of people in the vehicle, this article designs a con-
troller for a longitudinal platoon based on dynamics (1) and
(2) such that ei(t) can converge to zero and guarantees the
string stability, the specific description is

lim
t→∞

ei(t) = 0,∥∥∥Ei+1(s)
Ei(s)

∥∥∥ ≤ 1.
(4)

3 Integral Adaptive Sliding Mode Control

Fig. 2: IASMC control block diagram.

Based on the control block diagram shown in Fig.2, an
IASMC strategy with DO is designed to achieve the string
stability in this section. In accordance with (4) and guided
by the CTH policy, the integral SMS can be formulated as

si(t) = ei(t) +

∫ t

0

kiei(τ)dτ, (5)

where ki > 0. The SMS si(t) converges to zero, ensur-
ing that ei(t) eventually converges to zero. Nevertheless,
it should be noted that it cannot ensure the string stability.
Therefore, we need to use the BD topology illustrated in
Fig.3. Then, a new SMS is formulated as

Si(t) =

{
ρsi(t)− si+1(t), i = 1, 2, . . . , N − 1

ρsi(t), i = N
(6)

where ρ > 0. Define S(t) = [S1(t), S2(t), . . . , SN (t)]T and
s(t) = [s1(t), s2(t), . . . , sN (t)]T , an alternative form is

S(t) = Gs(t) (7)

with

G =


ρ −1 . . . 0 0
0 ρ −1 0 0
...

...
. . .

...
...

0 0 . . . ρ −1
0 0 . . . 0 ρ

 .

…

Fig. 3: The BD topology.
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Since ρ is positive, it implies that matrix G is invertible.
Therefore, we can deduce that ∥S(t)∥ will reach zero if and
only if ∥s(t)∥ reaches zero. In other words, all Si(t) become
zero only if all si(t) become zero simultaneously [18].

For the two cases of i = 1, 2, . . . , N − 1 and i = N , the
results obtained by deriving Si(t) are as follows:
Case I: Si(t) = ρsi(t)− si+1(t), the derivative of Si(t) is

Ṡi(t) = ρṡi(t)− ṡi+1(t)

= ρėi(t) + Λi(t),
(8)

where

Λi(t) = ρkiei(t)− ėi+1(t)− ki+1ei+1(t). (9)

Case II: Si(t) = ρsi(t), the derivative of Si(t) is

Ṡi(t) = ρṡi(t)

= ρėi(t) + Λi(t),
(10)

where
Λi(t) = ρkiei(t). (11)

The chosen reaching law for the SMS Si(t) is expressed
as

Ṡi(t) = −ηiSi(t)− γisgn(Si(t)), (12)

where ηi > 0 and γi > 0 represents the switching gain.
Then, we employ an adaptive mechanism to determine the
switching gain γi as

γ̇i(t) = ς(∥Si(t)∥ − βγi(t)), (13)

where ς and β are positive constant, γi(0) > 0.

Remark 1. The primary concept behind this adaptive mech-
anism is to adjust the switching gain based on the deviation
of the SMS Si(t) from zero. The larger the deviation of Si(t)
from zero, the more significant the change in switching gain,
inducing Si(t) to approach zero. As Si(t) approaches zero,
the rate of change in switching gain diminishes. Since the
term −βγi(t) is incorporated to inhibit the infinite increase
of the switching gain [19], there must be a positive constant
γ̄ > γi(t) at all times.

Since the sign function will cause chattering issue, the
tanh function is employed as a replacement for the sign func-
tion to address this concern. Then, the smoothed reaching
law is represented by

Ṡi(t) = −ηiSi(t)− γi(t)tanh(µSi(t)), (14)

where µ > 0.

Remark 2. Comparing the tanh function with the sign func-
tion reveals that the tanh function is smoother, and the rea-
son for setting up parameter µ is to adjust the degree of sim-
ilarity to the sign function. The larger µ is, the higher the
similarity to the sign function is and the better the rapidity
of SMC is. However, the chattering issue will be more se-
rious. The smaller µ is, the opposite is true to the above
results. Hence, the selection of an appropriate µ is crucial.

To estimate ζi(t), the DO is constructed as

ζi(t) = pi(t)− σiei(t)

ζ̂i(t) = p̂i(t)− σiei(t)

˙̂pi(t) = σi(vi−1(t)− vi(t)− hi(
1
mi

ui(t) + ζ̂i(t))),

(15)

where σi > 0, ζ̂i(t) and p̂i(t) represent the estimations of
ζi(t) and the auxiliary variable pi(t), respectively. Accord-
ing to (15), we can derive ζ̂i(t) as

˙̂
ζi(t) = ˙̂pi(t)− σiėi(t)

=σihiζ̃i(t),
(16)

where ζ̃i(t) = ζi(t)− ζ̂i(t) is the disturbance error, then

˙̃
ζ(t) = Dζ̃(t) + ζ̇(t), (17)

where D = diag{−σ1h1,−σ2h2, . . . ,−σNhN} is a diago-
nal matrix, ζ̃(t) = [ζ̃1(t), ζ̃2(t), . . . , ζ̃N (t)]T . There always
exists a possibility to find a suitable value such that D is neg-
ative definite by choosing the gain of the DO. Therefore, we
can identify a matrix P > 0 satisfies

DTP + PD = −G, (18)

where G represents any given positive definite matrix.
Then, the IASMC is designed as

ui(t) =
mi

hi
(vi−1(t)− vi(t)) +

mi

ρhi
(Λi(t) + ηiSi(t)

+ γi(t)tanh(µSi(t))−miζ̂i(t),
(19)

where

Λi(t) =


ρkiei(t)− ėi+1(t)

−ki+1ei+1(t), i = 1, 2, . . . , N − 1

ρkiei(t), i = N.

(20)

Theorem 1. Under the BD topology, considering the vehicle
platoon with (1) and (2), guided by the CTH policy and As-
sumption 1, the SMSs Si(t), si(t) can converge to zero within
a fast finite-time and ei(t) eventually converges to zero with
the action of the DO (15) and the controller (19).

Proof. Specify a Lyapunov function as

V(t) =
N∑
i=1

Vi(t) + ζ̃T (t)P ζ̃(t), (21)

where Vi(t) = 1
2S

2
i (t) +

1
2ς γ

2
i (t). Taking the derivative of

(21), it comes

V̇(t) =
N∑
i=1

V̇i(t) + ζ̃T (t)P
˙̃
ζ(t) +

˙̃
ζT (t)P ζ̃(t). (22)

Substitute (8), (10), (17) and (19) into (22), it comes

V̇(t) =
N∑
i=1

(Si(t)(−ηiSi(t)− γi(t)tanh(µSi(t))− ρhiζ̃i(t))

+ ς−1γi(t)γ̇i(t)) + 2ζ̃T (t)P ζ̇(t)− ζ̃T (t)Gζ̃(t)

≤
N∑
i=1

(−ηiS
2
i (t) +

ρhi

2 S2
i (t) +

ρhi

2 ζ̃2i (t)− βγ2
i (t))

+ 2∥ζ̃(t)∥∥P∥∥ζ̇(t)∥ − λg∥ζ̃(t)∥2,
(23)

367  



where λg represents the minimum value of eigenvalue of
matrix G. Define ζ̃2(t) = [ζ̃21 (t), ζ̃

2
2 (t), . . . , ζ̃

2
N (t)], h =

[h1, h2, . . . , hN ]. Therefore, it comes

N∑
i=1

hiζ̃
2
i (t) = hT ζ̃2(t). (24)

Substituting (24) into (23) yields

V̇(t) ≤
N∑
i=1

(−(ηi − ρhi

2 )S2
i (t)− βγ2

i (t))

+ 2∥ζ̃(t)∥∥P∥∥ζ̇(t)∥ − (λg − ρh̄
2 )∥ζ̃(t)∥2,

≤
N∑
i=1

(−(ηi − ρhi

2 )S2
i (t)− βγ2

i (t))

− ∥ζ̃(t)∥((λg − ρh̄
2 )∥ζ̃(t)∥ − 2∥P∥ζ),

(25)

where h̄ = max{h1, h2, . . . , hN}. According to reference
[14], we can obtain

∥ζ̃(t)∥ ≤ λ1, (26)

where λ1 = 2∥P∥ζ

λg−
ρh̄
2

. Then, (25) yields

V̇(t) ≤
N∑
i=1

(−(ηi − ρhi

2 )S2
i (t)− βγ2

i (t))

− (λg−
ρh̄
2 )

λP
ζ̃T (t)P ζ̃(t) + 2λ1ζ∥P∥

≤ − aV(t) + b,

(27)

where ηi > ρhi

2 , β > 0, λg > ρh̄
2 , λP is maximum

eigenvalue of matrix P , a = min{2ηi − ρhi, 2ςβ,
λg−

ρh̄
2

λP
},

b = 2λ1ζ∥P∥. Since b
a > 0, we can obtain

0 ≤ V(t) = b
a+[V(0)− b

a ]e
−at ≤ b

a+V(0)e−at ≤ b
a+V(0).

(28)
Then, according to Lemma 2, γi(t) and ζ̃i(t) are UUB. Ac-
cording to (28), V(t) satisfies

N∑
i=1

1
2S

2
i (t)+

1
2ς γ

2
i (t)+ ζ̃T (t)P ζ̃(t) ≤ b

a+V(0)e−at, (29)

we can obtain

∥ζ̃(t)∥ ≤
√

b
aλp

,

∥γi(t)∥ ≤
√

2ςb
a ,

(30)

where λp represents the smallest eigenvalue of matrix P .

Obviously, γi(t) and ζ̃i(t) can converge to
√

b
aλp

,
√

2ςb
a ,

respectively.
Then, choose a new Lyapunov function, which is con-

structed as

V̄(t) =
N∑
i=1

1
2S

2
i (t). (31)

It can be seen that the derivative of (31) is

˙̄V(t) =
N∑
i=1

Si(t)(−ηiSi(t)− γi(t)tanh(µSi(t))− ρhiζ̃i(t))

≤
N∑
i=1

−ηiS
2
i (t)− γi(t)∥Si(t)∥+ ρhi∥ζ̃i(t)∥∥Si(t)∥.

(32)
From (30), we can know that ∥ζ̃(t)∥ and ∥γi(t)∥ are
bounded. Since γi(t) is always positive, (32) yields

˙̄V(t) ≤
N∑
i=1

−ηiS
2
i (t)− (

√
2ςb
a − ρhi

√
b

aλp
)∥Si(t)∥

≤
N∑
i=1

−ηS2
i (t)− θ∥Si(t)∥,

(33)

where η = min{η1, η2, . . . , ηN},
√

2ςb
a − ρhi

√
b

aλp
≥ θ >

0. Define Φ(t) =
∑N

i=1 θ∥Si(t)∥, it comes

˙̄V(t) ≤
N∑
i=1

−θ∥Si(t)∥ = −Φ(t) ≤ 0. (34)

By integrating (34) over the interval [0, t], it can be inferred
that

∫ t

0
Φ(τ)dτ ≤ V̄(0) − V̄(t). Since V̄(0) is bounded,

combined with (33) and V̄(0) ≥ 0, it can be inferred that

0 ≤ V̄(0)− V̄(t) ≤ ν, (35)

where ν > 0 is a constant. Obviously, limt→∞
∫ t

0
Φ(τ)dτ <

∞, combined with Lemma 1, we can deduce that

lim
t→∞

N∑
i=1

θ∥Si(t)∥ = lim
t→∞

Φ(t) = 0. (36)

Then, we can infer that limt→∞ Si(t) = 0. Furthermore, we
can make (33) another form as

˙̄V(t) ≤
N∑
i=1

−ηS2
i (t)− θ∥Si(t)∥

≤ − κ1V̄(t)− κ2V̄κ3(t),

(37)

where κ1 ≤ 2η, κ2 ≤
√
2θ and κ3 = 1

2 . According to (6)
and Lemma 3, Si(t) and si(t) can converge to zero within
a fast finite-time. Then, on the basis of (5), ei(t) eventually
converges to zero.

Theorem 2. Under the BD topology, considering the vehicle
platoon with (1) and (2), based on CTH policy and the action
of the proposed IASMC strategy, the string stability can be
guaranteed with 0 < ρ ≤ 1 and ki ≤ ki+1.

Proof. According to Theorem 1, the SMS Si(t) converges
to zero, (6) yields,

ρsi(t)− si+1(t) = 0. (38)

Taking (5) into (38), we can obtain

ρ(ei(t) +

∫ t

0

kiei(τ)dτ) = ei+1(t) +

∫ t

0

ei+1(τ)dτ. (39)
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By applying the Laplace transformation to (39), it comes

ρ(Ei(s) +
kiEi(s)

s ) = Ei+1(s) +
ki+1Ei+1(s)

s , (40)

thus,
Ei+1(s)
Ei(s)

= ρ s+ki

s+ki+1
. (41)

Since 0 < ρ ≤ 1 and ki ≤ ki+1, we can obtain ∥Ei+1(s)
Ei(s)

∥ ≤
1, so the string stability is ensured.

4 Numerical Simulations

Table 1: Simulation parameters
Parameter ς β ki ρ ηi γi(0) σi

Value 3 0.1 1 0.9 5 0.05 0.001

In this section, with the purpose of presenting the pri-
mary results of the proposed IASMC strategy based on
DO, numerical simulations involving a platoon consisting
of N = 6 followers with one leader are carried out. The
initial positions of the platoon are x0(0) = 16m and
x(0) = [14, 12, 10, 7, 4.2, 2.4]Tm, respectively. Similarly,
set the initial velocities as v0(0) = 2m/s and v(0) =
[1.8, 1.72, 1.61, 2.795, 2.41, 1.5]Tm/s, respectively. Set the
velocity of the leader as

v0(t) =


2m/s, 0s < t ≤ 2s

tm/s, 2s < t ≤ 6s

6m/s, otherwise.

(42)

In this paper, for i = 1, 2, . . . , 6, set the mass of each ve-
hicle as mi = 1kg, the standstill spacing is χi(t) = 0.5m
and hi = 1s. Set the unknown disturbance of the ith follow-
ing vehicle as ζi(t) = 1.5 sin(3t)e−(t−5−0.2i)2 . In order to
better approximate the sign function to maintain the rapidity
of sliding mode, we set the parameter µ = 100. And the
settings of other parameters are shown in Table 1.

Then, in Fig.4, we can acquire the simulation results of
IASMC strategy (19). For Fig.4(a), since the position curves
have no intersection, it illustrates that the entire platoon can
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Fig. 4: The simulation results of IASMC with µ = 100.

effectively avoid collisions. Fig.4(c) shows that ei(t) can
converge to zero. In addition, ∥e6(t)∥ ≤ ∥e5(t)∥ ≤ · · · ≤
∥e1(t)∥, which ensures the string stability. And the distances
between adjacent vehicles in Fig.4(d) can converge to the
expected values in accordance with the CTH policy, respec-
tively. Fig.4(f) shows that when the disturbance in the pre-
vious period is not severe, the SMS si(t) converges to zero
in 0.55s. However, when the disturbance becomes severe,
the SMS si(t) still converges to zero in 8.24s. Under the ac-
tions of control input depicted in Fig.4(e), the velocities are
illustrated in Fig.4(b).
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Fig. 5: The simulation results of IASMC with µ = 500.

In order to better understand the effects of different values
of µ on the system, we have selected the simulation results
at µ = 500 for comparison, as shown in Fig.5. By compar-
ing Fig.4(f) and Fig.5(f), it’s evident that with larger values
of µ, the SMS si(t) converges more rapidly. However, the
drawbacks become apparent as well, as vividly illustrated by
the chattering phenomenon in Fig.5(e).

To illustrate the superiority of IASMC strategy, we com-
pare the method in [14] with it. All simulation parameters of
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Fig. 6: The simulation results of ISMC in [14].
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Table 2: Performance comparison of different methods.
Spacing error (m)

Chattering
Vehicle Positive peak Negative peak
index IASMC IASMC ISMC IASMC IASMC ISMC IASMC IASMC ISMC

(µ = 100) (µ = 500) in [14] (µ = 100) (µ = 500) in [14] (µ = 100) (µ = 500) in [14]
1 1.2865 1.2910 1.5405 0.6225 -0.6047 -1.0024

No Yes Yes

2 1.0325 1.0357 1.2014 -0.5460 -0.5324 -0.8711
3 0.7825 0.7847 0.8817 -0.4628 -0.4548 -0.7249
4 0.5465 0.5476 0.5918 -0.3719 -0.3714 -0.5607
5 0.3318 0.3323 0.3420 -0.2662 -0.2669 -0.3795
6 0.1472 0.1474 0.1411 -0.1406 -0.1412 -0.1873

the method in [14] in Fig.6 are consistent with Fig.4. Then,
compare Fig.6 with Fig.4, the detailed comparative values in
Table 2 show that the spacing error ei(t) in Fig.6(c) is larger.
Furthermore, the convergences of the distances between ad-
jacent vehicles in Fig.4(d) are better than those in Fig.6(d).
Additionally, comparing Fig.6(e) with Fig.4(e), we can see
that the chattering under IASMC strategy can be effectively
eliminated. Finally, the SMSs in Fig.4(f) also converge faster
than those in Fig.6(f).

5 Conclusion

This article studies an IASMC strategy about vehicle pla-
toon control using integral adaptive sliding mode, incorpo-
rating DO and the CTH policy subject to unknown distur-
bances. IASMC can effectively decrease the spacing error.
To eliminate the chattering issues linked to the controller, a
sliding mode reaching law with adaptive law is constructed.
Then, a DO is constructed to estimate the external distur-
bances even if the boundaries of the disturbances are unspec-
ified. Further, IASMC is developed. Also, the stability of the
proposed IASMC strategy is proved and the string stability is
guaranteed. Finally, the performance of IASMC was verified
by comparing with another different method through simu-
lations. Future work will consider platoon control of hetero-
geneous models and ensure that the spacing errors converge
to zero within a finite time.
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Abstract: A fixed-time funnel sliding mode control strategy is developed for a dual-motor driving system, which ensures the
system converges within a fixed time. Firstly, the coupling error is introduced by combining the reference tracking process
with the motor synchronization process. By using a selected funnel function, the system can achieve satisfactory transient
performance. Secondly, the concept of multi-surface sliding modes is designed to deal with the tracking issue so that the system
can converge in a fixed-time regardless of the motor’s initial state. Finally, the effectiveness of this strategy is demonstrated
through a simulation example.

Key Words: Fixed-time, funnel function, sliding mode control, dual-motor driving system

1 Introduction

In addressing challenges within industrial processes and
products, a singular motor’s limited driving force poses dif-
ficulties in meeting power requirements, particularly in the
context of large inertia load driving systems. Therefore, the
configuration of two or even multiple motors is widely used
in many application scenarios [1]. In this type of multi-
motor system, coordination and synchronization become the
most essential requirements for the controller. Due to the
complex nature of the system models under consideration,
most controllers are intricately crafted using repetitive dif-
ferential frameworks. On this basis, designing the track-
ing controller and the synchronization controller individu-
ally would make the entire control system overly complex,
potentially even unstable [2]. Therefore, it is meaningful to
find a new multi-motor synchronization control strategy to
make the system more reliable and maintain synchronization
performance.

Many scholars have tried to implement various advanced
control strategies to track this problem. Among them, slid-
ing mode control has received the most widespread atten-
tion due to its excellent rapidity and robustness [3]. In [4],
a fast terminal sliding mode control is proposed so that the
single-input single-output nonlinear system can converge in
a limited time. In [5], a non-singular fast terminal slid-
ing mode control is proposed, incorporating a finite-time
extended state observer, with the primary goal of ensuring
effective tracking of the target trajectory by the motor sys-
tem. In [6], a timing motor synchronization control method
is proposed, wherein the division of the motor synchroniza-
tion process and the reference signal tracking process into
two controllers not only complicates the control but also
enhances the system’s instability. Moreover, in these con-
trollers, the initial state of the system will affect the conver-
gence time, resulting in an unsatisfactory convergence pe-
riod when the initial error is large [7].

Furthermore, considering that when limits on output am-

This work was supported by National Natural Science Foundation of
China under Grants 61973139 and 61473138, and the Fundamental Re-
search Funds for the Central Universities under Grant JUSRP22014. (Cor-
responding author: Cheng-Lin Liu.)

plitude and system status are violated, system performance
may degrade and safety issues may even arise [8]. In or-
der to ensure transient performance and system stability, sev-
eral constrained control schemes have been proposed, mak-
ing them one of the hot spots in recent years. Among these
methods, it is common to use prescribed performance con-
trol and system funnel control methods. In [9], a new fuzzy
adaptive control is proposed based on the preset performance
function, which ensures that the closed-loop control system
is semi-globally uniform and ultimately constrained, and the
tracking error can converge within the specified performance
boundary. In [10], the objective is to ensure transient per-
formance in a flexible joint manipulator system through the
application of adaptive fuzzy control, achieved by design-
ing a novel performance function. Compared to prescribed
performance control, funnel control has received increasing
attention due to its high-gain property, control struture, and
no memory feature. However, to the best of our knowledge,
few scholars have applied the funnel function in motor syn-
chronous control to optimize control performance.

In this article, we use a dual-motor driving system as a
case study and try to design a controller to address existing
issues and improve the overall control performance of the
system. Based on the fixed time convergence theory, this
paper proposes a synchronous control strategy with the cou-
pling error, which ensures multi-motor synchronization and
simplifies the controller. In this control strategy, a coupling
error is proposed to couple the reference signal tracking pro-
cess and the motor synchronization process together. Then,
the coupling errors are limited using a selected funnel func-
tion to achieve the desired transient performance. Finally,
the concept of multi-surface sliding modes is utilized to deal
with the reference signal tracking problem, and fixed-time
convergence can be guaranteed regardless of the initial state
of the system.

The subsequent sections of this paper are organized as fol-
lows. Section II initiates the discussion by introducing mod-
els of a dual-motor driving system. Following that, Section
III elaborates on the development of a multi-surface fixed-
time sliding mode controller, addressing challenges related
to tracking and synchronization in multi-motor driving sys-
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tems. Additionally, stability analysis utilizing Lyapunov sta-
bility theory is presented. In Section IV, comparative exper-
imental results are incorporated to validate the effectiveness
of the proposed strategy. Finally, Section V summarizes the
article’s content and presents the conclusion.

2 system description and preliminaries

2.1 Dual-motor driving system
Consider a driving system composed of two motors,

where the dynamic equation of the i-th motor is expressed
as

Jiθ̈i +Bf θ̇i + TLi + di = ui, i = 1, 2, (1)

where Ji ∈ R is the inertia of motor i, θ̇i ∈ R and θ̈i ∈
R are the velocity and the angular acceleration of motor i,
Bf ∈ R is defined as the viscous friction coefficient, TLi ∈
R denotes the load torque of motor i, di ∈ R represents
the external disturbance, and ui ∈ R represents the control
input.

Define ωi = θ̇i, and (1) can be rewriten asθ̇i = ωi,

ω̇i =
1

J
ui −

1

J
(TLi +Bfωi + di).

(2)

Assumption 1: The reference signal, denoted as θd, is as-
sumed to belong to the space W 2,∞(R≥0;R).
Assumption 2: The external disturbance di ∈ L∞(R≥0;R)
has an unknown positive upper bound.

Remark 1. Control input ui, external disturbance di, non-
linear friction, and unmodeled dynamics are confined within
the working range. As a result, there exists an intrinsic limi-
tation, ensuring a bounded total disturbance.

So in this case, our control objectives are as follows: 1)
track the reference signal θd under the external disturbance
di, 2) keep the position synchronization and speed synchro-
nization of motor 1 and motor 2, and 3) make the system
converge and stabilize within a fixed time and maintain good
transient performance.

2.2 Coupling synchronization error
The traditional dual-motor control scheme involves the

imperative task of separately designing the tracking con-
troller and synchronous controller for the motors. In the
tracking controller, the control signal ui and error signal ei
of each motor form an independent closed loop, which is
only related to the current motor and does not affect other
motors in the system. Here, we try to avoid the complexity
of multi-controller design and solve the tracking and syn-
chronization problems simultaneously in one controller.

To achieve this purpose, we define the tracking error ei
and the synchronization error ϵi as follows:

ei = θi − θd, i = 1, 2, (3)

ϵi = ei −
1

2

2∑
i=1

ei, i = 1, 2, (4)

where θi is the position of motor i, θd is the reference signal.
Through the synchronization error ϵi, the error signal of each
motor is interconnected with the error signals of the other
motors. In this system, each motor is influenced not only

by its own tracking error but also by the tracking errors of
the other motors, leading to the synchronization of the entire
system’s state.

If each motor’s current signal in the servo system remains
stable and matches the reference signal, meaning that the
tracking error of each motor is the same (i.e., when e1 = e2),
we can conclude that the entire motor system is synchro-
nized.

Based on the above analysis, considering the tracking er-
ror and synchronization error of the system at the same time,
we can design the coupling error as follows:

ηi = ei + αϵi, i = 1, 2, (5)

where α > 0 represents the synchronization effect. When
the position coupling error ηi = 0, we can get the tracking
error ei = 0, and the synchronization error ϵi = 0. There-
fore, our ultimate goal is to design the controller so that the
coupling error is zero, so that the effects of tracking and syn-
chronization can be achieved at the same time.

2.3 Funnel control and funnel variable
Funnel control is a control method proposed by ILCH-

MANN [11] with high gain characteristics, which can well
limit the dynamic behavior of errors. A simple funnel con-
troller can be written as u(t) = −τ(t) · ς(t)

= − 1

F (t)− ||ς(t)|| · ς(t),
(6)

where τ(t) is the time-varying gain, ς(t) is the tracking er-
ror, F (t) is the preset funnel function boundary. The error
ς(t) is constrained by the boundary function F (t) in Fig.1.
F (t) − |e(t)| represents the vertical distance from the error

Fig. 1: Funnel control block diagram.

to the funnel boundary. When the error e(t) is close to the
boundary F (t), the control gain τ(t) increases. On the con-
trary, if the tracking error e(t) is far away from the boundary
function F (t), the control gain τ(t) decreases.

In this paper, the funnel boundary function F (t) is chosen
as [12, 13]

F (t) = φ0 exp(−σt) + φ∞, (7)

where φ0 respents the inital value of boundary fun-
nel function, σ respents the convergence speed of fun-
nel bottleneck,φ∞ respents the allowable upper bound of
steady-state tracking error. φ0 , σ and φ∞ are appropriately
positive constants.
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In this way, we can define the funnel error variable

ζi =
ηi

F − |ηi|
, i = 1, 2, (8)

which ensures that the coupling error is always in the preset
funnel area.

3 Main Results

3.1 Controler design
In this section, we discuss the dual motor synchronization

problem and design the controller. Based on the concepts
of funnel error and multiple sliding surfaces, we propose a
funnel sliding mode controller. The controller is designed
using multiple sliding surfaces, where the first surface tracks
the reference signal, and the second surface drives the sys-
tem state to the first sliding mode surface. The multisurface
concept benefits by allowing the development of a sliding
mode controller with a reduced requirement for plant output
differentiation [6]. At the same time, the funnel function can
ensure that the error is always within the funnel domain, ef-
fectively improving the transient performance of the system.
Figure 2 shows the control structure of this system.
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We use the funnel error (8) to design the first sliding sur-
face like this:

Si = Bζi + C1

∫ t

0

|ζi|λ1 · sign(ζi) dτ

+ C2

∫ t

0

|ζi|λ2 · sign(ζi) dτ, (9)

where C1 > 0, C2 > 0, 0 < λ1 < 1, and λ2 > 1.
According to (8) and (9), the time derivative of Si be-

comes

Ṡi = B ζ̇i + C1|ζi|λ1 · sign(ζi)

+ C2|ζi|λ2 · sign(ζ), (10)

S̈i = B ζ̈i + C1 λ1 |ζi|λ1−1 · ζ̇i
+ C2 λ2 |ζi|λ2−1 · ζ̇i. (11)

Formulate the second sliding mode surface as follows:

σi = Ṡi + β |Si|λ3 sign(Si). (12)

The derivative of σi is

σ̇i = S̈i + βλ3 |Si|λ3−1
Ṡi. (13)

The reaching law is designed as:

σ̇i = −k0σi − k1 tanh(σi)− k2|σi|λ4 sign(σi), (14)

where k1 > 0, k2 > 0 and λ4 > 1. We introduce a
smoother tanh function, which will productively reduce the
phenomenon of the input signal’s chattering behavior.

Substituting (11) and (14) into (13), we get

B ζ̈i = −k0σi − k1 tanh(σi)− k2 |σi|λ4 sign(σi)

− βλ3 |Si|λ3−1 Ṡi − C1 λ1 |ζi|λ1−1 · ζ̇i
− C2 λ2 |ζi|λ2−1 · ζ̇i. (15)

At the same time, according to (5) and (8), we can get the
first and second order time differentials of the funnel func-
tion

ζ̇i =
η̇i

F − |ηi|
− Li, (16)

ζ̈i =
η̈i

F − |ηi|
− Pi, (17)

where, Li =
ηi(Ḟ−|η̇i|)
(F−|ηi|)2

, Pi =
2η̇i(Ḟ−|η̇i|)+ηi(F̈−|η̈i|)

(F−|ηi|)2

−2ηi
(Ḟ−|η̇i|)

2

(F−|ηi|)3
.

Substituting and (15), (16) and (17) into system (2), we
can get the control signal ui under the two-layer sliding
mode surface

ui = Ji

(
Qi − αϵ̈i +

1

Ji

(
TLi +Bf θ̇i + di

)
+ θ̈d

)
, (18)

where

Qi =

(
1

Bf

)(
σ̇i − βλ3

(
|si|λ3−1 ṡi

)
− C1λ1

(
|ζi|λ1−1 ζ̇i

)
− C2λ2

(
|ζi|λ2−1 ζ̇i

)
+ Pi ) (F − |ηi|) . (19)

3.2 Stability analysis
In this segment, we will demonstrate the stability of the

proposed control strategy. The following lemmas are in aid
of the stability analysis.

Lemma 1. [14] Assume the existence of a Lyapunov func-
tion V(x) ≥ 0 defined in the neighborhood U ⊂ Rn of the
origin, satisfying the following inequality:

V̇(x) ≤ −(ψ1V(x)l + ψ2V(x)n)m, (20)

Here, ψ1, ψ2, l, n, and m are positive real numbers, with
lm > 1 and nm < 1. Consequently, the system’s origin
is fixed-time stable. For any V(x), it can attain V(x) ≡ 0
within a fixed time T , which is bounded and independent of
the initial states. This fixed time is expressed as:

T ≤ 1

ψm
1 (1− lm)

+
1

ψm
2 (nl − 1)

. (21)

Lemma 2. [15] The system is deemed practically fixed-time
stable if there exists a Lyapunov function V(x) and specific
scalars satisfying 0 < α < 1, β > 1, λ > 0, ϖ > 0, and
0 < ρ <∞, such that the inequality given by Equation (22)
holds:

V̇(x) ≤ −λVα(x)−ϖVβ(x) + ρ. (22)

The trajectory of the closed-loop system is confined within a
bound denoted as Λ, defined by Equation (23):

Λ =
{
lim
t→T

x
∣∣∣V(x) ≤ min{Φ, Ψ}

}
, (23)

where Φ = ( ρ
(1−ϑ)λ )

1
α , Ψ = ( ρ

(1−ϑ)ϖ )
1
β , ϑ satisfies 0 <

ϑ ≤ 1. The upper limit for the practical fixed-time to reach
the residual set is bounded by T ⩽ 1

λϑ(1−α) +
1

ϖϑ(β−1) .
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Lemma 3. [16] For any σ > 0 and ξ ∈ R, the following
inequality is valid:

0 ≤ |ξ| − ξ tanh

(
ξ

σ

)
≤ τσ, (24)

where τ is determined by the equation τ = e−(τ+1), specif-
ically yielding τ ≈ 0.2785.

Theorem 1. By implementing the reaching law (14), the
controller (18) ensures the stability of system (2) and facil-
itates the convergence of the coupling error η to a minimal
neighborhood around zero. Furthermore, the convergence
time T is bounded by

T =
|Si(0)|1−λ3

β(1− λ3)
+

2√
2k1ϑ

+
2

2
λ4+1

2 k2ϑ(λ4 − 1)

+
1

C1
B
2

λ1+1
2 (1− λ1+1

2
)
+

1

C2
B
2

λ2+1
2 (λ2+1

2
)− 1

. (25)

Proof. Choose a Lyapunov function as

V1 =
1

2
σ2
i . (26)

Substituting the control signal (14) into the differential ex-
pression of (26), we can get

V̇1 = σi · σ̇i

= σi

(
−k0σi − k1 tanh(σi)− k2|σi|λ4 sign(σi)

)
= −k0|σi|2 − k1σi tanh(σi)− k2|σi|λ4+1

≤ −k1|σi|+ k1ι− k2|σi|λ4+1

≤ −k12
1
2 V

1
2

1 − k22
λ4+1

2 V
λ4+1

2
1 + k1ι, (27)

where k1, k2 > 0, λ4+1
2 > 1. According to Lemma 2, σi

can in fixed time tσ converge to a minimal neighborhood of
zero:

Λ =

{
lim
t→tσ

σ |V2 ≤ min{Φ, Ψ}
}
, (28)

where Φ = ( k1ι
(1−ϑ)

√
2k1

)2 , Ψ = ( k1ι

(1−ϑ)k22
λ4+1

2

)
2

λ4+1 . The

convergence time tσ is

tσ ≤ 2√
2k1ϑ

+
2

2
λ4+1

2 k2ϑ(λ4 − 1)
. (29)

When the funnel error reaches the sliding mode surface
σi, we can get

Ṡi = −β|Si|λ3sign(Si). (30)

Choose the Lyapunov function as

V2 =
1

2
Si

2. (31)

Then, the time derivative of (31) is

V̇2 = SiṠi = −β|Si|λ3sign(Si)Si

= −β|Si|λ3+1 ≤ 0. (32)

Therefore, Si(t) would converge to zero. Solving differen-
tial (32), the convergence time can be obtained as:

ts =

∫ |Si(0)|

0

1

βSλ3
i

dSi =
|Si(0)|1−λ3

β(1− λ3)
. (33)

When Si(t) converge to zero, we can have

ζ̇i = −C1

B
|ζi|λ1sign(ζi)−

C2

B
|ζi|λ2sign(ζi). (34)

Choose a Lyapunov function as

V3(ζi) =
1

2
ζ2i . (35)

Then , the time derivative of (35) is

V̇3(ζi) = ζiζ̇i

= ζi

(
−C1

B
|ζi|λ1sign(ζi)−

C2

B
|ζi|λ2sign(ζi)

)
= −C1

B
|ζi|λ1+1 − C2

B
|ζi|λ2+1

≤ −C1

B
2

λ1+1
2 V

λ1+1
2

3 − C2

B
2

λ2+1
2 V

λ2+1
2

3 .

(36)

Using Lemma 1, ζ will converge on the first surface in
fixed time. The convergence time tζ for ζ is bounded as

tζ ≤ 1
C1

B 2
λ1+1

2 (1− λ1+1
2 )

+
1

C2

B 2
λ2+1

2 (λ2+1
2 )− 1

. (37)

To sum up, under the action of the designed controller
(18), the dual-motor driving system can reach stability after
a fixed time T :

T = ts + tσ + tζ

=
|Si(0)|1−λ3

β(1− λ3)
+

2√
2k1ϑ

+
2

2
λ4+1

2 k2ϑ(λ4 − 1)

+
1

C1
B
2

λ1+1
2 (1− λ1+1

2
)
+

1

C2
B
2

λ2+1
2 (λ2+1

2
− 1)

. (38)

So we proved that under this control, the system can remain
stable and the coupling error will converge to zero.

Remark 2. By taking the limit of equation (8), we find that:
limt→T ζi = limt→T

ηi
F − |η|

= 0. This implies that after

time T , both the coupling error ηi and the funnel error ζi
will converge simultaneously. Subsequently, it is evident that
as ηi approaches 0, both ei and ϵi will approach 0 at the
same time [17].

4 Simulation Examples

To validate the rationality of the proposed control method,
we conduct an example using a dual-motor driving system
in this section. The parameters of the driving system are
provided in TableI .

Table 1: Parameter Values
Parameter Value Unit

J1 1.41 kg·m2

J2 1.35 kg·m2

T1 8 kg·m2

T2 7 kg·m2

α 0.6 /
Bf 0.22 /
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4.1 Design of Controllers
In the experiments, we compare the tracking performance

of the following four control approaches. The details of each
controller are presented below:

1) MLSMC: The multi-layer sliding mode controller
(MLSMC) has been introduced in Section III. The slid-
ing mode surface parameters are selected as B =
1.3, C1 = 0.4, C2 = 1.7, λ3 = 0.2, λ4 = 0.6, β =
0.29, λ3 = 1.76, k0 = 1.9, k1 = 0.76, k2 =
0.7, λ4 = 1.9. The specified parameters for the funnel
function are as follows: ϕ0 = 1.5, ϕinf = 0.02, αF =
5.2.

2) OLSMC: The one-layer sliding mode controller
(OLSMC) is a simplified iteration of MLSMC, di-
verging notably by omitting the second sliding mode
surface present in MLSMC, which is responsible for
optimizing the control signal in controller design. It is
worth noting that the controller parameters of OLSMC
are intentionally set to be the same as those adopted
in MLSMC, aiming to yield more obvious results for
comparison.

3) SMC: The sliding mode controller (SMC) stands for the
traditional approach. We select the following sliding
surface according to the requirements: ssmc = ė + λe
[18], where e represents the tracking error, and λsmc =
10. Campared with MLSMC and OLSMC, the SMC
is designed without the funnel function, thus the SMC
was designed based on the coupling error η rather than
the funnel error ζ. The remaining control parameters
are selected to be the same as MLSMC.

4) PID: Finally, choose a PID controller for the purpose of
comparison. The PID control gains kp = 160 , ki = 4
and kd = 4 are the well-tuned based on the selected
driving system.

4.2 Experimental Results
Initially, we select a gently evolving sinusoidal signal

θd = 0.1sin(t) + cos(t) to serve as the reference signal
for the dual-motor system. The experimental results of the
multi-sliding mode controller designed in this article are il-
lustrated in Figure.3 under the provided reference signal.
The coupling error can be effectively kept within the speci-
fied boundary. Then, Figure.4 illustrates the control impact
of the designed controller when subjected to a reference sig-
nal θd = 0.3sin(3t) + cos(3t) characterized by a swifter
oscillation amplitude and period. The findings suggest that
the implemented control scheme is capable of achieving sat-
isfactory control performance across various scenarios.

The results of comparing the control performance of
various controllers, utilizing a sinusoidal signal θd =
0.1sin(t) + cos(t), are illustrated in Figure 5. This figure
displays the output position tracking, tracking error, and con-
trol action. These results clearly demonstrate the proficiency
of all four controllers in tracking the desired signal. How-
ever, in comparison to both OLSMC and SMC, the newly
developed MLSMC controller stands out for its superior dy-
namic performance, offering smoother and more stable con-
trol input. Notably, the MLSMC approach showcases re-
duced overshoot compared to other methods, owing to the
integration of the funnel boundary function into the control

process. Furthermore, in steady-state conditions, MLSMC
exhibits the smallest tracking error among the four control
methods, credited to the inclusion of the second sliding sur-
face.
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Fig. 3: Control performance for θd = 0.1sin(t)+cos(t):
output position, tracking error, and control signal.
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Fig. 4: Control performance for θd = 0.3sin(3t) +
cos(3t): output position, tracking error, and control sig-
nal.

In order to improve the comparison of the performance
of the four control approaches, we employ the performance
indices listed below [18].

1) The maximum absolute error, denoted as ME, is de-
fined as the maximum value of the sum of abso-
lute values for each index i = 1, . . . , N : ME =
maxi=1,...,N {|η1(i)|+ |η2(i)|} where η1(i) and η2(i)
represent the coupling error of motor 1 and motor 2;

2) Average tracking error, denoted as AE, is defined
as the average value of all coupling errors AE =
1
N

∑N
i=1{|η1(i)|+ |η2(i)|};

3) Standard deviation of the coupling error

SDE =
√

1
N

∑N
i=1 (|η1(i)|+ |η2(i)| −AE)

2

represents the deviation of the motor from the average
value at a certain moment.
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Fig. 5: Experimental results for θd = 0.1 sin(t) + cos(t)

Table 2: COMPARISON FOR θd = 0.1 sin(t) + cos(t)

indexes ME AE SDE
MLSMC 1.0650 0.0142 0.0930
OLSMC 1.1280 0.0364 0.0933
SMC 1.0750 0.0558 0.1585
PID 1.0501 0.1594 0.1180

TableΠ gives the indexes for θd = 0.1sin(t)+cos(t). As
evident from TableΠ , the controller employing the funnel
function outperforms other controllers on SDE, showcasing
its better dynamic performance. Due to the presence of a
multi-layer sliding surface, MLSMC demonstrates superior
performance on AE compared to OLSMC. The MLSMC not
only minimizes the average tracking error but also excels in
the other two aspects.

5 Conclusion

To tackle synchronization challenges in dual-motor sys-
tems, this article introduces a fixed-time funnel sliding mode
controller. This controller integrates coupling error and fun-
nel error concepts, ensuring that transient errors of each mo-
tor consistently remain within a predetermined funnel area.
Additionally, it incorporates an innovative application of the
multi-layer sliding mode concept. The first surface is tai-
lored for tracking a predefined reference signal, while the
second surface guides the system state toward the first sur-
face. Theoretical analysis confirms the convergence of both
surfaces within a predetermined timeframe, regardless of the
system’s initial state. Comparative evaluations against other
studies underscore the superior performance of the proposed
controller, particularly in managing significant deviations in
initial conditions. This research focuses on dual-motor drive
systems, future efforts will extend the control method to
multi-motor systems and aim to reduce sliding mode stabi-
lization time.
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Specified-time Dynamic Target Autonomous Surrounding
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Abstract: Existing work on the multiple target formation problem mostly focuses on the leader-follower network with one-
to-one correspondence, which imposes a bit of strict assumptions on the interaction configuration. To realize this restriction,
this paper considers a general leader-follower network with general exploring relationships and aims to solve the specified-
time dynamic target autonomous surrounding formation (DT-DASF) problem. A sampling-data-based protocol is proposed with
several formation configuration estimators, i.e., a convex hull estimator, a formation center estimator, a surrounding distance
estimator, and a formation vector estimator. By time projection and motion planning method, it shows that the proposed estimator
and protocol can drive followers to achieve surrounding formation within an appropriate surrounding distance and simultaneously
encircle all dynamic targets at a specified time. A numerical simulation verifies the effectiveness of the theoretical result.

Key Words: Dynamic Target Surrounding Formation, Specified-time Control, Maximum Surrounding Distance, Leader-follower
Network

1 Introduction

In recent years, the distributed cooperative control for
multi-agent systems has gained extensive attention owing to
its superiority and potential application in multiple UAV for-
mation, multiple missile attacks, smart grid, and traffic coor-
dination [1]-[2]. Formation tracking control as the basic top-
ic of leader-follower multi-agent networks, requires that the
followers can track the trajectory of leaders [3]-[4]. If there
are multiple leaders in the network, the formation tracking
problem is converted to the formation containment problem
[5], which requires that the follower can converge to the con-
vex hull formed by the leaders.

On the formation containment problem, [6] considered the
directed multi-agent network and proposed a containment
protocol for second-order multi-agent systems without ve-
locity measurements. [7] focused on the linear multi-agent
systems and presented a distributed observer-based protocol
over an undirected network. The above-mentioned results
were derived under the condition that each leader’s infor-
mation be detected by at least one follower directly or in-
directly. For multiple dynamic target formation problem-
s, it requires a well-informed follower existing in the net-
work to explore and receive the information from all leaders
[8], which puts high requirements for the sensing equipment
on the well-informed followers, increases the cost and re-
duces the robustness of the proposed protocol. For a general
leader-follower network with a general exploration relation-
ship between followers and leaders, the work [9] designed a
continuous-time single-integrator model based on the target
information compensator to achieve dynamic target forma-
tion control over the undirected graph. Note that in [6]-[11],
the formation vectors are fixed and provided in advance,
having difficulty adjusting the range of formation configu-
ration automatically. For multiple dynamic target formation
problems, the formation size was usually time-varying and

This work was supported in part by the Key Program of Shaanxi Natu-
ral Science Foundation 2023JC-XJ-23.

there seemed no results to determine the range of target mo-
tion. Therefore, it is necessary to achieve an autonomous
surrounding formation to encircle targets automatically.

On the other hand, a rapid convergence rate is desired in
the cooperative control for multi-agent systems. There were
many literatures proposed on the finite-time [12]-[13], fixed-
time [14]-[15], and specified-time control [16]-[18]. Note
that the works on finite-time control and fixed-time control
showed that the final settling time is estimated according
to the initial states and control parameters, the specified-
time control is preferred in reality. On this aspect, [16] de-
signed sample-data feedback protocol to achieve formation-
containment at the appointed time, respectively for single-
order and second-order nonlinear multi-agent systems. [17]
solved the dynamic average consensus problem at a specified
time by proposing a sampling-data-based control protocol.
[18] considered the general linear multi-agent systems and
proposed the prescribed-time tracking protocol in a fully dis-
tributed manner. All showed the advantage of convergence
time controllability.

Motivated by the above observation, this paper uses the
specified-time control framework to solve the dynamic tar-
get autonomous surrounding formation for a leader-follower
network with a general exploration relationship. The contri-
bution lies in the following three aspects. First, the formation
achieving time is controllable and can be specified accord-
ing to task requirements, which is more flexible. Second,
this paper designs a surrounding formation protocol over the
leader-follower network with a general exploration relation-
ship. Our protocol can reduce costs and improve system ro-
bustness. Finally, by designing the formation vector estima-
tor, the size of the surrounding formation can be adjusted by
the agents themselves, which means that it does not set the
formation vector in advance [6]-[11].

The remainder of this paper is organized below. Section 2
gives basic knowledge and system model problems. Section
3 shows the main results and Section 4 shows a numerical
simulation. Section 5 concludes this paper.
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2 Basic Knowledge and Problem Statement

2.1 Notions
Let R, Rn and Rn×n be the real number set, the n-

dimension column vector set, and the n-order square matrix
set, respectively. 1n ∈ Rn donates the column vector with
elements all being 1s and 0n ∈ Rn the column vector with
elements all being 0s. In ∈ Rn×n is the n-order unit matrix.
The operation diag{·} represents the diagonal matrix and ⊗
represents the Kronecker product. ‖v‖ denotes the 2-norm
of a vector v ∈ Rn. For a matrix A ∈ Rn×n, A> shows
the transpose, ρ(A) the spectral radius and λ̄A the maximum
eigenvalue.

2.2 System Model
On the one hand, the interaction network amongN agents

can be modelled by a graph G = {V, E} with node set V =
{1, ..., N} and edge set E = {(i, j) : i, j ∈ V}. A graph G is
said to be undirected if there has (j, i) ∈ E for (i, j) ∈ E , and
further, it is said to be connected if there has a path between
every two nodes. A path with length p from node i1 to node
ip is defined as P = {(i1, i2), (i2, i3), · · · , (ip−1, ip)} ∈ E
with distinct nodes. For a connected graph G, it’s diameter
DG is defined as the maximum of shortest path length be-
tween every two nodes. In this paper, denote the adjacent
matrix by A = [aij ] ∈ RN×N with aij = 1 if (j, i) ∈ E
and aij = 0 otherwise. D = diag {d1, · · · , dN} denotes
the in-degree matrix and L = D − A denotes the Laplacian
matrix.

In this paper, we consider the dynamic autonomous sur-
rounding formation problem with M leaders and N follow-
ers. The interaction network can be defined by the graph
GMN = {VMN , EMN}. Here, VMN = VM

⋃
VN is the n-

ode set with leader set VM and follower set VN . For i-th
follower, denote NMi = {j ∈ VM : (j, i) ∈ E , i ∈ VN}
as the neighboring set in VM , and NNi = {j ∈ VN :
(j, i) ∈ E , i ∈ VN} the neighboring set in VN . Addition-
ally, Ni = NNi

⋃
NMi and Ni0 = NNi

⋃
NMi

⋃
{i}.

For the network GMN , the Laplacian matrix can be denot-
ed by

L =

[
0 0
LB LA

]
.

Here, LB = [bih] ∈ RN×M is the exploring relationship ma-
trix from leaders to followers with bih = −1 if (h, i) ∈ E ,
i ∈ VN , h ∈ VM and bih = 0 otherwise. LA=L+diag{bi}
is a nonsingular matrix with bi = −

∑M
h=1 bih. For the in-

teraction network GMN , we make the following assumption.
Assumption 1. The interaction topology GMN satisfies:
1) The subgraph G among N followers is undirected and
connected.
2) For each follower, there exists a path at least from one
leader to it and no path from it to every leader.
Lemma 1.[19] Suppose Assumption 1 to be valid. Then,
each element of matrix−L−1A LB is positive and the row sum
of −L−1A LB is equal to one.
Lemma 2.[20] Suppose Assumption 1 to be valid. Define D̄
= D + diag{bi} and ∇ = IN − (D̄ + IN )−1LA. All eigen-
values of∇ lie within a circle of units centered on the origin,
that is,

∣∣λ̄∇∣∣ < 1.
On the other hand, the dynamics of M leaders and N fol-

lowers are described by

ẋi(t) = ui(t), i ∈ VN , (1)
ṁi(t) = zi(t), i ∈ VM , (2)

where xi(t) ∈ Rn is the position and ui(t) ∈ Rn is the
driving command of follower i to be designed, respectively.
mi(t) ∈ Rn is the position and zi(t) is the unknown external
input of leader i, respectively. For dynamics (2), we make
the following assumption:
Assumption 2. The reference input zi(t) to be bounded,
denoted by zi(t) < z̄.

This paper aims to solve the dynamic autonomous sur-
rounding formation problem within a specified settling time.
It can be described as,

Definition 1. For dynamics (1)-(2), it is said to achieve
specified-time dynamic target autonomous surrounding for-
mation (ST-DTASF) if, for any initial states xi(t0), it holds
that

lim
t→T

= ‖xi(t)− qi(t)− hi(t)‖ = 0. (3)

In which, T is the specified time. qi(t) =
∑M
i=1 βihmih(t)

is the distributed estimator of formation center, lying in the
convex hull formed by leaders. hi(t) is the autonomous sur-
rounding formation vector estimator.

3 Main Results

This paper aims uses a sampling mechanism to achieve
the objective of ST-DASF. The sampling instance is given as

tk = tk−1 + δk, with t0 = 0, δk =
T

k(k + 1)
, (4)

where δk is the step size, k = 1, 2, · · ·∞. Obviously, (4)
satisfies limk→∞ tk = T .

Based on the sampling mechanism (4), the autonomous
surrounding formation protocol is presented as

ui(t) =− 1

δk+1(d̃i + 1)

[ N∑
j=1

aij(xi(tk)− xj(tk)

− hi(tk) + hj(tk)− qi(tk) + qj(tk))

+ xi(tk)− qi(tk)− hi(tk)
]
, (5a)

ṗi(t) =− 1

δk+1(d̄i + 1)

[ N∑
j=1

aij(pi(tk)− pj(tk))

+
M∑
h=1

bih(pi(tk)−mh(tk))
]
, (5b)

q̇i(t) =− θδ−1k+1

N∑
j=1

aij(qi(tk)− qj(tk))− σδ−1k+1

(qi(tk)− pi(tk))− σδ−1k+1vi(tk)

+ δ−1k (pi(tk+1)− pi(tk)), (5c)

vi(tk) =vi(tk−1) + β
N∑
j=1

aij(qi(tk−1)− qj(tk−1)), (5d)

Zli(tk) = max
j∈Ni0

{
Zl−1j (tk−1)

}
, l = 1, . . . , w, (5e)

hi(tk) =Υ

(
Zwi (tk) sin(2π(i−1)

N )

Zwi (tk) cos(2π(i−1)
N )

)
, i = 1, 2, · · · , N,

(5f)
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where d̃i=di+1, d̄i=di+bi, θ and σ are two positive con-
stants. vi(t) is an auxiliary variable satisfying

∑N
i=1 vi(t0)

= 0. Υ > 1 is used to adjust the size of the encirclement.
Zli(tk) is the l-th element of the enveloping radius estimator

Zi(tk) =
[
Z0
i (tk), Z1

i (tk), · · · , Zwi (tk)
]
∈ Rw+1

and Zwi (tk) is the estimated maximum of enveloping radius
with w > DG . Initialization Zi(0) = r0i (0)1w+1 with

ri(tk) =

{
max ‖mh(tk)− qi(tk)‖ , i ∈ VN , h ∈ NMi

0, i ∈ VN , h ∈ ∅
,

(6)
Theorem 1. Suppose that Assumptions 1-2 are valid. Then,
the proposed protocol (5a) with estimators (5b)-(5f) will
solve the ST-DTASF problem for dynamics (1)-(2) defined
as Definition 1 if parameters satisfy 0 < σ < 2 and 0 < θ <

1
N−1 .

Proof: The proof of Theorem 1 includes the follow-
ing four parts. In this proof, the capital letters with-
out subscripts denote the compact form, such as P (t) =
[pT1 (t), · · · , pTN (t)]T , Q(t) = [qT1 (t), · · · , qTN (t)]T and etc.

Part 1. To show the specified-time convergence of convex
hull estimator pi(t), i.e., to prove

lim
t→T

∥∥∥∥∥pi(t)−
M∑
h=1

βihmh(t)

∥∥∥∥∥ = 0, (7)

where
∑M
i=1 βih = 1 is the coefficient of convex hull.

To show (7), we integrate (1) and (5b) form tk to t, obtaining

mi(t) =

∫ t

tk

zi(τ)dτ +mi(tk), i ∈ VM ,

pi(t) =− t− tk
δk+1(d̄i + 1)

[ N∑
j=1

aij(pi(tk)− pj(tk))

+

M∑
h=1

bih(pi(tk)−mh(tk))
]

+ pi(tk), i ∈ VN

According to Lemma 1, vector Ep(t) = P (t) + (L−1A LB ⊗
In)M(t) can be used to denote estimator error. Then, one
has

Ep(t) =P (t) + (L−1A LB ⊗ In)M(t)

=− t− tk
tk+1 − tk

((D̄ + IN )−1LA ⊗ IN )Ep(tk)

+ Ep(tk) + (L−1A LB ⊗ In)

∫ t

tk

Z(τ)dτ.

(8)

When t = tk+1, one gives

Ep(tk+1) =
(
(IN − (D̄ + IN )−1LA)⊗ IN

)
Ep(tk)

+ (L−1A LB ⊗ In)

∫ tk+1

tk

Z(τ)dτ,
(9)

In line with Lemma 2, one knows that matrix IN −
(D̄ + IN )−1LA has all eigenvalues within the unit circle.
Under the Assumption 2, one obtains limtk→T

∫ tk+1

tk
Z(τ)dτ

= 0. Therefore, it holds that

lim
k→∞

Ep(tk+1) = lim
tk→T

Ep(tk+1) = 0.

For continuous errors Ep(t), there has

lim
tk→T

‖Ep(t)‖ 6
∥∥L−1A LB ⊗ In

∥∥∥∥∥∥∫ t

tk

Z(τ)dτ

∥∥∥∥
+ ‖∇ ⊗ IN‖ ‖Ep(tk)‖ .

(10)

Owing to limtk→TEp(tk) = 0 and limtk→T
∫ t
tk
Z(τ)dτ =

0, it is obvious that limtk→TEp(t) = 0.
Part 2. To show the specified-time convergence of forma-

tion center estimator qi(t), i.e., to prove

lim
t→T

∥∥∥∥∥∥qi(t)− 1

N

N∑
j=1

pj(t)

∥∥∥∥∥∥ = 0. (11)

For this, define Eq(t) = JNq(t) as the estimated error with
JN =IN− 1

N 1N1TN . Auxiliary variables ∆P (tk) = P (tk+1)

−P (tk) and Ṽ (tk) = V (tk)−α−1JN∆P (tk)− JNP (tk).
Then, we integrate equation (5c) from tk−1 to tk and have[

Eq(tk)

Ṽ (tk)

]
= Θ

[
Eq(tk−1)

Ṽ (tk−1)

]
+

[
0N×N
σ−1IN

]
· JN ((1− σ)∆P (tk−1)−∆P (tk)) ,

(12)

where Θ =

[
(1− σ)IN − θL −σIN

θL IN

]
.

Take the linear transformation of (12) as[
Êq(tk)

V̂ (tk)

]
= T2T1

[
Eq(tk)

Ṽ (tk)

]
with T1 =

[
IN 0N
IN IN

]
,

T2 =

[
TT3 0N
0N TT3

]
, T3 =

[
f F

]
, f = 1√

N
1N and

F ∈ RN×(N−1) such that fTF = 0N−1, F
TF = IN−1.

We give

[
Êq(tk)

V̂ (tk)

]
= ∆̄

[
Êq(tk−1)

V̂ (tk−1)

]
+

[
0n

σ−1TT3

]
· JN ((1− σ)∆P (tk−1)−∆P (tk)),

(13)

Here, ∆̄ =

[
TT3 (IN − θL)T3 −σIN

0N (1− σ)IN

]
has eigen-

values 1 − σ with multiplicity N and eigenvalues (1 −
θλi(L)). Consequently, parameters 0 < σ < 2, 0 < θ <

1
N−1 leads that all eigenvalues of ∆̄ lie in the unit circle with
only one eigenvalue being 1.
Let Êq(tk) = [Êq1(tk), ÊTq[2,N ](tk)]T and V̂ (tk) =

[V̂1(tk), V̂ T[2,N ](tk)]T , one has[
Êq1(tk)

V̂1(tk)

]
= Ξ

[
Êq1(t0)

V̂1(t0)

]
, (14a)[

Êq[2,N ](tk)

V̂[2,N ](tk)

]
= Ξ̄

[
Êq[2,N ](t0)

V̂[2,N ](t0)

]
+ Γ, (14b)

with Ξ̄ =

 fk −σ
k−1∑
s=0

fs(1− σ)
k−1−s

0N−1 (1− σ)
k
IN−1

,

Γ =

 k−1∑
s=0

fsFT (∆P (tk−1−s)− (1− σ)
k−1−s

∆P (t0))

−σ−1FT (∆P (tk)− (1− σ)
k
∆P (t0))
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and Ξ =

 1 −σ
k−1∑
s=0

(1− σ)
k−1−s

0 (1− σ)
k

.

Next, take the inverse transformation of (13), we can obtain

Eq(tk) =

(
1− σ

k−1∑
s=0

(1− σ)
k−1−s

)
ffTEq(t0)

− σ
k−1∑
s=0

(1− σ)k−1−sffT Ṽ (t0) + FfkFTEq(t0)

− F (σ
k−1∑
s=0

(1− σ)
k−1−sfs)FT (Eq(t0) + Ṽ (t0)

+ σ−1∆P (t0)) + F
k−1∑
s=0

fsFT∆P (tk−1−s),

(15a)

Ṽ (tk) =− (1− σ
k−1∑
s=0

(1− σ)
k−1−s

)ffTEq(t0)

+ σ
k−1∑
s=0

(1− σ)k−1−sffT Ṽ (t0)− FfkFTEq(t0)

+ F (σ
k−1∑
s=0

(1− σ)
k−1−sfs)FT (Eq(t0) + Ṽ (t0)

+ σ−1∆P (t0)) + (1− σ)k((ffT + FFT )(Eq(t0)

+ Ṽ (t0)) + σ−1FFT∆P (t0))− F
k−1∑
s=0

fsFT

∆P (tk−1−s)− σ−1FFT∆P (tk). (15b)

We analyze the convergence of Eq(tk) and Ṽ (tk) term by
term as follows.

• For the first term ofEq(tk) and Ṽ (tk), we have lim
k→∞

1−

σ
k−1∑
s=0

(1−σ)
k−1−s

=0 because of |1− σ| < 1.

• For the second term of Eq(tk) and Ṽ (tk), we obtain

ffT Ṽ (t0) = ffTV (t0) = 0 owing to
N∑
i=1

vi(t0) = 0,

ffTJN = 0N and fTV (t0) = 0.
• For the third term of Eq(tk) and Ṽ (tk), we give

lim
k→∞

fk 6 lim
k→∞

ρ(f)kIN = 0N .

• For the forth term of Eq(tk) and Ṽ (tk), we show that

lim
k→∞

∥∥∥∥∥σ
k−1∑
s=0

(1− σ)k−1−sfs
∥∥∥∥∥

6 lim
k→∞

|σ|
k−1∑
s=0

|1− σ|k−1−sτs

=


lim
k→∞

τk−1
k−1∑
s=0

( 1−σ
τ )

k−1−s
=0, if|1− σ| < τ,

lim
k→∞

|τk−1k| = 0, if|1− σ| = τ,

lim
k→∞

|(1− σ)
k−1k−1∑

s=0
( τ
1−σ )

k−1−s|=0, if|1− σ| > τ,

• For the fifth term ofEq(tk) and the sixth term of Ṽ (tk),

we have ∆P (tk−1−s) = Ṗ (ε)(tk−s − tk−1−s) 6
µ̄δk−s1n, where ε ∈ [tk−s, tk−1−s] and γ̄ is the upper
bound of ṗ. With δk = T

k(k+1) , one has

lim
k→∞

k−1∑
s=0

fs∆P (tk−1−s) 6 lim
k→∞

k−1∑
s=0

(ρ(f)sδk−s)µ̄1N

6 lim
k→∞

k−1∑
s=0

(τs
T

(k − s)
)µ̄1N

= 0N .

Based on the above analysis, one can get the conclusion that
lim
tk→T

∣∣eqi(tk)
∣∣ = 0 and lim

tk→T
|ṽi(tk)| = 0.

For the continuous error, we integrate equation (5c) from tk
to t and have

eqi(t) =
t− tk

tk+1 − tk

(
− θ

N∑
j=1

aij(eqi(tk)− eqj(tk)

+ (1− σ)eqi(tk)− σṽi(tk) + 2∆pi(tk)

− 1

N

N∑
i=1

∆pi(tk)
)
− 1

N

N∑
i=1

pi(t)+
1

N

N∑
i=1

pi(tk).

which shows that

lim
t→T
|eqi(t)| 6 θρ(L)|eqi(tk−1)|+ (1 + σ)|eqi(tk−1)|

+ σ|ṽi(tk−1)| = 0.

Consequently, equation (11) has been proven hereto.
Part 3. To show the specified-time convergence of forma-

tion enveloping radius estimator Zi(t), i.e., to prove

lim
tk→T

max
i∈VN

|Zwi (tk)− r̄(tk)| 6 w · ψ = 0, (16)

where r̄(tk) = max
i∈VN
{ri(tk)}. ψ is the bound of the change

of ri(tk).
Let eZi(tk) = Zwi (tk)−ri(tk) be the estimated error. H0

is the set of followers with the largest error at arbitrary time
t = tk0, as

H0 =
{
i ∈ VN : Z0

i (tk0) = r̄(tk0)
}
. (17)

H1 is the one-step spacing neighbors of all agents in H0, as

H1 = {i ∈ NN : (i, j) ∈ E , j ∈ H0} , (18)

For the agents in H1, we update its Zi(t) at t = tk0+1 as

Z1
i (tk0+1) = r̄(tk0), i ∈ H1 ∪H0. (19)

Similarly, we define H2 as the two-step neighbors of all a-
gents in H0, as

H2 = {i ∈ NN : (i, j) ∈ E , j ∈ H1 ∪H0} , (20)

and update its agents estimator Zi(t) at t = tk0+2 as

Z1
i (tk0+2) = Z1

i (tk0+1) = r̄(tk0), i ∈ H2 ∪H1 ∪H0.
(21)
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By mathematical induction, one has for 1 6 l 6 w, one has
l-step neighbor of agents in H0 as

Hl =

{
i ∈ VN : (i, j) ∈ ε, j ∈

l−1
∪
p=0

Hp

}
, (22)

in which the agents update its estimator as

Zwi (tk0+l) = Zwi (tk0+l−1) = · · · = r̄(tk0), j ∈
l−1
∪
p=0

Hp,

(23)
For a connected graph G with diameter DG ,for each agent, it
needs w + 1 updates at most to estimate r̄(tk0). Thus, there
has

eZi(tk0+w) 6 max
i∈VN

|Zwi (tk0+w)− r̄(tk0+w)|

6 max
i∈VN

|Zwi (tk0+w)−r̄(tk0)−r̄(tk0+w)+r̄(tk0)|

6w · ψ.

When k →∞, one haa ψ → 0, which proves equation (16).
Part 4. To show the specified-time convergence of DASF

protocol ui(t), i.e., to prove

lim
tk→T

‖xi(tk)−qi(tk)−hi(tk)‖ = 0, (24)

By substitute (5a) into (2) and integrate it from tk to t, one
gets

xi(t) =− t− tk
(tk+1 − tk)(d̃i + 1)

[ N∑
i=1

aij(eBi
(tk)− eBj

(tk))

+ eBi(tk)
]

+ xi(tk),

(25)
where eBi(t) = xi(t)− qi(t)− hi(t) is the formation error.
It gives the error EB(t) with compact form as

EB(t) =X(t)−H(t)−Q(t)

=− t− tk
tk+1 − tk

[(D̃ + IN )−1(L+ IN )⊗ IN ]EB(tk)

+ EB(tk).

For the discrete errors EB(tk+1), we obtain

EB(tk+1) =
(
IN − (D̃ + IN )−1(L+ IN ))⊗ IN

)
EB(tk),

(26)
According to Lemma 2, matrix ∇̃ = IN − (D̃ + IN )−1(L+
IN ) havs all eigenvalues within the unit circle, which results
in limtk→TEB(tk) = 0.
For the continuous errors EB(t), one gives

lim
t→T
‖EB(t)‖ 6

∥∥∥∇̃ ⊗ IN∥∥∥ ‖EB(tk)‖ → 0. (27)

These prove equation (24).
The proof of Theorem 1 has been completed.

4 Simulations

This section presents a numerical simulation with eight
followers and four leaders, whose interaction topology is
Fig.1.

Fig. 1: The interaction topology with general exploration re-
lationship

Select σ = 1, θ = 0.1, δk = T
k(k+1) and Υ = 1.5. Con-

vergence time is specified as T = 5. The leader’s input is

m1(t) =
[

cos(t)− 1

(t+ 2)2
,− sin(t)− 1

(k + 2)2

]T
,

m2(t) =
[

cos(t)− 10e−t, 2 cos(t)− 15e−t
]T
,

m3(t) =
[
2 cos(t) + a tan 2t, cos(t) + a tan 2t

]T
,

m4(t) =
[
− 2 sin(t)− 20e−t, 2 cos(t)− 4e−t

]T
.
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Fig. 2: The error of convex hull estimated epi(t)
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Fig. 3: The error of formation center eqi(t)

Figs. 2 and 3 plot the errors of convex hull error epi(t) and
formation center error eqi(t) respectively. Both converge to
zero at the specified time t = 5s. Fig. 4 depicts the final
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Fig. 4: The final surrounding formation error eBi(t)
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Fig. 5: The real formation configuration

encirclement formation error eBi(t). Fig. 5 shows the real
formation configuration at t = 0s, t = 3.3s, t = 5s and
t = 10s, which all in accordance with the theoretical result.

5 Conclusions

This paper investigates the specified-time dynamic au-
tonomous surrounding formation problem for the multi-
agent network with a general exploring relationship. The
sampling-data-based formation protocol is designed based
on several formation configuration estimators to achieve au-
tonomous surrounding formation at a specified time. Future
work will focus on the same problem for higher-order agent
dynamics.

References
[1] I. Jeon, J. Lee and M. Tahk, Homing guidance law for cooper-

ative attack of multiple missiles. Journal of Guidance Control
and Dynamics, 33(1): 275–280, 2010.

[2] A. Bidram, A. Davoudi, F. Lewis and Z. Qu, Secondary con-
trol of microgrids based on distributed cooperative control of
multi-agent systems. IET Generation Transmission & Distri-
bution 7(8): 822–831, 2013.

[3] Z. Gu, B. Song, Y. Fan and X. Chen, Design and verifica-
tion of UAV formation controller based on leader-follower
method. 2022 7th International Conference on Automation,
Control and Robotics Engineering (CACRE), Xi’an, China,
2022: 38–44.

[4] L. Chen, J. Mei, C. Li and G. Ma, Distributed leader-follower
affine formation maneuver control for high-order multiagent

systems. IEEE Transactions on Automatic Control, 65(11):
4941–4948, 2020.

[5] M. Ji, G. Ferrari-Trecate, M. Egerstedt and A. Buffa, Con-
tainment control in mobile networks. IEEE Transactions on
Automatic Control, 53(8):1972–1975, 2008.

[6] J. Li, W. Ren and S. Xu, Distributed containment control with
multiple dynamic leaders for double-integrator dynamics us-
ing only position measurements. IEEE Transactions on Auto-
matic Control, 57(6): 1553–1559, 2012.

[7] W. Jiang, G. Wen, Z. Peng, T. Huang and A. Rahmani, Fully
distributed formation-containment control of heterogeneous
linear multiagent systems. IEEE Transactions on Automatic
Control, 64(9): 3889–3896, 2019.

[8] X. Dong and G. Hu, Time-varying formation tracking for lin-
ear multiagent systems with multiple leaders. IEEE Transac-
tions on Automatic Control, 62(7): 3658–3664, 2017.

[9] Y. Liu, W. Zhang, C. Xian, Y. Zhao and G. Chen, Event-
triggered multiple dynamic targets formation tracking with-
out well-informed agent: a general exploring relationship.
IEEE Transactions on Control of Network Systems. doi:
10.1109/TCNS.2023.3295342.

[10] B. Xu, H. Zhang, Y. Ding and W. Ren, Event-triggered sur-
rounding formation control of multiagent systems for multi-
ple dynamic targets. IEEE Transactions on Control of Net-
work Systems, 10(2): 752–764, 2023.

[11] Q. Zhang, J. Xi, L. Wang and C. Wang, Formation track-
ing control of quadrotor unmanned aerial vehicle swarm with
double formation structure. 2022 41st Chinese Control Con-
ference (CCC), Hefei, China, 2022: 4962–4967.

[12] Y. Liu and Z. Geng, Finite-time optimal formation control for
linear multi-agent systems. Proceedings of the 33rd Chinese
Control Conference, Nanjing, China, 2014: 8941–8946.

[13] H. Du, C. Yang and R. Jia, Finite-time formation control of
multiple mobile robots. 2016 IEEE International Conference
on Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER), Chengdu, China, 2016: 416–421.

[14] Y. Liu, F. Zhang, P. Huang and Y. Lu, Fixed-time consen-
sus tracking for second-order multiagent systems under dis-
turbance. IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, 51(8): 4883–4894, 2021.

[15] A. Coppola, D. G. Lui, A. Petrillo and S. Santini, Dis-
tributed fixed-time leader-tracking control for heterogeneous
uncertain autonomous connected vehicles platoons. 2021
29th Mediterranean Conference on Control and Automation
(MED), PUGLIA, Italy, 2021: 554–559.

[16] Y. Zhou, Y. Liu, C. Xian, Y. Zhao and G. Wen, Appointed-
time formation-containment control for nonlinear multi-agent
networks using sample-data feedback. International Journal
of Robust and Nonlinear Control, 33(8): 4616–4635, 2023.

[17] Y. Zhou, Y. Liu, C. Xian and Y. Zhao, Appointed-time dy-
namic average consensus: a holistic planning and multi-step
control framework. IEEE Transactions on Circuits and Sys-
tems II: Express Briefs, 70(7): 2595–2599, 2023.

[18] K. Zhang, B. Zhou, X. Yang and G. Duan, Prescribed-
time leader-following consensus of linear multi-agent system-
s by bounded linear time-varying protocols. Science China-
Information Sciences, 67(1):112201,2024.

[19] Z. Meng, W. Ren and Z. You, Distributed finite-time attitude
containment control for multiple rigid bodies. Automatica,
46(12): 2092–2099, 2010.

[20] Y. Liu and Y. Zhao, Specified-time containment tracking for
multi-agent systems: an optimal control approach. 2017 29th
Chinese Control and Decision Conference (CCDC), 2017:
2530–2534.

382  



ADMM-based Privacy-Preserving Peer-to-Peer Energy Trading
Negotiation Mechanism

Zhenwei Guo1,2, Jiajian Zhu1, Haoran Li1, Haibin Zheng1, Yujue Wang1

1. Research Center of Cyber Science and Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
E-mail: zhenweiguo0724@buaa.edu.cn, jiajianzhu@buaa.edu.cn, lhrbeijing@buaa.edu.cn, zhenghaibin29@buaa.edu.cn,

wyujue@buaa.edu.cn
2. State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China

Abstract: The rapid development of demand response management and distributed energy has promoted the development of P2P
energy trading mechanisms, making electricity market participants more active. However, how to prevent private information
from being reached by malicious agents during P2P negotiation process is a challenging problem. This paper proposes a privacy
protection decentralized optimization method for P2P energy trading based on consensus Alternating Direction Method of Mul-
tipliers (ADMM) and Partially Homomorphic Encryption (HE). Firstly, the general model of P2P electricity market and the P2P
trading negotiation mechanism based on consensus ADMM are introduced. However, under this mechanism, malicious neighbor
agents can collude to steal private information. In order to resist collusion attack, a two-party secure computation mechanism
between each pair of agents is designed, and the energy amount and price are updated in a secure way without leaking any private
information. The privacy-preserving mechanism can find a trade-off between the convergence efficiency and information secu-
rity. Finally, the function of the privacy protection negotiation mechanism was simulated in terms of convergence performance,
impact on social welfare and computational efficiency.

Key Words: ADMM-based P2P energy trading, privacy-preserving, partially homomorphic encryption

1 Introduction

The increase in the number of prosumers motivates the
need for a decentralized energy trading mechanism that al-
lows prosumers to negotiate freely with each other without a
central coordinator. In this context, P2P trading mechanism
emerges as the next generation energy management technol-
ogy, which enables prosumers to actively participate in the
energy market. Although the P2P mechanism provides bet-
ter scalability, reliability and resilience, the growing privacy
concerns prevent it from being widely used. In P2P markets,
prosumers trade energy without the intervention of a central
coordinator, making the market an untrustworthy and unreli-
able platform. Moreover, P2P energy trading requires a large
amount of data to be exchanged to decide the optimal traded
amount and price [1]. Disclosing such local data for com-
putation would compromise their privacy. For example, the
producer generation pattern [2] and the local demand con-
sumption pattern [3, 4] may be revealed.

Therefore, protecting prosumers’ privacy and encourag-
ing them to cooperate in an environment with a lack of trust
and security is challenging. To achieve privacy-preserving
decentralized optimization, a common approach is differ-
ential privacy [5–7], It overwrites sensitive information by
adding carefully designed noise to the exchange state or ob-
jective function. However, the added noise also inevitably
compromises the optimality of the results, leading to a trade-
off between privacy and accuracy. In fact, as proved in [7],
even without the addition of noise perturbations, differential
privacy-based methods may fail to approach the exact opti-
mal solution. Homomorphic encryption (HE) is another se-
cure method that allows to perform computations on cipher-
text and produce an encrypted result that, when decrypted, is

This work is supported by the National Science Foundation of China
62303037, the Zhejiang Soft Science Research Program 2023C35081, and
the Open Research Project of the State Key Laboratory of Industrial Control
Technology, Zhejiang University, China (No.ICT2023B48).

the same as the result of an operation performed on plain-
text [8]. HE can be further divided into two categories:
Semi-HE and full-HE. Semi-HE methods refer to schemes
that support only addition or multiplication operations of
cryptographic algorithms. For example, the Paillier algo-
rithm only supports addition operations. In contrast, full-
HE schemes support all encryption algorithms. The main
advantage of the HE method is that it is based on crypto-
graphic techniques and is the most secure method, while its
biggest disadvantage is the high consumption of computa-
tional resources due to complex cryptographic operations.
Several works have investigated the use of HE techniques in
energy management systems based on distributed optimiza-
tion. For example, a new private cooperative distributed en-
ergy management system was proposed on [9] to solve the
AC optimal power flow problem in a distributed and private
manner. The algorithm was based on the primal dual sub-
gradient distributed optimization technique and the full HE
algorithm; In [11], a privacy-preserving scheduling method
for distributed interconnected microgrid based on ADMM
and Paillier HE method was proposed; The authors presented
new algorithms based on HE at [12] to implement system op-
erators and a set of agents to securely execute distributed al-
gorithms based on projected gradients. Then, the algorithm
was applied to solve the privacy problem in distributed en-
ergy transactions [13]. In our previous work [14], we pro-
posed a privacy-preserving P2P energy trading negotiation
mechanism based on consensus+innovation (C+I) method
and HE. However, the number of convergence iterations is
large and the computation burden is heavy.

Therefore, the existing works have not found a good trade-
off between security and efficiency of P2P energy trading
negotiation mechanisms. To solve this problem, we inno-
vatively combine the efficient consensus ADMM with Pail-
lier HE to realize a privacy-protection and fast-converging
decentralized optimization method for P2P energy trading.
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Simulation results show that market convergence perfor-
mance, social welfare, and computational efficiency are sac-
rificed at acceptable levels. The main contribution is to pro-
tect the information exchanged between each pair of agents
in the negotiation process of ADMM-based P2P energy trad-
ing, so that it has less number of convergence iterations and
higher security.

The rest of the paper is organized as follows: Section
2 presents the general formulation of P2P market and the
ADMM-based P2P negotiation mechanism for energy trad-
ing, followed by the privacy-preserving computation frame-
work in Section 3. Numerical results are presented in Sec-
tion 4. Finally, conclusions are drawn in Sections 5.

2 Problem Formulation

2.1 General P2P Market Model
In this section, a general simplest mathematical formula-

tion of a full P2P market design [15, 16] is first presented
below

min
D

∑
n∈Ω

Cn (Pn) + C̃n (Pn) (1a)

s.t. Pn =
∑
m∈ωn

Pnm, ∀n ∈ Ω (1b)

Pn ≤ Pn ≤ Pn, ∀n ∈ Ω (1c)
Pnm + Pmn = 0, ∀(n,m) ∈ (Ω, ωn) (1d)
Pnm ≥ 0, ∀(n,m) ∈ (Ωp, ωn) (1e)
Pnm ≤ 0, ∀(n,m) ∈ (Ωc, ωn) (1f)

where D = (Pnm ∈ R)n∈Ω,m∈ωn , Pn is the summation
of traded amount between neighbor agents, and Pnm is the
trade between agents n and m. The generation or demand
should be within a feasible region (1c), and the trade be-
tween each pair of agents should be balanced (1d). A posi-
tive value of Pnm means sale/production (1e) and a negative
value equals to a purchase/consumption (1f). Ω, Ωp and Ωc
as sets for all peers, producers and consumers, respectively
(hence, Ωp,Ωc ∈ Ω, Ωp ∩ Ωc = ∅).

The production cost and consumer utility functions are
usually formulated as quadratic functions as below

Cn(Pn) = anP
2
n + bnPn, (2)

where an and bn are predetermined positive constants.
The product differentiation or preference is considered,

the bilateral trading costs are formulated as linear func-
tions of the quality traded with each neighboring agents
C̃n (Pn) =

∑
m∈ωn

cnmPnm. The bilateral trading coeffi-
cients cnm are influenced by transmission distance, network
constraints, carbon emissions, size of prosumers, etc. The
different preference will influence the prices between agents.
For example, the long distance between agent n and m will
generate a high transmission cost, and cause a higher price
between n and m than others.

2.2 Decentralized Optimization-Based P2P Trading
Negotiation Mechanism

Compared with centralized optimization, decentralized
optimization can realize parallel computation while main-
taining the optimality of results, and is a better method to

implement and design new P2P trading mechanisms. This
section first introduces a decentralized negotiation mecha-
nism based on consensus ADMM for P2P trading [17, 18],
as shown in Fig. 1. This mechanism has be proposed and
proved to be efficient in many works [17, 18]. The proposed
negotiation mechanism focuses on a deterministic clearing
algorithm for single time period, and it can be easily ex-
tended to multiple time periods [17, 18].

Agent 1

Share quantities 𝑬  and prices 𝝀 

Local

Solver

Agent 2 Agent 3

Local

Solver

Market 

Operator

Local

Solver

Fig. 1: Schematic diagram of the P2P trading negotiation
mechanism

At the beginning, each agent randomly decides and broad-
casts initial price and amount in parallel. Each agent will
then iteratively update the amount and prices with its neigh-
bor agents until converging to equilibrium. At a given it-
eration k, each agent n ∈ Ω will update its traded amount
with neighbor agents by solving an optimization problem as
follows.

min
Pn

Cn (Pn) + C̃n (Pn) + (3a)∑
m∈ωn

[
λknm

(
Qknm−Pnm

)
+
ρ

2

(
Qknm−Pnm

)2]
s.t. Pn ≤ Pn ≤ Pn, ∀n ∈ Ω (3b)

Pnm ≥ 0, ∀(n,m) ∈ (Ωp, ωn) (3c)
Pnm ≤ 0, ∀(n,m) ∈ (Ωc, ωn) (3d)

where λnm is the provided price for amount Pnm, and it
is also the dual variable for the balance constraints (1d);
Qnm = Pnm−Pmn

2 represents the median value of traded
amount between n and m.

It can be noticed that, some items in the objective function
are constant, which will not affect the decision of variables
and can be omitted. Above objective function can be simpli-
fied to be following form.

min
Pn

Cn (Pn) + C̃n (Pn) + (4a)∑
m∈ωn

[
−λknmPnm − ρQknmPnm +

ρ

2
(Pnm)2

]
After solving above problem (3) and obtaining the updated

amount, each agent will update the price λk+1
nm as follows

λk+1
nm = λknm −

ρ

2

(
P k+1
nm + P k+1

mn

)
. (5)
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Since the objective function is strictly convex, utilizing
ADMM method is sufficient to ensure that the algorithm
converges to the global optimum [19]. The algorithm ends
when the total primal residual (the squared difference be-
tween each pair of traded amounts) and the total dual resid-
ual (the squared difference between two consecutive itera-
tion amounts) are less than the global stopping criterion

Rk+1 ,
∑
n∈Ω

∑
m∈ωn

(P k+1
nm + P k+1

mn )2 ≤ χr, (6a)

T k+1 ,
∑
n∈Ω

∑
m∈ωn

(P k+1
nm − P knm)2 ≤ χt, (6b)

where χr and χt are predestined positive minimal constants.
The market Operator (MO) must be trusted and can be a
community manager or an authorized representative of all
agents. MO checks whether the algorithm converges by col-
lecting trading results (6), and broadcasts a termination sig-
nal to all agents if the convergence condition is satisfied.

3 Privacy-Preserving P2P Trading Negotiation
Mechanism

3.1 Collusion Attack
At iteration k of the negotiation process, the informa-

tion sent by agent n ∈ Ω to neighbor agent m ∈ ωn is
P knm. It is obvious that agent’s internal private parame-
ters

(
an, bn, cnm, Pn, Pn

)
are not required to be shared for

reaching optimality. However, this mechanism cannot ab-
solutely protect the private information. Consider a specific
scenario where all of agent n’s neighbor agents conspire to
gain agent n’s privacy by exchanging information. We will
introduce two collusion attack strategies to derive the private
parameters

(
Pn, Pn

)
and (an, bn, cnm).

1) First, neighbors of agent n can gradually adjust the pro-
vided amount Pmn until Pnm remains unchanged be-
tween two iterations, which means the output of agent
n has reached the bound {Pn, Pn}. Since all neighbor
agents can communicate to accumulate all Pnm,m ∈
ωn to get Pn, they can obtain the private information
{Pn, Pn}.

2) Since the neighbor agents of agent n have received the
information about power boundaries, neighbor agents
can construct a set Pmn,∀m ∈ ωn such that the output
Pn does not reach bounds (Pn, Pn). Under this condi-
tion, the constraint (3c) will not work. Then, we take
the derivative of Pnm (nonzero) for the objective func-
tion for three consecutive iterations as below. 2anP

k+1
n + bn + cnm − λknm − ρQknm + ρP k+1

nm = 0
2anP

k+2
n + bn + cnm − λk+1

nm − ρQk+1
nm + ρP k+2

nm = 0
2anP

k+3
n + bn + cnm − λk+2

nm − ρQk+2
nm + ρP k+3

nm = 0
(7)

Here, {Qnm, Pnm, λnm} are known to agent m, Pn
is also known to all collusive neighbor agents. Thus,
the private parameter (an, bn, cnm) can be obtained by
solving above equation set.

So while updates require little information sharing, there
is still a risk of privacy breaches under a collusive attack by
a group of malicious neighboring agents. Therefore, we will
utilize Paillier HE to protect the exchanged information.

3.2 Paillier Cryptosystem
The Paillier algorithm implementation scheme is detailed

below.
• Key generation: Prime numbers p and q are randomly

chosen to satisfy gcd(pq, (p − 1)(q − 1)) = 1, where
gcd is the greatest common divisor. Then, N = p ∗ q
and λ = lcm(p−1, q−1) are founded, where lcm is the
least common multiple. We randomly choose g ∈ Z∗N2

to satisfy gcd(L(gλ mod N2), N) = 1, and ensure
there exists

µ = (L(gλ mod N2))−1 mod N (8)

where L(x) = x−1
N . The public key pk is {N, g}, and

the private key sk is {λ, µ}.
• Encryption Function: The encrypting function is:

E(m, pk) = gm · rN mod N2 (9)

where m is the plaintext message, r is a random pad
r ∈ Z∗N .

• Decryption Function: Let the ciphertext c and the secret
key sk, the plaintext can be computed as:

m = D(c, sk) =
L(cλ mod N2)

L(gλ mod N2)
mod N (10)

= L(cλ mod N2) ∗ µ mod N.

The additive homomorphic property allows the user to op-
erate the message in its ciphertext directly. Assume the two
plaintexts are m1,m2, then we have:

c1 = E(m1, pk) ≡ gm1 · rN mod N2

c2 = E(m2, pk) ≡ gm2 · rN mod N2
(11)

Obviously, we have c1 ∗ c2 ≡ gm1+m2 · (r2)N mod N2,
thus we can conclude that

m1 +m2 mod N = D(E(m1, pk)⊕ E(m2, pk), sk)
(12)

= D(c1 ∗ c2, sk).

3.3 Privacy-Preserving Amounts and Prices Update
In the energy amounts update (3), the only terms that con-

tains the shared information from neighboring agents are
ρ(P knm − P kmn). While in the energy prices update (5),
the terms are ρ(P k+1

nm + P k+1
mn ). [20] proposed a privacy-

preserving decentralized optimization approach based on
ADMM and partially homomorphic cryptography, however,
it has not been applied to P2P energy trading problem. In-
spired by [20], we propose a privacy-preserving amounts and
prices update mechanism for energy trading negotiation pro-
cess. To be specific, motivated by the fact that ADMM al-
lows varying penalty factors [21, 22], we change the penalty
factors to be ρknm, which are varying between different pair
of agents and different iterations.

By constructing ρknm as the product of two random posi-
tive numbers, i.e., ρknm = %knm×%kmn, with %knm only known
to agent n and %kmn only known to agent m, we can propose
the following privacy-preserving amounts and prices update
protocol Alg. 1 - Alg. 2.
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The penalty factor %knm is randomly selected from[
%k−1
nm , %n

]
, which means that the penalty factor increases

monotonically with iteration. %n is the predetermined num-
ber, known only to the agent n. With this update, the privacy
protection algorithm can be guaranteed to converge.

It should be noticed that in (4), the term ρnm

2 (Pnm)2 con-
tains the varying penalty factors ρnm. If the factor are known
to agent n, it can easily get the information %kmn, and calcu-
late the amounts Pmn. In the same way, neighboring agent
m can also obtain the amounts Pnm. Thus, if the penalty
factors of the last two terms in (4) are same, the privacy can-
not be protected. To solve this problem, we change the term
ρnm

2 (Pnm)2 to ρ̂
2 (Pnm)2, where ρ̂ is a large enough constant

predetermined by MO. Then, the upper bounds %n of agent
n will be randomly chosen from

[
0.9
√
ρ̂,
√
ρ̂
]
, and known

only to agent n. By using this method, the convergence of
the algorithm can still be guaranteed, but the optimality of
results will be slightly sacrificed.

Algorithm 1 Protocol for privacy-preserving amounts up-
date of agent n at iteration k.

1: Initialization: k = 0, each agent initializes P k
nm, %k

nm.
2: for m ∈ ωn do
3: Agent n encrypts P k

nm with its public key pkn: En(P k
nm).

4: Agent n sends En(P k
nm) and its public key pkn to the cor-

responding neighboring agent m.
5: Agent m encrypts −P k

mn with pkn: En(−P k
mn).

6: Agent m computes the difference in ciphertext:

En(P k
nm − P k

mn) = En(P k
nm) · En(−P k

mn)

7: Agent m computes weighted difference in ciphertext:

En
(
%kmn(P

k
nm − P k

mn)
)
=

(
En(P k

nm − P k
mn)

)%kmn

8: Agent m sends above decryption back to agent n.
9: Agent n decrypts the message received from m with its

private key skn and multiples the result with %knm to obtain:
ρknm(P k

nm − P k
mn).

10: end for
11: After obtaining all ρknm(P k

nm − P k
mn) for ∀m ∈ ωn, agent n

runs the local optimization problem (3) to update the energy
amounts P k+1

nm .

3.4 Privacy Analysis
This method is designed to protect the information P n

that agents exchange during negotiation. In this section, we
rigorously prove that a malicious agent or adversary cannot
infer this information. As shown in Alg. 1 - 2, our approach
guarantees that information will not be leaked to any neigh-
bor in a single iteration. However, it is unclear whether pri-
vate information leaks over time.

Suppose a malicious agent n gathers the exchanged in-
formation from K iterations to infer the privacy information
of its neighbor m. Taking the energy amount update as an
example, from the viewpoint of the adversary agent n, the
information seen at iteration k is yk = %knm × %kmn(P knm −
P kmn). Then, the adversary agent n can establish (K + 1)

Algorithm 2 Protocol for privacy-preserving prices update
of agent n at iteration k.

1: Initialization: k = 0, each agent initializes P k+1
nm , %k

nm.
2: for m ∈ ωn do
3: After finishing amounts update, agent n encrypts P k+1

nm

with its public key pkn: En(P k+1
nm ).

4: Agent n sends En(P k+1
nm ) and its public key pkn to the cor-

responding neighboring agent m.
5: Agent m encrypts P k+1

mn with pkn: En(P k+1
mn ).

6: Agent m computes the summation in ciphertext:

En(P k+1
nm + P k+1

mn ) = En(P k+1
nm ) · En(P k+1

mn )

7: Agent m computes weighted summation in ciphertext:

En
(
%kmn(P

k+1
nm + P k+1

mn )
)
=

(
En(P k+1

nm + P k+1
mn )

)%kmn

8: Agent m sends above decryption back to agent n.
9: Agent n decrypts the message received from m with

its private key skn and multiples the result with %knm to
obtain:ρknm(P k+1

nm + P k+1
mn ).

10: Agent n runs (5) to obtain the updated energy prices λk+1
nm .

11: Agent n updates %knm to %k+1
nm by randomly choosing from[

%knm, %n
]
.

12: end for
13: Set k = k + 1.

equations based on the received information:

y0 = %0
nm × %0

mn(P 0
nm − P 0

mn),

y1 = %1
nm × %1

mn(P 1
nm − P 1

mn),
...
yK−1 = %K−1

nm × %K−1
mn (PK−1

nm − PK−1
mn ),

yK = %Knm × %Kmn(PKnm − PKmn).

(13)

To the adversary agent n, in the system of equations (13),
%knm, P

k
nm(k = 0, 1, 2, ...K) are known, %kmn, P

k
mn(k =

0, 1, 2, ...K) are unknown. So the above system of (K + 1)
equations contains 2(K + 1) unknown variables. It is obvi-
ous that adversary agent n cannot solve above equations set
to infer the values of unknowns %kmn, P

k
mn(k = 0, 1, 2, ...K)

of agent m. Using a similar way of reasoning, we can con-
clude that the malicious agent n cannot infer any neighbor’s
private information during the price updates.

4 Simulation Results

This section presents numerical results to evaluate the per-
formance of proposed privacy-preserving P2P energy trad-
ing mechanism. A network of seven agents is deployed as
illustrated in Fig. 2. The parameters of sellers and buyers
are listed in Tab. 1, which are randomly chosen for simu-
lation. The bilateral trading coefficients between agents are
also randomly generated. Agent 1-4 are sellers, and agent
5-7 are buyers. Simulations are running on a computer with
an Intel Core i7-10700 processor at 2.90 GHz using 32 GB
of RAM.

4.1 Convergence Performance with and without Pri-
vacy Protection

In this case study, we will demonstrate the convergence
performance of the algorithm we designed. With no privacy
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Agent 1 Agent 2 Agent 3 Agent 4

Agent 5 Agent 6 Agent 7

Fig. 2: Test network schematic.

Table 1: Sellers’ and buyers’ parameters of case study

Seller an [$/kW2] bn [$/kW] En [kW] En [kW] Rinit
n [kg] αn [kg/kW]

S1 0.040 1.5 0 7 72 0.95
S2 0.046 2 0 4 24 0.97
S3 0.040 1.2 0 6 36 0.90
S4 0.050 2.5 0 5 30 0.98
B1 0.040 3 -7 -2 40 -0.78
B2 0.056 4 -6 -2 24 -0.70
B3 0.050 3.5 -8 -2 48 -0.75

protection, the tuning parameter ρ is fixed at 0.5. Fig. 3
(a) shows the convergence process for agent 1 and agent 5.
It can be seen that both the primal residuals and the dual
residuals decrease rapidly and meet the stop criterion within
90 iterations.

When considering privacy protection, the tuning parame-
ter ρ are reconstructed to be ρknm as the product of two ran-
dom positive numbers, i.e., ρknm = %knm×%kmn. The parame-
ters ρ̂ are set to 0.36, and the upper bounds %n of agent nwill
be randomly chosen from [0.48, 0.6]. Seen from Fig. 3(b),
since the tuning parameters are changing, the iterations for
convergence is more than the case with fixed factors. But, the
residuals still decreases fast and drops close to zero within
100 iterations. In conclusion, the convergence under privacy
protection is still guaranteed, and the performance will not
degrade much.

4.2 Social Welfare with and without Privacy Protection
We also provide a comparison to show the welfare of each

agent with and without privacy protection. Before using the
privacy-preserving algorithm, the trading will be certain to
converge to optimal results due to convexity of social and
local optimization problems. The value of optimal social
welfare is 21.815. While, after taking the privacy-preserving
strategy, it can be seen from Fig.4, the result will deviate
from the optimal solution. The reason for that is penalty fac-

tors in terms
ρnm(Pk

nm,t−P
k
mn,t)

2 Pnm,t are slightly different.
The social welfare value under privacy protection is 20.183,
which is only 7.48% different from the optimal value. Thus,
although taking the privacy protection strategy will sacrifice
the social welfare, the loss is within an acceptable level.

4.3 Computational Performance with and without Pri-
vacy Protection

In this paper, we use HE technology to realize privacy-
preserving trading. However, the main drawback of HE is
that the computational burden is quite high. To overcome
this problem, we choose not to protect all the exchanged in-
formation among agents. According to the analysis of the
privacy attack, all neighbor agents need to collude. There-
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Fig. 3: Convergence process of the proposed algorithm with
and without privacy protection
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Fig. 4: Welfare of agents with/without privacy protection.

fore, as long as the communication with at least one of the
neighbor agents is secure, the private information can be well
protected. As marked in red in Fig. 2, we find a path with
the least number of edges in the graph, which means the
connection is encrypted and can resist malicious attacks. It
can be seen that, each agent has at least one secure com-
munication connection between neighbor agents. Deciding
which lines to protect depends on the communication con-
nections between agents in the market. But, we can turn it
into the problem of finding the shortest path, which can be
solved by some mature algorithms, e.g., Dijkstra algorithm
[23] and Floyd algorithm [24]. Using this strategy, the en-
crypted communication times can be at least reduced from
N(N−1)

2 to N − 1 (for a fully connected graph), where N is
the number of agents.
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We show the average running time per iteration for each
agent in Fig. 5. The running time includes key generation
time, encryption and decryption time. The algorithm can run
very fast when privacy protection is not provided, and the
time increases significantly when the negotiation is secure.
The average time of the partial protection strategy is about
half that of the full protection strategy, since both strategies
require a key generation operation.
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Fig. 5: Average running time of each agent per iteration.

5 Conclusion

How to prevent private information from being obtained
by malicious agents for DO-based P2P negotiation mecha-
nism is a challenging problem. This paper proposes a pri-
vacy protection decentralized optimization method based on
consensus ADMM and Paillier HE. The energy amount and
price are updated in a secure way without revealing any pri-
vate information. We also provide the simulation results
of convergence performance, impact on social welfare, and
computational efficiency. The results show that after pro-
viding the privacy protection, the number of iterations does
not increase much, the sacrificed welfare is in a low level,
and the running time can be reduced by about half through
finding a path in the communication network.
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Formation Control of Discrete-time Multi-agent Systems Based
on Distributed Filter Observer
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Abstract: This paper explores the formation control of discrete multi-agent systems under external communication disturbance.
Firstly, leveraging the modified algebraic Riccati equation, a disturbed output based discrete filter observer is proposed to min-
imize network information exchange and mitigate disturbance effects. Then, the formation control issue is transformed into a
cooperative output regulation problem, which a certainty equivalent state feedback controller solves. The effectiveness of the
control strategy is demonstrated by numerical simulations.

Key Words: Formation Control, Discrete-time Multi-agent System, Distributed Filter Observer

1 Introduction

Formation control has garnered extensive attention as a
fundamental and pivotal subtask in multi-agent system con-
trol [1, 2]. The objectives of formation control are twofold.
Firstly, the multi-agent system moves following a predeter-
mined desired trajectory. Secondly, each agent within the
system is required to maintain a specified inter-agent dis-
tance. Research on formation control of discrete multi-agent
systems holds significant importance in engineering applica-
tions. Thus far, substantial research focusing on communi-
cation disturbance and delay for formation control has been
reported [3–6]. [3] linearized the nonlinear model into a
second-order integral model, proposing two types of coordi-
nated controllers for systems with and without time-varying
delays. [4] offered a distributed protocol based on local
information, utilizing the agent’s immediate states and its
neighbors’ delayed states. [5] employed a discrete-time dis-
turbance observer method to mitigate exogenous disturbance
on the model. Furthermore, [6] designed a control law with a
decaying-gain to achieve the desired formation under noisy
conditions.

Output regulation, a fundamental method in control sys-
tem design, was comprehensively detailed in [7]. The con-
cept of cooperative output regulation emerges from an in-
tricate blend of graph theory and output regulation. This
methodology has been successfully applied to formation
control challenges, yielding notable outcomes [8–12]. Stud-
ies in [8–10] investigated its applications in continuous-time
systems. [11] and [12] studied the robust formation control
and communication delay-resistant formation control of dis-
crete multi-agent systems based on cooperative output regu-
lation. A pivotal aspect of cooperative output regulation in
formation control is designing a distributed observer for the
exosystem, which acts as a virtual leader of the multi-agent

This work is supported in part by National Natural Science Foundation
of China under Grants 62173149, 62276104, U22A2062, in part by Guang-
dong Natural Science Foundation under grant number 2022A1515011262,
and in part by Fundamental Research Funds for the Central Universities.
Corresponding author: He Cai. Email:caihe@scut.edu.cn

systems. For continuous-time systems, the state-based adap-
tive distributed output observer and the output-based adap-
tive distributed output observer have been developed, as dis-
cussed in [13–15]. Extending these works, [16] adapted the
observer from [14] into a discrete format. [17], leveraging
a modified algebraic Riccati equation, presented solvability
conditions for distributed state feedback control laws. Build-
ing on the study in [17], [18] explored scenarios where only
a sensor network exists among all agents and proposed a sen-
sory feedback-based discrete distributed observer.

Based on the cooperative output regulation framework,
this paper explores formation control in discrete multi-agent
systems through a filter observer based methodology. We
begin by applying the minimal polynomial of the system
matrix to restructure the virtual leader system. Drawing
on the discrete observer design method outlined in [18], a
novel disturbed output based discrete filter observer is de-
veloped through a modified algebraic Riccati equation. This
observer adeptly estimates the actual value of the virtual
leader system, simultaneously eliminating external commu-
nication disturbance and reducing network information ex-
change within the multi-agent systems. A certainty equiv-
alent state feedback controller is introduced to address the
formation control problem in discrete-time multi-agent sys-
tems. Compared with existing results, the main contributions
of this paper can be summarized as follows:

• A disturbed output based discrete filter observer is pro-
posed to address the problem of communication distur-
bance. The observer can accurately estimate the actual
value of the disturbed signal and effectively reduce the
network information exchange within the systems.

• Based on the cooperative output regulation framework,
the disturbed output based discrete filter observer is in-
corporated into the design of a certainty equivalent state
feedback controller. This control law successfully ad-
dresses the formation control problem in a disturbance
environment.

Notation: R and C denote real and complex number field.
⊗ denotes the Kronecker product of matrices. IN denotes
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N -dimensional identity matrix. 1N represents a N × 1
column vector whose elements are all 1. For xi ∈ Rni ,
i = 1, . . . , N , col(x1, . . . , xN ) = [xT1 , . . . , x

T
N ]T . Given

a square matrix A, let σ(A) denote the spectrum of A and
ρ(A) denote the spectral radius, i.e., the maximal magni-
tude of the eigenvalues of A. For any vector X ∈ Rnq for
some positive n and q, Mq

n(X) = [X1 . . . Xq], where,
for i = 1, . . . , q, Xi ∈ Rn, and X = col(X1, . . . , Xq).

LetD(a) =

[
cos(aT ) − sin(aT )
sin(aT ) cos(aT )

]
with a sampling time

T ∈ R and a constant a ∈ R. Given a square matrix A, let
pinv(A), Ψc

A(λ) and Ψm
A denote the pseudo inverse, char-

acteristic polynomial and minimal polynomial of A, respec-
tively.

2 Problem Formulation

In this paper, the formation control of a discrete-time lin-
ear multi-agent system composed of N agents is examined.
For i = 1, . . . , N , the mathematical model of the ith agent
is described as:

xi(k + 1) = Aixi(k) +Biui(k)

yi(k + 1) = Cixi(k) +Diui(k)
(1)

where xi(k) ∈ Rni , ui(k) ∈ Rmi , yi(k) ∈ Rp denote the
state, control input and output of the ith agent at the kth
sampling time, respectively. Ai ∈ Rni×ni , Bi ∈ Rni×mi ,
Ci ∈ Rp×ni , Di ∈ Rp×mi are constant matrices.

For i = 1, . . . , N , the reference tracking path yri(k) ∈ Rp
of each agent can be designed as:

yri(k) = y0(k) + yhi(k) (2)

where the global tracking path vector y0(k) ∈ Rp defines the
reference path for the entire multi-agent system and can be
viewed as a virtual leader. The local bias vector yhi(k) ∈ Rp
specifies the relative position between the ith agent and the
virtual leader. Thus, the formation tracking error ei(k) ∈ Rp
for the ith agent can be defined as:

ei(k) = yi(k)− yri(k). (3)

Suppose the global tracking path vector y0(k) ∈ Rp can
be generated by the following virtual leader system:

v0(k + 1) = S0v0(k)

y0(k) = C0v0(k)
(4)

where v0(k) ∈ Rq denotes the state, S0 ∈ Rq×q and C0 ∈
Rp×q are constant matrices.

For i = 1, . . . , N , the local bias vector yhi(k) can be gen-
erated by the following local bias generator:

hi(k + 1) = Φihi(k)

yhi(k) = φihi(k)
(5)

where hi(k) ∈ Rnhi denotes the state, Φi ∈ Rnhi×nhi and
φi ∈ Rp×nhi are constant matrices.

The communication network is described by a graph1

Ḡ = (V̄, Ē) with V̄ = {0, 1, . . . , N} and Ē = {(i, j), i, j ∈
1See [13] for a summary of graph notation.

V̄, i 6= j}. Node 0 is associated with the virtual leader,
and node i, i = 1, . . . , N, is associated with the ith agent.
Let the weighted adjacency matrix of the digraph Ḡ be
Ā = [aij ] ∈ R(N+1)×(N+1). Define a subgraph Gs of
Ḡ as Gs = (Vs, Es) with Vs = {1, . . . , N} and Es =
Ē ∩ {Vs × Vs}. Let Ls denote the Laplacian of Gs and
H = Ls + block diag(a10, . . . , aN0).

The formation control problem of a discrete-time linear
multi-agent system can be formulated as follows.

Problem 1 Given systems (1), (4), (5) and a communication
graph Ḡ, design a distributed formation control law ui(k)
such that for any system initial condition, limk→∞ ei(k) =
0.

This paper also considers the situation where the output
information η0(k) ∈ Rqη of the virtual leader system is af-
fected by channel disturbance during its transmission to the
multi-agent systems. Let ηm0 (k) ∈ Rqη represent the out-
put information of the virtual leader system received by the
multi-agent systems and

ηm0 (k) = η0(k) + ηd0(k) (6)

where ηd0(k) = col(ηd01(k), . . . , ηd0qη (k)) ∈ Rqη denotes the
disturbance. For i = 1, . . . , qη , the form of the disturbance
considered is as follows:

ηd0i(k) =
Γ∑
ε=1

βiε cos(ωεkT + γiε) (7)

where the frequency ωε is known, the amplitude βiε and
phase γiε are not accessible. Define Ω = {±ωεj, ε =
1, . . . , ϕ} and D(Ω) =block diag(D(ω1), . . . ,D(ωϕ)),
where j denotes the imaginary unit.
3 Main Result

3.1 Disturbed Output Based Discrete Filter Observer
The following assumption is necessary to design a dis-

turbed output based discrete filter observer under the dis-
turbed information.

Assumption 1 All the eigenvalues of the matrix S0 are on
the unit circle.

Suppose that the minimal polynomial of S0 is

Ψm
S0

= λι + κ01λ
ι−1 + · · ·+ κ0(ι−1)λ+ κ0ι (8)

where ι ≤ q. Let κ0 = col(κ01, . . . , κ0ι) ∈ Rι. For virtual
leader system (4), the information transmitted is defined as
η0(k) = col(κ0, y0(k)) ∈ Rι+p. Let κd0(k) and yd0(k) de-
note the channel disturbance acting on κ0 and y0(k), κm0 (k)
and ym0 (k) represent the disturbed output information re-
ceived by the agents. Thus,

κm0 (k) = κ0 + κd0(k)

ym0 (k) = y0(k) + yd0(k)
(9)

where each component of ηd0(k) = col(κd0(k), yd0(k)) satis-
fies (7).

Define:

Γκ = block diag(1,D(Ω)) ∈ R(1+2ϕ)×(1+2ϕ),

Ξκ =
[

1 1 0 . . . 1 0
]
∈ R1×(1+2ϕ),

Θκ =
[

1 0 0 . . . 0 0
]
∈ R1×(1+2ϕ).
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With Lemma 1 in [19], the pair (Ξκ,Γκ) is observable.
The amplitudes of the eigenvalues of Γκ are all 1. By Theo-
rem 1 and Corollary in [20], let 0 < δκ < 1, the following
modified algebraic Riccati equation:

ΓκPκΓTκ − Pκ − (1− δ2
κ)ΓκPκΞTκ (ΞκPκΞTκ )−1ΞκPκΓTκ

+ I1+2ϕ = 0
(10)

exists a unique solution Pκ = PTκ > 0. Let Kκ =
ΓκPκΞTκ (ΞκPκΞTκ )−1.

For i = 1, . . . , N and τ = 1, . . . , ι, The part of the dis-
turbed output based discrete filter observer that estimates κ0

is designed as follows:

ζκiτ (k + 1) = Γκζ
κ
iτ (k) + µκζiKκ

N∑
j=0

aij(ξ
κ
jτ (k)− ξκiτ (k))

ξκiτ (k) = Ξκζ
κ
iτ (k)

κiτ (k) = Θκζ
κ
iτ (k)

(11)
where ζκiτ (k) ∈ R1+2ϕ, ξκ0τ (k) = κm0τ (k) ∈ R, µκζi = νκµκi ,
νκ > 0 and µκi > 0.

Furthermore, define:

Si(k) =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

−κiι(k) −κi(ι−1)(k) . . . −κi1(k)

 ∈ Rι×ι,

C0 =
[

1 0 . . . 0
]
∈ R1×ι,

Γyi (k) = block diag(Si(k),D(Ω)) ∈ R(ι+2ϕ)×(ι+2ϕ),

Ξy =
[
C0 1 0 . . . 1 0

]
,

Θy =
[
C0 0 0 . . . 0 0

]
.

Since the pair (C0,Si(k)) is observable for any k ≥ 0, the
pair (Ξy,Γ

y
i (k)) is similarly observable. Let δyρ(Γyi (k)) <

1. By [20], the following time-varying modified algebraic
Riccati equation:

Γyi (k)P yi (k)Γyi (k)
T − P yi (k)

− (1− δ2
y)Γyi (k)P yi (k)ΞTy (ΞyP

y
i (k)ΞTy )−1ΞyP

y
i (k)Γyi (k)

T

+ Iι+2ϕ = 0
(12)

has a unique positive definite solution P yi (k). Let Ky
i (k) =

Γyi (k)P yi (k)ΞTy (ΞyP
y
i (k)ΞTy )−1.

For i = 1, . . . , N , τ = 1, . . . , p, the part of the disturbed
output based discrete filter observer that estimates y0(k) is
designed as follows:

ζyiτ (k + 1) = Γyi (k)ζyiτ (k)

+ µyζiK
y
i (k)

N∑
j=0

aij(ξ
y
jτ (k)− ξyiτ (k))

ξyiτ (k) = Ξyζ
y
iτ (k)

y0
iτ (k) = Θyζ

y
iτ (k)

(13)

where ζyiτ (k) ∈ Rι+2ϕ, ξyiτ (k) = ym0τ (k) ∈ R denotes the
τth entry of ym0 (k), µyζi = νyµyi , νy > 0 and µyi > 0.

Let Hκ
µ = diag(µκ1 , . . . , µ

κ
N )H , Hy

µ =
diag(µy1, . . . , µ

y
N )H ,Λκ%µ = IN − %Hκ

µ , Λy%µ = IN − %Hy
µ ,

Fκ = {% ∈ R|ρ(Λκ%µ) < δκ}, Fy = {% ∈
R|ρ(Λy%µ) < δy}, κi(k) = col(κi1(k), . . . , κiι(k))
and y0

i (k) = col(y0
i1(k), . . . , y0

ip(k)).

Lemma 1 Given the virtual leader system (4), the chan-
nel disturbance (7), (9), the disturbed output based dis-
crete filter observer (11), (13) and a communication net-
work Ḡ, if σ(S0) ∩ Ω = ∅, µκi > 0, νκ ∈ Fκ, µyi > 0,
νy ∈ Fy , it satisfies that limk→∞ (κi(k)− κ0) = 0 and
limk→∞

(
y0
i (k)− y0(k)

)
= 0.

Proof 1 For τ = 1, . . . , ι, κ0τ (k) and κm0τ (k) can be gener-
ated by

ζκ0τ (k + 1) = Γκζ
κ
0τ (k)

κm0τ (k) = Ξκζ
κ
0τ (k)

κ0τ (k) = Θκζ
κ
0τ (k)

(14)

where ζκ0τ (k) ∈ R1+2ϕ. Let ζ̄κiτ (k) = ζκiτ (k) − ζκ0τ (k), we
have

ζ̄κiτ (k + 1) = Γκζ
κ
iτ (k) + µκζiKκ

N∑
j=0

aij(ξ
κ
jτ (k)− ξκiτ (k))

− Γκζ
κ
0τ (k)

= Γκζ̄
κ
iτ (k)

+ µκζiKκΞκ

N∑
j=0

aij(ζ̄
κ
jτ (k)− ζ̄κiτ (k)).

(15)
Let ζ̄κτ (k) = col(ζ̄κ1τ (k), . . . , ζ̄κNτ (k)), Hκ

ζ = νκHκ
µ .

Thus,

ζ̄κτ (k + 1) = (IN ⊗ Γκ −Hκ
ζ ⊗KκΞκ)ζ̄κτ (k). (16)

Let χκ = 1/
√
ρ(ΓκPκΞTκ (ΞκPκΞTκ )−1ΞκPκΓTκ ), Rκ =√

χ2
κ + δ2

κ. For any λκµ ∈ σ(Hκ
µ), λκµ > 0. Given any

νκ ∈ Fκ, there exists a sufficiently small ακ > 0 such that
|1− νκλκµ| ≤ ρ(Λκ%µ) <

√
R2
κ − α2

κ. Thus,

(ΓTκ − νκλκµΞTκK
T
κ )HPκ(ΓTκ − νκλκµΞTκK

T
κ )− Pκ

=ΓκPκΓTκ − Pκ
+(|1− νκλκµ|2 − 1)ΓκPκΞTκ (ΞTκPκΞκ)−1ΞκPκ

TΓTκ

=− I1+2ϕ

+(|1− νκλκµ|2 − δ2
κ)ΓκPκΞTκ (ΞTκPκΞκ)−1ΞκPκ

TΓTκ

≤− I1+2ϕ

+(R2
κ − χ2

κ − δ2
κ)ΓκPκΞTκ (ΞTκPκΞκ)−1ΞκPκ

TΓTκ

=− I1+2ϕ + (χ2
κ − α2

κ)ΓκPκΞTκ (ΞTκPκΞκ)−1ΞκPκ
TΓTκ

≤− I1+2ϕ +
χ2
κ − α2

κ

χ2
κ

I1+2ϕ

=− α2
κ

χ2
κ

I1+2ϕ.

(17)
It implies that the matrix ΓTκ − νκλκµΞTκK

T
κ is Schur, and

so is IN⊗Γκ−Hκ
ζ ⊗KκΞκ. Consequently, limk→∞ ζ̄κτ (k) =

0 and limk→∞ (κi(k)− κ0) = 0.
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Moreover, with the minimal polynomial of S0 in (8),

Sι0 + κ01S
ι−1
0 + · · ·+ κ0(ι−1)S0 + κ0ι = 0. (18)

Since y0(k + d) = C0S
d
0v0(k), d ≤ ι. For τ = 1, . . . , p,

y0τ (k + ι) + κ01y0τ (k + ι− 1) + . . .

+κ0(ι−1)y0τ (k + 1) + y0τ (k) = 0.
(19)

Let ζ0τ (k) = col(y0τ (k), y0τ (k + 1), . . . , y0τ (k + ι)),

S0 =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

−κ0ι(k) −κ0(ι−1)(k) . . . −κ01(k)

 .
y0τ (k) can be generated by the following equivalent virtual
leader system:

ζ0τ (k + 1) = S0ζ0τ (k)

y0τ (k) = C0ζ0τ (k)
(20)

where ζ0τ (k) denotes the equivalent state. Then, let Γy =
block diag(S0,D(Ω)) ∈ R(ι+2ϕ)×(ι+2ϕ),

ζy0τ (k + 1) = Γyζ
y
0τ (k)

ym0τ (k) = Ξyζ
y
0τ (k)

y0τ (k) = Θyζ
y
0τ (k)

(21)

where ζy0τ (k) ∈ Rι+2ϕ. Obviously, (Ξy,Γy) is observable.
The modified algebraic Riccati equation:

ΓyPyΓy
T − Py

−(1− δ2
y)ΓyPyΞTy (ΞyPyΞTy )−1ΞκPyΓy

T + Iι+2ϕ = 0
(22)

admits a unique positive definite solution Py .
Let Ky = ΓyPyΞTy (ΞyPyΞTy )−1, K̄y

i (k) = Ky
i (k) −

Ky , Γ̄yi (k) = Γyi (k) − Γy , P̄ yi (k) = P yi (k) − Py ,
ζ̄yiτ (k) = ζyiτ (k) − ζy0τ (k). Due to limk→∞ (κi(k)− κ0) =
0, limk→∞ Γ̄yi (k) = 0, limk→∞ P̄ yi (k) = 0 and
limk→∞ K̄y

i (k) = 0.

ζ̄yiτ (k + 1) = Γy ζ̄
y
iτ (k) + Γ̄yi (k)ζ̄yiτ (k)

+ Γ̄yi (k)ζy0τ (k)

+ µyζiKyΞy

N∑
j=0

aij(ζ̄
y
jτ (k)− ζ̄yiτ (k))

+ µyζiK̄
y
i (k)Ξy

N∑
j=0

aij(ζ̄
y
jτ (k)− ζ̄yiτ (k)).

(23)

Let
ζ̄yτ (k) = col(ζ̄y1τ (k), . . . , ζ̄yNτ (k)),

Γ̄yd(k) = block diag(Γ̄y1(k), . . . , Γ̄yN (k)),

K̄y
d (k) = block diag(K̄y

1 (k), . . . , K̄y
N (k)),

Hy
ζ = νyHy

µ . Therefore,

ζ̄yτ (k + 1) =
(
IN ⊗ Γy − (Hy

ζ ⊗KyΞy)
)
ζ̄yτ (k)

+
(

Γ̄yd(k)− (Hy
ζ ⊗ K̄

y
i (k)Ξy)

)
ζ̄yτ (k)

+ Γ̄yd(k)(1N ⊗ ζy0τ (k)).

(24)

Let χy = 1/
√
ρ(ΓyPyΞTy (ΞyPyΞTy )−1ΞyPyΓTy ), Ry =√

χ2
y + δ2

y . For any λyµ ∈ σ(Hy
µ), λyµ > 0. Given any νy ∈

Fy , there exists a sufficient small αy > 0 such that |1 −
νyλyµ| ≤ ρ(Λy%µ) <

√
R2
y − α2

y . Similarly,

(ΓTy − νyλyµΞTyK
T
y )HPy(ΓTy − νyλyµΞTyK

T
y )− Py

=− Iι+2ϕ

+(|1− νyλyµ|2 − δ2
y)ΓyPyΞTy (ΞTy PyΞy)−1ΞyPy

TΓTy

≤−
α2
y

χ2
y

Iι+2ϕ.

(25)
It implies that the matrix ΓTy − νyλyµΞTyK

T
y is Schur,

and so is IN ⊗ Γy − (Hy
ζ ⊗ KyΞy). Under Assump-

tion 1, limk→∞

(
Γ̄yd(k)− (Hy

ζ ⊗ K̄
y
i (k)Ξy)

)
= 0 and

limk→∞
(
Γ̄yd(k)(1N ⊗ ζy0τ (k))

)
= 0. By Lemma 1 in [16],

limk→∞ ζ̄yτ (k) = 0 and limk→∞
(
y0
i (k)− y0(k)

)
= 0.

�
Let ζ0(k) = col(ζ01(k), . . . , ζ0p(k)). y0(k) can be gener-

ated by:
ζ0(k + 1) = (Ip ⊗ S0)ζ0(k)

y0(t) = (Ip ⊗ C0)ζ0(k).
(26)

Thus, the teacking error (3) can be Equivalently expressed
as:

ei(k) = yi(k)− (Ip ⊗ C0)ζ0(k)− yhi(k). (27)

For τ = 1, . . . , p, let Π =
[
Iι 0ι×2ϕ

]
, ζiτ (k) =

Πζyiτ (k), ζi(k) = col(ζi1(k), . . . , ζip(k)). By lemma 1,
limk→∞(ζi(k)− ζ0(k)) = 0;

3.2 State Feedback Controller Design
With the output regulation theorem in [7], the following

assumptions are necessary.

Assumption 2 For i = 1, . . . , N , (Ai, Bi) is stabilizable.

Assumption 3 The regulator equations

XS(Ip ⊗ S0) = AiXS +BiUS

0 = CiXS +DiUS − (Ip ⊗ C0)
(28)

XΦiΦi = AiXΦi +BiUΦi

0 = CiXΦi +DiUΦi − φi
(29)

have unique solutions (XS , US) and (XΦi, UΦi).

For i = 1, . . . , N , under Assumption 2, selectKxi be such
that Ai +BiKxi is Schur. Let Khi = UΦi −KxiXΦi,

R̂i(k) = (Ip⊗Si(k))T⊗
(
Ini 0
0 0

)
−Ipι⊗

(
Ai Bi
Ci Di

)
,

Ri = (Ip ⊗ S0)T ⊗
(
Ini 0
0 0

)
− Ipι ⊗

(
Ai Bi
Ci Di

)
,

bi = vec

([
0

−Ip ⊗ C0

])
.

The certainty equivalent state feedback controller can be
designed as:

ui(k) = Kxixi(k) +Khi(k)hi(k) +Kζi(k)ζi(k)

ξi(k) = pinv(R̂i(k))bi
(30)
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where ξi ∈ Rq(ni+p),(
XSi(k)
USi(k)

)
= Mpι

ni+mi(ξi(k)),

Kζi(k) = USi(k)−KxiXSi(k).

Theorem 1 Under Assumptions 1, 2 and 3, given the system
(1), the virtual leader system (4), the local bias generator (5)
and a communication graph Ḡ, if 0 < δκ < 1, δyρ(Γyi (k)) <
1, σ(S0) ∩ Ω = ∅, µκi > 0, νκ ∈ Fκ, µyi > 0, νy ∈ Fy , the
Problem 1 is solved by the distributed formation control law
composed of (11), (13) and (30).

Proof 2 By Lemma 1, for i = 1, . . . , N , limk→∞(R̂i(k) −
Ri) = 0. Let X̃Si(k) = XSi(k) − XS and ŨSi(k) =
USi(k)− US , we have

lim
k→∞

X̃Si(k) = 0,

lim
k→∞

ŨSi(k) = 0.

Let x̃i(k) = xi(k) − XΦihi(k) − XSζ0(k), ũi(k) =
ui(k)−UΦihi(k)−USζ0(k), combining (28) and (29) gives

˙̃xi(k) = Aix̃i(k) +Biũi(k) (31)

and
ei(k) = Cix̃i(k) +Diũi(k). (32)

With (30),

ũi(k) = Kxix̃i(k) +Kζi(k)ζ̃i(k) + K̃ζi(k)ζ0(k) (33)

where K̃ζi(k) = (USi−US)−Kxi(XSi−XS). Substituting
(33) into (31) gives

˙̃xi(k) = (Ai +BiKxi)x̃i(k)

+BiKζi(k)ζ̃i(k) +BiK̃ζi(k)ζ0(k).
(34)

Since Ai + BiKxi is Schur, limk→∞ ζ̃i(k) = 0,
limk→∞ K̃ζi(k) = 0, Kζi(k) and ζ0(k) are bounded,
limk→∞(BiKζi(k)ζ̃i(k) + BiK̃ζi(k)ζ0(k)) = 0. With
Lemma 1 in [16], limk→∞ x̃i(k) = 0, limk→∞ ũi(k) = 0.
Thus,

lim
k→∞

ei(k) = 0.

�

4 Numerical Simulations

In this section, we consider a discrete-time multi-agent
system composed of N = 4 agents. A numerical simulation
experiment is designed to illustrate the effectiveness of the
proposed control law. The communication graph is shown in
Fig. 1.

For i = 1, . . . , 4, the mathematical model of the ith agent
is:

pi(k + 1) = pi(k) + Tui(k) (35)

where pi(k) ∈ R3, vi(k) ∈ R3, ui(k) ∈ R3 denote the
position, velocity and control input of the ith agent. T =
0.05s denotes system sampling period. To transform (35)
into (1) form, let Ai = I3, Bi = TI3,, Ci = I3, Di = 0.

Fig. 1: Communication graph Ḡ

Let the global tracking path vector be y0(k) =
col(vkT, 0, h), where v = 0.1m/s denotes the velocity along
the X axis, h = 0.2m denotes the reference height along the
Z axis. y0(k) can be generated by the virtual leader system
described in (4), where

S0 =

(
1 vT
0 1

)
, C0 =

 1 0
0 0
0 h


and v0(0) = col(0, 1).

For i = 1, . . . , 4, let ωr = 0.2 rad/s. The local bias vectors
are

yh1(k) = col(0, cos(ωrkT +
π

2
), sin(ωrkT +

π

2
)),

yh2(k) = col(0, cos(ωrkT ), sin(ωrkT )),

yh3(k) = col(0, cos(ωrkT −
π

2
), sin(ωrkT −

π

2
)),

yh4(k) = col(0, cos(ωrkT − π), sin(ωrkT − π)).

yhi(k) can be generated by the local bias generator described
in (5), where

Φi =

(
cos(ωrT ) −sin(ωrT )
sin(ωrT ) cos(ωrT )

)
, φi =

 0 0
1 0
0 1

 ,

h1(0) = col(0.3, 0), h2(0) = col(0, 0.3), h3(0) =
col(−0.3, 0) and h4(0) = col(0,−0.3).

Assume that during the information transmission process,
the frequency of the external disturbance signal is ω1 = 30
rad/s, ϕ = 1. Select Kxi be such that the ploes of Ai +
BiKxi are {0.94, 0.94, 0.94}. Let δκ = 0.43, δy = 0.3,
µκ1 = 0.3, µκ2 = 0.4, µκ3 = 0.6, µκ4 = 0.7, νκ = 1, µy1 = 0.2,
µy2 = 0.2, µy3 = 0.2, µy4 = 0.2 and νy = 1. For regulator
equations in (29), the unique solution is

XΦi =

 0 0
1 0
0 1

 , UΨi =

 0 0
−0.001 −0.2

0.2 −0.001

 .

The tracking errors of each agent are shown in Fig. 2.
We can solve the problem 1 with the distributed formation
control law composed of observers (11), (13) and a certainty
equivalent state feedback controller (30). The trajectory of
each agent is shown in Fig. 3.
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Fig. 2: Tracking errors of each agent.

Fig. 3: Trajectory of each agent.

5 Conclusion

This paper considers the formation problem of dis-
crete multi-agent systems under communication disturbance.
Based on the cooperative output regulation framework, we
incorporate a disturbed output based discrete filter observer,
which can minimize network information exchange and mit-
igate disturbance effects. Finally, the effectiveness of the
control strategy is demonstrated through numerical simula-
tions.
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Abstract: Recently, Deep Reinforcement Learning (DRL) methods have become increasingly common in voltage control prob-
lems of power distribution systems. However, existing DRL methods either lack a theoretical guarantee of voltage stability or
cannot maintain their optimality when the network topology changes. This paper proposes a DRL algorithm based on Multi-
Agent Twin Delayed Deep Deterministic Policy Gradient (MATD3) framework, Flexible-MATD3, which can maintain the system
stability and optimality even when the topology and impedance parameters change. We proposed a partial monotonic neural net-
work to constrain the policy search space of our DRL algorithm so that our policy can always guarantee safety. In addition, the
experimental results show that Flexible-MATD3 achieves better performance than the baseline controllers for different network
topologies and line impedance parameters without retraining the neural network.

Key Words: Reinforcement Learning, Distribution system, Voltage control, Lyapunov stability

1 Introduction

Voltage stability is important for electric distribution sys-
tems, as it directly affects the quality and reliability of the
power supply to end-users. A distribution system must main-
tain an adequate and stable voltage level to ensure that elec-
trical equipment operates efficiently and safely. Moreover,
voltage instability can lead to voltage collapse, which is a
severe condition where the voltage drops to a point where
the system cannot continue to operate [1]. Therefore, the
voltage control problem is one of the critical problems in the
electricity distribution system.

In recent modern power system, distributed energy re-
sources (DERs) is increasing rapidly, such as distributed
generation (DG) units, energy storage systems (ESS), plug-
in electric vehicle (PEV). Due to the more and more complex
power distribution networks, conventional voltage regulation
methods based on on-load tap changing transformers, capac-
itor banks, and voltage regulators may fail to respond to the
rapid and possibly large fluctuations. DERs may frequently
disconnect or connect to the power grid, which leads to a
change in the topology of the distribution system. In ad-
dition, the topology of the distribution network can also be
altered due to equipment or line failures, as well as routine
maintenance and repair work.

Recently, RL has become a powerful control method in
voltage control problems [2]. One common approach is sin-
gle agent reinforcement learning, where the entire distribu-
tion system is treated as a single system, and a centralized
method is employed to regulate voltage level at all the con-
trollable buses. For example, in [3] , [4]. Another prevalent
method is multi-agent reinforcement learning [5–9]. Arti-
cles [5] and [9] divide the power system network into sev-
eral sub-regions and treats each sub-region as a RL agent, so
that they can reduce the agent number and solve the problem
efficiently.

One significant drawback of these RL-based methods is
that they are tailored to specific network topology. When the
topology of power distribution system changes, they require

retraining their neural network to ensure policy optimality.
Another drawback is that voltage stability is very important
in distribution networks, but general RL algorithms cannot
guarantee the stability of the control system.

To tackle this challenge, we propose a DRL approach
based on the multi-agent Twin Delayed DDPG (TD3) frame-
work. Additionally, we leverage the Lyapunov stability the-
ory to devise a partially monotonic neural network that con-
strains the search space of the DRL controller. This con-
straint ensures both safety and robustness of our controller
under flexible distribution system topologies.

The main contributions of our paper are:
1) We propose a multi-agent RL algorithm based on the

MATD3 framework, which embeds topology informa-
tion to achieve optimal policy learning under varying
topology conditions.

2) We use Lyapunov stability theory to constrain our DRL
controller so that it can guarantee the stability of the
system voltage. This provides a theoretical guarantee
that our distribution network system can be safe under
different topology conditions.

3) Compared to baseline controllers, the experimental re-
sults on a 56-bus distribution system show that our
algorithm is robust to variation in topology and line
impedance, and has better performance than other al-
gorithms in the cases of topology changes.

1.1 Related Works
Lyapunov stability theory is a powerful framework to an-

alyze the stability in nonlinear control systems, and was first
introduced into reinforcement learning in [10]. However,
finding a suitable Lyapunov function for a specific system
is not a straightforward task. Some articles like [11, 12] at-
tempted to address this challenge by seeking Lyapunov func-
tions applicable to general systems. [11] proposed a set of
Lyapunov function based on the constraint cost function of a
CMDPs, so that they can find the safety optimal policy. [12]
learned the dynamics model and Lyapunov function jointly
by neural network architectures. These works made signifi-
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cant contributions to Lyapunov safety RL for general control
systems. However, the emphasis of our work remains on en-
suring the safety of voltage control problems in distribution
systems.

Due to the importance of safety in the distribution system,
when using the RL method in voltage control, many recent
works have considered safety [3, 4, 13, 14]. [4] introduced a
safe layer by using a sensitivity matrix to prevent violations
of the voltage constraint. Another approach called CSAC
was proposed in [3], which uses the maximum-entropy RL
framework and multipliers to solve the constraint optimiza-
tion problem. The Limitation of these two works was that
their methods could not guarantee the hard constraint of volt-
age, especially during their training process. To address this
issue, [13] and [14] use the eigenvalues analysis of Jacobian
and Lyapunov stability theory, respectively, to ensure the
asymptotic stability of the closed-loop voltage control sys-
tem. However, the previously mentioned methods can only
provide a suboptimal result in a fixed topology in the dis-
tribution system. When the system topology changes, they
must retrain their neural network to maintain their optimal-
ity.

2 MODEL AND PROBLEM FORMULATION

We review the definition and formulation of the branch
flow model of the power distribution system and use this
framework to build our main problem in this section.

2.1 Branch Flow Model
We use a radial network to represent the power distri-

bution system, which can be considered as a tree graph
G = {N , E}, where N are the buses and pair (i, j) ∈ E
denote the lines in the system. The buses are indexed by i =
0, 1, ..., n, where bus 0 is the substation and other buses rep-
resent branch bus. Normally, the complex voltage V0 at sub-
station bus 0 was fixed at the nominal value. Ii,j is the com-
plex current flowing from buses i to j, and zij = rij + ixij

is the complex impedance on line (i, j), where rij is the re-
sistance and xij is the reactance. Sij = Pij + iQij is the
complex power flowing from buses i to j, where Pij is the
active power and Qij is the reactive power. On bus i, let Vi

represent the complex voltage and si = pi + iqi represent
the complex power injection.

Following [15], the branch flow model can be written as
follows,

Pij = −pj +
∑

k:(j,k)∈E

Pjk + rijℓij (1a)

Qij = −qj +
∑

k:(j,k)∈E

Qjk + xijℓij (1b)

vj = vi − 2(rijPij + xijQij) + (r2ij + x2
ij)ℓij (1c)

ℓij =
P 2
ij +Q2

ij

Vi
(1d)

where ℓij := |Iij |2, vi := |Vi|2. Eq (1a) and (1b) represent
the active power and reactive power conservation law at bus
j. Eq (1c) represents the voltage drop on line ij due to the
impedance.

From [16], if we neglect the higher order active and reac-
tive power loss terms, setting ℓij = 0, then we can write the

model in a compact formulation:

v − v0 = Rp+Xq

and the matrices R and X satisfy the following lemma,

Lemma 1. [16] xij , rij > 0 is satisfied in real world power
system, then X and R are symmetric positive definite matri-
ces and all elements in X,R are positive.

Before introducing our main problem, we first give the
definition of voltage stability formally,

Definition 1. (Voltage stability). The closed loop system
is stable if for any venv and v(0), we have v(t) converges
to the set Sv = {v ∈ Rn : vi ≤ vi ≤ v̄i} in the sense that
limt→∞ dist (v(t), Sv) = 0 and the distance is defined as
dist (v(t), Sv) = minv′∈Sv

∥v(t)− v′∥.

2.2 Optimal Control Problem
Our main goal is to design an NN-based nonlinear con-

troller to maintain the system voltage within a acceptable
range [vmin, vmax]. Meanwhile, we hope the total cost of
voltage violation and control output can be minimized. The
optimal control problem can be formulated as follows,

min

∫ ∞

t=0

γt
n∑

i=1

ci (vi(t), ui(t)) dt (2a)

s.t. vt − v0 = Rp+Xqt (2b)
ui(t) = q̇i(t) (2c)
Voltage stability as Def. 1 holds (2d)

In this optimal control problem, the total cost 2a can be
divided into two parts: the cost of voltage deviation and
the cost of control switch. In our experiments, we con-
sider ci (vi(t), ui(t)) = α1(ui(t))

2+α2(vi(t)−v0)
2, where

α1, α2 are trade-off coefficients to adjust the final perfor-
mance of our controller. The objective is to minimize the
total cost in a infinite time steps with discount γ . Eq (2b)
represents the dynamic of distribution system, which was
concluded by the Branch Flow Model in prior section. We
define our controller as the rate of reactive power change in
(2c).

By embedding the topology information, the NN con-
troller can be formulated as,

ui(t) = q̇i(t) = gθi(vt, xt)

where gθi is our neural network, and the input is the voltage
vt on each bus at time t and the matrix xt with respect to the
reactance information.

3 CONTROLLER DESIGN

In this section, we propose the main approach to solve the
constrained optimal control problem in a multi-agent TD3
framework. We embed the topology and impedance infor-
mation into our controller input and utilize Lyapunov stabil-
ity analysis in our NN structure design. In the next section,
we will show how we use the Lyapunov analysis result to
guide the NN controller design.
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3.1 Topology and Impedance Change
To formulate the topology change of the distribution sys-

tem, we consider using the line reactance parameters to re-
flect these changes. Due to the tree structure of the power
system, we can first consider a topology that fully connects
to all the buses. With this method, we can formulate all the
changeable lines in a vector S0 = [x1, x2, ..., xn]. Then we
disconnect some of the lines to change the topology. That is,
if the line is connected, we denote it using the value of xi,
otherwise, we can use 0 to denote it.

Furthermore, the reactance in practice will increase to in-
finity when the line is disconnected, which may not match
the value 0 in our previous definition. Therefore, we use the
susceptance value Bi in our statement and the topology in-
formation can be written as S = [B1, B2, ..., Bn]. With this
formulation, we can represent the line connection situation
using a continuous value Bi ∈ [0,∞].

3.2 Multi Agent TD3 framework
The dynamic system in the optimal control problem (2)

can be described as a Markov Decision Process (MDP), and
each controller gθi on photovoltaic (PV) station is treated as
a control agent. Therefore, we propose a multi-agent deep
reinforcement learning algorithm (MADRL) to solve this
problem. As the control variable qi(t) at each PV station is
in continuous state space, we can apply the Deep Determin-
istic Policy Gradient (DDPG) method to handle it. However,
the original DDPG suffers from a major drawback: over-
estimation bias. To overcome these issues and improve the
performance of DDPG, we consider a Multi-Agent Twin De-
layed DDPG (MATD3) framework to solve our optimal con-
trol problem (2). As our algorithm fully considers the topol-
ogy change in the distribution system, we name our method
Flexible-MATD3.

In reinforcement learning, the goal is to find the best con-
trol policy that can maximize the return of the agents in-
teracting with environment. Here, we define the reward
of ith agent as its negative cost in (2a), that is, rit =
−ci(vi(t), ui(t)) with ui(t) = gθi(vt, xt). Then the return
with discount in time t is Ri

t =
∑∞

i=t γ
i−trit(vi(t), ui(t)).

The objective of this RL problem is to maximize the ex-
pected return J(θi) = E[Ri

0]. To achieve this target, the pol-
icy parameters θi can be updated through the deterministic
policy gradient method [17],

∇ (J(θi)) =

E

[
∇ui

Qϕi
(vi, ui)

∣∣∣
ui(t)=gθi (vt,xt)

∇θigθi(vt, xt)

]
(3)

where Qϕi
(vi, ui) is the critic network (a.k.a. value func-

tion) and gθi(vt, xt) is the actor network in this actor-critic
method. We employ (3) to update the parameters in the actor
network gθi . The value funciton Qϕi

(vi, ui) can be learned
by utilizing temporal difference learning,

Qϕi(vi,ui) = r + γEv′
i,u

′
i
[Qϕi

(v′i, gθi(v
′
i, x

′
i))] (4)

where (v′i, u
′
i = gθi(v

′
i, x

′
i)) is the system state and action

transmitting from the previous state-action pair (vi, ui).
To enhance the performance of DDPG, we introduce the

TD3 [18] technique into our RL framework. Compared with

the standard DDPG, the enhanced TD3 framework has three
main improvements as follows.

Clipped Double-Q Learning. In contrast to DDPG,
which learns only a single Q value function, TD3 concur-
rently learns two Q functions Qϕ1

i
and Qϕ2

i
. After calculat-

ing these two Q values, we choose the smaller one to update
our target:

yi = r + γ(1− d) min
j=1,2

Qϕj
i
(v′i, gθi(v

′
i, x

′
i)) (5)

Using this update rule, we can effectively reduce the overes-
timation problem in target value.

Target Policy Smoothing. In DDPG, if there are incor-
rect sharp peaks in some deterministic policies, the policy
may overfit those narrow peaks and then have brittle actions.
Therefore, we introduce a regularization strategy in the ex-
ploration procedure by adding a small amount of random
noise to the target policy as follows,

u′
i(v

′
i, x

′
i) = clip (uθtar(v

′
i, x

′
i) + clip(ϵ,−d, d), ulow, uhigh) ,

ϵ ∼ N (0, σ)
(6)

In (6), the added noise is sampled from a mean-zero Gaus-
sian set ϵ ∼ N (0, σ).

Delayed Policy Updates. In TD3, the frequency of policy
update is less than that of the value function network. It
can reduce the volatility of the value estimate and lead to
more stable and efficient learning. In addition, it can avoid
repeating policy updates with respect to an unchanged critic,
which may result in poor or divergent behaviour.

3.3 Lyapunov Guarantee Stability
One main issue in the standard MATD3 method is that the

controller ui = gθi(vt, xt) derived iteratively from (3) may
not guarantee system stability during the training process.
Moreover, there is a lack of theoretical guarantees that the
converged policy at the terminal will fulfil the safety con-
straint in (2d).

In order to satisfy the system safety, we apply Lyapunov
stability theory to restrict the search space of the learning
policy. Thus, we have the following theorem:

Theorem 1. For any topology |xt| ≤ M satisfied Lemma
1, suppose the controller gθi(vt, xt) is a continuously dif-
ferentiable function and satisfy 1) gθi(vt, xt) = 0 only in
vi ∈ [vi, v̄i]. 2) ∂gθ(vt,xt)

∂vt
≤ − α

2M on (−∞, vi] and [v̄i,∞).
Then the closed-loop system in (2) is asymptotically expo-
nential stability.

Due to page limitation, the proof of Theorem 1 is omitted
here. If we can constrain our controller gθi(vt, xt) to sat-
isfy the requirements in Theorem 1, the voltage magnitude
of each bus is stable as stated Definition 1.

4 Neural Network model Design

In this section, we will demonstrate how to design the neu-
ral network structure to fulfil the requirement of Lyapunov
stability in the preceding section.

Our neural network function must satisfy the following
requirements:

1) When v ∈ [v, v̄], the controller gθ(v, x) = 0.
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Fig. 1: The structure of neural network design

2) When (−∞, vi] and [v̄i,∞), the partial derivative
∂gθ(v, x)

∂v
≤ − α

2M .

As shown in Fig. 1, the structure of our NN model is
divided into two main parts, the non-increasing single-in
single-out neural network gθ1(v) and a fully connected stan-
dard neural network gθ2(x) with non-negative output.

The first part of our neural network, gθ1(v), is a non-
increasing function through the origin with a dead zone
v ∈ [v, v̄], which is designed following the structure in [19].
More specifically, to keep the function going through origin,
gθ1(v) is decomposed into positive and negative parts as fol-
lows,

gθ1(v) = g+θ1(v − v̄) + g−θ1(v + v) (7)

In our neural network design, g+θ1(·) and g−θ1(·) is con-
structed by a single hidden layer with m hidden units and
the ReLU activation function as follows,

g+θ1(v) = (w+)T ReLU(1v + b+) (8a)

g−θ1(v) = (w−)T ReLU(−1v + b−) (8b)

where {w+, b+,w−, b−} are the parameters need to train in
the neural network.

In addition, to satisfy requirement 2), we constrain the pa-
rameters as follows,

l∑
i=1

w+ ≥ k, ∀l = 1, 2, . . . ,m

b+1 = 0, b+l ≤ b+l−1, ∀l = 2, 3, . . . ,m

and
l∑

i=1

w− ≤ −k, ∀l = 1, 2, . . . ,m

b−1 = 0, b−l ≤ b−l−1, ∀l = 2, 3, . . . ,m

where k =
α

2M
is associated with α−exponential stability

and the upper bound of topology parameters M .
The second part is the positive standard NN. The output of

this subnetwork need to satisfy gθ2(x) ≥ 1. Therefore, we
use a shift ReLU activation function max(1, x) in the output
layer.

5 Experiments

To verify the safety and effectiveness of our flexible TD3
method, we apply our method to 56 bus systems.

5.1 Simulation Setup
We use Pandapower [20] to calculate the power flow and

simulate the distribution system and all the experiments are
implemented on a laptop with AMD R7-4800HS CPU and
Nvidia RTX-2060 (Max-Q) GPU.

We follow the 56 bus distribution system in [14, 21].
There are 5 generations of PV in this power system, located
on buses 18, 21, 20, 45, and 53. We use these PV generators
as our control agents. That is, we adjust the reactive power q
in these PV stations. The schematic diagram of this system
is showed in Figure 5.1. In this system, the nominal volt-
age magnitude is 12 KV, and the acceptable ranges voltage
is ±5% of the nominal value, i.e., [11.4kV, 12.6kV ]. The
objective is to drive the voltage magnitude to this range in
the shortest amount of time.

Fig. 2: Schematic diagram of 56 bus distribution systems

5.1.1 Topology change

We first consider a fully connected original tree structure
network to simulate different topology situations. During the
training process, we randomly disconnect some bus connec-
tions to generate diverse topology scenarios. Additionally,
in each training step, we will change the line impedances
by uniformly sampling from the range [0.5, 1.5] of the orig-
inal value. Through this method, the value of each line
impedance used to represent topology information are sam-
pled from the set {0} ∪ {x | 0.5 ≤ x ≤ 1.5}.

5.1.2 Baseline Controller

To illustrate the performance of our flexible-MATD3 al-
gorithm under changing topologies, we compare two base-
line controllers. The first is the dead-band linear policy con-
troller, which can guarantee stability but may not achieve the
optimal control cost. Due to its simplicity and efficiency, the
linear controller is widely applied in the power system [22].
The linear controller is defined as follows:

ui(vi) = −ϵ([vi − vi]
+ − [v̄i − vi]

+)

where ϵ is a tunable parameter and [∗]+ is defined as [a]+ =
max(a, 0).

Another approach is the safety-DDPG form [14], which
guarantees stability and performs better than the linear con-
troller in a static topology scenario.

5.2 Testing result of 56 bus system
To analyze the performance of our Flexible-MATD3 con-

troller and the baseline controllers, we simulate 300 different
initial scenarios, including all high-voltage buses, all low-
voltage buses and a mix of high-voltage and low-voltage
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Fig. 3: The input-output relationship between change in reactive power and voltage with a fixed topology.
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Fig. 5: Voltage trajectory in high voltage scenario

buses. In high voltage scenarios, the PV generators will gen-
erate high active power to simulate the daytime scenario with
abundant sunshine and lead to a high voltage at all buses. In
low voltage scenarios, the active power generation at each
PV station will be less but the load is heavy, to simulate the
scenario at dusk or evening. Finally, we consider a mix sit-
uation that some buses are at high voltage due to the high
generation and some buses may be at low voltage due to the
heavy load. At the beginning of each testing episode, we
randomly change the topology and impedance of the distri-
bution system, as mentioned in section 5.1.1. Excluding the
branches connecting from PV stations to the root substation,
there are a total of 18 switchable lines in this 56-bus system,
which means we have 218 possible topologies. All the initial
voltage deviation is set to 5% to 15% of the nominal voltage
magnitude and the goal is to drive the voltage within ±5%
of the nominal value.

Before comparing the performance between our algorithm
and baseline controller, we first visualize our control policy
in a fixed topology as shown in Fig. 3, to illustrate how
our controller maintains the monotonicity between voltage
magnitude and reactive power output. In this scenario, we
fix the topology of the 56-bus system and do not change the
parameters of the line impedance. The input-output curve of
the linear controller is drawn as a reference in Fig. 3. With
this monotone guarantee, our neural network can satisfy the
requirement of Lyapunov stability.

Fig. 4 selects bus 18 as an example, to illustrate how the
policy changes in distinct topology scenarios. The Flexible-
MATD3 controller exhibits diversity across various topolo-
gies, which allows our controller to learn the optimal policy
to adapt to topology changes.

Table 1 is the performance result of different controllers.
The voltage recovery time shows that all the controllers can
adjust the voltage to the safe range within certain time steps,
which means that all the testing controllers can guarantee
stability of the distribution system. Due to the nonlinear-
ity, the performance of Safe-DDPG and Flexible-MATD3
is better than the simple linear controller. In addition, our
Flexible-MATD3 controller has the property of exponential
stability and it can maintain better optimality under topology
changes. Therefore, Flexible-MATD3 has the smallest mean
and standard variance of voltage recovery time. Compared to
safe-DDPG, the Flexible-MATD3 restore the voltage to the
normal range in less than half the time, which is only 9.72
time steps on average. It is worth mentioning that the stan-
dard deviation of Flexible-MATD3 under different initializa-
tion conditions is far lower than that of other two controllers.
This indicates that our method has better consistency when
facing the topology changes. The overall reactive power con-
sumption of Flexible-MATD3 is lowest during the recovery
stage due to the faster response time. The objective cost (2a)
in our experiments is set to (ui(t))

2 + 100(vi(t) − v0)
2. In

this setting, Flexible-MATD3 has the lowest objective cost.
Fig. 5 shows the voltage trajectory adjusted by different

controllers in a high voltage scenario. This provides us with
an intuitive visualization of the voltage regulation process of
three different controllers. Compared to Linear and Safe-
DDPG controllers, Flexible-MATD3 can drive the voltage
back to safe voltage range more quickly. Furthermore, due to
our proper reward and cost setting, Flexible-MATD3 can ad-
just the voltage closer to the nominal voltage, 12KV , when
the system was in a final stable state.
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Table 1: Performance of different controllers in 56-bus system

Voltage recovery time (steps) Reactive power cost (MVar) Objective cost

Method Mean Std Mean Std Mean Std

Linear 38.69 30.62 172.16 289.74 20.56 32.16

Safe-DDPG 23.74 22.76 113.28 201.52 13.55 22.50

Flexiable-MATD3 9.72 9.19 31.22 40.28 5.01 5.34

6 Conclusion

In conclusion, in this paper, we propose a DRL volt-
age controller, Flexible-MATD3, for the flexible topology
changes in the power distribution network. The proposed
controller can not only maintain the safety of the system
voltage but also keep strong robustness to topology and
line impedance changes. We use Lyapunov stability the-
ory to theoretically prove that the closed-loop system us-
ing Flexible-MATD3 controller is exponential asymptoti-
cally stable. Finally, the simulation results show that the
neural network of our DRL controller can maintain good
performance without retraining under the topology and line
impedance changes of the distribution network.

Future work could include finding better partial mono-
tonic neural network structures to improve the performance
of our controller, or enhancing the efficiency and scalability
of our method to enable its deployment in real-world power
systems.
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Abstract: The distribution power system is facing increasingly severe uncertainty due to the widespread adoption of renewable
energy sources. Fortunately, flexible distributed energy resources (DERs) such as electric vehicles and energy storage offer
potential solutions to this challenge when effectively coordinated. In this paper, we propose an energy sharing based demand
response initiative to coordinate the DERs, which is then embedded in a two-stage robust operation model. The energy sharing
scheme employs a generic supply-demand function that reveals prosumers’ preferences. The DERs participating in energy
sharing play a Nash game. The existence and uniqueness of the Nash equilibrium are theoretically proven. The proposed energy
sharing scheme is compared with the traditional individual and the centralized schemes. Theoretical analysis and case studies
demonstrate the promising features of energy sharing for the robust operation of distribution systems with uncertain renewable
generation.
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1 Introduction

Nowadays, exploiting renewable energy such as wind and
solar power is considered as an efficient way to reduce
the dependence on fossil energy and alleviate environmen-
tal pollution [1]. In 2023, the global wind power capacity
had reached 906 GW, with an increase of 9% compared to
2022 [2]. However, due to its intermittence and fluctuation,
high penetration of renewable energy exacerbates the diffi-
culty of maintaining power system security and reliability
[3]. Hence, robust system operation under uncertainty has
captured great attention during the past decade.

Typical optimization approaches coping with uncertainty
mainly include stochastic optimization (SO) and robust op-
timization (RO). SO makes assumptions on the distribution
of uncertain factors and optimizes the expected cost or sat-
isfies certain chance constraints [4]. It may face two main
technical difficulties: the exact probability distribution of
uncertainty is hard to obtain, and the computational burden
grows significantly with the increase of the scale of system
and the size of scenario samples [5]. In contrast, RO de-
scribes the random factor through an uncertainty set, which
is easier to implement. In view of its simplicity, RO has been
widely adopted in various power system operation problems,
including unit commitment [6], energy and reserve dispatch
[7], and optimal power flow [8], to name a few.

In all the aforementioned studies, the power system is op-
erating in a two-stage framework: in the day-ahead stage,
the system operator decides on the outputs of all units, aim-
ing to minimize the expected total cost; then in the real-time
stage, after observing the exact power outputs of renewable
generators, the operator solves another central optimization
problem to determine the optimal adjustments of generating
units. This operation manner works well for power transmis-
sion systems. However, very few generators in a distribution
system are fully dispatchable, except for small-capacity gas-
fired units owned by the system operator. Considering that
the real-time adjustment is usually small, a straightforward
idea is that: in day-ahead, a set point is given by the system
operator, and in real-time, individual prosumers in the distri-

bution system are self-balanced without a central coordina-
tor. In this situation, how to recover the global optimal oper-
ating strategy by solving subproblems associated with indi-
vidual prosumers turns to be the main issue, which has been
extensively studied in the context of distributed optimization
[9, 10]. However, traditional distributed optimization essen-
tially serves as a computation technique, which does not pro-
vide substantial incentives to attract prosumers to participate
in coordination, especially when the prosumers could gain
more profit by altering their strategies.

In this paper, a generic supply-demand function based
sharing scheme is proposed to balance generation and de-
mand in real-time, which can be naturally embedded into
the second stage of RO. Particularly, a well-designed shar-
ing scheme is desired to process three features: each pro-
sumer can choose either to buy or to sell freely; the shar-
ing market is cleared with a reasonable equilibrium price; all
prosumers have the incentive to take part in the sharing mar-
ket. Recent studies on energy sharing can be divided into
three categories: 1) Two-sided market based energy sharing.
The status of each participant, which means whether it is a
supplier or a buyer, is predetermined. The sharing market
clearing price was characterized in [11]. The efficiency of
the sharing market under the goal of revenue maximization
and social welfare maximization was compared in [12]. 2)
Single-side market based energy sharing with set prices. The
statuses of participants are symmetric and the sharing prices
are set by a coordinator via solving a Stackelberg game. A
supply-demand ratio based pricing algorithm was adopted in
[13] for the energy sharing in photovoltaic (PV) prosumers.
Renewable generation uncertainty was incorporated in [14].
3) Single-side market based energy sharing with realloca-
tion. Instead of a price-guided allocation, the profit is dis-
tributed according to specific reallocation schemes. A cost
reallocation approach was developed for a group of energy
storage, leading to a cooperative game [15]. The profit distri-
bution among aggregators and demand-side energy resource
(DER) was presented in [16].

Different from existing works, in this paper, energy shar-
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ing servers as a real-time re-balance measure in robust op-
eration of distribution systems which is associated with the
day-ahead set point problem. To this end, a sharing scheme
is built on a generic supply-demand function, which enables
transactive energy exchange among individual prosumers in
real time. The scheme is carefully designed to fully unleash
the flexibility endowed by responsive demands and energy
transaction, while requiring no additional investment on gen-
eration or storage facilities. The scheme also exhibits nice
properties. The sharing market clearance comes down to a
Nash game whose equilibrium is theoretically proven to be
existent and unique. According to the manner of real-time
energy balancing, three robust operation models are com-
pared and discussed. The economic efficiency and system
security (dispatchable) regions under different models are re-
vealed.

The rest of this paper is organized as follows. Mathemat-
ical formulations of robust system operation are presented
in Section 2. The procedure of the generic supply-demand
function based energy sharing scheme is illustrated in Sec-
tion 3, following which theoretical properties of the shar-
ing game is revealed. Advantages of the proposed sharing
scheme are analyzed from three perspectives in Section 4.
Illustrative examples are performed in Section 5. Finally,
conclusions are summarized in Section 6.

2 Mathematic Formulation

2.1 Problem Description
Assume there are a collection of gas-fired thermal genera-

tors (TGs) indexed by i ∈ I = {1, 2, ..., I} and a set of dis-
tributed generators (DGs) indexed by j ∈ J = {1, 2, ..., J}
whose output are uncertain and depend on the weather con-
ditions. In the day-ahead stage, the operator decides on the
outputs of TGs pi,∀i and their adjustable ranges ri,∀i ac-
cording to the predicted outputs of DGs w0

j ,∀j and load
forecasts Dq,∀q. The outputs of DG wj are uncertain, which
may vary within an uncertainty set. As the system resides in
a distribution network level, AC power flow based network
constraint is taken into account. Then in the real-time stage,
when the exact outputs of DGs are revealed, the outputs of
TGs are adjusted by ∆pi,∀i within the adjustable ranges
ri,∀i so as to maintain power balancing. To this end, the
operator solves the following robust optimization problem:

min
pi,ri,∀i

∑
i∈I

(cip
2
i +dipi+siri)+max

w∈W

∑
i∈I

(li∆p2i (p, r, w))(1a)

s.t. P i ≤ pi − ri, pi + ri ≤ P i,∀i (1b)
P 2
mn +Q2

mn= lmnvm,∀m→n (1c)
vm−vn=2(RmnPmn+XmnQmn)

−(R2
mn +X2

mn)lmn,∀m→n (1d)

Pin,n=
∑

k:n→k

Pnk−(Pmn−lmnRmn),∀m→n (1e)

Qin,n=
∑

k:n→k

Qnk−(Qmn−lmnXmn),∀m→n(1f)

Pin,n=
∑
i∈In

pi+
∑
j∈Jn

w0
j−

∑
q∈Qn

Dq (1g)

vm ≤ vm ≤ vm,∀m; lmn ≥ 0, ∀mn (1h)
Pmn≤Pmn≤Pmn, Qmn

≤Qmn≤Qmn,∀mn(1i)

The objective function Π(p, r, w,∆p)1 is to minimize the
total cost, including the day-ahead stage cost s(p, r) :=∑

i(cip
2
i + dipi + siri) and the real-time adjustment cost

f(∆p(p, r, w)) :=
∑

i(li∆p2i ) in worst case scenario w ∈
W ; ∆pi(p, r, w), ∀i are the optimal adjustments which will
be elaborated in the next subsection; ci, di, si and li are con-
stant coefficients. Constrain (1b) limits the capacity of ther-
mal units. P i and P i are the lower/upper bounds, respec-
tively. Constraints (1c)-(1g) state the branch flow model of a
radial power distribution network, where Pmn and Qmn are
the active/reactive power of line mn; lmn is the line current
square; vm is the voltage magnitude square at bus m; Rmn

and Xmn are the resistance/reactance of line mn; Pin,n and
Qin,n are the active/reactive power injection at bus n; In

is the set of TGs connected to bus n, J n is the set of DGs
connected to bus n, Qn is the set of loads connected to bus
n. vm and vm in constraint (1h) are the upper/lower bound
of vm, respectively. In constraint (1i), Pmn and Pmn are
the upper/lower bound of Pmn; Q

mn
and Qmn are the up-

per/lower bound of Qmn.

2.2 Second-stage Problem
Given the first-stage decision variables p, r and real-time

DG outputs wj ,∀j, TGs adjust their output by ∆pi,∀i to
maintain power balancing. In this section, we consider three
schemes shown in Fig.1.

Fig. 1: Sketch of three schemes

Individual Scheme (IND): Under the individual scheme,
partition balancing strategy is adopted, which means the
whole distribution network is divided into several small re-
gions, and each region includes one prosumer, who has one
DG, some TGs and loads. Each prosumer endeavors to
maintain power balancing locally by adjusting TGs’ out-
put without inter-region energy transaction. In such circum-
stance, the second-stage problem reads

min
∆pi,∀i∈Ij

∑
i∈Ij

(li∆p2i ) (2a)

s.t. −ri ≤ ∆pi ≤ ri,∀i ∈ Ij (2b)∑
i∈Ij

(pi +∆pi) + wj =
∑
q∈Qj

Dq (2c)

where Ij and Qj are the sets of TGs and loads in re-
gion j, and li,∀i are cost parameters. The objective func-
tion aims to minimize TG adjustment costs, which is de-
noted as yjIND(p, r, w,∆p). Constraint (2c) represents self-
balancing in region j. The feasible region of this second-
stage problem is denoted as YIND(p, r, w) := {∆pi,∀i :
s.t. (2b), (2c) are satisfied,∀j}.

1Given a collection of xi for i in a certain set A, x denotes the vector
x := (xi, i ∈ A) of a proper dimension with xi as its components
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Sharing Market Scheme (SMK): A sharing market is
established. If a prosumer takes part in the sharing market,
it can change TGs’ outputs and exchange energy with other
prosumers [20]. At this time, the second-stage problem be-
comes

min
bj ,∆pi,∀i∈Ij

∑
i∈Ij

(li∆p2i ) + uj(λ(b), qj(b, λ)) (3a)

s.t. −ri ≤ ∆pi ≤ ri,∀i ∈ Ij : ρ±i (3b)∑
i∈Ij

(pi+∆pi)+wj+qj(b, λ)=
∑
q∈Qj

Dq:µj (3c)

The objective function is denoted as yjSMK(p, r, w,∆p),
which is the sum of adjustment cost and payment/revenue
from sharing. ρ±i and µj are the dual variables accord-
ingly. bj is prosumer j’s bid, reflecting his willingness to
buy and b := (bj ,∀j). The clearing price λ(b) is decided
by all prosumers’ bids. qj(b, λ) is the amount of power
it get from the sharing platform, which can be either posi-
tive (stands for purchase) or negative (stands for sell). The
second term uj(λ(b), qj(b, λ)) in the objective function is
the payment/revenue of region j, which is influenced by the
clearing price λ(b) and qj(b, λ). The sharing platform solves
the following market clearing condition and gives λ and qj
back to each prosumer j.∑

j∈J
qj(b, λ(b)) = 0 : ηj (4)

The key of sharing mechanism design is to determine
the bidding procedure as well as the energy and revenue
allocation function qj(.),uj(.). The feasible region of the
sharing game is denoted as YSMK(p, r, w) := {∆pi,∀i :
∃bj ,∀j, s.t. (3b), (3c), (4) are satisfied,∀j}.

Centralized Scheme (CTR): In this scheme, the system
operator solves a centralized optimization problem and de-
termines the optimal adjustment of each TG

min
∆pit,∀i∈I

∑
i∈I

(li∆p2i ) (5a)

s.t. −ri ≤ ∆pi ≤ ri,∀i (5b)∑
i∈I

(pi +∆pi) +
∑
j∈J

wj =
∑
q∈Q

Dq (5c)

The objective function under CTR is denoted as
yjCTR(p, r, w,∆p). The feasible region of this prob-
lem is denoted as YCTR(p, r, w) := {∆pi,∀i :
s.t. (5b), (5c) are satisfied,∀j}. Clearly, the CTR
scheme can achieve the lowest total cost. The IND scheme
adopts a regional self-balancing strategy, which does not
need the system operator to coordinate in real-time, but
the system flexibility may not be fully motivated. To this
end, the purpose of this paper is to design a proper SMK
scheme, so that the total cost approaches the cost under the
centralized scheme without a real-time central coordinator.

3 A Generic Supply-demand Function-based
Sharing Scheme

In this section, a generic supply-demand function based
sharing scheme is proposed and some properties of the shar-
ing game are characterized.

3.1 Procedure of the Sharing Scheme
The demand (or supply) function of prosumer j can be

expressed by

qj = −aλ+ bj (6)

where the given a > 0 represents price elasticity; λ is the
market clearing price and bj reflects prosumer j’s willing-
ness to buy. (6) shows that when the sharing price increases,
the prosumer wants to buy less from the sharing market. The
sharing market is cleared following three steps.

Step 1: Each prosumer j bids a bj to the sharing plat-
form and the sharing clearing price is given by the clearing
condition

∑
j qj = 0, which means

λ =
∑
j

bj/(J × a)

Step 2: The amount of power that prosumer j gets/sells
is qj(b, λ) = −aλ(b) + bj . If qj > 0, this prosumer buys
power from the sharing market; otherwise, if qj < 0, this
prosumer sells power to the sharing market.

Step 3: If qj > 0, prosumer j pay λ(b)qj(b) to the
sharing market. Otherwise, if qj < 0, prosumer j obtains
−λ(b)qj(b) from the sharing market.

Under this SMK scheme, in the second-stage problem (3),
qj=−aλ+bj , uj=(−aλ + bj)λ. Then because

∑
j uj =

λ
∑

j qj = 0, the SMK scheme is budget-balance. Due to
the common constraint (4), problem (3) constitutes a Nash
game consisting of the following elements: 1) the set of re-
gions/prosumers J={1, 2, ..., J}; 2) action sets Aj(b−j),∀j
and the strategy space A =

∏
j Aj ; 3) cost functions

yjSMK(∆pj , bj , b−j),∀j. To simplify, G = {J , A, ySMK}
is used here to denote the sharing game (3) in its abstract
form.

3.2 Properties of the Sharing Game
Definition 1 (Nash Equlibrium) A strategy profile
(∆p∗, b∗) ∈ A is a Nash Equilibrium (NE) of the
sharing game G = {J , A, ySMK} defined by (3), if ∀j ∈ J

yjSMK(∆p∗j , b
∗
j , b

∗
−j) ≤ yjSMK(∆pj , bj , b

∗
−j)

,∀(∆pj , bj) ∈ Aj(b−j) (7)

Given ∆p, define λ̂(∆p):= 1
J

∑
j

1
Ij

∑
i∈Ij

(2li∆pi−δ−j +

δ+j ) and b̂j(∆p) :=
∑

q∈Qj
Dq−

∑
i∈Ij

(pi + ∆pi)−wj +

aλ(∆p). Ij is the size of set Ij , δ+j and δ−j are the dual
variables defined below.

Proposition 1 A unique NE (∆p∗, b∗) for the sharing game
(3) exists if and only if, ∀j ∈ J , ∆p∗j is the unique solution
of:

min
∆pi,∀i∈I

∑
i∈I

(li∆p2i )

+

∑
j∈J

(
∑

q∈Qj

Dq−wj−
∑
i∈Ij

pi−
∑
i∈Ij

∆pi)
2

2a(J − 1)
(8a)

s.t. −ri ≤ ∆pi ≤ ri,∀i : δ±i (8b)∑
i∈I

(pi +∆pi) +
∑
j∈J

wj =
∑
q∈Q

Dq : ϵ (8c)
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and b∗j = b̂j

Proposition 2 A unique NE (∆p∗, b∗) for the sharing game
(3) exists if and only if YSMK(p, r, w) ̸= ∅.

Proposition 3 Given the first-stage strategy (p, r) and un-
certain scenario w, let ∆p̃ be the optimal solution under IND
scheme, and (∆p∗, b∗) be the NE of the sharing game. We
have

yjSMK(p, r, w,∆p∗) ≤ yjIND(p, r, w,∆p̃) (9)

The proof of Proposition 1-3 can be found in [17]. Propo-
sition 1 tells that an equilibrium always exists under the pro-
posed SMK scheme and offers us an easier way to compute
and analyze the NE. Proposition 2 is a corollary of Propo-
sition 1. Proposition 3 shows that all prosumers are will-
ing to take part in sharing and a Pareto improvement can be
achieved, which means the cost of each prosumer is reduced.

4 Properties of the Robust Operation Models

Let (p̄, r̄) be the optimal solution under CTR scheme,
w̄ ∈ W is the worst-case scenario and ∆p̄ is the correspond-
ing second-stage variable, which is a function of p̄, r̄ and w̄.
ΠCTR(p̄, r̄,∆p̄) is the optimal value of the first-stage objec-
tive function. Similarly, let (p∗, r∗) be the optimal solution
under SMK scheme, w∗ is the worst-case scenario and ∆p∗

is the corresponding second-stage variable, which is a func-
tion of p∗, r∗, w∗. ΠSMK(p∗, r∗,∆p∗) is the optimal value
of the first-stage objective function. Let (p̃, r̃) be the optimal
solution under IND scheme, w̃ is the worst-case scenario and
∆p̃ is the corresponding second-stage variable, which is a
function of p̃, r̃, w̃. ΠIND(p̃, r̃,∆p̃) is the optimal value of
the first-stage objective function.

4.1 Cost of Energy Balancing
Proposition 4 Given the first-stage variable (p, r) and the
scenario w, we have

ΠCTR(p, r,∆p̄(p, r, w))

≤ ΠSMK(p, r,∆p∗(p, r, w))

≤ ΠIND(p, r,∆p̃(p, r, w))

Proof. Given the first-stage variable (p, r), the oper-
ating cost s(p, r) are the same among three schemes, so
we only need to compare the adjustment costs fCTR(∆p̄),
fSMK(∆p∗), fIND(∆p̃).

First, we have∑
j

yjSMK(p, r, w,∆p∗)=
∑
i

li(∆p∗i )
2+

∑
j

u∗
j

=
∑
i

li(∆p∗i )
2=fSMK(∆p∗)

and
∑

jy
j
IND(p, r, w,∆p∗) = fIND(∆p̃). According to

Proposition 3, we have∑
j

yjSMK(p, r, w,∆p∗) ≤
∑
j

yjIND(p, r, w,∆p̃)

which implies fSMK(∆p∗) ≤ fIND(∆p̃).

Meanwhile, the constraints of (5) and (8) are the same,
which means ∆p∗ is a feasible solution of (5). Because ∆p̄
is the optimal solution of problem (5), so we have

fCTR(∆p̄) ≤ fSMK(∆p∗)

This completes the proof. ■
Proposition 4 tells us that in the real-time stage, with fixed

first-stage decisions and the exact DG outputs, the adjust-
ment cost of SMK scheme is in-between the IND scheme
and CTR scheme.

Proposition 5 Let (∆p∗(a), b∗(a)) be the unique NE of (3)
with the price elasticity of value a. Then fSMK(∆p∗) is
decreasing in a.

The proof of proposition 5 can be found in [17]. It implies
that the performance of the SMK scheme can be improved if
prosumers are more sensitive to the price.

4.2 Ability to Accommodate Uncertainty
Given the first-stage strategies (p, r), the system can

accommodate uncertain scenario w when under IND
scheme/CTR scheme, there exists an adjustment ∆p; under
SMK scheme, there exists an NE. According to Proposition
2, the existence of NE is equivalent to the nonnullity of set
YSMK(p, r, w). To this end, a unified definition can be given
to the dispatchable region as follows.

Definition 2 (Dispatchable region) [18] Given the first-
stage strategies (p, r), the dispatchable region of (p, r) is
defined as

WD(p, r) := {w ∈ RJ : Y (p, r, w) ̸= ∅}

A given uncertainty set W is dispatchable under (p, r)
when and only when W ⊂ WD(p, r). We show that the
system flexibility is maintained under SMK scheme by giving
the following proposition.

Proposition 6 Given the first-stage strategy (p, r), the fol-
lowing relation holds for dispatchable regions under SMK,
CTR and IND schemes

WD
CTR(p, r) = WD

SMK(p, r) ⊃ WD
IND(p, r)

Proof. Given (p, r), if scenario w∈WD
CTR(p, r), it means

that there exists an ∆p ∈ YCTR(p, r, w). Under the SMK
scheme proposed in Section III, let bj :=

∑
q∈Qj

Dq −∑
i∈Ij

(pi +∆pi)− wj and λ = 0. Then it is easy to check
∆p ∈ YSMK(p, r, w), which means w ∈ WD

SMK(p, r).
If scenario w ∈ WD

SMK(p, r), it means there eixits an
∆p ∈ YSMK(p, r, w). With ∆p, (3b) is met and so as (5b).
Sum up (3c) for all j and together with (4), it is easy to obtain
that (5c) is satisfied,indicating that w ∈ WD

CTR(p, r).
Obviously, we have YIND(p, r, w) ⊂ YCTR(p, r, w). As

a result, if scenario w ∈ WD
IND(p, r), and there exists an

∆p ∈ YIND(p, r, w), we must have ∆p ∈ YCTR(p, r, w),
so that w ∈ WD

CTR(p, r). But the opposite is not necessarily
true. This completes the proof. ■

Proposition 6 shows that with a fixed first-stage strategy,
the sharing and centralized schemes can accommodate the
same amount of uncertainty, which means the system flexi-
bility is the same.
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4.3 Total Cost in the Worst-Case Scenario
In this section, the total system operation costs under

worst case Π(p, r, w,∆p) are compared.

Proposition 7 The following relation holds

ΠCTR(p̄, r̄,∆p̄(p̄, r̄, w̄))

≤ ΠSMK(p∗, r∗,∆p∗(p∗, r∗, w∗))

≤ ΠIND(p̃, r̃,∆p̃(p̃, r̃, w̃)) (10)

Moreover, ΠSMK(p∗,r∗,∆p∗(p∗,r∗,w∗)) is decreasing in a.

Proposition 7 shows that the cost of CTR scheme is the
lowest, IND scheme is the highest, while SMK scheme is
in-between. The detailed proof can be found in [17].

In summary, compared with the CTR scheme, the pro-
posed SMK scheme can maintain fully system flexibility
while sacrificing economy slightly. Moreover, it can be im-
plemented in a distributed manner with no central coordi-
nator. Compared with the IND scheme, the proposed SMK
scheme can enhance both the system flexibility and the op-
erational economic efficiency.

5 Numerical Experiments

In this section, numerical experiments on the modified
IEEE-33 system are shown to demonstrate theoretical re-
sults. The topology of the test system is shown in Fig.2. An
uncertainty set W considering spatial smoothing effect [7]
is chosen as (11). A polyhedral outer approximation based
method is adopted to linearize the AC branch flow model
[19]. The column and constraint generation (C&CG) algo-
rithm [21] is used to solve the robust model iteratively.

W = {W j ≤ wj ≤ W j ,∀j∑
j∈J

|wj − we
j |

wh
j

≤ Γ

we
j = 0.5(W j +W j),∀j

wh
j = 0.5(W j −W j),∀j} (11)

where W j ,W j are the lower/upper bound of the uncertain
output of DG j, respectively. we

j is the median of the uncer-
tainty set, which usually equals the predicted value w0

j . wh
j

is the error range. Γ is the uncertain budget.

Fig. 2: Topology of the test system

5.1 Benchmark Case
The simplest case is taken first as a benchmark. The

predicted DG output w0 = [20, 10, 15, 20, 30, 20]kW and

W = 0.55w0, W = 1.45w0. Complete system data can be
found in [17]. The optimal total costs, operating costs and
adjustment costs under IND, SMK and CTR schemes as well
as the relative cost differences 2 are shown in Table 1.

Table 1: Optimal solution under IND, SMK and CTR
Scheme IND SMK CTR

Total cost Π(p, r, w,∆p) 523.09 502.28 501.53

Operating cost s(p, r) 495.46 492.06 500.57

Adjustment cost f(∆p) 27.63 10.26 9.56

Relative cost difference 4.30% 0.15% -

From Table 1 we can find that, the second-stage adjust-
ment cost under IND is the highest (27.63), CTR is the low-
est (9.56) and SMK is in-between (10.26), which is in con-
sistence with Proposition 4. Similarly, the total cost shows
the same relationship as stated in Proposition 7. The relative
cost difference between IND and CTR is 4.30% while that
between SMK and CTR is just 0.15%, showing that the pro-
posed sharing scheme can achieve a near optimal cost in a
distributed manner.

5.2 Tests on flexibility
Fix the first-stage variable (p, r) of three robust models to

the optimal solution in the benchmark case (p̃, r̃), (p∗, r∗)
and (p̄, r̄), respectively. Expand the uncertainty set to 1.0,
1.2, 1,4, 1.6, 1.8, 2.0 times of its original range. Pick up
200 scenarios randomly from each uncertainty set and the
probability that the scenario can be accommodated, which
is denoted as pass rate, are shown in Table 2. In our cases,
the variances of pass rate under 200 scenarios are less than
0.1%, showing that 200 scenarios is enough.

Table 2: Optimal solution under IND, SMK and CTR
Pass Rate % 1.0 1.2 1.4 1.6 1.8 2.0

IND 100 52 29 11.5 7 4

SMK 100 99 97 92.5 90 79.5

CTR 100 99 97 92.5 90 79.5

When the uncertainty set is chosen as the original one, the
pass rates under all schemes are 100%, showing the robust-
ness of the obtained first-stage solutions. When the uncer-
tainty set is enlarged, the pass rates under all schemes de-
crease, but the pass rate of SMK and CTR are always larger
than that of IND. The pass rate of SMK and CTR are the
same for all cases, verifying Proposition 6. This tells us that
the proposed sharing scheme can maintain the flexibility of
the power system under centralized operation.

5.3 Impact of Uncertainty
The impact of uncertainty on optimal cost is tested in

this section. We change the uncertainty set W from 1.0 to
2.0 times of its original size and the total costs under three
schemes are shown in Fig.3. We can find that, for each un-
certainty set, the total costs under three schemes always sat-
isfy ΠCTR ≤ ΠSMK ≤ ΠIND and the SMK scheme can
achieve a near optimal total cost. When the size of uncer-
tainty set increases, which means the uncertainty is more se-

2The relative cost difference of IND is (ΠIND −ΠCTR)/ΠCTR; the
relative cost difference of SMK is (ΠSMK −ΠCTR)/ΠCTR.
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vere for the system, all three schemes need to spend more
money to maintain system security, but the growing rate of
SMK and CTR are much less than of IND.

Fig. 3: Total costs of three schemes under different levels of
uncertainty

6 Conclusion

This paper establishes a generic supply-demand function
based energy sharing scheme and incorporates it into a two-
stage robust system operation model. The Nash game formu-
lation for market clearing and the uniqueness of Nash equi-
librium are discussed. The proposed sharing scheme is com-
pared with other two energy transaction schemes from three
aspects: First, we show that the second-stage adjustment cost
corresponding to the sharing scheme is in-between the indi-
vidual scheme and centralized scheme. Secondly, under the
sharing scheme, the system possesses the same (better) abil-
ity to mitigate uncertainty compared to the case in which the
centralized (individual) scheme is adopted. Lastly, for the
total operation cost, the sharing scheme still has a middling
performance and approaches the global optimal when the
price elasticity increases. Nonetheless, from the case studies
we can observe that the gap between centralized and shar-
ing schemes is actually very small, so we believe the sharing
market could be a promising initiative for future distribution
systems. Although the sharing based robust model is devised
for the economic dispatch problem in this paper, it presents
a basic framework for coordination problem of multiple par-
ticipants under uncertainty.
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Abstract: In this paper, the connection between the communication network and the consensus speed of the multi-agent cooper-
ative control based on distributed observers is explored. The dynamic of the error is established based on the formulation of the
observer. Consequently, two key factors of the graph topology are analyzed in connection to the error convergence. The concept
of out-degree is considered along with the Laplacian matrix of the network topology to characterize the convergence features. By
analyzing the Lyapunov function under different networks, it has been proven that the consensus speed positively correlates with
the algebraic connectivity which is the smallest nonzero eigenvalue of the Laplacian matrix and the leader’s out-degree. Finally,
the theoretical results are validated through simulation on numerical examples and the application of a unicycle formation, in
which the back-stepping control law is adopted.

Key Words: Distributed observer, Consensus speed, Formation control, Algebraic connectivity

1 Introduction

In recent years, the problem of cooperative control on
multi-agent systems (MAS) has attracted significant interest
from many researchers. Consensus problems [1] serve as the
foundation for studying the problem of cooperative control.
Distributed observer has emerged as the most widely used
approach widely employed to tackle the consensus problem
[9]. It has multiple variants in theoretical studies, such as the
adaptive distributed observer [7] and the discrete distributed
observer [5]. Moreover, they can also be in switching net-
works [6] or with event-trigger mechanisms [4, 10]. It was
initially introduced in [3], where it was used to address the
output regulation problem and has been applied to achieve
consensus control of euler-lagrange systems [6], micro-grids
[11], and multiple rigid body systems [8]. However, the re-
search above rarely mentions the impact of the communica-
tion network on the observer’s performance.

The consensus speed of MAS is an important performance
metric. Typically, research on improving speed focuses on
two aspects: enhancing consensus protocols and optimizing
communication networks. Early consensus protocols were
asymptotically convergent. The improved consensus proto-
cols have been proposed by many researchers, such as finite-
time convergence [15] and specified-time convergence [16].
However, in comparison to control protocols, research about
improving consensus speed by optimizing communication
networks remains relatively scarce. When a consensus pro-
tocol is given for multi-agent systems, the consensus speed is
determined by the eigenvalues of the Laplacian matrix [17].
In first-order MAS under asymptotically consensus proto-
cols [12, 13], when the network is an undirected graph, the
consensus speed is positively correlated with the algebraic
connectivity of the network [14]. The algebraic connectiv-
ity equals the second smallest eigenvalue of the Laplacian

This work is partly supported by National Natural Science Founda-
tion (NNSF) of China (Grant 62303133 and 62188101) and partly by
the Guangdong Basic and Applied Basic Research Foundation (Grant
2021A1515110262, 2022A1515011274).

matrix and was initially introduced in [14]. For higher-order
MAS, consensus is typically determined by the network’s
algebraic connectivity and the spectral radius which is the
largest eigenvalue of the Laplacian matrix. A larger alge-
braic connectivity and a smaller spectral radius lead to a
faster consensus speed of the system [18, 19]. However,
the consensus speed of cooperative control based on the dis-
tributed observer [3] is still scarce, especially in exploring
the impact of the topology. The main contributions of this
article are summarized as

• A direct connection between the Laplacian matrix of
the communication network and the consensus speed is
established.

• The theoretical results are validated through simulation
on numerical examples and the application of a unicycle
formation.

2 Preliminary

2.1 Graph theory
To facilitate the description of communication networks

in cooperative control problems, some graph theory concepts
are reviewed for readers’ convenience [2]. Let G = (V, E) be
the communication-directed graph associated with specific
distributed systems, where V = {v0, . . . , vN} is a node-set
and E = V × V is an edge set. The edge (vi, vj) in the
edge set E denotes that agent vi is a neighbor of vj and vj
can receive information from agent vi. A directed path from
node vi1 to node vik is a sequence of ordered edges of form
(vik , vik+1

), k = 1, . . . , l − 1. A directed tree is a spanning
tree that connects all nodes in the graph. It signifies the pres-
ence of a root node, which is always the leader, connected
to all other nodes through a simple path. A graph is consid-
ered to have or contain a directed spanning tree if a subset of
its edges forms such a tree. The weighted adjacency matrix
A = [aij ] ∈ RN×N of G is defined as aii = 0; for i ̸= j,
aij > 0 ⇔ (j, i) ∈ E . The Laplacian matrix of G is defined
as L = [lij ] ∈ RN×N , where lii =

∑N
j=1 aij , lij = −aij

for i ̸= j. The second smallest eigenvalue of L is defined as
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the algebraic connectivity of G [14]. The following lemma
from [2] is useful in our analysis

Lemma 1 The Laplacian matrix L of a directed graph G
has at least one zero eigenvalue with 1N as a corresponding
eigenvector if and only if G has a directed spanning tree.
In addition, there exists a non-negative left eigenvector r of
L associated with the zero eigenvalue, satisfying r⊤L = 0
and r⊤1N = 0. Moreover, r is unique if G has a directed
spanning tree.

2.2 Rayleigh theorem
Let A ∈ Cn×n be a Hermitian matrix. Then its eigenvec-

tors are the critical points of the Rayleigh quotient, which is
the real function R : Cn\{0} → R, one can obtain

λmin (A) ≤ xHAx

xHx
≤ λmax(A), (1)

where λmin(A) denotes the minimum eigenvalue and
λmax(A) denotes the maximum eigenvalue of A.

3 Problem formulation

3.1 The distributed state observer schema
For a multi-agent system with N+1 agents, the following

observer schema is introduced. The desired reference signals
of the followers are generated by the exosystem called the
leader system, transmitted by the communication network.
It can be presented as

η̇i = Sηi + µ

∑
j∈Ni

aij (ηj − ηi) + ai0(v − ηi)

 ,

v̇ = Sv,

(2)

where v ∈ Rp denotes the leader’s state, S ∈ Rp×p is skew-
symmetric and denotes the dynamic matrix of leaders, and
µ > 0. The communication network among the multi-agent
systems can be described by a directed graph G with node 0
denoting the leader and node i denoting the followers. The
neighbor set of the node i is Ni and ηi denotes the follower
i’s estimate of v.

3.2 Error dynamics of the distributed state observer
For convenience, L denotes the Laplacian matrix of G,

∆ is an N × N non-negative diagonal matrix, and ∆ii =
ai0, i = 1, · · · , N . Then the Laplacian matrix L of G can be
partitioned as

L =

( ∑N
j=1 a0j [a01, · · · , a0N ]

−∆1N H

)
, (3)

where [a01, · · · , a0N ] = [0, · · · , 0],
∑N

j=1 a0j = 0 is the
in-degree of leader, the second smallest eigenvalue of L rep-
resents the algebraic connectivity of the topology, and 1N is
N × 1 column vector whose elements are all 1.

By using the Kronecker product and the Laplacian matrix,
the aforementioned dynamics (2) can be written into a matrix
form

η̇ = ((IN ⊗ S)− µ(H⊗ Iq)) η + µ(∆⊗ Iq)v̂,

˙̂v = (IN ⊗ S)v̂,
(4)

where ⊗ denotes the Kronecker product of matrices, q
represents the dimensions of the agent’s state, η =

[η
⊤

1 , . . . , η
⊤

N ]
⊤

, and v̂ = 1N ⊗ v. The estimation error of
the ith agent is defined as ei = ηi − v̂. It is ensured that the
distributed observer (2) with arbitrary initial conditions can
achieve consensus leading to lim

t→∞
ei = 0.

Letting e = [e1, . . . , eN ]⊤, the error dynamics can be put
in the following form

ė =((IN ⊗ S)− µ(H⊗ Iq))η+

µ(H⊗ Iq)v̂ − (IN ⊗ S)v̂.
(5)

By the fact that (∆⊗Iq)(1N ⊗ v̂) = (H⊗Iq)(1N ⊗ v̂), the
error dynamics (5) can be written into a compact form (6)

ė = Me, (6)

where M = (IN ⊗ S)− µ(H⊗ Iq). The eigenvalues of M
are

λ(M) = λi(S)− µλj(H), (7)

where i = 1, . . . , q and j = 1, . . . , N .
Proof: let λi(i = 1, 2, ...,m) be the eigenvalues of

A ∈ Cm×m, with corresponding eigenvectors xi(i =
1, 2, · · · ,m). Let µj(j = 1, 2, ...,m) be the eigenvalues
of B ∈ Cm×m, with corresponding eigenvectors yj(j =
1, 2, · · · ,m). One can obtain

(A⊗ In + Im ⊗B)(xi ⊗ yj)

=(A⊗ In)(xi ⊗ yj) + (Im ⊗B)(xi ⊗ yj)

=(Axi)⊗ yj + xi ⊗ (Byj)

=(λi + µj)xi ⊗ yj .

(8)

According to [3], the following lemma can be derived:

Lemma 2 All the nonzero eigenvalues of H, if there exist,
have positive real parts. Furthermore, H is non-singular
if and only if G contains a directed spanning tree with the
leader as its root.

Thus, matrix M is Hurwitz and the algebraic connectivity
is λmin(H) . The error dynamics of distributed observer is
asymptotic stable. By setting the suitable µ, distributed ob-
server (2) can achieve an accurate estimation of the state of
the leader with arbitrary initial values.

3.3 Consensus speed of distributed observer
In this part, the consensus speed of distributed observer

(2) is considered as a measure of the performance. It is easy
to know that if the observer converges faster, the follower
can perform more accurate local control. A direct connec-
tion between the eigenvalue of H and the consensus speed is
explored.

Theorem 1 For distributed observer (5), the error con-
verges asymptotically to 0 at a rate of no less than
2µλmin(H) if and only if G contains a directed spanning
tree rooting at leader (node 0).

Proof: Considering the following Lyapunov function

V (e) =
1

2
e⊤e ≥ 0, (9)
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V (e) intuitively represents the error between the estimate
and the leader’s state, and its derivative is

V̇ (e) =
1

2
e⊤(M⊤ +M)e. (10)

Because S is skew-symmetric, and (H⊗ Iq)
⊤ = H⊤ ⊗ Iq ,

it follows that

V̇ (e) = −µe⊤
(
(H⊤ +H)⊗ Iq

)
e. (11)

Since H is non-singular and H⊤ +H is a Hermitian matrix,
according to Rayleigh theorem (1), it holds that

min
e⊤[(H⊤ +H)⊗ Iq]e

∥e∥2
= λmin(H

⊤ +H). (12)

As a result, equation (11) satisfies the inequality

V̇ (e) ≤ −4µλminV (e). (13)

Letting γ = 2µλmin(H), V (e) and e satisfy the inequalities

V (t) =
1

2
e⊤e ≤ V (0)e−2γt,

e ≤
√
2V (0)e−γt,

(14)

where V (0) is the initial value with t = 0. Thus, γ indicates
the speed of convergence of the exponential function.

Corollary 1 As the leader’s out-degree increases, the con-
sensus speed of (5) accelerates, subject to the condition that
a constant communication network and G contains a di-
rected spanning tree starting from the leader (node 0) as the
root.

Proof: The out-degree of the leader in G is defined as the
number of directed edges that originate from the leader node.
Construct two different communication networks, where G1

is shown in Fig.2, G2 is shown in Fig.1, and D2 > D1. Let-
ting Li, i = 1, 2 denote the Laplacian matrix of Gi, it can be
easily concluded that

H2 = H1 + (∆2 −∆1). (15)

Let Vi, i = 1, 2 denote the Lyapunov function which is con-
sistent with (9). When the communication network is G1, the
V̇1(e) is

V̇1(e) =− µe⊤
(
(H⊤

1 +H1)⊗ Iq
)
e. (16)

When the communication network is G2, the V̇2(e) is

V̇2(e) =− µe⊤
(
(H⊤

2 +H2)⊗ Iq
)
e. (17)

Let ∆ = ∆2 − ∆1. Then V̇2(e) and V̇1(e) satisfy the fol-
lowing equation

V̇2(e) =− 2µe⊤ (∆⊗ Iq) e+ V̇1(e). (18)

Since (∆⊗ Iq) is a positive semi-definite diagonal matrix,
it follows that e⊤(∆ ⊗ Iq)e ≥ 0 and is continuously dif-
ferentiable to e. Then there exists a non-negative constant
β that is positively correlated with the tr(∆), satisfying the
following equation

βe⊤e = e⊤(∆⊗ Iq)e, (19)

where tr(∆) = q(D2 − D1). According to (13), V̇2(e)
satisfies the following inequality

V̇2(e) ≤ −(β + 4µλmin)V1(e). (20)

Let γ1 = 2µλmin(H) and γ2 = γ1 + 1
2β. According to

Theorem 1, it can be inferred that the estimation error of
distributed observer converges to 0 with the rates of γ1 and
γ2 under G1 and G2, respectively.

Corollary 2 For two communication networks with the
same number of edges but different out-degrees of leader D,
under the condition of Theorem 1, the consensus speed is
positively correlated with D.

Proof: The followers are divided into two categories. The
first type of followers is defined as the source nodes j, which
directly receive information from the leader (ai0 = 1), for
example, node F1 in Fig.2. The second type of followers
are the indirect nodes i, which do not have a direct connec-
tion with the leader and can only estimate the leader’s state
through communication, for example, nodes F2, F3, and F4
in Fig.2. The observer for i and j are designed as

η̇j = Sηj + µ(v − ηj),

η̇i = Sηi + µ

∑
j∈Ni

aij (ηj − ηi)

 .
(21)

The error dynamics for i and j are as

ėj = (S− µIq)ej ,

ėi = (S− µIq)ei + µIqej .
(22)

Compared with the source node, the indirect nodes i only
use ηj as a reference to correct ηi from (21). Based on (22),
it can be seen that ei is asymptotically stable if only and
if the estimation errors of both the source node and itself
are zero. Recalling Corollary 2, when the number of edges
is constant, the out-degree of the leader node is negatively
correlated with the number of indirect nodes.

4 Simulation verifications and application

4.1 Numerical simulation

The leader’s dynamic matrix S =

(
0 ω
−ω 0

)
, ω =

0.4π is chosen and the initial values ηik ∈ [0, 10], i =
1, 2, ...7, k = 1.2 are randomly set. Build distributed ob-
servers (2) based on Fig.1 and Fig.2, respectively, where the
algebraic connectivity of Fig.1 is 1, the algebraic connectiv-
ity of Fig.2 is 0.1187, and µ = 2.

The estimation errors are shown in Fig.4. Clearly, the fol-
lower’s disagreement is monotonically decreasing. It can be
seen that a consensus is reached asymptotically. As the alge-
braic connectivity (λmin(H)) increases, the settling time of
the error trajectories decreases.

4.2 The application of unicycle formation
4.2.1 Observer Design

A three-petal rose curve trajectory is introduced to verify
the performance of distributed observer (2). The leader’s po-
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Fig. 1. The network of λmin(H) = 1

L0

F2

F3

F4

F6

F1

F5

Fig. 2. The network of λmin(H) = 0.1187
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Fig. 3. The errors of the observers based on Fig.2
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Fig. 4. The errors of the observers based on Fig.1

sition trajectory [23] is given as
xr0=R0 cos(Npϕr0) cosϕr0,

yr0=R0 cos(Npϕr0) sinϕr0,

ϕr0=
2π
T t,

(23)

with Np = 3, R0 = 10. The relative velocity trajectory is
given as
ẋr0=

2πR0

T

(
−Np sin

2Npπt
T cos 2πt

T − cos
2Npπt

T sin 2πt
T

)
,

ẏr0=
2πR0

T

(
−Np sin

2Npπt
T sin 2πt

T + cos
2Npπt

T cos 2πt
T

)
,

ϕ̇r0=
2π
T .

(24)
To generate the above reference signals, the following dis-

L0

F1

F2

F3

F4

Fig. 5. The network G1 of the leader’s out-degree D = 4

L0

F1

F2

F3

F4

Fig. 6. The network G2 of the leader’s out-degree D = 1

tributed observer is introduced

η̇0 = S0η0 = diag{diag{2π
T

,
2πN

T
} ⊗ a, 0}η0,

ηi = [ηi1, ηi2, ηi3, ηi4, ηi5]
⊤, i = 0, . . . , N,

η̇i = f(ηi, ηj , aj(t)|j ∈ Ni), i = 1, . . . , N,

(25)

where η0(0) = [0, 1, 0, 1, 2π
T ]⊤, N = 5 and f(·) the same

as system (2). The topologies of the observer communica-
tion networks are shown in Fig.5 and Fig.6. Therefore, the
reference signals qri and q̇ri of the ith agent are generated
by

qri = Rrose(ηi) = [xri, yri, ϕri]
⊤,

q̇ri = [ẋri, ẏri, ϕ̇ri]
⊤,

xri = R0ηi4ηi2, ẋri = − (R0Npηi3ηi2 +R0ηi4ηi1) ,

yri = R0ηi4ηi1, ẏri = −ηi5 (R0Npηi3ηi2 −R0ηi4ηi1) ,

ϕri = ηi5t, ϕ̇ri = ηi5.
(26)

To generate different trajectories for different agents, the
following reference with bias is adopted for the local con-
troller

x̄ri = (R0 + i)ηi4ηi2 + i,

ȳri = (R0 + i)ηi4ηi1 + i.
(27)

To verify the performance of distributed observer (2) un-
der the different communication networks, construct the ob-
servers with parameter µ = 1.2 based on Fig.5 and Fig.6
respectively. The network between the followers is the same
but the out-degree of the leader is different, where D1 = 4
and D2 = 1. The initial values ηi and qi are random.

In Fig.7, xri, yri, and θri, i = 1, . . . , 4 represent the es-
timate of the leader state by the follower i. The communi-
cation network on the left is denoted as G1, and the right is
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Fig. 7. The tracking errors of the observers based on G2 (left)
and G1 (right).

denoted as G2. It is clear to see that the observer under G2

converges faster. It is worth noting that the estimate of fol-
lower 1 is consistent under both topologies because node 1
is the source node in Corollary 2 updating its estimate only
based on the leader’s state. The total trajectories generated
by different observers based on G1 and G2 are illustrated in
Fig.8a and Fig.8b, respectively.

4.2.2 Application to unicycle model

The multi-agent system combined with N = 5 wheeled
mobile robots described with a typical simplified kinematic
model called unicycle can be presented as

q̇i =

ẋi

ẏi
ϕ̇i

 =

r cosϕi 0
r sinϕi 0

0 1

[
vci
ωci

]
, i = 0, . . . , N, (28)

where vc is the velocity input, ωc is the yaw angular veloc-
ity, and r = 0.2 is the radius of the wheel. The error after

coordinate transformation is

qei =

xei

yei
ϕei

=

 cos(ϕi) sin(ϕi) 0
− sin(ϕi) cos(ϕi) 0

0 0 1

x̄ri−xi

ȳri−yi
ϕri−ϕi

 .

(29)
To handle the trajectory tracking task for each agent, the sim-
ple back-stepping control law[

vci
ωci

]
=

[
vri cos(ϕei) + k1xei

ϕri + vri(k2yei + k3 sin(ϕei))

]
, (30)

with vri = ˙̄xri cosϕi + ˙̄yri sinϕi and k1, k2, k3 > 0 are
adopt for convenience. It’s worth mentioning that some bet-
ter tracking methods like the sliding mode-based method[21]
and the adaptive sliding mode method[20, 22] can be intro-
duced to bring better tracking performance. The simulation
results with k1 = 120, k2 = 120, and k3 = 10 are shown in
Fig.8c and Fig.8d, respectively. It is evident that the estimate
of the followers directly impacts the tracking performance of
the local controller.

5 Conclusion and Future Work

In this paper, the connection between the communication
network and the performance of distributed observers is ex-
plored. Specifically, the consensus speed is positively corre-
lated with the leader’s out-degree and λmin(H). Extensive
numerical experiments are conducted in the unicycle forma-
tion that confirm the theoretical analysis. However, increas-
ing the connectivity of the network to improve the consensus
speed may lead to a significant waste of communication re-
sources. Future research efforts will be devoted to finding a
balance between the convergence speed and network com-
plexity.
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Abstract: In this paper, we propose a containment controller based on truncated prediction and a coding-decoding communi-
cation protocol (CDCP) for a class of multi-agent systems (MASs) with input time delay. Using the sensor outputs, we design
corresponding observers for each agent, as well as the corresponding coders and decoders. The difference between the observed
and decoded states is dynamically quantized by the coder and transmitted to other agents, while truncated prediction is used to
compensate for the input time delay. We first present some lemmas to guarantee the detectability of MASs. Then, we provide
sufficient conditions for the control protocol based on decoded and observed states to hold, and implement the containment
control of MASs. Finally, the observer gain and controller gain are obtained by solving the LMI, and a numerical simulation
example is provided to demonstrate the validity of the conclusions.

Key Words: Coding-Decoding, Containment Control, Input Delay, Multi-agent Systems, Truncated Prediction.

1 Introduction

In recent years, containment control strategies have also
been increasingly studied in the field of MASs, driven by
many natural phenomena and potential applications. The
purpose of containment control is that the followers asymp-
totically enters the convex hull generated by the leaders (see
[1][2]).

The phenomenon of time delay is encountered in real en-
gineering environments, and it is also unavoidable. For input
delay, truncated prediction method is used to compensate for
the time delay term. The control design problem for Lip-
schitz nonlinear systems with time-varying input time de-
lays is investigated in [3]. The distributed output feedback
consensus control problem for nonlinear multi-agent system
subject to input delays in [4]. However, most of the previous
approaches using truncated prediction methods to deal with
input time delays have been applied to leaderless or single-
leader consensus, and there have been few applications in
containment control.

For the research of MASs cooperative control, how to
use less network resources to achieve stable control of the
system has become an important topic nowadays. Many
scholars only consider the design problem of distributed con-
trollers for MASs under ideal communication states, such as
continuously stable signals with infinite quantization levels
(see [5][6]). For the consensus problem, a class of discrete-
time networked MASs with digital communication protocol
is studied in [7]. However, limited research has been con-
ducted on communication methods in containment control.
Exploring how to achieve efficient utilization of network re-
sources in containment control presents a significant area of
research interest.

Based on the above analyses, this paper designs a new
truncated predictive containment control protocol under
CDCP for a class of MAS with input delay. The main con-

This work is supported by National Natural Science Foundation
(NNSF) of China under Grant 61803081.

tributions of this paper are as follows 1) In order to be more
realistic and to improve the efficiency of communication in
containment control, a dynamic quantization-based CDCP is
designed and its feasibility is proved. 2) Applying the trun-
cated prediction method to the field of containment control,
a truncated prediction control protocol is designed to com-
pensate the effect of input time delay.

Notation: Rn and Rm×n denote the n-dimensional Eu-
clidean space and the set of m × n real matrices, respec-
tively. The symbol ⌈y⌉ denotes the smallest integer not less
than y, while ⌊y⌋ denotes the largest integer not larger than
y. The symbol ”∗” represents the symmetric term in a ma-
trix. colN{xi} denotes [xT1 xT2 ... xTN ]T . The maxi-
mum and minimum eigenvalues of the symmetric matrix C
are denoted by λmax{C} and λmin{C}, respectively. S > 0
(S ≥ 0) for a matrix S signifies positive definite (or positive
semi-definite). The symbol In denotes an identity matrix
with dimensions n. For a vector z, ∥z∥ and ∥z∥∞ refer to
the Euclidean norm and infinity norm, respectively. S ⊗ D
indicates the Kronecker product of matrices S and D.

2 Problem Formulation

In this paper, we use a directed graph G to describe the
relationships between agents. The set of agent is denoted as
V , and each agent is identified by 1, ..., N . E ∈ V×V are the
directed edges. The weighted adjacency matrix A is defined
as A = [aij ]N×N . Each directed edge (i, j) represents agent
j transmitting information to agent i. A path from agent i to
j is a sequence of the ordered edges (i, p), (p, q), ..., (r, j).
The set of neighbors of agent i is defined as Ni = {j ∈
V|(j, i) ∈ E , j ̸= i}. Agents are classified as M follow-
ers and N − M(N > M) leaders. To analyze MASs,
we introduce the Laplacian matrix L = [lij ]N×N , where
lii =

∑N
j=1 aij and lij = −aij , i ̸= j. F = {1, 2, ...,M}

represents the followers set and R = {M+1,M+2, ..., N}
represents the leaders set. The Laplacian matrix L associated
with the graph G can be partitioned as
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[
L1 L2

0(N−M)×M 0(N−M)×(N−M)

]
,

where L1 ∈ RM×M and L2 ∈ RM×(N−M).

2.1 Model Description
In this study, we investigate a dynamic system for each

agent as follows:{
ẋi(t) =Sx(t) +Dui

(
t− σ

)
,

yi(t) = Cxi(t),
(1)

where xi(t) ∈ Rn, yi ∈ Rm and ui(t) ∈ Rq represent the
state, output, control input of follower i, respectively; The
input of the leader is set to ui(t) = 0 (i ∈ R); Constant
σ > 0 denotes the input delay; S,D and C are constant
matrices with suitable dimensions, satisfying that (S,D) is
controllable and (S,C) is observable.

The observer for the i-th agent (i = 1, .., N) is con-
structed as follows:

˙̂xi(t) = Sx̂i(t) +Dui(t− σ) +G(yi(t)− Cx̂i(t)), (2)

where G is the observer gain matrix to be designed.
The initial condition of xi(t) and x̂i(t) (i = 1, .., N)

are defined as xi(θ) = ϑi(θ) and x̂i(θ) = ϑ̂i(θ) for θ ∈
[−σ, 0], respectively. Define the relative state as εi(t) ≜∑
j∈Ni

aij(xi(t)− xj(t)), i ∈ F .

2.2 Coding–Decoding Communication Protocol
Suppose that only symbolic data can be exchanged be-

tween agents. The corresponding codeword generated by the
coder of agent i (i = 1, 2, ..., N) is

ϖi(dh) = Qdh

( x̂i(dh)− x̆i(dh
−)

g(dh)

)
, (3)

where x̆i(dh−) is the decoded state of x̂i(dh−) at the left-
limit coding moment dh (d = 1, 2, ... and h > σ > 0 is the
coding interval); g(dh) = g0ℓ

dh (g0 > 0, 0 < ℓ < 1) is the
scaling function; Qdh(·) is a quantizer.

The following uniformly symmetric quantizer Qdh(κ) =
[qdh(κ1), ..., qdh(κn)]

T with κ = [κ1, ..., κn]
T is employed:

qdh(κi) =


aζ, (a− 1

2
)ζ ≤ κi < (a+

1

2
)ζ,

Hζ, κi ≥
(2H − 1)ζ

2

− qdh(−κi), κi ≤ −1

2
ζ,

(4)

where ζ represents the known quantization parameter, a =
0, 1, ...,H − 1 and H is the saturation value of the quantizer.

The decoded value obtained by the decoder of agent i
from the message sent by agent j is defined as follows:

x̆j(t) = 0, t ∈ [−σ, 0],
˙̆xj(t) = Sx̆j(t) +Duj(t− σ), t ̸= dh,

x̆j(dh) = x̆j(dh
−) + g(dh)ϖj(dh),

(5)

where x̆j(t) represents the output of decoder. Define ε̆i(t) ≜∑
j∈Ni

aij(x̆i(t) − x̆j(t)) (i ∈ F) as the relative state of the

decoded state.

Based on the above designed decoder (5), the following
control protocol can be proposed as follows:

ui(t) = KeSσ
∑
j∈Ni

aij
(
x̂i(t)− x̆j(t)

)
, i ∈ F , (6)

where K is the control gain to be designed.
Next, for the sake of convenience, we make

xf (t) = colM{xi(t)}, xl(t) = [xTM+1(t), ..., x
T
N (t)]T ,

ε(t) = colM{εi(t)}, ε̆(t) = colM{ε̆i(t)},
u(t) = colM{ui(t)}, ϑ(θ) = colN{ϑi(θ)},

ϑ̂(θ) = colN{ϑ̂i(θ)}.

The augmented form of system (1) can be written as

ẋ(t) =S̄x(t) + D̄u(t− σ). (7)

where

x(t) =
[
xf (t)

T xl(t)
T
]T
, S̄ =

[
IM ⊗ S 0

0 IN−M ⊗ S

]
,

D̄ =

[
IM ⊗D 0

0 0

]
.

The augmented matrix form of ε(t) can be written as
ε(t) = (L1 ⊗ In)xf (t) + (L2 ⊗ In)xl(t). The containment
error dynamics can be reformulated as follows

ε̇(t) = (IM ⊗ S)ε(t) + (L1 ⊗D)u(t− σ). (8)

Defining the estimation error as x̃(t) = x(t)− x̂(t), one has

˙̃x(t) =
(
IN ⊗ (S −GC)

)
x̃. (9)

Lemma 1. [8] For any positive definite matrix X = X T >
0, there exist scalar parameters a and b, where b > a, and
vector-valued function x(t) : [a, b] → Rm such that the fol-
lowing integral inequality holds:∫ b

a

xT (ρ)Xx(ρ)dρ ≥ 1

b− a

(∫ b

a

x(ρ)dρ
)T

X
(∫ b

a

x(ρ)dρ
)
.

Lemma 2. [9] For any positive-definite matrix K, there ex-
ists a non-negative constant c satisfying :

eS
T tKeSt − ectK = −ect

∫ t

0

e−cρeS
T ρPeSρdρ,

where P = −STK − KS + cK. It is worth noting that if
P is positive definite, then the inequality eS

T tKeSt ≤ ectK
holds.

Assumption 1. For each follower, there exists at least one
leader that has a directed path to that follower.

Lemma 3. [10] Under Assumption 1, L1 > 0 . Additionally,
every entry of −L−1

1 L2 is non-negative, and each row sum
of −L−1

1 L2 is 1.

Definition 1. [1] A set Q ⊆ Rn is considered convex if
it satisfies the condition that for any z ∈ Q and y ∈ Q,
(1 − γ)z + γy ∈ Q for any γ ∈ [0, 1]. Co{z1, ..., zn} =
{
∑n

i=1 αizi|αi ≥ 0,
∑n

i=1 αi = 1} denotes the minimum
convex set containing all points zi(i = 1, ..., n).
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Definition 2. The continuous-time dynamical system (7) is
said to be detectable if there exist coder–decoder pairs (3)
and (5) such that limt→+∞ ∥x(t)− x̆(t)∥ = 0.

Definition 3. [2] The containment control for the multi-
agent systems (1) is said to be achieved if for any initial con-
ditions such that limt−→∞ ∥xi(t)−

∑N
j=M+1 ϱijxj(t)∥ = 0

holds, where ϱij ≥ 0,
∑N

j=M+1 ϱij = 1, i ∈ F , j ∈ R.

3 Main Results

3.1 Detectability Analysis
For the convenience of deriving the main results later, the

following lemma is provided.

Lemma 4. Given positive scalars b1 and b2. Suppose there
exists a positive definite matrix Q1 satisfying[

AT +A Q1

∗ −b−1
2 Q1

]
< 0, (10)

where A = Q1S − b1Q1. Then for any constant ϵ1 > 0,
∥ψ1(t + ϵ1) − ψ2(t + ϵ1)∥ ≤ γeb̂ϵ1∥ψ1(t) − ψ2(t)∥ holds,
where ψ1(t) and ψ2(t) denote two arbitrary solutions of (7),
γ =

√
λmax{Q}/λmin{Q} and b̂ = b1 − b2/2 with Q =

IN ⊗Q1.

Proof. The Lyapunov function V (t) = ψ̃T (t)Qψ̃(t) is con-
structed, where ψ̃(t) = e−b1t(ψ1(t) − ψ2(t)). A derivation
of the trajectory of V̇ (t) + b2V (t) along ψ̃(t) yields:

V̇ (ψ̃(t)) + b2V (ψ̃(t))

=ψ̃T (t)
(
(S̄ − b1InN ))TQ+Q(S̄ − b1InN ) + b2Q

)
ψ̃(t).

By (10) and Shur complement lemma, one has V (t +
ϵ1) ≤ e−b2ϵ1V (t), which can be further obtained that
∥ψ1(t + ϵ1) − ψ2(t + ϵ1)∥ ≤ γeb̂ϵ1∥ψ1(t) − ψ2(t)∥ with
γ =

√
λmax{Q}/λmin{Q}. The proof is finished.

■

To ensure the state observer is effective, it requires the es-
timation error system (9) is convergent. Thus the following
lemma is proposed.

Lemma 5. Let scalar b3 > 0 be given. If there exits positive
definite matrix Q2 and matrix Z satisfying[

BT +B Q2

∗ −b−1
3 Q2

]
< 0, (11)

where B = Q2S − ZC, then there always exits scalar
ϵ2 > 0 such that ∥x̃(t + ϵ2)∥ ≤ αeb̃ϵ2∥x̃(t)∥, where

α =

√
eb3λmax{Q̂}/λmin{Q̂} with Q̂ = IN ⊗ Q2 and

b̃ = −b3/2. In addition, the feedback gain matrix is de-
signed as G = Q−1

2 Z.

Proof. A Lyapunov function Ṽ (t) = x̃T (t)Q̂x̃(t) is con-

structed. And then, the term ˙̃
V (t) + b3Ṽ (t) is derived as

follows:

˙̃
V (t) + b3Ṽ (t) =x̃T (t)

((
IN ⊗ (S −GC)

)T
Q̂

+ Q̂
(
IN ⊗ (S −GC)

)
+ b3Q̂

)
x̃(t).

By (11), ˙̃
V (t) ≤ −b3Ṽ (t) can be obtained. So it is fur-

ther derived that ∥x̃(t + ϵ2)∥ ≤ αeb̃ϵ2∥x̃(t)∥ with α =√
λmax{Q̂}/λmin{Q̂}. Notice that there exists ϵ2 such that

0 < αeb̃ϵ2 < 1, the system (9) is exponential convergence.
The proof is completed. ■

Define the quantization error as ℑ(dh) = (x̂(dh) −
x̆(dh−))/g(dh)−ϖ(dh) with ϖ(dh) = colN{ϖi(dh)}. In
order to ensure the communication protocol is available, it
is necessary to ensure the unsaturation of the quantizer for
any dh > 0, i.e., the quantization error satisfies ∥ℑ(dh)∥ ≤√

Nnζ
2 .

Theorem 1. Assuming the conditions in Lemma 4, Lemma
5 hold, for any given constant ℓ ∈ (eb̃, 1) and ζ > 0, let

H1 =⌊ℵ − 1

2
⌋+ 1, ℵ =

(
1 +

2γeb̃h

ℓh
)√Nn

2
, (12)

and for arbitrary given H ≥ H1, we have

g0 > max
{αeb̃hϑ̃+ γeb̂hϑ

ℓh(H + 1
2 )ζ

,
2αϑ̃√
Nnζ

}
(13)

where ϑ = supθ∈[−σ,0] ∥ϑ(θ)∥, ϑ̃ = supθ∈[−σ,0] ∥ϑ(θ) −
ϑ̂(θ)∥.

Then the CDCP (3) and (5) satisfies
∥∥∥ x̂(dh)−x̆(dh−)

g(dh)

∥∥∥
∞

≤
(H + 1

2 )ζ, d = 1, 2, ...., that is, the quantizer is not sat-
urated for any H ≥ H1. Furthermore, the continuous-time
dynamic system (7) is detectable with CDCP (3)-(5).

Proof. Some definitions and properties of vector norms and
the mathematical induction are used to prove the lemma.
Firstly, for d = 1, utilizing Lemma 4, Lemma 5, it can be
derived:∥∥∥ x̂(h)− x̆(h−)

g(h)

∥∥∥ ≤
∥∥∥ x̂(h)− x(h)

g(h)

∥∥∥+
∥∥∥x(h)− x̆(h−)

g(h)

∥∥∥
≤αe

b̃hϑ̃+ γeb̂hϑ

g0ℓh
< (H +

1

2
)ζ. (14)

By the definition of vector norm, (14) can be further derived∥∥∥ x̂(h)− x̆(h−)

g(h)

∥∥∥
∞
< (H +

1

2
)ζ. (15)

Secondly, suppose ∥ x̂(dh)−x̆(dh−)
g(dh) ∥∞ ≤ (H + 1

2 )ζ holds

for d = 2, ..., d̂. Subsequently, one can be obtained that∥∥∥x(d̂h)− x̆(d̂h)

g(d̂h)

∥∥∥ =
∥∥∥x(d̂h)− x̆(d̂h−)

g(d̂h)
−ϖ(d̂h)

∥∥∥
≤αϑ̃
g0

(eb̃
ℓ

)d̂h

+

√
Nnζ

2
≤

√
Nnζ. (16)

So for d = d̂+ 1, one can be derived from (16) that∥∥∥ x̂((d̂+ 1)h
)
− x̆

(
(d̂+ 1)h−

)
g
(
(d̂+ 1)h

) ∥∥∥
≤
∥∥∥ x̃((d̂+ 1)h

)
g
(
(d̂+ 1)h

)∥∥∥+
∥∥∥x((d̂+ 1)h

)
− x̆

(
(d̂+ 1)h−

)
g
(
(d̂+ 1)h

) ∥∥∥
≤
(
1 +

2γeb̃h

ℓh
)√Nnζ

2
= ℵζ ≤ (H +

1

2
)ζ. (17)
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Similar to (15), (17) can be further derived that

∥∥∥ x̂((d̂+ 1)h
)
− x̆

(
(d̂+ 1)h−

)
g
(
(d̂+ 1)h

) ∥∥∥
∞

≤ (H +
1

2
)ζ. (18)

Thus, by (14)-(18) and the mathematical induction, we
can deduce that the quantizer will never saturate atH ≥ H1.

For the coding instant t = dh, since eb̃ < ℓ < 1 im-
plies limd→+∞ g(dh) = 0, we have limd→+∞ ∥x(dh) −
x̆(dh)∥ = 0.

For the non-coding instant t ̸= dh, due to x(t) and x̆(t)
can be considered as two trajectories of (8). Then the fol-
lowing inequality can be obtained from Lemma 4

∥x(t)− x̆(t)∥ ≤
√
γeb̂(t−dh)∥x(dh)− x̆(dh)∥. (19)

Therefore, ∥x(t) − x̆(t)∥ is bounded for the non-coding in-
stant t.

Eventually, based on the above analysis, we can conclude
that limt→+∞ |x(t)− x̆(t)| = 0, indicating that the dynamic
system (7) is detectable with the CDCP (3)-(5). The proof is
completed. ■

3.2 Containment Control Analysis
Let δi(t) =

∑
j∈Ni

aij(x̂i(t) − x̆i(t)). From (6), we can
get u(t) = (IM ⊗ KeSσ)ε̆(t) + (IM ⊗ KeSσ)δ(t), where
δ(t) = colM{δi(t)}.

The relative state of decoder system (5) is rewritten in
compact form as follows:

ε̆(t) = 0, t ∈ [−σ̄, 0],
˙̆ε(t) = Sε̆(t) + (L1 ⊗D)u(t− σ), t ̸= dh,

ε̆(dh) = ε̆(dh−) + Ω(dh),

(20)

where Ω(dh) = colM{Ωi(dh)} with Ωi(dh) =∑
j∈Ni

aijg(dh)(ϖi(dh)−ϖj(dh)).
Suppose that at time t ∈ [0,+∞), there always exits d ∈

N such that t ∈
[
dh, (d+1)h

)
. Assume that 0 ≤ σ ≤ h, it is

straightforward to observe that t−σ ∈
[
(d− 1)h, (d+1)h

)
when t ∈

[
dh, (d + 1)h

)
. In the decoder system (20), the

ε̆(t) undergoes a sudden change at t = dh. So, the decoded
containment error ε̆(t− σ) can be divided into two cases for
discussion.

• Case I: t− σ ∈
[
(d− 1)h, dh

)
.

Firstly, by integrating the decoder system (20) from t− σ to
dh−, one can derive that

ε̆(dh−) =
(
IM ⊗ eS

(
dh−t+σ

))
ε̆(t− σ)

+

∫ dh

t−σ

(
L1 ⊗ eS(dh−ρ)DKeSσ

)
ε̆
(
ρ− σ

)
dρ

+

∫ dh

t−σ

(
L1 ⊗ eS(dh−ρ)DKeSσ

)
δ
(
ρ− σ

)
dρ.

(21)

Secondly, by integrating the decoder system (20) from dh to

t , we can get

ε̆(t) =
(
IM ⊗ eS(t−dh)

)(
ε̆(dh−) + Ω(dh)

)
+

∫ t

dh

(
L1 ⊗ eS(t−ρ)DKeSσ

)
ε̆(ρ− σ)dρ

+

∫ t

dh

(
L1 ⊗ eS(t−ρ)DKeSσ

)
δ(ρ− σ)dρ. (22)

And finally, substituting (21) into (22), it can be obtained
that

ε̆(t) =(IM ⊗ eSσ)ε̆(t− σ) + (IM ⊗ eS(t−dh))Ω(dh)

+

∫ t

t−σ

(
L1 ⊗ eS(t−ρ)DKeSσ

)
ε̆(ρ− σ)dρ

+

∫ t

t−σ

(
L1 ⊗ eS(t−ρ)DKeSσ

)
δ(ρ− σ)dρ. (23)

Denote the decoded error as ε̄(t) = ε(t) − ε̆(t). Therefore
the containment error system (8) can be rewritten as

ε̇(t) = (S̃ + D̃)ε(t)− D̃ε̄(t) +
4∑

r=1

Ψr, (24)

where Ψ1 = −D̃
∫ t

t−σ

(
L1 ⊗ eS(t−ρ)BKeSσ

)
ε(ρ− σ)dρ,

Ψ2 = D̃
∫ t

t−σ

(
L1 ⊗ eS(t−ρ)DKeSσ

)
ε̄(ρ− σ)dρ,

Ψ3 = −D̃
∫ t

t−σ

(
L1 ⊗ eS(t−ρ)DKeSσ

)
δ(ρ− σ)dρ,

Ψ4 = −(L1⊗DKeS(t−dh))Ω(dh),with S̃ = IM ⊗S, D̃ =
L1 ⊗DK.

• Case II: t− σ ∈
[
dh, (d+ 1)h

)
.

In this case, because η̆(t) is continuous from ϑ(t) to t, there
is no need for segmented analysis of its integration. By inte-
grating the decoder system (20) from ϑ(t) to t, one has

ε̆(t) =(IM ⊗ eSσ)ε̆(t− σ)

+

∫ t

t−σ

(
L1 ⊗ eS(t−ρ)DKeSσ

)
ε̆(t− σ)dρ

+

∫ t

t−σ

(
L1 ⊗ eS(t−ρ)DKeSσ

)
δ(t− σ)dρ. (25)

The dynamic of ε(t) can be written as

ε̇(t) = (S̃ + D̃)ε(t)− D̃ε̄(t) +
3∑

r=1

Ψr. (26)

Moreover, the controller gain for the control input (6) is
determined as K = −DTW , where the matrix W > 0 is to
be defined.

Theorem 2. Assuming that the Theorem 1 and 0 ≤ σ ≤ h
hold, the containment control in MAS (1) can be achieved
by control input (6) with K = −DTW , if there exist matrix
W > 0 and constants υ > 0, c ≥ 0, ϕi > 0(i = 0, ..., 4)
satisfying:

DDT ≤ υW, (27)

ST + S < cIn, (28)[
WST + SW − 2λDDT +

∑4
r=0 ϕrIn W

∗ −β−1In

]
< 0,

(29)
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where W = W−1, λ = λmin{L1}, λ̄ = λmax{L1}, β =
ς̄ϕ−1

1 eσ, ς̄ = υ4σe2cσλ̄2.

Proof. Construct a Lyapunov function as V1(t) =

ε(t)
T
(IM ⊗W )ε(t).

Based on (21)-(26), we need to divide the discussion in
segments at t = dh

• Case I: t− σ ∈
[
(d− 1)h, dh

)
.

By differentiating the V1(t) along (24) and utilizing
2aT b ≤ ϕaTa+ ϕ−1bT b, which is further derived as

V̇1(t)|caseI

≤εT (t)
(
IM ⊗ (STW +WS − 2λWDDTW )

)
ε(t)

+ εT (t)(IM ⊗
4∑

r=0

ϕrW
2)ε(t) + ϕ−1

0 ε̄T (t)ε̄(t)

+
4∑

r=1

ϕ−1
r ΨT

r Ψr. (30)

Under Lemma 1, conditions (27) and (28), one can gets

ΨT
i Ψi ≤ ς̄

∫ t

t−σ

∆T
i (ρ− σ)∆i(ρ− σ)dρ, i = 1, 2, 3,

(31)

where ∆1 = ε, ∆2 = ε̄, ∆3 = δ. To counteract the ef-
fect of the upper bound in (31), we construct the following
Krasovskii functions:

Γi =e
σ

∫ t

t−σ

eρ−t∆T
i (ρ− σ)∆i(ρ− σ)dρ

+ eσ
∫ t

t−σ

∆T
i (ρ)∆i(ρ)dρ, i = 1, 2, 3. (32)

The derivation of the functions Γi(i = 1, 2, 3) can be further
derived as follows

Γ̇i ≤−
∫ t

t−σ

∆T
i (ρ− σ)∆i(ρ− σ)dρ+ eσ∆T

i (t)∆i(t).

(33)

A Lyapunov function candidate is constructed as
V (t)|caseI = V1(t)|caseI+

∑3
r=1(ς̄ϕ

−1
r )Γr. Combining (30)

to (33) yields

V̇ (t)|caseI ≤∆T
i (t)(IM ⊗Πi)∆i(t), i = 1, 2, 3, 4,

where Π1 = STW +WS − 2λWDDTW +
∑4

r=0 ϕrW
2

+ ς̄ϕ−1
1 eσIn, Π2 = (ϕ−1

0 + ς̄ϕ−1
2 eσ)In, Π3 =

ς̄ϕ−1
3 eσIn, ∆4(t) = Ω(dh), Π4 = υ2σϕ−1

4 ecσλ̄In.

• Case II: t− σ ∈
[
dh, (d+ 1)h

)
.

By differentiating the V1(t) along (26), one has

V̇1(t)|caseII

≤εT (t)
(
IM ⊗ (STW +WS − 2λWDDTW )

)
ε(t)

+ εT (t)(IM ⊗
3∑

r=0

ϕrW
2)ε(t) + ϕ−1

0 ε̄T (t)ε̄(t)

+
3∑

r=1

ϕ−1
r ΨT

r Ψr. (34)

A Lyapunov function candidate is constructed as
V (t)|caseII = V1(t)|caseII +

∑3
r=1(ς̄ϕ

−1
r )Γr. Similarly,

exploiting (31) to (33), one gets

V̇ (t)|caseII ≤∆T
1 (t)(IM ⊗ Π̃1)∆1(t)

+ ∆T
i (t)(IM ⊗Πi)∆i(t), i = 2, 3,

where Π̃1 = STW +WS−2λWDDTW +
∑3

r=0 ϕrW
2+

ς̄ϕ−1
1 eσIn.

Obviously, Π̃1 < Π1. Thus, for V̇ (t), in both Case I and
Case II, it satisfies V̇ (t) ≤ ∆T

i (t)(IM ⊗ Πi)∆i(t), (i =
1, 2, 3, 4). By Schur complement lemma and matrix trans-
formations, it is easy to obtain that Π1 < 0 is equivalent
to (29). According to Theorem 1, limt→+∞ ε̄(t) = 0 and
limt→+∞ δ(t) = 0 can be derived, which further implies
limd→+∞ Ω(dh) = 0.

Eventually, it can be obtained that V̇ (t) < 0. Con-
sequently, from the above analysis, one can conclude that
limt→+∞ ∥ε(t)∥ = 0. The proof is completed.

■

4 Numerical Example

In this section, we will demonstrate the validity of the the-
ory through numerical simulations.

Consider the system:

xi =

[
xi1
xi2

]
, S =

[
0 1
−1 0

]
, D =

[
1
2

]
, C =

[
1 −1

]
.

The relationship between the intelligences is represented by
the topology diagram in Fig. 1, in which nodes 1-4 denote
followers and nodes 5-7 denote leaders.

Fig. 1: Communication topology.
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Fig. 2: In the three-dimensional space, the state trajectories
of the followers and leaders.
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Fig. 3: The states of followers and leaders at different time
points.

Fig. 4: The decoded errors.

The initial state of the followers are given as x1 =
[7,−3]T , x2 = [0.5,−1]T , x3 = [1, 2]T , x4 = [−2, 3]T , The
initial state of the leaders are given as x5 = [2, 4]T , x6 =
[−2, 11]T , x7 = [5, 14]T . The following parameters are
given: σ = 0.05, h = 0.1, ζ = 1, b1 = 1.1, b2 =
1.8, b3 = 2.1, c = 0.2, σ = 0.05, ϕi = 0.1(i =
0, ..., 4), υ = 0.2.

Then, by calculating and solving LMI (11) and (29), we

can get g0 = 33, ℓ = 0.58, H = 10, G =

[
3.5533
0.3448

]
,

K =
[
−0.0211 −0.0461

]
.

Utilizing the above parameters, Fig. 2-3 present the sim-
ulation results. Specifically, we use fi(i = 1, 2, ..., 6) to
denote the i-th follower and lj(j = 1, 2, 3) to denote the j-
th leader in Figs. 2. Fig. 2 demonstrates the trajectory of the
state of each agent in three-dimensional space. Also high-
lighted are the states of the agent at time T=0,10,20,30s,
which are shown separately in Fig. 3. It can be seen that
the followers asymptotically enters the convex hull gener-
ated by the leaders. The decoded errors are depicted in Fig.
4 and they converge zero asymptotically, which means that

the system (1) is detectable.

5 Conclusion

In this paper, we focus on a continuous MAS with input
delays under CDCP. A dynamic quantizer is used to code the
estimated state into a finite set of discrete signals for trans-
mission. At the controller side, the received discrete symbols
are decoded. Some sufficient conditions have been presented
to ensure the detectability of the MASs. Based on the de-
coded signals, a control protocol using truncated prediction
method is proposed to ensure the implementation of contain-
ment control for MASs. Future research directions could ex-
tend to more complex MASs, such as those with nonlinear
terms and state saturation terms.
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Abstract: This paper investigates a dynamic event-triggered model-free adaptive heading consensus tracking issue for unmanned
surface vehicles (USVs). First, a dynamic linearization data model is established by merely using the input and output data of
the controlled systems. Then, the characteristics of USVs are analyzed, and a difference-type heading consensus controller
is designed. Moreover, the resource-efficient control issue is further considered, and a dynamic event-triggered mechanism is
formulated for USVs to implement heading consensus tracking tasks. Finally, the convergence of the consensus tracking errors
is roughly proved, and several simulation studies verify the correctness and effectiveness of the proposed method.

Key Words: Unmanned surface vehicles, heading consensus, model-free adaptive control, dynamic event-triggered control

1 Introduction

Unmanned surface vehicles (USVs) are surface ships
without requiring operators [1]. Because of the advantages
of operational flexibility, good concealment, low operating
cost, and high safety, USVs have been wildly applied in the
context of merchant, naval, and scientific applications [2].
Generally, the premier issue of USVs is to realize heading
control [3], and considerable results have been reported. For
example, Huang et al. [4] studied a dynamic output feedback
H∞ heading control method, Zhou et al. [5] investigated a
set-membership-based heading control scheme, Liu et al. [6]
developed an adaptive backstepping controller, and so forth.

It is noted that the results above are only focused on a sin-
gle system. However, when conducting several tasks, for in-
stance, surveillance and information sharing, water surface
multi-objective capturing, and transportation, the coopera-
tion of an alliance of USVs is necessary [7]. In other words,
cooperative control is one of the important research fields of
USVs. Consensus is a code issue of cooperative control of
USVs [8], which has attracted lots of attention from scholars.
For example, Han et al. [9] studied a secure sampled-data
consensus for USVs against deception attacks, Yang et al.
[10] formulated a distributed model predictive consensus for
USVs with post-verification, and Li et al. [11] investigated a
distributed consensus method for USVs with external distur-
bances. It should be pointed out that most existing consen-
sus methods of USVs have a common assumption that the
dynamics models of USVs are available and accurate. How-
ever, the dynamics models of USVs are nonlinear, uncertain,
and time-varying, caused by different speeds, parameters of

This work was supported by the National Natural Science Founda-
tion of China (62273059), the Liaoning Natural Science Foundation(2022-
KF-21-06), the Fundamental Research Funds for the Central Universities
(JUSRP123061), the 111 project (B23008), the Wuxi Science and Tech-
nology Development Fund Project (K20231015), and the Discovery Grant
from the Natural Sciences and Engineering Research Council of Canada
(NSERC) (Corresponding author: Jinjun Shan)

wetted area, draft, and so forth [12]. Hence, investigating
a framework for USVs with unknown dynamics models to
design controllers is one of the motivations for this paper.

Recently, to overcome the issues of USVs with unknown
dynamics models, scholars have explored data-driven con-
trol methods, such as PID control [13, 14], reinforcement
learning control (RLC) [15, 16], and model-free adaptive
control (MFAC) [17, 18]. PID can be transformed as a
special form of MFAC, and the neutral networks must be
established in RLC. MFAC was first studied by Hou [19]
for discrete-time nonlinear systems with unknown dynamics
models. Since the advantages of simple construct, strong ro-
bustness, and easy operation, MFAC methods have been em-
ployed in many applications, such as unmanned helicopters
[20], fixed-wing unmanned aerial vehicles [21], and preci-
sion machine tools [22]. Moreover, MFAC methods have
been expanded to multiagent systems implementing coop-
erative tasks, for instance, multi-area power systems [23],
autonomous vehicle platoon systems [24], and multiple sub-
way trains [25]. Although several results have been devel-
oped for multiagent systems, the results of USVs are few.
Hence, designing an MFAC method for USVs performing
heading consensus tracking tasks is challenging work.

In addition, most results above require that the communi-
cation resources do not have any limitations and that com-
puting power is sufficient. However, USVs are a lightweight
class devices such that the communication bandwidth and
computing resources are extremely finite. Therefore, re-
ducing the communication and computing burden and re-
alizing resource-efficient control is essential when design-
ing a controller for USVs that implement cooperative tasks.
Event-triggered control is one of the practical strategies to
reduce the communication burden, which was first intro-
duced into multiagent systems by Dimarogonas et al. [26].
After that, numerous interesting methods have been devel-
oped. To name a few, Zhu et al. [27] studied a distributed
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event-triggered affine formation maneuver controller, Zhang
et al. [28] investigated an adaptive distributed bridge-to-
bridge event-triggered fault-tolerant controller, and Song et
al. [29] developed a distributed dynamic edge-based event-
triggered formation controller. Although several useful
event-triggered approaches have been developed for USVs
implementing cooperative tasks, they assume that the dy-
namics models of USVs are available and accurate. Hence,
how to design a model-free event-triggered cooperative con-
trol method for USVs is meaningful work.

With consideration given to the above discussions, this
paper aims to address the issues of limited communication
resources and unknown dynamics models of USV to imple-
ment a dynamic event-triggered model-free adaptive head-
ing consensus tracking tasks, where the main contributions
are summarized as:

(1) Propose a heading consensus control method for USVs
with unknown dynamics, where USVs can implement coop-
erative control tasks. Compared with the existing schemes
[30–32], the proposed method is focused on multiple USVs.

(2) Design a difference-type MFAC controller, a model-
free cooperative control method. Compared with the existing
MFAC methods [33–35], the requirement that the relation-
ship between the input and output data must be a monotone
positive or negative correlation is relieved.

(3) Formulate a dynamic event-triggered communica-
tion mechanism, which includes a dynamic event-triggered
threshold value. Compared with the existing static event-
triggered mechanisms [36–38], the formulated mechanism
is a dynamic event-triggered mechanism, which can further
reduce the communication burden.

The rest of this paper is organized as follows: The prelim-
inaries and problem formulation are given in Section 2. The
controller design and convergence analysis are presented in
Section 3. The results of simulation studies are given in Sec-
tion 4. Several summarizations are presented in Section 5.

2 Problem Formulation

2.1 Algebraic Graph Theory
The algebraic graph is a common tool for describing the

relationship among networked multiagent systems. As for
N agent and a virtual leader 0, an augmented matrix is
utilized as G = (V̄ , E,A), where V̄ = {0} ∪ V with
V = {1, 2, · · · , N}, E ⊆ V × V , and A = [aij ] ∈ RN×N
denote the set of nodes, the set of edges, and weighted ad-
jacent matrix, respectively. Moreover, the set of neighbors
of agent i is denoted as Ni. The Laplacian matrix is calcu-
lated as L = D − A, where D = diag{d1, · · · dN} with
di =

∑
j∈Ni aij is an in-degree matrix. Besides, connected

relationships between the virtual leader 0 and followers are
described as matrix B = diag{b1, · · · , bN}, where if the
agent i is directly connected with the virtual leader 0, bi = 1;
otherwise, bi = 0.

2.2 Model-free Adaptive Controller
Considering N discrete-time nonlinear systems, the input

and output of agent i is described as:

yi(k + 1) = fi(yi(k), · · · ,yi(k − ny),

ui(k), · · · , ui(k − nu)) (1)

where ui(k) and yi(k) are the input and the output of the
agent i, respectively. Moreover, nu and ny are unknown
orders of the input and the output, respectively. fi(·) is a
unknown nonlinear function. Furthermore, Eq. (1) satisfies
the following assumptions.

Assumption 1 The value of ∂fi(·)
∂ui(k) exists and is continuous.

Assumption 2 If ∆ui(k) = ui(k) − ui(k − 1) 6= 0 and
∆yi(k + 1) = yi(k + 1) − yi(k), there exists a constant
ru ∈ R+ satisfying that |∆yi(k + 1)| ≤ ru|∆ui(k)|.

Theorem 1 Considering that Eq. (1) satisfies Assumptions
1-2, there is a time-varying variable |φi(k)| ≤ rφ with rφ ∈
R+, called as pseudo-partial-derivative (PPD), satisfying:

∆yi(k + 1) = φi(k)∆ui(k) (2)

Proof: The proof of Theorem 1 can be found in [19]. �

Assumption 3 The PPD φi(k) > rc ∈ R+ (or φi(k) <
−rc) holds for all k. Generally, it assumes that φi(k) > rc.

Remark 1 Assumption 1 is a common assumption for non-
linear systems, Assumption 2 implies that if the input is
bounded, the output is bounded, and Assumption 3 implies
that the sign of the PPD is unchanged, that is, if the gain of
the input increases, the gain of the output does not decrease.

Assumption 4 The communication topology G of USVs is
strongly connected, where the root node is the virtual leader.

Then, considering that Eq. (1) satisfies Assumptions 1-4
and using Theorem 1, an MFAC controller [19] is designed:

ui(k) = ui(k − 1) +
ρφ̂i(k)

λ+ |φ̂i(k)|2
ξi(k) (3)

ξi(k) =
∑
j∈Ni

aij(yj(k)− yi(k)) + bi(yd(k)− yi(k))

(3a)

φ̂i(k) = φ̂i(k − 1) +
η∆ui(k − 1)

µ+ |∆ui(k − 1)|2

× (∆yi(k)− φ̂i(k − 1)∆ui(k − 1) (3b)

φ̂i(k) = φ̂i(1), if |φ̂i(k)| 6 ε or |∆ui(k − 1)| 6 ε

or sign(φ̂i(k)) 6= sign(φi(k)) (3c)

where 0 < ρ < 1, λ >
r2φ
4 , 0 < η < 1, µ > 0, and ε = 10−3.

2.3 USVs Heading Control Subsystem
Here, a heading control subsystem [17] is considered as:{

θi(k + 1) = θi(k) + Tsri(k)
ri(k + 1) = ri(k) + Ts

T (Kδi(k)− ri(k))
(4)

where θi(k), ri(k), and δi(k) are heading angle (output,
yi(k)), angular speed, and rudder angle (input, ui(k)), re-
spectively. Moreover, Ts denotes the sampling time. T and
K are the unknown maneuver coefficients.

It is noted that the heading output θi(k) ranges of USVs
are from 180◦ to −180◦, and θi(k) does not always increase
when the rudder angle δi(k) increases [17], such as the rud-
der angle increases from −20◦ to −10◦, but the correspond-
ing heading continues to decrease, that is, the heading con-
trol system does not satisfy Assumption 3 of MFAC method.
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Moreover, the conversion process from rudder angle to
heading angle will produce an integral link in the heading
control system, which will cause a rapid process of accu-
mulation and expansion [30]. However, the MFAC method
(3) updates PPD through an online learning process with the
input and output data, which is a relatively slow process.

To sum up, the heading control subsystem (4) can not di-
rectly be governed by the MFAC method (3). It needs to
design a novel MFAC method for USVs such that the con-
sensus tracking errors ei(k) satisfy that

lim
k→∞

|ei(k)| = |yd(k)− yi(k)| 6 ℘ (5)

where yi(k) = θi(k) is the heading angle, ℘ ∈ R+ is an ac-
cept constant, and yd(k) is the desired heading angle, which
satisfies the following assumption.

Assumption 5 ([39]) The change rate of the desired head-
ing angle yd(k) is bounded, that is, there exists a constant
rd ∈ R+ satisfying |∆yd(k)| 6 rd.

3 Controller Design and Analysis
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Fig. 1: Schematic diagram of the proposed DET-MFAHC.

Figure 1 shows the schematic diagram of the proposed dy-
namic event-triggered model-free adaptive heading consen-
sus (DET-MFAHC) method, which mainly includes sensor
i, controller i, event-triggered generator i, zero-order holder
(ZOH) i, and actuator i. During event-triggered processes,
the controller i can receive the data from the network, and
the input is updated, that is, ui(ki) = ui(k), where ki de-
notes the event-triggered instant; otherwise, the ZOH i will
send the data of last event-triggered instant to the actuator i.

3.1 Dynamic Event-triggered Mechanism
A dynamic event-triggered function is defined as

Γi(k) =
1

v
|℘i(k)|+ w − |ϑi(k)| (6)

where v andw are positive constants, ϑi(k) = ξi(k)−ξi(ki),
and ℘i(k) is a dynamic variable, which is defined as

℘i(k + 1) = ~℘i(k) + w − |ϑi(k)| (7)

where ~ is a constant, and ℘i(0) = ℘0 ∈ R+.
Then, a dynamic event-triggered condition is designed as

ki+1 = inf{k ∈ Z|k > ki, Γi(k) < 0} (8)

Lemma 1 ([40]) If 0 < ~ + 1
v < 1 and events are not trig-

gered, there exists r℘ ∈ R+ satisfying lim
k→∞

|℘i(k)| 6 r℘.

Proof: The proof process is similar as Theorem 1 in [40]. �

3.2 DET-MFAHC Design and Analysis
According to the dynamic event-triggered mechanism (8),

the MFAC controller (3), and the characteristics of USVs, a
difference-type DET-MFAHC is formulated as

ui(k) = ui(k − 1) +Qi(k)
ρφ̂i(k)

λ+ |φ̂i(k)|2
ξi(k)

−Qi(k)
ρφ̂i(k)

λ+ |φ̂i(k)|2
kr∆yi(k) (9)

ξi(k) =
∑
j∈Ni

aij(yj(k)− yi(k)) + bi(yd(k)− yi(k))

(9a)

φ̂i(k) = φ̂i(k − 1) +Qi(k)
η∆ui(k − 1)

µ+ |∆ui(k − 1)|2

× (∆yi(k)− φ̂i(k − 1)∆ui(k − 1) (9b)

φ̂i(k) = φ̂i(1), if |φ̂i(k)| 6 ε or |∆ui(k − 1)| 6 ε

or sign(φ̂i(k)) 6= sign(φi(k)) (9c)

where 0 < ρ < 1, λ >
r2φ
4 , 0 < η < 1, µ > 0, kr > 0, and

ε = 10−3. Qi(k) is an index of the event-triggered, where if
the event is triggered, Qi(k) = 1; otherwise, Qi(k) = 0.

Theorem 2 Considering that USVs (4) satisfy Assumptions
1-2, the communication topology satisfies Assumption 4, the
desired heading angle satisfies Assumption 5, and apply
the proposed DET-MFAHC (9) with dynamic event-triggered
condition (8) to govern the USVs to perform heading con-
sensus tracking tasks, the consensus tracking errors are
bounded if λ > r2

φ/4 and ρ < 1
maxi=1,...,Ndi+bi

.

Proof: The proof processes include two parts.
Part I (The boundness of the estimate of PPD):
Case I (The event is not triggered): In this case, Qi(k) =

0, Eq. (9b) becomes that φ̂i(k+ 1) = φ̂i(k) = · · · = φ̂i(ki).
Thus, we only need to analyze that the event is triggered.

Case II (The event is triggered): In this case, Qi(k) = 1,
from analysis processes of Theorem 1 in [34], it is obtained
that there exist constants rφ̂ ∈ R

+ and rφ̃ ∈ R+ satisfy that

|φ̂| ≤ rφ̂ and |φ̃| ≤ rφ̃, respectively.
Part 2 (The boundness of the consensus tracking errors):
Case I (The event is not triggered): In this case, Qi(k) =

0, Eq. (9) becomes that ui(k) = ui(k − 1) = · · · = ui(ki).
From Lemma 1, it is obtained that ϕi(k) is bounded when
the event is not triggered. Moreover, since w is a constant,
from Eq. (6) it is obtained that if ξi(k) is large enough,
Γi(k) < 0. It implies that if the consensus tracking errors are
large enough, the system enters event-triggered processes.
Hence, we only need to analyze that the event is triggered.

Case II (The event is triggered): In this case, Qi(k) = 1.
From Eqs. (2) and (5), it is obtained that

ei(k + 1) = yd(k + 1)− yi(k + 1)

= ei(k) + ∆yd(k + 1)−∆yi(k + 1)

= ei(k) + ∆yd(k + 1)
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− ρφi(k)φ̂i(k)

λ+ |φ̂i(k)|2
(ξi(k)−∆yi(k)) (10)

Then, since λ 6
r2φ
4 and Theorem 1, we have φi(k)φ̂i(k)

λ+|φ̂i(k)|2
6

φi(k)φ̂i(k)

2
√
λ|φ̂i(k)|

6 |φi(k)|
2
√
λ
6 1. Thus, Eq. (10) becomes that

e(k + 1) 6 e(k) + ȳd(k + 1)− ρξ(k) + ∆y(k)

6 e(k) + ȳd(k + 1)− ρ(B + L)e(k) + ∆y(k)

6 (I − ρ(B + L))e(k) + ȳd(k + 1) + ∆y(k) (11)

where e(k) = [e1(k), · · · , eN (k)]T , yd(k + 1) = [yd(k +
1), · · · , yd(k + 1)]T , ξ(k) = [ξ1(k), · · · , ξN (k)]T , and
∆y(k) = [∆y1(k), · · · ,∆yN (k)]T . Then, since ρ <

1
maxi=1,...,Ndi+bi

, it yields that ||I − ρ(B + L)|| 6 q1 with
0 < q1 < 1. Moreover, according to Assumption 2, it yields
that there exists constant ry ∈ R+ satisfying ||∆y(k)|| 6 ry .
Hence, Eq. (11) can be rewritten as

||e(k + 1)|| 6 ||I − ρ(B + L)||||e(k)||+ ||ȳd(k + 1)||
+ ||∆y(k)||

6 q1||e(k)||+ Ω

...

6 qk1 ||e(1)||+ 1− qk1
1− q1

Ω (12)

where Ω > rd + ry .
Hence, it is obtained that lim

k→∞
||e(k + 1)|| 6 Ω

1−q1 . �

Remark 2 From Eq. (12), it is found that the consensus
tracking errors are directly affected by the values of the
change rates of yi(k) and yd(k). It is obtained that if
yd(k) → 0, the consensus tracking errors will also approx-
imate 0. Hence, the proposed method is more suitable for
USVs to implement fixed heading angles consensus tasks.

4 Simulation Studies

0

1 2

7 6

3 4

5
G

Fig. 2: Communication topology of USVs.

The USVs are connected as shown in Fig. 2, where only
USVs 1, 2, 3, and 4 can directly receive the data from the
virtual leader 0. The initial conditions are set as ui(0) =

yi(0) = ℘i(0) = 0, φ̂i(0) = φ̂i(1) = 1, and Γi(k) = 0.
Moreover, the parameters are set as ρ = 0.35, µ = 10, λ =
55, η = 0.75, Ts = 1, T = 1.068, K = 0.186, kr = 100,
v = 50, ~ = 0.1, and w = 0.01.

4.1 USVs with Time-invariant Trajectory
The desired trajectory is set as

yd(k) =

 −40◦, 0 < k 6 3s
20◦, 3s < k 6 6s
80◦, k > 6s

(13)

The corresponding results are shown in Figs. 3-5. Fig. 3
shows that the heading angles of USVs have rapidly tracked
the reference heading angles. Fig. 4 shows the head-
ing angles of USVs governed by the existing static event-
triggered method in [34]. Compared with the results shown
in Figs. 3 and 4, it is found that they are similar. How-
ever, from Fig. 5, it is found that the event-triggered rate
of the proposed method is lower than that of the existing
static event-triggered method in [34]. Hence, the simula-
tion results further verified that the proposed DET-MFAHC
effectively guarantees that the USVs implement consensus
tracking tasks and reduce the communication burden.
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Fig. 3: Heading angles of USVs governed by the proposed
DET-MFAHC (Example 1).
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Fig. 4: Heading angles of USVs governed by static event-
triggered method in [34] (Example 1).
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Fig. 5: Event-triggered rates of USVs governed by different
event-triggered methods (Example 1).

4.2 USVs with Time-varying Trajectory
As for USVs tracking time-varying heading angles, the

desired heading angels are set as

yd(k) = 80◦ + 20◦ sin(5k/4) (14)
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The corresponding results are shown in Figs. 6 and 8. Fig.
6 shows that the USVs successfully track the time-varying
heading angles, further verifying the correctness of Theorem
2. Moreover, Figs. 7 and 8 indicate the effectiveness of the
proposed event-triggered method. Fig. 7 shows the dynamic
variable ℘i(k) is time-varying, and Fig. 8 shows that the
average event-triggered interval is about 4018, that is, the
proposed DET-MFAHC saves above 94.3% energies.

0.0 2.5 5.0 7.5 10.0
Time (S)

0

20

40

60

80

100

H
ea

tin
g 

an
gl

e 
(°

)

yd(k)
y1(k)
y2(k)
y3(k)
y4(k)
y5(k)
y6(k)
y7(k)

Fig. 6: Heading angles of USVs (Example 2).
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Fig. 7: Outputs of dynamic variable (Example 2).
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Fig. 8: Event-triggered intervals (Example 2).

5 Conclusions

This paper investigated a resource-efficient consensus
heading tracking control issue for USVs with unknown dy-
namics models. A compact form dynamic linearization
model has been established, which only applies the input
and output data of the controlled system. Then, a dynamic
event-triggered mechanism was designed, further reducing
communication resources. Moreover, a difference-type dy-
namic event-triggered model-free adaptive heading consen-
sus tracking control approach has been designed, which re-
lieves the requirement of the relationship between the gain

of input and output must be monotonically increasing or de-
creasing. Theoretical analysis and simulation results indicate
the correctness and effectiveness of the proposed method. In
our future efforts, further study of the communication delay
issues for USVs is meaningful work.
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Abstract: This study addresses the robust output containment control problem of heterogeneous uncertain multi-agent systems
under Markovian switching topologies. A novel distributed output feedback controller is proposed. Based on the internal model
approach, the main result shows that the output of each follower agent converges to the convex hull formed by the outputs of
the leader agents under the proposed distributed controller. An illustrative example is given to validate the effectiveness of the
proposed controller.

Key Words: containment control, multi-agent systems, Markovian switching topologies, uncertainties

1 Introduction

The field of multi-agent systems (MASs) has witnessed
rapid development in recent years, driven by its broad appli-
cations ranging from networked mobile robots to biological
systems, see, for example, [1–6]. Containment control, as a
fundamental problem in cooperative control of MASs, aims
to steer a group of follower agents to remain within the con-
vex hull formed by a set of leaders. For example, to prevent
a group of vehicles from entering hazardous areas, several
agents were designed as leaders to facilitate vehicles into the
safety zone formed by the leaders [7]. Motivated by practical
applications, the containment control problems with multi-
ple leaders have been studied for MASs with single/double-
integrator, homogeneous MASs, and heterogeneous MASs
[8–13]. In real-world applications, the MASs usually subject
to uncertainties, and robust containment control problems on
MASs with uncertainties can be found in [14, 15].

In practice, the communication network among agents
can change unpredictably due to factors like hardware fail-
ures, signal interference, or dynamic environments, which
result in the system often has time-varying network struc-
tures and the connections between agents subject to stochas-
tic transitions. The Markovian randomly switching topolo-
gies are commonly used to model these changing commu-
nication topologies. In recent years, the containment con-
trol problems of MASs under Markovian switching topolo-
gies (MST) have been investigated and some fundamental
results have been shown in [16–18]. Moreover, it is noted
that the leader-following consensus problem of heteroge-
neous uncertain MASs under MST has been involved in [19].
However, the multiple leaders case has not been studied yet,

This paper is partially supported by Shenzhen Key Labora-
tory of Control Theory and Intelligent Systems under grant No.
ZDSYS20220330161800001 and partially supported by the Tianjin Natu-
ral Science Foundation of China under Grant 22JCQNJC00930.

which motives this study.
This paper studies the robust output containment control

problem of heterogeneous uncertain MASs under MST. A
novel distributed controller is developed under the MST.
Compared with those relevant works [10–21], the main con-
tributions of this paper are summarized as follows.

(i) Different from [10–15], where the containment con-
trol problems of heterogeneous MASs with fixed topologies
or deterministic switching topologies have been studied, this
paper considers the MST, which only requires the connectiv-
ity in the union graph.

(ii) Compared with [13, 16–18], this paper considers the
uncertainties in agent dynamics and the internal model prin-
ciple is utilized to handle those uncertainties.

(iii) In contrast to [19–21], where a single leader was con-
sidered, this study addresses multiple leaders and includes
the leader-following consensus problem of heterogeneous
MASs under MST as a special case.

The structure of this paper is organized as follows: Sec-
tion 2 presents the necessary preliminaries and formulates
the problem. Section 3 details the primary findings and con-
tributions of this study. Section 4 showcases a simulation to
demonstrate the effectiveness of our approach, followed by
Section 5, which offers conclusions drawn from the study.

2 Preliminaries and Problem Formulation

2.1 Preliminaries
Consider an MAS consisting of K followers and L − K

leaders. If the agent has no neighbor, it is called a leader;
otherwise, it is a follower. Denote the follower set as K =
{1, . . . ,K} and the leader set as L = {K + 1, . . . , L},
respectively. Denote (Ω,F ,F,P) as a complete probabil-
ity space where F = {Ft; t ≥ 0} is a filtration. De-
note r(t) as the switch signal, which is determined by a
continuous-time Markov process that takes values within
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S = {1, 2, . . . , s}. Let the generator of the ergodic Markov
process {r(t), t ≥ 0} be Ω = (γkr) ∈ Rs×s, which satisfies
P{σ(t + ε) = r | r(t) = k} = γkrε + o(ε), if k 6= r, other-
wise, it equals to 1 +γkkε+ o(ε), where limε→0 o(ε)/ε = 0.
Here, γkr ≥ 0 is the transition rate from k to r if k 6= r while
γkk = −

∑
r 6=k γkr ≤ 0. The sum of each row in the tran-

sition rate matrix Ω is zero, expressed as Ω1 = 0. Consider
the directed graph Gr(t) =

{
V, Er(t),Ar(t)

}
, which rep-

resents the time-varying topology among K followers and
L − K leaders. Here, V = {1, · · · , L} is the set of ver-
tices. The set of edges Er(t) = {(j, i)|i, j ∈ V} and the
adjacency matrix Ar(t) exhibit time-varying characteristics.
Let Gr(t)F = (K, Er(t)F ,Ar(t)F ) be a digraph among follow-
ers, where EF (r(t)) ⊆ K × K and Ar(t)F = (a

r(t)
ij )K×K

with a
r(t)
ij > 0 ⇔ (j, i) ∈ Er(t)F and a

r(t)
ij = 0, other-

wise. Here, we assume ar(t)ii = 0, ∀i ∈ K. The pinning
gains from the jth leader to each follower i is ar(t)ij , j ∈ L,

where ar(t)ij > 0 if the follower i can receive the signal

from the leader j; otherwise, ar(t)ij = 0. The Laplacian
matrix L(r(t)) corresponding to Gr(t) can be written as:

L(r(t)) =

(
L1(r(t)) L2(r(t))
0L−K×K 0L−K×L−K

)
, where L1(r(t))

and L2(r(t)) are the same as in [18]. For k in S, let
Gun =

⋃s
k=1 Gk = (V,

⋃s
k=1 Ek) be denoted as the union

graph of G(k).

2.2 Problem Statement
The following heterogeneous uncertain MAS is consid-

ered: {
ẋi = (Ai + δiA)xi + (Bi + δiB)ui,
yi = (Ci + δiC)xi, i ∈ K, (1)

where xi ∈ Rni , ui ∈ Rmi , and yi ∈ Rq are the ith
agent’s state, input, output, respectively; Ai ∈ Rni×ni , Bi ∈
Rni×mi , Ci ∈ Rq×ni are known nominal parts, and
δiA, δiB, δiC are unknown perturbations. Define

θ =

 vec (δ1A, · · · , δKA)
vec (δ1B, · · · , δKB)
vec (δ1C, · · · , δKC)

 ∈ Rp (2)

where p =
∑K
i=1 ni (ni + q +mi). The L −K leaders are

described as follows:{
v̇j = Svj ,
yj = Rvj , j ∈ L, (3)

where vj ∈ Rm and yj ∈ Rq are the state and output of the
lth leader, respectively.

This objective of this work is to design a distributed con-
troller for heterogeneous uncertain MAS (1) and (3) under
MST, such that the outputs of each follower can converge,
in mean square sense, to the convex hull formed by those
of the leaders. Subsequently, a definition and some assump-
tions are provided.

Definition 1. Consider the heterogeneous MAS (1) and (3)
under MST Gr(t), the distributed output containment con-
trol problem can be achieved in mean square sense, if there

exist nonnegative constants βij , i ∈ K, j ∈ L satisfying∑
j∈L βij = 1 such that

lim
t→+∞

E
[∥∥∥∥yi −∑

j∈L
βijyj

∥∥∥∥2] = 0, i ∈ K. (4)

Assumption 1. (Ai, Bi) are stabilizable and (Ai, Ci) are
detectable, i ∈ K.

Assumption 2. The leader set L is globally reachable within
Gun.

Assumption 3. For λ ∈ λ (S), one has

rank

(
Ai − λI Bi
Ci 0

)
= ni + q, i ∈ K, (5)

where λ (S) is the spectrum of S.

3 Main Result

Design the following distributed output feedback con-
troller for the ith follower:

ui =Gizi, (6a)

ψ̇i =Sψi − ν
K∑
j=1

a
r(t)
ij (ψi − ψj)− ν

L∑
j=K+1

a
r(t)
ij (ψi − vj) ,

(6b)

żi =F̂1izi + F̂2i(yi −Rψi), (6c)

where zi ∈ Rwi is the internal model state; Gi, F̂1i, F̂2i are
to be designed; ν > 0 is the observer gain; ψi ∈ Rm is the
distributed observer state; and ar(t)ij is driven by an ergodic
Markov process {r(t), t ≥ 0}.

Ergodic Markov process is characterized by a sole sta-
tionary distribution described as α = (α1, . . . , αs). Con-
sequently, it is reasonable to posit that the Markov pro-
cess {r(t), t ≥ 0} initiates from the stationary distribu-
tion, then the adjacency matrix of Gun can be expressed
as
∑s
k=1 αkAk. Here, we define L1 = E[L1(r(t))],

L2 = E[L2(r(t))]. It is observed that the expectation graph
E[Gr(t)] shares an identical structure with that of Gun. The
Laplacian matrix corresponding to E[Gr(t)] can be expressed

as : E[L(r(t))] =

(
L1 L2

0L−K×K 0L−K×L−K

)
.

Lemma 1. [8] If Assumption 2 is satisfied, L1 is a non-
singular M-matrix, every element of matrix −L−11 L2 are
nonnegative and −L−11 L21L−K = 1K .

Lemma 2. Consider the distributed observer (6b) under As-
sumption 2. If S has no eigenvalues with positive real parts,
then limt→+∞ E[‖ψi −

∑
j∈L βijvj‖2] = 0, i ∈ K, expo-

nentially if ν satisfies (18).

Proof. Denote =
(
ψT1 , . . . , ψ

T
K

)T
and v =(

vTK+1, . . . , v
T
L

)T
. Then, the distributed observer (6b)

can be written as

ψ̇ = (IK ⊗ S)ψ − ν(L1(r(t))⊗ Im)ψ

− ν (L2(r(t))⊗ Im) v. (7)
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Denote the state containment error as

φ = ψ +
(
L−11 L2 ⊗ Im

)
v, (8)

where φ =
(
φT1 , . . . , φ

T
N

)T
and φi = ψi −

∑
j∈L βijvj , i ∈

K. Then, (9) can be written as:

φ = ((IK ⊗ S)− ν(L1(r(t))⊗ Im))φ+ Υr(t), (9)

where

Υr(t) = ν(L1(r(t))L−11 L2 ⊗ Im))v − ν(L2(r(t))⊗ Im))v.
(10)

Based on the results in [22, Lemma 2], it can be inferred that
if the expectation graph is a non-singular M-matrix, there
exists a positive definite matrix Q = QT ∈ RK×K such that

QL1 + LT1Q > 0. (11)

Denote

λ̃ = λmin

(
QL1 + LT1Q

)
> 0. (12)

Furthermore, it follows that there exists a P > 0 and a con-
stant ϑ > 0 such that

PS + STP − P + ϑP < 0. (13)

The Lyapunov function is designed as:

V = E
[
φT (Q⊗ P )φ

]
, (14)

Vk = E
[
φT (Q⊗ P )φ1{r(t)=k}

]
, k ∈ S, (15)

where 1{r(t)=k} is the Dirac measure over {r(t) = k}, From
[23, lemma 3.6], we have that

dVk =2E
[
φT (Q⊗ P )dφ1{r(t)=k}

]
+ E

[
φT (Q⊗ P )φd1{r(t)=k}

]
=E
[
φT
(
Q⊗ (PS + STP )

− ν(QL1(r(t)) + LT1 (r(t))Q)⊗ P
)
φ1{r(t)=k}

]
dt

+ 2νE
[
φT
(
QL1(r(t))L−11 L2 ⊗ P

)
v1{r(t)=k}

]
dt

− 2νE
[
φT
(
QL2(r(t))⊗ P

)
v1{r(t)=k}

]
dt

+
s∑
r=1

γrkVrdt. (16)

Noting {r(t), t ≥ 0} initiates from the stationary distribu-
tion α, one has

V̇ =
s∑

k=1

V̇k

=E
[
φT
(
Q⊗

(
PS + STP

)
− ν

(
QL1 + LT1Q

)
⊗ P

)
φ
]

≤E
[
φT
(
Q⊗

(
PS + STP

)
− νλ̃IK ⊗ P

)
φ
]

≤E
[
φT
(
Q⊗

(
PS + STP − νλ̃λ−1max(Q)P

)
φ
]
.

(17)

Let

ν ≥ λ̃−1λmax(Q). (18)

From (13) we have that V̇ ≤ −ϑV . By employing the
comparison lemma, as detailed in [24], we have V ≤
exp(−ϑt)V (0), which implies that limt→∞ E[‖φi‖2] = 0
exponentially. The proof is completed.

Theorem 1. Consider heterogeneous uncertain MAS (1) and
(3) under Assumptions 1-3. LetGi = (G1i, G2i) , i ∈ F such

that
(
Ai +BiG1i BiG2i

F2Ci F1

)
is Hurwitz, where (F1, F2)

is selected as in [20, Lemma 6]. Choose Ui such that Ai +

UiCi is Hurwitz, F̂1i =

(
Ai +BiG1i + UiCi BiG2i

0 F1

)
and F̂2i =

(
−Ui
F2

)
. Then, the robust containment control

problem is solved under the proposed controller (6).

Proof. Denote x = (xT1 , . . . , x
T
K)T , yF = (yT1 , . . . , y

T
K)T ,

yL = (yTK+1, . . . , y
T
L )T , z = (zT1 , . . . , z

T
K)T , A +

δA = blockdiag{A1 + δ1A, . . . , AK + δKA}, B +
δB = blockdiag{B1 + δ1B, . . . , BK + δKB}, A +
δC = blockdiag{C1 + δ1C, . . . , CK + δKC}, G =
blockdiag{G1, . . . , GK}, F̂1 = blockdiag{F̂11, . . . , F̂1K},
and F̂2 = blockdiag{F̂21, . . . , F̂2K}. Let the output con-
tainment error be denote as e = yF +

(
L−11 L2 ⊗ Iq

)
yL,

where e = (eT1 , . . . , e
T
K)T . The following closed-loop sys-

tem can be given by combining (1), (3), and (6):

ẋ = (A+ δA)x+ (B + δB)Gz,

ż = F̂1z + F̂2 (yF − (IK ⊗R)ψ) ,

v̇ = (IL−K ⊗R)v,

ψ̇ = (IK ⊗ S)ψ − ν(L1(r(t))⊗ Im)ψ

− ν (L2(r(t))⊗ Im) v,

yF = (C + δC)x,

φ = ψ +
(
L−11 L2 ⊗ Im

)
v,

e = yF +
(
L−11 L2 ⊗ Iq

)
yL.

(19)

Let x̂ = vec(x, z), one has

˙̂x = Ã∗x̂+ B̃∗φ− B̃∗
(
L−11 L2 ⊗ Im

)
v,

v̇ = (IL−K ⊗R)v,

ψ̇ = (IK ⊗ S)ψ − ν(L1(r(t))⊗ Im)ψ

− ν (L2(r(t))⊗ Im) v,

φ = ψ +
(
L−11 L2 ⊗ Im

)
v,

e = C̃∗x̂+
(
L−11 L2 ⊗R

)
v,

(20)

where

Ã∗ =

(
A+ δA (B + δB)G

F̂2(C + δC) F̂1

)
,

B̃∗ =

(
0

F̂2(IK ⊗R)

)
, C̃∗ =

(
C + δC, 0

)
. (21)

According to the Theorem 2 in [20], it follows that A∗ is
Hurwitz. Therefore, there exists an open neighborhood Θ of
θ = 0 so that Ã∗ is Hurwitz.

From [25, Lemma 1.27], we can derive that there exists a
unique Φ∗ that satisfies:{

Φ∗ (IK ⊗ S) = Ã∗Φ∗ + B̃∗,

(IK ⊗R) = C̃∗Φ∗.
(22)

Define x̃∗ = x̂ + Φ∗
(
L−11 L2 ⊗ Im

)
v, it follows from (20)
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that

˙̃x∗ = Ã∗x̃∗ + B̃∗φ, (23a)

e = C̃∗x̃∗. (23b)

Since limt→∞ E [‖φ‖]2 = 0 exponentially via Lemma
2. It follows from [22, Lemma 1] and (23a) that
limt→+∞ E[‖x̃∗‖2] = 0. Then, (23b) implies that
limt→+∞ E[‖e‖2] = 0. Thus, limt→+∞ E

[∥∥yi −∑
j∈L βijyj

∥∥2] = 0, i ∈ K, which completes the proof.

Consider the case of heterogeneous MAS (1) and (3) with-
out uncertainties, namely θ = 0, we have the following re-
sult.

Corollary 1. Under Assumptions 1-3, appropriate matrices
K1i,K2i, i ∈ K can be designed such that the mean square
output containment can be achieved by the following dis-
tributed controller:

ui =K1ix̂i +K2iψi,

ψ̇i =Sψi − ν
K∑
j=1

a
r(t)
ij (ψi − ψj)− ν

L∑
j=K+1

a
r(t)
ij (ψi − vj) ,

˙̂xi =Aix̂i +Biui +Hi(Cix̂i − yi), (24)

where K1i, Hi are chosen such that Ai+BiK1i, Ai+HiCi
are Hurwitz, K2i = Yi −K1iXi, and (Xi, Yi) are the solu-
tion of the linear matrix equations

AiXi +BiYi = XiS (25)
CiXi = R, (26)

Proof. The result can be obtained from Lemma 2 and [18],
and is thus omitted.

Remark 1. If there is only one leader in system (3), then the
robust output containment problem of system (1) and (3) re-
duces to the case of robust leader-following consensus prob-
lem, which is a special case of robust cooperative output reg-
ulation problem in [19].

Remark 2. The key technical contributions is the develop-
ment of a novel distributed controller (6). This controller
is able to address the challenges associated with hetero-
geneous agent dynamics, Markovian switching topologies,
and uncertainties in agent dynamics. Moreover, the inter-
nal model approach in this paper plays an important role in
handling the uncertainties.

4 Simulation

Consider the agent dynamics adopted in [14]. The hetero-
geneous uncertain MAS are given as follows:

Ai =

 0 1 0
0 0 ci
0 −di −ai

 ,

δiA =

 0 0 0
0 0 0

0.01i 0.02i 0.03i

 ,

Bi =

 0
0
bi

 , δiB =

 0
0

0.02i

 ,

Ci =

 0
0
bi

T

, δiC =

 0
0

0.01i

T

,

S =

(
0 1
−1 0

)
, and R =

(
−1 0

)
,

where {ai, bi, ci, di} are selected as {2, 2, 2, 0}, {5, 2, 1, 0},
{2, 2, 1, 2}, {2, 4, 1, 2}, i = 1, 2, 3, 4, respectively. Choose
the 1-copy model as follows:

F1 =

(
0 1
−1 0

)T
, F2 =

(
0
1

)T
,

The communication topologies in this study are randomly
switched between two digraphs, specifically G1 and G2 as
depicted in Figs. 1(a) and 1(b). Let the switching signal be

(a) G1. (b) G2.

Fig. 1: Communication topologies.

driven by a Markov chain {r(t), t ≥ 0} as shown in Fig. 2

taking values in S = {1, 2}. Let Ω =

(
−1 1
2 −2

)
. The

0 5 10 15 20
0.5

1

1.5

2

2.5

r(
t)

Fig. 2: Markov chain.

matrices G1i, G2i, Ui are chosen the same as those in [14].
Solve the linear matrix inequalities (11), we have

Q =


0.4634 0.2446 0.1034 0.0389
0.2446 1.5455 0.1039 0.2576
0.1034 0.1039 1.5047 0.0264
0.0389 0.2576 0.0264 1.1094

 .
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Then, we have λ̃ = λmin

(
QL1 + LT1Q

)
= 1.6284 and

λmax(Q) = 1.7694, then ν can be chosen as ν = 1.5 ≥
λ̃−1λmax(Q).

The initial conditions are chosen as

ψ1(0) = (8, 4)T , ψ2(0) = (−1, 2)T ,

ψ3(0) = (−5, 3)T , ψ4(0) = (5, 5)T

x1(0) = (8,−4, 4)T , x2(0) = (1,−2, 6)T ,

x3(0) = (7,−1, 6)T , x4(0) = (10,−2, 5)T ,

v5(0) = (5, 1)T , v6(0) = (4, 2)T , v7(0) = (2, 3)T .

Denote the distributed output containment errors as ei =
yi −

∑
j∈L βijyj , i = 1, 2, 3, 4 and let φi = ψi −∑

j∈L βijvj = (φi1, φi2)T . Generate 1500 sample paths to
approximate E[‖φi‖2] and E

[
‖ei‖2

]
as shown in Figs. 3 and

4.

0 5 10 15 20

0

50

100

0 5 10 15 20

0

5

10

Fig. 3: The mean square errors of the distributed observer
(6).

0 5 10 15 20

0

50

100

150

200

Fig. 4: The mean square containment errors.

5 Conclusions

The robust output containment control problem of hetero-
geneous uncertain MASs under MST has been studied. A
distributed output feedback controller has been proposed.
It has been shown that the heterogeneous uncertain MASs
can achieve distributed output containment in mean square

sense. An example is given to illustrate the effectiveness of
the proposed controller. In our later work, formation control
problem under the same communication constraints will be
considered.
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Abstract: This paper focuses on the integrated design of adaptive state estimation and consensus control for multi-agent systems.
To improve the consensus performance of the multi-agent systems in the presence of some agents’ sensor failures, the cooperative
state estimation model is introduced, and fully distributed adaptive output tracking estimators and reduced-order state observers
are designed based on this model. The consensus control protocol, relying on only the self-estimated states, is proposed and
enables the achievement of consensus of the multi-agent system under directed graphs. The effectiveness of the algorithm is
theoretically analyzed and validated through simulation.

Key Words: Multi-agent systems, reduced-order state observer, adaptive output tracking, consensus control

1 Introduction

In recent years, multi-agent systems have gained increas-
ing and in-depth applications in various fields such as in-
dustry, agriculture, and military due to their superior perfor-
mance and powerful functionalities. Simultaneously, scien-
tific research related to multi-agent systems has been steadily
advancing, with the primary challenge lying in achieving co-
operation and coordination among the agents to accomplish
complicated tasks [1–5]. The fundamental problem in multi-
agent systems is the consensus control [6–9].

In order to address the consensus control problem in
multi-agent systems, it is necessary to design appropriate
control protocols. Depending on the variables used, con-
trol protocols can be divided into state feedback-based con-
sensus control and output feedback-based consensus control.
The control protocols require the calculation of appropriate
gain matrices based on the dynamic matrices of the agent,
followed by the utilization of communication topology to
obtain suitable coupling gain. Li [10] introduced an adap-
tive approach which eliminates the dependence on global in-
formation to caculate the constant gain, enabling the control
protocol to be fully distributed. State feedback is a superior
method in solving the consensus issue, however, it is difficult
to directly obtain the state of agents in practical applications,
so it is necessary to estimate the state of agents.

Distributed state estimation algorithms can generally be
divided into distributed Kalman-filter-based [11] and dis-
tributed observer-based [12]. Olfati-Saber [13] solved the
problem of distributed estimation for sensor networks using
distributed Kalman-filter, and Hong [14] used distributed ob-
servers to address the leader-following consensus problem
of the multi-agent system. When performing distributed es-

This work was supported by the National Natural Science Foundation
of China under Grants 62088101, 62273045, U2341213 and 62376029, Bei-
jing Nova Program under Grant 20230484481, and China Postdoctoral Sci-
ence Foundation under Grant 2023M730255.

timation for systems with a large number of nodes, appropri-
ate methods are usually selected from these two types [15–
17]. The advantage of distributed Kalman-filter lies in its
robustness, as it can ensure the boundedness of the estima-
tion error even in the presence of noise in the sensor network.
In comparison, the advantage of distributed observer lies in
its lower computational requirements, as it can consume less
energy to achieve accurate estimation in systems without un-
known disturbances.

Most of existing results consider that the sensor of each
agent only measures its own state. When one or more agents’
sensors fail, the local state estimation error may diverge,
which may lead to the failure of collaborative tasks. To ad-
dress this issue, the concept of cooperative state estimation
model for agents is proposed, which is to use agents’ sensors
to measure the state information of other nodes in the system
(e.g., in a swarm of unmanned aircrafts, a node can measure
the positions of other nodes using its sensor). Adaptive out-
put tracking estimators and distributed reduced-order state
observers are then designed, along with a fully distributed
consensus control protocol based on state estimation. Even
if there are nodes with failed sensors in the multi-agent sys-
tem, agents can still achieve accurate estimation of the cer-
tain nodes’ states, ensuring the completion of collaborative
tasks.

The remaining of the paper is structured as follows: Sec-
tion 2 presents the problem statement. Section 3 gives the
main results. Section 4 describes the simulation results. The
conclusion is presented in section 5.

Notations: σmax (Z) and σmin (Z) denote the maximum
and minimum singular values of Z, respectively. λmin (Z)
represents the minimum eigenvalue of Z. 1n refers to a vec-
tor of dimension n with all elements being 1. In represents
the identity matrix of dimension n × n. ⊗ stands for the
Kronecker product. Rn is a n-dimensional real vector set.
diag (a1, · · · , an) is a diagonal matrix with a1, · · · , an as
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the diagonal element.
2 Problem statement

Consider the multi-agent system consisting of N agents.
The dynamics of ith agent are described by

ẋi = Axi +Bui, i = 1, · · · , N, (1)

where xi ∈ Rn and ui ∈ Rp are, respectively, the state
and the control input of the ith agent, and A ∈ Rn×n and
B ∈ Rn×p are known constant matrices. The sensor mea-
surement output is represented by

yi = Cix, i = 1, · · · , N, (2)

where yi ∈ Rqi is the output of the ith agent, Ci ∈ Rqi×Nn

denotes the output matrix, and x =
[
xT1 , · · · , xTN

]T
repre-

sents the states of all agents in the multi-agent system. Let
y =

[
yT1 , · · · , yTN

]T
and C =

[
CT

1 , · · · , CT
N

]T ∈ Rq×Nn,
where q =

∑N
i=1 qi, then the state equation of the overall

multi-agent system can be expressed as

ẋ = (IN ⊗A)x+ (IN ⊗B)u,

y = Cx,
(3)

where u =
[
uT1 , · · · , uTN

]T
represents the control input of

all agents.
The communication topology between the multi-agent

system can be represented by a directed graph G =
{V, E ,A}, where V = {1, · · · , N} is the node set of the
N agents, E ⊆ V × V is the set of edges, and A =
[aij ] ∈ RN×N describes the adjacency matrix, whose ele-
ments are defined as aij > 0 if ith agent can receive in-
formation from jth agent, otherwise aij = 0 (there is no
self-loop in the paper, i.e., aii = 0). The degree diagonal
matrix is defined as D = diag (d1, · · · , dN ) where di =∑N

j=1 aij , i = 1, · · · , N . The Laplacian matrix is given by
L = [lij ] ∈ RN×N , where lii = di and lij = −aij , i ̸= j.
For two nodes i and j, a directed path is existed between
these two nodes if there exists some nodes k1, · · · , kl such
that (i, k1) , · · · , (kl, j) holds. A communication graph is
directed and strongly connected if a directed path exists be-
tween any two nodes in the graph.

Assumption 1 The communication graph G of the multi-
agent system is a directed strongly connected graph.

The following lemmas are useful.

Lemma 1 ([18]) For the Laplacian matrix L and adjacency
matrix A of a strongly connected directed communica-
tion graph G, denoting Aj = diag (a1j , · · · , aNj) , j =
1, · · · , N , then Lj = L+Aj is a non-singular M matrix.

Lemma 2 ([19]) For a non-singular M matrix M, there ex-
ists a positive definite diagonal matrix H > 0 such that
HM+MTH > 0 holds.

The objective of the paper is to ensure the consensus of
multi-agent systems in the presence of agents’ sensor fail-
ure. The main idea is to estimate the agent’s state based
on the other agents’ measurement output. The following as-
sumption is needed.

Assumption 2 The matrix C is of full row rank, i.e.,
rankC = q, and the matrix pair (IN ⊗A,C) is observable.

3 Main results

The consensus control for the ith agent is proposed as

ui = cK
N∑
j=1

(x̂ii − x̂ij) , (4)

where the coupling gain c > 1/N , the feedback gain matrix
K = −BTP−1, P > 0 is a positive definite matrix solution
of the linear matrix inequality AP + PAT − 2BBT < 0,
x̂ii is the estimation of the ith agent state by itself, and x̂ij
denotes the estimation of the jth agent state by the ith agent,
x̂i =

[
x̂Ti1, · · · , x̂TiN

]T
. Then the dynamics of the overall

system can be expressed as

ẋ = A0x+B0(x̂− 1N ⊗ x),

y = Cx,
(5)

where A0 = IN ⊗ A + cLo ⊗ BK, B0 = cLo ⊗ BK,
Lo = diag

(
L1
o, · · · ,LN

o

)
, Li

o represents the ith row of the
Laplacian matrix Lo associated with the complete graph, and
x̂ =

[
x̂T1 , · · · , x̂TN

]T
.

In order to make each agent estimate the states of all
agents in the system, one can design an output tracking es-
timator and a local state observer. In contrast to [20], this
paper uses the reduced-order state observer to estimate the
state x, thereby reducing the computational burden of state
estimation. The adaptive output tracking estimator and the
reduced-order observer are designed as

˙̂yij = − (φij + ψij) ηij + CjA0x̂i,

żi = Fzi +Gŷi,
(6)

where φ̇ij = ψij = ηTijηij , ηij =
∑N

k=1 aik (ŷij − ŷkj) +
aij (ŷij − yj), ŷij is the estimation of jth agent output by
ith agent, and φij denotes the adaptive gain with positive
initial value, zi is an auxiliary variable of the reduced-order
observer. ηij can be seen as the consensus error of the output
estimation, one can get ηij = 0 when the output estimation
of all agents is achieved. ŷi =

[
ŷTi1, · · · , ŷTiN

]T
, and the

parameter matrices F , G and the state estimation x̂i can be
determined according to Algorithm 1.

Algorithm 1
(1) Choose a constant matrix F ∈ R(Nn−q)×(Nn−q) such that its

eigenvalues are located in the left half-plane and are different
from the eigenvalues of A0.

(2) Select a matrix G ∈ R(Nn−q)×q such that (F,G) is control-
lable.

(3) Solve the matrix equation TA0−FT = GC to obtain a unique
solution T ∈ R(Nn−q)×Nn.

(4) Check if Q =

[
C
T

]
is invertible. If not repeat (1) (2) and (3),

else x̂i =

[
C
T

]−1 [
ŷi
zi

]
, one can get ŷi = Cx̂i, zi = T x̂i.

Let R = Q−1 =
[
R1 R2

]
, where R1 ∈ RNn×q , R2 ∈

RNn×(Nn−q). Then, x̂i = R1ŷi +R2zi.
(5) Determine if the matrix F0 = IN ⊗ F −
(1N ⊗ TB0) (IN ⊗R2) is stable. If not turn to step (1)
to select appropriate F again.
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Remark 1 A full-order state observer and an adaptive out-
put tracking estimator is designed in [20]. Compared with
the observers in [20], the reduced-order state observer pro-
posed in this paper requires less computation. Specificly, in
[20], for the ith agent, the dimension of the adaptive output
tracking estimator is q, and the full-order state observer is
of dimension Nn; while the reduced-order state observer
only needs to estimate the state information of dimension
Nn− q. When the number of sensors in the system is large,
the reduced-order observer approach can significantly save
computational resources.

According to Algorithm 1, it can be seen that zi is the
estimate of Tx, so the estimation error can be expressed as
ỹij = ŷij − yj , z̃i = zi − Tx, x̃i = x̂i − x. Let ỹ =[
ỹT1 , · · · , ỹTN

]T
, z̃ =

[
z̃T1 , · · · , z̃TN

]T
, x̃ =

[
x̃T1 , · · · , x̃TN

]T
,

then the error dynamics can be written as

˙̃yij = − (φij + ψij) ηij + CjA0x̃i − CjB0x̃,

φ̇ij = ψij = ηTijηij ,

˙̃zi = F z̃i +Gỹi − TB0x̃.

(7)

It’s easy to obtain x̃i = R1ỹi + R2z̃i. Therefore, if both ỹi
and z̃i converge to zero, x̃i converges to zero.

Let ỹj =
[
ỹT1j , · · · , ỹTNj

]T
, then it’s clear that ỹT ỹ =∑N

j=1

(
ỹj
)T
ỹj , and the dynamics of ỹj can be expressed as

˙̃y
j
= −

(
Λj ⊗ Iqj

)
ηj + Cj x̃, (8)

where Λj = Φj + Ψj , Φj = diag (φ1j , · · · , φNj),
Ψj = diag (ψ1j , · · · , ψNj), ηj =

[
ηT1j , · · · , ηTNj

]T
, Cj =

IN ⊗ CjA0 − 1N ⊗ CjB0, and it is easy to obtain ηj =(
Lj ⊗ Iqj

)
ỹj , x̃ = (IN ⊗R1) ỹ+(IN ⊗R2) z̃. Therefore,

the error dynamics can be written as

η̇j = −
(
LjΛj ⊗ Iqj

)
ηj +

(
Lj ⊗ Iqj

)
Cj (IN ⊗R1) ỹ

+
(
Lj ⊗ Iqj

)
Cj (IN ⊗R2) z̃,

φ̇ij = ψij = ηTijηij ,

˙̃z = F0z̃ +G0ỹ,
(9)

where G0 = IN ⊗G− (1N ⊗ TB0) (IN ⊗R1).

Theorem 1 Suppose Assumption 1 and Assumption 2 hold.
The designed adaptive output tracking estimator and
reduced-order state observer (6) can respectively estimate
all outputs and states, and the multi-agent system can
achieve consensus under control protocol (4).

Proof Consider the Lyapunov function candidate

V = µz̃TUz̃ +
N∑
j=1

Vj , (10)

where U ∈ RN(Nn−q)×N(Nn−q) is a positive def-
inite matrix solution to the linear matrix inequality
−W = UF0 + FT

0 U < 0, Vj is selected as Vj =∑N
j=1

hij

2

[
(2φij + ψij)ψij +

(
φij − vj

)2]
, hij is the di-

agonal element of the positive definite diagonal matrix Hj

satisfying HjLj +
(
Lj

)THj > 0, and µ and vj are positive
constants to be determined later.

The time derivative of V along the trajectory of (9) is
given by

V̇ = −µz̃TWz̃ + 2µz̃TUG0ỹ +
N∑
j=1

V̇j . (11)

According to Young’s inequality, we have

2µz̃TUG0ỹ

≤ µ

4
z̃TWz̃ +

4µσ2
max (UG0)

λmin (W )

N∑
j=1

(
ỹj
)T
ỹj

≤ µ

4
z̃TWz̃ +

N∑
j=1

4µσ2
max (UG0)

λmin (W )σ2
min (Lj)

(
ηj
)T
ηj .

(12)

The time derivative of Vj is

V̇j =
N∑
i=1

hij

[
(φij + ψij) ψ̇ij +

(
φij + ψij − vj

)
φ̇ij

]
= −

(
ηj
)T [

Λj
(
HjLj +

(
Lj

)THj
)
Λj ⊗ Iqj

]
ηj

+ 2
(
ηj
)T (

ΛjHjLj ⊗ Iqj
)
Cj (IN ⊗R1) ỹ

+ 2
(
ηj
)T (

ΛjHjLj ⊗ Iqj
)
Cj (IN ⊗R2) z̃

+
(
ηj
)T (

ΛjHj ⊗ Iqj
)
ηj − vj

(
ηj
)T (

Hj ⊗ Iqj
)
ηj .

(13)
It can be easily obtained that

−
(
ηj
)T [

Λj
(
HjLj +

(
Lj

)THj
)
Λj ⊗ Iqj

]
ηj

≤ −λ0j
(
ηj
)T [(

Λj
)2 ⊗ Iqj

]
ηj ,

(14)

and

−vj
(
ηj
)T (

Hj ⊗ Iqj
)
ηj ≤ −vjλmin

(
Hj

) (
ηj
)T
ηj ,

(15)
where λ0j denotes the minimum eigenvalue of the positive
definite matrix HjLj +

(
Lj

)THj . According to Young’s
inequality, one can get

2
(
ηj
)T [

ΛjLjHj ⊗ Iqj
]
Cj (IN ⊗R1) ỹ

≤ λ0j
4

(
ηj
)T [(

Λj
)2 ⊗ Iqj

]
ηj

+
4σ2

max

[(
HjLj ⊗ Iqj

)
Cj

]
σ2
max (IN ⊗R1)

λ0j
ỹT ỹ,

(16)

and

2
(
ηj
)T [

ΛjHjLj ⊗ Iqj
]
Cj (IN ⊗R2) z̃

≤ λ0j
4

(
ηj
)T [(

Λj
)2 ⊗ Iqj

]
ηj

+
4σ2

max

[(
HjLj ⊗ Iqj

)
Cj

]
σ2
max (IN ⊗R2)

λ0jλmin (W )
z̃TWz̃.

(17)
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Let σR = max {σmax (IN ⊗R1) , σmax (IN ⊗R2)}. Sub-
stituting (14)-(17) into (13) gives

V̇j ≤ −λ0j
2

(
ηj
)T [(

Λj
)2 ⊗ Iqj

]
ηj

− vjλmin

(
Hj

) (
ηj
)T
ηj

+
4σ2

max

[(
HjLj ⊗ Iqj

)
Cj

]
σ2
R

λ0j
ỹT ỹ

+
4σ2

max

[(
HjLj ⊗ Iqj

)
Cj

]
σ2
R

λ0jλmin (W )
z̃TWz̃

+
(
ηj
)T [

ΛjHj ⊗ Iqj
]
ηj .

(18)

Select µ as µ =
∑N

j=1

16σ2
max[(H

jLj⊗Iqj )C
j]σ2

R

λ0jλmin(W ) , let κ =

max
j=1,··· ,N

(
4σ2

max[(H
jLj⊗Iqj )C

j]σ2
R

λ0j

)
, then one can get

N∑
j=1

4σ2
max

[(
HjLj ⊗ Iqj

)
Cj

]
σ2
R

λ0j
ỹT ỹ

≤ NκỹT ỹ

≤
N∑
j=1

Nκ
1

σ2
min (Lj)

(
ηj
)T
ηj .

(19)

Choose vj = 4µσ2
max(UG0)

λmin(Hj)λmin(W )σ2
min(Lj)

+ Nκ
λmin(Hj)σ2

min(Lj)
+

8λmax(Hj)
λmin(Hj)λ0j

. Note that

− λ0j
2

(
ηj
)T [(

Λj
)2 ⊗ Iqj

]
ηj −

8λ2max

(
Hj

)
λ0j

(
ηj
)T
ηj

≤ −2
(
ηj
)T [

ΛjHj ⊗ Iqj
]
ηj .

(20)
Substituting (12), (18), (19), and (20) into (10) yields

V̇ ≤ −µ
2
z̃TWz̃ −

N∑
j=1

(
ηj
)T [

ΛjHj ⊗ Iqj
]
ηj

≤ −µ
2
z̃TWz̃ −

N∑
j=1

(
ηj
)T [

Φj (0)Hj ⊗ Iqj
]
ηj

≤ 0.

(21)

One can know that V ≥ 0 by (10), and one will ob-
tain V̇ ≤ 0 from (21). Therefore, V (t) is bounded,
and according to the definition of V (t), one know
that z̃, ηj and φij is also bounded. If V̇ ≡ 0,
z̃ ≡ 0 and ηj ≡ 0 can be obtained. One can get∫∞
0

[
µ
2 z̃

TWz̃ +
∑N

j=1

(
ηj
)T [

Φj (0)Hj ⊗ Iqj
]
ηj
]
dt ≤

V (0) − V (∞) from (21), then one have limt→∞z̃ (t) = 0,
limt→∞η

j (t) = 0, limt→∞ỹ (t) = 0 according to LaSalle’s
invariance principle [21]. Since x̃ = (IN ⊗ P21) ỹ +
(IN ⊗ P22) z̃, one can obtain limt→∞x̃ (t) = 0. This com-
pletes the proof.

As the designed state observer achieving accurate esti-
mation, one have limt→∞x̂ii = xi and limt→∞x̂ij =
xj , thus the control input of the ith agent will be ui =

cK
∑N

j=1 aijo (xi − xj) when t → ∞. According to [22],
the multi-agent system in (1) will achieve consensus.

Remark 2 When the sensor of the ith agent in the system
completely fails, the ith agent output is zero, i.e., yi = 0qi ,
which can be viewed as the output matrix Ci changing to
zero. According to the system model (3) designed in this
paper, the overall output matrix of the system is then writ-
ten as Cfail =

[
CT

1 , · · · , CT
i−1, 0

Nn×qi , CT
i+1, · · · , CT

N

]T
.

Cfail will not satisfy the full row rank condition, thus
let C ′ =

[
CT

1 , · · · , CT
i−1, C

T
i+1, · · · , CT

N

]T
, and y′ =[

yT1 , · · · , yTi−1, y
T
i+1, · · · , yTN

]T
. If Assumption 2 is satis-

fied, then the Algorithm 1 can be used to redesign F ′ ∈
R(Nn−q+qi)×(Nn−q+qi) and G′ ∈ R(Nn−q+qi)×(q−qi), and
according to the output tracking estimator and reduced-
order observer designed in (6), other nodes can estimate the
state of the failed agent, ensuring the progress of collabora-
tive tasks.

4 Simulation

In this section, we illustrate the effectiveness of the theo-
retical result by numerical simulations. The multi-agent sys-
tem consists of five agents described by (1) and (2), with

A =

[
-1.5 -8
0.1 0.6

]
, B =

[
1
1

]
,

and

C =



2 -1 3 -5 1 5 -6 0 0 -1
2 -2 3 5 0 4 -2 0 3 -2
0 1 2 -3 1 2 -6 -3 2 1
1 -1 6 0 -2 3 8 2 2 -2
0 2 -1 1 3 2 -1 1 0 -3
3 0 1 -2 0 -2 1 4 0 -1

.

The communication topology is shown in Fig. 1. Ac-
cording to (4), solve the linear matrix inequality yields

P =

[
35.5939 −3.2511
−3.2511 1.2582

]
, thus the gain matrix K =[

−0.1318 −1.1353
]

for the consensus control protocol.
The coupling gain is set to c = 1. The initial value
of the adaptive gain φij is chosen as φij (0) = 5. By
following Algorithm 1, F and G are selected as F =
diag (−10,−18,−27,−30) and

G =


0 1 0 1 2 -1
1 3 2 0 -2 0
0 1 0 2 0 1
1 0 -1 2 -1 1

 .
The output tracking error and the observation error of the

state are shown in Fig. 2(a) and Fig. 2(b), respectively, and
it can be seen that all the errors converge to zero, indicating
that each agent is able to estimate all outputs and states of the
system. The states of the system are shown in Fig. 3(a) and
Fig. 3(b), where the solid lines represent the true states of the
system, and the dashed lines are the estimated states by each
agent. From these two figures, it can be seen that the system
achieves consensus control. The adaptive gain is shown in
Fig. 4, and it means that the adaptive gain is bounded.

Assuming that the sensor of the first agent fails, we can
verify that Assumption 2 still holds. Selecting a consensus
coupling gain of c′ = 1.5 and an initial value φ

′

ij (0) = 60
for the adaptive gain, and according to Algorithm 1, F ′ and
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Fig. 1: The strongly connected communication graph.
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Fig. 2: The output tracking error and state estimation error.

0 5 10 15 20 25 30

-200

-100

0

100

200

0 5 10 15 20 25 30

-20

-10

0

10

20

30

40

Fig. 3: Trajectories of the state x and the local state estima-
tion x̂ under (4).
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Fig. 4: Trajectories of the adaptive gain φij .
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Fig. 5: Trajectories of the state x and the local state estima-
tion x̂ with sensor failure.

G′ are selected as F ′ = diag (−40,−10,−18,−27,−30)
and

G′ = 10 ∗


1 2 0 1 3
0 1 0 1 2
1 3 2 0 -2
0 1 0 2 0
1 0 -1 2 -1

 .

The states of the system are shown in Fig. 5(a) and Fig. 5(b).
It can be seen that each agent is still able to estimate the
states of other agents, and the consensus task of the system
can still be achieved. The adaptive gain is shown in Fig. 6,
indicating that the adaptive gain remains bounded.
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Fig. 6: Trajectories of the adaptive gain φij with sensor fail-
ure.
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5 conclusion

This paper investigates the integrated design of adaptive
reduced-order state estimation and consensus control for the
multi-agent system, ensuring that when there is sensor fail-
ure in the system, it will not lead to excessively large state
estimation errors and failure of collaborative tasks. In the
design of the output tracking estimator, adaptive gains are
introduced to avoid reliance on global information, making
the proposed algorithm fully distributed. The use of reduced-
order state observers for estimating all the states of the sys-
tem significantly reduces the computational load for state es-
timation. A state estimation-based consensus control proto-
col is proposed for the multi-agent system. Future research
will focus on the integrated design of distributed state es-
timation and consensus control for systems with unknown
disturbances.
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Abstract: In the context of the in-orbit safety and defense of the future spacecrafts, this paper makes the research of the orbital 
pursuit-evasion dilemma encountered by spacecraft, utilizing the evolutionary task assignment and the differential game theory 
as its theoretical foundation, and consequently develops a hierarchical game theory model for the pursuit-evasion problem of the 
spacecraft cluster. The first layer of the hierarchical structure is the task assignment based on intelligent optimization algorithms, 
the fuel consumption and time cost are taken into account. The second layer of the hierarchical structure is the planning of the 
pursuit-evasion game based on the differential game theory. In order to solve the saddle point of the differential game issue in 
spacecraft pursuit-evasion, the solution of the saddle point is transformed to the resolution of a four-dimensional non-linear 
equation set with a combined solution strategy integrating the evolutionary algorithm and the newton iteration method. Finally, 
the hierarchical structure of the pursuit-evasion game for the spacecraft cluster is verified by the analytical assessment of 
simulation instance that three trackers chasing three escapers. 
Key Words: Orbital Pursuit-Evasion, Evolutionary Task Assignment, Differential Game, Spacecraft Cluster 

1 Introduction 
In the development of modern aerospace technology, the 

pursuit-evasion game of the spacecraft cluster become an 
important research spot. This game optimizes the cluster 
layout of spacecraft according to the principles of dynamic 
games, aiming to achieve autonomous, cooperative, and 
effective operations in complex environments. A spacecraft 
cluster can form a powerful aerospace capability and provide 
more efficient executing capability of the space mission 
through coordinated planning and control. 

In recent years, the orbital pursuit-evasion differential 
game has made significant progress in both theoretical 
research and experimental simulation. Game theory 
provides a natural and robust framework for modeling 
interactions among players[1, 2]. Therefore, the significant 
efforts have been dedicated to study the orbital pursuit-
evasion differential games[3, 4]. Typically, the pursuit-
evasion game is formulated as a two-player differential 
game, in which an evader and a pursuer strive to minimize 
their individual payoffs[5]. Some researchers have also 
ventured into the study of multiple-player pursuit-evasion 
games[6, 7] which involve multiple payoff functions. 

The multi-to-multi spacecraft cluster orbital game process 
can be broken down into the task assignment and the game 
path planning. 

In terms of task allocation, to address the task allocation 
problem of intercepting multiple targets with multiple 
satellites for minimizing fuel consumption and time cost, a 
genetic algorithm-based allocation method is proposed for 
resolution[8]. Focusing on in-orbit target assignment, an in-

*This work is supported by the Natural Science Foundation of China
under Grant 62233005 and U20B2056, and the Natural Science Foundation 
of Shanghai under Grant 22ZR1427800. 

orbit multi-objective allocation method based on particle 
swarm optimization is presented[9]. The determining 
variables and constraints considered in these methods are 
relatively simple. Considering that the scale of spacecraft 
clusters in space game scenarios is much larger than that of 
multiple stars, the constraints become more complex[10, 11]. 

In terms of game path planning, the renowned aerospace 
trajectory optimization scholar Conway proposes to use a 
type of semi-direct method to solve the saddle point of the 
differential countermeasures in the three-dimensional orbital 
pursuit-evasion of spacecraft cluster[12]. Hafer et al[13] use 
the sensitivity method to analyze and solve the spacecraft 
orbit pursuit-evasion problem, which can significantly 
improve the efficiency of saddle point solution and barrier 
construction. Stupok et al[14] solves the open-loop saddle 
point of the spacecraft pursuit-evasion differential 
countermeasures based on the linear relative motion 
equation, then the closed-loop optimal control law using the 
Kriging interpolation method are obtained. For the nonlinear 
pursuit-evasion differential countermeasures problem, Jagat 
et al[15] transform the saddle point solution problem into 
solving a set of algebraic Riccati equations through the 
State-Dependent Riccati Equation(SDRE)method for 
obtaining the nonlinear optimal control law of the two 
spacecraft in pursuit-evasion. Domestic scholars have also 
carried out relevant research in this field, Sun et al[16] also 
propose a semi-direct control parametric method to solve the 
saddle point of countermeasures and the results are more 
beneficial compared with the semi-direct method developed 
by Conway et al. 
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In order to solve the multi-to-multi spacecraft game 
problem, task assignment and game path planning must be 
organically integrated. Therefore, this paper proposes a 
hierarchical theory structure for the pursuit-evasion game of 
the spacecraft cluster by summarizing corresponding 
research on the spacecraft cluster game. The structure 
establishes a simple and effective multi-to-multi spacecraft 
game mechanism and realize the game task assignment and 
game trajectory planning for spacecraft cluster game.  

This paper is organized as follows. In Section 2, the task 
assignment and game planning model of the spacecraft 
cluster are discussed, followed by a description of the 
relative motion dynamics of spacecraft. The suggested 
algorithm’s simulation results are shown in Section 3 along 
with an analysis of the hierarchical structure impact on the 
experimental outcomes. In Section 4, we make summary and 
conclusion. 

2 Hierarchical Structure Game Model of 
Spacecraft Cluster 

2.1 Coordinate System and Relative motion dynamics 
model 

In the context of the pursuit-evasion game of the 
spacecraft cluster, the spacecraft are usually in close 
proximity to each other by necessitating the use of relative 
states to depict their dynamic motion. As the control 
principle is applied to both spacecrafts during the pursuit-
evasion sequence, their orbital paths undergo real-time 
alterations. In light of this, an optimal approach involves 
selecting a proximate, circular reference orbit and a notional 
reference spacecraft. The status of the two spacecraft can be 
effectively described in terms of their states relative to this 
reference spacecraft. When the target is detected by the 
spacecraft, the spacecraft at this moment is denoted as the 
reference spacecraft O1, and the local vertical local 
horizontal (LVLH) frame is established at O1 shown in Fig. 
1. The axis O1x is defined in the direction from the geocenter 
to O1, the axis O1z is defined in the direction of the orbital
angular momentum, and then the axis O1y can be
determined by the right-hand rule.

Spacecraft
TargetZ

X

Y

Reference 
Spacecraft

x
y

z

O1

O

Fig. 1: The local vertical local horizontal (LVLH) frame 
In the LVLH frame, when the distance between the 

spacecraft and the reference spacecraft is far less than the 
reference orbit radius, the dynamic models of the spacecraft 
and hostile threat relative to the reference spacecraft can be 
simplified as the following Clohessy-Wiltshire equations. 
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Where ω is orbital angular rate of the reference spacecraft. 
ix , iy , iz represent the coordinates of the spacecraft i  in 

the O XYZ−  coordinate respectively. i
xu , i

yu , i
zu is the

projection of the control acceleration on each axis in the 
O XYZ−  coordinate respectively. 

2.2 the task allocation of  spacecraft cluster orbital 
game 

The purpose of task allocation in the orbital game of 
spacecraft clusters is to decompose the multi-to-multi game 
tasks within the cluster into pairwise interactions between 
two spacecraft. This process aims to transform the solution 
of the cluster game strategy into the resolution of one-to-one 
game strategies. The task allocation procedure takes into 
account the initial speed and position of the spacecraft 
cluster, considering the fuel consumption in the spacecraft 
game and the game time. In this context, the calculation is 
simplified using velocity increments, and the outcome is the 
allocation of targets for the spacecraft cluster in the orbital 
game. 

In the pursuit-evasion game of the spacecraft cluster, 
determining the optimal velocity increment for a single 
spacecraft to approach a specific space target simplifies its 
mission to the Lambert problem. The Lambert problem 
involves obtaining the velocity increment based on the 
spacecraft's initial position, final position, and transfer time. 
The model for task allocation can be summarized as follows: 

 1 2min bestt
ij bestk gF k gt   (2) 

Where bestt
ijF  represents the best fuel consumption of the 

spacecraft game, bestt  represents the best time of the 
spacecraft game , 1k  and 2k  represent the conversion 
coefficient in the equation. 

The task allocation in the spacecraft cluster orbital game 
can be effectively addressed through intelligent optimization 
algorithms, with commonly employed methods including 
genetic algorithms, ant colony optimization, particle swarm 
optimization, among others. In consideration of the inherent 
simplicity and expeditious solution capabilities of the 
particle swarm algorithm, this study leverages the discrete 
particle swarm optimization (DPSO) approach to resolve the 
task allocation challenges within the spacecraft cluster 
orbital game. 

Given the discrete nature of variables associated with the 
task allocation problem in the spacecraft cluster game, the 
DPSO algorithm is employed. To facilitate its application to 
problem-solving, a discretization process is applied to both 
the updated velocity and the particle's position. The discrete 
particle swarm task planning algorithm embraces a discrete 
strategy, treating velocity and position as integer values. 
Consequently, a sequence of integer values is utilized to 
represent the position of each particle in the optimization 
process. 

Consider a D-dimensional space as the particle search 
space, where each assignment corresponds to treating the 
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spacecraft cluster game as a particle. The entire ensemble 
comprises a particle swarm, consisting of a total of m  
particles. In each iteration, every particle updates its position 
and velocity, with the updated velocity denoted as v  and 
position as x . These updates are calculated using the 
formulas (3) and (4): 

( ) ( )1
1 2- -k k k k k k

id id id id gd idv v c p x c P xω ξ η+ = + +         (3) 

1 1
max, 1, 2, , , , MaxItk k k q

id id id idx x v d D v V q+ += + = ≤ ≤ (4) 

Where i  represents the iteration number, ω is the inertial 
weight coefficient, ξ and η  are random values following 
the uniform distribution ( )0,1U , the learning factors 1 2c c,  
are used to adjust the weight influencing the direction of 
particle updates, MaxIt  is the maximum number of 
iterations, q is the iteration count. 

2.3 The Planning of Spacecraft Orbit Pursuit-Evasion 
Based on Differential Game Model 

During the orbit Chase-Evasion game of two spacecraft, 
the distance between the two spacecraft is relatively close 
and can be measured mutually. At this moment, one 
spacecraft attempts to capture the other by control, referred 
to as the Pursuing spacecraft (Pursuer, P); while the other 
spacecraft aims to avoid being captured or attacked through 
control, referred to as the Evading spacecraft (Evader, E). 
The Pursuit-Evasion game between the two spacecraft can 
be considered as an optimal control problem for both parties, 
but the controlling parties have conflicting objectives, 
possessing more adversarial and conflicting characteristics 
compared to the classical unilateral optimal control problem. 
Hence, the two-person zero-sum differential game could be 
used to model this problem, with the assistance of 
differential game theory for analysis and solution. 

As the two spacecraft participating in the Pursuit-Evasion 
game are in close proximity, a reference orbit could be 
chosen, whereby the state of the Pursuing spacecraft and the 
Evading spacecraft is represented relative to this reference 
orbit, as shown in Fig. 2. 
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Fig. 2: Tracking the relative state of pursuit spacecraft and escape 

spacecraft  
The relative states of the tracking spacecraft and the 

escape spacecraft are T( , , , , , )P P P P P P Px y z x y z   X and 
T( , , , , , )E E E E E E Ex y z x y z   X  respectively, both satisfying 

the CW equation given by formula (4). 
Assuming the state variable of the spacecraft's differential 

chase tactic as T( , , , , , )E P x y z x y z     X X X , then from 
formula (1) we can get 
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           (5) 

If two spacecraft are in pursuit-evasion game, both 
equipped with substantial fuels. The pursuing spacecraft 
attempts to intercept or capture the fleeing spacecraft as soon 
as possible by controlling, while the fleeing spacecraft hopes 
to delay being pursued by controlling as much as possible. 
This problem can be regarded as a survival differential game 
problem. 

For such spacecraft pursuit-evasion game problems, this 
paper gives the necessary conditions and solving methods 
for the saddle point based on the optimality conditions of the 
differential game. It is assumed in this paper that the thrust 
acceleration of the pursuing spacecraft is greater than that of 
the fleeing spacecraft, that is, P ET T . If the fuel is not 
considered, it can be guaranteed that the pursuing spacecraft 
can capture the fleeing spacecraft in a finite time, thus the 
saddle point of this spacecraft pursuit-evasion survival 
differential game exists. According to the optimality 
conditions of the differential game, the necessary conditions 
for the saddle point of this strategy are derived, and the 
Hamilton function and terminal constraint function are 
constructed as follows: 
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T
1 2 3Φ ( ) ( ) ( )f f f f ft t x t y t z tν φ              (7) 

where T

1 2 3 4 5 6
[ , , , , , ]λ λ λ λ λ λ=λ  is the co-state variable, 

[ ]T
1 2 3, ,= v v vv  is the Lagrange multiplier corresponding to 

the terminal constraint, PT  and ET  are the magnitude of the 
thrust acceleration of the two spacecraft, and α  and β  are 
the directional angles of the thrust acceleration. 

The differential game co-state equation is 
TH A

X
λ λ∂

= − = −
∂

                              (8) 

The terminal condition for the co-state variables is 
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                 (9) 

The transversality condition of differential games is 

( ) Φ( , ( )) 1f f fH t t t
t

∂
= − = −

∂
x                  (10) 

From the aforementioned necessary conditions for the 
saddle point, it is evident that equations (5), (8) and 
equations (9), (10) collectively formulate a seven-
dimensional two-point boundary value problem. The saddle 
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point of the game can be obtained by solving this two-point 
boundary value problem. 

The above seven dimensional nonlinear equation system 
has four independent variables, and its solving process can 
ultimately be transformed into a four-dimensional nonlinear 
equation system. For the solution of this four-dimensional 
nonlinear equation system, due to the slow direct solving 
speed of traditional algorithms and the difficulty in obtaining 
feasible solutions, this paper uses evolutionary algorithms to 
obtain the initial solution of the optimal strategy. Due to the 
limitations of optimization algorithms, the initial solution is 
often difficult to satisfy the constraints of differential games. 
Therefore, the optimized initial solution is used as the initial 
value, and Newton's iteration is used to calculate the exact 
saddle point solution that satisfies the constraints. Due to the 
use of optimization algorithms to solve the initial values first, 
the computational pressure is reduced. In the Newton 
iterative solution process, smaller integration steps and 
higher iteration accuracy parameters can be used, greatly 
improving the convergence speed and solution accuracy. 

3 Simulation Cases 
For typical pursuit-evasion scenarios of spacecraft 

clusters, the reference orbit is selected as the 
geosynchronous orbit, with 6 pursuing spacecraft and 3 
escaping spacecraft. It is assumed that in the pursuit and 
escape process, only one pursuing spacecraft is needed to 
achieve the pursuit and escape objectives for each escaping 
spacecraft. 

The reference orbital parameters and the position 
parameters of the pursuing spacecraft and the escaping 
spacecraft in the relative coordinate system are set as follows: 

Table 1: Reference orbit parameters 

Semim-
ajor 
Axis 
(km) 

Eccentr
-icity

Inclinat
-ion/(°)

Argum-
ent of 

Perigee
/(°) 

RANN 
/(°) 

Ture 
anomal

-y
/(°)

42164 0 0 0 0 120 

Table 2: Reference orbit parameters of evader 

ID 
Position/(km) Velocity/(km/s) 

X Y Z X Y Z 
1 -34.64 64 20 0 0 0 

2 40 0 0 0 0 0 

3 34.64 64 20 0 0 0 

Table 3: Reference orbit parameters of pursuer 

ID 
Position(km) Velocity(km/s) 

X Y Z X Y Z 
1 -51.96 30 5 0 0 0 

2 -30 51.96 10 0 0 0 

3 60 0 10 0 0 0 

4 55 5 5 0 0 0 

5 30 51.6 10 0 0 0 

6 51.96 30 5 0 0 0 

Based on the given initial conditions and task allocation 
constraints, an urgent solution to the task allocation problem 

in spacecraft cluster space games is sought. Multiple 
simulation experiments indicate that the optimal task 
allocation results is 1-3-6, meaning that pursuer 1 is for the 
evader 1, pursuer 3 is for the evader 2 and pursuer6 is for the 
evader 3. Fig. 3 shows the convergence curve of the fitness 
value (total fuel consumption) of the discrete particle swarm 
optimization algorithm for task allocation. 
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Fig. 3: The total Fuel consumption 
Fig. 4, Fig. 5, and Fig. 6 are three sets of three-

dimensional trajectory diagrams and relative distance 
change curves for spacecraft orbital pursuit-evasion. Form 
the figures， the adversarial games pursued and evaded by 
the two spacecraft exhibit a heightened level of intensity 
within the orbital plane, whereas outside this plane, the 
games appear to be comparatively moderated. The game 
results show that the relative distance between the chasing 
spacecraft and the escaping spacecraft is less than 20 meters. 
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Figure 4: Pursuer 1-Evader 1 Game Results 

441  



-10
600

-5

-0.1 50

0z/k
m

5

-0.2

x/kmy/km

40

10

-0.3 30-0.4
20-0.5

Pursuer
Evader

data1
data2

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5 104

Fig. 5: Pursuer 3-Evader 2 Game Results 
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Fig. 6: Pursuer 6-Evader 3 Game Results 

4 Conclusions 
This paper establishes an orbital pursuit-evasion model 

based on hierarchical theory structure for multi-to-multi 

spacecraft game for expanding the analysis and solution 
methods for spacecraft orbit pursuit-evasion problems. The 
analysis of the characteristics of spacecraft orbital pursuit 
and evasion can provide a reference for the on-orbit safe 
operation and task execution of spacecraft. The spacecraft 
cluster game mission is decomposed into task assignment 
and a pursuit-evasion game between two spacecraft. The 
finally simulation verifies the feasibility of the proposed 
theory framework. The proposed structure can support the 
on-orbit cooperative pursuit-evasion game research of the 
spacecraft cluster based on multi-role differential game 
theory. 
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Abstract: In this paper, a novel integrated framework for distributed state estimation and consensus control is constructed for
a class of Lipschitz nonlinear multi-agent systems under strongly connected graphs. The distributed output tracking algorithm
and local observers are introduced to estimate the overall output and global state, respectively. Furthermore, a consensus control
protocol is designed based on each agent’s own entire state estimation to ensure that all agents can realize consensus. The
exponential stability of the estimation error is obtained by utilizing the Lyapunov stability theory. Moreover, the proposed
algorithm is still effective even in the presence of measurement output failures. Finally, numerical simulation is worked out to
testify the feasibility of the proposed method.

Key Words: Multi-agent systems, Lipschitz nonlinearity, consensus control, distributed entire state estimation, distributed output
tracking

1 Introduction

Inspired by the collaboration of biological populations in
nature, scholars have delved deeper into the study of multi-
agent systems (MASs) over the past few decades. Compared
to a single complex agent, multi-agent systems can improve
efficiency, reduce costs, and perform complex tasks that in-
dividual agent finds challenging, and have been widely re-
searched in aerospace [1], smart grids [2], traffic manage-
ment [3], etc. It can be foreseen that with technological ad-
vancement and social development, multi-agent systems will
have a wider range of application prospects in the future.

Cooperative control is the main research content of multi-
agent systems, mainly including consensus control [4], for-
mation control [5], containment control [6], distributed opti-
mization and decision-making [7]. Consensus control is the
fundamental problem of cooperative control in multi-agent
systems [8]. The famous Vicsek model proposed in refer-
ence [9] determines the motion direction of agents in a clus-
ter based on the average velocity direction of their neighbors,
laying the foundation for the study of consensus problems
by other researchers. From the perspective of network com-
munication, research on consensus control mainly considers
fixed and switching topologies. For fixed topologies, the re-
search is divided into two categories: undirected graphs and
directed graphs. For instance, references [10], [11] and [12]
respectively conduct research on consensus control under
undirected graphs, directed graphs, and switching topolo-
gies. Furthermore, there are many mature studies addressing
consensus control problems that are more applicable to real
systems, such as nonlinear systems, uncertain systems, and
perturbed systems [13–16]. Moreover, to achieve consensus
within a finite time, scholars have conducted extensive re-
search on finite-time consensus [14], fixed-time consensus
[16], and specified-time consensus [17].

This work was supported by the National Natural Science Foundation
of China under Grants 62088101, 62273045, U2341213 and 62376029, Bei-
jing Nova Program under Grant 20230484481, and China Postdoctoral Sci-
ence Foundation under Grant 2023M730255.

However, the implementation of the control law in the
above research requires knowledge of the real state of agents,
which is usually unrealistic in practical applications. One
method to solve this problem is to design appropriate ob-
servers to estimate the state. For example, state estimators
are constructed and the controllers are designed based on
the estimated state in [18–20]. For large-scale multi-agent
systems, distributed state estimation is more effective than
the centralized one. As shown in [18–22], the existing dis-
tributed state estimation techniques rely on the output infor-
mation measured by the sensors on the agents and achieve
state estimation through interaction with neighboring nodes.
It means that existing algorithms will lead to state estimation
failure when the sensors are unable to measure valid infor-
mation.

Motivated by this, this paper considers the consensus
problem of a class of Lipschitz nonlinear multi-agent sys-
tems under strongly connected graphs. The estimation of
the overall output and the entire state of the multi-agent sys-
tem is achieved by designing distributed output tracking al-
gorithm and local state estimators. It ensures that even if
sensors of an agent fail, it can make use of its neighboring
nodes’ overall output estimation to achieve the estimation of
the state and ensure the realization of consensus control for
multi-agent systems in the case of the unknown state.

The remaining is structured as follows. Section 2 presents
the problem and necessary background knowledge. The
main research result is introduced in section 3. The numer-
ical simulation is shown in section 4 and the conclusion is
given in section 5.

Notation: Rn represents the set of n-dimensional real
vectors. The symbol col (s1, · · · , sN ) is equivalent to[
sT1 , s

T
2 , · · · sTn

]
, and diag (s1, · · · , sN ) denotes a diagonal

matrix with si as its diagonal elements. In and 1n stand for
the n × n identity matrix and the n × 1 all-ones vector, re-
spectively. The symbol ⊗ represents Kronecker product and
∥·∥ represents the norm of a matrix or a vector. λmin (A)
and λmax (A) are the minimum and maximum eigenvalues
of matrix A. σmin (B) and σmax (B) denote the maximum
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and minimum singular value of matrix B. P > 0 (P < 0)
means that P is a symmetric positive (negative) definite ma-
trix.

2 Reliminaries and problem formation

Consider a Lipschitz nonlinear multi-agent system com-
posed of N agents, where the dynamic of each agent is given
by

ẋi = Axi +Bui + f (xi) , (1)

where xi ∈ Rn, i ∈ {1, 2, · · · , N}, ui ∈ Rr is the control
input, A and B are the constant matrices for the system, and
f (xi) is a nonlinear function that satisfies the Lipschitz con-
dition, i.e., there exists a Lipschitz constant γ such that the
following inequality holds:

∥f (x)− f (y)∥ ≤ γ ∥x− y∥ ,∀x, y ∈ Rn. (2)

Let x = col (x1, · · · , xN ), u = col (u1, · · · , uN ) and
F (x) = col (f (x1) , · · · , f (xN )). The output of each agent
is related to the overall state of the system, described as
yi = Cix where yi ∈ Rpi . Thus the multi-agent system is
transformed into a sensor network system with the dynamic
of

ẋ = (IN ⊗A)x+ (IN ⊗B)u+ F (x) ,

yi = Cix.
(3)

Clearly, the system studied in this paper is not only a Lip-
schitz nonlinear multi-agent system but also with heteroge-
neous output. Denote C = col (C1, · · · , CN ).

Remark 1 The sensors distributed on each agent can mea-
sure their own information as well as relative information
from neighbors. Mathematically abstracting it as the output
of each agent being related to the overall state is reasonable,
which implies that (3) is justified.

Assumption 1 The pair (IN ⊗A,C) is observable.

With the help of graph theory, the communication net-
work among agents is described by an unweighted topolog-
ical graph G = (V, E ,A), where V = {1, · · · , N} is a fi-
nite non-empty set that represents the nodes of the multi-
agent system, E ⊆ V × V is the edge set of the graph, re-
flecting the communication relationship between the agents,
A = [aij ]N×N is the adjacency matrix, and aij = 1 holds
if and only if node i can receive information from node j,
i.e., (i, j) ∈ E . The Laplacian matrix of G is denoted as
L = D −A, where D is the in-degree matrix, meaning it is

a diagonal matrix with di =
N∑
j=1

aij as its diagonal elements.

Obviously, the Laplacian matrix L0 = [lij0]N×N of the full
graph G0 consisting of N agents is given by

l
ij0

=

{
−1 i ̸= j,

N − 1 i = j.

An undirected graph is connected if there exists a con-
nected path between any two nodes. A strongly con-
nected graph means that there exists a directed path
between any two nodes, that is, for any two nodes
i and j, there exists nodes k1, k2, · · · , km such that
(i, k1) , (k1, k2) , · · · , (km, j) ∈ E .

Assumption 2 The communication topology G among the
agents is strongly connected.

Lemma 1 ([23]) Suppose the Assumption 2 holds, then
L ⊗ Ip + D is a non-singular M matrix, where p =∑N

i=1 pi, D = diag (D1,D2, · · · ,DN ) and Di =
diag (ai1Ip1, ai2Ip2, · · · , aiNIpN ).

Lemma 2 ([24, 25]) For any non-singular M matrix M,
there exists a diagonal positive definite matrix G such that
GM+MTG > 0.

Lemma 3 ([26, Chap. 9, Th. 55]) For the system
described in (1), a control law is designed as
ui = cK

∑N
j=1 aij (xi − xj). The gain constant c ≥ τ

a(L)

where the scalar τ > 0 and a (L) is the generaized
algebraic connectivity of G. The feedback gain matrix
K = − 1

2B
TP−1 where P > 0 satisfies the linear matrix

inequality (LMI)[
AP + PAT − τBBT + I P

P −
(
γ−1

)2
I

]
< 0. (4)

Then all agents of MASs (1) can achieve consensus under
the strongly connected graph G. In the case where the com-
munication topology is a full graph, the control law equals
to ui = cK

∑N
j=1 (xi − xj) where c ≥ τ

N .

The goal of this paper is to design a distributed estima-
tion algorithm to estimate the overall output and state of the
multi-agent system, ensuring that even if some agents’ mea-
surement output fails, state estimation can still be achieved
and further consensus control tasks can be accomplished.

3 Main results

In this section, distributed output tracking algorithm, lo-
cal observers and a consensus control protocol based on the
estimated state are presented. The effectiveness of the algo-
rithms is theoretically proven.

Denote x̂i = col (x̂i1, · · · , x̂iN ) as the entire state esti-
mation by i-th agent, where x̂ij is the j-th agent’ state esti-
mation by i-th agent. Then a consensus control protocol is
designed based on x̂i as follows:

ui = cK

N∑
j=1

(x̂ii − x̂ij) , (5)

where c ≥ τ
N , τ > 0 and K is characterized in Lemma 3.

Obviously, we can see that if lim
t→∞

∥x̂i − x∥ = 0, the MASs
(1) can achieve consensus under the control protocol (5).

From (5), we get u = (cLo ⊗ K)x̂, where Lo =
diag

(
L1, · · · ,LN

)
, Li is the i-th row of the Laplacian ma-

trix L0 of the full graph G0. Let y = col (y1, · · · , yN ) and
x̂ = col (x̂1, · · · , x̂N ), the system (3) is transformed into

ẋ = Āx+ B̄ (x̂− 1N ⊗ x) + F (x) ,

y = Cx,
(6)

where Ā = IN ⊗A+ cLo ⊗BK and B̄ = cLo ⊗BK.
Further, we propose the distributed state estimation algo-
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rithm

˙̂yi =− µ

 N∑
j=1

aij (ŷi − ŷj) +Di (ŷi − y)


+ CĀx̂i + CF (x̂i) ,

˙̂xi =
(
Ā− LC

)
x̂i + Lŷi + F (x̂i) ,

(7)

where i ∈ V , F (x̂i) = col (f (x̂i1) , · · · , f (x̂iN )), µ > 0
is the constant gain and L is the feedback gain matrix which
need to be determined. x̂i and ŷi are the estimation of the
overall state and the overall output by i-th agent, respec-
tively.

Remark 2 According to the definition of Di, it can be seen
that the Diy component in (7) contains only the measure-
ment output information of itself and its neighboring nodes,
indicating that the algorithm proposed in this paper is dis-
tributed.

Denote ŷ = col (ŷ1, · · · , ŷN ) and F0 (x̂) =
col (F (x̂1) , · · · , F (x̂N )), the dynamics of ŷ and x̂
are given by

˙̂y =− µ (L ⊗ Ip +D) (ŷ − 1N ⊗ y) +
(
IN ⊗ CĀ

)
x̂

+ (IN ⊗ C)F0 (x̂) ,

˙̂x =
[
IN ⊗

(
Ā− LC

)]
x̂+ (IN ⊗ L) ŷ + F0 (x̂) .

(8)

The output tracking error is defined as ỹ = ŷ−1N⊗y and
the local state estimation error is defined as x̃ = x̂−1N ⊗x.
Then we get

˙̃y =− µ (L ⊗ Ip +D) ỹ +
[
IN ⊗ CĀ− 1N ⊗ CB̄

]
x̃

+ (IN ⊗ C) [F0 (x̂)− 1N ⊗ F (x)] ,

˙̃x =Aox̃+ (IN ⊗ L) ỹ + F0 (x̂)− 1N ⊗ F (x) ,
(9)

where Ao = IN ⊗
(
Ā− LC

)
− 1N ⊗ B̄.

Theorem 1 Suppose the Assumption 1 and Assumption 2
hold, if there exists a matrix L such that Ao is Hurwitz and
min
ω∈R+

σmin (Ao − jωIN2n) > γ, and the constant gain sat-

isfies

µ > µ0

=
4

λ0ε

[
λ2
max (G)σ2

max

(
IN ⊗ CĀ− 1N ⊗ CB̄

)]
+

4

λ0ε

[
λ2
max (Q)σ2

max (L) + γ2λ2
max (G)σ2

max (C)
]
,

(10)
where ε > 0 is a positive constant, λ0 > 0 is the minimum
eigenvalue of the positive definite matrix G (L ⊗ Ip +D) +

(L ⊗ Ip +D)
T
G, and G is the diagonal positive definite

matrix introduced in Lemma 2, then the output tracking error
ỹ and the state estimation error x̃ converge asymptotically,
with lim

t→∞
∥ŷi − y∥ = 0 and lim

t→∞
∥x̂i − x∥ = 0 holding.

Moreover, the system (1) realizes consensus under the con-
trol protocol (5).

Proof If lim
t→∞

∥x̂i − x∥ = 0 holds, then we get lim
t→∞

ui =

cK
∑N

j=1 (xi − xj). By Lemma 3, MASs (1) will achieve
consensus under the control input (5). Therefore, the proof

of Theorem 1 only requires proving asymptotic convergence
of the error system (9). Consider the Lyapunov function

V = ỹTGỹ + x̃TQx̃, (11)

where G is defined in Lemma 2 and Q > 0 satisfying

QAo +Ao
TQ+ γ2QQ+ (1 + ε) IN2n = 0, (12)

From the literature [27], if the feedback gain matrix L ex-
ists, there must exist a positive definite solution Q to the Ric-
cati equation of (12). The time derivative of V can be written
as

V̇ =− µỹT
[
G (L ⊗ Ip +D) + (L ⊗ Ip +D)

T
G
]
ỹ

+ 2ỹTG
(
IN ⊗ CĀ− 1N ⊗ CB̄

)
x̃

+ 2ỹTG (IN ⊗ C) [F0 (x̂)− 1N ⊗ F (x)]

+ x̃T
(
QAo +AT

o Q
)
x̃

+ 2x̃TQ (IN ⊗ L) ỹ

+ 2x̃TQ [F0 (x̂)− 1N ⊗ F (x)]
(13)

By Young’s inequality, (14) and (15) hold.

2ỹTG
(
IN ⊗ CĀ− 1N ⊗ CB̄

)
x̃

≤ 4

ε
λ2
max (G)σ2

max

(
IN ⊗ CĀ− 1N ⊗ CB̄

)
ỹT ỹ

+
ε

4
x̃T x̃.

(14)

2x̃TQ (IN ⊗ L) ỹ

≤ 4

ε
λ2
max (Q)σ2

max (L) ỹ
T ỹ +

ε

4
x̃T x̃.

(15)

According to (2), we note that

2ỹTG (IN ⊗ C) [F0 (x̂)− 1N ⊗ F (x)]

≤ 2
∥∥(IN ⊗ CT

)
Gỹ

∥∥ ∥F0 (x̂)− 1N ⊗G (x)∥
≤ 2γ

∥∥(IN ⊗ CT
)
Gỹ

∥∥ ∥x̃∥
≤ 4γ2

ε
ỹTG

(
IN ⊗ CCT

)
Gỹ +

ε

4
x̃T x̃

≤ 4γ2

ε
λ2
max (G)σ2

max (C) ỹT ỹ +
ε

4
x̃Tx,

(16)

and
2x̃TQ [F0 (x̂)− 1N ⊗ F (x)]

≤ 2 ∥Qx̃∥ ∥F0 (x̂)− 1N ⊗G (x)∥
≤ 2γ ∥Qx̃∥ ∥x̃∥
≤ γ2x̃TQQx̃+ x̃T x̃.

(17)

From (14), (15), (16) and (17), we can conclude that

V̇ ≤ − (µ− µ0)λ0ỹ
T ỹ − ε

4
x̃T x̃

≤ 0.
(18)

So V is bounded, implying that x̃ and ỹ are bounded, and
since V̇ ≡ 0 implies that ỹ ≡ 0 and x̃ ≡ 0, one can con-
clude that x̃ and ỹ asymptotically converge to zero , with
lim
t→∞

∥ŷi − y∥ = 0 and lim
t→∞

∥x̂i − x∥ = 0 holding. There-
fore, Theorem 1 holds.

The calculation process for the parameters to be designed
in the proposed algorithm is shown in Algorithm 1.
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Algorithm 1
Step1 Choose a suitable positive constant τ to ensure that (4) has

a solution, and solve the LMI (4) to obtain the positive definite
matrix P .

Step2 Take c = τ
N

and calculate the feedback gain matrix K =
− 1

2
BTP−1.

Step3 Select the matrix L so that Ao is Hurwitz.
Step4 Determine if min

ω∈R+
σmin (Ao − jωIN2n) > γ is valid, if

not, go back to Step3.
Step5 Solve the Riccati equation (12) to yield the positive definite

matrix Q.
Step6 Calculate µ0 and choose the constant gain µ satisfying µ >
µ0.

Remark 3 In fact, there is a large margin of stability in se-
lecting matrix L to make min

ω∈R+
σmin (Ao − jωIN2n) > γ

hold and selecting µ to make µ > µ0. In general, it is
only necessary to find L such that Ao is Hurwitz, and then
by choosing an appropriate constant gain µ (usually much
smaller than µ0), the estimation error can converge to zero.
It means that Step4 and Step6 in Algorithm 1 are not strictly
necessary for determining the parameters.

The key of the proposed algorithm to solve the problem of
state estimation failure caused by measurement output fail-
ure lies in the fact that all agents achieve an estimation of the
overall output. It means that even in the presence of mea-
surement output failure, correct information can be obtained
by neighboring’s output estimation, thereby ensuring the ac-
curacy of state estimation.

Remark 4 Both the local estimators and the control proto-
col avoid the interaction of real state and estimated state be-
tween neighboring nodes, only the distributed output track-
ing involves the information about the real measured output
of itself and its neighboring, which enhances the robustness
of the algorithm. Furthermore, compared to the classical
Kalman filtering algorithm in [28], the distributed state es-
timation algorithm proposed in this paper only requires to
determine one feedback gain matrix, which reduces the com-
putational complexity.

4 Numerical simulation

This section validates the effectiveness of the proposed
algorithm through numerical simulation. Consider a multi-
agent system with four agents, the communication graph is
shown in Fig. 1, and the system matrices of (3) are:

A =

[
0.6 2
-0.4 -1.5

]
, B =

[
2
1

]
,

and

C =


C1

C2

C3

C4

 =


2 -2 3 -5 1 5 -6 0
0 1 -1 0 0 2 0 -3
2 -2 3 5 0 4 -2 0
0 1 2 -3 1 2 6 -5
1 -1 6 0 -2 3 8 2

 .

f (xi) =
[
0 0.2 sin (xi2)

]T
, and the Lipschitz constant

γ = 0.2.

1

2

3

4

Fig. 1: The strongly connected communication graph.

The adjacency matrix of the graph G is given by

A =


0 0 0 1
1 0 0 0
1 1 0 0
0 0 1 0

 ,

and the Laplacian matrix of G is written as

L =


1 0 0 -1
-1 1 0 0
-1 -1 2 0
0 0 -1 1

 .

The initial state of each agent is chosen as x0 =[
2 1 -2 2 1 -1 0 3

]T
. Let τ = 0.7 and c =

0.175, P =

[
3.1787 -2.3775
-2.3775 3.3712

]
is obtained by solving the

LMI (4), then we get K =
[
-0.9006 -0.7934

]
. Let µ = 10

and the feedback gain matrix L is chosen as

L =



-9.7959 41.0248 7.4171 -16.1258 7.8307
2.2888 -10.425 -0.5680 4.2693 -1.9268
5.3763 -21.7842 -1.6073 7.5236 -3.0603
-0.3014 -2.4213 0.9541 0.9140 -0.6959
-0.1583 -12.1498 2.4026 7.8949 -4.8033
0.6292 -1.6927 -0.3522 1.4692 -0.5975
-2.7776 6.7011 1.3169 -1.5789 0.9828
-0.1772 -2.4635 0.3669 0.6323 -0.4041


.

The output tracking error and state estimation error are
respectively shown in Fig. 2 and Fig. 3, revealing both errors
converge to zero asymptotically. Fig. 4(a) and Fig. 4(b)
depict the two dimensions’ state trajectories of the agents,
where the solid line is the real state and the dashed line is
the estimated state, which not only reveals that the multi-
agent system realize consensus, but also further illustrates
the feasibility of the distributed state estimation.

Next, the effectiveness of the algorithm in the presence
of measurement output failures is verified through simula-
tion. Assuming that the 3-th agent’s measurement output
fails, which is equivalent to C3 = 0. Fig. 5 and Fig. 6
represent the output tracking error and state estimation er-
ror. Fig. 7(a) and Fig. 7(b) depict the two dimensions’
state trajectories. It is evident that the proposed algorithm
can still achieve distributed state estimation and consensus
control even in the presence of measurement output failures.
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Fig. 2: The output tracking error ỹ.
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Fig. 3: The distributed state estimation error x̃.
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(a) The trajectories of xi1 and x̂ij1
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(b) The trajectories of xi2 and x̂ij2

Fig. 4: The real state xi and the state estimation x̂ij .
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Fig. 5: The output tracking error ỹ under the failure of output
measurement.
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Fig. 6: The distributed state estimation error x̃ under the fail-
ure of output measurement.

0 1 2 3 4 5 6 7 8 9 10

t

-60

-40

-20

0

20

40

60

80

(a) The trajectories of xi1 and x̂ij1
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Fig. 7: The real state xi and the state estimation x̂ij under
the failure of output measurement.

5 Conclusion

In this paper, we propose a novel integrated design frame-
work for distributed state estimation and consensus control,
which enables a nonlinear MASs under strongly connected
graphs to realize distributed state estimation and consensus
control simultaneously, and the algorithm is still effective
when there is measurement output invalid. The distributed
state estimation algorithm consists of two parts: distributed
output tracking and local observers, which estimate the over-
all output and the entire state of the MASs, respectively.
The distributed output tracking is implemented based on the
real measurement output of itself and its neighboring nodes,
while the local observers only depend on the estimated out-
put and state of itself, and the consensus control algorithm
is designed according to the entire state estimation, avoid-
ing communication with neighboring nodes. The main fu-
ture work is to decouple control and state estimation, further
to study cases such as event-triggered, switching topologies,
etc.
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Abstract: In the multi-robot coverage control application, a group of ground robots tries to optimize the environment coverage
performance. However, most of the existing works consider that the environment is static and the ground robots have large
sensing ranges. In this paper, we present a fully distributed, air-assisted coverage control scheme to address the challenge of a
time-varying environment and limited sensing range. Firstly, we use aerial robots equipped with low-resolution but high-sensing-
range sensors to achieve a weighted Voronoi coverage of the environment. Then the aerial robots utilize their local information
to guide the ground robots, equipped with low-sensing-range but high-resolution sensors, to explore the environment to optimize
a high-resolution coverage performance. The ground robots adopt a new controller to promptly adapt to environmental changes.
Simultaneously, each aerial robot dynamically adjusts its domain to optimize the coverage performance of the ground robots.
The convergence of the control scheme is proved and its performance is evaluated through simulations.

Key Words: Voronoi Coverage Control, Distributed, Air-Assisted, Limited Sensing Range, Time-Varying Environment

1 Introduction

Coverage control of multi-robot systems has been drawing

attention for a long time due to its wide applications, such as

environmental surveillance and disaster rescue [1]. In these

applications, robots observe features or events within a broad

area, which are often modeled as an underlying density func-

tion. Then the coverage is performed according to the rela-

tive importance of these features within the area.

A classical solution to coverage problems involves the use

of proper area partition, known as Voronoi partition, as in-

troduced in [2]. It proposes a controller that guides robots

to move towards the centroid of the Voronoi cell, minimiz-

ing the coverage cost function. After that, a series of cover-

age control algorithms are proposed based on it. In these

works, the underlying density function is assumed to be

time-invariant and robots have large sensing ranges, so each

robot is aware of the density function in its own cell.

As features or events within an area evolve over time, such

as the continuous spread of pollutants and the dynamic mi-

gration of endangered species, some works consider the case

that the density function is time-varying [3, 4]. Ref. [3] ex-

plores the time-varying case by assuming a small rate of

change in the density function, while Ref. [4] proposes a

controller without any assumptions about the rate of change

in the density function. However, they have not taken into

consideration the limited sensing ranges of the robots.

A series of extended coverage control algorithms are pro-

posed to address the limited sensing ranges of robots, but

these algorithms rarely consider time-varying density func-

tions. Ref. [5] introduces a distributed deterministic anneal-

ing algorithm that computes temperature gradients to guide
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Aerial robots’ old boundary
Aerial robots’ new boundary

Ground robots’ old boundary
Ground robots’ new boundary Time-varying environment

Boundary moving direction

DG

DA

Fig. 1: Ground robots are equipped with low-range, high-resolution sensors,

while aerial robots are equipped with high-range, low-resolution sensors.

Aerial robots sense coarse but extensive sensing information and then use

it to guide ground robots to achieve high-resolution coverage of the area.

To enhance coverage performance, the domain boundaries will be adjusted

based on the final number of ground robots under each dominance.

robots to their final positions. However, this algorithm is not

fully distributed. In [6], robots achieve coverage through

limited Voronoi cells, but the performance of coverage is

highly sensitive to the sensing range. In [7], a method com-

bines aerial and ground robots to achieve high-resolution

coverage. Ground robots are equipped with low-range, high-

resolution sensors, while aerial robots are equipped with

high-range, low-resolution sensors. Aerial robots roughly

estimate the density function within the domain and guide

ground robots for finer local coverage. However, the guide

controller involves global information: positions of all aerial

robots, so it is not fully distributed. Moreover, because the

domain of aerial robots is fixed, the coverage performance

of this method does not reach its optimality.

In our previous work [8], we use aerial robots to assist
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ground robots in addressing the challenge of the ground

robots’ limited global vision. In this paper, to address an-

other challenge of the time-varying density function, we pro-

pose a new coverage control scheme inspired by [4]. A brief

description of our proposed scheme is shown in Fig. 1 and

the main contributions of this paper are as follows.

• The method we propose employs aerial robots to assist

ground robots in achieving high-resolution coverage. It

is fully distributed and effectively addresses the time-

varying environment.

• The coverage control scheme incorporates a newly pro-

posed domain partitioning law, taking full advantage of

the coverage capabilities of each ground robot.

• The convergence of the control scheme is proved and

its effectiveness is validated through simulations.

This paper is organized as follows. In Section 2, the prob-

lem is formulated. In Section 3, we develop the control

scheme for the heterogeneous team to achieve coverage. In

Section 4, the convergence analysis of the algorithm is pro-

vided. Section 5 demonstrates the effectiveness of the pro-

posed scheme through simulations. Section 6 concludes the

paper with our intentions for future work.

2 Problem Statement

Consider an area containing several regions of interest.

These regions may involve the migration of endangered

species or the spread of pollutants. In these scenarios, the

total amount of substance within the entire area (the total

quantity of endangered species or pollutants) remains con-

stant, but the concentration at each location within the area

continues to change. So in this paper, we model the spatial

distribution as a time-varying scalar field in the convex do-

main DG ⊂ R
2. The time-varying scalar field value of any

point q ∈ DG is φ(q, t), which satisfies that φ(q, t) > 0 for

all q and t.
There is a heterogeneous team of robots consisting of

K(> 1) unmanned aerial robots and N(> K) unmanned

ground robots in the domain. The ground robots operate

in the domain DG and the aerial robots operate in a do-

main DA ⊂ R
2, above and parallel to DG as shown in

Fig. 1. The ground robot is equipped with a low-range,

high-resolution sensor, enabling it to obtain high-resolution

field values within its limited range of detection B(pij(t), R),
which will be defined later in this section. On the other

hand, the aerial robot is equipped with a high-range but low-

resolution sensor, so it can acquire coarse field values over

a larger area. Fig. 2 shows an example of the detection of

a domain with both high-resolution and low-resolution sen-

sors. Here, “resolution” refers to the sensor’s ability to detect

the minimum change in the time-varying scalar field value

φ(q, t).

Remark 1. In our expression, we use φ(q, t) for both high

and low-resolution field values, distinguishing them only in

simulations.

Define V = {1, 2, ...,K}. At time t ≥ 0 , let P(t) =
{pi(t) | ∀i ∈ V} denote the set of positions of aerial

robots. Each aerial robot i is assigned a domain defined as a
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Fig. 2: Difference between high resolution and low resolution.

weighted Voronoi cell

V i(t) = {q ∈ DA | ‖pi(t)− q‖2 − wi(t)

≤ ‖pj(t)− q‖2 − wj(t), ∀j ∈ V}, (1)

where wi(t), wj(t) are the weights of aerial robots i, j at

time t. Mostly, the parameter t is omitted if no ambiguity

arises.

We use an undirected graph G = (V, E) to describe the

relationships between the aerial robots, where E ⊆ V × V is

the set of all edges. The set of neighbors of aerial robot i is

denoted as N i = {j | V i ∩ V j 
= ∅, (i, j) ∈ E}.

Additionally, let Pi = {pij(t) | j = 1, 2, ..., ni} denote

the set of positions of ground robots under the dominance

of aerial robot i. Here, ni denotes the number of ground

robots in the domain V i. Each ground robot j is also given

a domain defined by a Voronoi cell

V i
j = {q ∈ V i | ‖pij(t)− q‖2 ≤ ‖pir(t)− q‖2,

r = 1, 2, ..., ni}.
The set of neighbors of each ground robot j is denoted as

N i
j = {r | V i

j ∩ V i
r 
= ∅, r = 1, 2, ..., ni, r 
= j},

and the sensing range of each ground robot j is limited by

B(pij(t), R)

B(pij(t), R) = {q ∈ R
2 | ‖q − pij(t)‖ ≤ R},

where R is the sensing radius.

The kinematic model of aerial robot and ground robot is

described as follows

d

dt
pi(t) = ui(t),

d

dt
pij(t) = ui

j(t),

where ui(t) and ui
j(t) are the control inputs, for each j =

1, 2, . . . , ni and each i ∈ V .

Similar to [2], [6], [7] and [9], the main purpose of cover-

age control is to minimize the coverage cost function

H =

K∑
i=1

ni∑
j=1

∫
V i
j

‖q − pij(t)‖2φ(q, t) dq. (2)

In the case where the ground robots have unlimited sens-

ing ranges and the scalar field value φ(q, t) is time-invariant,

by taking the gradient of (2), Ref. [2] uses the proved move-

to-centroid controller (3) to guide the ground robots to the

local optimal locations

ui
j(t) = gp

(
Ci

j(t)− pij(t)
)
, (3)

where gp is the control gain, Ci
j is the mass centroid of

Voronoi cell V i
j .
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In the case where the ground robots have unlimited sens-

ing ranges but the scalar field value φ(q, t) is time-varying,

Ref. [4] proposes a proved centralized controller. After

the approximation, the distributed controller, referred to as

TVD-D1, is presented as follows

ui
j(t) =

∂Ci
j

∂t
+ gp(C

i
j − pij)

+
∑
r∈N i

j

∂Ci
j

∂pir

(
∂Ci

r

∂t
+ gp(C

i
r − pir)

)
. (4)

In situations with limited sensing range for ground robots

and time-varying scalar field value, this paper addresses the

problem of designing distributed controllers ui(t) and ui
j(t)

to enable aerial robots to assist ground robots in achieving

high-resolution coverage, aiming at minimizing the coverage

cost function (2).

3 Proposed Control Scheme

As depicted in Fig. 1, this paper proposes a fully dis-

tributed air-assisted control scheme to address ineffective

coverage problem that happens when only low-sensing-

range ground robots are used. Initially, the high-sensing-

range aerial robot provides a low-resolution coverage of

the entire domain. Subsequently, the aerial robots cooper-

atively schedule the ground robots to achieve even distribu-

tion within the domain supervised by each aerial robot. This

assists the ground robots in overcoming the limitations of

their low sensing range, enabling them to cover a wider do-

main and achieve more effective coverage.

1) Determining final load and domain mass value for
the aerial robot: The aerial robots first use the follownig

move-to-centroid controller

ui(t) = gp(C
i − pi)

over DA assuming a uniform density function. Here Ci

is the centroid of Voronoi cell V i. When doing this, the

aerial robots create domains in the form of weighted Voronoi

cells V i ⊂ DA, where wi = 0 for all i. And each aerial

robot i has access to the number of ground robots ni(t)
within its domain V i, the mass si(t) of the domain V i is

defined as si(t) =
∫
V i φ(q, t) dq. In many real-world sce-

narios such as the migration of endangered species or the

spread of pollutants, the total quantity of substance in the

whole domain remains constant. Therefore, we assume that∫
DA φ(q, t) dq =: C is constant.

After the aerial robots come to a stop, each aerial robot i
obtains the number of the ground robots ni,0 within its do-

main and the mass si,0 of its domain at that time. Then each

aerial robot i runs Algorithm 1. The first part of Algorithm 1

(Lines 1-7) is to determine the final number of ground robots

n̄i ∈ N in its domain V i, that is, the final load value of aerial

robot i. The second part of Algorithm 1 (Lines 8-13) is to

obtain the final mass value, denoted as s̄i, of the domain su-

pervised by aerial robot i. Here, k1 and k2 are sufficiently

large numbers of iterations.

The first part of Algorithm 1 (Lines 1-7) is to average the

number of ground robots supervised by each aerial robot.

When equal allocation is not feasible, there may be a maxi-

mum difference of 1. This first part (Lines 1-7) can be further

divided into three main phases. In the Giving Phase, aerial

robot i selects among its neighbors with minimum load to

send an offer to. In the Receiving Phase, aerial robot i eval-

uates the offers from its neighbors. It selects the neighbor

with the highest load value and accepts its offer, then sends

an acceptance to it and increases its own load value by 1. In

the Transferring Phase, the aerial robot i checks if it has re-

ceived an acceptance. If it has, it reduces its own load value

by 1. More details can be found in [10].

Under the execution of the second part of Algorithm 1

(Lines 8-13), aerial robots calculate s̄i based on n̄i. When

k2 → ∞, we will obtain

s̄i
n̄i

=

∑K
i=1 si,0∑K
i=1 n̄i

=
C

N
, ∀i ∈ V.

It indicates that the final mass value of each domain matches

its final load value. This matching is essential to make the

most of the ground robots’ coverage capabilities, resulting in

better coverage performance.

Algorithm 1: Determining final load and domain

mass value for the aerial robot i

Input: nj,0, sj,0, ∀j ∈ N i ∪ {i} and k, k1, k2.

Output: n̄i, s̄i.
1 k ← 0; l0i ← ni,0;

2 while k < k1 do
3 Giving Phase;

4 Receiving Phase;

5 Transferring Phase;

6 Increment k;

7 end
8 n̄i ← lk1

i ; yk1
i ← si,0

n̄i
;

9 while k1 ≤ k < k2 do
10 yk

i ← yk−1
i + 1

n̄i

∑
j∈N i

(yk−1
j − yk−1

i );

11 Increment k;

12 end
13 s̄i ← yk2

i · n̄i.

2) Aerial robots assist ground robots in achieving high-
resolution coverage: After determining the number of

ground robots and the mass of domain that each aerial robot

should eventually take charge of, each aerial robot will run

Algorithm 2 to rezone its domain according to (1). At the

same time, it will guide ground robots to complete finer lo-

cal coverage.

Algorithm 2 is divided into two stages, namely Regional

Redistricting Stage and Guide and Coverage Stage. In Re-

gional Redistricting Stage, aerial robot i calculates wi(t)
based on s̄i and rezones its domain. In Guide and Cover-

age Stage, aerial robot i firstly calculates

xi(t) = ni(t)− n̄i.

We refer to xi(t) as the load deviation of aerial robot i at time

t. Then, in the Offering Phase, it selects one of the neighbors

with the minimum load deviation and sends an offer to that

neighbor. In the Accepting Phase, aerial robot i chooses one

of the neighbors that sent an offer to it with the maximum

load deviation, and sends an acceptance in response. Lastly,
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in the Passing Phase, different control laws will be selected

based on the received acceptances. Here, Cl
r represents the

mass centroid of cell V l
r , where V l

r = V i
r ∩B(pir(t), R).

Algorithm 2: Collaborative coverage achieved with

aerial robot i and ground robots under its dominance

Input: xj(t), wj(t), sj(t), p
j , s̄j , ∀j ∈ N i ∪ {i} and

gw > 0, g1 > 0, g2 > 0.

1 repeat
2 Regional Redistricting Stage:
3 Receive messages pj and wj(t) from N i;

4 Divide the area according to (1);

5 d
dt
wi(t) ← gw(s̄i − si(t));

6 Guide and Coverage Stage:
7 Offering Phase:
8 xi(t) ← min

j∈N i
xj(t);

9 Ji(t) ← {j ∈ N i|xj(t) = xi(t)};

10 Choose jr randomly from nodes in Ji(t);
11 if xi(t) > xjr (t) then
12 Send offer to jr consisting of (i, xi(t));
13 end
14 Accepting Phase:
15 M1 = {(j1, xj1(t)), ..., (jm, xjm(t))} is the set of

messages received by i at time t.
16 if |M1| > 0 then
17 xi(t) ← max

s∈{1,...,m}
xjs(t);

18 Qi(t) ← {js ∈ M1|xjs(t) = xi(t)};

19 Choose h randomly from nodes in Qi(t);
20 Send acceptance to h consisting of (i);

21 end
22 Passing Phase:
23 M2 = {(j)} is message received by i at time t.
24 if |M2| > 0 then
25 ui

r∗(t) ← g1
(
pj − pir∗(t)

)
,

26 r∗ = argmin
r

‖pj − pir(t)‖, r = 1, ..., ni;

27 else
28 ui

r(t) ← ∂Cl
r

∂t
+ g2(C

l
r − pir(t)) +∑

λ∈N i
r

∂Cl
r

∂pi
λ

(
∂Cl

λ
∂t

+ g2
(
Cl

λ − piλ(t)
))

,

29 r = 1, ..., ni;

30 end
31 until a stooping condition is met (e.g., time t meets a

certain requirement.);

4 Convergence Analysis

The convergence proof of the first part of Algorithm 1

(Lines 1-7) is similar to Claim 5.8 in [10], and the conver-

gence proof of the second part of Algorithm 1 (Lines 8-13)

is similar to Theorem 4.1 in [11], so the details are omitted

here.

In our proof illustrating the convergence of Algorithm 2,

because of space constraints, we present only the theorem

statement here and leave the proof to a more detailed version.

Define ∂V ij as the boundary between V i, V j and

κ1,i = inf
t

⎛
⎝gw

2

∑
j∈N i

∫
∂V ij

φ

‖pj − pi‖ dq

⎞
⎠ ,

κ2,i(t) =
gw
2

∑
j∈N i

∫
∂V ij

φ d
dtwj

‖pj − pi‖ dq − gw

∫
V i

dφ

dt
dq,

γi =
supt |κ2,i(t)

κ1,i
|

gwε
, 0 < ε < 1.

The statement of Theorem 1 is as follows, and it ensures

the convergence of Regional Redistricting Stage in Algo-

rithm 2.

Theorem 1. When t → ∞, |s̄i − si(t)| ≤ γi, ∀i ∈ V .

Define

x(t) = (x1(t), x2(t), ..., xK(t)) ,

S = {x(t) | xi(t) = 0, i ∈ V},
m(t) = min

i
xi(t), M(t) = max

i
xi(t),

D(t) = M(t)−m(t).

The statements of Lemma 1, Lemma 2, and Theorem 2 are

as follows. Using Lemma 1 and Lemma 2, Theorem 2 can

be proved. The convergence of Guide and Coverage Stage is

guaranteed by Theorem 2.

Lemma 1. Under the execution of Guide and Coverage
Stage of Algorithm 2, for any time t such that D(t) ≥ 2,
there is some finite time t∗ > t such that there is a positive
probability such that D(t∗) < D(t).

Lemma 2 ([12, Theorem 2]). Consider a distributed algo-
rithm, for any graph, the following conditions are met
(G1) for any given initial condition x(t0), at any time dur-

ing the execution of the algorithm, the value of x(t)
lies in some finite set X ,

(G2) for any state x(t) = x, there exists a finite time tx such
that P (x(t+ tx) ∈ S | x(t) = x) > 0,

(G3) if x(t) ∈ S , then x(t′) ∈ S for all t′ ≥ t.
Under the execution of such an algorithm, for any graph and
for any initial condition x(t0) such that

∑K
i=1 xi(t0) = 0,

lim
t→∞x(t) ∈ S .

Theorem 2. Under the execution of Guide and Coverage
Stage of Algorithm 2, lim

t→∞x(t) ∈ S .

5 Simulation Results

In this section, we will present the simulated results of the

proposed algorithm and compare to previous algorithms. We

simulated three other algorithms for comparison, each using

N = 14 ground robots. In the simulations, the field of the

ground domain DG is chosen to be a 3 × 3 rectangle area

with

φ(x, y, t) = 1.2exp
(
−(x+ 1.2 + 0.125 sin(

π

25
t))2 − y2

)

+exp
(
−(x− 1)2 − (y + 0.1 sin(

π

50
t))2

)
.

The first and second algorithms are both proposed in [2],

with the difference being that the first algorithm assumes

that the ground robots are equipped with sensors with unlim-

ited sensing range, while the second assumes that the ground

robots are equipped with sensing-limited sensors. The third
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Fig. 3: (a) to (d) illustrate the movement of ground robots at different t based on the proposed algorithm. We denote the positions of the ground robots with

solid black circles, the mass centroids of their sensing-limited Voronoi cells with red hollow circles, the final positions of the aerial robots with solid triangles,

the sensing ranges of ground robots with black dashed circles, the boundaries of the ground robots with solid green lines, and the boundaries of the aerial

robots with solid red lines.
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Fig. 4: The trajectory of the 14 ground robots in simulations (a) to (d) and their final configuration in simulations (e) to (h) are depicted using various

algorithms: (a) and (e) with the algorithm in [2] assuming unlimited sensing range, (b) and (f) with the algorithm in [2] assuming limited sensing range, (c)

and (g) with algorithm in [7], and (d) and (h) with the proposed algorithm. In Fig. 4(a), 4(b), 4(c) and 4(d), we denote the initial positions of the ground robots

with blue X markers, the trajectory of each robot with red dotted lines, the final position of the ground robots with solid black circles. In Fig. 4(e), 4(f), 4(g)

and 4(h), we denote the final position of the aerial robots with solid triangles, the sensing range with black dashed circles, the ground robots’ boundaries with

solid green lines, and the aerial robots’ boundaries with solid red lines.

algorithm, as proposed in [7], involves the utilization of

K = 6 aerial robots. The last is the proposed algorithm

which also involves the utilization of K = 6 aerial robots.

For these four algorithms, we maintain consistent initial

positions for both ground and aerial robots. Among the lat-

ter three algorithms, the sensing range of ground robots is

standardized as a circular area with a radius of 0.25 length

units. In the proposed algorithm, parameter values are set to

gw = 0.5, g1 = 0.08, g2 = 0.2. The high-resolution sen-

sor is capable of detecting changes in the scalar field value

φ(x, y, t) as small as 1×10−8, while the low-resolution sen-

sor can detect changes as small as 1 × 10−2. Additionally,

each aerial robot has obtained corresponding parameters

through Algorithm 1: n̄1 = n̄2 = 3, n̄i = 2, i = 3, 4, 5, 6
and s̄1 = s̄2 = 1.02, s̄i = 0.68, i = 3, 4, 5, 6.

Fig 3(a), 3(b), 3(c) and 3(d) illustrate the distribution of

ground robots under the control of the proposed algorithm

at different t. The scalar field varies at different t and the

ground robots are controlled to cover it. Fig. 4(a), 4(b), 4(c)

and 4(d) illustrate the trajectories of the ground robots for

each of the four algorithms, while Fig. 4(e), 4(f), 4(g)

and 4(h) depict the final configurations for each algorithm.

We use the coverage cost function (2) to evaluate the cov-

erage performance in Fig. 5. Fig. 5 illustrates the temporal

evolution of coverage cost for the four algorithms. During

the initial time intervals, the ground robots in both the pro-

posed algorithm and the algorithm in [7] have not yet fully

covered the entire area, so the costs are non-comparable. As

time progresses and the ground robots achieve complete cov-

erage of the entire area, the costs become comparable dur-

ing the later period. Because the mass within the domain

of each aerial robot matches the number of ground robots

in that domain, the proposed algorithm achieves a coverage

cost that approaches that of the algorithm in [2] with unlim-

ited sensing range, and is lower than the algorithm presented

in [7]. Fig. 6 demonstrates the convergence of Voronoi cell
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Fig. 5: Cost H for each of the four algorithms.
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Fig. 6: Convergence of Voronoi cell mass for each aerial robot.
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Fig. 7: Proposed algorithm with different coverage controller.

mass for each aerial robot within the proposed algorithm. As

φ(x, y, t) varies with time, the mass si within the domain of

each aerial robot i fluctuates near s̄i and exhibits a tendency

to converge towards s̄i. We also compare the differences in

coverage when the proposed algorithm used controller (3)

and controller (4). In Fig. 7, at earlier times, due to the guid-

ance by the aerial robots, the coverage cost fluctuates and is

not comparable. When the ground robots are controlled to

cover during t ∈ [100, 1000], the coverage cost is compa-

rable. From Fig. 7, it is noticeable that using controller (4)

results in slightly lower coverage cost. To further assess this,

we compare the cumulative value of the two sets of coverage

cost:
∑1000

t=100 H(t), which were found to be 662.379 and

655.788. This indicates that using controller (4) for cover-

age, due to the consideration of time-varying terms, leads to

improved coverage performance.

6 Conclusions

In conclusion, this paper proposes a novel fully dis-

tributed, air-assisted coverage control scheme that addresses

time-varying environments and limited sensing ranges in

multi-robot coverage control applications. The convergence

of the control scheme is proved and its performance is eval-

uated through simulations. In the future, we will conduct

real-world experiments while taking into account the limi-

tations of Voronoi coverage due to obstacles in the covered

area, aiming to extend this method to non-convex environ-

ments. Additionally, we will also explore extending this

method to coverage on manifolds, moving beyond the con-

straint of two-dimensional planes.
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Abstract: In this paper, we introduce an innovative method for the orientation-specific path planning of an Automated Guided
Vehicle (AGV) with steering constraints, such as unmanned forklifts. Traditional shortest-path algorithms, which solely consider
distance or travel time, are unsuitable for tasks where the AGV’s orientation is crucial. To address this, we have created an
augmented graph that inherently incorporates the AGV’s steering constraints and orientation. By utilizing this enhanced graph
structure, conventional shortest-path algorithms can be employed to ascertain a path that takes the AGV’s orientation into account.
This novel method facilitates more adaptable and secure path planning, while preserving the immediacy required for real-time
path planning execution.

Key Words: Path planning, Steering constraint, Mobile robot

1 Introduction

Automated Guided Vehicle (AGV) refers to a transport
vehicle equipped with an automatic guiding device, such
as electromagnetic or optical, capable of traveling along a
prescribed guiding path, with safety protection and vari-
ous transfer functions, in industrial applications [1]. Path
planning plays a crucial role in the AGV application sys-
tem, which provides the AGV with a feasible route to the
destination. Classical shortest path algorithms consider ei-
ther the length or travel time when finding the shortest path.
However, for an AGV with a steering constraint (e.g. un-
manned forklifts), it is not allowed take a any angle turn due
to its own mechanical structure limitations or potential fa-
cility damage. Furthermore, the AGV may need to arrive
at its destination facing a specific direction to perform sub-
sequent operations efficiently. For instance, an AGV might
need to align itself with a loading dock or a conveyor belt, or
it might need to face a certain direction to pick up or drop off
items. Thus, it is often necessary to consider their steering
constraint and the orientation at the target location during the
AGV’s path planning. These considerations not only bring
better safety to the AGV system but also increase the accu-
racy and efficiency of the subsequent operations.

There are many studies that take into account turn restric-
tions in shortest path planning [2, 3]. The AGV’s steering
constraint can be treated as an angle-based turn restriction
on the graph, where a turn is only legal if its angle is be-
tween certain values. The literature considers two possible
approaches for handling turn restrictions in shortest-path al-

This work is supported by the National Natural Science Founda-
tion of China under grant Nos. U23A20325, 62173118, and 61903110,
and Natural Science Foundation of Zhejiang Province under grant No.
LY24F030009. (Corresponding author: Zhimin Han)

gorithms.
One approach modifies the graph, integrating the informa-

tion of turn restrictions into the structure of the graph itself
to eliminate turn restrictions. Examples of this method in-
clude vertex segmentation [4, 5] and line graph methods [6–
8]. Another approach does not modify the graph but devel-
ops a new algorithm on the original graph, explicitly consid-
ering the turn restrictions problem. Gutiérrez and Medaglia
[9] present a modified version of the well-known algorithm
of Dijkstra [10], and Ziliaskopoulos and Mahmassani [11]
present a similar method.

Besides turn restrictions, turn penalties are a major con-
cern in shortest path algorithms [12–14]. However, the
above methods do not take into account the orientation of
the AGV, thus failing to determine the direction of the AGV
upon arrival at the destination. This results in the planned
path being unable to be used in scenarios for AGVs with a
steering constraint.

In order to specify the AGV’s orientations during the path
planning process for an AGV with a steering constraint,
firstly, we construct a virtual graph that integrates the AGV’s
steering constraint and orientation information. Then, a
standard shortest-path algorithm can be applied to find the
orientation-specified shortest path in the virtual graph. Our
approach provides more flexible path planning for AGVs
with a steering constraint without compromising real-time
performance.

This work is organized as follows. In Section 1, we intro-
duce the significance and related work of path planning con-
sidering steering constraint. Section 2 describes the steering
constraint of AGVs when traveling in a topological graph.
In Section 3, we introduce a method for graph transforma-
tion. The transformed graph embeds the steering constraint

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications 
May 10-12, 2024, Shenzhen, China
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and orientation of the AGV within it. Section 4 introduces
the complete process of conducting a shortest path query on
a transformed graph. In Section 5, we test the performance
of the shortest path planning algorithms on the transformed
graph.

2 Problem description

Given the AGV’s map as a directed graph G = (V,E),
where V is a set of vertices {v1, ..., v|V |} and E is a set of
edges in which eij is an element if and only if there exists
an edge from vertex vi to vertex vj . A cost cij is associated
with each edge eij 2 E, which represents the cost of travers-
ing the edge. There are no restrictions on edge costs except
that they are required to be non-negative [15].

An AGV with a steering constraint could travel along a
directed edge in either a forward or backward direction. For
each edge eij 2 E, we define four angles associated with
it, that is, forward drive-in angle ✓i, forward drive-out an-
gle ✓j , backward drive-in angle 'i and backward drive-out
angle 'j . In our application, we define ✓i, ✓j ,'i,'j 2
[�180�, 180�].

As shown in Fig. 1 (a), an AGV is moving forward along
a directed edge eij . The orientation at vertex vi is defined
as the forward drive-in angle ✓i, and the orientation at vertex
vj is defined as the forward drive-out angle ✓j . Similarly,
when the AGV is moving backward along edge eij as shown
in Fig. 1 (b), we define the orientation at vertex vi as the
backward drive-in angle 'i, and the orientation at vertex vj
as the backward drive-out angle 'j .

(b)

iv jv
iM

jM

(a)

iv jv
iT

jT

Fig. 1: The possible movements of an AGV along a directed
edge eij

It is clear to see that the forward and backward drive-in
angles are in opposite directions which are similar to the for-
ward and backward drive-out angles. Consequently, a di-
rected edge only needs to store the drive-in and drive-out
angles for forward traversing, and the backward drive-in and
drive-out angles can be inferred from the forward angles. In
addition, the traverse direction (forward or backward) of a

directed edge can be configured in accordance with the re-
quirements of the path planning process, thereby providing
enhanced flexibility. For the convenience of description, in
this paper, we assume that each directed edge allows the
AGV to traverse both forward and backward.

Given that the maximum steering angle � and the current
orientation angle of the AGV ✓, the steering constraint of
the AGV can be articulated as follows. The AGV can move
forward from vertex vi along edge eij to vertex vj when the
condition ✓� ✓i < � is met. Conversely, the AGV can move
backward from vertex vi along edge eij to vertex vj when
the condition ✓ � 'i < � is satisfied.

In this paper, we consider a shortest path problem where
the AGV has the steering constraint mentioned above, and
the start and target orientations can be specified during path
planning.
3 Construction of virtual graph

We transform the original graph G = (V,E) into a virtual
graph G0 = (V 0, E0), embedding the steering constraint and
orientation of the AGV within it.

3.1 Derivation of virtual vertices

In the initial phase of our methodology, we establish all of
the virtual vertices. Each of these virtual vertices is designed
to represent a potential orientation of the AGV at some ver-
tex within the original graph.

As the AGV travels through the graph G, the feasible ori-
entations at a specific vertex can be identified. These ori-
entations are dependent on the edges that are interconnected
with the vertex.

Fig. 2 depicts a fragment of the AGV’s real-world appli-
cation graph, in which vertex b is interconnected with three
directed edges, specifically eab, ebc, and ebd. For a vertex
that is not the starting point, the AGV can only reach this
vertex via the incoming edges of it. So the incoming edge
of vertex b is eab. When an AGV moves forward along the
edge eab to vertex b, the orientation of the AGV at vertex b
is 0°. Conversely, when moving backward towards vertex b,
the orientation is 180°. Thus, we need to contruct two virtual
vertices of vertex b to fit for these two situations.

When vertex b serves as the starting point for path plan-
ning, the AGV is capable of moving either forward or back-
ward along the outgoing edges to reach other vertices. In our
case, vertice b has two outgoing edges, namely ebc and ebd.
For each of them, we need to construct a pair of virtual ver-
tices of vertex b to fit for both moving forward and backward
situations. However, since the two outgoing edges have the
same forward drive-in angle 0� and backward drive-in angle
180�, these two edges share the same pair of virtual vertices.

Generally, for a vertex vi 2 V , every incoming edge
contributes two potential virtual vertices to V 0, either for
every outgoing edge. Denote the set of virtual vertices
{v0i1, . . . , v0i|V 0

i |
} derived from vi as V 0

i 2 V 0. These vir-
tual vertices are constructed for various possible movements
of the AGV as the AGV travels through the graph. Further-
more, multiple directed edges may contribute to the same
virtual vertices. To minimize the scale of the virtual graph
as much as possible, we can merge multiple virtual vertices
with close orientations into a single virtual vertex within an
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Fig. 2: A fragment of the real-world graph
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Fig. 3: Virtual graph of original graph in Fig. 2

3.2 Connection of virtual vertices

After completing the construction of all virtual vertices, it
remains to establish virtual edges interconnecting these vir-
tual vertices.

An AGV with a maximum steering limit of � can steer
no more than � at a vertex to traverse a directed edge. This
means that for a directed edge eij 2 E, an AGV at vertex
vi holding orientation angles within the range (✓i � �, ✓i +
�) can move forward along this directed edge. We denote
the corresponding set of vertices as Fij 2 V 0

i . Similarly,
an AGV at vertex vi and with orientation angles within the
range ('i��,'i+�) can move backward along this directed
edge. We denote the corresponding set of vertices as Bij 2
V 0
i .
After the AGV moves along the edge eij from vi to vj ,

the orientation of the AGV at vertex vj is either ✓j or 'j , de-
pending on whether the AGV moves forward or backward.
Based on the virtual vertices with all possible orientations in
V 0 which are constructed in the previous subsection, there
must exist the corresponding vertices for these two situa-
tions. We denote the virtual vertice of vertex vj with ori-
entation ✓j as v0jf 2 V 0

j , the virtual vertice of vertex vj with
orientation 'j as v0jb 2 V 0

j .
For each directed edge eij 2 E, we establish a connection

from every v0in 2 Fij to v0jf . This connection serves as a
virtual directed edge in E0, symbolizing the AGV’s forward

movement along the original edge eij . Similarly, we estab-
lish a connection from each v0im 2 Bij to v0jb, which acts as
a virtual directed edge that represents the AGV’s backward
movement along the original edge eij .

3.3 Implementation

We provide the implementation pseudo code as shown in
Algorithm 1. In order to utilize heuristic information during

Algorithm 1: The construction of virtual graph
Input: original graph G = (V,E)
Output: virtual graph G0 = (V 0, E0)

1 foreach directed edge eij in E do

2 if eij allows moving forward then

3 construct a virtual vertex v0in with orientation ✓i of
vertex vi;

4 put v0in in V 0
i if v0in /2 V 0

i ;
5 construct a virtual vertex v0jn with orientation ✓j of

vertex vj ;
6 put v0jn in V 0

j if v0jn /2 V 0
j ;

7 if eij allows moving backward then

8 construct a virtual vertex v0im with orientation 'i of
vertex vi;

9 put v0im in V 0
i if v0im /2 V 0

i ;
10 construct a virtual vertex v0jm with orientation 'j

of vertex vj ;
11 put v0jm in V 0

j if v0jm /2 V 0
j ;

12 foreach directed edge eij in E do

13 if eij allows moving forward then

14 find virtual vertex set Fij from V 0
i and virtual

vertex v0jf from V 0
j

15 foreach virtual vertex v0in in Fij do

16 construct a virtual edge from v0in to v0jf and
put it in E0;

17 if eij allows moving backward then

18 find virtual vertex set Bij from V 0
i and virtual

vertex v0jb from V 0
j ;

19 foreach virtual vertex v0im in Bij do

20 construct a virtual edge from v0im to v0jb and
put it in E0;

path queries within the virtual graph, each virtual vertex re-
tains the coordinate data of its corresponding original vertex.
Additionally, we utilize a hash map to maintain the mapping
relationship between virtual vertices and original vertices.
This allows us to efficiently locate the corresponding virtual
vertex for a given orientation and original vertex during path
queries.

During the process of constructing virtual vertices, we
unify the virtual vertices with the same original vertex with
an allowable range of orientation error into the same vir-
tual vertex. This can avoid constructing too many unneces-
sary virtual vertices, thereby reducing the scale of the virtual
graph.

The virtual edge retains the cost of the original directed
edge, which plays a crucial role in identifying the shortest
path. By differentiating between the forward and backward
movements of the AGV, we can prevent the AGV from mov-
ing forward or backward along certain edges by not cre-
ating a connection between the corresponding virtual ver-
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tices. Furthermore, we can adjust the cost of virtual edges
to achieve a preference for certain ways of AGV’s move-
ment. The above options also bring more flexibility to the
path planning.

4 Path Query With Orientations

Assume we want to plan a path from vertex a to vertex d
with starting orientation 0� and target orientation �90� in a
graph as depicted in Fig. 2. Using traditional shortest path
algorithms on the original graph, the resulting path would be
< abd >, which does not satisfy the desired target orienta-
tion of �90�.

We will do the same path query on the constructed vir-
tual graph as depicted in Fig. 3. Virtual vertex a1 represents
the AGV with orientation 0� at the original vertex a, corre-
sponding to the start vertex in our path plan query. Similarly,
the virtual vertex d2 represents the AGV at the original ver-
tex d with an orientation of �90�, and it serves as the target
vertex. Then, we can perform a standard shortest path al-
gorithm on the virtual graph to find an optimal path. The
resulting path on the virtual graph would be < a1b1c1d2 >
and it corresponds to the real path < abcd > on the original
graph, which guides the AGV moving to the desired target
vertex d with orientation �90�.

Certain implementation issues arise when performing a
shortest path query on virtual graphs. Given a vertex with
a certain orientation, there could be more than one corre-
sponding virtual vertices in the constructed virtual graph.
Hence, the shortest path query problem may have multiple
start or target vertices in the constructed virtual graph [16].
However, a standard shortest path algorithm, such as the al-
gorithm of Dijkstra, cannot deal with this situation. Inspired
by the strategy proposed in [4], this can be solved by con-
structing one more virtual start vertex and one more virtual
target vertex to connect all the possible start and target ver-
tices in the constructed virtual graph, respectively. Then, af-
ter running the shortest path algorithm, the found path must
be converted back to the path in the original graph. Fig. 4
presents the overall structure of the orientation-specfic path
planning.

5 Experiments

Our algorithms were implemented, compiled and exe-
cuted in Java version 11. All tests were run on an Intel quad-
core 2.5 GHz machine with 8 GB RAM. Our experiments
will be conducted on a real-world graph with 9646 vertices
and 16567 edges.

5.1 Memory Usage

The construction of the virtual graph inevitably results in
an expansion of the original graph’s scale. In a scenario
where all edges allow both forward and backward move-
ments, the size of the virtual graph is expected to be at least
double that of the original graph. As the density of the graph
increases, so does the scale of the virtual graph. However,
in real-world AGV application scenarios, the majority of the
graphs tend to be sparse, resulting that the size of the virtual
graphs are approximately twice that of the original graphs.
The sizes of the original and virtual graphs in our experi-
ments are presented in Table 1.

Construct virtual vertices Construct virtual edges

Virtual graph construction

Path query

Find virtual source and 
target vertices Find shortest path 

Path conversion

Fig. 4: Overall structure of the orientation-specfic path plan-
ning

Table 1: Graph Size
Graphs vertices edges Size(MB)

Original Graph 9146 16567 7.6
Virtual Graph 18652 33086 11.7

Furthermore, we use a hash map to preserve the mapping
correspondence between the virtual vertices and the original
vertices. In our test case, it takes about 4MB of memory.

5.2 Time needed for creating virtual vertices and path

conversion

Before querying the path, it is necessary to construct the
virtual graph. The construction of the virtual graph, based
on an average of over 100 instances of graph construction
on the test graph, takes an average time of 62ms. In practical
AGV applications, changes to the graph are infrequent. Con-
sequently, for the path query experiment, the virtual graph
needs to be constructed only once.

Since we store the mapping relationship between the orig-
inal vertices and the virtual vertices in memory, the time re-
quired for path conversion is normally less than 1 ms. This
duration is negligible compared to the time required for the
path query.

5.3 Running times

Generally, the constructed virtual graph can be directly
applied in graph based shortest path algorithms. We test the
running times of common shortest path planning algorithms
on our test graph with 9646 vertices and 16567 edges. The
running time includes the time of querying on the virtual
graph and the time of path conversion.

A set of one thousand random one-to-one queries was gen-
erated in our virtual graph for the time measurements. Ev-
ery query in such a set has a random start vertex and a ran-
dom target vertex. For each query, several shortest-path al-
gorithms were performed. Furthermore, even the same query
using the same algorithm was executed ten times, the aver-
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Fig. 5: Running times of shortest path algorithms

age time was applied to ensure the accurate time measure-
ment.

Fig. 5 shows the running times of shortest path algo-
rithms. In comparison to the standard Dijkstra algorithm, the
heuristic algorithm A* [17] exhibits superior performance on
the virtual graph. The bi-directional approach [18] did not
achieve a speedup effect on the virtual graph. For the ma-
jority of path queries across all algorithms, the query time
is within ten milliseconds, and the average time is less than
five milliseconds. Such performance can fulfill the real-time
demands of most AGV applications.
6 Conclusion

This paper introduces a novel approach to address the
path planning problem for AGV with a steering constraint,
making it possible to specify the start and target orienta-
tions when path planning. We construct a virtual graph from
the original graph. The constructed virtual graph embeds
the steering constraint and orientation of the AGV within it.
Then, a standard shortest path algorithm can be used to query
an orientation-specific path.

This paper provides a safer and more flexible path plan-
ning approach for AGVs with a steering constraint. How-
ever, this approach significantly enlarges the scale of the
graph, potentially leading to increased time consumption
when identifying the shortest path in very large-scale graphs.
In our future research, we aim to investigate speedup tech-
niques based on our expanded virtual graphs.
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Abstract: Formation control of multi-agent systems is an extension of its consensus problem, which has been widely used in 

control science and engineering, system science, information and communication engineering and other disciplines. Compared 

with using integral-order calculus to describe the change of the state of the object, the fractional-order calculus can represent and 

reflect the real physical characteristics of the object better. In this paper, containment control problem of fractional-order 

nonlinear multi-agent systems with time delay is studied. In spite of the difficulties and challenges caused by the operator 

complex property and system delay in fractional-order calculus, this paper solves the containment control problem by 

constructing a quadratic Lyapunov function and using matrix analysis theory, graph theory and fractional Razumikhin method. 

The conditions of linear matrix inequalities for asymptotically containment control are given. Finally, numerical simulation 

results verify the effectiveness of the proposed control scheme.  

Key Words: Containment Control, Fractional-Order, Nonlinear Multi-Agent System, Time Delay 

1 Introduction 

Recently, distributed coordination of multi-agent 

systems (MAS) has gained much attention due to its broad 

applications, including consensus, flocking, and formation 

control. If MAS contains multiple leaders, it is commonly 

known as the containment control issue.  In the case of 

containment control problem, there are multiple leaders and 

followers. The containment control problem was first 

proposed by G. Ferrari-Trecate, M. Egerstedt, A. Buffa and 

M. Ji in 2006. They proposed a distributed containment

control algorithm for agents with single-integrator dynamics

such that a group of followers is driven to the convex hull

spanned by multiple leaders [1]. Subsequently, they used the

theory of partial differential equations and the STOP-GO

mixed control strategy to further clarify the containment

control problem [2]. Concurrently, J. Hu and Y. Hong used

neighborhood rules to obtain sufficient conditions for the

convergence of the swarm behavior of agents to the convex

set formed by the leaders under fixed and switching

topologies [3]. Y. Cao and W. Ren designed a distributed

tracking control algorithm to study the containment control

problem of multi-agent systems with static or dynamic

leaders, obtaining network topology conditions for

containment control under directed topology [4]. Then,

similar methods further explore the problems of asymptotic

containment control under switching directed topology and

finite-time containment control under fixed directed

topology [5].

In containment control, as the system generally has 

unknown time-varying parameters and disturbances, it is 

necessary to identify and compensate the system 

uncertainties in the controller design. On the other hand, the 

distributed containment error including neighbor 

information also makes it challenge to construct 

compensation signals and coordinate decision-making 

This work is jointly sponsored by National Natural Science Foundati-

on of China under Grant 62373071 and Natural Science Foundation of 

Chongqing, China, under Grant CSTB2023NS CQ-LZX0075. 

processes effectively. Thus, Y. Mehdi, M. Tabatabaei 

proposed a new cooperative control strategy for the 

containment control problem of fractional linear multi-agent 

systems with different orders, and obtained sufficient 

conditions for the system to achieve asymptotic stability [6]. 

Liu designed a bounded estimation method and introduced a 

fractional-order command filter into the inversion control 

method to reduce the complexity of controller design. The 

hyperbolic tangent function with time-varying integrable 

functions was ingeniously incorporated into the controller 

and compensation signal to effectively compensate the time-

varying parameters, disturbances, and filtering errors [7]. 

With the deepening of research on containment control, 

to better align with the actual laws of physical motion, the 

study of nonlinear systems is also highly valuable. X. Yuan 

investigated the containment control of fractional-order 

multi-agent systems with unknown nonlinear functions on 

directed communication topologies [8]. J. Yuan proposed an 

adaptive neural network dynamic surface controller to 

address the binary containment control problem of 

fractional-order multi-agent systems. The communication 

topology not only includes positive adjacency weights but 

also negative adjacency weights, making it more general [9]. 

Liu used neural networks to approximate unknown non-

affine functions and proposed a distributed adaptive neural 

network binary containment control method under the 

containment control structure [10]. J. Yuan studies the 

bipartite containment control problem for a class of 

fractional order nonlinear multi-agent systems in the 

presence of arbitrary switching and unmeasured states, it 

proposes an adaptive neural network dynamic surface 

controller, in which dynamic surface control technology can 

avoid “explosion of complexity” and obtain fractional 

derivatives for virtual control functions continuously [11].  

By the way, in practical applications, problems such as 

communication channel congestion, limited transmission 
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speed, and external environmental interference are often 

encountered. To reduce the burden of communication, Liu 

devises an event-triggered condition consisting of the 

control input and a decreasing function related to the 

containment errors, which can provide more design freedom 

to balance the system performance and communication 

resources, and investigates the finite-time containment 

control problem for fractional-order nonlinear multiagent 

systems with event-triggered inputs [12]. 

The existence of time delay is also inevitable and can 

interfere with the dynamic behavior of the system. Li 

investigates the containment control performance analysis 

problem for double-integrator fractional-order multi-agent 

systems with nonuniform time delays. The primary focus is 

on evaluating the containment control performance by 

calculating the explicit delay margin [13]. X. Xia 

investigates the containment control for fractional order 

multi-agent systems with nonlinearity and time delay [14]. 

On this basis, Z. Xia investigates the issue of containment 

control of multi-agent systems that are heterogeneous, 

nonlinear, and fractional-order while taking practical 

scenarios into account, such as uncertainties, unknown 

nonlinearities, time-varying state delays, and distributed 

time-varying delays [15]. To Author's knowledge, few 

researches have been done on the containment control of 

fractional-order nonlinear multi-agent systems with time 

delays. 

Inspired by the previous discussion, this paper constructs 

a quadratic Lyapunov function and utilizes matrix analysis 

theory, graph theory, and the fractional-order Razumikhin 

method to investigate the containment control problem of 

fractional-order nonlinear multi-agent systems with time 

delay. Linear matrix inequality (LMI) conditions are derived 

for the system to achieve asymptotic containment control. 

2 Preliminary Knowledge 

Consider a weighted directed graph 𝔾 = (𝕍,𝔼), where 𝕍 =

1,2,⋯ ,𝑁  represents the set of vertices corresponding to 

agents, and 𝔼 ⊂ 𝕍 × 𝕍 represents the set of directed edges, 

such that for each directed edge ℰ𝑗𝑘 = (𝑗, 𝑘) ∈ 𝔼 , which 

indicates that agent 𝑘 can receive information from agent 𝑗. 

The adjacency matrix of graph 𝔾 is defined as 𝔸 = (𝑎𝑗𝑘)𝑁×𝑁 , 

where 𝑎𝑗𝑘 > 0 if ℰ𝑘𝑗 ∈ 𝔼, and 𝑎𝑗𝑘 = 0 otherwise. It is assumed 

in this paper that there are no self-loops in the graph, i.e., 

𝑎𝑗𝑗 = 0. The Laplacian matrix of graph 𝔾 is defined as 𝕃 =

𝔻− 𝔸, where 𝔻 = diag{𝑑1, 𝑑2,⋯ , 𝑑𝑁} is a diagonal matrix with 

diagonal elements 𝑑𝑗 = ∑ 𝑎𝑗𝑘
𝑁
𝑘≠𝑗,𝑘=1 . 

There are some definitions related to fractional-order 

calculus. The Caputo fractional-order derivative plays a 

crucial role in fractional-order systems as its initial value has 

the practical signification in many problems, which has been 

widely used in some practical systems.  

Definition 1. [16] The 𝛼-order Caputo fractional derivative 

of a function 𝑥(𝑡) is defined as follows: 

 𝑡0
𝐶 𝐷𝑡

𝛼𝑥(𝑡) =
1

Γ(𝑘 − 𝛼)
∫  
𝑡

𝑡0

(𝑡 − 𝑧)𝑘−𝛼−1𝑥(𝑘)(𝑧)𝑑𝑧, 

where 𝑘 ∈ Z+: 𝑘 − 1 < 𝛼 ≤ 𝑘, Γ(𝑠) = ∫  𝑧𝑠−1𝑒−𝑧𝑑𝑧
+∞

0
. 

Consider an 𝛼-order fractional (0 < 𝛼 ≤ 1) delay system 

given by: 

 𝑡0
𝐶 𝐷𝑡

𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥𝑡),  𝑡 ≥ 𝑡0, 

where 𝑥𝑡(𝜏) = 𝑥(𝑡 + 𝜏), 𝜏 ∈ [−𝑟, 0],  the continuous function 

𝑓:R × R𝑛 → R𝑛 satisfies 𝑓(𝑡, 0) = 0. 

Lemma 1. [17] Suppose 𝑈 is an 𝑛 × 𝑛 positive definite matrix, 

and let 𝑥(𝑡) be a continuously differentiable vector function 

in R𝑛. The following inequality holds: 

 𝑡0
𝐶 𝐷𝑡

𝛼(𝑥T(𝑡)𝑈𝑥(𝑡)) ≤ 2𝑥T(𝑡)𝑈 𝑡0
𝐶 𝐷𝑡

𝛼𝑥(𝑡),  0 < 𝛼 < 1. 

Lemma 2. [18] The zero solution of fractional delayed will 

be asymptotical stability if there exist three positive real 

constants 𝜔1, 𝜔2, 𝜔3 > 0  and a quadratic Lyapunov function 

𝑉: R × R𝑛 → R satisfying: 

𝜔1 ∥ 𝑥(𝑡) ∥
2≤ 𝑉(𝑥(𝑡)) ≤ 𝜔2 ∥ 𝑥(𝑡) ∥

2, 

and its 𝛼-order derivative satisfies: 

| 𝑡0
𝐶 𝐷𝑡

𝛼𝑉(𝑥(𝑡))| ≤ −𝜔3 ∥ 𝑥(𝑡) ∥
2, 

whenever 

𝑉(𝑥(𝑡 + 𝜏)) ≤ 𝜎𝑉(𝑥(𝑡)), 𝜏 ∈ [−𝑟, 0], 

for some 𝜎 > 1. 

Lemma 3. [19] Given matrix 𝐴12  and symmetric matrix 

𝐴11, 𝐴22, the inequality: 

(
𝐴11 𝐴12
𝐴12
T 𝐴22

) < 0 

is equivalent to: 

𝐴11 < 0,  𝐴22 − 𝐴12
T 𝐴11

−1𝐴12 < 0, 

and  

𝐴22 < 0,  𝐴11 − 𝐴12𝐴22
−1𝐴12

T < 0. 

Lemma 4. [20] For any 𝜁, 𝜓 ∈ ℝ𝑛 , and 𝑊 > 0 , the 

following inequality holds: 

2𝜁𝑇𝜓 ≤ 𝜁𝑇𝑊𝜁 +𝜓𝑇𝑊−1𝜓. 

3 Problem Formulation 

Consider the MAS consisting of 𝑀 followers (denoted as 

ℱ = 1,2,⋯ ,𝑀 ) and 𝑁 −𝑀  leaders (denoted as ℒ = 𝑀 +
1,𝑀 + 2,⋯ ,𝑁). The dynamic of the agent 𝑖 (𝑖 = 1,2,⋯ , 𝑁) 
is established as:  

 𝑡0
𝐶 𝐷𝑡

𝛼𝑦𝑖(𝑡) = 𝐴𝑦𝑖(𝑡) + 𝐵𝑦𝑖(𝑡 − 𝑟) + 𝑓1(𝑡, 𝑦𝑖(𝑡))  

+ 𝑓2(𝑡, 𝑦𝑖(𝑡 − 𝑟)) + 𝑢𝑖(𝑡).                   (1) 

where 𝑦𝑖(𝑡) ∈ R
𝑛  denotes the state of agent 𝑖 , 𝛼 ∈ (0,1) is the 

fractional-order, the time delay 𝑟 ≥ 0 , 𝐴, 𝐵 ∈  R𝑛×𝑛  is the 

constant matrices, 𝑢𝑖(𝑡) ∈ R
𝑛  is the control input , and the 

nonlinear functions 𝑓𝑠(𝑡, 𝑦𝑖) satisfy 𝑓𝑠(𝑡, 0) = 0, (𝑠 = 1,2). 

Assumption 1. There exist constants ℎ1, ℎ2 > 0 and positive 

constant 𝛿1, 𝛿2,⋯ , 𝛿𝑁−𝑀, satisfying that  ∑ 𝛿𝑘 = 1
𝑁−𝑀
𝑘=1  and for any 

𝜙,𝜑𝑘 ∈ R
𝑛, it holds that 

∥∥𝑓𝑠(𝑡, 𝜙) − ∑  𝑁−𝑀
𝑘=1  𝛿𝑘𝑓𝑠(𝑡, 𝜑𝑘)∥∥ ≤ ℎ𝑠∥∥𝜙 − ∑  𝑁−𝑀

𝑘=1  𝛿𝑘𝜑𝑘∥∥, 𝑠 = 1,2. (2) 

Assumption 2. Each follower has at least one directed path 

from the leader to itself, and the information exchange 

between followers is undirected. 

Under the condition of Assumption 2, the Laplacian 

matrix of the system graph 𝔾 can be represented as: 

𝐿 = (
𝐿1 𝐿2

𝟎(𝑁−𝑀)×𝑀 𝟎(𝑁−𝑀)×(𝑁−𝑀)
).                                    (3) 
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Lemma 5. [18] If Assumption 2 holds, then 𝐿1  in the 

Laplacian matrix is an invertible M-matrix and −𝐿1
−1𝐿2 =

(𝑙𝑖𝑗)𝑀×(𝑁−𝑀)  is a non-negative matrix and the sum of the 

elements in each row is equal to 1. 
 

3.1 Containment Control without Time Delay 

The containment control protocol for agent 𝑖 is designed 

as 

{
𝑢𝑖(𝑡) = 𝐾1∑ 𝑎𝑖𝑗 (𝑦𝑗(𝑡) − 𝑦𝑖(𝑡))𝑗∈ℱ∪ℒ             𝑖 ∈ ℱ,

𝑢𝑖(𝑡) = 0                                                                 𝑖 ∈ ℒ ,    
           (4) 

where 𝐾1 is the feedback gain matrix. 

Using (1) and (4), we obtain that 

{
 
 

 
 
 𝑡0
𝐶 𝐷𝑡

𝛼𝑌ℱ = (𝐼𝑀⊗𝐴)𝑌ℱ + (𝐼𝑀⊗𝐵)𝑌ℱ(𝑡 − 𝑟) + 𝐹1(𝑡, 𝑌ℱ)

 +𝐹2(𝑡, 𝑌ℱ(𝑡 − 𝑟)) − (𝐿1⊗𝐾1)𝑌ℱ − (𝐿2⊗𝐾1)𝑌ℒ
 𝑡0
𝐶 𝐷𝑡

𝛼𝑌ℒ = (𝐼𝑁−𝑀⊗𝐴)𝑌ℒ + (𝐼𝑁−𝑀⊗𝐵)𝑌ℒ(𝑡 − 𝑟)

 +𝐹1(𝑡, 𝑌ℒ) + 𝐹2(𝑡, 𝑌ℒ(𝑡 − 𝑟)),

 (5) 

where 𝑌ℱ = (𝑦1
T(𝑡), 𝑦2

T(𝑡),⋯ , 𝑦𝑀
T (𝑡))

T
, 

𝑌ℒ = (𝑦𝑀+1
T (𝑡), 𝑦𝑀+2

T (𝑡),⋯ , 𝑦𝑁
T(𝑡))

T
, 

𝐹1(𝑡, 𝑌ℱ) = (𝑓1
T(𝑡, 𝑦1), 𝑓1

T(𝑡, 𝑦2),⋯ , 𝑓1
T(𝑡, 𝑦𝑀))

T
, 

𝐹1(𝑡, 𝑌ℒ) = (𝑓1
T(𝑡, 𝑦𝑀+1), 𝑓1

T(𝑡, 𝑦𝑀+2),⋯ , 𝑓1
T(𝑡, 𝑦𝑁))

T
, 

𝐹2(𝑡, 𝑌ℱ(𝑡 − 𝑟)) = (𝑓2
T(𝑡, 𝑦1(𝑡 − 𝑟)), 𝑓2

T(𝑡, 𝑦2(𝑡 − 𝑟)),⋯ , 

                                           𝑓2
T(𝑡, 𝑦𝑀(𝑡 − 𝑟)))

T

, 

𝐹2(𝑡, 𝑌ℒ(𝑡 − 𝑟)) = (𝑓2
T(𝑡, 𝑦𝑀+1(𝑡 − 𝑟)), 𝑓2

T(𝑡, 𝑦𝑀+2(𝑡 − 𝑟)),⋯, 

                                           𝑓2
T(𝑡, 𝑦𝑁))

T
. 

Definition 2. [20] If for ∀𝑥, 𝑦 ∈ ℍ, 0 ≤ 𝜚 ≤ 1 , we have 

(1 − 𝜚)𝑥 + 𝜚𝑦 ∈ ℍ, (ℍ ⊂ R𝑛)  is called convex set; 

𝐶𝑜{𝑥1, 𝑥2,⋯ , 𝑥𝑁−𝑀} = {∑ 𝜚𝑘𝑥𝑘
𝑁−𝑀
𝑘=1 ∣ 𝜚𝑘 ≥ 0,∑ 𝜚𝑘

𝑁−𝑀
𝑘=1 = 1} is the 

minimum convex hull that contains 𝑥1, 𝑥2,⋯ , 𝑥𝑁−𝑀 ∈ R𝑛. 
Define the state error Ψ(𝑡) = 𝑌ℱ − (−𝐿1

−1𝐿2⊗ 𝐼𝑛)𝑌ℒ , taking 

the 𝛼-order derivative on both sides, we have: 

 𝑡0
𝐶 𝐷𝑡

𝛼Ψ(𝑡) = (𝐼𝑀⊗𝐴)Ψ(𝑡) + (𝐼𝑀⊗𝐵)Ψ(𝑡 − 𝑟) − (𝐿1⊗𝐾1)Ψ(𝑡)

 +𝐹1(𝑡, 𝑌ℱ) + (𝐿1
−1𝐿2⊗ 𝐼𝑛)𝐹1(𝑡, 𝑌ℒ)

 +𝐹2(𝑡, 𝑌ℱ(𝑡 − 𝑟)) + (𝐿1
−1𝐿2⊗ 𝐼𝑛)𝐹2(𝑡, 𝑌ℒ(𝑡 − 𝑟)).

(6) 

Theorem 1. If the Assumptions 1,2 hold and there are 

positive constants 𝜀, 𝜂, 𝜇  and symmetric positive-definite 

matrix 𝑃 ∈ R𝑛×𝑛 satisfies the flowing equation, 

(
Ω11 𝐼𝑀⊗ (𝑃𝐵)

𝐼𝑀⊗ (𝐵T𝑃) 𝐼𝑀 ⊗(
ℎ2
2

𝜂
𝐼𝑛 − 𝜇𝑃)

) < 0,                        (7) 

where Ω11 = 𝐼𝑀⊗(𝑃𝐴 + 𝐴T𝑃 + (𝜀 + 𝜂)𝑃2 +
ℎ1
2

𝜀
𝐼𝑛 + 𝜇𝑃) −

𝐿1⊗ (𝑃𝐾1 + 𝐾1
T𝑃) . Then, the containment control of the 

system can be implemented. 

   Proof: Choose a quadratic Lyapunov function: 

𝑉(𝑡) = ΨT(𝑡)(𝐼𝑀⊗𝑃)Ψ(𝑡). 

According to Lemma 1, the 𝛼 −fractional derivative of 

𝑉(𝑡) along the system is calculated as: 

 𝑡0
𝐶 𝐷𝑡

𝛼𝑉(𝑡) ≤ 2ΨT(𝑡)(𝐼𝑀⊗𝑃)𝑡0
𝐶 𝐷𝑡

𝛼Ψ(𝑡)                                                              

  

      = 2ΨT(𝑡)(𝐼𝑀⊗𝑃𝐴)Ψ(𝑡) + 2ΨT(𝑡)(𝐼𝑀⊗𝑃𝐵)Ψ(𝑡 − 𝑟)

                −2ΨT(𝑡)(𝐿1⊗𝑃𝐾1)Ψ(𝑡) + 2Ψ
T(𝑡)(𝐼𝑀⊗𝑃)[𝐹1(𝑡, 𝑌ℱ)

  
 +(𝐿1

−1𝐿2⊗ 𝐼𝑛)(𝐹1(𝑡, 𝑌ℒ))] + 2Ψ
T(𝑡)(𝐼𝑀⊗𝑃)  

             [𝐹2(𝑡, 𝑌ℱ(𝑡 − 𝑟)) + (𝐿1
−1𝐿2⊗ 𝐼𝑛) (𝐹2(𝑡, 𝑌ℒ(𝑡 − 𝑟)))] .

 

(8) 

By Lemma 5, for any 𝜀, 𝜂 > 0, it holds: 

2ΨT(𝑡)(𝐼𝑀⊗𝑃)[𝐹1(𝑡, 𝑌ℱ) + (𝐿1
−1𝐿2⊗ 𝐼𝑛)(𝐹1(𝑡, 𝑌ℒ))]

        ≤
1

𝜀
[𝐹1(𝑡, 𝑌ℱ) + (𝐿1

−1𝐿2⊗ 𝐼𝑛)𝐹1(𝑡, 𝑌ℒ)]
T

     [𝐹1(𝑡, 𝑌ℱ) + (𝐿1
−1𝐿2⊗ 𝐼𝑛)𝐹1(𝑡, 𝑌ℒ)]   

                +𝜀ΨT(𝑡)(𝐼𝑀⊗𝑃2)Ψ(𝑡),                               

                   (9) 

and 

2ΨT(𝑡)(𝐼𝑀⊗𝑃) [𝐹2(𝑡, 𝑌ℱ(𝑡 − 𝑟)) + (𝐿1
−1𝐿2⊗ 𝐼𝑛) (𝐹2(𝑡, 𝑌ℒ(𝑡 − 𝑟)))]

        ≤ 𝜂ΨT(𝑡)(𝐼𝑀⊗𝑃2)Ψ(𝑡)                                                             

 
             +

1

𝜂
[𝐹2(𝑡, 𝑌ℱ(𝑡 − 𝑟)) + (𝐿1

−1𝐿2⊗ 𝐼𝑛)𝐹2(𝑡, 𝑌ℒ(𝑡 − 𝑟))]
T

              ∗ [𝐹2(𝑡, 𝑌ℱ(𝑡 − 𝑟)) + (𝐿1
−1𝐿2⊗ 𝐼𝑛)𝐹2(𝑡, 𝑌ℒ(𝑡 − 𝑟))].     

  

 

(10) 

By Assumption 1, we have 

[𝐹𝑗(𝑡, 𝑌ℱ) − (−𝐿1
−1𝐿2⊗ 𝐼𝑛)𝐹𝑗(𝑡, 𝑌ℒ)]

T
[𝐹𝑗(𝑡, 𝑌ℱ) − (−𝐿1

−1𝐿2⊗ 𝐼𝑛)𝐹𝑗(𝑡, 𝑌ℒ)]

= ([𝑓𝑗(𝑡, 𝑦1) − ∑  

𝑁−𝑀

𝑢=1

  𝑙1𝑢𝑓𝑗(𝑡, 𝑦𝑀+𝑢)]

T

, ⋯ , [𝑓𝑗(𝑡, 𝑦𝑀) − ∑  

𝑁−𝑀

𝑢=1

  𝑙𝑀𝑢𝑓𝑗(𝑡, 𝑦𝑀+𝑢)]

T

)

([𝑓𝑗(𝑡, 𝑦1) − ∑  

𝑁−𝑀

𝑢=1

  𝑙1𝑢𝑓𝑗(𝑡, 𝑦𝑀+𝑢)]

T

, ⋯ , [𝑓𝑗(𝑡, 𝑦𝑀) − ∑  

𝑁−𝑀

𝑢=1

  𝑙𝑀𝑢𝑓𝑗(𝑡, 𝑦𝑀+𝑢)]

T

)

T

≤ ℎ𝑗
2(𝑌ℱ − (−𝐿1

−1𝐿2⊗ 𝐼𝑛)𝑌ℒ)
T(𝑌ℱ − (−𝐿1

−1𝐿2⊗ 𝐼𝑛)𝑌ℒ)

= ℎ𝑗
2ΨT(𝑡)Ψ(𝑡).  (𝑗 = 1,2)

 

(11) 

From equations (8) to (11), it can be concluded that  

 𝑡0
𝐶 𝐷𝑡

𝛼𝑉(𝑡) ≤ ΨT(𝑡)[𝐼𝑀⊗ (𝑃𝐴+ 𝐴T𝑃)]Ψ(𝑡) + ΨT(𝑡)(𝐼𝑀⊗𝑃𝐵)Ψ(𝑡 − 𝑟)

+ΨT(𝑡 − 𝑟)(𝐼𝑀⊗𝐵T𝑃)Ψ(𝑡)        

−ΨT(𝑡)[𝐿1⊗ (𝑃𝐾1 + 𝐾1
T𝑃)]Ψ(𝑡)

                     

+𝜀ΨT(𝑡)(𝐼𝑀⊗𝑃2)Ψ(𝑡) +
ℎ1
2

𝜀
ΨT(𝑡)Ψ(𝑡)       

               +𝜂ΨT(𝑡)(𝐼𝑀⊗𝑃2)Ψ(𝑡) +
ℎ2
2

𝜂
ΨT(𝑡)(𝑡 − 𝑟)Ψ(𝑡 − 𝑟).

 

(12) 

Whenever it satisfies that  

𝑉(Ψ(𝑡 + 𝜏)) ≤ 𝜎𝑉(Ψ(𝑡)), 𝜏 ∈ [−𝑟, 0], 

i.e. 

0 ≤ 𝜎ΨT(𝑡)(𝐼𝑀⊗𝑃)Ψ(𝑡) − ΨT(𝑡 − 𝑟)(𝐼𝑀⊗𝑃)Ψ(𝑡 − 𝑟).      (13) 

For some 𝜎 > 1 , we have for any 𝜇 > 0 

 𝑡0
𝐶 𝐷𝑡

𝛼𝑉(𝑡) ≤ ΨT(𝑡)[𝐼𝑀⊗ (𝑃𝐴+ 𝐴T𝑃) − 𝐿1⊗ (𝑃𝐾1 + 𝐾1
T𝑃)]Ψ(𝑡)

+ΨT(𝑡)(𝐼𝑀⊗𝑃𝐵)Ψ(𝑡 − 𝑟) + ΨT(𝑡 − 𝑟)(𝐼𝑀⊗𝐵T𝑃)Ψ(𝑡)

+𝜀ΨT(𝑡)(𝐼𝑀⊗𝑃2)Ψ(𝑡) +
ℎ1
2

𝜀
ΨT(𝑡)(𝐼𝑀⊗ 𝐼𝑛)Ψ(𝑡)

+𝜂ΨT(𝑡)(𝐼𝑀⊗𝑃2)Ψ(𝑡) +
ℎ2
2

𝜂
ΨT(𝑡 − 𝑟)Ψ(𝑡 − 𝑟)

+𝜇[𝜎ΨT(𝑡)(𝐼𝑀⊗𝑃)Ψ(𝑡) − ΨT(𝑡 − 𝑟)(𝐼𝑀⊗𝑃)Ψ(𝑡 − 𝑟)]

= 𝛿T(𝑡)(

Ω11
∗ 𝐼𝑀⊗ (𝑃𝐵)

𝐼𝑀⊗ (𝐵T𝑃) 𝐼𝑀 ⊗(
ℎ2
2

𝜂
𝐼𝑛 − 𝜇𝑃)

)𝛿(𝑡).

 

(14) 

where 𝛿T(𝑡) = (ΨT(𝑡),ΨT(𝑡 − 𝑟)), Ω11
∗ = 𝐼𝑀⊗(𝑃𝐴 + 𝐴T𝑃 + (𝜀 +

𝜂)𝑃2 +
ℎ1
2

𝜀
𝐼𝑛 + 𝜇𝜎𝑃) − 𝐿1⊗ (𝑃𝐾1 +𝐾1

T𝑃). 

      By equations (7), it can be obtained that for a 

sufficiently small 𝜔 > 0, 𝜎 = 𝜔 + 1, we have : 

(

Ω11
∗ 𝐼𝑀⊗ (𝑃𝐵)

𝐼𝑀⊗ (𝐵T𝑃) 𝐼𝑀⊗(
ℎ2
2

𝜂
𝐼𝑛 − 𝜇𝑃)

) < 0. 

Therefore, according to Lemma 2, if the system is 

asymptotically stable, then 

462  



∥∥𝑌ℱ − (−𝐿1
−1𝐿2⊗ 𝐼𝑛)𝑌ℒ∥∥ ⟶ 0,  (𝑡 → ∞), 

the containment control of the system (1) is implemented 

under the protocol (4). 

Corollary 1. If Assumptions 1,2 holds and there are positive 

constants 𝜀, 𝜂, 𝜇 and symmetric positive-definite matrix 𝑃 ∈

R𝑛×𝑛 satisfying the flowing equation, 

(

Π11 0

0 𝐼𝑀⊗(
ℎ2
2

𝜂
𝐼𝑛 − 𝜇𝑃 +

1

𝜉
𝑃𝐵𝐵T𝑃)

) < 0. 

where Π11 = 𝐼𝑀⊗(𝑃𝐴 + 𝐴T𝑃 + (𝜀 + 𝜂)𝑃2 + (
ℎ1
2

𝜀
+ 𝜉) 𝐼𝑛 + 𝜇𝑃) −

𝐿1⊗ (𝑃𝐾1 +𝐾1
T𝑃). Then, the containment control of the system 

(1) can be implemented. 

3.2 Containment Control with Time Delay 

The containment control protocol with time delay for 

agent 𝑖 is designed as 

{
𝑢𝑖(𝑡) = 𝐾2  ∑ 𝑎𝑖𝑗 (𝑦𝑗(𝑡 − 𝑟) − 𝑦𝑖(𝑡 − 𝑟))𝑗∈ℱ∪ℒ    𝑖 ∈ ℱ,

𝑢𝑖(𝑡) = 0                                                                        𝑖 ∈ ℒ ,
        (15) 

where 𝐾2 is the feedback gain matrix. 

Using (1), (15), we obtain 

{
 
 

 
 
 𝑡0
𝐶 𝐷𝑡

𝛼𝑌ℱ = (𝐼𝑀⊗𝐴)𝑌ℱ + (𝐼𝑀⊗𝐵)𝑌ℱ(𝑡 − 𝑟) + 𝐹1(𝑡, 𝑌𝐹)

+𝐹2(𝑡, 𝑌ℱ(𝑡 − 𝑟)) − (𝐿1⊗𝐾2)𝑌ℱ(𝑡 − 𝑟)

−(𝐿2⊗𝐾2)𝑌ℒ(𝑡 − 𝑟)                                    

 𝑡0
𝐶 𝐷𝑡

𝛼𝑌ℒ = (𝐼𝑁−𝑀⊗𝐴)𝑌ℒ + (𝐼𝑁−𝑀⊗𝐵)𝑌ℒ(𝑡 − 𝑟)

+𝐹1(𝑡, 𝑌ℒ) + 𝐹2(𝑡, 𝑌ℒ(𝑡 − 𝑟)),

 (16) 

Define the same state error Ψ(𝑡) = 𝑌ℱ − (−𝐿1
−1𝐿2⊗ 𝐼𝑛)𝑌ℒ , 

we have 

 𝑡0
𝐶 𝐷𝑡

𝛼Ψ(𝑡) = (𝐼𝑀⊗𝐴)Ψ(𝑡) + (𝐼𝑀⊗𝐵)Ψ(𝑡 − 𝑟) − (𝐿1⊗𝐾2)Ψ(𝑡 − 𝑟)

 +𝐹1(𝑡, 𝑌ℱ) + 𝐹2(𝑡, 𝑌ℱ(𝑡 − 𝑟)) + (𝐿1
−1𝐿2⊗ 𝐼𝑛)𝐹1(𝑡, 𝑌ℒ)

 +(𝐿1
−1𝐿2⊗ 𝐼𝑛)𝐹2(𝑡, 𝑌ℒ(𝑡 − 𝑟)).

 

(17) 

Theorem 2. If the Assumptions 1,2 hold and there are 

positive constants 𝜀, 𝜂, 𝜇  and symmetric positive-definite 

matrix 𝑃 ∈ R𝑛×𝑛 satisfying the flowing equation 

(
Φ11 𝐼𝑀⊗ (𝑃𝐵) − 𝐿1⊗ (𝑃𝐾2)

𝐼𝑀⊗ (𝐵T𝑃) − 𝐿1⊗ (𝐾2
T𝑃) 𝐼𝑀⊗(

ℎ2
2

𝜂
𝐼𝑛 − 𝜇𝑃)

) < 0.  (18) 

where Φ11 = 𝐼𝑀⊗(𝑃𝐴 + 𝐴T𝑃 + (𝜀 + 𝜂)𝑃2 +
ℎ1
2

𝜀
𝐼𝑛 + 𝜇𝑃).  

Then, the containment control of the system can be 

implemented. 

Proof. Choose a quadratic Lyapunov function: 

𝑉(𝑡) = ΨT(𝑡)(𝐼𝑀⊗𝑃)Ψ(𝑡), 

According to Lemma 1, the 𝛼-fractional derivative of  𝑉(𝑡) 

is calculated as: 

 𝑡0
𝐶 𝐷𝑡

𝛼𝑉(𝑡) ≤ 2ΨT(𝑡)(𝐼𝑀⊗𝑃)𝑡0
𝐶 𝐷𝑡

𝛼Ψ(𝑡)

= 2ΨT(𝑡)(𝐼𝑀⊗𝑃𝐴)Ψ(𝑡) + 2ΨT(𝑡)(𝐼𝑀⊗𝑃𝐵)Ψ(𝑡 − 𝑟)

−2ΨT(𝑡)(𝐿1⊗𝑃𝐾2)Ψ(𝑡 − 𝑟)

+2ΨT(𝑡)(𝐼𝑀⊗𝑃)[𝐹1(𝑡, 𝑌ℱ) + (𝐿1
−1𝐿2⊗ 𝐼𝑛)(𝐹1(𝑡, 𝑌ℒ))]

+2ΨT(𝑡)(𝐼𝑀⊗𝑃)[𝐹2(𝑡, 𝑌ℱ(𝑡 − 𝑟))

+(𝐿1
−1𝐿2⊗ 𝐼𝑛) (𝐹2(𝑡, 𝑌ℒ(𝑡 − 𝑟)))] .

 

(19) 

By equations (9-11) and (19), we obtain 

 𝑡0
𝐶 𝐷𝑡

𝛼𝑉(𝑡) ≤ ΨT(𝑡)[𝐼𝑀⊗ (𝑃𝐴+ 𝐴T𝑃)]Ψ(𝑡) + ΨT(𝑡)(𝐼𝑀⊗𝑃𝐵)Ψ(𝑡 − 𝑟)

 +ΨT(𝑡 − 𝑟)(𝐼𝑀⊗𝐵T𝑃)Ψ(𝑡) − ΨT(𝑡)(𝐿1⊗𝑃𝐾2)Ψ(𝑡 − 𝑟)

 −ΨT(𝑡 − 𝑟)(𝐿1⊗𝐾2
T𝑃)Ψ(𝑡) + 𝜀ΨT(𝑡)(𝐼𝑀⊗𝑃2)Ψ(𝑡)

+
ℎ1
2

𝜀
ΨT(𝑡)Ψ(𝑡) + 𝜂ΨT(𝑡)(𝐼𝑀⊗𝑃2)Ψ(𝑡) 

 +
ℎ2
2

𝜂
ΨT(𝑡 − 𝑟)Ψ(𝑡 − 𝑟),                                  

   

(20) 

Whenever 

0 ≤ 𝜎ΨT(𝑡)(𝐼𝑀⊗𝑃)Ψ(𝑡) − ΨT(𝑡 − 𝑟)(𝐼𝑀⊗𝑃)Ψ(𝑡 − 𝑟),       (21) 

for some 𝜎 > 1 , we have for any 𝜇 > 0 

 𝑡0
𝐶 𝐷𝑡

𝛼𝑉(𝑡) ≤ ΨT(𝑡)[𝐼𝑀⊗ (𝑃𝐴+ 𝐴T𝑃)]Ψ(𝑡) + ΨT(𝑡)(𝐼𝑀⊗𝑃𝐵)Ψ(𝑡 − 𝑟)

                         +ΨT(𝑡 − 𝑟)(𝐼𝑀⊗𝐵T𝑃)Ψ(𝑡) − ΨT(𝑡)(𝐿1⊗𝑃𝐾2)Ψ(𝑡 − 𝑟)

                  −ΨT(𝑡 − 𝑟)(𝐿1⊗𝐾2
T𝑃)Ψ(𝑡) + 𝜀ΨT(𝑡)(𝐼𝑀⊗𝑃2)Ψ(𝑡)

         
+
ℎ1
2

𝜀
ΨT(𝑡)Ψ(𝑡) + 𝜂ΨT(𝑡)(𝐼𝑀⊗𝑃2)Ψ(𝑡) 

+
ℎ2
2

𝜂
ΨT(𝑡 − 𝑟)Ψ(𝑡 − 𝑟)                                  

                

                        +𝜇[𝜎ΨT(𝑡)(𝐼𝑀⊗𝑃)Ψ(𝑡) − ΨT(𝑡 − 𝑟)(𝐼𝑀⊗𝑃)Ψ(𝑡 − 𝑟)]

= 𝛿T(𝑡)(
Φ11
∗ Δ

ΔT 𝐼𝑀⊗(
ℎ2
2

𝜂
𝐼𝑛 − 𝜇𝑃)

)𝛿(𝑡),                   

(22) 

where 𝛿T(𝑡) = (ΨT(𝑡), ΨT(𝑡 − 𝑟)) ,Φ11
∗ = 𝐼𝑀⊗(𝑃𝐴 + 𝐴T𝑃 +

(𝜀 + 𝜂)𝑃2 +
ℎ1
2

𝜀
𝐼𝑛 + 𝜇𝜎𝑃) , Δ = 𝐼𝑀⊗ (𝑃𝐵) − 𝐿1⊗ (𝑃𝐾2). 

It can be obtained that for a sufficiently small 𝜔 > 0, 𝜎 =
𝜔 + 1, we have:  

(

Φ11
∗ 𝐼𝑀⊗ (𝑃𝐵) − 𝐿1⊗ (𝑃𝐾2)

𝐼𝑀⊗ (𝐵T𝑃) − 𝐿1⊗ (𝐾2
T𝑃) 𝐼𝑀 ⊗(

ℎ2
2

𝜂
𝐼𝑛 − 𝜇𝑃)

) < 0. 

Therefore, according to Lemma 2, if the system is 

asymptotically stable. The containment control of the system 

(1) is implemented under the protocol (15). 

4 Simulation 

Consider the MAS consisting of three followers and two 

leaders.  The communication topology of the system is 

depicted in Fig. 1, from which we can get the Laplacian 

block matrix as 

𝐿1 = (
3 −1.5 −0.6

−1.5 2 0
−0.6 0 2

) ,  𝐿2 = (
−0.9 0
−0.5 0
0 −1.4

) .           (23) 

 

Fig. 1: Topology diagram of the system (1) 
 

Assume that 𝐴 = ( −6 −0.2
−0.5 −7

) ,𝐵 = (
−1 1
1 1.5

), 

𝑦𝑖(𝑡) = (𝑦𝑖
1(𝑡), 𝑦𝑖

2(𝑡))
T
, 

𝑓1(𝑡, 𝑦𝑖(𝑡)) = (𝑦𝑖
1(𝑡) sin 𝑡 , 𝑦𝑖

2(𝑡) sin 𝑡)T, 

𝑓2(𝑡, 𝑦𝑖(𝑡 − 𝑟)) = (
1

2
𝑦𝑖
1(𝑡 − 𝑟) sin 𝑡 ,

1

2
𝑦𝑖
2(𝑡 − 𝑟) sin 𝑡)

T

. 
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From (2), we can select ℎ1 = 1, ℎ2 =
1

2
.  

We choose 𝑃 = (
1 0
0 1

), and 𝜂 = 4, 𝜇 = 3, 𝜉 = 2 to satisfy 
ℎ2
2

𝜂
𝐼𝑛 −

𝜇𝑃 +
1

𝜉
𝑃𝐵𝐵T𝑃 = (

−1.375 0.25
0.25 −0.75

) < 0. And then, we choose 𝜀 =

2, and 𝐾1 = (
2 1
2 4

) to satisfy 

Π11 =

(

  
 

−12.5 −9.7 6.0 4.5 2.4 1.8
−9.7 −26.5 4.5 12.0 1.8 4.8
6.0 4.5 −8.5 −6.7 0 0
4.5 12.0 −6.7 −18.5 0 0
2.4 1.8 0 0 −8.5 −6.7
1.8 4.8 0 0 −6.7 −18.5)

  
 
< 0. 

Therefore, according to Theorem 1, it can be concluded that 

the containment control of system (1) can be achieved under 

protocol (4). Let 𝛼 = 0.6, 𝑟 = 0.5, Ψ(𝑡) = (Ψ11(𝑡),Ψ12(𝑡),Ψ21(𝑡), 

Ψ22(𝑡),Ψ31(𝑡),Ψ32(𝑡))
T. The error curve is shown in Fig. 2. The 

state trajectories of agents are shown in Fig. 3. 

Choose 𝑃 = (
1 0
0 1

), and 𝜂 = 1, 𝜇 = 2 to satisfy  
ℎ2
2

𝜂
𝐼𝑛 − 𝜇𝑃 < 0. 

We can see that Φ11 < 0. And then, we can choose 𝜀 = 2, and 

𝐾2 = (
−0.33 0.5
0.5 −0.01

) to satisfy 

Φ11 − [𝐼𝑀⊗ (𝑃𝐵) − 𝐿1⊗ (𝑃𝐾2)] [𝐼𝑀⊗(
ℎ2
2

𝜂
𝐼𝑛 − 𝜇𝑃)]

−1

∗ [𝐼𝑀⊗ (𝐵T𝑃) − 𝐿1⊗ (𝐾2
T𝑃)] =

 

(

  
 

−5.8218 −1.3878 −0.1153 0.6514 −0.0461 0.2606
−1.3878 −6.6465 0.6514 −0.2404 0.2606 −0.0962
−0.1153 0.6514 −5.9725 −0.9186 0.1846 −0.0874
0.6514 −0.2404 −0.9186 −6.8582 −0.0874 0.1286
−0.0461 0.2606 0.1846 −0.0874 −6.3601 −0.7350
0.2606 −0.0962 −0.0874 0.1286 −0.7350 −7.1283)

  
 

< 0. 

Therefore, according to Theorem 2, it can be concluded that 

the containment control of system (1) can be achieved under 

protocol (4). Let 𝛼 = 0.6, 𝑟 = 0.5. The error curve is shown in 

Fig. 4. The state trajectories of agents are shown in Fig. 5. 

 

 

Fig. 2: The error of system (1) under protocol (4) 

 

Fig. 3: The state trajectories of system (1) under protocol (4) 

 

 

Fig. 4: The error of system (1) under protocol (15) 

 

Fig. 5: The state trajectories of system (1) under protocol (15) 

5 Conclusion 

In this work, we have addressed the containment control 

problem of fractional-order multi-agent systems with 

fractional orders lying between zero and one. By constructing 

a quadratic Lyapunov function and utilizing matrix analysis 

theory, graph theory and the fractional-order Razumikhin 
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method, we obtain the linear matrix inequality conditions that 

ensure asymptotically containment control of the system. The 

proposed method effectively addresses the challenges posed 

by delays and fractional-order derivatives. 
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Attack
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Abstract: Decentralized deep learning improves upon centralized methods by reducing failure risks but faces challenges from
Byzantine attacks that can disrupt model integrity. In Byzantine defense models, the main approach is to rank neighboring node
scores, which places strict demands on network topology.

This paper proposes a Dual Filtering based Parameter Aggregation Rule (DF-PAR). It primarily focuses on the parameter
cosine similarity and distance, employing predefined thresholds to filter out the outliers. Additionally, an evaluation mechanism
rooted in the credibility of historical information is introduced to determine the weight value of each node. Eventually, the
impact of the suspicious node is gradually reduced and eliminated. The experimental results demonstrate the algorithm’s ability
and convergence even when some benign nodes are surrounded by Byzantine nodes.

Key Words: Decentralized deep learning, Byzantine Attack, Smart grid

1 Introduction

The past decade has seen a significant expansion in the
volume of daily data. In response, distributed learning (DL)
has emerged as a natural solution, allowing entities from di-
verse domains to collaboratively train a global model. In
smart grids, DL efficiently handles the large and complex
data generated by various energy sources, enabling real-time
insights and decision-making. It facilitates predictive mod-
eling and forecasting, improving grid stability and optimiz-
ing energy usage. Furthermore, it enhances grid resilience
through real-time monitoring and early fault detection. It
also supports the integration of distributed energy resources,
contributing to renewable energy integration and grid opti-
mization.

Nevertheless, there is a concern that certain entities might
introduce malicious data [1] due to unpredictable internal
faults or potentially hostile operating environments. Re-
search in [2, 3] has demonstrated that even a single Byzan-
tine worker can significantly compromise the performance of
DL algorithms, employing relatively straightforward tactics.
Consequently, a key challenge in Byzantine-resilient dis-
tributed learning lies in the pursuit of an accurate model that
ensures minimal computational costs in the presence of un-
known Byzantine workers. In fact, almost all current Byzan-
tine defense models are constrained by topological connec-
tivity. For instance, the BRIDGE method [4] requires that
the amount of each benign node’s benign neighbors should
outnumber its Byzantine neighbors; while Bulyan [5] de-
mands more than three times as many benign neighbors as
the Byzantine ones. At present, there is not any method ca-
pable of effectively mitigating the robust defense effect when
a benign node finds itself surrounded by Byzantine nodes.

To tackle the aforementioned challenges, this paper
presents a novel algorithm, named Dual Filtering based Pa-
rameter Aggregation Rule (DF-PAR). The objective is to en-
able workers to perform DL by aggregating parameters from

This work is supported by grants from Science and Tech-
nology on Space Intelligent Control Laboratory under Grant No.
HTKJ2022KL502016.

trustworthy neighboring nodes. The primary emphasis is
placed on the parameter cosine similarity and distance, uti-
lizing predefined thresholds to filter out the outliers. Further-
more, an evaluation mechanism based on the credibility of
historical information is introduced to determine the weight
value of each node. Consequently, the impact of suspicious
neighbors is gradually mitigated through the reduction of
their individual weights. The proposed algorithm exhibits
exceptional performance in the face of diverse Byzantine at-
tacks, surpassing other existing defense models. This superi-
ority remains evident even in situations where certain benign
nodes find themselves surrounded by Byzantine nodes.
2 Related Work

The fundamental objective of distributed learning (DL) is
to recognize Byzantine nodes responsible for model training
within the cohort of remaining benign nodes. Broadly, the
criteria for selection can be categorized into distance-based
methods and performance-based methods.

In distance-based approaches, the server evaluates indi-
vidual workers based on the vector distance of their re-
spective gradients. Blanchard et al. introduced Krum [3],
which selects a gradient of the least squared distance from its
neighbor as the aggregate gradient. In an effort to enhance
performance, a method termed ’Bulyan’ [5] was proposed,
which combines Krum and median-based aggregation rules
to aggregate submitted gradients by discarding the extremes.
However, despite their effectiveness in achieving a high suc-
cess rate, these methods are vulnerable to state-of-the-art at-
tack techniques such as ’A Little is Enough’ [6] and ’Fall
of Empires’ [7]. These attacks manipulate the gradient to
closely resemble that of a benign node, making them chal-
lenging to detect. To address these challenges, El-Mhamdi
et al. [8] aggregated all worker gradient estimations using
multiple aggregation rules and employed a contraction argu-
ment to demonstrate performance from a theoretical stand-
point. Hou et al. [9] evaluated the long-term performance
of each adjacent node and incrementally mitigated the in-
fluence of suspicious nodes. However, despite these efforts,
complete elimination of the topology requirements could not
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be achieved.
In a performance-based approach, the server evaluates the

model performance for each worker with an additional val-
idation dataset. Xie et al. ranked candidate gradients based
on estimates of loss function decline and then aggregated
the candidates with the highest scores [10]. Pan et al. in-
troduced reinforcement learning techniques to learn power-
ful algorithms for Byzantine attacks for gradient aggregation
agents, leveraging historical interactions with workers [11].
Guo et al. [12] implemented a two-step algorithm to con-
struct a candidate pool of potentially benign nodes through
a distance-based approach. Subsequently, a performance-
based mechanism was employed to select the final nodes
for estimating updates. Generative Adversarial Networks
(GANs) have also been employed to tackle high-dimensional
robust statistics problems [13]. Overall, the performance-
based approach exhibits a relatively high Byzantine node
recognition rate, and unfortunately they face high computa-
tional complexity in terms of loss function computation per
iteration.

It is noteworthy that the majority of current defense meth-
ods impose strict limitations on the number of malicious
nodes in the network topology. Specifically, in scenarios
where a benign node is surrounded by Byzantine nodes,
there is currently no method capable of achieving a robust
defense effect.

3 Preliminary

3.1 Topology and Byzantine Worker
A system consisting of n nodes is represented by a di-

rected graph G = (V,E), where V = {1, 2, · · · , n} denotes
the set of nodes, and E denotes the subset of V × V repre-
senting the set of edges. A node j is considered a neighbor
of node i if and only if node i can receive information from
node j, denoted by (j, i) ∈ E. Consequently, the set of
neighbors of node i can be defined as Ni = {j | (j, i) ∈ E}.
The terms network and topology, as well as worker and node,
are used interchangeably.

In the presence of Byzantine attacks, the parameter update
may be replaced with an arbitrary value, potentially causing
a decline in the accuracy and convergence rate of the global
model. In DL, a worker is deemed a benign worker if it
successfully completes all tasks without any fault and trans-
mits intended update to the neighbors. Otherwise, it is called
Byzantine worker.

3.2 Model Training
In decentralized DL, our goal is to train a model coop-

eratively by optimizing loss function with all the n nodes.
Specifically, for each node i, its optimization goal is de-
scribed as

min
θ̃

Eξi∼Dl(θ̃, ξi) (1)

where l(θ̃, ξi) represents the loss function of node i, with θ̃
representing the aggregated parameters. Let D and ξi denote
the global dataset and the local dataset, respectively, ran-
domly sampled either partially or entirely from the global
dataset of a given node i. Then we give the following as-
sumption.

Assumption 1 The local dataset ξi, sampled from the
global dataset D, on each node i is independent and identi-
cally distributed (i.i.d).

4 Main Result

In this section, we introduce the proposed Dual Filtering
based Parameter Aggregation Rule (DF-PAR), a Byzantine-
tolerant algorithm, to evaluate each neighboring worker in
a decentralized model. Specifically, unlike the existing de-
fense model that ranks neighbor nodes by distance or spe-
cially designed score value at each iteration, we first use co-
sine similarity to exclude parameters with large deviation an-
gles, and then use an instant score to exclude suspicious val-
ues from parameter distance. Following, in order to deter-
mine the corresponding weights, an evaluation mechanism
based on the credibility of historical information is intro-
duced.

4.1 Algorithm
4.1.1 Step 1:

During model learning, each worker continuously re-
ceives parameters x from their neighbors. At the kth iter-
ation, for each node i and its neighbor j, we first calculate
the cosine similarity sij :

sij(k) =
xj(k)− θi(k)

∥xj(k)∥ · ∥θi(k)∥
(2)

which varies between [−1, 1] and θ is its own value. When
the two vectors are similar, the remaining chord similarity is
closer to 1. Specifically, vector cosine similarity perpendic-
ular to each other is 0, while vector cosine similarity is -1 in
the exact opposite direction.

In the following, the function f(|xj(k) − θi(k)|) is used
to calculate the instant reward rij . Since we utilize an i.i.d.
dataset, the parameters of the benign nodes should tend to
be similar. Therefore, when the parameters of the two nodes
are quite different, a relatively smaller value is expected. At
this point, we naturally design the function as inversely pro-
portional. Specifically,

rij(k) = e−1000|xj(k)−θi(k)| (3)

4.1.2 Step 2:

The cosine similarity sij and the instant reward rij ob-
tained in step 1 are thresholded, in other words, we set a
threshold for each of these two values, and when they are
less than this threshold, the node can be judged as a Byzan-
tine node. As the initial training phase involves a significant
degree of randomness, we allocate a weight, denoted as ωij ,
to Byzantine nodes. This weight diminishes in magnitude in
accordance with the number of iterations.

4.1.3 Step 3:

In order to filter the remaining set of nodes denoted as M ,
it is necessary to compute the historical-based confidence,
here referred to as Q, for each node within the set. Q in-
corporates all the relevant historical information pertaining
to the relationship between twp neighbors. Naturally, nodes
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that are closer to node i are associated with higher confi-
dence values in Q. Subsequently, different weights are as-
signed to the neighboring nodes based on their respective
Q values. This process not only facilitates the exclusion of
neighbors with superior performance, but also expedites sys-
tem convergence.

4.2 Analysis
4.2.1 Cosine Similarity Setting:

We introduce the concept of cosine similarity into the al-
gorithm. When we talk about the cosine similarity between
two vectors, we are actually measuring the similarity of the
angles between them. Cosine similarity is a method of quan-
tifying the similarity between two vectors by calculating the
cosine value of the angle between them. Many existing at-
tack methods are no longer concerned with changing the size
of the parameters, but are more focused on changing the gra-
dient direction of the Byzantine node, since what really mat-
ters about the gradient descent algorithm is the direction of
the descent. Therefore, such an attack makes the bounded
distance between the aggregate value and the real gradient
guaranteed by the prior art insufficient to resist the inner
product operation attack. Therefore, we use the concept of
cosine similarity to distinguish these Byzantine nodes.

4.2.2 Topology Constraints:

Most of the current defense methods use the method of
ranking neighbors in each round to select the better nodes,
so that they have strict constraints on neighbor nodes and
topology. That is, at least one neighbor of node i should be
a benign worker.

Suppose there is any benign node and its neighbors are all
Byzantine nodes, then these methods can only pick out the
Byzantine nodes as candidates. In the case where there exists
a benign node surrounded by exclusively malicious neigh-
bors, these methods are capable of solely identifying the ma-
licious nodes as potential candidates. Instead, we use a dou-
ble filtering mechanism to determine the metrics of neighbor
nodes, which greatly relaxes the requirements for topology.

4.2.3 Parameter Selection:

In our algorithm, 3 main parameters are involved, includ-
ing a, b and ε. Through an extensive series of experiments,
it has been ascertained that modifications in the parameter b
exert a negligible impact on the system’s behavior, leading to
the determination that the optimal fixed value for b is 1000.
Conversely, adjustments to the hyperparameter a have signif-
icant repercussions on the system’s convergence properties.
Notably, a reduction in the initial value of weight decay co-
efficient a correlates with an expedited rate of convergence.
Yet, it warrants emphasis that the swifter convergence asso-
ciated with diminutive values of a does not permit immediate
identification of nodes with substantial parameter disparities
as Byzantine. Consequently, it is not advisable to presume
that the weights of such nodes should be nullified, i.e., the
value of a should not be set to zero ab initio, in light of the
stochastic nature inherent to system initialization and train-
ing.

Algorithm 1 Dual Filtering Based Parameter Aggregation
Rule (DF-PAR) for a Benign Node i

Initialize ωij(0) = 0, Qij(0) = 1, and initialize the model pa-
rameters θi(0) randomly;
for k = 1 to T do

Exchange parameters with neighboring nodes j ∈ Ni;
for j ∈ Ni do

sij(k)← xj(k)−θi(k)

∥xj(k)∥·∥θi(k)∥
;

rij(k)← e−1000|xj(k)−θi(k)|;
end for
if sij(k) < 0 or rij(k) < ε then

ωij(k)← ae−bk

else
for p ∈Mi do

Qip(k)← η(k)(
rip(k)∑

l∈Ni
ril(k)

−Qip(k − 1))

+Qip(k − 1);
ωip(k)← Qip(k)∑

l∈Ni
Qil(k)

(1− 1
|Mi|+1

).

end for
Update the parameters by
θi(k) ←

∑
j∈Ni

ωij(k)xj(k) + (1 −∑
j∈Ni

ωij(k))θi(k).
end if

end for

Furthermore, in pursuit of substantiating the validity of
the threshold ε, an array of attack modalities constrained to
specific ranges was employed to evaluate its appropriateness
under these scenarios. Empirical evidence suggests a con-
sistent pattern wherein nodes classified as benign neighbors
yield an instantaneous reward exceeding the value of 0.3,
whereas the corresponding metric for Byzantine neighbors
invariably falls below this threshold. In light of these find-
ings, the threshold has been judiciously established at 0.3,
thereby enabling a robust delineation between benign and
adversarial nodes within the network.

5 Experiments

In this section, we give the experimental results to verify
the effectiveness of the algorithm. Specifically, We employ
the extensively utilized MNIST and CIFAR-10 datasets to
contrast them with several state-of-the-art defense baselines
under a range of prevalent Byzantine attacks. All the experi-
ments are carried out on a server equipped with an Intel Core
i9-13900K CPU and an NVIDIA RTX 4080 (16GB) GPU,
and all algorithms are realized using PyTorch.

5.1 Experimental Setup
5.1.1 Dataset & Settings

In the experiments, we employ two datasets, namely
MNIST and CIFAR-10, to tackle image classification assign-
ments. The MNIST dataset is comprised of handwritten dig-
ital images encompassing ten distinct categories, with each
image measuring 28x28 pixels. Conversely, the CIFAR-10
dataset encompasses a collection of ten images, each falling
into a different category. To be specific, we have trained two
fully connected (FC) neural networks on MNIST, and both
two fully connected neural networks and two convolutional
neural networks (CNNs) on CIFAR-10. Their detailed infor-
mation are shown in Table 1.
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Table 1: The training datasets information
Dataset Train Test Lr Iter Batch
MNIST 60k 10k le-3 50 256

CIFAR-10 50k 10k le-3 150 256

In the system, each worker is connected to another worker
with a certain probability (connection ratio, Cr). Addition-
ally, the workers can be classified into Byzantine workers
and benign workers, where each benign worker has a proba-
bility (Byzantine ratio, Br) of becoming a Byzantine worker.
Throughout this paper, we set the total number of workers
as n = 10, with two of them being Byzantine nodes. In
each experiment, we generate a topology that meets the con-
nectivity criteria, in accordance with the aforementioned de-
scription. The deep learning model is trained in synchronous
mode, with the step size η(t) monotonically diminishing to
0 from an initial value of η(0) = 0.1.

5.1.2 Comparison Baselines

(i) Average: Each worker takes the average of the received
parameters as the parameter values for the next round.

(ii) Median: Each worker calculates the median of each di-
mension of the received parameters and its own as the
parameter value for the next round.

(iii) Bridge [4]: The basic idea is to eliminate the largest
and smallest elements of each dimension received by
the worker.

(iv) Krum [3],: Each worker sorts the received parameters
by distance, and only aggregates the parameter values
closest to it at a time.

(v) Zeno [10]: Each worker sorts its neighbors based on
performance, i.e., the parameter with the lowest loss
value is selected on the test set for aggregation.

(vi) CA-PAR [9]: Each worker is weighted according to the
long-term performance of the neighboring nodes, and
finally the weight is added linearly.

5.1.3 Byzantine Attacks

We have mitigated four of the prevalent attack methods.
Specifically, to impartially assess the performance of each
baseline, we conducted a set of training experiments for each
baseline without any Byzantine attack.

(i) A little is enough [6]: After each Byzantine node re-
ceives the parameters of its neighbors, it perturbates the
received mean parameters in each dimension to disturb
the system.

(ii) Gaussian [3]: In a Gaussian attack, each Byzantine
node sets its own parameters to be sampled from a
Gaussian distribution with a standard deviation of 1 that
is the mean of all benign nodes.

(iii) Random [14]: Similar to the Gaussian attack, each
Byzantine node sends a random vector sampled from
(0, 1) to the neighboring workers.

(iv) Converse: In this attack, whenever the attacker obtains
the parameters from a neighboring node, they manipu-
late the average value of all benign node parameters by
transforming it into a vector with an opposite sign. This

modified vector, scaled to a negative normal (-10 in our
experiment), is then transmitted by the attacker.

5.2 Comparison Results
In this subsection, we compare the convergence accuracy

of our model with several existing defense models using the
above attack methods. We set a = 0.001.b = 1000, Cr =
0.5, Br = 0.7 and the threshold is 0.3. After 50 cycles of
training in MNIST and 200 cycles in CIFAR-10, the results
of each experiment are shown in Fig. 1 and Fig. 2 .

From the results, when the majority of neighboring nodes
are Byzantine nodes, especially in the extreme scenarios
where a benign node is surrounded by Byzantine nodes, our
approach outperforms other baselines in both accuracy and
convergence rate. Specifically, since the current distance-
based defense methods mostly use the method of score rank-
ing to select candidate nodes, it is strictly stipulated that
there must be at least one benign node nearby. When the
nodes are surrounded by Byzantine nodes, they will order
these Byzantine nodes to select the Byzantine nodes with
higher scores as candidates, which leads to a low system ac-
curacy.

5.3 Training Efficiency
In order to evaluate the effectiveness of our algorithm, we

adjust the connection rate Cr and Byzantine rate Br to ran-
domly generate network topologies of different complexity,
and observe the number of rounds when the system con-
verges to 90% under different topologies. We fix Cr to 0.4
and adjust Br, and fix Br to 0.3 to adjust Cr, and the re-
sult is shown in Fig. 3. It can be seen that under the condi-
tion of a given connection ratio Cr, more rounds of training
are required to achieve convergence as the Byzantine ratio
increases, and for a given constant Byzantine ratio Br, the
convergence rounds increase when the connection rate de-
creases.

6 Conclusion and Future Work

In this paper, we propose a novel Dual Filtering based Pa-
rameter Aggregation Rule, called DF-PAR, to achieve dis-
tributed learning against Byzantine attacks. Unlike the ex-
isting defense model, in each iteration, we receive the pa-
rameters of all nodes and aggregate them, rather than select-
ing certain received parameters through pre-defined rules.
Specifically, in our algorithm, each node evaluates the qual-
ity of the received parameters from the perspective of param-
eter cosine similarity and distance, so as to gradually elim-
inate suspicious nodes. Experimental results show that our
method can resist most of the Byzantine attacks with low
computational and space costs, and can be applied to various
network topologies.
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Multi-Agent Systems via Asynchronous Event-Triggered
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Abstract: This paper discuss the finite-time formation problem for multi-agent systems via Asynchronous Event-triggered
approach. Firstly, a distributed translational formation control stratagy for finite-time convergence in any Euclidean space is
developed. It introduces the sliding mode control to steer all agents into an affine image and achieves translational formations by
adding few extra steering laws. On the other hand, a crucial challenge in most practical scenarios is the high interaction pressure
of state information between agents. A distributed and discontinuous event-triggered control technique is adopted to reduce the
communication frequency and the calculation resources, which is more suitable for the practicablity and discreteness. Zeno-free
behavior is turned out. Finally, one numerical example proves the effectiveness of the proposed method.

Key Words: Finite-time Stabilization, Formation Control, Affine Image, Event-triggered Approach

1 Introduction

Formation control in multi-agent systems is a crucial as-
pect of cooperative control strategies, which are extensively
employed for carrying out specialized tasks[1]. These can
range from military engagement tactics and object track-
ing to the collection of data in oceanic or aerial environ-
ments. A fundamental challenge lies in devising distributed
control algorithms capable of steering an ensemble of n
agents towards and maintaining a predetermined geometri-
cal arrangement[2].

Recent years have seen a wealth of achievements in the
realm of controller design and convergence analysis for
affine formations. Most of these advances have leveraged
tools such as stress matrices or signed Laplacian matrices[3–
5]. The significance of affine formations lies in their posses-
sion of multiple degrees of freedom (including shear, scal-
ing, rotation, and translation) facilitating specialized forma-
tions with greater ease. Building upon affine transformation,
a unified flexible formation control approach was proposed
in our previous work[6]. It discovered an implementable set
of feasible and innovative distributed formation control laws
for finite-time (almost) global stabilization of affine, rigid
and translational formations.

In practical applications, particularly within underwater
environments, the challenges of communication and energy
among agents are paramount. The multi-agent system faces
constraints such as limited bandwidth in communication de-
vices, low data transmission rates, and pressing demands
for energy conservation. To mitigate communication costs,
aperiodic sampling methods for multi-agent systems have
emerged as promising solutions[7], with event-triggered
communication being especially noteworthy[8–10].

Dimarogonas et al. pioneered the integration of event-
triggered mechanisms into consensus and formation con-
trol protocols for multi-agent systems. They analyzed the
requisite distributed knowledge that must be shared be-
tween agents and their neighbors to implement the con-

troller effectively[11]. A directed graph-based, distributed
and periodic event-triggered consensus controller was sub-
sequently devised in [12]. In many scenarios, the acquisi-
tion of relative positional states is inherently discontinuous,
rendering discontinuous event-triggered protocols[13] more
fitting than conventional continuous triggers[14]. Moreover,
robust event-triggered control methodologies, such as those
employing sliding mode controls[15], have been explored.
The majority of finite-time event-triggered control schemes
focus primarily on the consensus and formation control of
continuous systems[16], not suitable for discontinuous sys-
tems like the multi-UUV systems.

This paper endeavors to devise a finite-time formation
control strategy for multi-agent systems, enabling them to
achieve translational formations under conditions of inter-
mittent communication and controller updates. A distributed
event-triggered mechanism tailored for translational forma-
tions grounded in affine transformation is employed, ensur-
ing that events triggering communication and controller up-
dates occur only when necessary. The application of slid-
ing mode control serves to draw the system trajectory to-
wards the sliding manifolds (the affine image) while robustly
maintaining it within specified bounds. Capitalizing on the
properties of affine transformations, we contemplate supple-
menting the affine formation control strategy with additional
steering laws for at least d+ 1 leaders, thereby reducing the
degrees of freedom. Consequently, the surface manifolds
can be reached from the affine image to its subsets, trans-
lational ones, in order to materialize the desired formations.

The contributions of this paper are twofold. Firstly, a dis-
tributed and discontinuous event-triggered mechanism fea-
turing asynchronous sampling has been developed specifi-
cally for the control of translational formations. This mech-
anism significantly alleviates the requirement load on sens-
ing, communication, and computation during the genera-
tion of control signals. Secondly, based on our previous
research[17], this article articulates framework conditions in

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications 
May 10-12, 2024, Shenzhen, China

471  



d-dimensional space for finite-time stable convergence pro-
tocols for translational formations under an event-triggered
mechanism. These conditions are designed to prevent Zeno
triggering phenomena. A practical control strategy is also
devised and its efficacy is confirmed.

The structure of this article is as follows. Section II pro-
vides some fundamental theoretical knowledge and articu-
lates the problem of interest. Section III presents the frame-
work conditions for finite-time stable convergence using an
event-triggered mechanism for translational formation con-
trol, and demonstrates their Zeno-free behavior. Section IV
details a specific control strategy to substantiate the correct-
ness of the framework conditions. Section V validates the ef-
fectiveness of our proposed approach. Concluding remarks
are discussed in the final section.

Notation: This paper use standard notations. The sym-
bol R represents the set of real numbers, and Rd denotes
d-dimensional ambient Euclidean space. The notation 1n

stands for the n-dimensional vector of all ones, and Id de-
notes the d× d identity matrix.

2 Preliminaries and problem formulation

In this section, we present the necessary preliminaries and
articulate the problem of formation stabilization control.

2.1 Preliminaries
An undirected graph G = (V, E) consists of a node set

V and an edge set E , where an edge is an unordered pair of
distinct nodes of G.

A configuration of n points in Rd is defined by their
coordinates in the Euclidean space Rd, denoted as p =
[pT

1, . . . , p
T
n]

T, where each pi ∈ Rd denotes agent i’s position
for i ∈ 1, 2, · · ·n. A configuration is generic if all the co-
ordinates p1, · · · , pn are algebraically independent over the
integers [? ].

Consider a configuration p = [pT
1, . . . , p

T
n]

T in Rd. We
denote the affine image of p as

A(p) =

{
q = [qT

1, . . . , q
T
n]

T : qi = Api + a,
A ∈ Rd×d, a ∈ Rd, i = 1, . . . , n

}
(1)

or equivalently,

A(p) =
{
q = (In ⊗A)p+ 1n ⊗ a : A ∈ Rd×d, a ∈ Rd

}
.

(2)

Remark 1 Note that any matrix A ∈ Rm×n can be factor-
ized by singular value decomposition (SVD) as A = UΣV
where U and V are orthogonal matrices, and Σ is a diagonal
matrix. This indicates that any configuration in A(p) can be
obtained by an affine motion from p, namely, a rotation V , a
scaling along different axes by Σ, and then another rotation
U , followed by a translation a.

If A = I is an identity matrix, we can get the translation
image of p as

T (p) :=


q = [qT

1, . . . , q
T
n]

T : qi = Ipi + a,
I ∈ Rd×d is an identity matrix,
a ∈ Rd, i = 1, . . . , n

 , (3)

and z ∈ T (p) implies that all agents form a configuration
which is congruent to the desired configuration and has the

same orientation[6]. The set T (p) is a subset of A(p). For
the translaitonal image, it has the following lemma satisfied.

Lemma 1 ([3] [4]) Suppose that p = [pT
1, · · · , pT

n]
T is a

generic configuration in Rd. A configuration q ∈ A(p) is
a translation of p (i. e., q ∈ T (p) ) if and only if there exist
at least d pairs of agents such that the dimension of the affine
span of d pairs of agents is d and

qk − qj = pk − pj .

Consider an undirected graph and a configuration q in Rd

of n points.A symmetric matrix H ∈ Rn×n is denoted as a
signed Laplacian matrix which satisfies H1n = 0. Its entry
wij is a scalar weight of edge (i, j) and is a real number.
H is called a stress matrix if it also satisfies (H ⊗ Id)q =
0.λ+

min(H) denotes the smallest positive eigenvalue of H .
Consider a differential equation

ẋ(t) = X(x(t)), (4)

where X : Rd → Rd is measurable and essentially locally
bounded. Define the Filippov set-valued map F [X] : Rd →
D(Rd) by

2.2 Problem formulation
We model the information flow structure using an undi-

rected graph G = (V, E), where V is a set of n nodes and E
is an l-edge set. For each agent i ∈ V , the set of its neighbors
is denoted by Ni = {j ∈ V : (j, i) ∈ E}. The quantity |Ni|
denotes the number of neighbors of agent i. We consider a
system with single-integrator dynamics as follow:

q̇i = ui, i = 1, . . . , n, (5)

where ui ∈ Rd is the control input of agent i. q =
[qT

1, . . . , q
T
n]

T denotes the state set of n agents.
The objective of this paper is to to engineer the control

input ui such that all agents converge to a desired transla-
tional formation within a finite time with reduced discon-
tinuous and aperiodic interaction of states. We consider to
establish a set of framework conditions for designing for-
mation control proctols to steer agents from an affine image
A(p) to a translational image T (p) via sliding mode con-
trol techniques. These conditions can provide insights into
how a translational formation can be achieved by integrating
an external relative-based interaction controller into a subset
of the agents. Then we will implement an event-triggered
mechanism to decrease the frequency of state exchanges be-
tween neighboring agents.

To streamline the analysis, the following assumption is
enumerated.

Assumption 1 The configuration p is generic. There exists
n nodes (n > d+ 1 in d-dimensional space) in V .

3 Conditions of Finite-time Stabilization of Trans-
lational Formations

We select at least one set of d+ 1 nodes as leaders. With-
out loss of generality, we label them as 1, . . . , d + 1 and
denote Vl = {1, . . . , d + 1} and Vf = {d + 2, . . . , n}
as the leader set and the follower set respectively. Denote
pl = [pT

1, · · · , pT
d+1]

T and ql = [qT
1, · · · , qT

d+1]
T.

472  



We design a control input as

ui(t) =

{
−csgn(

∑
j∈Ni

wij (qi(t)− qj(t))) + fi(qi), i ∈ Vl

−csgn(
∑

j∈Ni
wij (qi(t)− qj(t))), i ∈ Vf

(6)
where c > 0 and wij is a signed real weight. fl(ql) =
[f T

1(ql), . . . , f
T
d+1(ql)]

T is called the steering law.The signum
function sgn(s) of a d-dimensional vector s = [s1, · · · , sd]T
is defined by sgn(s) = [sgn(s1), . . . , sgn(sd)]T where s is
the sliding mode manifold and sgn(sr) for r = 1, · · · , d is a
piecewise sign function. The compact form of (6) is

q̇ = −csgn((H ⊗ Id)q) + f(ql), (7)

where f(ql) = [fl(ql)
T,0T

(n−d−1)d]
T. We select the sliding

mode manifold s = (H ⊗ Id)q.
Denote a status measurement error e =

[e1(t), · · · , en(t)]T and ei(t) is defined as

ei(t) = qi
(
τ is
)
−qi(t) = q̂i(t)−qi(t), t ∈

[
τ is, τ

i
s+1

)
(8)

where τ is is the event trigger instant of agent i and s =
{0, 1, · · · }. It is designed by the following form

∥ei∥ ≤ δiη

2c− η
∥q̂i∥ (9)

with δi ∈ (0, 1) and η ∈ (0, c]. It has

∥e∥ ≤ B∥q̂∥ (10)

where B = δmaxη/(2c − η) and δmax = maxδi ∈ (0, 1) for
i ∈ {1, · · · , n}. Let us introduce DDETM into the controllor
(7) as follow

ui(t) =


−csgn(

∑
j∈N l

i
wij (qi(t)− qj(t)))

+fi(qi(τ
i
s)), i ∈ Vl

−csgn(
∑

j∈N
if
wij (qi(t)− qj(t))), i ∈ Vf

(11)
The compact form of the closed-loop system is given by

q̇(t) = −csgn((H ⊗ Id)q̂) + f(q̂l) (12)

where q̂ = [q̂T1 , · · · , q̂Tn ]T and q̂i(t) = qi(t) + ei(t).
Now we introduce the following indispensable assump-

tions and lemmas to derive the main results.

Assumption 2 The symmetric matrix H is a stress matrix
with rank n− d− 1 and is positive semi-definite.

Lemma 2 [17] Consider the discontinuous event-triggered
function

g(ei) = ∥ei∥ −
δiη

2c− η
∥q̂i∥ (13)

with δi ∈ (0, 1). The formation system (12) with τ ih,
h = 0, 1, 2, · · · , being the event-triggering time instants
of agent i, finite-time converges to the afiine image A(p),
and the upper bound of finite convergence time is T =
(1+B)

√
qT(0)(H⊗Id)q(0)

(1−B)
√

λ+
min(H)

, if the following conditions holds:

(i) The steering law ∥fi(q̂l)∥∞ ≤ c− η, where η is a pos-
itive number satisfying η ≤ c.

(ii) The status measurments error of agent i has ∥ei∥ ≤
δiη

2c−η∥q̂i∥.

(iii) The event-triggered condition g(ei) ≥ 0.

Then we give the main results that the proposed control
law drives all agents to the desired formation in finite time
in any dimensional space. We discuss the stablization condi-
tions on the translational image T (p).

Theorem 1 The translational image T (p) is asymptotically
stable for system (12) with the discontinuous and distributed
event-triggered function (13) if fl(q̂l) satisfies the following
conditions:

(i) ∥fi(q̂l)∥∞ ≤ c− η, where η ≤ c is a positive number.
(ii) fi(q̂l) = 0 when ql ∈ T (pl) for i = 1, 2, · · · , d+ 1.

(iii) T (pl) is globally asymptotically stable for q̇l = fl(q̂l).

Proof. According to Lemma 2, all agents can move on the
sliding surface s = 0 in finite time with the event-triggered
function (13) and Condition (i). Then the dynamics of (12)
are reduced to q̇l = fl(q̂l). In s = 0, it has the representa-
tion q = [qT

l , q
T
f ]

T = G(ql) where G(ql) can be an unknown
function of ql. It follows that q → G(R(pl)) when T (pl) is
globally asymptotically stable for the dynamics q̇l = fl(q̂l)
because of the continuity of G. From Lemma 1, we know
that G(T (pl)) = T (p). Thus, q(t) → T (p). By Condition
(ii), there exists q∗ ∈ T (p) such that q(t) → q∗. Then the
conclusion follows and the proof is complete.

Moreover, if additionally T (pl) is globally finite-time sta-
ble for the dynamics q̇l = fl(q̂l) and the convergence time is
upper bounded by Tl, then global finite-time stability can be
drawn. ■

Noting that the Zeno behavior of the system of (12) must
be discussed. Lemma 2 has been demonstrated that all
agents can be steered to the affine image A(pl) with the pos-
itive lower bound of the triggering time interval. It is obvi-
ously that all agents converge to the subset T (pl) with the
same lower bound of the triggering time interval when the
three condition in Theorem 1. The Zeno behavior can be
avoided.
4 Design of A Steering Law for Translational For-

mations

Section 3 has proposed a unified approach of designing
control laws for translational formations. In this section we
design a specific steering law fi(q̂l) in (12) to meet the con-
ditions in Theorem 1. We consider the following consensus-
based control strategy for fi(ql)

fi(ql) = q̇l = −clsgn

 ∑
j∈N l

i

(
(qli − qlj )− (pli − plj )

) ,

(14)
where cl ≤ c − η is a positive constant. For ql ∈ A(pl),
it holds that qli = Apli + a for all i with A ∈ Rd×d and
a ∈ Rd. If additionally there are d pairs of leader agents
satisfying

qli − qlj = pli − plj , (15)

then the following equation holds for the d pairs of leader
agents

pli − plj = qli − qlj = A(pli − plj ), (16)

and therefore

(I −A)(pli − plj ) = 0. (17)
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It is known that if the linear span of the d pairs of the relative
position vectors pli − plj equals to Rd, then A = I holds
from (17). As a result, for any i and j in the set of leader
agents, a configuration ql ∈ A(pl) reduces to that of ql ∈
T (pl) if and only if there exist d pairs of agents such that the
dimension of the affine span of ql1 , · · · , ql(d+1)

is d and (15)
holds. The compact form of (14) is given by

f(ql) = q̇l = −clsgn((Ll ⊗ Id)q̃l), (18)

where Ll is the normal Laplacian matrix of the leader sub-
graph Gl and q̃l = [q̃T

l1, · · · , q̃T
l(d+1)]

T with q̃li = qli − pli .
The sliding surface for this system is evidently s̃ = (Ll ⊗
Id)q̃l. Let us introduce DDETM into the controllor (18) . It
has

f(q̂l) = q̇l = −clsgn((Ll ⊗ Id)ˆ̃ql). (19)

A lemma characterizing finite-time convergence of the dy-
namics (19) is given as below.

Lemma 3 For system (19), if Gl is connected, the agents
converge to a translational formation of pl globally within
a finite time and the convergence time is upper bounded by a
positive constant Tl.

The proof is similar as the Lemma 2 and is omitted here.
The main results will be presented as follow.

Theorem 2 Consider the formation control system (12) with
the steering law fl(q̂l) given in (19). Suppose the subgraph
Gl with d+1 agents is connected. If the parameter cl satisfies
cl < c−η and it has the discontinuous event-triggered func-
tion (13) with δi ∈ (0, 1), then a desired translational forma-
tion q can be steered into the translational image T (p) finite-
time stablly and the convergence time is upper bounded by

T = Tl +

√
qT(0)(H⊗Id)q(0)

η
√

λ+
min(H)

.

Proof. For the formation control system (12) and the steer-
ing law fl(zl) described by (19), the upper bound of the mag-
nitude of the steering law for agent i is given by

||fi(ql)||∞ = cl

∥∥∥∥∥∥
∑
j∈Ni

((qli − qlj )− (pli − plj ))

∥∥∥∥∥∥
∞

≤ cl ≤ c− η,

(20)

which satisfies Condition (i) in Theorem 1. Then according
to Lemma 3, it can be obtained that under the steering law
fl(ql) (19) with cl satisfying Condition (ii) and (iii). There-
fore, the conclusion is drawn. ■

Remark 2 For translational formation control under the
relative-position-based steering law fl(ql) in (14), only the
leader agents require to know a common orientation of their
coordinate frames. All other agents can use their local co-
ordinate frames to measure the relative positions and imple-
ment their control laws.

5 Simulation Results

In this subsection we present a simulation example in
R3 for achieving a translational formation with the event-
triggered mechanism. Consider a multi-agent formation sys-
tem, whose interactions are modelled by an undirected graph

Fig. 1: The target configuration p for the simulation in R3,
in which the lines are not edges of the interaction graph, but
are used to outline the configuration.

Fig. 2: The evolutionary trajectories in achieving a transla-
tional formation in R3.

Fig. 3: Distributed event-triggered based performance of
three leaders.

with a total of 12 edges and 6 nodes. We use the target con-
figuration as in Fig. 1. Let us denote the four red dots as the
leader agents and the rest black ones as the follower agents.
The desired relative positions for three pairs of leaders in the
steady state are given as follows: q1 − q2 = [−10,−10, 0]T,
q1 − q3 = [0,−10, 0]T and q1 − q4 = [0, 0, 10]T. We then
apply the distributed control algorithm (12) together with
the steering law (14). Here we select the parameters as
c = 1, η = 0.05, cl = 0.9 and δi = 0.6 for all agents.
And the stress matrix H is designed with rank(H) = 3 and
λ+

min(H) = 1.673. It is shown in Fig. 2 that all the agents
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converge in a finite time to a desired formation shape of
the target configuration. The event triggered errors of each
agent based on the distributed event-triggered mechanism
are given in Fig. 3. The effectiveness of our approach is
demonstrated.
6 Conclusions

This paper proposes the feasibility conditions for design-
ing translational formation control strategies with an event-
triggered mechanism that achieve convergence to transla-
tional image T (p) from an affine image in d-dimensional
space within finite time. By crafting an event-triggered func-
tion and adhering to the unified constraints of the steering
law, finite-time stabilization and event-based asynchronous
communication are realized. Ongoing research will focus
on expanding the model to include more intricate dynamics,
such as those of double integrator systems.
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Abstract: This paper addresses the robust consensus reliable control problem with time delays, actuator defects, and external
disturbances for Lipschitz nonlinear multi-agent systems (MASs) is discussed. First, a general fault model is established, and an
observer is designed to estimate the state information. Second, the reliable control protocol is obtained by using this estimation
information to achieve robust and reliable control. Using this protocol, the actuator faults is resolved and the influence of time
delays and disturbance on nonlinear system is reduced. Third, using linear matrix inequality, adequate robustness conditions are
suggested for the control protocol and observer design. Finally, two distinct actuator fault cases are used to confirm the validity
of the control protocol.

Key Words: Nonlinear MASs, Time delays, Actuator faults, Reliable control

1 Introduction

Because of its practical application in numerous fields
during the last few years, such as unmanned aerial vehicles
and mobile robotics, collaborative management of MASs
has drawn a lot of attention [1–5].

Actuator failures are unavoidable when utilizing MASs,
as is widely recognized. Once actuator fault occurs, it may
have a significant impact on the entire task executed by the
system, potentially leading to its failure. In the past decade,
some theoretical studies and applications have proposed dis-
tributed reliable control methods [6, 7]. In [8], actuator faults
were described as a Markov process, and reliable control was
applied to stochastic nonlinear systems with an affine struc-
ture based on the Takagi-Sugeno fuzzy structure. In [9], a
polytopic model was used to analyze actuator faults in linear
systems with parameter variations, and a consistent reliabil-
ity control protocol was designed to ensure the system oper-
ates stably. While the studies mentioned above accounted for
the existence of actuator faults within the framework, they
did not address time delays or external disturbances to the
system itself, both of which are typical in situations found in
real life. In [10], considering the impact of faults, multiple
delays, and parameter mismatch uncertainties in MASs, an
adaptive updating protocol gain adjustment based on neigh-
boring agent state information was introduced to eliminate
disturbances and ensure the normal operation of the system.
[11] investigated simultaneous actuator failures and distur-
bances from outside in MASs, compensating with a con-
trol protocol to guarantee connectivity among multi-agent
networks and avoid collisions. Furthermore, [12] consid-
ered nonlinearity, various types of actuator faults, and exter-
nal disturbances within subsystems, proposing a distributed
adaptive reliable actuator fault compensation protocol. The
methods discussed in [8, 9] can deal with actuator faults in
linear or nonlinear systems, but cannot support situations
where time delays or external disturbance. On the other
hand, the approaches presented in [10–12] can solve scenar-
ios with time delays or external disturbances but lack com-
patibility with nonlinear systems. Therefore, designing reli-

able control protocol to compensate for actuator faults when
there are state time delays and external disturbances in non-
linear systems is a significant subject that inspires our work.

This paper’s main goal is to create a novel observer-based
dependable controller that can handle interference, time-
varying state delays, actuator failures, and faults in the qual-
ity control protocol. Firstly, unlike other actuator fault mod-
els, this paper integrates actuator faults into the control prob-
lem by consensus. The control protocol can then be designed
to account for the probable actuator defects. Second, this
study proposes a novel distributed observer that makes use of
the shared sensor communication network to calculate each
agent’s status information. In Section 2, observer-based state
feedback controllers are devised to stabilize closed-loop sys-
tems while minimizing the effects of system failures. In Sec-
tion 3, the primary discoveries of the fault-tolerant controller
utilizing state feedback are investigated through Lyapunov-
Krasovskii function. Examples are provided in Section 4 to
demonstrate the suggested program’s efficacy. At last, sec-
tion 5 presents the conclusions.

2 Description of Systems and Preliminary Con-
cepts

Using G(V, ε,A) build an undirected graph with the given
vertices V = {v1, v2,..., vN}, the collection of margins ε =
{(vi, vj) : vi, vj ∈ V} ⊆ V × V , and A = [aij ] ∈ RN×N

is a matrix of measured adjacency. Each proximity matrix
entry fulfills aii = 0, aij > 0, if and only if (vi, vj) ∈ ε. In
the undirected graph, aij = aji and A possesses symmetry.
The matrix Laplacian connected to the graph G is described
as follows L = [lij ] ∈ RN×N , where lii = Σj ̸=iaij and
lij = −aij , i ̸= j.

Take into consideration the subsequent Time-delayed Lip-
schitz nonlinear MASs:

ẋi(t) = Axi(t) +Adxi(t− h(t)) +Bui(t)

+D1di(t) +Kφi(xi(t), xi(t− h(t))), (1)
yi(t) = Cxi(t) +D2di(t). (2)

where i = 1, . . . , N, xi(t) ∈ Rnx the system’s condition,
yi(t) ∈ Rny is the output signal measurement, ui(t) ∈ Rnu

the vector that shows the inputs for control and di(t) ∈ Rnd
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the plant-affecting disruptions. h(t) depicts the state delay
that varies with time. φi(xi(t), xi(t − h(t))) indicates the
system’s nonlinear component. A, Ad, B, C, D1, D2 and K
are appropriate-dimensional constant matrixes.

We introduce the following lemmas to define the consen-
sus control criterion for MASs.

Lemma 1 [13] Let L represent the Laplacian matrix con-
nected to an undirected graph G. Then L has a minimum of
one eigenvalue that is zero, with all other eigenvalues being
positive. Additionally, there is only one zero eigenvalue in
matrix L, and the corresponding eigenvector is 1 if and only
if the undirected graph G is linked.

Assumption 1 For everyone x1, x2, y1, y2 ∈ Rn,
φ(x(t), x(t − h(t))) fulfills the corresponding Lipschitz re-
quirements and is a recognized nonlinear function:

1) φ(0, 0) = 0;
2) ∥φ(x1, x2)− φ(y1, y2)∥ ≤ ∥λ1(x1 − y1)∥+

∥λ2(x2 − y2)∥
where λ1 and λ2 is a constant real number.

3 Design of Observer-Based Reliable Control Pro-
tocols for Actuator Faults

Achieving state consensus in MASs demands the imple-
mentation of a consensus control protocol with robustness.
Designing dependable control systems for MASs has be-
come a focal point of recent research. This study aims to
address the issue of trustworthy control in the presence of
actuator problems by building a fault model. ufi (t) symbol-
izes the vector input for control following actuator failures
for the agent i, i = 1, . . . , N . Next, The actuator fault model
type that follows is employed:

uFi = Nfui. (3)

The given assumption suggests that the fault matrix Nf

and specific structure: Nf = diag(Nf1, Nf2, . . . , Nfp),
Nfi i = 1, . . . , p represent possible issues with the ith actu-
ator and Nfi ∈ [0, 1]. It is clear that when Nfi equals zero,
the associated actuator has experienced complete failure, and
whenNfi equals one, it suggests that the associated actuator
is in perfect working order. For values ofNfi within the time
frame (0, 1), the actuator is found to be partially defective.

It is noteworthy that in the event that the actuator is totally
faulty, i.e., Nfi = 0, the controller doesn’t give the plant any
kind of control. The structure turns into an open-loop sys-
tem. As a result, it is typically assumed in this work that the
relevant actuator is either completely or partially defective.

In order to streamline the controller design, it is
additionally assumed in practice that 0 <N

¯ fi ≤
Nfi ≤ N̄fi ≤ 1,∀i = 1, . . . , p. Given that the ele-
ment Nfi is fluctuating in time within the range [N

¯ fi

N̄fi],specify the collection of vertices in Nf as N =
{diag(N

¯
1
fi,N¯

1
f2, . . . ,N¯

1
fp), . . . , diag(N̄

1
fi, N̄

1
f2, . . . , N̄

1
fp)},

α ∈ γ2p .
Clearly, The matrix of faults Nf fulfills Nf ∈ co(N).
For the sake of simplicity, we utilize Nα

f to represent the
fault matrix Nf . Let Bf = BNα

f .
For system (1)-(2), the following qualities ought to be part

of an observer’s design goals. First and foremost, the ob-
server needs to efficiently reduce the impact of disturbances

on the residual. Second, the observer needs to show that they
are stable. As is customary, we suppose that the observer has
a certain form:

˙̂x(t) = Ax̂i(t) +Adx̂i(t− h(t)) +Bfui(t) + L0

(yi(t)− ŷi(t)) +Kφi(x̂i(t), x̂i(t− h(t)))(4)
ŷi(t) = Cx̂i(t). (5)

where x̂i ∈ Rn is the state approximation, ŷi(t) ∈ Rny

stands for the vector of output estimation, and L0 ∈ Rn×ny

is the matrix of coefficients for the filter that has to be made.
Therefore, the goal of this study is to use state estimated val-
ues to construct a strong consensus procedure ui(t) of the
MAS. The structure of the consensus protocol is:

ui(t) = Ks

∑
j∈Ni

aij(x̂i(t)− x̂j(t)), i = 1, . . . N (6)

where Ks ∈ Rp×n is the gains matrix that has to be created.
Upon integrating the observer (4)-(5) and the system (1)-

(2) collectively, and definition ei(t) = xi(t)− x̂i(t), the fol-
lowing dynamic error equations are available:

ėi(t) = ẋi(t)− x̂i(t)

= (A− L0C)ei(t) +Adei(t− h(t))

+K∆φ(t) + (D1−L0D2)di(t). (7)

Let ∆φ(t) = φ(x̂(t), x̂(t−h(t)))−φ(x̂(t), x̂(t−h(t))),
ei(t) = (eT1 (t), . . . , e

T
N (t))T , be acquired

ėi(t) = (IN⊗(A− L0C))e(t) + (IN⊗Ad)e(t− h(t))

+(IN⊗(D1−L0D2))d(t) + (IN⊗K)∆φ(t).(8)

Define synchronizing state and plant disturbance error
as δi= xi−(1/N)

∑N
j=1 xj= xi−x̄, δ = (δ

T
1 , . . . , δ

T
N )

T
,

d̄i= di−(1/N)
∑N

j=1 di, d̄ = (d̄
T

1 , . . . , d̄
T
N )

T
.

After integrating system (1)-(2) and consensus control
protocol (6), be acquired

δ̇i(t) = ẋi−
1

N

N∑
j=1

ẋj= Aδi(t) +Adδi(t− h(t))

+BfKs

∑
J∈Ni

aij(δi(t)− δj(t) + ej(t)− ei(t))

+D1d̄i(t) +K∆φ̄i(t). (9)

Making use of an undirected topological graph’s symme-
try property, it is evident that aij = aji. Consequently, we
may obtain

1

N

N∑
j=1

∑
j∈Ni

BfKsaij(x̂i(t)− x̂j(t)) = 0. (10)

At the same time, note that∑
J∈Ni

aij(x̂i(t)− x̂j(t))

=
∑
J∈Ni

aij((xi−xj) + (x̂i−xi) + (x̂i−xj))

=
∑
J∈Ni

aij((xi−
1

N

N∑
j=1

xj)− (xj−
1

N

N∑
j=1

xj) + ei−ej)

=
∑
J∈Ni

aij(δi−δj+ej−ei). (11)
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Considering (10) and (11), (9) transforms into

δ̇i= Aδi+Adδi(t− h(t)) +BfKs

∑
j∈Ni

aij(δi−δj+ej

−ei)+D1d̄i+K∆φ̄i(t) (12)

Let δ = (δT1 , . . . , δ
T
N )T . Subsequently, the error equation

for synchronization in the closed-loop network’s dynamics
can be displayed as

δ̇(t) = (IN⊗A+ L⊗BfKs)δ(t)+

(IN⊗Ad)δ(t− h(t))− (L⊗BfKs)e(t)

+(IN⊗D1)d̄(t) + (IN⊗K)∆φ̄(t). (13)

Let z =
[
δT eT

]T
, ω =

[
d̄T dT

]T
, merging

(8)and (13), produces

ż(t) = Ãz(t) + Ãdz(t− h(t)) + B̃w + K̃∆φ(t) (14)

where

Ã =

[
IN ⊗A+ L ⊗BfKs −L⊗BfKs

0 IN ⊗ (A− L0C)

]
,

Ãd =

[
IN ⊗Ad 0

0 IN ⊗Ad

]
,

B̃ =

[
IN ⊗D1 0

0 IN ⊗ (D1 − L0D2)

]
.

After that, the robust H∞ consensus problem for MASs
(1)-(2) with a given scalar γ > 0 aims to discover a protocol
ui in the following manner.

1) For any initial state xi(0), the closed-loop MASs (1)-
(2) can come to an asymptotic consensus in spite of pertur-
bations from plants d(t) = 0, i.e.,. The agents meet

∥δi∥=

∥∥∥∥∥∥xi − 1

N

N∑
j=1

xj

∥∥∥∥∥∥−→ 0, i = 1, . . . N. (15)

It should be observed that the disturbances d̄(t) obviously
have no influence on the false signals of the synchronization
state when d(t) = 0, d̄(t) = 0.

2) The L2-gain from ω to z ought not to exceed γ, i.e., for
x(0) = 0, the subsequent disparities are true:

∫ T

0

∥z(t)∥2 dt ≤ γ2
∫ T

0

∥ω(t)∥2 dt, ∀T ≥ 0 (16)

for the MASs operating in continuous time.
Robust H∞ requirements for consensus in MASs (1)-(2)

are examined in the section that follows.

Theorem 1 For specified scalars ε > 0, λ1 > 0, λ2 > 0,
λ3 > 0 and eigenvalues of the system αj(j = 2, . . . , N)
of Laplacian matrix L, the closed-loop system (13) exhibits
asymptotic stability at the H∞ performance level γ, if there
exist symmetric matrix P1 > 0, P2 > 0, Q1 > 0, Q2 > 0,
Z > 0, µ1 > 0, µ2 > 0, γ > 0, free weight matrices Mz ,

Nz of appropriate dimensions, such that the subsequent 2N̄
LMI are satisfied:

Ξ̄z =


Ξ̄ hMz

√
hΓ̄T ϕ

∗ −hZ 0 0

∗ ∗ x̄33
√
hP1Bf

∗ ∗ ∗ −2µ2I

< 0 (17)

Π̄z =


Ξ̄ hNz

√
hΓ̄T ϕ

∗ −hZ 0 0

∗ ∗ x̄33
√
hP1Bf

∗ ∗ ∗ −2µ2I

< 0 (18)

where
Ξ̄ = Ξ1j −He(Mz(U1 − U2))−He(Nz(U2 − U3)),

Ξ1j =


x̄1 x12 x13 0 x15 0
∗ x22 0 x24 0 x26
∗ ∗ x33 0 0 0
∗ ∗ ∗ x44 0 0
∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −γ2I

 (19)

Γ̄ = [P1A− αjP1BfKs,−αjP1BfKs, P1Ad, 0, P1D1, 0] ,
x̄33 = −2ε1P1 + ε21Z,
MT

z = [IN⊗MT
1 , IN⊗MT

2 , IN⊗MT
3 ,

IN⊗MT
4 , IN⊗MT

5 , IN⊗MT
6 ],

NT
z = [IN⊗NT

1 , IN⊗NT
2 , IN⊗NT

3 ,

IN⊗NT
4 , IN⊗NT

5 , IN⊗NT
6 ],

UT
1 = [I, 0, 0, 0, 0, 0], U

T
2 = [0, I, 0, 0, 0, 0],

UT
3 = [0, 0, I, 0, 0, 0],

ϕ = [PBf + αjµ1Ks, αjµ1Ks, 0, 0, 0, 0],

x̄1= He(P 1A+ αjP1BfKs) + 2λ3P1KK
TP1+Q1

+(2λ3+1)I,x12 = −αjP1BfKs, x13 = P1Ad,
x15 = P1D1, x26 = P2(D1 − L0D2), x22 =
He(P2(A−L0C))+ ε

−1P2KK
TP2+Q2+(ελ21+1)I,

x33 = −(1− τ)Q1 + 2λ3I + I, x24 = P2Ad,
x44 = −(1− τ)Q2 + ελ22I + I.

Ξ2j =

 x11 P2Ad P2(D1 − L0D2)
∗ (1− τ)Q2 + ελ22I 0
∗ ∗ −γ2I


x11 = He(P2(A− L0C)) + ε−1P2KK

TP2 +Q2 + ελ21I.
By using a comparable methodology in the consensus

analysis, it is deduced that Ξ2j < 0 is satisfied in the event
that Ξ1j < 0.

Proof. Think about the following Krasovskii Lyapunov
functional

V (z) = z
T
P̃ z+

∫ t

t−h(t)

zT Q̃zds+

∫ 0

−h

∫ t

t+θ

żT (I ⊗ Z)żdsdθ

(20)

P̃ =

[
IN ⊗ P1 0

0 IN ⊗ P2

]
> 0,

Q̃ =

[
IN ⊗Q1 0

0 IN ⊗Q2

]
> 0, Z > 0.

Given the positive semidefinite and symmetric nature of
L, the spectral decomposition L= ΠΛΠ can be used, where
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the matrix that is orthogonal Π ∈ RN×N is the set of
eigenvectors for L, and Λ = diag(0, α1,...αN ) ∈ RN×N

where the arrangement of the eigenvalues of is such that
0 < α2 ≤ · · · ≤ αN .

Derivative of V(z) with respect to the (14) solutions cal-
culated is
V̇ = 2δT (t)(IN ⊗ P1)δ̇(t) + 2eT (t)(IN ⊗ P2)ė(t) −

(1− ḣ(t))δT (t− h(t))(IN ⊗Q1)δ(t− h(t)) + δT (t)(IN ⊗
Q1)δ(t)+e

T (t)(IN⊗Q2)e(t)−(1−ḣ(t))eT (t−h(t))(IN⊗
Q2)e(t − h(t)) + hżT (t)(I ⊗ Z)ż(t) −

∫ t

t−h
żT (s)(I ⊗

Z)ż(s)ds
= 2δT (t)[(IN ⊗ P1A)δ(t) + (L ⊗ P1BfKs)δ(t) +

(IN ⊗ P1Ad)δ(t − h(t)) + δT (t)(IN ⊗ Q1)δ(t) −
(L ⊗ P1BfKs)e(t) + (IN ⊗ P1D1)d̄(t)] +

2
∑N

i=1 δ
T
i (t)P1K∆φ̄(t) + 2eT (t)[(IN ⊗ P2(D1 −

L0D2))d(t)] − (1 − ḣ(t))δT (t − h(t))(IN ⊗ Q1)δ(t −
h(t)) − (1 − ḣ(t))eT (t − h(t))(IN ⊗ Q2)e(t − h(t)) +

eT (t)(IN ⊗Q2)e(t)+hż
T (t)(I⊗Z)ż(t)−

∫ t

t−h
żT (s)(I⊗

Z)ż(s)ds+ 2eT (t)(IN ⊗ P2K)∆φ(t).

Since
∑N

i=1 δ
T
i (t) = 0:

2
N∑
i=1

δTi (t)P 1K(φ(x̄(t), x̄(t− h(t)))

− 1

N

N∑
j=1

φj(xj(t), xj(t− h(t)))

= 0. (21)

Note that

2
N∑
i=1

δTi (t)P 1K∆φ̄(t)

= 2
N∑
i=1

δTi (t)P 1K(φi(xi(t), xi(t− h(t))))

−φ(x̄(t), x̄(t− h(t))) + φ(x̄(t), x̄(t− h(t)))

− 1

N

N∑
j=1

φ(x̄(t), x̄(t− h(t)))

= 2
N∑
i=1

δTi (t)P 1K(φi(x(t), xi(t− h(t))))

−φ(x̄(t), x̄(t− h(t))). (22)

Due to Young’s inequation is available:

2
N∑
i=1

δTi (t)P 1K(φi(x(t), xi(t− h(t))))

−φ(x̄(t), x̄(t− h(t)))

2λ3||δTi (t)P 1K|| · ||δi(t) + δi(t− h(t))||
≤ δTi (t)(2λ3P1KK

TP1+2λ3I)δi(t)

+δTi (t− h(t))(2λ3I)δi(t− h(t)). (23)

And

2eT (t)(IN⊗P 2K)∆φ(t)

≤ ε−1eT (t)(IN⊗P 2K)(IN⊗KTP2)e(t)

+ελ21e
T (t)e(t) + ελ

2
2e

T (t− h(t))e(t− h(t)).(24)

Define coordinate transformations:
ϵ(t) = (ΠT ⊗ In)δ(t), θ(t) = (ΠT ⊗ In)e(t), ζ(t) =

(ΠT⊗In)d(t), ξ(t) = (ΠT⊗In)d̄(t), σ̇(t) = (ΠT⊗In)ż(t),
ϵ1 = 0, ξ1 = 0,
ηj(t) = (ϵTj (t), θ

T
j (t), ϵ

T
j (t−h(t)), θTj (t−h(t)))T , w =

(ξT (t), ζT (t))T , vj = (ϵTj (t), θ
T
j (t), ϵ

T
j (t − h(t)), θTj (t −

h(t)), ξT (t), ζT (t))T , ψ1 = (θT1 (t), θ
T
1 (t− h(t)), ζT1 (t))

T .
Utilizing the Newton-Leibniz formula, any matrixMδ, Nδ

with the right dimensions can be calculated directly.

V̇ + ϵT ϵ+ θT θ + ϵT (t− h(t))ϵ(t− h(t))

+θT (t− h(t))θ(t− h(t))− γ2ξT ξ − γ2ζT ζ

−2vT (t)Mz[σ(t)− σ(t− h(t))−
∫ t

t−h(t)

σ̇(s)ds]

−2vT (t)Nz[σ(t− h(t))− σ(t− h)−
∫ t−h(t)

t−h

σ̇(s)ds]

≤ 1

h

∫ t

t−h(t)

[
v(t)
σ̇(t)

]T [
Ξ hMz

∗ −hZ

] [
v(t)
σ̇(t)

]
ds

+
1

h

∫ t−h(t)

t−h

[
v(t)
σ̇(t)

]T [
Ξ hMz

∗ −hZ

] [
v(t)
σ̇(t)

]
ds

+ψT
1 Ξ2jψ1 (25)

where Ξ = Ξ1j + hΓT (P1(2ε1P1 − ε21Z)
−1P1)Γ −

He(Mz(U1 − U2))−He(Nz(U2 − U3)).
The closed-loop system (13) achieves asymptotic stability

if the inequalities (26)-(27) are satisfy.

Ξ̃z =

[
Ξ hMz

∗ −hZ

]
< 0 (26)

Π̃z =

[
Ξ hMz

∗ −hZ

]
< 0 (27)

Considering that non-convex terms like PBfKs in (26)-
(27) , require processing.

LetAT = [(−αT
j K

T
s )

T , (−αT
j K

T
s )

T , 0, 0, 0, 0, 0, 0]T , T =
[I8∗8, AT ] .

The solution to (26)-(27) can be obtained by multiplying
the problem’s two sides by T and TT in the matrices (17)-
(18), Lemma 2 of the Schur complement is then applied, cor-
respondingly.

Moreover, if (17)-(18) hold, it yields V̇ (t) + ϵT ϵ+ θT θ+
ϵT (t−h(t))ϵ(t−h(t))+θT (t−h(t))θ(t−h(t))−γ2ξT ξ−
γ2ζT ζ < 0. particularly, under ξ(t) = 0, ζ(t) = 0, the
disparity can be expressed as V̇ (t) < −ϵT ϵ − θT θ −
ϵT (t− h(t))ϵ(t− h(t))− θT (t− h(t))θ(t− h(t)) ≤ 0. The
closed-loop system (13) is asymptotically stable according
to Lyapunov theory. When, under ξ(t) ̸= 0, ζ(t) ̸= 0 and
ϕ(t) = 0, it results in δ(t) = 0. Thus Vδ(t)|t=0 = 0. Mo-
tivated by Vδ(t)|t=L ≥ 0. As a result, utilizing the γ per-
formance level H∞. Finally, the closed-loop synchronizing
state error system (13) reaches stability. The final proof has
been completed.

4 Examples in Numbers
Here, we show simulation results demonstrating the per-

formance of the algorithm. We study a MASs with four
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agents, each represented by the model shown below:

ẋi(t) = Axi(t) +Adxi(t− h(t)) +Bfui(t)

+D1di(t) +Kφi(xi(t), xi(t− h(t)))

yi(t) = Cxi(t) +D2di(t)

where A =

[
−5 −1.4
1.18 0

]
, Ad =

[
−0.3 0.2
−0.1 −0.4

]
,

B =

[
1
0.5

]
, D1 =

[
0.01
0.02

]
, K =

[
−0.1
0.3

]
,

C =

[
1 0
0 1

]
, D2 =

[
0.01 0.01

]
,

φi(xi(t)) = 0.2 sinxi2(t)+0.5 sinxi2(t−h(t)). The network
architecture displayed above can be used to represent a network
with four agents in Fig. 1.

From Fig. 1, the following is the expression for the Laplacian
matrix L

L =


3 −1 −1 −1
−1 2 0 −1
−1 0 2 −1
−1 −1 −1 3



Fig. 1: Communication topology

To enact consensus within MASs, it is supposed that h(t) =

0.05 |sin(t)|, λ1 = 0.18, λ2 = 0.25, λ3 = 0.32, ε = 50, and
the control protocol is designed using the suggested observer-based
consensus control mechanism. Our algorithm shown in Theorem 1
yields a minimal value of γ of 0.2321 when there are no actuator
issues. The corresponding observer gain matrix is

L0 = 1.0e+ 04 ∗
[

0.3471 −0.3470
−1.0411 1.0413

]
,

and the matching matrix of control gains is

Ks =
[
0.3779 0.0789

]
.

The initial conditions are chosen as

x10 =

[
0.4
0.5

]
, x20 =

[
−0.4
−0.4

]
,

x30 =

[
−0.2
0.4

]
, x40 =

[
0.4
−0.3

]
.

We let

Nf = diag(Nf1, Nf2), 0.2 ≤ Nfi ≤ 0.8, ∀i = 1, 2.

In the same starting state circumstances, let Nf

= diag(0.2, 0.2), the trajectories of the closed-loop MASs
(1) are shown in Fig. 2, and an illustration of the estimating
mistakes in Fig. 3. When Nf = diag(0.8, 0.8), the state trajecto-
ries are illustrated in Fig. 4, and an illustration of the estimating
mistakes in Fig. 5.

Figs. 3 and 5 embody, if the actuator failures are within a chang-
ing domain, asymptotically, the observation errors will approach
zero. From Figs. 2 and 4, it is obvious that, in spite of actuator

failures, consensus is reached asymptotically. This discovery high-
lights the robust controller design’s potential to lessen the effects of
disturbances and actuator malfunctions. The efficiency of the sug-
gested dependable control mechanism for MASs using undirected
communication graphs is clearly shown by these data.

Fig. 2: state trajectories when the actuator malfunctions Nf

= diag(0.2, 0.2).

Fig. 3: observation error paths in the event of actuator mal-
functions Nf = diag(0.2, 0.2).

5 Conclusions

This paper investigates the reliability control of nonlinear masses
affected by state delay, actuator faults, and disturbances. It em-
ploys a connected sensor that incorporates a distributed observer
for estimating state information, thereby creating a singular agent
via a shared communication network. This approach achieves an
observer-based protocol ensuring the necessary anti-interference
performance. Then, an observer-based reliability control protocol
is developed to mitigate the consequences of actuator failure using
the estimated information. Ultimately, an instance is provided to
confirm the efficacy of the suggested approach. To enhance con-
trol effectiveness further, the paper aims to explore more suitable
control schemes in future studies.
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Fig. 4: state trajectories when the actuator malfunctions Nf

= diag(0.8, 0.8).

Fig. 5: observation error paths in the event of actuator mal-
functions Nf = diag(0.8, 0.8).
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Multi-Agent Clusters Flocking Control Via High-Order Fully
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Abstract: This paper focuses on the clusters flocking control problem of multi-agents by utilizing a high-order fully actuated
system (HOFAS) approach. A multilayer leader-following formation model of second-order multi-agent systems (MASs) is es-
tablished. The mathematical model of the formation system with uncertainties is transformed into a class of HOFASs facilitating
the flexibility of control design. A new robust formation control law is designed based on the HOFAS approach, achieving the
desired multi-agent clusters flocking. The analysis of the multi-agent clusters flocking formation system is presented based on
the Lyapunov function, of which the results show that the formation errors can converge to an ellipsoidal region. Simulation
results validate the effectiveness of the theoretical results.

Key Words: Multi-agent systems, Formation control, Clusters flocking, Nonlinear dynamics, Second-order systems

1 Introduction

The inspiration for multi-agent systems (MASs) is derived

from scientific research and exploration of the behavior of

organisms in the natural world, such as pattern formation

of bacteria colonies, triangle formation of bird groups, and

cooperative hunting of the herd [1]. The MASs consist of

numerous intelligent agents with the ability of communica-

tion, cognition, perception control, and behavior. Compared

with a single agent, MASs can accomplish more large and

complex tasks with higher task completion rates [2]. More

importantly, MASs gain many advantages in the following

aspects, including reducing cost and error, improving system

efficiency and flexibility, implementing parallel processing,

achieving stability, and so on.

In the last few years, the extensive exploration of coopera-

tive control for MASs [3–7] has promoted different applica-

tions in the military and civilian fields, such as the formation

of multi-robots [8], autonomous underwater vehicles [9], the

formation of unmanned aerial vehicles, and smart grid [10].

As one of the important and fundament research issues of co-

ordinated control, formation control in MASs which means

to control multiple agents to move and maintain in a pre-

designed particular configuration attracted much research at-

tention [11–13]. As the number of nodes rises and the com-

plexity of formation tasks increases, stochastic disturbances

exists, and physical attacks escalates, it significantly impacts

the robustness of MASs formation [14].

To accomplish complex tasks, MASs often need to divide

into multiple subgroups/clusters according to task require-

ments, achieving consistency within each cluster while al-

lowing for differences between clusters [15]. For instance,

unmanned aerial vehicles (UAVs) and unmanned ground ve-

hicles (UGVs) collaborate in hilly and mountainous terrains

This work is supported by the National Natural Science Foundation

of China (62103118, 62033005, 62320106001, 62373127), the Science

Center Program of National Natural Science Foundation of China un-

der Grant 62188101, and in part by the Heilongjiang Touyan Team Pro-

gram, the Postdoctoral Science Foundation of Heilongjiang Province (LBH-

Z21015), and the China Postdoctoral Science Foundation (2021M700037

and 2021T140160).

to conduct exploration and communication tasks and mul-

tiple UAV-UGV teams coordinate in ground-air collabora-

tive encirclement operations shown in Fig. 1. The clustering

consensus control algorithms proposed in [16] can achieve

asymptotic convergence of MASs. This means that the s-

tates of agents within each subgroup converge over time to

different consensus values.

Fig. 1: An illustration of clusters cooperation of UAVs and

UGVs

The high-order fully actuated system (HOFAS) approach

was developed in [17]. By applying the HOFAS, the control

designed for known nonlinearities can transform the closed-

loop system into a linear one with arbitrary eigenstructures.

HOFASs offer greater convenience for dynamical system

control compared to state-space models [17, 18]. In [17],

a two-step procedure was proposed to convert a state-space

model into a pseudo strict-feedback system (SFS) and then

into an HOFAS. In [18], the first-, second-, and high-order S-

FSs were put forward and converted to HOFAS models. The

Lyapunov stability theory was applied to resolve robust con-

trol problems [19] for HOFASs with uncertainties. HOFAS

models with multiple orders for general dynamical control

systems were proposed for the first time in [20]. Therefore,

the HOFAS approach has broad prospects in the field of non-

linear control.

Motivated by the above discussions, this paper investi-

gates the clusters flocking control problem of second-order
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MASs with nonlinear dynamics. Based on the HOFAS the-

ory, a multilayer leader-following formation system model

is established. Drawing inspiration from [19], a robust for-

mation control law is designed, utilizing HOFAS theory to

converge formation errors to an elliptical region. Formu-

lation rules for leader-following formation control are pre-

sented, enabling MASs to achieve and maintain the desired

formation. The main contribution of this paper lies in the

successful application of the HOFAS method to MAS for-

mation control, further enriching the applications of the HO-

FAS methodology. The rest of this article is organized as

follows. In Section 2, a clusters flocking formation model

based on the HOFAS theory is provided. In Section 3, a ro-

bust clusters flocking control is designed. Section 4 gives

numerical simulations to verify the theoretical results. Fi-

nally, concluding remarks are stated in Section 5.

2 Problem Description and Preliminaries

To address the issue of complex tasks, the intelligent a-

gents within the system are divided into multiple clusters.

Through collaboration among these clusters, various tasks

can be accomplished.

The system model is designed with a three-layer architec-

ture, comprising one virtual leader, M cluster leaders, and N
followers, where the clusters’ strucure is shown in Fig. 2. N
followers are divided into M clusters, and each cluster has

exactly one cluster leader. For ease of expression, we define

the ith cluster leader leads Ni followers for i ∈ 1, 2, · · · ,M .

We can obtain
∑M

i=1 Ni = N . All cluster leaders are cen-

trally controlled by the virtual leader. The communication

between the virtual leader and cluster leader is unidirection-

al, and there is no direct communication between the vir-

tual leader and followers. Followers only receive informa-

tion from their respective cluster leaders. For heterogeneous

systems with inconsistent dimensions, we extend the dimen-

sions of UAVs to three-dimensional space, where the dis-

placement and velocity along the Z -axis are consistently set

to 0.

Cluster MCluster 1 Cluster 2

Follower 1

Follower 2

Follower N1

Follower 1

Follower 2

Follower N2

Follower 1

Follower 2

Follower NM

 Leader 1  Leader 2    Leader M

Vitural Leader

.........

...

Fig. 2: An illustration of the block diagram of the clusters

flocking system.

Consider the second-order nonlinear dynamics with the a-

gents. The models of all agents can be unified and expressed

as follows.{
ẋk(t) = vk(t),

v̇k(t) = uk(t) + f(vk(t)), k = 0, 1, · · · ,M +N,
(1)

where xk(t) ∈ Rn, vk(t) ∈ Rn, and uk(t) ∈ Rn can be

the position state, velocity state, and control input of the kth

agent respectively. The unknown nonlinearity of the dynam-

ics is represented by f (vk(t)) ∈ Rn.

Assumption 1 The nonlinear dynamics are vector-valued
functions and are continuously differentiable, and there ex-
ists a positive coefficient β satisfying the following condi-
tion: ||f (vi(t)) − f (vj(t)) || ≤ β||vi(t) − vj(t)||, i, j ∈
{0, 1, · · · ,M +N}.

We define the following formation error variables for the

ith cluster leader:{
xei = xi − hi − x0,

vei = vi − v0.
(2)

For the ith cluster, we define the following formation error

variables for the j ∈ {1, 2, · · · , Ni} follower:{
xej,i = xj,i − hj,i − xi,

vej,i = vj,i − vi.
(3)

In order to achieve the cluster flocking, the formation er-

rors xe should convergent to zero. The following definition

provides a criterion for such a formation system.

Definition 1 Consider the MAS (1). For any given bounded
initial state {xk(0), vk(0)}, the desired formation of MASs
is supposed to be achieved if the cluster leaders and the fol-
lowers satisfy{

limt→∞ (xi (t)− hi (t)− x0 (t)) = 0,

limt→∞ (xj,i (t)− hj,i (t)− xi (t)) = 0,
(4)

where hi (t) indicates the desired formation vector form the
ith cluster leader to the virtual leader; hj,i (t) represent the
desired output formations of the jth follower to the ith clus-
ter leader.

Let us analyze the dynamic system of the desired forma-

tion system. Then, we transform it into an HOFAS for fur-

ther control design.

Firstly, for the cluster leaders, from (1) and (2) we have

ẋei = ẋi − ẋ0 − ḣi, (5)

v̇ei = v̇i − v̇0 = f(xi, vi)− f(x0, v0) + ui − u0. (6)

Then, we can obtain the following HOFAS model of the vir-

tual leader and cluster leaders:

ẍei = v̇ei = f(ẋei) + ui − u0 − ḧi. (7)

Similarly, the error system between the followers in each

cluster and the leader is analyzed by

ẋej,i = ẋj,i − ẋi − ḧj,i, (8)
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v̇ej,i = v̇j,i − v̇j,i = f( vj,i)− f( vj,i) + uj,i − ui. (9)

We can obtain the HOFAS model of cluster leader and fol-

lowers

ẍej,i = v̇ej,i = f(ẋej,i) + uj,i − ui − ḧj,i. (10)

For convenience, we denote

ui1 � ui − u0 − ḧi, (11)

uj,i1 � uj,i − ui − ḧj,i. (12)

Then, we can get

ẍei = f(ẋei) + ui1, (13)

ẍej,i = f(ẋej,i) + uj,i1. (14)

Hence, equation (13) and (14) fulfills the form outlined in

the HOFAS model introduced in [19], when n = 2.

z(n) = f
(
z(0∼n−1)

)
+Δf

(
z(0∼n−1)

)
+ L

(
z(0∼n−1)

)
u.

(15)

where z(0∼n) � [z ż · · · z(n)]T.

In order to achieve errors convergence in Definition 1, ac-

cording to the HOFAS theory, the error systems (13) and (14)

are converged by designing an HOFAS controller, which

completes the formation of the cluster system.

Lemma 1 [19] For any μ > 0, there exists a set of matri-
ces Ai ∈ Rr×r, i = 0, 1, · · · , n− 1 and a positive definite
matrix P

(
A0∼n−1

)
satisfying

Reλi

(
Φ
(
A0∼n−1

))
< −μ

2
, i = 1, 2, · · · , nr, (16)

ΦT
(
A0∼n−1

)
P

(
A0∼n−1

)
+ P

(
A0∼n−1

)
Φ
(
A0∼n−1

)
< −μP

(
A0∼n−1

)
,

(17)

where

A0∼n−1 � [A0 A1 · · · An−1] ∈ Rr×nr,

Φ(A0∼n−1) �

⎡
⎢⎢⎢⎣

0 I
. . .

I
−A0 −A1 · · · −An−1

⎤
⎥⎥⎥⎦ ∈ Rnr×nr,

P (A0∼n−1) �
[
P1 P2 · · · Pn

]
, Pi ∈ Rnr×r,

PL(A
0∼n−1) � P (A0∼n−1)

[
0
Ir

]
= Pn ∈ Rnr×r.

Lemma 2 Let a and b be two real numbers, and b > 0.
Then, the following relation holds:

a− a2

4b
� b. (18)

Remark 1 For an arbitrarily given matrix F ∈ Rnr×nr,
the matrix A0∼n−1 and the non-singular matrix V ∈
Rnr×nrsatisfying

Φ
(
A0∼1

)
= V FV −1, (19)

in which
A0∼1 = −ZFnV −1(Z,F ) , (20)

V = V (Z,F ) =

⎡
⎢⎢⎢⎣

Z
ZF

...
ZFn−1

⎤
⎥⎥⎥⎦ , (21)

where Z ∈ Rr×nr satisfies detV (Z,F ) �= 0.

3 Clusters Flocking Control Design and Analysis

Theorem 1 Consider the MASs sysytem (13) and (14). For
given positive numbers μ1, μ2, ε1, and ε2, by using the fol-
lowing control laws{

ui1 = −I−1(A0∼1
a x

(0∼1)
ei + u∗

a),

u∗
a = 1

4ε1
‖ βẋei ‖22 PT

L (A0∼1
a )x

(0∼1)
ei ,

(22)

{
uj,i1 = −I−1(A0∼1

b x
(0∼1)
ej,i + u∗

b),

u∗
b = 1

4ε2
‖ βẋej,i ‖22 PT

L (A0∼1
b )x

(0∼1)
ej,i ,

(23)

then the formation errors x
(0∼1)
ei and x

(0∼1)
ej,i can converge

into the following ellipsoid centred at the origin, respective-
ly:

Θμ1,ε1(0)

=

{
x
(0∼1)
ei |

(
x
(0∼1)
ei

)T

P
(
A0∼1

a

)
x
(0∼1)
ei ≤ ε1

μ1

}
,

(24)

Θμ2,ε2(0)

=

{
x
(0∼1)
ej,i |

(
x
(0∼1)
ej,i

)T

P
(
A0∼1

b

)
x
(0∼1)
ej,i ≤ ε2

μ2

}
,

(25)

where A0∼1
a , A0∼1

b , PL

(
A0∼1

a

)
, and PL

(
A0∼1

b

)
can be ob-

tained by Lemma 1 and Remark 1.

Proof: Substituting the control law(22) into system (13)

gives the following closed-loop system

ẍei +A0∼1
a x

(0∼1)
ei = φ(x

(0∼1)
ei ), (26)

where

φ(x
(0∼1)
ei ) = − 1

4ε1
‖ βẋei ‖22 PT

L (A0∼1
a )x

(0∼1)
ei + f(x

(0∼1)
ei ).

(27)

The closed-loop system (27) can be written in the following

state-space form:

ẋ
(0∼1)
ei = Φ(A0∼1

a )x
(0∼1)
ei +

[
0r

φ(x
(0∼1)
ei )

]
. (28)

From Lemma 1, there exists Φ(A0∼1
a ) and a positive definite

matrix P (A0∼1
a ) satisfying (17). Then, the following Lya-

punov function is chosen for the system (28):

V =
1

2

(
x
(0∼1)
ei

)T

P (A0∼1
a )x

(0∼1)
ei . (29)
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In view of (17) and (28), we have

V̇ =
1

2

(
ẋ
(0∼1)
ei

)T

Px
(0∼1)
ei +

1

2

(
x
(0∼1)
ei

)T

Pẋ
(0∼1)
ei

=
1

2

(
Φx

(0∼1)
ei +

[
0r

φ(x
(0∼1)
ei )

])T

Px
(0∼1)
ei +

1

2

(
x
(0∼1)
ei

)T

× P

(
Φx

(0∼1)
ei +

[
0r

φ
(
x
(0∼1)
ei

)])

=
1

2

(
x
(0∼1)
ei

)T(
ΦTP + PΦ

)
x
(0∼1)
ei

+
(
x
(0∼1)
ei

)T

P

[
0r

φ
(
x
(0∼1)
ei

)]

≤ −μ1

2

(
x
(0∼1)
ei

)T

Px
(0∼1)
ei +

(
x
(0∼1)
ei

)T

PLφ(x
(0∼1)
ei )

= −μ1V +
(
x
(0∼1)
ei

)T

PLφ(x
(0∼1)
ei ).

Next, let us consider the last term of the above inequation.

It follows from Assumption 1, Lemma 2, and Equation (28)

that(
x
(0∼1)
ei

)T

PLφ(x
(0∼1)
ei )

= −‖βẋei‖22
4ε

[(
x
(0∼1)
ei

)T

PLP
T
L x

(0∼1)
ei

]

+
(
x
(0∼1)
ei

)T

PLf(x
(0∼1)
ei )

= −‖βẋei‖22
4ε

∥∥∥PT
L x

(0∼1)
ei

∥∥∥2

+
(
x
(0∼1)
ei

)T

PLf(x
(0∼1)
ei )

≤ −‖βẋei‖22
4ε

∥∥∥PT
L x

(0∼1)
ei

∥∥∥2

+
∥∥∥f(x(0∼1)

ei )
∥∥∥ ∥∥∥PT

L x
(0∼1)
ei

∥∥∥
≤ −‖βẋei‖22

4ε

∥∥∥PT
L x

(0∼1)
ei

∥∥∥2

+ ‖βẋei‖
∥∥∥PT

L x
(0∼1)
ei

∥∥∥
≤ ε1.

(30)

Combining the above two equations, gives

V̇ ≤ −μ1V + ε1. (31)

Then, it follows from the Comparison Theorem that

V ≤ V (0) e−μ1t +
ε1
μ1

(
1− e−μ1t

)
, (32)

which gives

V ≤
(
V (0)− ε1

μ1

)
e−μ1t +

ε1
μ1

→ ε1
μ1

, t → ∞. (33)

Thus, the formation errors x
(0∼1)
ei in cluster leader layer

eventually converge into the ellipsoid Θμ1,ε1(0). Similarly,

we can prove that the formation errors x
(0∼1)
ej,i in follower

layer eventually converge into the ellipsoid Θμ2,ε2(0). This

implies that the system (13) and (14) can achieve the desired

formation. The proof is completed.

4 Simulation Results

To validate the obtained HOFAS formation control pro-

tocol, this section consider a heterogeneous cluster system

consisting of 12 UGVs and 3 UAVs.

Firstly, we design μ1 = μ2 = 10, ε1 = ε2 = 1 and the pa-

rameter matrices as F = diag{−6,−7,−8,−9,−10,−11},

Z = [I3 I3]. Then, we can solve A0∼1
a , A0∼1

b , PT
L (A0−1

a ),
and PT

L (A0−1
b ) as

A0∼1
a = A0∼1

b =

⎡
⎣54 0 0 15 0 0
0 70 0 0 17 0
0 0 88 0 0 19

⎤
⎦ ,

PL(A
0∼1
a ) = PL(A

0∼1
b ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.6214 0 0
0 0.9043 0
0 0 0.5958

0.1929 0 0
0 0.1080 0
0 0 0.0731

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The uncertainties are considered as: f(vi(t)) =
−0.002v2i (t) − 0.003. We set the maximum veloci-

ty to not exceed 50 m/s, so we can obtain that β =

0.14. The initial position of the virtual leader and

three cluster leaders are given as x0(0) = [3, 3, 5]T,

x1(0) = [2, 0, 0]T, x2(0) = [2, 2, 0]T, x3(0) = [0, 2, 0]T.

The desired formation vectors are given as: h1 = [5, 0, 2]
T

,

h2 = [0, 5, 0]
T

, h3 = [−5, 5, 3]
T

. The initial position

of the followers are given as: x1,1 = [1,−2]
T

, x2,1 =[
cos( 2π3 ), sin( 2π3 )− 2

]T
, x3,1 =

[
cos( 4π3 ), sin( 4π3 )− 2

]T
,

x1,2 = [−1,−2]
T

, x2,2 =
[
cos(π2 )− 2, sin(π2 )− 2

]T
,

x3,2 = [cos(π)− 2, sin(π)− 2]
T

, x4,2 =[
cos( 3π2 )− 2, sin( 3π2 )− 2

]T
, x1,3 = [−2, 0]

T
,

x2,3 =
[
cos( 2π5 )− 3, sin( 2π5 )

]T
, x3,3 =[

cos( 4π5 )− 3, sin( 4π5 )
]T

, x4,3 =
[
cos( 6π5 )− 3, sin( 6π5 )

]T
,

x5,3 =
[
cos( 8π5 )− 3, sin( 8π5 )

]T
.

The initial velocity of the virtual leader is set

to v0(0) = [1, 1, 0]T. The initial velocity of clus-

ter leaders, and followers are set to 0 in each axis

direction. The desired formation vector are giv-

en as: h1,1 =
[
cos(−1π

5 ), sin(−1π
5 )

]T
, h2,1 =[

cos( 7π15 ), sin(
7π
15 )

]T
, h3,1 =

[
cos( 17π15 ), sin( 17π15 )

]T
, h1,2 =[

cos( 2π10 ), sin(
2π
10 )

]T
, h2,2 =

[
cos( 7π10 ), sin(

7π
10 )

]T
, h3,2 =[

cos( 12π10 ), sin( 12π10 )
]T

, h4,2 =
[
cos( 17π10 ), sin( 17π10 )

]T
,

h1,3 = [1, 0]
T

, h2,3 =
[
cos( 2π5 ), sin( 2π5 )

]T
,

h3,3 =
[
cos( 4π5 ), sin( 4π5 )

]T
, h4,3 =

[
cos( 6π5 ), sin( 6π5 )

]T
,

h5,3 =
[
cos( 8π5 ), sin( 8π5 )

]T
.

Fig. 3 illustrates the motion trajectories of the virtual lead-

er, three cluster leaders and all the followers. It is evident

that the control algorithm proposed in this paper guarantees

the cluster system can rapidly achieve the desired forma-

tion. Figs. 4–6 show the position errors of the agents, we

can know position formation errors converge to 0, and from

Figs. 7–9 velocity errors of agents also converge to 0, which

implies the agents maintain the desired formation and a con-

sistent velocity. Figs. 10–12 illustrates the control inputs of

the agents in various directions. Evidently, simulation result-

s mean that each layer’s agents can follow the corresponding

leader with the desired formation and keep the same velocity.
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Fig. 12: Control inputs of agents of Z-axis.

5 Conclusion and Future Works

In this paper, a clusters flocking formation robust con-

troller of second-order MASs has been designed. Compared

to common control methods like PID, the controller based

on the HOFAS model has the ability to set the error conver-

gence range according to actual requirements. This makes

the system design and debugging more straightforward. The

proposed controller leverages the advantages of the HOFAS

method. It not only eliminates uncertainties but also allows

arbitrary design of the linear part of the closed-loop system.

The convergence of the formation errors has been analyzed.

The obtained controller can ensure the formation errors con-

verge to any small ellipsoidal region. The simulation results

has been used to confirm the validation of the proposed con-

trol approach. Additional actual MASs formation control

research based on HOFAS method will be further explored.
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Abstract: Data transactions within distributed networks are increasingly critical in modern technological infrastructures. How-
ever, such transactions encounter significant challenges, including security vulnerabilities and a lack of participant trust. Tra-
ditional centralized approaches often fail to address these issues due to their lack of transparency and flexibility, resulting in
inefficiencies and potential risks. This paper presents a novel transaction mechanism that enhances security and transparency
in Multi-Agent Systems (MAS) by integrating Hashed Timelock Contracts (HTLC) with blockchain technology, effectively ad-
dressing the concerns of data transaction reliability and trust. The efficacy of this mechanism in enhancing transaction security
and efficiency was validated through simulation experiments. Results demonstrate that the system operates reliably under various
network conditions, boasting high success rates and robust security. Overall, this research successfully explores and validates an
enhanced blockchain-based solution for secure and reliable data transactions in distributed networks, offering a new strategy for
addressing the challenges of data exchanges.

Key Words: Blockchain, Data Transaction Security, Hashed Timelock Contract, Multi-Agent Systems

1 Introduction

Distributed control is an essential approach for produc-
tion control [1]. Multi-Agent System (MAS) is one of the
most influential distributed control methods for manufac-
turing autonomy [2]. Different agents can cooperate in a
mutually customized protocol, and local active task plan-
ning can be carried out in each agent according to its task
queue and status [3]. The overall goal of the distributed pro-
duction control system can be realized by coordinating sub-
solutions through the communication mechanism between
multiple agents [4].

With the rapid development of perception, communica-
tion, and computation technologies, distributed cooperative
control of MASs has received significant attention from
scholars in different disciplines due to their wide applica-
tions in large-scale process industries, multi-robot systems,
intelligent transportation systems, sensor networks, smart
grids, and internet systems [5, 6]. Compared with tradi-
tional single-agent systems, MAS is more scalable and up-
gradeable while improving task execution efficiency and ro-
bustness due to their inherent ability to learn and make au-
tonomous decisions cooperatively [7].

However, implementing and maintaining an agent re-
quires significant time and resources, including extensive
computational power during the design and testing phases
and substantial communication and energy costs during op-
eration. Concurrently, within an MAS, agents generate valu-
able data through its autonomous and iterative learning pro-
cesses, reflecting system performance and offering insights
for optimization.

Blockchain technology has emerged as a solution to en-
sure the security and credibility of data transactions [8]. Its
immutable and decentralized nature provides a robust plat-
form for data exchange, enhancing transparency and fairness
while reducing costs and accelerating processes. Given the
need for secure and efficient transactions of the vast data

This work is supported by the Beijing Natural Science Foundation
(L223025)

amassed by different agents, blockchain application is par-
ticularly crucial [9, 10].

In this context, our research introduces a novel data trans-
action scheme that integrates agents and blockchain technol-
ogy, addressing security and efficiency issues in data trans-
actions [11, 12]. We explore how the operational mecha-
nisms of MAS and the security features of blockchain can be
synergized to automate, secure, and streamline data transac-
tions. At the heart of this study is the design of a blockchain-
based Hashed Timelock Contract (HTLC) protocol, which
ensures simultaneous locking and releasing of funds and
data, thereby enhancing the security and trustworthiness of
transactions [13–15].

This integration optimizes the data transaction process and
improves the security and transparency of transactions. Our
innovative mechanism significantly contributes to the fluid-
ity and value of data, fostering the growth and innovation of
the digital economy. The study presents a pioneering solu-
tion to the resource and cost challenges faced by MAS in
practical applications, leveraging blockchain technology to
bolster the security and efficiency of data transactions. Fu-
ture research will delve into the applicability of this scheme
across various industries and settings, aiming to continually
refine and adapt the data transaction mechanism to evolving
technological and market needs.

The rest of the paper is organized as follows. Section
2 details the system model, which integrates MAS and
blockchain technology to create a secure and trustworthy
data transaction environment. Section 3 explores HTLC-
based trusted data transactions, outlining a detailed five-step
process for secure data exchange, which includes hash func-
tions, digital signatures, and blockchain technology to en-
sure transaction integrity. In Section 4, we present the simu-
lation experiment results that validate our proposed system’s
effectiveness through practical implementation, focusing on
transaction latency and success rates. Section 5 concludes
the paper with a summary of our findings and discusses the
potential for future research in secure data transactions using
MAS and blockchain technology.

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications 
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Fig. 1: A Secure Transaction Framework for Trusted Value Data Based on Blockchain and Multi-Agent Systems

2 System Model

The demand for reliable and secure data transaction mech-
anisms grows as technology advances. This study presents a
system model that combines MAS and blockchain technol-
ogy to create a secure and trustworthy data transaction envi-
ronment. In this framework, agents serve as data providers
and are directly influenced by data transaction activities,
fostering a mutually beneficial ecosystem, as illustrated in
Fig.???1.

The primary role of MAS in this system is to act as an
efficient data processing and provisioning platform. Com-
posed of a series of intelligent agents, it monitors, analyzes,
and optimizes the data supply chain, ensuring the authentic-
ity and accuracy of the provided data. This process improves
data quality and enhances MAS’s data processing capabili-
ties. Significantly, through ongoing data transactions, MAS
collects feedback and performance data, allowing for rapid
iteration and optimization of its algorithms and processes,
facilitating swift development.

In our model, agents are valuable data providers, gener-
ating significant data through continuous optimization and
iteration. This allows for the transaction of valuable data
to meet the specific needs of other agents or buyers, further
enhancing MAS. Each agent is equipped with specialized
strategies and algorithms, enabling independent data mining
and optimization tasks to ensure the data reflects the latest
market dynamics with high relevance and accuracy. Through
internal optimization mechanisms, agents ensure data provi-
sion consistency and timeliness, enhancing the automation
level in the transaction process.

Blockchain technology is crucial in this model, providing
a secure foundation for MAS’s data transactions. Deploying
smart contracts, particularly HTLCs, ensures that each step
of the data transaction is verifiable and immutable, thus in-
creasing the overall trust in the transaction process. This se-
cure and trustworthy transaction environment not only pro-
tects the value of the data but also encourages more data
sharing and transactions, feeding back into MAS and sup-
porting its continuous development and optimization.

MAS and blockchain form a robust data transaction
ecosystem through this synergistic mechanism. This reliable
data transaction system enables rapid development within
MAS, while blockchain technology ensures the security and
trustworthiness of these transactions. Our research demon-

strates how this model effectively promotes the maximiza-
tion of data value and the continuous progression of the sys-
tem, offering new perspectives and methodologies for the
future of data trading and system development.

3 HTLC-based Trusted Data Transactions

In this section, we introduce the core part of the frame-
work, HTLC, and conduct a completeness analysis.

3.1 HTLC Process
In order to address the urgent problem of securing trusted

data transactions, as mentioned in the previous section, we
use HTLC and data encryption as solutions targeted at secur-
ing trusted transactions. As shown in Fig.???2, the proposed
scheme can be considered a tripartite of data sellers, buyers,
and HTLCs.

Data Buyer

Hashed Timelock Contract

Data Seller

Agent 1 Agent 2

Ethereum Network

Ethereum 

Client

Ethereum 

Client
... ...

Ethereum 

Node

Ethereum 

Node
... ...

... ...

Miner Miner

Fig. 2: HTLC-based Data Transactions

The specific process is one preparatory step and five key
steps, as shown in Fig.3. Each of these steps will be de-
scribed in detail in the following :

0) Negotiation of Details between Data Transaction
Parties. Step 0 initiates with preliminary negotiations,
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Fig. 3: Details of HTLC-based data transactions

a foundational phase in the data transaction process.
Here, data sellers and buyers actively define and agree
on the transaction terms, encompassing data attributes,
quality, intended use, price, and transaction modalities.
Additionally, both parties establish specific protocols
for data delivery and payment tailored to meet mutual
needs and security requirements. This phase, character-
ized by thorough discussions and consensus-building,
lays a solid groundwork for subsequent on-chain trans-
actions and contract fulfillment.

1) Data Preparation and Contract Creation. The seller
prepares to sell data to the buyer. Initially, the seller
computes the hash value of the data set for sale, uti-
lizing the Secure Hash Algorithm 256-bit (SHA-256)
function. This hash value is a unique data finger-
print, ensuring that even the slightest alterations are de-
tectable. By recalculating and comparing this SHA-256
hash value, one can verify whether the data has been
tampered with. This process is crucial for establishing a
hash lock within the HTLC, guaranteeing data integrity.

hdata = SHA-256(data) (1)

The seller deploys an HTLC that includes the hash
value of the data as hash lock, both parties’ wallet ad-
dresses, which, in the blockchain, the price has agreed
upon, and a timeout period as timelock. When a seller
deploys HTLC to a decentralized Ethereum network,
each node will verify the transaction’s legitimacy and
record it to the network.

2) Locking in Payment. To acquire the data, the data
buyer pays HTLC on a pre-agreed basis. This trans-
action is confirmed by the blockchain network and is
timestamped. Payments are locked in a smart contract,

and a timestamp in the Ethereum network proves that
the buyer submitted the funds at a specific time, provid-
ing a reliable timeline of the entire transaction process.
This demonstrates the critical role of timestamps in en-
suring transactions are executed in sequence.

3) Data Transmission. Subsequently, the seller employs
the Advanced Encryption Standard 256-bit (AES-256)
to conduct symmetric encryption of the transaction
data. This encryption mechanism plays a pivotal role
in ensuring the security of the data during transmission,
effectively preventing unauthorized access. Once en-
crypted, the data is securely transmitted to the buyer via
a certified secure communication channel, guaranteeing
the confidentiality and integrity of the data transfer.

C = EncAES,k(data) (2)

where C is the ciphertext (encrypted data), EncAES,k
denotes the AES encryption process using the key
k, and data represents the plaintext data to be en-
crypted.Similarly, the AES-256 encryption key k is
transmitted to the buyer via a secure key exchange pro-
tocol to enable data decryption in subsequent steps.

4) Data Validation and Release of Payment. Upon re-
ceiving the data encrypted with AES-256 and the key
k, the buyer decrypts the data using k. The correspond-
ing algorithm for the decryption process is:

data′ = DecAES,k(C) (3)

where DecAES,k denotes the AES decryption process
using the key k, and C is the ciphertext to be decrypted
back into the plaintext data.
These formulas encapsulate the AES encryption mech-
anism’s core functionality, ensuring that data transmit-
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ted between the buyer and seller in the HTLC-based
transaction scheme is protected against unauthorized
access.
After receiving and decrypting the data, the buyer cal-
culates its hash value and compares it with the hash
value stored in the smart contract. This step under-
scores the crucial role of hash functions in verifying the
integrity and authenticity of the data. If the hash values
match, the buyer confirms the data’s authenticity and
completeness.

VerifyH(data′, hdata) : SHA-256(data′) ?
= hdata (4)

Subsequently, the buyer submits a request through the
smart contract, including a key previously provided by
the seller. The smart contract checks if the data’s hash
value matches the initial hash lock, showcasing the es-
sential role of hash functions and illustrating the impor-
tance of digital signatures and timestamps in securing
and sequencing the transaction. Upon successful verifi-
cation, the contract automatically transfers the funds to
the seller and logs the timestamp of this operation.

VerifyH(data′, hashlock) : HSHA-256(data
′)

?
= hashlock

(5)
5) Completion and Recording of Transaction. After

the funds are successfully transferred to the seller, the
transaction is considered complete. Each step in the
transaction process, including the locking and releasing
of payments, is verified by the blockchain network and
timestamped. These timestamps create an immutable
transaction record, ensuring its transparency and trace-
ability.

Through the steps outlined, the hash function within the
HTLC plays a pivotal role in ensuring data integrity and
authenticating transactions. Digital signatures are essen-
tial for confirming the identities of transaction participants
and safeguarding information from tampering. Meanwhile,
timestamps and blockchain verifications offer an immutable
record of transactions, ensuring their transparency and se-
quential integrity. These technologies provide a secure,
trustworthy, and verifiable framework for data transactions
between buyers and sellers.

3.2 Completeness Analysis of Proposed Scheme
The effectiveness of the HTLC-based data transaction

scheme relies on several fundamental mechanisms that en-
sure secure and efficient operations. Firstly, transaction in-
tegrity is maintained through cryptographic hash functions,
such as SHA-256, which confirm that the data remains un-
altered from its original state. This step is essential for pre-
serving data authenticity. Secondly, the system ensures non-
repudiation using digital signatures and hash locks, which
prevent any party from denying their involvement in a trans-
action. This feature enhances trust and accountability within
the decentralized framework of the blockchain. Thirdly,
smart contracts rigorously enforce sequential execution, dic-
tating the precise order of operations—from payment lock-
ing to data validation. This strict ordering is crucial for the

systematic and accurate processing of transactions. More-
over, timeliness is guaranteed by timelocks that require
transactions to be completed within a specified period, or
they are voided. This mechanism helps avoid delays and as-
sures transaction certainty. Lastly, the entire transaction pro-
cess undergoes thorough verification and validation by the
blockchain network, safeguarding against individual tamper-
ing and ensuring compliance with the transaction protocol.
Collectively, these components safeguard the operation of
the HTLC-based data transaction scheme and reinforce its
reliability and adherence to established contractual terms,
highlighting its overall effectiveness and robustness.

3.3 Summary
In Section 3, we thoroughly investigate the imple-

mentation of HTLC in securing trusted data transactions.
This approach leverages cryptographic hash functions and
blockchain technology to facilitate secure and reliable ex-
changes between parties without intermediaries. The process
unfolds through well-defined steps, beginning with the initial
negotiations that set transaction terms, progressing through
data preparation and establishing a binding HTLC, and cul-
minating in the transaction’s final validation and completion.

A critical component of the HTLC framework is using
SHA-256 for data hashing, which ensures data integrity by
making any unauthorized modifications detectable. Comple-
mentarily, AES-256 encryption safeguards data during trans-
mission, preserving confidentiality and integrity. Upon re-
ceiving the data, the buyer decrypts and verifies its authen-
ticity by comparing hash values. A successful match auto-
matically triggers the release of payments through the smart
contract. Each transaction step is recorded and timestamped
on the blockchain, providing an immutable and transparent
ledger.

The section concludes with a completeness analysis that
highlights the HTLC framework’s robustness. It demon-
strates how the system upholds transaction integrity, non-
repudiation, and compliance—critical elements for fostering
trust and accountability in decentralized settings. This anal-
ysis confirms the HTLC-based mechanism’s operational ef-
fectiveness and illustrates its potential as a secure, scalable
solution for future digital transactions.

4 Simulation and Analysis

4.1 Experiment Objectives
This experiment aims to validate the efficiency and secu-

rity of our proposed data transaction scheme based on HTLC
and MAS. By conducting data transactions in a simulated
real-world environment, this study assesses the system’s re-
sponse time, success rate, and security under various condi-
tions, including network delays, different data payload sizes,
and the number of network participants. Successful out-
comes will demonstrate the scheme’s capability to offer a
secure and efficient data transaction platform in real-world
scenarios.

4.2 Experimental Setup
The setup of the experimental environment is designed

to ensure the accuracy of experimental data and the repro-
ducibility of results. The detailed configuration includes:

The experiment utilizes multiple servers to simulate a dis-
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tributed blockchain network. Each server is equipped with
identical hardware resources to maintain consistency across
the experiment. The entire network comprises 50 nodes,
each running a blockchain node.

An Ethereum blockchain environment is deployed on the
software front, and smart contracts are written in Solidity
to handle all HTLC-related data transactions. Additionally,
MAS on each node is configured to simulate different data
providers and consumers, representing various types of data
services such as meteorological and traffic flow data.

This environment ensures the experiment can proceed un-
der controlled conditions while simulating real-world data
transaction scenarios.

4.3 Experimental Procedure
4.3.1 Initial Setup

Before the commencement of the experiment, the follow-
ing initial setups are necessary:

Smart Contract Deployment The HTLC smart contract
is first deployed to the Ethereum test network. This step en-
sures that all transactions are conducted within a secure en-
vironment and facilitates the monitoring and analysis of the
transaction process.

MAS Configuration Each agent node is configured to
simulate different data providers and consumers. These
MAS nodes automatically perform actions such as data re-
quests, transaction initiation, data verification, and payment
processing according to pre-set scripts.

4.3.2 Transaction Process Simulation

The transaction process is simulated in five stages to eval-
uate the performance of the proposed scheme comprehen-
sively:

Step 1: Transaction Initialization Data providers and
consumers determine the specific terms of the transaction on
the MAS platform, including data type, quality, and price.

Step 2: Contract Creation and Data Preparation Data
providers generate a hash value of the data and create an
HTLC based on this hash. This step is crucial to ensure the
data remains unaltered.

Step 3: Fund Locking Consumers send the required funds
to the HTLC, which is locked until other transaction condi-
tions are met.

Step 4: Data Transmission and Verification Data
providers securely transmit the encrypted data to consumers,
who then decrypt and verify the data’s integrity and accu-
racy.

Step 5: Payment Release Once the data is verified,
consumers initiate the payment release process through
the smart contract, and funds are transferred to the data
provider’s account.

This structured approach allows for a thorough assess-
ment of the proposed HTLC and MAS-based data transac-
tion scheme, emphasizing its potential for real-world appli-
cation and highlighting areas for further enhancement.

4.4 Experimental Results
In this study, extensive experiments were designed to eval-

uate our data transaction scheme based on HTLC and MAS.
The detailed analysis of the results is as follows:

4.4.1 Time Efficiency

We monitored processing times across various stages of
the transactions, as shown in Fig.4, and found the following
results:

Fig. 4: HTLC-Based Transaction Time Efficiency

• Data Preparation: The average time was 1.64 seconds,
primarily for data hashing and encryption processes.

• Contract Creation and Data Preparation: Averaged 8.21
seconds, largely determined by the time required to de-
ploy smart contracts to the blockchain network.

• Fund Locking: Took an average of 3.52 seconds, in-
cluding the time to send funds to the smart contract and
for blockchain confirmation.

• Data Transmission and Verification: This was the
longest phase, averaging 11.29 seconds, involving data
transfer and the recipient’s verification processes.

• Payment Release: Averaged 3.27 seconds, mainly in-
volving executing payment logic within the smart con-
tract and processing on the blockchain.

Overall, the entire transaction process, from initiation to pay-
ment release, took an average of 27.93 seconds. This time-
frame is within acceptable limits, indicating effective system
responsiveness and efficiency.

4.4.2 Success Rate

Out of 200 simulated transactions, we achieved a success
rate of 98%. Failures were primarily due to network delays
and data transmission errors, providing valuable insights for
further system performance optimization.

4.4.3 Security Analysis

Security vulnerability scans and simulated attack tests
were conducted to evaluate the security of data transmission
and transactions:
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• Unauthorized Access Attempts: No successful unau-
thorized access incidents were recorded, indicating ef-
fective preventative measures.

• Data Integrity Verification: All successful transactions
confirmed that the data hashes matched those recorded
in the contracts, affirming the security of the data trans-
mission process.

4.5 Discussion of Results
The experimental results demonstrate the high efficiency

and robust security of the proposed HTLC and MAS-based
data transaction scheme, underscoring its potential for MAS
application. The system’s high success rate and effective se-
curity measures confirm its viability.

5 Conclusion

In conclusion, this paper successfully explores and vali-
dates a blockchain-enhanced, secure, and reliable data trans-
action scheme utilizing MAS and HTLC. The integration of
MAS with blockchain technology provides a robust frame-
work that significantly enhances the security and efficiency
of data transactions across decentralized networks. Experi-
mental simulations have confirmed the effectiveness of the
proposed scheme, achieving a high success rate and demon-
strating substantial resilience against security threats. The
results affirm the system’s viability in practical scenarios and
highlight potential areas for further improvement, such as
optimizing transaction speed and handling network variabil-
ities more effectively. Future work will aim to extend this
model’s capabilities to broader applications, ensuring adapt-
ability and scalability in increasingly complex environments.
This research lays a foundational stone for advancing secure
digital transaction systems, paving the way for innovative
applications in various fields.
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Abstract: Multi-Agent Systems (MAS) as a means to solve complex problems by subdividing them into smaller tasks. It
has become increasingly prominent in solving complex interaction problems. In the process of data exchange between
MASs, the inability to verify each other’s identity information often leads to mutual distrust, compromising security.
Traditional centralized identity authentication management has significant flaws under the decentralized network en-
vironment of MAS. To address this issue, this paper introduces a Cross-Multi-Agent Systems Identity Authentication
Framework based on Decentralized Identity (DID), which establishes trust between MASs and ensures security and con-
fidentiality. Our security analysis proves the effectiveness of this solution in overcoming the identified challenges and
validates the feasibility of the framework.

Key Words: Blockchain, Decentralized Identity, Identity Management, Multi-Agent Systems

1 Introduction

In the contemporary era, Distributed Artificial Intelli-
gence (DAI) has emerged as a pivotal point of interest in
both academia and industry, especially for its ability to solve
complex computational problems [1]. Within the domain
of DAI research, artificial intelligence algorithms are clas-
sified into three fundamental approaches: Parallel Artificial
Intelligence, Distributed Problem Solving (DPS), and Multi-
Agent Systems (MAS). MAS is a system composed of a
set of agents that interact with each other, each possessing
autonomy and learning capabilities [2]. These agents ex-
change messages through established connections to accom-
plish collective goals or tasks. In contrast to the computa-
tional entities in DPS, agents within MAS are not only ca-
pable of executing assigned sub-tasks but also utilize their
inherent learning and autonomous decision-making abilities
to adapt to new scenarios, thereby offering greater flexibility
and adaptability [3]. It is this flexibility and adaptability that
positions MAS as one of the key technologies for addressing
complex issues of the present and future. MAS find exten-
sive applications across various disciplines such as computer
science, civil engineering, and electrical engineering, play-
ing an irreplaceable role in modern societal challenges like
intelligent transportation, smart city development [4], envi-
ronmental monitoring, and sustainable development [5].

The evolution of MAS has consistently emphasized coor-
dination, learning processes, and security within the system.
However, with continuous technological advancements, the
interaction between MAS across different systems is increas-
ingly becoming a mainstream area of research [6]. A no-
table example is in the field of intelligent manufacturing for
supply chain management, where one MAS is responsible
for production scheduling while another oversees logistics
and distribution. To ensure that products on the production
line reach their destinations promptly and efficiently, data
exchange between these two systems is essential [7]. Addi-
tionally, in emergency response scenarios, MAS tasked with
monitoring must be able to transmit data quickly and se-
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curely to coordinating devices, vehicles, and other agents to
facilitate rapid action in the event of an emergency [8].

In practical applications, cross-system interactions in-
volve a multitude of agents, and these interactions are large-
scale with stringent security requirements. Consequently,
MAS face a dilemma: on one hand, to ensure security and
prevent attackers from impersonating as legitimate agents,
defensive mechanisms are necessary, which may hinder the
establishment of trust with other systems; on the other hand,
to maintain performance and smooth interaction, security
measures may be relaxed. However, this makes it easy for
attackers to take advantage of the void, leading to the sys-
tem being attacked and destroyed [9]. Against this backdrop,
establishing trust and proving identity and security among
MASs becomes a critical issue. Identity management and
the establishment of trust mechanisms have become primary
concerns in cross-system interactions [10]. In many current
systems, trust is not provided by the system itself but by
pseudo-decentralized Public Key Infrastructures (PKI) act-
ing as Trusted Third Parties (TTP) [11]. However, this re-
liance on TTP for trust significantly diminishes the advan-
tages of MAS: flexibility and adaptability.

In light of this, we propose a novel architecture based on
Decentralized Identity (DID) to address the identity authen-
tication and trust issues in cross-system interactions among
MASs. In our framework, we rely on three core technolo-
gies: Smart Contracts, Blockchain, and DID. By adopting
DID, we manage unique identities for agents within the sys-
tem. Before the cross-system interaction, the agent needs to
obtain the signatures of other agents in the system and store
them on the blockchain to ensure the authenticity of the data,
and then create a Verifiable Credential (VC) to be handed
over to the other system for verification and trustworthiness
assessment until the other system recognises the trustworthi-
ness of the agent in order to carry out normal data interac-
tion. In this case, due to a lack of sufficient credibility, the
system will be unable to interact with other systems by tem-
porarily masquerading as legitimate agents. Moreover, since
signatures are stored on blockchain nodes, they are verifi-
able and immutable, making it impossible for attackers to
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gain trust from other systems by altering VC.
The remainder of this paper is structured as follows. Sec-

tion 2 introduces relevant technologies and their application
in real scenarios. Section 3 presents our proposed Cross-
MASs Identity Authentication Framework, detailing its main
features, core functions, and operating principles. Section 4
conducts a security analysis of the proposed framework. Fi-
nally, Section 5 concludes the paper and provides an outlook
on future research work.

2 Related Technologies and Application Scenarios

2.1 Related Technologies
Identity management is a crucial aspect of access control

in network applications. Traditional identity authentication
management, predominantly centralized, requires agents to
register and verify their identity through credentials like
usernames and passwords. Certificate Authority (CA) then
validate these credentials and issue digital certificates used
in subsequent authentication processes. However, this cen-
tralized approach exhibits significant limitations in the de-
centralized network environments of MAS, especially under
conditions of large-scale and dynamic changes.

In decentralized MAS environments, implementing cen-
tralized identity authentication necessitates placing PKI in
appropriate positions, conducting operations on agents, and
securely interconnecting them, all managed by a centralized
CA. This approach not only burdens the system with numer-
ous authentication requests, leading to delays in response
times but also severely constrains the inherent flexibility
of MAS. Moreover, the security of the system is compro-
mised, as global trust in CA is lacking and centralized iden-
tity repositories become prime targets for attackers. When
a CA is compromised, the entire system’s trust mechanism
collapses, causing a significant drop in security. Therefore,
to accommodate the decentralised nature of MAS, a new ap-
proach to identity management is required.

With the rise of Bitcoin since 2009, blockchain is grad-
ually coming into the public eye, and it offers a new way
of thinking about identity management, offering a secure,
immutable, and transparent platform for authentication [12].
Blockchain, as a distributed ledger technology, reduces re-
liance on a single authoritative entity through distributed
nodes, thereby reducing the risk of centralised failures and
increasing the system’s resistance to attack [13]. In addition,
blockchain is open and transparent, and all participants can
access the blockchain to view transactions. These features
make it impossible to change the data on the chain once it has
been entered, providing a solid foundation for verification.
However, despite the security enhancements from public-
private key encryption, early implementations of blockchain
faced challenges, including issues with identity recovery, re-
vocation, or transaction linkage, and unresolved difficulties
in privacy protection.

Against this backdrop, a new method was introduced us-
ing Distributed Ledger (DL) technology to manage identities
in a decentralized manner, without the need for centralized
identity providers or CA. DID emerged as a solution in this
context. DID are unique identifiers composed of alphanu-
meric strings that resolve to DID documents containing other
information, verification materials, and the public keys of

DID subjects [14]. DID offer a form of self-sovereign iden-
tity, allowing MAS to control their identities independently
without reliance on central authorities. This autonomy ad-
dresses issues of identity recovery and revocation, allowing
agents to adjust their identity attributes as needed accord-
ing to environmental changes, the high flexibility and adapt-
ability of MAS are well amplified. Furthermore, DID and
DID documents do not expose any private data, maintaining
security while enabling stakeholders within DL to manage
and share non-sensitive verification materials through DID
documents. Sensitive private data remains secured within
each stakeholder’s domain, ensuring that interactions within
MAS, whether successful or not, do not compromise any
private information from the system. This level of privacy
control is particularly crucial for MAS handling sensitive in-
formation.

2.2 Application Scenarios
To further elucidate the practical applications of DID in

MASs within smart cities, we can explore their integra-
tion in Intelligent Transportation Systems (ITS). ITS, a crit-
ical component of modern smart cities, comprises multiple
MASs such as vehicle systems, regulatory frameworks, and
coordination mechanisms. These systems depend heavily on
robust and secure identity management to facilitate coordi-
nation, data processing, feedback, and emergency response
mechanisms.

The incorporation of DID authenticates the identity of
each agent, enabling secure recognition and communication
within the system. This security is pivotal for efficient sys-
tem scheduling and access control, ensuring the smooth op-
eration of the entire ITS. In ITS, vehicles communicate in
real time with traffic signals to access traffic flow data or
modify signal states, optimizing traffic and reducing conges-
tion. The DID of each vehicle and traffic signal ensures that
communications are based on verified identities, enhancing
the accuracy of data exchanges.

In emergency scenarios, such as traffic accidents or sud-
den public events, rescue vehicles need to navigate quickly
through congested routes [15]. DID enable these vehicles,
equipped with specific identity information, to interact pref-
erentially with the traffic system, facilitating real-time data
exchange and ensuring rapid arrival at the scene. Addition-
ally, with the extensive personal and vehicle data involved,
ITS must ensure the privacy of this information. The use
of DID allows vehicles to interact with other traffic system
elements without disclosing personal details, verifying vehi-
cle legitimacy without revealing specific information. In the
vast urban traffic network, maintenance and updates, such
as firmware upgrades for roadside devices or adjustments to
traffic management strategies, are routine. DID assist ad-
ministrators in better identity verification, enabling remote
operations and authorizations, ensuring that only verified de-
vices receive updates to prevent malware infiltration. From
this, it can be seen that the application of DID technology
in ITS not only enhances system security and efficiency but
also significantly improves the level of urban management
intelligence by ensuring the security of data exchanges and
accurate identification between entities.

501  



Smart Contracts Blockchain

Verifiable Credentials

MAS-a

Agent 1 Agent 2

Agent  3 Agent  4

Signatures

MAS-b

Agent a Agent b

Agent  c Agent  d

data

Fig. 1: Cross-MASs Identity Authentication Framework

3 Cross-MASs Identity Authentication Frame-
work

This section delineates the Cross-MASs Identity Au-
thentication Framework, which facilitates identity verifica-
tion across MAS. Agents acquire a comprehensive array of
trust endorsements and multi-party signatures to authenticate
identities within a heterogeneous MAS environment.

Fig.1 elucidates the framework’s architecture, depicting
the process of inter-MAS Agent identity authentication. It
highlights the creation of VC and the signature verification
process. The immutability and traceability of blockchain
technology safeguard the integrity and credibility of signa-
tures recorded on-chain. Fig.1 presents a scenario where
Agent 2, seeking interaction within MAS-b, undergoes the
process of integration. This transition accentuates the piv-
otal resolution of trust issues.

The scenario involves two intricately designed MAS, each
populated with autonomous Agents tasked with critical func-
tions and sensitive data exchange. These Agents epito-
mize independence in processing information and decision-
making. Trust verification emerges as a quintessential step,
particularly when Agent 2 from MAS-a attempts to engage
with Agent a within MAS-b. This verification is paramount
to assuring absolute security throughout the data exchange
process, addressing not only the precision and wholeness of
data but also safeguarding against potential security threats
like cyber-attacks and internal breaches. An unverified
Agent poses a substantial security risk, susceptible to ex-
ploitation by malicious entities.

In this vein, Agent 2 must amass trust endorsements re-
flective of the confidence placed by other Agents. These
endorsements not only signify Agent 2’s credibility within
MAS-a but also are imperative for cross-MAS interactions.
Recording these endorsements on the blockchain leverages
the technology’s inherent incorruptibility and transparency,
ensuring the authenticity of the endorsements.

This VC is then subjected to scrutiny by Agent a in MAS-
b, who assesses Agent 2’s trustworthiness based on the cre-
dential’s content and the blockchain-verified signatures. If
the trust quotient is assessed to be insufficient for secure in-

teraction, Agent a will reject the engagement, compelling
Agent 2 to acquire additional trust signatures in order to pro-
ceed with the interaction. This cycle ensures data exchange
across MAS is sanctioned only when stringent security stan-
dards are met, substantially mitigating risks of data leakage
and cyber threats, thus fortifying the security and confiden-
tiality of the entire MAS.

Our framework capitalizes on three core technologies:
Smart Contracts, Blockchain, and Verifiable Credential, to
establish and manage trust between Agent 2 in MAS-a and
Agent a in MAS-b, facilitating data and operational ex-
change across MAS. Trust is cultivated through a ’Trust
Management’ mechanism:

1) Smart Contracts: Central to our framework is the ex-
ecution of core control and connection functions via
smart contracts. These automated agreements admin-
ister the on-chain recording of signatures and their sub-
sequent verification, ensuring that all data exchanges
comply with pre-established protocols. This compli-
ance upholds the integrity and security of the interac-
tions, embodying the framework’s commitment to reli-
able data transactions.

2) Blockchain: Blockchain is the key to our research,
providing a decentralised, publicly transparent and im-
mutable recording platform for all interactions be-
tween MAS. Leveraging distributed ledger technology,
it guarantees the transparency and permanence of trans-
action data. Each transaction, including agents’ trust
signatures and the results of smart contract executions,
is immutably logged on the blockchain. These records
are transparent to all participants, these records will not
be altered, they will not be overwritten, they will just be
kept on the blockchain as record after record.

3) VC: A cornerstone of our system is the role of VCs
in verifying the trustworthiness and authorization of
Agent 2 within MAS-a. VCs serve as the bedrock for
identity validation and trust confirmation across MAS
interactions. Only when Agent 2 exhibits sufficient
credibility and security measures that are verified, can
it engage in effective and secure data exchanges with
agents in MAS-b.
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Fig. 2: Fundamental Structure of Inter-Agent Interaction within Multi-Agent Systems

A. Framework Initialization:
1) Agent Initialization: The initialization phase of the

framework begins with the agent’s setup, encompass-
ing several critical steps. Agents autonomously iden-
tify the need to interact with another agent within a dif-
ferent MAS, typically for task collaboration, data ex-
change, or resource sharing purposes. They then em-
ploy network discovery protocols to locate the target
agent’s MAS, decipher network addresses, and confirm
the type of data interaction expected, thus establishing
a reliable communication channel. To ensure secure
forthcoming interactions, agents independently gener-
ate a public-private key pair and broadcast the public
key for subsequent operations. This procedure guar-
antees that agents can effectively meet interaction de-
mands and communicate securely.

2) Obtaining Signatures: To gain trust from Agent a
within MAS-b, Agent 2 extensively collects signatures
within its own MAS-a.

hdata = SHA-256(data) (1)

Agent 2 applies the SHA-256 hashing algorithm to its
identity information, creating a unique and irreversible
hash value that secures the data. Combining this hash
value with its private key, Agent 2 generates a signature
using the ECDSA digital signature algorithm:

Sprivate key = SignatureECDSA(hdata, privatekey) (2)

3) Uploading Signatures to the Blockchain: To so-
lidify Agent 2’s trustworthiness within MAS-b, other
agents within MAS-a provide signature endorsements.
These are then uploaded to the blockchain for per-
manent record-keeping. Agent 2 connects its node
to the blockchain network, facilitating communication
and data synchronization with other nodes. It creates a
blockchain transaction, embedding the collected signa-
tures from agents in MAS-a, as depicted in Fig.3.
This step formalizes the signature information into
transactions that can be recorded and verified on the
blockchain. Transactions signed by Agent 2 are trans-
mitted to the blockchain via its Geth node. Upon val-
idation by other nodes in the network, these trans-
actions are incorporated into the blockchain ledger.

Once recorded, the signature data is permanently stored
and made publicly accessible, ensuring the verifia-
bility of the signatures and the immutable nature of
the blockchain. Through this sequence of operations,
Agent 2’s signatures not only gain support from other
agents within MAS-a but also have their authenticity
and validity assured by the blockchain. This provides
a robust foundation for establishing trust for Agent 2
within MAS-b, facilitating recognition of its credibil-
ity.

Blockchain
store signatures on the blockchain

Signature Records

VC-1

VC-3

VC-4 ‘kj3k1li…’

‘j2j543h…’

‘6f4b0jh…’

Fig. 3: Signature Records

B.Trust Verification:
1) Transmitting the VC Form: Assessing credibility is

a pivotal process that determines whether Agent 2 can
be trusted to engage in data exchanges within MAS-
b. This assessment relies on multiple factors, including
Agent 2’s historical behavior, the number and quality
of signatures collected within MAS-a, and the authen-
ticity and validity of these signatures. When Agent 2
submits the VC form to Agent a in MAS-b, the ini-
tial step in credibility evaluation is to verify the con-
sistency of the signatures. Agent a cross-references the
signatures on the VC form against those recorded on the
blockchain to ensure a perfect match, confirming the in-
tegrity of the submitted data and genuine support from
other agents within MAS-a. This evaluation informs
Agent a whether Agent 2 meets the trust standards of
MAS-b. Should Agent 2’s credibility fall short, Agent
a will reject the integration request, prompting Agent
2 to amass additional or higher-quality endorsements
within MAS-a. Conversely, a positive assessment will
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grant Agent 2 entry into MAS-b to commence the an-
ticipated data interactions. Moreover, any misconduct
by Agent 2 post-integration, such as hacking attempts
or violations of data exchange protocols, will directly
impinge on its trustworthiness in MAS-b, potentially
leading to its prompt removal. Such infractions also im-
pact the credibility of the agents who endorsed Agent 2
within MAS-a, as their signatures indirectly vouch for
Agent 2’s behavior. This not only affects their future
trust evaluations in MAS-b but may also tarnish their
credibility in other systems.

2) Integration into MAS-b for Data Interaction: This
phase signifies that Agent 2 has been granted the right
to integrate into MAS-b and commence the planned
data interaction. Furthermore, Agent 2 will begin to ac-
cumulate a credibility rating, which will facilitate the
assessment of its trustworthiness when attempting to
join new MAS in the future. This rating will also sup-
port its role in endorsing other agents looking to inte-
grate into new MAS.

4 Security Analysis

The security of the proposed framework is evaluated based
on several key parameters: Agent Privacy, Data Leakage, At-
tacks, and Cross-MAS Trust and Permission Management.

1) Agent Privacy: Privacy is ensured through the SHA-
256 hashing algorithm, which converts data into a
fixed-length hash value in a one-way process. Even if
the hash value is disclosed, the original data remains
confidential and cannot be inferred. When combined
with a private key to generate a signature using the
ECDSA algorithm, the signature can be publicly trans-
mitted and verified without revealing the private key.
On the blockchain, these signatures are stored and veri-
fied publicly, ensuring that the agent’s identity and data
content are protected, as the private key does not partic-
ipate in the transmission.

2) Data Leakage: Credibility verification is achieved
through signature validation. In a multi-agent system,
an agent requires recognition from other agents to en-
gage in data interactions, typically in the form of sig-
natures recorded on the blockchain. Data interactions
are permitted only when these signatures, compared
against blockchain records, are verified as authentic and
unaltered, thus minimizing the risk of data leakage.

3) Attacks:
Impersonation of Agents Joining MAS: To join a
MAS, an agent must collect sufficient trust endorse-
ments, signatures from other agents. On the blockchain,
each signature is uniquely bound to an agent’s identity,
and any unauthorized attempt to join will be denied due
to a lack of valid signatures.
Forgery of VC and Signatures: In the framework,
forging VC and signatures is also impossible. Each VC
or signature must be validated against the data recorded
on the blockchain before acceptance. Smart contracts
automatically execute these validation steps, ensuring
that an agent is considered trustworthy only if the sig-
natures and certificates are consistent with blockchain
records.

4) Cross-MAS Trust and Permission Management: Es-
tablishing trust relationships between multi-agent sys-
tems relies on a complex permission management
mechanism, including the automated execution of sig-
nature verification and permission granting by smart
contracts. When an agent attempts data interaction with
another agent from a different MAS, it must provide a
VC to prove its identity and past behavior. Smart Con-
tracts verify the authenticity of the certificate against
blockchain records and validate the agent’s trust level.
Only when all conditions are met is the agent granted
the necessary permissions for secure data interaction.
This process not only enhances trust management but
also provides a clear path of trust for every agent in the
system through continuous monitoring and updating of
trust levels.

Together, these mechanisms work to ensure that each data
interaction within the MAS is conducted only after thorough
verification of credibility, significantly enhancing the overall
security and reliability of the system.

5 Conclusion and Outlook

This paper has conducted an in-depth exploration of the
evolution of MAS within DAI, with a particular focus on
identity authentication and trust issues in cross-MAS inter-
actions. We introduced a Cross-MASs Identity Authentica-
tion Framework based on DID, leveraging core technolo-
gies such as Smart Contracts, Blockchain, and Decentral-
ized Identity to address the challenges of identity manage-
ment and trust establishment between MASs. The adoption
of DID for agent identity management not only preserves
the inherent advantages of MAS but also establishes a trust
mechanism across MASs. By analysing the security in the
four directions of Agent Privacy, Data Leakage, Attacks, and
Cross-MAS Trust and Permission Management, it is demon-
strated that this framework can effectively increase the se-
curity and confidentiality of cross-MASs interactions while
maintaining the flexibility and adaptability of MASs. The
framework is analysed in four directions.

Furthermore, the paper discusses the importance and
necessity of adopting decentralized identity authentication
management. This approach effectively circumvents the in-
securities and inefficiencies associated with centralized man-
agement. In the current societal context, where the number
of MAS interaction scenarios is growing exponentially, the
lack of robust identity authentication has become increas-
ingly apparent. Our proposed framework aligns with the
direction of technological development in society, address-
ing the critical issue of agent identity management and trust
mechanism establishment in cross-MAS interactions.

Looking ahead, we intend to delve deeper into other is-
sues of cross-MAS interactions Our focus will be directed to-
wards conducting comprehensive scalability analyses of the
proposed framework, ensuring its adaptability to the evolv-
ing landscape of application demands. Moreover, we are
committed to enhancing the data interaction process by opti-
mizing both performance and efficiency, thereby diminish-
ing system latency and bolstering response times through
meticulous data management alongside streamlined commu-
nication protocols. Concurrently, efforts will be made to
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improve the synergy between MAS and DID using emerg-
ing technologies to enhance the safety and effectiveness of
the system in a multifaceted environment. These concerted
efforts are anticipated to yield robust and dependable solu-
tions, poised to address the multifarious challenges of con-
temporary society more effectively
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A High-Order Fully Actuated Consensus Approach for
Strict-feedback Nonlinear Multi-Agent Systems
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Abstract: This paper investigates the consensus problem for general strict-feedback nonlinear multi-agent systems (MASs) over
a directed graph. We first derive a high-order fully actuated (HOFA) model for the strict-feedback systems using an recursive
solution. Based on the HOFA model, a fully distributed consensus algorithm is proposed, where only the relative position infor-
mation is interacted. A state transformation method is presented to convert the consensus of the HOFA system into that of single
integrators. Theoretical analysis is shown where the agents achieve the consensus asymptotically. Finally, a numerical example
is presented to verify the effectiveness of the proposed algorithm.

Key Words: Directed graph, multi-agent systems (MASs), nonlinear, strict-feedback system (SFS), high-order fully actuated
(HOFA) model

1 Introduction

Recently, multi-agent systems (MASs) have emerged
as one of the most active research fields and have found
widespread applications in various domains such as smart
grid [1], multiple unmanned aerial vehicle (UAV) systems
[2], unmanned surface vehicles (USVs) systems [3], privacy
preserving [4], and others. Cooperative control, aimed at
achieving both global and individual objectives through net-
worked control protocols, has attracted considerable interest
among scholars and has led to numerous advancements in
this field.

The consensus is the essential premise in distributed co-
operative control for MASs, which guarantees that a group
of agents agree upon a certain behavior based on the neigh-
boring information through a network. The research on con-
sensus of MASs starts from single integrators [5, 6], and
then spreads to double integrators [7, 8], high-order integra-
tors [9, 10], general linear systems [11], and uncertain or
nonlinear dynamics [12–14]. Almost all physical systems are
inherently nonlinear, and the cooperative control of nonlin-
ear systems is more challenging and more practically sig-
nificant. Among the various types of nonlinear systems, the
strict-feedback systems (SFSs) attract a lot of attention due
to the description of various physical systems, including, but
certainly not limited to, circuit system, pendulum systems,
robotic systems , missile and satellite control systems [15].

Recently, some results [16–20] have been conducted on
the consensus of MASs with strict-feedback nonlinear dy-
namics. [17] studies the consensus of high-order MASs over
an undirected graph, where the agents have nonlinear Lips-
chitz dynamics. In [18], a consensus algorithm is proposed
for high-order uncertain MASs with unknown control direc-
tions by introducing an estimation of consensus value over a
fix directed graph. In [19], the authors investigate the consen-

This work was supported in part by the National Key R&D Pro-
gram of China (2019YFA0706500), the National Natural Science Foun-
dation of China under Grant (62073098, U1913209), and the Shenzhen
Fundamental Research Program under Grant (JCYJ20200109113210134,
JCYJ20210324132215038). The first author of this paper (Congcong Tian)
gratefully acknowledges the support by the China Scholarship Council
(grant number 202306120318).

sus problem with guaranteed convergence for high-order un-
certain MASs with unknown control directions over switch-
ing topologies. However, the relative information of high-
order derivatives is used in [18] and [19]. Since it is difficult
to acquire the relative information of high-order derivatives
via onboard sensors, and the information communication
among agents increases the communication cost, the con-
sensus algorithm relying only on relative position informa-
tion is more efficient. Meanwhile, the agent dynamics stud-
ied in [17–19] involve high-order integrators with nonlin-
ear terms, representing a special form of strict-feedback sys-
tems. However, in reality, various state components are often
coupled in more complex ways for general strict-feedback
nonlinear systems.

Several traditional nonlinear control methods have been
applied to nonlinear multi-agent systems, including the feed-
back linearization method [21], the back-stepping method
[22], the sliding mode method [23], and the Lyapunov
method [16]. For strict-feedback nonlinear MASs, their spe-
cific triangular structure allows for a systematic recursive de-
sign procedure of stabilizing controllers, known as the back-
stepping method. In [22], the adaptive neural backstepping
approach is extended to solve consensus tracking problems
by utilizing the structural feature of radial basis function neu-
ral networks (RBFNNs). However, backstepping is a recur-
sive design procedure with increasing complexity as the sys-
tem order grows, resulting in the “explosion of complexity”
problem. The high-order fully actuated (HOFA) system ap-
proach introduced in [24] provides a powerful tool for non-
linear system design and analysis, which facilitates the com-
plete expression of control laws.The cooperative control of
MASs based on the HOFA model has emerged as an inno-
vative and compelling topic. Existing research, as demon-
strated in [25–27], primarily focuses on the cooperative con-
trol and cooperative performances of HOFA MASs.

In this paper, we focus on addressing the consensus
problem of general strict-feedback nonlinear MASs over
a directed graph. Inspired by the HOFA model approach,
the high-order nonlinear strict feedback systems are recon-
structed into the HOFA model. Drawing upon closed-loop
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control algorithm design principles based on the HOFA
model for single plants, we extend a distributed consensus
algorithm to MASs with HOFA dynamics. This algorithm
relies solely on relative position information among neigh-
boring agents. The main challenges of this paper include ad-
dressing more general nonlinear SFSs, utilizing only relative
position information (without using relative information of
high-order derivatives), and ensuring full distribution with-
out shared gains or global gain dependency.

Notations: A ⊗ B denotes the Kronecker product of
matrices A and B. Let 0m be the m × 1 column vector
of all zeros, and 1m be the m × 1 column vector of all
ones. Trace(A) represents the trace of a square matrix A.
For a complex number µ, R(µ) represents its real part.
diag(σ1, σ2, · · · , σn) denotes the diagonal matrix, where the
value σi appears in the i-th diagonal entry, and all other en-
tries are zero. For a vector x(t) ∈ Rn, x(t) ∈ L∞ if each el-
ement xi(t) satisfies supt |xi(t)| < ∞, where i = 1, . . . , n.

Similarly, x(t) ∈ Lp, p ∈ [1,∞) if
(∫∞

0
|x(τ)|pdτ

) 1
p <∞.

∥·∥ represents the Euclidean norm of a vector.

2 Preliminaries

2.1 Graph Theory
The directed graph Gn, with the set of nodes V =

{1, . . . , n} and the set of edges E ⊆ V × V , repre-
sents the network topology of the multi-agent system. The
adjacency matrix An = [aij ] characterizes the connec-
tivity among the agents, where aij > 0 if node i re-
ceives information from node j, and aij = 0 other-
wise. A directed spanning tree is a subset of a directed
graph that contains a directed path from the root node to
each other node. Self-edges are not allowed in this paper.
The Laplacian matrix Ln of the graph Gn is defined as
Ln = diag(

∑n
j=1 a1j ,

∑n
j=1 a2j , · · · ,

∑n
j=1 anj) −An. A

directed graph has the following properties.

Lemma 1. [28] For a directed graph Gn with n nodes, Ln
is the corresponding Laplacian matrix of Gn. Suppose that
z =

[
zT1 , . . . , z

T
n

]T
with zi ∈ Rm, the following conditions

are equivalent:
(i) Gn has a directed spanning tree.
(ii) Ln has a unique eigenvalue of zero and all other eigen-
values with positive real parts.
(iii) Consensus is reached asymptotically for the system ż =
− (Ln ⊗ Im) z.

2.2 Problem Statement
Consider n agents over a directed graph Gn. The dynam-

ics of each agent can be described by the following strict-
feedback nonlinear system

ẋi,1 = fi,1 (xi,1) +Gi,1 (xi,1)xi,2
ẋi,2 = fi,2 (xi,1, xi,2) +Gi,2 (xi,1, xi,2)xi,3

...
ẋi,p−1 = fi,p−1 (xi,1, . . . , xi,p−1)

+Gi,p−1 (xi,1, . . . , xi,p−1)xi,p
ẋi,p = fi,p (xi,1, . . . , xi,p) +Gi,p (xi,1, . . . , xi,p)ui,

(1)
for i ∈ V , where xi = col (xi,1, xi,2, . . . , xi,p) with p ≥ 1,
and xi,l ∈ Rr represents the states of agent i, ui ∈ Rr

represents the control input, fi,l (xi,1, . . . , xi,l) ∈ Rr and
Gi,l (xi,1, . . . , xi,l) ∈ Rr×r, l = 1, . . . , p, i = 1, 2, . . . , n
are sufficiently smooth vector functions and matrix func-
tions, respectively. Furthermore, Gi,l (xi,1, . . . , xi,l) is non-
singular for all xi, i = 1, 2, . . . , n, l = 1, . . . , p.

As a normal requirement to SFSs, we have the following
assumptions:

Assumption 1. For arbitrary xi,l ∈ Rr, i = 1, 2, . . . , n, l =
1, . . . , p, there holds

detGi,l (xi,1, . . . , xi,l, t) ̸= 0, ∀t ≥ 0.

Assumption 2. The directed graph Gn contains a directed
spanning tree.

Definition 1. The multi-agent system described
by (1) is called to achieve position consensus, if
limt→∞ ∥xi,1(t)− xj,1(t)∥ = 0, ∀i, j = 1, . . . , n.

3 Main Result

For the general form (1), some existing control methods,
such as the backstepping methods, may become extremely
difficult or even impossible to apply when r and n are large
due to the “differential explosion” problem. However, if we
can transform it into a HOFA system model, its control prob-
lems can then be solved easily and conveniently [24].

We firstly present recursive solutions to convert a SFS
(1) into a HOFA model (3).

Lemma 2. [29] Let Assumption 1 be satisfied, then, under
the following transformation

xi,1 = zi
xi,2 = G−1

i,1 (zi) [żi − fi,1(zi)]

xi,k+1 = L−1
i,k

(
zi

(0∼k−1)
) [
zi

(k) − hi,k
(
zi

(0∼k−1)
)]

k = 2, 3, . . . , p− 1,
(2)

the generalised strict-feedback nonlinear system (1) can be
transformed into the following HOFA system

zi
(p) = hi,p

(
zi

(0∼p−1)
)
+ Li,p

(
zi

(0∼p−1)
)
ui, (3)

where the matrix function Li,k
(
zi

(0∼k−1), t
)

and the vector
function hi,k

(
zi

(0∼k−1), t
)

are recursively given by

Li,k

(
zi

(0∼k−1), t
)

= Li,k−1

(
zi

(0∼k−2), t
)
Gi,k

(
x
(0∼1)
i,1∼k−1, xi,k, t

) (4)

and

hi,k

(
zi

(0∼k−1), t
)

= ḣi,k−1

(
zi

(0∼k−2), t
)
+ L̇i,k−1

(
zi

(0∼k−2), t
)
xi,k

+ Li,k−1

(
zi

(0∼k−2), t
)
fi,k

(
x
(0∼1)
i,1∼k−1, xi,k, t

)
k = 1, 2, . . . , p

(5)
with the initial values Li,0 = I , zi

(0∼p−1) =
col
(
zi, żi, . . . , zi

(p−1)
)
, and in (4)-(5) the xi,k, k =

2, 3, . . . , p and their derivatives are all given or determined
by the transformation (2).
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Once the HOFA model (3) is obtained, the controller of
the system can then be simply designed as [24]{

ui = −L−1
i,p

(
Ai,0∼p−1zi

(0∼p−1) + u∗
)

u∗ = hi,p
(
zi

(0∼p−1)
)
− v,

(6)

which gives the following constant linear closed-loop system

zi
(p) +Ai,0∼p−1zi

(0∼p−1) = v, (7)

where v is some external signal, while Ai,0∼p−1 =[
A0 A1 · · · Ap−1

]
is an arbitrary matrix which en-

sures (7) is stable. A complete parametric approach for solv-
ing the matrix Ai,0∼p−1 is given in [24].

For a single plant, the HOFA system approach is very
powerful in dealing with the control of nonlinear systems,
since the full-actuation feature allows one to eliminate the
nonlinearities and hence a constant linear closed-loop sys-
tem can be obtained.

Next, we investigate the consensus problem for MASs
over a directed graph. Drawing inspiration from the above
HOFA system approach, we construct the consensus algo-
rithm for each agent as follows{

ui = −L−1
i,p

(
Ai,1∼p−1zi

(0∼p−1) + u∗
)

u∗ = hi,p
(
zi

(0∼p−1)
)
+Ai,0

∑n
j=1 aij(zi − zj),

(8)

which gives the following constant linear system

zi
(p) +Ai,1∼p−1zi

(1∼p−1) = −Ai,0
n∑
j=1

aij(zi − zj), (9)

Remark 1. Clearly, (9) is a pth order linear system. For
the given initial conditions zi(m)(0), m = 0, . . . , p − 1, (9)
produces its outputs z(m)

i , m = 0, . . . , p − 1 with the input
−Ai,0

∑n
j=1 aij(zi − zj). The problem is to seek a matrix

Ai,0∼p−1 such that (9) reaches consensus. The relative po-
sition information

∑n
j=1 aij(zi − zj) guarantees that each

agent achieves consensus on their positions for (9). The high
derivatives of the position re utilized in the feedback to drive
them to zero as t→ ∞. The damping gains should be chosen
in a distributed method, and have no global information de-
pendency, which motivates us to propose a fully distributed
gain design later. Thus, (9) becomes exactly the closed-loop
system for the position consensus of high-order integrators.

Regarding the solution of the matrix Ai,0∼p−1 of (9), the
parameter matrix Ai,0∼p−1 can be chosen to satisfy

Ai,0 = kp−2
i

Ai,m = kp−m−2
i

[
k2iC

m−1
p−1 + Cmp−1

∑n
j=1 aij

]
,

m = 1, . . . , p− 1,

(10)

with ki being a positive constant.
LetZ be the stacked vector of zi, i = 1, . . . , n. Under the

control algorithm (8) with (10), (9) has the following vector
form

Z(p) =−
p−1∑
m=1

K̄p−m−2
[
K̄2Cm−1

p−1 + Cmp−1Dn
]
Z(m)

− K̄p−2LnZ
(11)

where K̄
△
= K ⊗ Ir,K = diag(k1, · · · , kn).

To prove that the matrixAi,0∼p−1 chosen in (10) ensures
that the system (9) achieves position consensus, we firstly
present a state transformation for the consensus of high-
order integrators, which is introduced to convert high-order
integrators into the single integrators in [16]. The main result
on position consensus of strict-feedback nonlinear MASs
over a directed graph can be concluded as follows.

Theorem 1. Under Assumptions 1 and 2, for the agents
with dynamics (1), under the control algorithm (8) with (10),
the potisions of the agents achieve consensus asymptotically,
i.e., limt→∞ (xi,1(t)− xj,1(t)) = 0, ∀i, j = 1, . . . , n.

Proof: For each agent i, define yi,1 = xi,1 = zi, and

yi,l =
1

ki
ẏi,l + yi,l−1, l = 2, . . . , p (12)

It is worth noting that if we consider yi,l, l = 1, . . . , p as
an individual node in a new graph GN with the N = np
agents. Let Yl be the stacked vector of yi,l, i = 1, . . . , n, l =
1, . . . , p.

Yl = K̄−1Ẏl−1 + Yl−1, l = 2, . . . , p (13)

Under such transformation, one can obtain the following
equations

Yl =
l∑

m=1

Cm−1
l−1

K̄m−1
Z(m−1), l = 1, . . . , p (14)

where Cm−1
l−1 is the binomial coefficient which can be com-

puted as Cm−1
l−1 = (l−1)!

(m−1)!(l−m)! . For l = p, we can derive

Yp =

p∑
m=1

Cm−1
p−1

K̄m−1
Z(m−1)

=

p−1∑
m=1

Cm−1
p−1

K̄m−1
Zm−1 +

1

K̄p−1
Z(p−1)

=

p−1∑
m=1

Cmp−1

K̄m
Z(m) + Y0

(15)

Then we can calculate the derivative of Yp as follows

Ẏp =

p−1∑
m=1

Cm−1
p−1

K̄m−1
Z(m) +

1

K̄p−1
Zp (16)

Substituting (11) and (15) into (16), we can get

Ẏp = −K̄−1Dn(Yp − Y0)− K̄−1LnY1 (17)

Then from (13) and (17), we have the following dynam-
ics

Ẏl = − K̄(Yl − Yl+1), l = 1, . . . , p− 1

Ẏp = − K̄−1LnY1 − K̄−1Dn(Yp − Y1)

= K̄−1AnY1 − K̄−1DnYp (18)

Let Y = (Y1, . . . , YP )
T . We can get

Ẏ = −(LN ⊗ Ir)Y (19)
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where

LN =


K −K 0n×n · · · 0n×n

0n×n K −K 0n×n 0n×n
...

. . . . . . . . .
...

0n×n · · · 0n×n K −K
−K−1An 0n×n · · · 0n×n K−1Dn


(20)

Under the system transformation (12), regarding the new
states yi,k, i = 1, . . . , n, k = 1, . . . , p as nodes vi,k ∈
VN , i = 1, . . . , n, k = 1, . . . , p in the transformed graph
GN ≜ (VN ,EN ). From Lemma 6 in [16], GN con-
tains a directed spanning tree. Therefore, we know from
Lemma 1, (19) achieves consensus asymptotically. There-
fore, limt→∞(yi,l − yj,m) = 0, ∀i, j = 1, . . . , n and
l,m = 1, . . . , p. For l = m = 1, since yi,1 = zi, we have
limt→∞(zi − zj) = 0. And iteratively, we can also get that
limt→∞∥z(m)

i ∥ = 0, m = 1, . . . , p − 1. We can conclude
that limt→∞(xi,1 − xj,1) = 0,∀i, j = 1, . . . , n. Consensus
of system (1) can be achieved asymptotically.

Remark 2. The proposed control algorithm (8) can be im-
plemented fully distributely interacting only relative position
information among the agents (without using relative infor-
mation of high-order derivatives). The proposed algorithm
(8) is fully distributed, since each agent owns its gains and
has no global gain dependency.

4 Numerical Simulation

In this section, numerical simulations on a network of
six agents (n = 6), among which the topology is shown in
Fig. 1, are performed to validate the proposed algorithms.
In this section, we only consider a simple illustrative exam-
ple [30], which was originally presented by Kokotovi and
Kanellakopoulos.

ẋi,1 = 0.8x2i,1 + xi,2

ẋi,2 = xi,3

ẋi,3 = ui,

(21)

where all variables are scalar ones.
Following the result in section 3, it can be shown that the

system (21) is equivalent to the following third-order fully
actuated system:

...
z i = 1.6

(
żi

2 + ziz̈i
)
+ ui (22)

while the original states of the system (21) are given by the
following transformation

xi,1 = zi

xi,2 = żi − 0.8zi
2

xi,3 = z̈i − 1.6ziżi.

(23)

Corresponding to the form of (3), we have

hi,3

(
zi

(0∼2)
)
= 1.6

(
żi

2 + ziz̈i
)

Li,3

(
zi

(0∼2)
)
= 1.

(24)

From (8), the control algorithm for each agent is

ui = −Ai,2z̈i−Ai,1żi−hi,3
(
zi

(0∼2)
)
−Ai,0

n∑
j=1

aij(zi−zj)

Choose the scales as Ai,0 = 1, Ai,1 = 1 + 2
∑6
j=1 aij ,

Ai,2 = 2 +
∑6
j=1 aij with the control gains ki = 1. From

(9), the dynamics of the linear model is

zi
(3) +Ai,2z̈i +Ai,1żi = −Ai,0

6∑
j=1

aij(zi − zj) (25)

with the initial conditions zi(0) = i − 1, żi(0) = 0, and
z̈i(0) = 0. In Fig. 2, the position trajectories of the six agents
reach consensus under the proposed control algorithm.
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Fig. 1: The interactions among six agents.
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Fig. 2: The position trajectories of the six agents for the con-
sensus, i = 1, . . . , 6.

5 Conclusion

This paper has addressed the consensus problem for gen-
eral strict-feedback nonlinear MASs over a directed graph.
A HOFA consensus algorithm has been proposed to achieve
consensus asymptotically. Compared with other existing
coordination methods strict-feedback nonlinear MASs, the
HOFA consensus method is simple, active and universal. Fi-
nally, a numerical example has been provided to demonstrate
the efficacy of the proposed control algorithm.
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Abstract: This paper focuses on third-order multi-agent systems with directed communication networks. It is for the first time
that the finite-time consensus problem is solved for third-order multi-agent systems under digraphs containing spanning trees.
Two explicit-coefficient finite-time protocols, namely, edge-based and node-based, are proposed. First, we prove that asymptotic
consensus is achievable with the reduced linear protocol. Then, we show that finite-time consensus is achievable with our explicit-
coefficient finite-time protocols through homogeneous theory. Finally, numerical simulations are carried out to demonstrate the
effectiveness of the proposed protocols.

Key Words: Finite-Time Consensus, Multiagent Systems, High-Order Systems, Directed Graph

1 Introduction

Recent years, cooperative control has attracted a lot of in-
terests due to its advantages of group intelligence. A core
problem for cooperative control is achieving consensus, i.e.,
driving the agents to an agreement through coordination. In
many consensus scenarios, the controlled agents are only al-
lowed to transmit the information to their children nodes, in
which the communication networks are directed. To deal
with directed networks, references [1–3] obtain the linear
protocols for multi-agent systems.

For higher convergence rate and better robustness, finite-
time consensus has been widely investigated referring [4–9]
and the references therein. In the existing finite-time con-
sensus works, except for undirected networks [6, 8], only
few works [7, 10] focus on directed topologies for first- and
second-order multi-agent systems. In current work, to ex-
plore finite-time consensus for higher-order multi-agent sys-
tems, we focus on third-order multi-agent systems with di-
rected communication networks, which are assumed to con-
tain directed spanning trees.

This paper develops two classes of protocols, namely,
edge-based and node-based. The main difficulty lies in that
the instability phenomenon may appear with directed com-
munication networks using the existing protocols. Reference
[2] reveals that the protocol coefficients would be effected
by the complex eigenvalues from directed networks, that is,
the consensus may lose when there are complex eigenval-
ues. Reference [3] obtains a solution for protocol coeffi-
cients which are described implicitly. In this paper, an ex-
plicit solution for the protocol coefficients is obtained by an-

This work was supported in part by NSFC grants 61973202, 62325303
and 62333004, in part by National Key R & D Program of China
(2022ZD0119901), in part by Science and Technology Projects of Liaoning
Province (2022JH2/101300238), in part by Liaoning Revitalization Talents
Program XLYC2203076, and in part by NSF grant ECCS-2210320.

Corresponding auther: Z. L. Zhao

alyzing the eigenvalues of closed-loop systems.
The main contribution of this paper is summarized as fol-

lows:

• The finite-time consensus problem is solved for third-
order multi-agent systems under directed graphs con-
taining a spanning tree. Since the Laplacian matrix
is asymmetric under directed communication networks,
constructing finite-time Lyapunov function is challeng-
ing. Based on [3, 11, 12], this paper constructs homoge-
neous Lyapunov function dealing with the asymmetric
Laplacian matrix and proving the finite-time consensus.

• The protocol parameters are chosen explicitly in this
paper. It is proved that such explicit coefficients can
be used for the proposed protocols which guarantee
the finite-time consensus for directed third-order multi-
agent systems.

Notations

In this paper, we use ◦ to represent compositions of func-
tions. The functions Re(z) and Im(z) extract the real and
the imaginary parts of z ∈ C, respectively. The notation
A ⊗ B represents the Kronecker product between real ma-
trices A and B. The function [x]α = sign(x)|x|α is defined
for x ∈ R with power α > 0.

A weighted directed graph G = {V, E , A} is used to de-
scribe the communications among agents, where V is the set
of nodes, E ⊆ V × V is the set of edges and A is the as-
sociated adjacent matrix with weighting factors aij ≥ 0,
which represents the weight from agent j to agent i. De-
fine L = {lij} ∈ RN×N as the Laplacian matrix of the
graph G with lii =

∑
i̸=j aij and lij = −aij , i ̸= j. Note

0, λ2, . . . , λN as the eigenvalues of L, where λ2 has the min-
imum real part and is called the algebraic connectivity of the
graph G.
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2 Main Result

In this section, we propose our main theorem for third-
order multi-agent systems and give the corresponding proof.

2.1 Main Theorem
We study the finite-time consensus for the following

multi-agent system, which equips N agents with agent i
(i = 1, . . . , N ) satisfying third-order integrator dynamic.

ẋi1 = xi2, (1a)
ẋi2 = xi3, (1b)
ẋi3 = ui (1c)

where xi = [xi1, xi2, xi3]
T ∈ R3 is the state, and ui ∈ R is

the control input.
For such multi-agent system, two classes of finite-time

protocols are designed as:
• Edge-based protocol:

ui = −c
3∑

k=1

ρk

N∑
j=1

[aij(xik − xjk)]
αk , (2)

• Node-based protocol:

ui = −c

3∑
k=1

ρk

 N∑
j=1

aij(xik − xjk)

αk

, (3)

where aij represents the information exchange from agent j
to agent i and coefficients c, ρi, αi (for i = 1, 2, 3) satisfy

c ≥ 1/(2Re(λ2)), (4a)

[ρ1, ρ2, ρ3] = [ω3, 3ω2, 3ω], (4b)

[α1, α2, α3] =

[
1 + 3d,

1 + 3d

1 + d
,
1 + 3d

1 + 2d

]
, (4c)

with d ∈ (−1/3, 0) and ω being an arbitrary positive real
number.

Then, we state the following main theorem.

Theorem 1. Suppose that the interconnection digraph G
contains a spanning tree. Then, there exists a constant
d ∈ (−1/3, 0) such that for any d ∈ [d, 0), the multi-agent
system (1) with protocol (2) or (3) can reach finite-time con-
sensus, that is, there exists a finite-time T < ∞ such that

xi(t) = xj(t) ∀t ≥ T. (5)

Remark 1. Reference [5] gives two classes of finite-time
consensus protocols for integrator multi-agent systems and
reference [9] studies the finite-time consensus for second-
order multi-agent systems over undirected graphs. In this
paper, we presents two classes of finite-time protocols for
third-order multi-agent systems over digraphs.

2.2 Preliminaries
The following lemma on properties of Laplacian matrices

is adopted from [13] and is used to analyze the consensus
properties of multi-agent systems in this paper.

Lemma 1. Let L ∈ Rn×n be the Laplacian matrix of the
digraph G and 1 = [1, . . . , 1]⊤ ∈ Rn. If G has a spanning

tree, then there exists a unique nonnegative left eigenvector r
associated with the zero eigenvalue of L, satisfying r⊤L = 0
and r⊤1 = 1.

The following definition and lemmas come from [14].

Definition 1. A function V : Rn → R is called homoge-
neous with respect to the weight ν = [ν1, . . . , νn]

⊤ ∈ Rn of
degree l (l ∈ R) if for any x = [x1, . . . , xn]

⊤ and λ > 0,

V (δνλ(x)) = λlV (x), (6)

with δνλ(x) = [λν1x1, . . . , λ
νnxn]

⊤.

Lemma 2. Suppose that V1 : Rn → R and V2 : Rn → R
are continuous homogeneous functions with respect to the
same weight ν = (ν1, . . . , νn) but of degrees l1 > 0 and
l2 > 0 respectively, and V1 is positive definite. Then, for any
x ∈ Rn,

V2(x) ≤
(

max
{ζ:V1(ζ)=1}

V2(ζ)

)
(V1(x))

l2
l1 , (7)

V2(x) ≥
(

min
{ζ:V1(ζ)=1}

V2(ζ)

)
(V1(x))

l2
l1 . (8)

Lemma 3. Consider the system ẏ = f(y), where y ∈ Rn is
the state, and f : Rn → Rn is continuous on an open neigh-
borhood D of the origin and locally Lipschitz on D\{0} with
f(0) = 0. If there exists a positive definite and continuously
differentiable function V : D → R+ and constants k > 0
and α ∈ (0, 1) such that

LfV (y) ≤ −k (V (y))
α ∀y ∈ D0 (9)

with D0 ⊆ D being an open set containing the origin, then
the origin is finite-time stable. If moreover D = Rn and V
is radially unbounded, then the origin is globally finite-time
stable.

2.3 Proof of Theorem 1
Inspired by the finite-time stabilization method in [14],

we first prove that the protocols are effective when d = 0 or
equivalently α1 = α2 = α3 = 1.

Define x =
[
x⊤
1 , . . . , x

⊤
N

]⊤ ∈ R3N and ε =((
IN − 1r⊤

)
⊗ I3

)
x with 1 = [1, . . . , 1]⊤ ∈ RN and

r ∈ RN being the left eigenvector of the Laplacian matrix L
associated with the eigenvalue 0. Then, we have

ε̇ = (IN ⊗A− cL⊗Bρ)ε, (10)

where ε = [ε11, ε12, ε13, . . . , εN1, εN2, εN3]
⊤ and

A =

 0 1 0
0 0 1
0 0 0

 , B =

 0
0
1

 , ρ =

 ρ1
ρ2
ρ3

⊤

. (11)

To finally construct a homogeneous Lyapunov function
for finite-time consensus analysis, we introduce a coordinate
transformation:

ε̃ =
(
T−1 ⊗ I3

)
ε (12)

where T ∈ RN×N is a nonsingular matrix such that T−1LT
is in the form T−1LT = diag{0, J}. According to [15, 16],
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such T and the corresponding J exist as long as the digraph
G contains a spanning tree.

Denote ε̃ = [ε̃⊤1 , . . . , ε̃
⊤
N ]⊤ and ε̃p = [ε̃⊤2 , . . . , ε̃

⊤
N ]⊤. We

have

ε̃1 = 0, (13a)
˙̃εp = Mε̃p (13b)

with

M = IN−1 ⊗A− cJ ⊗Bρ. (14)

It can be observed that the consensus of the controlled multi-
agent system is guaranteed if ε̃p converges to zero.

We now prove that M is Hurwitz under the condition of
Theorem 1. We analyze the eigenvalues of the matrix

M∗ = IN−1 ⊗A− cJ∗ ⊗Bρ, (15)

where J∗ ∈ C(N−1)×(N−1) is in the Jordan canonical form
of J corresponding to the N − 1 non-zero eigenvalues of the
Laplacian matrix L. Obviously, M and M∗ share the same
eigenvalues.

Since J∗ is an upper-triangular matrix, M∗ is a block
upper-triangular matrix with its diagonal entries being A −
cλiBρ for i = 2, . . . , N . To analyze the eigenvalues of M∗,
calculating det (sI3 − (A− cλiBρ)) gives

det (sI3 − (A− cλiBρ)) = s3 + cλiρ3s
2 + cλiρ2s+ cλiρ1.

(16)

Indeed, s3 + cλiρ3s
2 + cλiρ2s+ cλiρ1 = 0 implies that

(1 +
ω

s
)3 =

cλi − 1

cλi
. (17)

With c ≥ 1/(2Re(λ2)), if there is a root s1 having positive
real part, it is easy to verify the following contradiction.∣∣∣∣(1 + ω

s1
)3
∣∣∣∣ > ∣∣∣∣cλi − 1

cλi

∣∣∣∣ , (18)

which means M∗ is Hurwitz as well as M . Thus, the ε̃p-
subsystem (13b) is asymptotically stable at the origin with a
quadratic Lyapunov function VP : R3(N−1) → R+ satisfy-
ing

V̇P (ε̃p) = −|ε̃p|2. (19)

Then, we consider the finite-time consensus of ε̃p with the
help of the nonlinear protocols (2) and (3) as d < 0.

Denote T = {θij}N×N , T−1 = {θ′ij}N×N and

ε̃1 = [ε̃11, ε̃12, ε̃13]
⊤, (20a)

ε̃p = [ε̃21, ε̃22, ε̃23, . . . , ε̃N1, ε̃N2, ε̃N3]
⊤. (20b)

Noticing that for any, h, j ∈ {1, . . . , N},

εh − εj =
N∑
l=2

((θhl − θjl)ε̃lk) . (21)

Then, we have

ε̃1 = 0, (22a)
˙̃εp = Gd(ε̃p), (22b)

with

Gd(ε̃p) = [Gd
21(ε̃p),G

d
22(ε̃p), G

d
23(ε̃p), . . . ,

Gd
N1(ε̃p), G

d
N2(ε̃p), G

d
N3(ε̃p)]

⊤,(23)

where Gd
i1(ε̃p) = ε̃i2, G

d
i2(ε̃p) = ε̃i3 and

Gd
i3(ε̃p) = −c

N∑
h=1

θ′ih

3∑
k=1

ρk

N∑
j=2

[
ahj

N∑
l=2

((θhl − θjl)ε̃lk)

]αk

or

Gd
i3(ε̃p) = −c

N∑
h=1

θ′ih

3∑
k=1

ρk

 N∑
j=2

ahj

N∑
l=2

((θhl − θjl)ε̃lk)

αk

,

(24)

for i = 2, . . . , N .
Inspired by [11, 12], define Vr : R3(N−1) → R as

Vr(ε̃p) =

∫ ∞

0

1

s1+γ
(ς ◦ VP ) (δ

v
s (ε̃p)) ds, (25)

for ε̃p ∈ R3(N−1), where constant γ > 1, the function
δvs (ε̃p) is defined by

δvs (ε̃p) = [sv1 ε̃21, s
v2 ε̃22, s

v3 ε̃23, . . . ,

sv1 ε̃N1, s
v2 ε̃N2, s

v3 ε̃N3]
⊤ (26)

for ε̃p ∈ R3(N−1) and s ≥ 0, with vk = 1 + (k − 1)d for
k = 1, 2, 3, and

ς(ι) =


0, ι ∈ (−∞, 1),
1
2 (ι− 1)2, ι ∈ [1, 2),

1− 1
2 (ι− 3)2, ι ∈ [2, 3),

1, ι ∈ [3,∞).

(27)

It can be directly checked that ς is continuously differen-
tiable.

Clearly, Vr(0) = 0. Define 3(N − 1)-dimensional unit
hypersphere S = {ε̃p ∈ R3(N−1) : |ε̃p| = 1}. For any
specific ε̃p ∈ S, it can be easily checked that δv0(ε̃p) = 0 and
|δvs (ε̃p)| is radially unbounded with respect to s. Then, there
exist constants l and L satisfying 0 < l < L such that for
any ε̃p ∈ S,

VP (δ
v
s (ε̃p))

{
< 1, for 0 < s < l,

> 3, for L < s < ∞.
(28)

Then, the function Vr defined in (25) satisfies

Vr(ε̃p) =

∫ L

l

1

s1+γ
(ς ◦ VP ) (δ

v
s (ε̃p)) ds+

1

γLγ
> 0

(29)

for all ε̃p ∈ S. This proves that Vr is well defined and
positive-valued on the 3(N − 1)-dimensional unit hyper-
sphere S.

Now, we extend property (29) from the unit hypersphere
S to R3(N−1)\{0}. It can be easily checked that for any
ε̃p ∈ R3(N−1),

Vr(δ
v
λ(ε̃p)) =

∫ ∞

0

1

s1+γ
(ς ◦ VP ) (δ

v
λs(ε̃p))

dλs

λ

= λγVr(ε̃p) (30)
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holds for any λ > 0, which, in turn, guarantees the existence
of a λ0 > 0 corresponding to each ε̃p ∈ R3(N−1)\{0} such
that δvλ0

(ε̃p) ∈ S and at the same time,

Vr(ε̃p) = Vr

(
δv
λ−1
0 λ0

(ε̃p)
)
= λ−γ

0 Vr

(
δvλ0

(ε̃p)
)
> 0. (31)

Thus, Vr is well defined on R3(N−1) and positive definite.
To prove the radial unboundedness of Vr, denote

δvλ0
(ε̃p) = [ϱ21, ϱ22, ϱ23, . . . , ϱN1, ϱN2, ϱN3]

⊤. (32)

Then, for each ε̃p ∈ R3(N−1)\{0} and the corresponding
λ0 > 0 such that δvλ0

(ε̃p) ∈ S, we have

|ε̃p| = |δv
λ−1
0
(δvλ0

(ε̃p))|

≤
√

(N − 1)(λ−2v1
0 + . . .+ λ−2v3

0 ), (33)

which means that |ε̃p| → ∞ ⇒ λ0 → 0. Recall the equality
in (31). We have

lim
|ε̃p|→∞

Vr(ε̃p) = lim
λ0→0

λ−γ
0 Vr

(
δvλ0

(ε̃p)
)
= ∞. (34)

This proves the radial unboundedness of Vr.
To further prove finite-time consensus, we study the ho-

mogeneity and the negative definiteness of LGdVr. Recall
the notations given by (20). For any i = 2, . . . , N and
k = 1, 2, 3,

∂Vr(ε̃p)

∂ε̃ik
=

∫ ∞

0

1

sγ−(k−1)d
(ς ′ ◦ VP ) (δ

v
s (ε̃p))

·∂VP

∂ε̃ik
(δvs (ε̃p)) ds (35)

where ς ′ represents the derivative of the continuously dif-
ferentiable function ς defined by (27). The definition of ς
implies that ς ′(ι) = 0 for ι ≤ 1 and ι ≥ 3, which guarantees
the feasibility of (35). Following a similar reasoning as for
(30), we can verify that for any λ > 0,

∂Vr(δ
v
λ(ε̃p))

∂λvk ε̃ik
= λγ−(1+(k−1)d) ∂Vr(ε̃p)

∂ε̃ik
. (36)

Also, the definition of Gd in (23) implies that for any 2 ≤
i ≤ N, 1 ≤ k ≤ 3 and λ > 0,

Gd
ik(δ

v
λ(ε̃p)) = λ1+kdGd

ik(ε̃p). (37)

Combining (36) and (37) results in that for any ε̃p ∈
R3(N−1) and any λ > 0,

∂Vr

∂ε̃ik
Gd

ik(δ
v
λ(ε̃p)) = λγ+d ∂Vr

∂ε̃ik
Gd

ik(ε̃p), (38)

which means that LGdVr is homogeneous with respect to
the weight v = [v1, v2, v3, . . . , v1, v2, v3]

⊤ ∈ R3(N−1) of
positive degree γ + d.

Also, from (35) and (37), LGdVr(ε̃p) can be calculated as:

LGdVr(ε̃p) =

∫ ∞

0

1

sγ+1+d
(ς ′ ◦ VP ) (δ

v
s (ε̃p))

·

(
N∑
i=2

3∑
k=1

∂VP

∂ε̃ik
Gd

ik

)
(δvs (ε̃p)) ds. (39)

Clearly, LGdVr(0) = 0. Now we prove that LGdVr

is negative-valued on S and extend this property to
R3(N−1)\{0}.

Based on (39), since ς ′(ι) = 0 for ι ≤ 1 and ι ≥ 3, for
any ε̃p ∈ S, we can rewrite

LGdVr(ε̃p) =

∫ L

l

1

sγ+1+d
(ς ′ ◦ VP ) (δ

v
s (ε̃p))

·

(
N∑
i=2

3∑
k=1

∂VP

∂ε̃ik
Gd

ik

)
(δvs (ε̃p)) ds. (40)

Denote

ϕ(d) = max
ε̃p∈S,

l≤s≤L

(
N∑
i=2

3∑
k=1

∂VP

∂ε̃ik
·Gd

ik

)
(δvs (ε̃p)) . (41)

Then, ϕ is continuous for d ∈ (−1/3, 0]. From (19), we have

ϕ(0) = max
ε̃p∈S,

l≤s≤L

V̇P (s · ε̃p) = −l2 < 0. (42)

Then, there exists a constant d < 0 such that

ϕ(d) < 0 (43)

holds for any d ∈ [d, 0). From the definition of ς in (27),
ς ′(ι) > 0 for ι ∈ (1, 3). Substituting (41) into (40) and
using (43) imply that for any d ∈ [d, 0) and ε̃p ∈ S,

LGdVr(ε̃p) ≤ ϕ(d)

∫ L

l

1

sγ+1+d
(ς ′ ◦ VP ) (δ

v
s (ε̃p)) ds < 0,

(44)

which means that LGdVr is negative-valued on S.
Recall that LGdVr is homogeneous with respect to the

weight v of positive degree γ + d, as given by (38). Follow-
ing a similar reasoning as for (31), we can prove that LGdVr

is negative definite. Since Vr and LGdVr are homogeneous
with the same weight v of positive degree γ and γ + d, re-
spectively, by using Lemma 2, we can prove that

LGdVr(ε̃p) ≤ −B1 (Vr(ε̃p))
γ+d
γ , (45)

with B1 = −max{ι:Vr(ι)=1} LGdVr(ι) > 0. By using
Lemma 3, we can verify that the multi-agent system (1) with
protocol (2) or (3) reaches finite-time consensus.

3 Simulation

Consider the following multi-agent system with the com-
munication topology G given in Figure 1.

ẋi = vi, (46a)
v̇i = ai, (46b)
ȧi = ui, i = 1, . . . , 5 (46c)

where xi, vi, and ai (for i = 1, . . . , 5) represent the
positions, velocities and the accelerations of the agents
{A,B,C,D,E} with initial positions of the plants as
{0, 1, 2, 3, 4}, respectively. The initial velocities and the ini-
tial accelerations are zero. The adjacent matrix A is given
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Fig. 2: The position x under the edge-based protocol

as:

A = {aij}5×5 =


0 0 0 0 0
1 0 0 0 0
0 0 0 1 1
0 0 0 0 1
0 1 0 0 0

 . (47)

Then the Laplacian matrix L of the graph G can be calculated
as:

L =


0 0 0 0 0
−1 1 0 0 0
0 0 2 −1 −1
0 0 0 1 −1
0 −1 0 0 1

 . (48)

Recall the protocols in (2) and (3). With the algebraic
connectivity calculating as λ2 = 1, we can choose con-
stants c = 1/2, [ρ1, ρ2, ρ3] = [1, 3, 3] and [α1, α2, α3] =
[7/10, 7/9, 7/8] (taking d = −1/10). Then, the protocols
satisfy that, for i = 1, . . . , 5,

• Edge-based protocol:

ui =− 1

2

5∑
j=1

[aij(xi − xj)]
7/10

− 3

2

5∑
j=1

[aij(vi − vj)]
7/9

− 3

2

5∑
j=1

[aij(ai − aj)]
7/8

, (49)
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Fig. 3: The position x under the node-based protocol

• Node-based protocol:

ui =− 1

2

 5∑
j=1

aij(xi − xj)

7/10

− 3

2

 5∑
j=1

aij(vi − vj)

7/9

− 3

2

 5∑
j=1

aij(ai − aj)

7/8

. (50)

With the two classes of protocols, the simulation results
are lied in Figure 2 and Figure 3. It can be seen that the
positions converge to a consensus value, which demonstrate
the proposed protocols are effective.

4 Conclusion

This paper has explored the dynamics of third-order multi-
agent systems with a focus on achieving finite-time consen-
sus. Moreover, directed communication topologies and the
explicit control coefficients have been investigated through
analyzing the closed-loop system composed of the original
system and the proposed novel finite-time protocols. Homo-
geneous theory has been employed to provide a mathmatical
proof. Finite-time consensus for higher-order multi-agent
systems will be investigated in future work.
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Extended Dissipative Sliding Mode Control for T-S Fuzzy
Polynomial Singular System

Jiarui Liu1, Jiangrong Li1, Jiming Zhu1
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Abstract: In this paper, the problem of extended dissipative sliding mode control for discrete-time nonlinear singular systems are
addressed. First, the T-S fuzzy polynomial singular systems are constructed to represent nonlinear singular systems with param-
eter uncertainties. A different delay-dependent sliding mode surface is built based on the dynamic event-triggered mechanism.
Then, the sliding mode control law is obtained, which guarantees the reachability of the closed-loop system. The admissibility
with extended dissipativity is established by SOS. Finally, a numerical example is given to demonstrate the correctness of the
proposed strategy.

Key Words: Dynamic event-triggered, sliding mode control, T-S fuzzy polynomial system, extended dissipativity, piecewise
Lyapunov function

1 Introduction

With the rapid development of industrial systems, non-
linear systems are becoming ubiquitous [1–3]. The Takagi-
Sugeno (T-S) fuzzy model is a well-known system model-
ing method for the nonlinear systems [4]. It has become the
main research method for approximating nonlinear systems
and it has achieved fruitful results. Some of the reported re-
sults are stability analysis [5], reachable set estimation [6].
Because of its special properties, singular systems have been
widely studied by researchers. The application area ranges
from robotic systems, power systems, and other industrial
practical systems. There were also many excellent results
on singular systems. For example, the stability analysis of a
networked singular system with both state and input subject
to quantizations was investigated by using a discrete time
event-triggered scheme [7]. Taniguchi et al. [8] proposed
the T-S fuzzy singular system in 1999, which is a mix of the
T-S fuzzy system and singular system. T-S fuzzy polyno-
mial singular system is the extension of T-S fuzzy singular
system. In contrast to the T-S fuzzy singular system, the
T-S fuzzy polynomial singular system permits polynomial
terms to arise in subsystems, potentially reducing the num-
ber of fuzzy rules. The extended dissipative control problem
of stochastic polynomial fuzzy singular systems was investi-
gated in [9] using the adaptive event-triggered technique.

The event-triggered control mechanism is both effective
and reasonable. It can decide whether the signals need to be
conveyed by establishing proper triggering conditions, im-
plying that signals do not have to be delivered at every sam-
pling interval during the control process. There are many re-
search results of different event-triggered mechanisms pub-
lished [10]. For example, a fuzzy filter was designed under
an event-triggered mechanism for the filtering error system.
However, it should be noted that the static event-triggered
(SET) mechanism’s threshold parameter is fixed. Recently,

This work is supported in part by National Natural Science Foundation
of China under Grant 62262067 and 1226109, in part by National Science
Basic Research Program of Shaanxi Province under Grant 2020JM-552, in
part by Overseas Educated Students’ Scientific and Technological Activities
Merit Funding Project of Shaanxi Province under Grant 2022-022, in part
by the Yan’an University Graduate Education Innovation Program Project
under Grant YCX2023015 and YCX2023009.

a novel adaptive event-triggered (AET) mechanism was used
to design H∞ filter for the T-S fuzzy system [11]. A dynamic
event-triggered (DET) sliding mode control method was pro-
posed for interval type-2 fuzzy systems with fading channels
in [12].

Sliding mode control (SMC) is a type of robust control.
SMC has received a considerable deal of attention in the
academic world over the last few decades due to its multi-
ple advantages such as insensitivity to parameter changes,
easy physical implementation, and quick response. It is
also increasingly being used in underwater robots, aviation,
diesel engines, motors, and other applications. In general,
the SMC, which is based on variable structure systems the-
ory [13], applies a discontinuous control law to drive the
state trajectory toward a specified sliding surface and keep
it moving along the sliding surface in the state space. An
integral sliding surface (ISS) is introduced. Its feature is that
sliding mode dynamics (SMD) can keep the same order as
the original system while ensuring robustness across the en-
tire system response. The ISS-based SMC technique in [14]
and [15] is expanded to analyze the SMC problem of mis-
matched uncertain systems [16].

In this paper, we investigate the problem of extended dis-
sipative based on SMC and DET for T-S fuzzy polynomial
singular systems. In contrast to the existing works, the main
features of the scheme proposed are summarized as follows:

• Considering uncertainties, the DET scheme and ex-
tended dissipative SMC have been applied to the T-S
fuzzy polynomial singular system.

• A novel delay-dependent sliding mode surface (SMS)
is built. And the SMC law is obtained, ensuring that the
closed-loop system is reachable.

• Via a set of novel piecewise Lyapunov functionals
(PLF), an approach is proposed for the co-design of
SMC and DET mechanisms. This approach guarantees
that the closed-loop system is admissible with extended
dissipativity.

Notations: Rn and Rn×m denote the n−dimensional Eu-
clidean space and the set of all n×m real matrices, respec-
tively. The superscript T represents matrices’ transpose.
∗ symbolizes the symmetric terms of a symmetric matrix.
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ΩSOS means the collection of all SOS polynomials.

2 Problem Formulation

2.1 T-S Fuzzy System
Considering the following discrete-time T-S fuzzy poly-

nomial singular systems.
Plant Rule ℜi: If b1(t) is Fi1 and · · · and bg(t) is Fig, then

Eϕ(t +1) = (Ai(ϕ(t))+∆Ai(ϕ(t)))ϕ(t)+Adi(ϕ(t))

×ϕ(t −d(t))+B(ϕ(t))u(t)+Di(ϕ(t))ω(t),

ỹ(t) =Ci(ϕ(t))ϕ(t),

ϕ(t) = κ(t), i ∈ {1,2, · · · ,r}, (1)

where r is the number of rules, Fi j( j = 1,2, · · · ,g) is fuzzy
set and b(t) = [b1(t),b2(t), . . . ,bg(t)] is the premise vari-
ables; ϕ(t) ∈ Rn, ỹ(t) ∈ Rp and u(t) ∈ Rq are the state
vector, the measured output and the control input, respec-
tively; ω(t) ∈ Rm is the disturbance input, which belongs to
l2[0,∞); time-varying delay d(t) satisfies 0< d1 ≤ d(t)≤ d2,
where d1,d2 are the constant positive scalars; κ(t) is the
initial condition; matrices E(rank(E) = r ⩽ n), Ai(ϕ(t)),
Adi(ϕ(t)), B(ϕ(t)), Di(ϕ(t)), Ci(ϕ(t)) are polynomial ma-
trices with appropriate dimensions; the matrix function
∆Ai(ϕ(t)) satisfies ∆Ai(ϕ(t)) = Hi1(ϕ(t))∆(t)Hi2(ϕ(t)),
where Hi1(ϕ(t)),Hi2(ϕ(t)) are known polynomial matrices,
unknown matrix function ∆(t) is considered to be satisfied
with ∆T (t)∆(t)≤ I. The function hi(b(t)) satisfies hi(b(t))=

g
∏
j=1

Fi j(b j(t))

r
∑

i=1

g
∏
j=1

Fi j(b j(t))
≥ 0,

r
∑

i=1
hi(b(t)) = 1, where Fi j(b(t)) is the

grade of membership of b j(t) in Fi j.
By fuzzy processing techniques, the T-S fuzzy polynomial

singular systems (1) can be deduced as:

Eϕ(t +1) =
r

∑
i=1

hi(b(t)){(Ai(ϕ(t))+∆Ai(ϕ(t)))ϕ(t)

+Adi(ϕ(t))ϕ(t −d(t))+B(ϕ(t))u(t)

+Di(ϕ(t))ω(t)},

ỹ(t) =
r

∑
i=1

hi(b(t))Ci(ϕ(t))ϕ(t). (2)

To address the piecewise SMC problem of the system (2),
then the system (2) can be rewritten as a piecewise fuzzy
system:

Eϕ(t +1) = Alϕ(t)+∆Alϕ(t)+Adlϕ(t −d(t))

+Bu(t)+Dlω(t),

ỹ(t) =Clϕ(t), (3)

where B = B(ϕ(t)),Xl = Σs∈M(l)hs(b(t))Xs(ϕ(t)),
X = {A,∆A,Ad ,D,C}.

2.2 Dynamic Event-triggered Mechanism
In this subsection, a DET mechanism is employed to judge

if the sampled data ϕ(t) will be released into the communi-
cation links. Let h(t) = ϕ(t)−ϕ(tk) as the difference be-
tween the current sampled data ϕ(t) and the most recent

triggering signal ϕ(tk). And the variable ϖ(t) is dynami-
cally computed by:

ϖ(t +1) = εϖ(t)+µϕ
T (t)ϕ(t)−hT (t)h(t), (4)

with ε ∈ (0,1) is a given constant and ϖ(0) = ϖ0 ⩾ 0. Then,
the next transmission instant is provided by:

tk+1 = in f{t|t > tk,
1
c

ϖ(t)+µϕ
T (t)ϕ(t)−hT (t)h(t)⩽ 0},

(5)

where 0 < µ < 1 and c > 0 are given scalars and t0 = 0.

Lemma 1 [17] If the parameters in (4) and (5) satisfy the
inequality εc ⩾ 1, we have ϖ(t)⩾ 0, for all t = 1,2, · · · .

Remark 1 Compared with the SET condition µϕT (t)ϕ(t)−
hT (t)h(t)⩽ 0, the auxiliary intermediate variable ϖ(t) is in-
troduced in the DET condition (5), and its value can be dy-
namically adjusted according to (4). It is noted that the DET
mechanism will be transformed into the SET mechanism as
ϖ(t)→ 0.

2.3 Sliding mode surface design
In this subsection, the SMS function is built as:

o(t) = GEϕ(t)−G(Al +BK j)ϕ(t −1)
−GAdlϕ(t −d(t)−1), (6)

where matrix G ∈ Rq×n is chosen such that GB is nondegen-
erate. Matrices K j, j ∈ {1,2, · · · ,r} are to be designed.

According to the ideal sliding mode, o(t +1) = o(t) = 0,
from (3) and (6), and considering the event-triggered mech-
anism, the equivalent control input ueq(t) can be derived as:

ueq(t) = K jϕ(tk)− (GB)−1G∆Alϕ(tk)− (GB)−1GDlω(t).
(7)

From (3) and (7), the SMD can be deduced as:

Eϕ(t +1) = Ãl jϕ(t)+ Ãdl jϕ(t −d(t))+ B̃l jh(t)+ D̃l jω(t),

ỹ(t) = C̃l jϕ(t), (8)

where Ḡ = B(GB)−1G, Ãl j = Al +BK j +∆Al −Ḡ∆Al , Ãdl j =
Adl , B̃l j = Ḡ∆Al −BK j, D̃l j = Dl − ḠDl ,C̃l j =Cl .

Furthermore, the following assumption, definition, and
lemma are supplied and will be utilized later.

Assumption 1 [9] Matrices Θ j, j = 1,2,3,4 satisfy the fol-
lowing conditions
1)Θ1 ⩽ 0,Θ3 > 0,Θ4 ⩾ 0,Θ̃4 ⩾ 0.
2)(Θ1 +Θ2)Θ4 = 0,Θ̃4 = 0.

Definition 1 [9] For given matrices Θ j, j = 1,2,3,4,
where Θ1,Θ3,Θ4 are real symmetric matrices , under
the zero initial condition , if the following inequality
∑

s
t=0{ỹT (t)Θ1ỹ(t) + 2ỹT (t)Θ2ω(t) + ωT (t)Θ3ω(t)} −

sup
0≤t≤s

ỹT (t)Θ4ỹ(t) ⩾ 0 holds, then the T-S fuzzy polynomial

singular system is extended dissipative and Θ̃4 = ET Θ4E.

Lemma 2 [18] Given appropricate dimensions matrices Ω,
D and E, Ω is symmetrical, the following inequality Ω +
DWE +ETW T DT < 0 hold for any W meeting W TW ≤ I, if
and only if a scalar β > 0 exists such that Ω+β−1DDT +
βET E < 0.
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3 Main Results

3.1 Admissibility Analysis
The problem of admissible with extended dissipativity cri-

terion for SMD (8) is dealt with in this subsection.

Theorem 1 Given the real symmetic matrices Θ1, Θ2, Θ3,
Θ4 and satisfy assumptions 1, if there exist scalars ε1 > 0,
ε2 > 0, matrices Pl = PT

l ,l ∈℘, Q1, Q2, Q3 > 0, Zς > 0,
ς = 1,2, S and Λ, so that the following SOS requirements are
met, then the SMD (8) is said to be admissible with extended
dissipativity. [ 1

d2
Pl +Z1 −Z1

−Z1 Q1 +Q2 +Z1

]
> 0, (9)[

Pl +dZ2 −dZ2
−dZ2 d2Q2 +dZ2

]
> 0, (10)

q1(ϕ)
T (Q3 − τ1I)q1(ϕ) ∈ ΩSOS, (11)

q1(ϕ)
T (Zς − τς I)q1(ϕ) ∈ ΩSOS, (12)

q1(ϕ)
T (Pl −C̃T

l jΘ4C̃l j)q1(ϕ) ∈ ΩSOS, (13)

−q2(ϕ)
T (Φ2l j − τl j(ϕ)I)q2(ϕ) ∈ ΩSOS, (14)

where q1(ϕ),q2(ϕ) are arbitratry vectors independent
of ϕ(t) with appropeiate dimensions; τ1,τς ,τl j(ϕ) are
predefined scalars and greater than 0; and
ϒ̄1 = −ET PlE +ET Q1E +ET Q2E +(d + 1)Q3 −ET Z1E +
( µ

c +αµ)I + sym(ΛT (Āl j −E)),ϒ3 =−Q1 −Z1 −Z2,

ϒ2 =−2Q3 −2ET Z1E −2ET Z2E + sym(ΛT Ãdl j),
ϒ4 =−Q2 −Z2,ϒ5 = d2

1Z1 +d2Z2 − ym(ΛT ),
ϒ6 =−( 1

c +α)I,ϒ̄12 = ET Z1E +ΛT Ãdl j +(Āl j −E)T Λ,

ϒ7 =
ε−1+α

c I,ϒ̄15 = SRT −ΛT +(Āl j −E)T Λ,

ϒ18 =−C̃T
l jΘ2 +ΛT D̃l j,ϒ112 = ε1HT

i2(ϕ(t)),
ϒ111 = ΛT Hi1(ϕ(t))−ΛT ḠHi1(ϕ(t)),ϒ613 = HT

i2(ϕ(t)),
ϒ114 = ε2ΛT ḠHi1(ϕ(t)),ϒ23 = ET Z1 +ET Z2,
ϒ25 =−ΛT + ÃT

dl jΛ,ϒ911 = Hi1(ϕ(t))− ḠHi1(ϕ(t)),
ϒ211 =ϒ511 =ϒ111,ϒ214 =ϒ514 =ϒ114,ϒ914 = ε2ḠHi1(ϕ(t)),
Φ2l j = [ΦT

21l j ΦT
22l j ΦT

23l j ΦT
24l j ΦT

25l j ΦT
26l j ΦT

27l j ΦT
28l j

ΦT
29l j ΦT

210l j ΦT
211l j ΦT

212l j ΦT
213l j ΦT

214l j]
T ,

Φ21l j = [ϒ̄1 ϒ̄12 0 0 ϒ̄15 ΛT B̄l j 0 ϒ18 ĀT
l j C̃T

l j ϒ111 ϒ112 0 ϒ114],

Φ22l j = [∗ ϒ2 ϒ23 ET Z2 ϒ25 ΛT B̄l j 0 ΛT D̃l j ÃT
dl j 0 ϒ211

0 0 ϒ214],Φ23l j = [∗ ∗ ϒ3 0 0 0 0 0 0 0 0 0 0 0],Φ24l j =
[∗ ∗ ∗ ϒ4 0 0 0 0 0 0 0 0 0 0],Φ25l j =
[∗ ∗ ∗ ∗ ϒ5 ΛT B̄l j 0 ΛT D̃l j 0 0 ϒ511 0 0 ϒ514],Φ26l j =
[∗ ∗ ∗ ∗ ∗ ϒ6 0 0 B̄T

l j 0 0 0 ϒ613 0],Φ27l j =

[∗ ∗ ∗ ∗ ∗ ∗ ϒ7 0 0 0 0 0 0 0],Φ28l j =
[∗ ∗ ∗ ∗ ∗ ∗ ∗ −Θ3 D̃T

l j 0 0 0 0 0],Φ29l j =

[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −P−1
n 0 ϒ911 0 0 ϒ914],Φ210l j =

[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ
−1
1 0 0 0 0],Φ211l j =

[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − ε1I 0 0 0],Φ212l j =
[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − ε1I 0 0],Φ213l j =
[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − ε2I 0],Φ214l j =
[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − ε2I].

Proof: First, let us verify that the SMD (8) is regular and
causal. From (14), we can get:[

Π11 Π12
∗ Π22

]
< 0, (15)

where Π11 = −ET PlE + ET Q1E + ET Q2E − ET Z1E +
sym(ΛT (Āl j − E)),Π22 = −sym(ΛT ),Π12 = SRT − ΛT +
(Āl j −E)T Λ.

Pre-multiplying and post-multiplying (15) by
[
I ĀT

l j
]

and
[
I ĀT

l j
]T

, respectively, it can be obtained that:

sym(ΛT (Āl j −E)+ ĀT
l j(SRT −Λ

T +(Āl j −E)T
Λ)T )

− sym((ΛĀl j)
T Āl j)−ET PlE +ET Q1E +ET Q2E

−ET Z1E < 0. (16)

Due to rank(E) = r, the existence of two nonsingular ma-
trices T1 and T2 satisfy:

Ē = T1ET2 =

[
Ir 0
0 0

]
, S̆ = T T

2 S =

[
S̆1
S̆2

]
,

Ăl j = T1Āl jT2 =

[
Ăl j1 Ăl j2
Ăl j3 Ăl j4

]
,R = T T

1

[
0
R̆

]
, (17)

R̆ is nonsingular. Pre-multiplying and post-multiplying (16)
by T T

2 and T2, respectively, and utilizing (17), we get:[
△ △
∗ S̆2R̆T Ăl j4 + ĂT

l j4R̆S̆T
2

]
< 0, (18)

where △ means the irrelevant matrices. According to (18),
we have sym(S̆2R̆T Ăl j4)< 0, which means Ăl j4 is nonsingu-
lar. The regularity and causality of the SMD (8) are proved.

Next, we will prove the SMD (8) is admissible. We con-
struct the following piecewise Lyapunov functional:

V̂ (t) = V̂1(t)+V̂2(t)+V̂3(t)+V̂4(t)+V̂5(t), (19)

where

V̂1(t) = ϕ
T (t)ET PlEϕ(t),

V̂2(t) =
t−1

∑
θ=t−d1

ϕ
T (θ)ET Q1Eϕ(θ)+

t−1

∑
θ=t−d2

ϕ
T (θ)ET Q2Eϕ(θ),

V̂3(t) =
−d1

∑
v=−d2+1

t−1

∑
θ=t+v

ϕ
T (θ)Q3ϕ(θ)+

t−1

∑
θ=t−d(t)

ϕ
T (θ)Q3ϕ(θ),

V̂4(t) = d1

−1

∑
v=−d1

t−1

∑
θ=t+v

π
T (θ)ET Z1Eπ(θ)

+d
−d1−1

∑
v=−d2

t−1

∑
θ=t+v

π
T (θ)ET Z2Eπ(θ),V̂5(t) =

1
c

ϖ(t),

with π(t) = ϕ(t +1)−ϕ(t) and d = d2 −d1.

Remark 2 The stability of the system is proved using the
Lyapunov function, we need to find a positive definite matrix
P satisfying all subsystems. However, the stability of the sys-
tem is proved using the piecewise Lyapunov function (19), we
find positive definite matrices for each subsystem separately.
Therefore, the method of piecewise Lyapunov function is less
conservative.

V̂1(t) =
1
d2

(
t−d1−1

∑
θ=t−d2

ϕ
T (θ)ET PlEϕ(θ)

+
t−1

∑
θ=t−d1

ϕ
T (θ)ET PlEϕ(θ)). (20)
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From Jensen inequality, we have:

V̂4(t)⩾
t−1

∑
θ=t−d1

[Eϕ(t)−Eϕ(θ)]T Z1[Eϕ(t)−Eϕ(θ)]

+
d
d2

t−d1−1

∑
θ=t−d2

[Eϕ(t)−Eϕ(θ)]T Z2[Eϕ(t)−Eϕ(θ)]. (21)

By connecting (20)-(21), we have:

V̂ (t) =
t−1

∑
θ=t−d1

χ(t)T N1χ(t)+
1
d2

t−d1−1

∑
θ=t−d2

χ(t)T N2χ(t)

+V̂3(t)+V̂5(t), (22)

where W = Eϕ(t) − Eϕ(θ),χ(t) =

[
Eϕ(t)
Eϕ(θ)

]T

,N1 =[ 1
d2

Pl +Z1 −Z1

−Z1 Q1 +Q2 +Z1

]
,N2 =

[
Pl +dZ2 −dZ2
−dZ2 d2Q2 +dZ2

]
.

Q3 is a positive definite matrix, from (9) and (10), we obtain
V̂ (t)> 0.

Then taking difference of V̂k(t)(k = 1,2,3,4,5) along with
SMD (8), we get:

∆V̂1(t) = ϕ
T (t +1)ET PnEϕ(t +1)−ϕ

T (t)ET PlEϕ(t).

(23)

∆V̂2(t) = ϕ
T (t)ET Q1Eϕ(t)−ϕ

T (t −d1)ET Q1Eϕ(t −d1)

+ϕ
T (t)ET Q2Eϕ(t)−ϕ

T (t −d2)ET Q2Eϕ(t −d2). (24)

∆V̂3(t)≤ (d +1)ϕT (t)Q3ϕ(t)−2ϕ
T (t −d(t))Q3ϕ(t −d(t)).

(25)

∆V̂4(t) = d2
1π

T (t)ET Z1Eπ(t)+d2
π

T (t)ET Z2Eπ(t)

−d1

t−1

∑
θ=t−d1

π
T (θ)ET Z1Eπ(θ)−d

t−d1−1

∑
θ=t−d2

π
T (θ)ET Z2Eπ(θ).

(26)

∆V̂5(t)⩽
1
c

ϖ(t +1)− 1
c

ϖ(t)+α(
1
c

ϖ(t)

+µϕ
T (t)ϕ(t)−hT (t)h(t))

=
ε −1+α

c
ϖ(t)+(

µ

c
+αµ)ϕT (t)ϕ(t)

− (
1
c
+α)hT (t)h(t), (27)

with α > 0.
According to RT E = 0, it is clear that

2ϕ
T (t)SRT Eπ(t) = 0,

2[ϕT (t)ΛT +ϕ
T (t −d(t))ΛT +(Eπ(t))T

Λ
T ][(Ãl j −E)ϕ(t)

+ Ãdl jϕ(t −d(t))+ B̃l jh(t)+ D̃l jω(t)−Eπ(t)] = 0. (28)

Define

J(t)≜ ỹT (t)Θ1ỹ(t)+2ỹT (t)Θ2ω(t)+ω
T (t)Θ3ω(t). (29)

By connecting (23)-(29) and based on Jensen inequality,
we have:

∆V̂ (t)− J(t) = ξ
T (t)Φ1l jξ (t), (30)

where ξ (t) = [ϕT (t) ϕT (t −d(t)) ϕT (t −d1)ET

ϕT (t − d2)ET (Eπ(t))T hT (t)
√

ϖ(k) ωT (t)]T ,
ϒ1 = −ET PlE +ET Q1E +ET Q2E +(d + 1)Q3 −ET Z1E +
( µ

c + αµ)I + sym(ΛT (Ãl j − E)),ϒ12 = ET Z1E + ΛT Ãdl j +

(Ãl j −E)T Λ,ϒ15 = SRT −ΛT +(Ãl j −E)T Λ,
Φ1l j = [ΦT

11l j ΦT
12l j ΦT

13l j ΦT
14l j ΦT

15l j ΦT
16l j ΦT

17l j ΦT
18l j

ΦT
19l j ΦT

110l j]
T ,Φ11l j = [ϒ1 ϒ12 0 0 ϒ15 ΛT B̃l j 0 ϒ18 ÃT

l j C̃T
l j],

Φ12l j = [∗ ϒ2 ϒ23 ET Z2 ϒ25 ΛT B̃l j 0 ΛT D̃l j ÃT
dl j 0],Φ13l j =

[∗ ∗ ϒ3 0 0 0 0 0 0 0],Φ14l j =
[∗ ∗ ∗ ϒ4 0 0 0 0 0 0],Φ15l j =
[∗ ∗ ∗ ∗ ϒ5 ΛT B̃l j 0 ΛT D̃l j 0 0],Φ16l j =
[∗ ∗ ∗ ∗ ∗ ϒ6 0 0 B̃T

l j 0],Φ17l j =

[∗ ∗ ∗ ∗ ∗ ∗ ϒ7 0 0 0],Φ18l j = [∗ ∗ ∗ ∗ ∗ ∗ ∗ −
Θ3 D̃T

l j 0],Φ19l j = [∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −P−1
n 0],Φ110l j =

[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ
−1
1 ].

To this end, let us prove that the SMD (8) is extended dis-
sipative. First, when Θ4 = 0, the following inequality holds

s

∑
t=0

J(t)⩾ V̂ (t)−V̂ (0)> 0. (31)

Next, when Θ4 > 0. According to (13), we have:

ỹT (t)Θ4ỹ(t)⩽
r

∑
i=1

hi(b(t))ϕT (t)Plϕ(t), (32)

thus, we can obtain:

s

∑
t=0

J(t)− sup
0≤t≤s

ỹT (t)Θ4ỹ(t)

⩾
s

∑
t=0

J(t)−
r

∑
i=1

hi(b(t))ϕT (t)Plϕ(t)> 0, (33)

then, the SMD (8) is extended dissipative in the meaning of
Definition 1. When ω(t) = 0, from (14), we have ∆V̂ (t)< 0,
the SMD (8) is admissible with extended dissipativity.

Considering the uncertainties of SMD (8), the uncertain
parameters in Φ1l j can be separated via matrix summation.
Then based on Lemma 2 and Schur complement, we can get
Φ2l j. Therefore, according to Theorem 1, then we get Φ2l j <
0, so the SMD (8) is admissible. The proof is complete.

Theorem 2 Given the real symmetic matrices Θ1, Θ2, Θ3,
Θ4 and satisfy assumptions 1, if there exist scalars ε3 > 0,
ε4 > 0, matrices Pl = PT

l ,l ∈℘, Q1, Q2, Q3 > 0, Zς > 0,
ς = 1,2, S and Λ, so that the following SOS requirements and
(9)-(12) are met, then the SMD (8) is said to be admissible
with extended dissipativity.

q1(ϕ)
T (Pl −CT

l Θ4Cl)q1(ϕ) ∈ ΩSOS, (34)

−q3(ϕ)
T (Φ3l j − τl j(ϕ)I)qϕ(x) ∈ ΩSOS, (35)

where q3(ϕ) are arbitratry vectors independent of ϕ(t) with
appropeiate dimensions. In addition, if (35) holds, the con-
trol law gain K j is L jΛ

−1, and
Φ3l j = [ΦT

31l j ΦT
32l j ΦT

33l j ΦT
34l j ΦT

35l j ΦT
36l j ΦT

37l j
ΦT

38l j ΦT
39l j ΦT

310l j ΦT
311l j ΦT

312l j ΦT
313l j ΦT

314l j]
T ,

Φ31l j = [Ψ11 Ψ12 0 0 Ψ15 −LT
j BT 0 Ψ18 Ψ19 Ψ110

Ψ111 Ψ112 0 Ψ114],Φ32l j = [∗ Ψ22 ϒ23 ET Z2 Ψ25 −
LT

j BT 0 ΛTCT
l AdlΛ 0 0 Ψ212 0 Ψ214],Φ33l j =
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[∗ ∗ ϒ3 0 0 0 0 0 0 0 0 0 0 0],Φ34l j =
[∗ ∗ ∗ ϒ4 0 0 0 0 0 0 0 0 0 0],Φ35l j = [∗ ∗ ∗ ∗ ϒ5 −
LT

j BT 0 ΛTCT
l 0 0 0 Ψ512 0 Ψ514],Φ36l j =

[∗ ∗ ∗ ∗ ∗ ϒ6 0 0 −BL j 0 0 0 Ψ613 0],Φ37l j =
[∗ ∗ ∗ ∗ ∗ ∗ ϒ7 0 0 0 0 0 0 0],Φ38l j =
[∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ψ3 ClΛ 0 0 0 0 0],Φ39l j =
[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ99 0 0 varPsi912 0 Ψ914],Φ310l j =
[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ̄1 0 0 0 0],Φ311l j =
[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − ε1I 0 0 0],Φ312l j =
[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − ε1I 0 0],Φ313l j =
[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − ε2I 0],Φ314l j =
[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − ε2I],Ψ11 =
−ET PlE +ET Q1E +ET Q2E +(d + 1)Q3 −ET Z1E +( µ

c +
αµ)I + sym(ΛT AT

l +LT
j BT −ΛT E),Ψ613 = ḠHi1(ϕ(t)),

Ψ12 = ET Z1E +ΛT AT
dl +AlΛ−ET Λ+BL j,

Ψ15 = SRT −ΛT +AlΛ−ET Λ+BL j,Ψ110 = Dl − ḠDl ,
Ψ18 =−DlΘ2 + ḠDlΘ2 +ΘTCT

l ,Ψ19 = AlΛ+BL j,
Ψ111 = Hi1(ϕ(t))− ḠHi1(ϕ(t)),Ψ112 = ε3ΛT HT

i2(ϕ(t)),
Ψ114 = ε4ΛT HT

i2(ϕ(t)),Ψ22 =−2Q3−2ET Z1E−2ET Z2E+
sym(ΛT AT

dl),Ψ25 =−ΛT +AdlΛ,Ψ212 =Ψ112 =Ψ512,Ψ214 =
Ψ114 =Ψ514,Ψ99 = Pn −ΛT −Λ,Ψ912 = ε3HT

i2(ϕ(t)),Ψ914 =
ε4HT

i2(ϕ(t)).

Proof: If we only consider regularity, causality, stability and
extended dissipative performance, the SMD (8) is equivalent
to the dual system as follows [19]:

ET
ζ (t +1) = ÃT

l jζ (t)+ ÃT
dl jζ (t −d(t))+ B̃T

l j ē(t)+C̃T
l jω̄(t),

ȳ(t) = D̃T
l jζ (t), (36)

where ζ (t) is the state vector. Replace E, Ãl j, Ãdl j,
B̃l j, D̃l j, C̃l j with ET , ÃT

l j, ÃT
dl j, B̃T

l j, C̃T
l j, D̃T

l j in
Φ1l j and then perform a congruence transformation with
diag{I, I, I, I, I, I, I, I,ΛT , I, I, I, I, I} based on Schur comple-
ment lemma. Noticing the fact −ΛT P−1

n Λ ⩽ Pn −ΛT −Λ,
L j = K jΛ and Θ

−1
1 = Θ̄1, we can obtain (35). This com-

pletes the proof.

3.2 Sliding Mode Controller Design
Theorem 3 The trajectory of the system (3) can reach SMS
in limited time and remain unchanged for subsequent time
by using SMC law related to event-triggered mechanism:

u(t) = K jϕ(tk)−ρ(t)(GB)−1sign(o(t)), (37)

where σ(t) = ∥GHi1(ϕ(t))∥∥Hi2(ϕ(t))ϕ(t)∥ +
∥GDl∥∥ω(t)∥,ρ(t) = λ +σ(t), with λ > 0.

Proof: Considering the following Lyapunov function

V̂6(t) =
1
2

oT (t)o(t). (38)

By taking the difference of o(t), we have:

∆o(t) = GEϕ(t +1)−G(Al +BK j)ϕ(t)

−GAdlϕ(t −d(t))−o(t)⩽−λ −o(t), (39)

thus

∆V̂6(t) = oT (t)∆o(t)+
1
2

∆oT (t)∆o(t)

⩽ oT (t)(−λ −o(t))+
1
2

∆oT (t)∆o(t), (40)

λ is a positive define scalar to be chosen. We can find a
suitable λ to enable ∆V̂6(t)< 0. This implies that the reach-
ability criteria can be met. The proof is complete.
4 Demonstrative Examples

Example 1 Considering a 2-rules T-S fuzzy polynomial sin-
gular systems (1), the membership function hi(b(t)) are

h1(b(t)) =
{

1, b(t) ∈ [−3,−1],
−0.5b(t)+0.5, b(t) ∈ [−1,1].

h2(b(t)) =
{

0.5b(t)+0.5, b(t) ∈ [−1,1],
−1, b(t) ∈ [1,3].

The system matrics are E =

[
1 0
0 0

]
,

A1 =

[
−0.15−0.0005ϕ1 −0.2−0.0001ϕ1

0 −0.7

]
,

Ad1 =

[
−0.15 1.496

0 0.4

]
,B =

[
−0.2

0

]
,D1 =

[
0.015
−0.06

]
,

A2

[
−0.5−0.01ϕ1 −1−0.019ϕ1

0 −0.6

]
,C2 =

[
0.1 0

]
,

D2 =

[
0.26

−0.0429

]T

,Ad2 =

[
−0.13 0.1511

0 0.17

]
,

C1 =
[
0.2 0

]
,ω(t) = 0.01sin(−0.01t)e−0.5t ,G =[

0.1 0.5
]
,H11(ϕ(t)) =

[
0.25 −0.3

]T
,H12(ϕ(t)) =[

0 0.003
]T

,H21(ϕ(t)) =
[
0.2 0.06

]
,H22(ϕ(t)) =[

0.1 0.6
]
. Let Θ1 = −0.1, Θ2 = 0.8, Θ3 = 0.1,

Θ4 = 0.1, d1 = 1, d2 = 2, c = 400, µ = 0.96, ε = 0.85,
ε3 = 0.6, ε4 = 0.4, α = 0.1, by solving the (35), we can
get L1 =

[
0.7 −1.5

]
,L21 =

[
0.711 −1.488

]
,L22 =[

1.31 2.7201
]
,L3 =

[
1.501 2.875

]
.

Fig. 1 shows the system states. The DET instants and SET
instants are shown in Fig. 2 and Fig. 4. The variable ϖ(t) is
shown in Fig. 3.
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Fig. 1: The system states ϕ1(t) and ϕ2(t).
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Fig. 2: DET release instants.
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Table 1: Triggering time
DET SET

The number of triggering instances 25 42
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Fig. 3: The variable ϖ(t).
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Fig. 4: SET release instants.

Remark 3 Table 1 shows that the DET mechanism has just
25 sample instances for information transmission, which re-
duces the number of transmissions by 50%. Furthermore,
the SET mechanism transfers information with 42 sample in-
stances, reducing the number of transmissions by 16%. Both
event-triggered mechanisms guarantee that the system is ad-
missible with extended dissipativity. However, the number of
triggers under the DET mechanism is less than that of the
SET mechanism, implying that the DET is more efficient in
terms of network resources.

5 Conclusion

This paper has studied extended dissipative SMC for
discrete-time nonlinear system. The nonlinear system is
described by the T-S fuzzy polynomial singular system
with parameter uncertainty. Then, based on time-delay-
dependent SMS and combined with the DET mechanism,
a new SMC law is obtained to ensure that the reachability
condition is met. The criteria of admissible with extended
dissipativity for T-S fuzzy polynomial singular system is ob-
tained. Finally, the given numerical example has demon-
strated that the proposed method is effective.
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Abstract:
This article investigates the problem of fault-tolerant control (FTC) for stochastic high-order fully actuated (SHOFA) sys-

tems with actuator faults. Different from the majority of existing studies focusing on deterministic high-order fully actuated
(HOFA) systems, this work accounts for stochastic disturbances. Employing the generalized martingale technique, a novel fault-
tolerant equivalent controller is formulated. Additionally, an adaptive compensation law is devised to address time-varying faults
promptly. The designed pre-closed-loop strategy advocates the advantage of HOFA methodology in the meantime and guarantees
performance by ensuring that all signals are bounded in probability. Finally, a numerical example is presented to demonstrate the
efficacy of the proposed method.

Key Words: High-order fully actuated system, stochastic system, fault-tolerant control, actuator fault.

1 Introduction

The methodology of fully actuated systems (FASs), pro-
posed by Prof. Duan, has undergone significant develop-
ment. A series of papers have demonstrated the superiority
in control of the graceful construction, as shown in [1] and
its bibliography. In the past few years, several breakthroughs
have been achieve in time-varying systems and sub-actuated
systems. For example, based on the single-order and multi-
order FAS representations of the controllable subsystem, the
robust stabilization problem of the time-varying nonlinear
system has been investigated in [2]. A concept of substabil-
ity raised in [3], allowing the origin to be a boundary point
of the region of attraction, has provided a meaningful theory
for many practical applications. Considering a type of gen-
eral nonholonomic systems [4], a stabilizing controller has
been proposed to drive the feasible trajectories to the origin
exponentially.

The above fundamental research has inspired various
fields and led to numerous achievements [5–8]. In [5], to
compensate for the communication delays between multi-
agents, a HOFA predictive coordination method has been
established. In [6], the problem of adaptive event-triggered
control has been studied on a class of uncertain HOFA sys-
tems with an unknown control matrix. In [7], a novel HOFA
control strategy has been developed to reduce the frequency
of the triggered event. In [8], based on distributed learning, a
HOFA secondary controller has been designed for the trade-
off between multiple indexes in microgrids.

In practical engineering, systems often operate under non-
ideal conditions. Fault-tolerant control (FTC) theory ensures
system performance in the event of faults occurring, and

This work was supported by the National Natural Science Founda-
tion of China under Grants 62033008, 62188101, 62173343, 62073339, the
Natural Science Foundation of Shandong Province of China under Grants
ZR2022ZD34, ZR2020YQ49 and the research fund for the Taishan Scholar
Project of Shandong Province of China. (Corresponding author: Donghua
Zhou.)

there has been considerable research on different fault forms
[9–14]. First in [9], the FTC problem has been raised for
HOFA systems where the assumption of measurable states
has been deprecated and the observer method for FAS has
been developed. Then, based on a low-power fully actu-
ated controller framework, the actuator fault has been tol-
erated for nonideal FASs in [10]. By means of adaptive ob-
server and controller integration framework, the bias com-
ponent faults have been dealt with in [11]. By the universal
approximation technique of fuzzy logic systems, an adap-
tive FTC law has been considered in [15] where the track-
ing error has been guaranteed to be bounded. Adopting the
robust approach, a fault-tolerance controller has been pro-
posed for actuator fault with loss effectiveness in [12]. Re-
cently, by introducing a special funnel function, the problem
of global adaptive asymptotic fault-tolerant control with pre-
scribed performance has been studied in [14].

Stochasticity exists naturally and widely. The SHOFA
system, as a significant object alongside the widely studied
deterministic HOFA system, needs to be focused on. Never-
theless, the scarcity of corresponding high-order mathemat-
ical tools has posed a formidable challenge. Recently, an
interesting contribution to the SHOFA systems theory has
been presented in [16, 17], where a novel stochastic integral
model has been proposed with rigor and applicability. The
equivalent control laws could convert complex systems into
ones with linear drift terms, effectively showcasing the util-
ity of HOFA methodology in synthesis. Building upon this
foundation, the unaddressed challenges of stabilization con-
trol and FTC in SHOFA systems have also been explored.
Subsequently, the probabilistic ultimate bounds of SHOFA
systems with persistent disturbances have been revealed by
[18], which extended the results about stability. Further-
more, a successful instance of FTC for the SHOFA systems
with local faults [19] has further underscored the potential
of this approach. Moreover, there’s been limited research
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on stochastic high-order fully actuated systems with actua-
tor faults.

Motivated by the aforementioned discussions, this paper
addresses the FTC problem of stochastic high-order fully ac-
tuated systems with actuator faults. The main innovations
are highlighted as follows:

1) This study addresses the fault-tolerant challenge in
stochastic high-order fully actuated systems affected by
actuator faults, marking the initial exploration of this
domain. A novel fault-tolerant equivalent control law,
tailored to accommodate stochastic disturbances, is de-
vised.

2) Different from prior research [16], the stability of
SHOFA systems is extended from probability asymp-
totic convergence to probability boundedness, provid-
ing a foundational framework for more intricate control
tasks.

3) In contrast to the scenarios discussed in [10, 12, 14],
this framework supports multi-actuator FASs. Fault-
tolerant techniques based on the Hadamard product are
developed to accommodate varying degrees of fault for
each actuator.

The remaining sections of the article are organized as fol-
lows: Section 2 introduces the model of SHOFA systems
with actuator faults and presents relevant lemmas. Section
3 develops an adaptive FTC law using pre-closure methods
and backstepping techniques. Section 4 provides a numeri-
cal case to illustrate the effectiveness of the proposed strate-
gies. Finally, Section 5 concludes the paper.

Notations: The notations used here are fairly standard.
AT denotes the transpose of matrix A. ‖A‖2 denotes the
spectral norm of matrix A. A function is said to be of family
Cm(D;Rd), if it is Rd-valued and continuouslym-times dif-
ferentiable on D. Without causing ambiguity, the symbols z
and ω are simplifications of the state z(t) and the Brownian
motion ω(t), respectively. Specially, the notation ωs denotes
ω(s). The symbol � denotes Hadamard product.
2 Problem Formulation and Preliminaries

2.1 Problem Formulation
Consider a class of nonlinear stochastic HOFA systems

[16] with actuator faults

dz =

n∑
i=1

Ii−1fi(z)dt+ In−1[g(z)u]dt+ h(z)dω (1)

where u ∈ Rr is the input vector; z ∈ Rr is the state vec-
tor; g(z) : Rr → Rr×r is a input gain matrix function; and
fi(z), i = 1, 2, ..., n − 1, corresponds to the nonlinear vec-
tor functions. In a high-order system, integer n is generally
larger than one. The noise ωs is modeled as a standard one-
dimensional Brownian motion. The multiplicative Leberger
integral is defined in a compact form of high-order integral
operator:

Inf(t) =

∫ t

0

(
n∏
i=2

∫ ti

0

)
f(t1)

(
n∏
i=1

dti

)
. (2)

The input gain g(z) in studied systems meets the full-
actuated conditon [2]

det g(z) 6= 0, or +∞, ∀z ∈ Rr. (3)

During the life cycle of a product, the actuator may not
reproduce the desired control signal u0 perfectly. The ac-
tuators considered here may have the following partial loss
of effectiveness faults [20] and drift faults [10]. Without the
negligible internal dynamics in actuators, the faulty actuator
model of interest in this paper is given as:

u = (Ir×r − η(t))u0 + ζ(t) (4)

where η(t) = diag {ηi(t)} , i = 1, 2, ..., r are the loss-
of-effectiveness coefficients of i-th actuator, and ζ(t) =
[ζ1, ζ2, ..., ζr]

T ∈ Rr is the bias of actuators. The following
assumptions are general in the literature on FTC of systems
with actuator faults [10, 21].

Assumption 1 For the partial loss of effectiveness faults,
their loss-of-effectiveness coefficients meet 0 ≤ ηi(t) ≤ η̄ <
1 and |η̇(t)| ≤ η̄d. In addition, for the drift fault, their am-
plitudes satisfy |ζi(t)| ≤ ζ̄ and |ζ̇(t)| ≤ ζ̄d.

Control Goal: Design the control input u0 to tolerant the
actuator faults as (4), such that the closed-loop SHOFA sys-
tem is stable in the probabilistic sense.

2.2 Equivalence
To take full advantage of the structure of the HOFA sys-

tem, an equivalent pre-closed-loop system could be domi-
nated first. Inspired by the strategy in [16], the nonlinear
dynamics could be handled conveniently. First of all, the
infinitesimal generator is used and extended.

Definition 1 (Infinitesimal Generator [22]) Let x be a so-
lution to an Itô equation:

x(t) = x(0) +

∫ t

0

b(x(s))ds+

∫ t

0

σ(x(s))dω. (5)

For f ∈ C2(Rd;Rd), let L be the infinitesimal generator
[22]

Lf(x) =
∂f

∂x
b(x) +

1

2
Tr

{
σT (x)

∂2f

∂x2
σ(x)

}
. (6)

Definition 2 ([16]) The higher order operator Ln is defined
iteratively by L as:

Ln = L
(
Ln−1

)
(7)

where n ∈ N∗ and L0f = f .

Furthermore, some degree of continuity is required for the
nonlinear vector functions fi(z). The following assumption
is general and much weaker than a similar one in [23].

Assumption 2 The nonlinear vector functions fi(z), i =
1, 2, ..., n− 1, satisfy fi(z) ∈ C2(n−i)(Rr;Rr).

Lemma 1 ([16]) Let Ai ∈ Rr×r, i = 0, 1, ...,m − 1, be a
set of given matrices; thus, solution z under the following
controller{

u0 = −g−1(z)
[∑n

i=1AiLi−1z + u?
]

u? =
∑n
i=1 Ln−ifi(z) + v

(8)

for the SHOFA system (1) with Assumption 2 produces the
equivalent pre-closed-loop system with linear drift terms:

dz = −
n∑
i=1

Ii−1Aizdt+ In−1vdt+ h(z)dω (9)

524  



where v(t) is a control signal that could be further designed.

2.3 Stability Criterion
To achieve bounded stability in the probabilistic sense, the

following lemmas are required.

Lemma 2 For the SHOFA systems (1), if a radially un-
bounded V (z, t) ∈ C2(R;R) exists such that{

β1(|z|) ≤ V (z, t) ≤ β2(|z|)
LV (z, t) ≤ C1V (z, t) + C2

(10)

where C1 > 0, C2 > 0, β1(·) and β2(·) represent class
K∞-functions, then there is almost certainly a unique solu-
tion that exists in the system and the system is bounded in
probability.

Proof: The idea is similar to [24] and is omitted.

Lemma 3 The following inequality holds for any bounded
smooth function ε > 0 and x, v ∈ Rn, vi ≥ 0:

0 ≤ [x− x� sg(x, ε)]Tν < ε1Tν (11)

where sg(x, ε) = x/
√
|x|2 + ε2 and ε is a small constant.

Proof: Notice that√
xTx+ ε21Tv − xTv > 0,(

ε1− ε2√
xTx+ ε2

1

)T

v > 0.
(12)

Adding the above two inequalities derivates the above
lemma.

3 Main Results

In this section, the amplitudes of actuator faults are es-
timated. Subsequently, an adaptive controller for SHOFA
systems with actuator faults is designed.

For the fault-free SHOFA systems, the Lemma 1 could
provide an equivalent pre-closed-loop system. However, this
structure is damaged in case of actuator faults. Substituting
(8) into original system (1), we have

dz =

n∑
i=1

Ii−1fi(z)dt+ h(z)dω

+ In−1g(z)[−(Ir×r − η(t))g−1(z)u0 + ζ(t)]dt

=

n∑
i=1

AiLi−1zdt+ In−1vdt+ h(z)dω

+ In−1g(z)η(t)u0dt+ In−1g(z)ζ(t)dt.
(13)

Due to the unknown matrix η(t) and vector ζ(t), the items
In−1g(z)η(t)u0 and g(z)ζ(t) are intractable to dominate by
the robust method. Thus, an adaptive strategy is developed
in the following.

Let K̂ ∈ Rr×r and ζ̂ ∈ Rr be the estimates of K ,
diag {1/(1− ηi)} and ζ, and define K̃ = K− K̂. The fault
tolerance equivalent controller is proposed as u0 = K̂[ua − ζ̂ � ϕ]

ua = −g−1(z)
[∑n

i=1AiLi−1z + u?
]

u? =
∑n
i=1 Ln−ifi(z) + v

(14)

whereϕ is a vector which will be designed later. Substituting
(14) into original system (1), we have

dz =−
n∑
i=1

AiLi−1zdt− In−1vdt+ h(z)dω

+ In−1g(z)(Ir×r − η(t))K̃uadt

+ In−1g(z)
[
ζ(t)− (Ir×r − η(t))K̂ζ̂

]
dt.

(15)

Introduce the intermediate variable
Z1 = z

Zi = I(−Aiz + Zi+1), i = 2, ..., n− 1

Zn = I[−Anz + v + g(z)N (z, t)]

(16)

where N (z, t) = (Ir×r − η(t))K̃(z)ua + ζ(t) − (Ir×r −
η(t))K̂ζ̂ � ϕ.

Substituting (16) in (15), we have

dz = (−A1z + Z2)dt+ h(z)dw. (17)

Choosing the Lyapunov function as

V1 =
1

4
|z|4. (18)

Define the errors as

ξi = Zi − αi−1, i = 2, ..., n. (19)

By the Itô differential formula, there is

LV1 = |z|2zT(−A1z+ξ2+α1)+
1

2
|z|2hT(z)h(z)+|zTh(z)|2.

(20)
From Cauchy’s inequality and Young’s inequality, we have

1

2
|z|2hT(z)h(z) + |zTh(z)|2

≤3

2
|z|2hT(z)h(z) ≤ 3

4
|z|4|h(z)|4 +

3

4
,

|z|2zTξ2 ≤
3

4
|z|4 +

1

4
|ξ2|4.

(21)

Substituting (21) into (20), the following inequality is given:

LV1 ≤|z|2zT

(
−A1z +

3

4
z +

3

4
z|h(z)|4 + α1

)
+

1

4
|ξ2|4 +

3

4
.

(22)

Design virtual control law

α1 = −3

4
z|h(z)|4, (23)

there is

LV1 ≤ −
(
λmin(A1)− 3

4

)
|z|4 +

1

4
|ξ2|4 +

3

4
. (24)

From (16) and (19), for i = 2, ..., n− 1, there is

dξi =dZi − dαi−1

=(−Aiz + ξi+1 + αi − Ti)dt−
∂αi−1

∂zT
h(z)dw.

(25)
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where

Ti =

i−1∑
l=1

∂αi−1

∂ZT
l

(−alz + Zl+1) +
[
Vi,1 · · · Vi,n

]T
,

Vi,j = diag

{
1

2
hT(z)

∂2αi−1,j

∂zT∂z
h(z)

}
.

(26)
Choose a series of Lyapunov functions

Vi = Vi−1 +
1

4
|ξi|4. (27)

From (25), we can obtain

LVi =LVi−1 + |ξi|2ξT
i [−Aiz + ξi+1 + αi − Ti] +Wi

(28)
where

Wi =
1

2
|ξi|2hT(z)

∂αT
i−1

∂z

∂αi−1

∂zT
h(z) +

∣∣∣∣ξT
i

∂αi−1

∂zT
h(z)

∣∣∣∣2 .
Similar to (21), we have

Wi ≤
3

4
|ξi|4

∣∣∣∣∂αi−1

∂zT
h(z)

∣∣∣∣4 +
3

4
,

|ξi|2ξT
i ξi+1 ≤

3

4
|ξi|4 +

1

4
|ξi+1|4.

(29)

Let virtual control laws αi be

αi = −κiξi +Aiz + Ti −
3

4
ξi

∣∣∣∣∂αi−1

∂zT
h(z)

∣∣∣∣4 (30)

where κi > 0, i = 2, ..., n− 1, are constants.
Then (28) derivates

LVi ≤ LVi−1 −
(
κi −

3

4

)
|ξi|4 +

1

4
|ξi+1|4 +

3

4
. (31)

Thus, form (24) and (31), we have

LVn−1 ≤−
(
λmin(A1)− 3

4

)
|z|4 −

n−1∑
i=2

(κi − 1)|ξi|4

+
1

4
|ξn|4 +

3

4
(n− 1).

(32)
From (16), (26), and Itô formula, the total differential of

ξn is

dξn =dZn − dαn−1

=(−aiz + v + g(z)N (z, t)− Tn)dt− ∂αn−1

∂zT
h(z)dw.

(33)
Let K+ = K− Ir×r, and choose a function as

Vn = Vn−1 +
1

4
|ξn|4 +

1

2
Tr
[
(Ir×r − η(t))K̃2

+

]
+

1

2
ζ̃Tζ̃

(34)
where K̃+ , K+ − K̂+ = K̃.

Design the final control law as

v = −κnξn +Anz + Tn −
3

4
ξn

∣∣∣∣∂αn−1

∂zT
h(z)

∣∣∣∣4 . (35)

Similar to the above derivation, we have

LVn ≤−
(
λmin(A1)− 3

4

)
|z|4 −

n−1∑
i=2

(κi − 1)|ξi|4

−
(
κi −

1

4

)
|ξn|4 +

3

4
n+ |ξn|2ξT

n g(z)N (z, t)

+ Tr
[
(Ir×r − η)K̃+(K̇− ˙̂

K)
]

+ Tr
[
η̇K̃2

+

]
+ (ζ̇ − ˙̂

ζ)Tζ̃.

(36)
From Lemma 3, there is an inequality

|ξn|2ξT
n g(z)ζ(t)

≤|ξn|2ξT
n g(z)� sg(|ξn|2ξT

n g(z), ε)ζ(t) + ε1Tζ(t)

=|ξn|2ξT
n g(z)(Ir×r − η(t))

[
K̂ζ̂(t)� ϕ

+ K̃ζ̂(t)� ϕ
]

+ σTζ̃(t) + ε1Tζ(t)

(37)

where ϕ is designed as ϕ = sg(|ξn|2ξT
n g(z), ε) and σ =

|ξn|2gT(z)ξn � ϕ.
From (37), there is

|ξn|2ξT
n g(z)N (z, t)

≤|ξn|2ξT
n g(z)(Ir×r − η)K̃ub + σTζ̃ + ε1Tζ

(38)

where ub = ua − ζ̂ � sg(|ξn|2ξng(z), ε).
Designing adaptive update law

˙̂
K = diag(|ξn|2g(z)Tξn � ub)− κkK̂+,

˙̂
ζ = σ − κζ ζ̂,

(39)

there is

Tr
[
(Ir×r − η)K̃+(K̇− ˙̂

K)
]

+ |ξn|2ξT
n g(z)(Ir×r − η)K̃ub

=1T(Ir×r − η)K̃+

[
(K̇− ˙̂

K)1 + |ξn|2g(z)Tξn � ub
]

= Tr
[
(Ir×r − η)κkK̃+K̂+

]
+ Tr

[
(Ir×r − η)K̃+K̇

]
≤1

2
Tr
{

(Ir×r − η)
[
−(κk − 1)K̃2

+ + κkK
2 + K̇2

]}
(40)

and
(ζ̇ − ˙̂

ζ)Tζ̃ + σTζ̃ = κζ ζ̂
Tζ̃ + ζ̇Tζ̃

≤− 1

2
(κζ − 1)ζ̃Tζ̃ +

1

2
κζζ

Tζ +
1

2
ζ̇Tζ̇.

(41)

Substituting (40) and (37) into (36), we have

LVn ≤−
(
λmin(A1)− 3

4

)
|z|4 −

n−1∑
i=2

(κi − 1)|ξi|4

− 1

2
(κk − 1− 2k̄η̄d) Tr

[
(Ir×r − η)K̃2

]
−
(
κn −

1

4

)
|ξn|4 −

1

2
(κζ − 1)ζ̃Tζ̃

+ Tr
{

(Ir×r − η)
[
κkK

2
+ + K̇2

]}
+

1

2
κζζ

Tζ +
1

2
ζ̇Tζ̇ + ε1Tζ +

3

4
n

≤− C1Vn + C2

(42)
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Fig. 1: High-order state z under the different control laws.

where k̄ = 1
1−η̄ , C1 = min

{
λmin(A1)− 3

4 , κi − 1,

κn − 1
4 , κk − 1− 2k̄η̄d, κζ − 1

}
, andC2 = r(κkk̄

2+k̄2
d)+

1
2κζ η̄

2 + 1
2 η̄

2
d + rεη̄ + 3

4n.

Theorem 1 Considering the SHOFA system (1) with actua-
tor faults (4) satisfying Assumptions 1 and 2, if the designed
parameters Ai, κi, κk, and κζ meet

A1 −
3

4
> 0,

κi > 1, i = 1, ..., n,

κk > 1 + 2k̄η̄d,

κζ > 1,

(43)

then, the actual controller constructed as (14) and (35) with
parameter updating law (39) guarantees that all the closed-
loop high-order state z and estimate signals are bounded in
probability.

Proof: From (42), the Lyapunov function candidate Vn has
satisfied the inequality LVn ≤ −C1Vn + C2. If the (43) is
met, there is C1 > 0. Thus, we can obtain

dE [Vn(t)]

dt
≤ −C1E [Vn(t)] + C2, (44)

which indicates that E [Vn(t)] ≤ e−C1tE [Vn(0)]+C2

C1
. From

Lemma 2, the signals z, K̃ and η̃ are bounded in probability.

Remark 1 We first designed fault-tolerant equivalent con-
trol laws before further stabilizing the nonlinear diffusion
term. This approach maximizes the advantages of the synthe-
sis of high-order fully actuated systems. Otherwise, employ-
ing backstepping to handle nonlinearities in the drift term
would be exceedingly intractable.

Remark 2 In this work, the case where r > 1 has been dis-
cussed corresponds to multi-input systems in the state-space
model. Modeling this scenario with conventional strict feed-
back systems is challenging, thereby magnifying the struc-
tural advantages of fully actuated systems. Additionally, it’s
evident through the proof that the extension from scalar state
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Fig. 2: The estimations k̂i = 1/(1 − η̂i) of partial loss of
effectiveness faults η.
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Fig. 3: The estimation ζ̂ of drift faults ζ.

to vector state is not straightforward. Some techniques based
on Cauchy’s inequality, vector Itô’s rule, and Hadamard
product are developed in this process. Particularly, the de-
generated conclusion remains valid when r = 1.

4 Simulation

In this section, a numerical example will be presented
to demonstrate the effectiveness of the developed method.
Consider the following SHOFA system:

dz =
[
z2

1 sin(z2)
]T

dt+ Ig(z)udt+ zdω, (45)

where z = [z1 z2]T and

g(z) =

[
1 + 0.5sin(z1) 0.3

1 2 + 1
1+zTz

]
.

The actuator faults (4) are introduced at t = tf = 10 s as

η1(t) = 0.9 + 0.1 cos(t− tf ),

η2(t) = 0.9 + 0.1 cos(2(t− tf )),

ζ(t) = (0.5 + 0.5 sg(t− tf , 1)) · [0.5 0.3]T.

(46)
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The initial conditions are z(0) = [0.1 −0.2]T, K̂(0) = I2,
and ζ̂(0) = 0. The parameters of controller are selected as
A1 = 2I2, A2 = 4I2, κ1 = κ2 = κζ = 2, κk = 3.

Fig. 1 shows the high-order state z under the proposed
fault-tolerance controller and the controller in [16]. It is
worth noting that the dashed lines diverge in finite time,
which shows that the proposed method could achieve reli-
able stabilization when actuator faults occur. The estima-
tions of actuator faults are represented in Figs. 2 and 3. The
above results illustrate that all the signals are bounded.

5 Conclusion

This paper has proposed a novel adaptive FTC scheme
for SHOFA systems with actuator faults. The established
model is compatible with multiple inputs, exhibiting exten-
sive applicability. Considering the structural characteristics
of faults, a fault-tolerant pre-closed-loop control law has
been designed, which highlights the superiority of the full-
actuated system methodology. Leveraging backstepping and
stochastic control theory, the boundedness of all closed-loop
signals is ensured under the circumstances of stochastic dis-
turbances and time-varying actuator faults. Noting that this
work is limited to state feedback, the output feedback FTC
will be investigated. Furthermore, as this serves as foun-
dational work focusing on actuator faults, more meaningful
topics may be considered in the future, such as finite-time
control and state constraints.
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Abstract: In the paper, a fault-tolerant controller is established for unknown high-order fully actuated systems (HOFASs) with
process faults and uncontrollable unmodeled dynamics. Due to the high-dimensional computational complexity of high-order
systems, a parametric tracking error is presented to the subsequent controller design. Simultaneously, the defined parametric error
can be asymptotically stable under an ideal fault-tolerant fully actuated system (FAS) controller. Since the ideal fault-tolerant
FAS controller cannot be given, the neural network technique is utilized to approximate the ideal controller. The ultimate tracking
error can converge to a small neighborhood of the origin. Main results are proved theoretically and illustrated experimentally.

Key Words: Unknown high-order fully actuated systems, fault-tolerant control, neural network.

1 Introduction

Control theory based on first-order nonlinear state-space
models is a hot research topic at present. These state-space
methods are often applied to coupled nonlinear objects, and
the nonlinear controller structures are complex. Under such
theory bottlenecks, Duan creatively proposed the high-order
fully actuated system (HOFAS) theory [1–3]. The HO-
FAS theory comes from the full-actuation characteristics in
a physical sense, and then returns to the controllable charac-
teristics in a mathematical sense. The fully actuated system
(FAS) controller is parameterized and decoupled, which can
realize the state stabilization and trajectory tracking of non-
linear objects more generally.

Since its creation, the HOFAS theory has attracted more
and more attention from scholars. Initially, Duan proposed
some classical FAS approaches, e.g., robust adaptive con-
trol [4], optimal control [5], time delay control [6], model
reference tracking control [7], etc. In [8], the FAS controller
was successfully applied to the cooperative control of net-
worked multiagent systems. In [9], the voltage recovery and
current balancing of DC microgrids were realized based on
the HOFAS theory. In [10], the event-triggered control de-
sign of uncertain HOFASs was fully investigated. In [11],
the FAS approach handled the robust stabilization problem
of uncertain impulsive systems. In [12], a frequency-domain
analysis and design of HOFAS theory were revealed. In [13],
a weak disturbance decoupling controller was designed for
nonlinear HOFASs. These studies further demonstrate the
advantages of HOFAS theory in various research fields.

Apart from the above achievements on ideal HOFASs, the
research on fault-tolerant FAS controllers has also been fully
considered. In the system operation process, system faults
are inevitable and will seriously damage the safe and effec-
tive execution of control tasks [14, 15]. According to the
HOFAS theory, faults will significantly destroy the nonlin-
ear cancellation of parametric controllers [16–18]. There-

This work was supported in part by the National Natural Science Foun-
dation of China under Grants 62033008, 61733009, and in part by the
Taishan Scholar Project of Shandong Province of China and the NSFSD
(ZR2022ZD34). (Corresponding author: Donghua Zhou.)

fore, it is urgent to study the fault-tolerant FAS controller
design. In [19], the proposed fault-tolerant FAS controller
could not only compensate actuator faults, but also suppress
high-frequency measurement noises. In [20], a stochastic
FAS controller was proposed to deal with stochastic distur-
bances and sensor faults. In [21], a self-healing fault-tolerant
controller based on the redundancy principle was applied to
HOFASs with sensor faults. In [22], the cooperative fault
tolerance design of heterogeneous multiagent systems was
given via FAS approaches. However, these fault-tolerant
controllers are based on fully or partially known HOFASs,
and the nonlinear assumptions are conservative. To the au-
thors’ best knowledge, the fault-tolerant controller design for
completely unknown HOFASs has not been thoroughly in-
vestigated. Neural network (NN) is an effective technique
for the controller design of unknown systems and can be in-
troduced into the burgeoning HOFAS theory [23–25].

Inspired by the aforementioned conditions, the paper is
devoted to designing the fault-tolerant FAS controller of un-
known systems. The main contributions are as follows:

1) A fault-tolerant controller based on NNs is proposed
for completely unknown HOFASs with uncontrollable
unmodeled dynamics, further extending the unknown
HOFAS theory. Compared with the existing works [18,
25], the model nonlinearity is less conservative.

2) The tracking error is proven to be ultimately uniformly
bounded, and the error bound can be sufficiently small
via parameter adjustment.

Notation: Rn denotes the n-dimensional Euclidean
space, and Rn×m represents the set of all n × m real ma-
trices. ∥ · ∥ means the vector norm or matrix norm. 0n ∈ Rn

denotes a zero vector. x(i) is the i-order derivative of x. Be-
sides, the following symbols are defined as:

x(0∼p−1) =
[
x⊺ ẋ⊺ · · · x(p−1)⊺

]⊺ ∈ Rnp,

A0∼p−1 =
[
A0 A1 · · · Ap−1

]
∈ Rn×np,

Φ(A0∼p−1) =

[
On(p−1)×n In(p−1)

−A0∼p−1

]
∈ Rnp×np,

Bnp =
[
O⊺

n(p−1)×n In
]⊺

, Cnp =
[
In, O

⊺
n(p−1)×n

]
,
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where On(p−1)×n, In(p−1) denote a zero matrix and an iden-
tity matrix with the compatible dimensions, respectively.

2 Problem Formulation and Preliminaries

Consider a class of unknown HOFAS models:
x(p) = F (x(0∼p−1), z(0∼q−1))

+G(x(0∼p−1), z(0∼q−1))u+ δ,

z(q) = F0(x
(0∼p−1), z(0∼q−1)),

y = x,

(1)

where x ∈ Rn, u ∈ Rn, y ∈ Rn, z ∈ Rm are the system
state, the control input, the output and the unmodeled dy-
namics, respectively. p, q are two positive integers, δ ∈ Rn

is a time-varying process fault, and F (·), G(·), F0(·) are un-
known nonlinear functions. During system operation, the
model variables are within compact sets, i.e., x(0∼p−1) ∈
Ωx, u ∈ Ωu, z

(0∼q−1) ∈ Ωz .

Assumption 1. [19] The nonlinear function G(·) satisfies
that, for all x(0∼p−1) ∈ Ωx, z

(0∼q−1) ∈ Ωz ,

0 < G(x(0∼p−1), z(0∼q−1)) < ∞,∥∥∥∥dG−1

dt
(x(0∼p−1), z(0∼q−1))

∥∥∥∥ < ∞. (2)

Assumption 2. [23] The HOFAS model (1) is a hyperboli-
cally minimum-phase system. Besides, there exists a positive
constant L0 such that

∥F0(x
(0∼p−1), z(0∼p−1))− F0(0np, z

(0∼q−1))∥
≤ L0∥x(0∼p−1)∥,∀x(0∼p−1) ∈ Ωx, z

(0∼q−1) ∈ Ωz. (3)

The control task is to let the output y ∈ Rn track the refer-
ence signal yd ∈ Rn despite unmodeled dynamics and faults.

Assumption 3. [26] The reference signal yd satisfies the
high-order boundedness condition, i.e., ∥y(0∼p)

d ∥ < ∞.

If the whole model is available, the ideal FAS controller is
designed as [1, 18]

u∗ =−G(x(0∼p−1), z(0∼p−1))−1[F (x(0∼p−1), z(0∼p−1))

+ δ − y
(p)
d +A0∼p−1η

(0∼p−1) − u0], (4)

where η(0∼p−1) ≜ x(0∼p−1) − y
(0∼p−1)
d , u0 is an additional

auxiliary signal, and A0∼p−1 ∈ Rn×np should shape a Hur-
witz matrix Φ(A0∼p−1). Under the ideal controller, a stable
closed-loop linear system can be given:

η̇(0∼p−1) = Φ(A0∼p−1)η
(0∼p−1) +Bnpu0. (5)

The ideal FAS controller (4) can completely decouple the
nonlinear system (1) and realize global asymptotic stability.
However, due to unknown models and faults, the ideal fault-
tolerant FAS controller cannot be obtained. Therefore, it is
necessary to study the numerical approximation of the ideal
controller.

Lemma 1. For the HOFAS model (1) under Assumptions 2-
3, there exist positive constants L1, L2, t0 such that

∥z(0∼q−1)∥ ≤ L1∥ec∥+ L2∥y(0∼p−1)
d ∥,∀t > t0, (6)

where ec ≜ A0∼p−1η
(0∼p−1).

Proof. The zero dynamics of (1) can be calculated as

ż(0∼q−1) = Φ(Om×mq)z
(0∼q−1) +BmqF0(0np, z

(0∼q−1))

≜ Fz(0np, z
(0∼q−1)). (7)

Based on Assumption 2, there exists a Lyapunov function
V0(z

(0∼q−1))) satisfying

∂V0

∂z(0∼q−1)
Fz(0np, z

(0∼q−1)) ≤ −σ1∥z(0∼q−1)∥2,∥∥∥∥ ∂V0

∂z(0∼q−1)

∥∥∥∥ ≤ σ2∥z(0∼q−1)∥, (8)

with two positive constants σ1, σ2.
Differentiating V0(z

(0∼q−1)) along (1) gives

V̇0(z
(0∼q−1)) =

∂V0

∂z(0∼q−1)
Fz(x

(0∼p−1), z(0∼q−1))

=
∂V0

∂z(0∼q−1)
Fz(0np, z

(0∼q−1)) +
∂V0

∂z(0∼q−1)

· [Fz(x
(0∼p−1), z(0∼q−1))− Fz(0np, z

(0∼q−1))]

≤ −σ1∥z(0∼q−1)∥2 + σ2L0∥z(0∼q−1)∥∥x(0∼p−1)∥. (9)

Besides, there exist positive constants d1, d2 such that

∥x(0∼p−1)∥ ≤ d1∥y(0∼p−1)
d ∥+ d2∥ec∥. (10)

Then, it follows that

V̇0((z
(0∼q−1))) ≤ −σ1∥z(0∼q−1)∥2 + σ2L0∥z(0∼q−1)∥

· (d1∥y(0∼p−1)
d ∥+ d2∥ec∥)

= −σ1∥z(0∼q−1)∥(∥z(0∼q−1)∥

− L1∥ec∥ − L2∥y(0∼p−1)
d ∥), (11)

where L1 = σ2L0d2/σ1, L2 = σ2L0d1/σ1. Therefore,
there exists a positive constant t0 such that (6) holds.

3 Main Results

Due to the high-dimensional characteristics of HOFASs,
the error feedback term η(0∼p−1) is replaced by parametric
error ec to reduce the computational complexity. Since the
parameterized matrix Φ(A0∼p−1) is Hurwitz, the high-order
tracking error ∥η(0∼p−1)∥ → 0 as ∥ec∥ → 0. The derivative
of ec = A0∼p−1η

(0∼p−1) is

ėc = Ap−1[F (x(0∼p−1), z(0∼q−1))

+G(x(0∼p−1), z(0∼q−1))u+ δ − y
(p)
d ]

+
[
On×n A0∼p−2

]
η(0∼p−1). (12)

Lemma 2. For the HOFAS model (1) using a parameter-
ized FAS controller (4) under Assumptions 1-3, there exists
a positive definite matrix Ap−1 such that for x(0∼p−1)(0) ∈
Ωx, z

(0∼q−1)(0) ∈ Ωz , the error dynamics can be

ėc = −Ap−1ec. (13)

Naturally, the tracking error is asymptotically stable, i.e.,
limt→∞ ∥y − yd∥ = 0.
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Proof. It turns out that

ėc =−Ap−1ec + v +Ap−1[F (x(0∼p−1), z(0∼q−1))

+G(x(0∼p−1), z(0∼q−1))u+ δ], (14)

where

v = Ap−1ec −Ap−1y
(p)
d +

[
On×n A0∼p−2

]
η(0∼p−1).

(15)

If the additional auxiliary signal u0 is designed as

u0 = −A−1
p−1

[
On×n A0∼p−2

]
η(0∼p−1), (16)

and the corresponding ideal FAS controller u∗ will yield

ėc = −Ap−1ec. (17)

As long as the parameterized matrix Ap−1 is positive defi-
nite, the error ec must be asymptotically stable.

Such an ideal fault-tolerant FAS controller cannot be com-
puted directly, so a FAS controller based on NN approxima-
tion is established. The n high-order NNs are designed as

Ni(Wi, ω) = W ⊺
i S(ω),Wi, S(ω) ∈ Rl, i = 1, 2, · · · , n,

S(ω) =
[
s1(ω) s2(ω) · · · sl(ω)

]⊺
,

sk(ω) =
∏
j∈J

[s(ωj)]
cj , k = 1, 2, · · · , l, (18)

where ω =
[
x(0∼p−1)⊺ z(0∼q−1)⊺ v⊺

]⊺ ∈ Rnp+mq+n,
Wi, i = 1, 2, · · · , n are weight vectors, l is the number of
NN nodes, J is a collection of input variables, and cj , j ∈ J
are nonnegative integers. The activation function s(ωj) is
chosen as

s(ωj) =
eωj − e−ωj

eωj + e−ωj
. (19)

The ideal fault-tolerant FAS controller can be approximated
by NNs on the compact sets x(0∼p−1) ∈ Ωx, z

(0∼q−1) ∈ Ωz:

u∗ =
[
u∗
1 u∗

2 · · · u∗
n

]⊺
=
[
W ∗⊺

1 S(ω) + ϵ1 · · · W ∗⊺
n S(ω) + ϵn

]⊺
, (20)

where W ∗
i , ϵi are ideal weights and approximation error, re-

spectively.

Assumption 4. On the compact sets, the ideal NN weights
W ∗

i and the approximation error ϵi are bounded, i.e.,
∥W ∗

i ∥ < ∞, |ϵi| < ∞, i = 1, 2, · · · , n.

In order to ensure that the NN input variables are in com-
pact sets, the NN-based FAS controller is redesigned as

u =
[
Ŵ ⊺

1 S(ω) · · · Ŵ ⊺
nS(ω)

]⊺ − θ|ec|ec, (21)

where Ŵi is the estimation of W ∗
i , and θ is a positive con-

stant to be designed. −θ|ec|ec is a control term to guarantee
the boundedness of NN input. The NN weights are updated
as

˙̂
Wi = −Γi[S(ω)ec,i + ri|ec|Ŵi], i = 1, 2, · · · , n, (22)

where Γi, ri are positive constants to be determined later,
and ec,i denotes the ith element of ec.

Theorem 1. For the HOFAS model (1) using the NN-based
controller (21) under Assumptions 1-4, there exist positive
constants M1,M2, T such that the variables ec, W̃i ≜ Ŵi−
W ∗

i , z
(0∼q−1) remain in compact sets, and the tracking error

can converge to a small neighbourhood of the origin, i.e.,

∥y − yd∥ ≤ min

{
M1

θ
,

M2

4θ∥Ap−1∥

}
,∀t > T. (23)

Moreover, the corresponding parameters will make the error
bound as small as possible.

Proof. Consider a Lyapunov function

V =
1

2

(
e⊺cG

−1ec +

n∑
i=1

W̃ ⊺
i Γ

−1
i W̃i

)
, (24)

where G ≜ G(x(0∼p−1), z(0∼q−1)). The derivative of (24)
is

V̇ = e⊺c
[
G−1 (−Ap−1ec +G(u− u∗))

]
+

1

2

dG−1

dt
e⊺c ec +

n∑
i=1

W̃ ⊺
i Γ

−1
i

˙̃Wi

= −e⊺cG
−1Ap−1ec − θ|ec|e⊺c ec

+ e⊺c
[
W̃ ⊺

1 S(ω)− ϵ1 · · · W̃ ⊺
nS(ω)− ϵn

]⊺
+

1

2

dG−1

dt
e⊺c ec −

n∑
i=1

W̃ ⊺
i (S(ω)ec,i + ri|ec|Ŵi)

= −e⊺cG
−1Ap−1ec − θ|ec|e⊺c ec − e⊺c

[
ϵ1 · · · ϵn

]⊺
+

1

2

dG−1

dt
e⊺c ec − |ec|

n∑
i=1

riW̃
⊺
i Ŵi

= −e⊺cG
−1Ap−1ec − θ|ec|e⊺c ec − e⊺c

[
ϵ1 · · · ϵn

]⊺
+

1

2

dG−1

dt
e⊺c ec −

|ec|
2

n∑
i=1

ri(∥W̃i∥2 + ∥Ŵi∥2 − ∥W ∗
i ∥2).

(25)

Based on Assumptions 1 and 4, there exists a positive con-
stants d3 such that

V̇ ≤ |ec|
(
−θ∥ec∥2 − ∥G−1Ap−1∥∥ec∥+ d3∥ec∥

−1

2

n∑
i=1

ri∥W̃i∥2
)

= |ec|
[
−θ(∥ec∥ −

d3
2θ

)2 − ∥G−1Ap−1∥∥ec∥+
d23
4θ

−1

2

n∑
i=1

ri∥W̃i∥2
]
. (26)

Define some sets

Ωe ≜

{
ec | ∥ec∥ ≤ min

{
d3
θ
,
d23 supt≥0 ∥G∥
4θ∥Ap−1∥

}}
, (27)

Ωwi
≜

{
W̃i | ∥W̃i∥ ≤ d3√

2θri

}
, i = 1, 2, · · · , n, (28)

and Ωe,Ωwi are compact sets. Thus, ec, W̃i can converge to
the small neighbourhood of the origin. Based on Lemma 1,
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Fig. 1: The tracking control result.

0 10 20 30 40 50 60

time(s)

-15

-10

-5

0

5

10

S
ig

n
a
l 
a
m

p
lit

u
d
e

Control input

Fig. 2: The trajectory of u.

the unmodeled dynamics z(0∼q−1) is also in a compact set.
Due to the Hurwitz matrix Φ(A0∼p−1), there exist positive
constants M1,M2, T such that (23) holds. Furthermore, the
appropriate parameters θ,Ap−1 will make the error bound as
small as possible.

4 Simulation

Consider an unknown state-space model with strong non-
linearities

ẇ1 = w2
1 + 2w2 + z,

ẇ2 = w2
1z + w1e

w2 + (
1 + sinw1

1 + w2
2 + z2

+ 1 + z2)u+ δ,

ż = −2z + 0.2w1,

y = w1,

(29)

where w1, w2, z, u, y, δ ∈ R. Let x = w1, and the nonlinear
system (29) can be converted into a HOFAS model

ẍ = F (x(0∼1), z) +G(x(0∼1), z)u+ δ,

ż = F0(x
(0∼1), z),

y = x.

(30)
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Fig. 4: The trajectory of z.

Since the system model is unknown and the proposed fault-
tolerant FAS controller is model-free, it is not necessary to
give the concrete forms of F (·), G(·), F0(·). The fault model
is set as

δ =

{
0, t < 40s,

10 + sin(t− 40), t ≥ 40s.
(31)

The control task is to let the output y track the reference
signal yd = 2 sin t + cos 0.5t in spite of faults. The NN-
based fault-tolerant controller is designed as

u = ŴS(ω)− θ|ec|ec,
˙̂
W = −Γ[S(ω)ec + r|ec|ec]. (32)

The corresponding parameters are set as θ = 3,Γ = 1, r =
0.001, A0∼1 =

[
5 2

]
, l = 25. The initial values of sys-

tem states and NN weight are zero. The experimental re-
sults are shown in Fig.1–Fig. 4. From Fig. 1, the controller
can effectively complete the tracking control task, which il-
lustrates Theorem 1. After the fault occurs, the proposed
fault-tolerant controller can compensate the process fault ef-
ficiently. The tracking error in Fig. 1 is influenced on the
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one hand by uncontrollable unmodeled dynamics z and on
the other by parameters θ, l. If the number of neurons is
large enough and the parameter θ is large enough, the track-
ing error tends to zero. However, such a choice will lead to
the high-gain or vibration phenomena, so the choice of θ, l
needs to be considered overall. It can be seen from Fig. 2
that the controller quickly responses to the fault at t = 40s.
In Fig. 3, the NN weight constantly adapts to changes dur-
ing the system operation, where the oscillations come from
the influence of unmodeled dynamics. Fig. 4 shows that the
uncontrollable state z is always bounded under the proposed
controller.

5 Conclusion

The paper has proposed a NN-based fault-tolerant con-
troller for unknown HOFASs with strong nonlinearities. The
NN-based FAS controller can yield the bounded tracking er-
ror in case of faults. The NN input does not contain the high-
dimensional error vector, and the computational complexity
is lower. The tracking error can be made small enough by
adjusting the number of neurons and other parameters. In
the future, we will study the safety control of more complex
unknown HOFASs.
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Practical Prescribed Time Fault-Tolerant Tracking Control for a
Quadrotor UAV: A solution based on FASA
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Abstract: This study investigates the practical prescribed-time tracking problem for a quadrotor unmanned aerial vehicle with
actuator faults by using the fully actuated system approach. First, the original practical prescribed-time tracking problem is
changed into one with a time-varying constraint on tracking errors by introducing a novel time-varying constraining function.
Then, fault-tolerant control schemes are proposed for the translational dynamics and rotational dynamics based on the fully
actuated system models to compensate for actuator faults and deal with the time-varying constraint. With the aforementioned
conversion, the suggested method guarantees that, despite actuator problems, the tracking errors will converge to the speci-
fied compact set within a preassigned finite time. Additionally, simulation experiments validate the efficacy of the suggested
methodology.

Key Words: Prescribed time control, Time-varying constraint, Fault-tolerant control, Quadrotor unmanned aerial vehicles

1 Introduction

Unmanned aerial vehicles (UAVs) have drawn a lot of
attention in recent decades because of their potential mili-
tary and commercial benefits. In particular, quadrotor UAVs
are the most often used micro UAVs due to their numer-
ous noteworthy advantages, including small size, inexpen-
sive production, quick maneuverability, and vertical takeoff
and landing capabilities. Numerous control strategies have
been put forward to address the quadrotor UAV control is-
sue, such as PID control [1], backstepping control and feed-
back linearization [2]. In [1] and [2], the actuators were as-
sumed to be fault-free. However, actuator faults typically
occur in many real-world systems, and they can cause insta-
bility and performance degradation [3]. The fault-tolerant
control (FTC) approach has received a lot of attention as a
means of handling actuator failures [4]. For example, an in-
direct neural network-based adaptive FTC method was pre-
sented for an uncertain quadrotor UAV with actuator failures
in [5]. For multi-UAVs, a decentralized adaptive neural FTC
method was developed in [6] employing fractional order the-
ory and backstepping technology.

These methods in [1]-[6] only achieve asymptotic con-
vergence of the closed-loop system. However, the system
needs to make a quick response in many practical control
tasks. For example, quadrotor UAVs need to quickly locate
the target area in environmental monitoring. As a result, it
is extremely desirable that the desired tracking precision be
attained within a short period of time. For example, a novel
state feedback control strategy was designed to address the
prescribed-time (PT) control for nonlinear systems with un-
known parameters in [7]. The control strategy enforces the
tracking error to zero within a predetermined time that can
be selected in advance. A novel PT distributed control algo-

This work was supported in part by the National Natural Science
Foundation of China under Grants (62020106003, 62173180, 62188101),
in part by the Natural Science Foundation of Jiangsu Province of China
(BK20222012), in part by the Qing Lan Project of Jiangsu Province of
China, in part by the 111 Project of the Programme of Introducing Tal-
ents of Discipline to Universities of China under Grant B20007, in part by
the Fundamental Research Funds for the Central Universities under Grants
(NE2022002, NC2022003). (Corresponding author: Bin Jiang)

rithm was presented in [8] for consensus and containment of
networked multiple systems. Note that infinite gains are re-
quired for the prescribed time control strategies in [7] and [8]
to attain zero steady-state error. For practical purposes, con-
trol with adequate steady-state precision is acceptable. This
drives the development of practical prescribed-time (PPT)
control [9, 10], in which the steady-state error, rather than
converges to zero, does so to a tiny neighborhood of origin
within a finite amount of time. A novel continuous and non-
singular PPT consensus tracking control protocol was pre-
sented in [11] for a multiagent system. Unfortunately, the
steady-state accuracy after the settling time is unavailable
and unclear in the aforementioned results since the extent
of the steady-state error essentially depends on certain un-
known parameters. This is highly undesirable in real-world
applications, but practical prescribed-time FTC with exact
and arbitrarily adjustable steady-state accuracy for quadro-
tor UAVs is still an open problem.

Besides, all the mentioned results were put forward on the
basis of first-order state-space models, which are suitable for
response analysis and state observation but not for controller
design. Originally, Duan presented the fully actuated system
approach (FASA) as a solution to the aforementioned prob-
lem [12]. The FASA is a control-oriented framework on the
basis of fully-actuated system models. Moreover, the FASA
has been shown to be incredibly practical and efficient for
controller design [13]. An adaptive FTC method was given
in [14] for high-order fully actuated systems with actuator
faults and full-state constraints. A control method was pro-
posed for the attitude control of a flexible spacecraft by the
FASA in [15], where a linear time-invariant closed-loop sys-
tem was obtained with eigenvalues that could be arbitrarily
assigned. However, as far as we know, there is no result
that designed the PPT controller for quadrotor UAVs via the
FASA.

Motivated by the above discussion, this work presents a
novel PPT control method for quadrotor UAVs. Concisely,
the major contributions are summarized as follows.

i) The suggested FASA-based PT control offers signifi-
cant computational complexity reduction and simplifies
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stability analysis and controller design when compared
to the current state-space approach-based PT tracking
control for quadrotor UAVs.

ii) Even in the case of actuator failure of the system, us-
ing our proposed method, the settling time and the final
tracking accuracy can still be determined in advance as
needed, since they are both independent of the initial
conditions and any other design parameters.

2 Problem formulation

2.1 Model Description
The center of mass’s position in the fixed inertial frame is

represented by be a vector ηp = [x, y, z]. ηo = [ϕ, θ, ψ] be
a vector denotes Euler angles in the body-fixed frame, where
ϕ, θ, ψ are roll, pitch, and yaw, respectively. The follow-
ing equation can be used to represent the quadrotor’s trans-
lational movement [16]:

ẍ =(cosψ sin θ cosϕ+ sinψ sinϕ)
U1

m
(1a)

ÿ =(sinψ sin θ cosϕ− cosψ sinϕ)
U1

m
(1b)

z̈ =(cos θ cosϕ)
U1

m
− g (1c)

where m is the quadrotor mass; U1 = kt
∑4
i=1 T

2
i , kt is

the thrust coefficient and Ti denotes the speed of rotor i; g
denotes the gravity. The quadrotor’s rotational movement
can be represented by the following equation [16]:

ϕ̈ =
1

Ix
[(Iy − Iz)ψ̇θ̇ − Jr θ̇T + U2] (2a)

θ̈ =
1

Iy
[(Iz − Ix)ψ̇ϕ̇− Jrϕ̇T + U3] (2b)

ψ̈ =
1

Iz
[(Ix − Iy)θ̇ϕ̇+ U4] (2c)

where Ix, Iy , and Iz are the quadrotor moment of inertia ac-
cording to x, y, and z axes; the term T = T2+T4−T3−T1
is the total residual rotor angular velocity; Jr represents
thetotal moment of inertia along the propeller axis; U2 =
ktl(−T 2

2 + T 2
4 ), U3 = ktl(−T 2

1 + T 2
3 ), U4 = kd(−T 2

1 +
T 2
2 + T 2

3 + T 2
4 ), kd is the drag coefficient, and l is the dis-

tance between the quadrotor’s mass center and rotor axis of
rotation.

The actuation subsystem input Uai and the desired input
Ui are no longer equivalent owing to the plant’s actuators
have the potential to malfunction, [5]. Instead, they have the
following relationship:

Uai = ρiUi, i = 1, 2, 3, 4 (3)

where ρi is the actuator efficiency factor. There exists a pos-
itive constant ρ such that 0 < ρ ≤ ρi ≤ 1.

The following system dynamics can be obtained by com-
bining the dynamics of Eqs. Eqs. (1)-(2) with the actuator
faults mentioned in Eq. (3):
1) Position subsystem:

η̈p = fp + ρ1BpUp (4)

where fp = [0, 0,−g]T, Bp = 1/m⊗ I3, and

Up =

 Ux
Uy
Uz

 =

 (cosψ sin θ cosϕ+ sinψ sinϕ)U1

(sinψ sin θ cosϕ− cosψ sinϕ)U1

(cos θ cosϕ)U1


Ux, Uy and Uz can be thought of as the position subsystem’s
virtual control inputs.
2) Attitude subsystem:

η̈r = fr +BrρrU r (5)

where fr = [[(Iy − Iz)ψ̇θ̇ − Jr θ̇T ]/Ix, [(Iz −
Ix)ψ̇θ̇ + Jrϕ̇T ]/Iy, [(Ix − Iy)θ̇ϕ̇]/Iz]

T, Br =
diag{1/Ix, 1/Iy, 1/Iz}, ρr = diag{ρ2, ρ3, ρ4}, and
U r = [U2, U3, U4]

T.

2.2 Control objective
In the event of actuator failures, the design goal is to cre-

ate an adaptive FTC method for the system so that, within
an arbitrary time frame, the outputs [x, y, z, ψ]T converge to
a neighborhood of the desired references [xd, yd, zd, ψd]

T.
Define tracking errors as ex ≜ x − xd, ey ≜ y − yd,
ez ≜ z − zd and eψ ≜ ψ−ψd. These tracking errors satisfy
the following realtions:

|e•(t)| < ωTp
, ∀t ≥ Tp (6)

where • ∈ {x, y, z, ψ}, ωTp
and Tp are two positive con-

stants that can be set arbitrarily by user.

2.3 Problem transformation
In this study, the original PPT tracking control prob-

lem can be transformed into one with a time-varying con-
straint on tracking errors by introducing a PT prescribed-
performance function.

A PT prescribed performance function is developed as fol-
lows:

ω(t) =

{ (
ω0 − ωTp

)
e

(
1− Tp

Tp−t

)
+ ωTp , 0 ≤ t < Tp

ωTp , t ≥ Tp
(7)

where, ω0 is a positive constant. It follows from Eq.(7) that
the prescribed performance limt→Tp

ω(t) = ωTp
and ω(t) =

ωTp
for any t ≥ Tp can be obtained.

As long as the time-varying tracking error constraint of
Eq. (8) is met, the desired PPT tracking objective is realized.

−ω(t) < e•(t) < ω(t), ∀t ≥ 0 (8)

Given that the prescribed performance function ω is de-
fined as Eq. (7) defines, we may deduce from Eq. (8) that

|e•(t)| < ωTp
, ∀t ≥ Tp (9)

Stated differently, if the condition specified in Eq. (8) is met,
the tracking errors e•(t) converge to the region Ω = {e• ∈
R : |e•(t)| < ωTp

} within the settling time Tp.
An error transformation, converting the system with con-

fined tracking error behavior into a corresponding “uncon-
strained” one, is described as follows

e•(t) =ω(t)S(χ•) (10)
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where χ• is the transformed error and S(χ•) is chosen as

S(χ•) =
eχ• − e−χ•

eχ• + e−χ•
(11)

then the transformed error ε• is computed as

χ• =
1

2
ln

(
1 + e•

ω

1− e•
ω

)
(12)

From [17], we can obtain that the time-varying tracking
error constraint as shown in Eq. (8) is satisfied as long as χ•
is bounded for t ∈ [0,∞).

To sum up, the desired PPT tracking objective is obtained
as long as χ• is bounded for t ∈ [0,∞).

2.4 Important lemma
Lemma 1 [18] When the matrix A0∼1 = [A0 A1], with
A0 ∈ R3×3 and A1 ∈ R3×3, is chosen such that the matrix

Φ(A0∼1) =

[
0 I3

−A0 −A1

]
∈ R6×6 is stable, there exists

a positive matrix Θ(A0∼1) satisfying

ΦT(A0∼1)Θ(A0∼1) + Θ(A0∼1)Φ(A0∼1) ≤ −I6 (13)

For ease of writing, the subsequent notation is established,
which is frequently used in this paper.

ΘL
(
A0∼1

)
≜ Θ

(
A0∼1

) [ 0
I3

]
∈ R6×3 (14)

3 Main results

This section develops a FASA-based FTC control method
for quadrotor UAVs. Fig. 1 depicts the structure of the sug-
gested approach for the position and attitude subsystem.

3.1 Control design for the position subsystem
For the position subsystem, a tracking error vector is de-

fined as ep = [ex, ey, ez]
T. The tracking error dynamics can

be represented as

ëp = fp + ρ1BpUp − η̈dp (15)

where ηdp = [xd, yd, zd]
T.

Differentiating both sides of Eq. (10) with respect to time,
we get

ė• = ω̇S (χ•) + ω
∂S (χ•)

∂χ•
χ̇• (16)

and

χ̇• =
ė• − ω̇S (χ•)

ω ∂S(χ•)
∂χ•

(17)

Furthermore, one has

χ̈• =
ë• − (ω̇S (χ•))

′

ω ∂S(χ•)
∂χ•

−
(ė• − ω̇S (χ•))

(
ω ∂S(χ•)

∂χ•

)′

(
ω ∂S(χ•)

∂χ•

)2

(18)

Let χp = [χx, χy, χz]
T ∈ R3, r• = 1

ω
∂S(χ•)
∂χ•

, v• =

(ω̇S(χ•))
′

ω(t)
∂S(χ•)
∂χ•

+
(ė•−ω̇S(χ•))(ω ∂S(χ•)

∂χ• )
′

(ω ∂S(χ•)
∂χ• )

2 . Then, one has

χ̈p =rpëp − vp (19)

where rp = diag{rx, ry, rz} ∈ R3×3, vp = [vx, vy, vz]
T ∈

R3.
Substituting Eq. (15) into Eq. (19) yields

χ̈p =rp

(
fp + ρ1BpUp − η̈dp

)
− vp (20)

An adaptive fault-tolerant controller can be designed as

Up =− p̂1I3αp (21)

where αp = B−1
p (fp − η̈dp) − B−1

p r−1
i (vp − Ap,0χp −

Ap,1χ̇p); Ap,0 and Ap,1 are two matrices; p̂1 is the estima-
tion of p1 ≜ 1/ρ1 and the error is defined as p̃1 = p1 − p̂1.

An adaptive update law for the estimate p̂1 is designed as

˙̂p1 = γ1

(
χ(0∼1)
p

)T

Θ
(
A0∼1
p

) [ 03

rpBpαp

]
(22)

where Θ
(
A0∼1
p

)
is a positive definite matrix satisfying Eq.

(13).

Theorem 1 Consider translational dynamics as described
in Eq. (4). If the control algorithm of Eq. (21) and the adap-
tive update law of Eq. (22) are applied, then the transformed
tracking errors χ•, • ∈ {x, y, z} and the estimation error
p̃1 is ensured to be bounded at all times. Then the track-
ing errors e•, • ∈ {x, y, z} converge to a neighborhood of
the desired references within an arbitrarily prescribed-time
interval, i.e., |e•(t)| < ωTp

, ∀t ≥ Tp.

Proof. Define χ
(0∼1)
p = [χp, χ̇p]

T. Substituting the con-
troller of Eq. (21) into Eq. (20) yields

χ̇(0∼1)
p = Φ

(
A0∼1
p

)
χ(0∼1)
p +∆p (23)

where Φ
(
A0∼1
p

)
=

[
0 I3

−Ap,0 −Ap,1

]
∈ R6×6 and ∆p =[

03

ρ1p̃1rpBpαp

]
∈ R6×1.

Since Ap,0 and Ap,1 are two matrices such that A0∼1
p =

[Ap,0 Ap,1] is stable, there exists a positive definite matrix
Θ
(
A0∼1
p

)
satisfying Eq. (13). Hence, a Lyapunov function

can be selected for the dynamics of Eq. (23) as

Vp =
(
χ(0∼1)
p

)T

Θpχ
(0∼1)
p +

ρ1
γ1
p̃21 (24)

where γ1 is a scalar and γ1 > 0.
Taking the derivative of Vp leads to

V̇p =
(
Φ
(
A0∼1
p

)
χ(0∼1)
p +∆p

)T

Θ
(
A0∼1
p

)
χ(0∼1)
p

+
(
χ(0∼1)
p

)T

Θ
(
A0∼1
p

) (
Φ(A0∼1)χ

(0∼1)
p +∆p

)
+ 2

ρ1
γ1
p̃1 ˙̃p1

=
(
χ

(0∼1)
i

)T

(ΦT
(
A0∼1
p

)
Θ
(
A0∼1
p

)
+Θ

(
A0∼1
p

)
Φ
(
A0∼1
p

)
)χ(0∼1)

p

+ 2
(
χ(0∼1)
p

)T

Θ
(
A0∼1
p

)
∆p − 2

ρ1
γ1
p̃1 ˙̂p1

(25)
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Fig. 1: The structure of the quadrotor UAV control system.

Using Eq. (13) in Lemma 1 yields

V̇p ≤−
(
χ(0∼1)
p

)T

χ(0∼1)
p

+ 2
(
χ(0∼1)
p

)T

Θ
(
A0∼1
p

)
∆p − 2

ρ1
γ1
p̃1 ˙̂p1

(26)

Substituting Eq. (22) into Eq. (26) yields

V̇p ≤ −
∥∥∥χ(0∼1)

p

∥∥∥2 (27)

Solving the inequality of Eq. (27) gives

Vp(t)− Vp(0) ≤ −
∫ t

0

∥∥∥χ(0∼1)
p (τ)

∥∥∥2 dτ ≤ 0,∀t ≥ 0

(28)
Viewing the definition of Lyapunov function Vi, χ•, • ∈

{x, y, z} and p̃1 are bounded for t ≥ 0. Further, we can
conclude that the tracking errors |e•(t)| < ωTp , ∀t ≥ Tp for
the position subsystem under the proposed controller of Eq.
(21) and the adaptive update law of Eq. (22) in the view of
the discussion of Section 2.3.

3.2 Desired Euler angles
Even though the auxiliary control inputs Ux, Uy , and Uz

cannot be applied directly to the quadrotor, these variables
can be used to acquire the thrust input U1 and desired Euler
angles (ϕd, θd) for the controller of the attitude subsystem,
which enables the quadrotor move to a desired place. Be-
sides, it is possible to provide the attitude controller block
with the desired yaw trajectory ψd independently.

The thrust input is given by

U1 =
Uz

cos θ cosϕ
(29)

The desired roll and pitch angles are given by

ϕd = sin−1

(
Ux sinψd − Uy cosψd

U1

)
θd = tan−1

(
Ux cosψd + Uy sinψd

Uz

) (30)

3.3 Control design for the attitude subsystem
For the attitude subsystem, define tracking errors as eϕ ≜

ϕ − ϕd and eθ ≜ θ − θd. Then, a tracking error vector is
defined as er = [eϕ, eθ, eψ]

T. The tracking error dynamics
can be represented as

ër = fr +BrρrU r − η̈dr (31)

where ηdr = [ϕd, θd, ψd]
T.

With the transformer of Eq. (10), we have following error
dynamics

χ̈r =rr

(
fr +BrρrU r − η̈dr

)
− vr (32)

where rr = diag{rϕ, rθ, rψ} ∈ R3×3, vr = [vϕ, vθ, vψ]
T ∈

R3.
An adaptive fault-tolerant controller can be designed as

U r =− p̂rαr (33)

where αr = B−1
r (fr − η̈dr) − B−1

r r−1
r (vr − Ar,0χr −

Ar,1χ̇r), p̂r = diag{p̂2, p̂3, p̂4}, p̂i is the estimation of pi ≜
1/ρi, i ∈ {2, 3, 4}. The error is defined as p̃1 = p1 − p̂1.
p̃r = diag{p̃2, p̃3, p̃4} = diag{p2 − p̂2, p3 − p̂3, p4 − p̂4}.

Partition ΘL(A
0∼1
r ) as

ΘL(A
0∼1
r ) ≜ [ΘL,1 ΘL,2 ΘL,3],ΘL,i ∈ R6×1 (34)

Adaptive update laws for the estimate p̂i, i ∈ {2, 3, 4} is
developed as

˙̂pi = γi

(
χ(0∼1)
p

)T

ΘL,i−1δr,i−1 (35)

where Θ
(
A0∼1
p

)
is a positive definite matrix satisfying Eq.

(13), δr,1 = rϕαr,1/Ix, δr,2 = rθαr,2/Iy , δr,3 = rψαr,3/Iz ,
αr = [αr,1, αr,2, αr,3]

T.

Theorem 2 Consider translational dynamics as described
in Eq. (5). If the control algorithm of Eq. (33) and the adap-
tive update law of Eq. (35) are applied, then the transformed
tracking errors χ•, • ∈ {ϕ, θ, ψ} and the estimation error
p̃1 is ensured to be bounded at all times. Then the track-
ing errors e•, • ∈ {ϕ, θ, ψ} converge to a neighborhood of
the desired references within an arbitrarily prescribed-time
interval, i.e., |e•(t)| < ωTp , ∀t ≥ Tp.

Proof. Define χ
(0∼1)
r = [χr, χ̇r]

T. Substituting the con-
troller of Eq. (33) into Eq. (32) yields

χ̇(0∼1)
r = Φ

(
A0∼1
r

)
χ(0∼1)
r +∆r (36)

where Φ
(
A0∼1
r

)
=

[
0 I3

−Ar,0 −Ar,1

]
∈ R6×6 and ∆r =[

03

rrBrρrp̃rαr

]
∈ R6×1. Note that rrBrρrp̃rαr =

[ρ2p̃2δr,1, ρ3p̃3δr,2, ρ4p̃4δr,3]
T.

Since Ar,0 and Ar,1 are two matrices such that A0∼1
r =

[Ar,0 Ar,1] is stable, there exists a positive definite matrix
Θ
(
A0∼1
r

)
satisfying Eq. (13). Therefore, the following Lya-

punov function can be selected for the dynamics of Eq. (36)

Vr =
(
χ(0∼1)
r

)T

Θ(A0∼1
r )χ(0∼1)

r +

4∑
i=2

ρi
γi
p̃2i (37)
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where γi, i ∈ {2, 3, 4} is a positive constant.
Taking the derivative of Vr leads to

V̇r =
(
Φ
(
A0∼1
r

)
χ(0∼1)
r +∆r

)T

Θ
(
A0∼1
p

)
χ(0∼1)
r

+
(
χ(0∼1)
r

)T

Θ
(
A0∼1
r

) (
Φ(A0∼1)χ

(0∼1)
r +∆r

)
+

4∑
i=2

2
ρi
γi
p̃i ˙̃pi

=
(
χ(0∼1)
r

)T

(ΦT
(
A0∼1
r

)
Θ
(
A0∼1
r

)
+Θ

(
A0∼1
r

)
Φ
(
A0∼1
r

)
)χ(0∼1)

r

+ 2
(
χ(0∼1)
r

)T

Θ
(
A0∼1
r

)
∆r −

4∑
i=2

2
ρi
γi
p̃i ˙̂pi

(38)
Using Eqs. (13)-(14) in Lemma 1 yields

V̇r ≤−
(
χ(0∼1)
r

)T

χ(0∼1)
r

+ 2
(
χ(0∼1)
r

)T

ΘL (rrBrρrp̃rαr)−
4∑
i=2

2
ρi
γi
p̃i ˙̂pi

(39)
Considering Eq. (34) and rrBrρrp̃rαr =

[ρ2p̃2δr,1, ρ3p̃3δr,2, ρ4p̃4δr,3]
T, Eq.(39) can further rewritten

as

V̇r ≤−
(
χ(0∼1)
r

)T

χ(0∼1)
r

+ 2

4∑
i=2

((
χ(0∼1)
r

)T

ΘL,i−1ρip̃iδr,i −
ρi
γi
p̃i ˙̂pi

)
(40)

Substituting Eq. (35) into Eq. (40) yields

V̇r ≤ −
∥∥∥χ(0∼1)

r

∥∥∥2 (41)

Solving the inequality of Eq. (41) gives

Vr(t)− Vr(0) ≤ −
∫ t

0

∥∥∥χ(0∼1)
r (τ)

∥∥∥2 dτ ≤ 0,∀t ≥ 0

(42)
Viewing the definition of Lyapunov function Vi, χ•, • ∈

{ϕ, θ, ψ} and p̃i, i ∈ {2, 3, 4} for t ≥ 0. Further, we
can conclude that the tracking errors |e•(t)| < ωTp , ∀t ≥
Tp, • ∈ {ϕ, θ, ψ}, for the position subsystem under the pro-
posed controller of Eq. (33) and the adaptive update law of
Eq. (35) in the view the discussion of Section 2.3.

4 Simulation studies

A numerical example is given to confirm the effectiveness
of the suggested control laws. The example is carried out
within the MATLAB (2019a) environment, with a discrete
time step of 10−4 seconds. Table 1 lists the parameters for
the considered quadrotor UAV. The initial conditions of the
quadcopter are (x(0), y(0), z(0)) = (0.6, 0.5, 0.5) m, and
(ϕ(0), θ(0), ψ(0)) = (π/6, π/5, π/4) rad, respectively. The
initial attitude acceleration and position acceleration are both
set to zero. Fault is considered as ρi(t) = 1, 0 ≤ t < 2 and
ρi(t) = 0.8, t ≥ 2, i ∈ {1, 2, 3, 4}. The reference trajectory
is (xd, yd, zd) = (sin(t), cos(t), 1) m with ψd = π/6 rad.

Table 1: Parameters of the quadrotor UAV [16].
Parameter Value Parameter Value

m 1.4 kg g 9.8 m/s2

l 0.2 m Ix 1.25 Ns2/rad
Iy 1.25 Ns2/rad Iz 2.2 Ns2/rad
Jr 1.0 Ns2/rad kt 2 Ns2

kd 5 N ms2

Control parameters are selected as: Ap,0 = Ar,0 = 6⊗I3,
Ap,1 = Ar,1 = 5 ⊗ I3, Θ

(
A0∼1
p

)
= Θ

(
A0∼1
r

)
=[

1.1167 0.0833
0.0833 0.1167

]
⊗ I3, γ1 = 1, γ2 = 15, γ3 = 2,

γ4 = 23. Parameters of the finite-time prescribed perfor-
mance function are selected as: ω0 = 1,ωTp = 5 × 10−2,
Tp = 3. Initial conditions of the estimation are set as
p̂i = 1, i ∈ {1, 2, 3, 4}.

Fig. 2 plots the trajectory and tracking errors of the po-
sition subsystem using the proposed method. Figs. 3 and 4
exhibit the tracking trajectories and errors in the attitude an-
gles of the suggested approaches. The estimation of actuator
fault parameters are shown in 5.

The validity of the suggested method is highlighted by the
observation that even in the presence of actuator defects, the
given tracking precision |e•| < 0.05 (m), i = {x, y, z} and
|eψ| < 0.05 (rad) are attained when t > 3.

(a) 3D trajectory
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Fig. 2: Trajectory and tracking errors of the position subsys-
tem under the proposed control method.

5 Conclusion

In this study, a FASA-based FTC protocol is presented for
a quadrotor UAV with actuator faults to tackle the tracking
problem at a predefined time. It is proved that the tracking
errors converge to the preassigned compact set within preas-
signed finite time regardless of actuator faults based on the
Lyapunov theory. A numerical study demonstrates the effec-
tiveness of the results. The future work focuses on dealing
with optimal control for quadrotor UAVs via the FASA.
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Abstract: This paper presents a fault-tolerant stabilization method for a class of uncertain high-order sub-fully actuated systems
(sub-FASs) with actuator faults. As one of the important branches of the fully actuated system theory, sub-FAS control is more
sophisticated and challenging due to the singularity problem. To deal with the fault tolerance issue of uncertain sub-FASs, a
high-order nonlinear system model with both multiplicative and additive actuator faults is introduced. Motivated by the idea of
FAS approach, a robust adaptive tracking controller is proposed to make system states track specific reference signals and avoid
singularity under certain feasibility constraints. Then, a sufficient condition to ensure the feasibility constraints are satisfied is
further derived. By appropriately selecting reference signals, the faulty sub-FAS is ultimately uniformly bounded. Finally, a
numerical example is given to illustrate the effectiveness of the proposed method.

Key Words: Sub-Fully Actuated Systems (Sub-FASs), Actuator Fault, Fault-Tolerant Control, Adaptive Control, Nonlinear
Uncertainty

1 Introduction

In the past few years, the high-order fully actuated sys-
tem (FAS) approach originally proposed by Duan [1, 2] has
received a lot of attention in different fields. As a control-
oriented theory for nonlinear systems, it has a great advan-
tage that the control law of a deterministic FAS can be easily
designed such that a linear closed-loop system is obtained
with an arbitrarily assignable eigenstructure [3]. Regard-
ing those complexity control problems with nonlinear uncer-
tainties, disturbances, and factors of time-varying and time-
delay, the FAS approach is also capable of giving effective
solutions (see [3–6]).

Parallel to the state-space model, FAS is a general model
for dynamical control systems [7]. It has been proven that
those systems which do not originally present full-actuation
feature may still be converted into FASs [2, 8, 9]. However, it
is clear that the FASs framework is unable to cover all sorts
of actual plants, such as the uncontrollable under-actuated
systems and sub-FASs [10]. In the former case, the system
may be converted into a compound one containing a fully-
actuated subsystem and an extra autonomous subsystem. A
fully-actuated controller can still be designed to stabilize the
compound system if the extra one is stable [3]. In summary,
most of existing FAS approaches require that the considered
systems or part of the them meet the fully-actuated condition
globally. As a complement definition, the system is called
sub-fully actuated if the fully-actuated condition is not satis-
fied in some subsets [10]. In applications, many actual plants
are sub-fully-actuated [11]. Additionally, some well-known
benchmark example systems can also be characterized by
sub-FAS models [12], such as the Brockett’s first and second
example system [13, 14].

* Corresponding author. This work was supported in part by the
National Natural Science Foundation of China under Grants 62033008,
61733009, and in part by the Taishan Scholar Project of Shandong Province
of China and the NSFSD (ZR2022ZD34).

Up to now, a series of fundamental works for sub-FASs
have been developed by Duan. The definition of sub-FAS
is first presented in [15] and detailed reformulated in [10].
To cope with control singularity, the concepts of substability
and the region of exponential attraction (ROEA) are intro-
duced in [7]. By selecting a set of initial values in ROEA,
the system trajectory is always away from singular set, such
that the FAS approach can be used for control design. In [6]
and [16], the above initial value strategy has been extended
to the continuous-time delay sub-FASs and discrete-time de-
lay sub-FASs, respectively. Moreover, optimal control [11],
generalized PID control [17], and predictive control [18]
have been investigated in sub-FASs framework. Recently,
the control of uncertain sub-FASs has also been considered
in a few works (see [19, 20]).

As an important branch of the FAS theory, the fault-
tolerant control (FTC) for FASs has been considered and
made some preliminary achievements (see [21–24]). How-
ever, to the best of authors’ knowledge, the fault tolerance
problem is still open in sub-FASs framework. To enrich
the safety control theory for sub-FASs, this paper presents
a novel fault-tolerant control method to stabilize a class of
uncertain sub-FASs with both multiplicative and additive ac-
tuator faults. To avoid singularity, a reference signal satisfy-
ing certain conditions is designed to guide the trajectory of
sub-FAS away from the singular set and converge towards
the origin. Inspired by the FAS approach, a robust adaptive
tracking control law is then developed to stabilize tracking
error system under the feasibility constraint. Meanwhile, a
sufficient condition that makes the feasibility constraint al-
ways satisfied is further derived. The proposed method guar-
antees the ultimately uniformly bounded (UUB) stabilization
of the considered sub-FAS and only relies on several general
assumptions.

The rest of this paper is organized as follows. Section 2
gives the formulation of the fault-tolerant stabilization prob-
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lem. Section 3 provides the preliminaries and the main solu-
tion. An illustrative example is further presented in Section
4, and a brief conclusion is summarized in Section 5.

Notation: In the subsequent sections, the r-dimensional
vector space and the matrix space of dimension m × n are
denoted by Rr and Rm×n, respectively. Ω\Θ represents the
complement of set Θ in set Ω. For a matrix A ∈ Rm×m,
λi (A) represents its ith eigenvalue, detA denote its deter-
minant, ∥A∥2 and cond (A) = ∥A∥2

∥∥A−1
∥∥
2

are the spec-
tral norm and condition number, respectively. The Euclidean
norm of a vector x ∈ Rr is denoted by ∥x∥. Moreover, the
real part of a complex number s is denoted by Re (s), and
In represents the n-dimensional identity matrix. For con-
venience, the following symbols are also frequently used in
this paper:

∥x∥2P = xTPx,

x(0∼n−1) =
[
xT, ẋT, · · · , x(n−1)T

]T
,

A0∼n−1 = [A0, A1, · · · , An−1] ,

Φ (A0∼n−1) =


0 I

. . .
I

−A0 −A1 · · · −An−1

 .

2 Problem Formulation

Consider the following uncertain high-order system with
actuator faults:

x(n) =f
(
x(0∼n−1)

)
+∆f

(
x(0∼n−1)

)
+B

(
x(0∼n−1)

)
[(Ir − η (t))u+ ξ (t)] (1)

where x, u ∈ Rr are the state vector and the control input
vector, respectively; Nonlinear dynamics f

(
x(0∼n−1)

)
∈

Rr and B
(
x(0∼n−1)

)
∈ Rr×r are both smooth functions;

∆f
(
x(0∼n−1)

)
∈ Rr is an unknown vector field represent-

ing the nonlinear uncertainty; ξ (t) ∈ Rr denotes the drift
fault of actuator, and η (t) = diag {ηi (t)} , i = 1, 2, . . . , r,
with ηi (t) ∈ [0, 1) being the time-varying fault gain of the
ith input channel. Without loss of generality, the origin is
assumed to be the equilibrium point.

Regarding the high-order system (1), we introduce the fol-
lowing definition presented in [10].

Definition 1: If X ∈ Rnr satisfies

detB (X) = 0 or ∞,

then it is called a singular point of the considered system.
The set of all singular points is called the singular set, which
can be expressed as

S = {X|detB (X) = 0 or ∞, X ∈ Rnr} .

Accordingly, the complement of S, that is F = Rnr\S, is
called the feasible set of the system.

As defined in the previous work of Duan [6, 7, 11, 17], the
high-order system is called a (global) FAS if its feasible set
F = Rnr, and is called a sub-FAS if F ̸= ∅. In this paper, we
focus on the latter and suppose that system (1) satisfies the
following assumption.

Assumption 1: The considered system is a sub-FAS and
its singular set S does not contain the origin, that is,

d0 = inf {∥X∥|X ∈ S} > 0.

Clearly, the above d0 is the minimum distance from the set
S to the origin.

With the above preparation, the fault-tolerant stabilization
problem to be solved can be now stated as below.

Problem 1: Let the considered uncertain high-order sys-
tem (1) satisfy Assumptions 1. Find a full-state feedback
controller such that
(1) the closed-loop system is ultimately uniformly bounded
and
(2) the following feasibility constraint of states x(0∼n−1) is
met:

x(0∼n−1) (t) ∈ F, ∀t ≥ 0. (2)

Remark 1: The feasibility constraint (2) guarantees that
the considered system is fully actuated during stabilization,
such that the FAS approach can be used for control design.
If this condition is not satisfied, finding a continuous, time
independent feedback law will be quite challenging and even
impossible to achieve. In the above situation, the switching
control strategy is usually considered [14], and such issue
will be further discussed elsewhere.

To make sure the solution of above problem can be carried
out, here we further impose the following assumptions for
system (1).

Assumption 2: There exists a non-negative continuous
scalar function ρ

(
x(0∼n−1)

)
such that the nonlinear uncer-

tainty ∆f
(
x(0∼n−1)

)
satisfies∥∥∥∆f

(
x(0∼n−1)

)∥∥∥ ≤ ρ
(
x(0∼n−1)

)
. (3)

Assumption 3: Regarding the time-varying fault gain
η (t) = diag {ηi (t)} , i = 1, 2, . . . , r, there is a pre-known
uniform upper bound c satisfying ηi (t) ≤ c < 1, for all
t > 0.

Assumption 4: There exist two pre-known positive scalars
δ0 and δ1 such that the unknown drift fault ξ ≜ ξ (t) and its
derivative ξ̇ satisfy ∥ξ∥ ≤ δ0 and

∥∥∥ξ̇∥∥∥ ≤ δ1, for all t > 0.
Remark 2: The above Assumptions suppose that the un-

certainty and actuator faults in system (1) are all bounded,
which is quite general in practical applications because the
actual plants are energy limited. It should be noted that
Assumption 3 is necessary for the stabilization of actuator
fault system. Without this assumption, the control force may
be completely lost such that the system becomes uncontrol-
lable.

3 Fault-Tolerant Control for Sub-FASs

In this section, a tracking control strategy is proposed
to cope with the stabilization problem claimed in Problem
1. To guide the state trajectory of the considered system
to converge asymptotically towards the origin, a reference
signal xd (t) ∈ Rr is introduced before the control law de-
sign. As the reference to be tracked by the system state x (t),
xd ≜ xd (t) is to be determined by the following condition.

Condition 1: The reference signal xd is a Cn continuous
function defined on t ∈ [0,∞ ), and
(1) xd, together with its high-order derivatives, satisfy
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lim
t→∞

x
(0∼n−1)
d (t) = 0;

(2) x(0∼n−1)
d belongs to the feasible set F for all t ≥ 0, that

is,

dd = inf
t≥0

{∥∥∥x(0∼n−1)
d − Z

∥∥∥∣∣∣Z ∈ S
}
> 0.

Clearly, Condition 1 is a necessary condition for solving
Problem 1 using the tracking control strategy. To further pro-
vide the control law in this section, the following preliminary
lemmas presented in [4] are needed.

Lemma 1: Let A ∈ Rm×m satisfy

Reλi (A) ≤ −γ

2
, i = 1, 2, . . . ,m

where γ > 0. Then, there exists a positive-definite matrix
P ∈ Rm×m satisfying

ATP + PA ≤ −γP.

Lemma 2: For any µ > 0, there exist a set of matrices
Ai ∈ Rr×r, i = 0, 1, . . . , n− 1, satisfying

Reλi (Φ (A0∼n−1)) ≤ −µ

2
, i = 1, 2, . . . , nr. (4)

It follows from Lemma 1 that when the condition (4) holds
for some µ > 0, there is a positive-definite matrix P ≜
P (A0∼n−1) such that the following Lyapunov inequality is
satisfied,

ΦT (A0∼n−1)P + PΦ (A0∼n−1) ≤ −µP. (5)

Further, we note

PL = P (A0∼n−1)

[
0(n−1)r×r

Ir×r

]
. (6)

Regarding the tracking control for the uncertain sub-FAS
(1) with actuator faults, let us define the tracking error

z = x− xd.

Then, we have

z(i) = x(i) − x
(i)
d , i = 1, 2, . . . , n,

and the functions in the considered system can all be trans-
formed into those with respect to z(0∼n−1) and t. Thus, the
considered system (1) turns into

z(n) = f (·) + ∆f (·) +B (·) [(I − η (t))u+ ξ (t)]− x
(n)
d

(7)

where notation
(
z(0∼n−1), t

)
is denoted by (·) for simplicity

of description.
Based on the above preliminaries, we can derive the fol-

lowing main result for the tracking control problem. The
fault-tolerant control law for tracking error system (7) can
be designed as:

u = −B−1 (·) (u0 + ur + ua) (8)

where

u0 = A0∼n−1z
(0∼n−1) + f (·)− x

(n)
d (9)

is the basic part, which aims to cancel the known term
f (·) and x

(n)
d in the system and assign the linear term

A0∼n−1z
(0∼n−1) to the closed-loop system; and

{
ur = 1

1−cϑP
T
L z(0∼n−1)

ϑ = 1
4ε (ρ (·) + σ (·))2

(10)

where

σ
(
z(0∼n−1), t

)
= c · cond (B (·)) · ∥u0 + ua∥ (11)

is the robustness part whose function is to overcome the in-
fluence of the nonlinear uncertainty ∆f (·) and unknown
multiplicative fault gain η (t); while{

ua = B (·) ξ̂
˙̂
ξ = − (µ+ 1) ξ̂ +BT (·)PT

L z(0∼n−1)
(12)

is the adaptation part, which aims to estimate the additive
drift fault ξ (t) online and adjust the control input accord-
ingly based on the estimated results.

Theorem 1: Suppose that system (1) satisfies Assumptions
1–4. Let the feedback controller be given by (8)-(12), with
µ and ε being two arbitrarily chosen positive numbers, and
Ai ∈ Rr×r, i = 0, 1, . . . , n − 1 being a set of matrices sat-
isfying (4). If, further, the feasibility constraint (2) is met.
Then the closed-loop system (7) is UUB, and the tracking
error z(0∼n−1), together with the estimation error ξ̃ = ξ− ξ̂,
ultimately converge into the following ellipsoid centered at
the origin:

Ξµ,ε,δ (0) =

{[
z(0∼n−1)

ξ̃

]∣∣∣∣∥∥∥z(0∼n−1)
∥∥∥2
P
+

∥∥∥ξ̃∥∥∥2 ≤ 2
ε+ δ

µ

}
where P ∈ Rnr×nr is a solution to the Lyapunov inequality
(5), and

δ =
µ+ 1

2
δ20 +

1

2
δ21 .

Proof: Substituting the control law (8)-(12) into the track-
ing error system (7) gives part of the closed-loop system as

z(n) +A0∼n−1z
(0∼n−1) = ϕr (·) + ϕa (·)−B (·) η (t)u

(13)

where

ϕr (·) = ∆f (·)− ur, ϕa (·) = B (·) ξ̃.

System (13) can be further expressed in the following state-
space form:

ż(0∼n−1) =Φ(A0∼n−1) z
(0∼n−1)

+

[
0(n−1)r×1

ϕr (·) + ϕa (·)−B (·) η (t)u

]
. (14)

Since A0∼n−1 satisfies the condition (4), there exists a
positive-definite matrix P (A0∼n−1) satisfying the Lyapunov
inequality (5). Then, the following Lyapunov function can-
didate is chosen for system (14):

V =
1

2

(
z(0∼n−1)

)T

Pz(0∼n−1) +
1

2
ξ̃Tξ̃. (15)

In view of (5), (6), and (14), we have

V̇ ≤− µV +
µ

2
ξ̃Tξ̃ +

˙̃
ξ
T

ξ̃

+
(
z(0∼n−1)

)T

PL (ϕr (·) + ϕa (·)−B (·) η (t)u)

=− µV +Wr +Wa (16)

where
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Wr =
(
z(0∼n−1)

)T

PL (ϕr (·)−B (·) η (t)u)

Wa =
(
z(0∼n−1)

)T

PLϕa (·) +
˙̃
ξ
T

ξ̃ +
µ

2
ξ̃Tξ̃.

First, let us treat Wr. Combining the expressions of ϕr (·),
u, and ur, we can get

Wr ≤
∥∥∥PT

L z(0∼n−1)
∥∥∥∥∥∆f (·) +B (·) η (t)B−1 (·) (u0 + ua)

∥∥
+

1

1− c
ϑλmax (η (t))

∥∥∥PT
L z(0∼n−1)

∥∥∥2
− 1

1− c
ϑ
∥∥∥PT

L z(0∼n−1)
∥∥∥2.

From Assumption 3 we know λmax (η (t)) ≤ c. Then, ac-
cording to Assumptions 2 and (11), it can be shown that∥∥∆f (·) +B (·) η (t)B−1 (·) (u0 + ua)

∥∥
≤ ∥∆f (·)∥+ ∥η (t)∥2∥B (·)∥2

∥∥B−1 (·)
∥∥
2
∥u0 + ua∥

≤ ρ (·) + σ (·) .

Therefore, it follows from (10) that

Wr ≤ (ρ (·) + σ (·))
∥∥∥PT

L z(0∼n−1)
∥∥∥

− 1

4ε
(ρ (·) + σ (·))2

∥∥∥PT
L z(0∼n−1)

∥∥∥2
≤ε. (17)

Next, let us consider Wa. According to the expressions of
ϕa (·), Wa, and ξ̃, it can be shown that

Wa =

((
z(0∼n−1)

)T

PLB (·)− ˙̂
ξ
T

− (µ+ 1) ξ̂T
)
ξ̃ + ξ̇Tξ̃

+ (µ+ 1) ξTξ̃ − µ+ 2

2
ξ̃Tξ̃.

Then, using adaptive control law (12), we obtain

Wa ≤1

2

(
δ21 +

∥∥∥ξ̃∥∥∥2)+
(µ+ 1)

2

(
δ20 +

∥∥∥ξ̃∥∥∥2)− µ+ 2

2

∥∥∥ξ̃∥∥∥2
=δ. (18)

Finally, combining the above two obtained relations (17)
and (18), we have

V̇ ≤ −µV + ε+ δ.

It thus follows from the Comparison Theorem [25] that

V (t) ≤
(
V (0)− ε+ δ

µ

)
e−µt +

ε+ δ

µ
→ ε+ δ

µ
, t → ∞.

(19)

Therefore, the closed-loop system (13) is UUB, and[
z(0∼n−1)T, ξ̃T

]T
ultimately converges into the ellipsoid

Ξµ,ε,δ (0). The above conclusion follows from Theorem 1.
The proof is then complete. □

Obviously, the premise of Theorem 1 is that the feasibility
constraint (2) is satisfied, which guarantees that the control
law (8) always exists. To meet this requirement, we have
from Condition 1 and Theorem 1 the following corollary, it
also gives the solution to Problem 1.

Corollary 1: Suppose that the uncertain sub-FAS (1) sat-
isfies Assumptions 1–4, and the reference signal xd (t) is
determined by Condition 1. Let the feedback controller be

given by (8)-(12), with µ and ε being two arbitrarily chosen
positive numbers, and Ai ∈ Rr×r, i = 0, 1, . . . , n − 1 be-
ing a set of matrices satisfying (4). If, further, the following
conditions are satisfied:

ξ̂ (0) = 0, x
(0∼n−1)
d (0) = x(0∼n−1) (0) , (20)

max

{
δ20 , 2

ε+ δ

µ

}
< λmin (P ) d2d. (21)

Then, both two issues in Problem 1 can be solved.
Proof: According to the proof of Theorem 1, i.e., equation

(19), we immediately have

V (t) ≤ max

{
V (0) ,

ε+ δ

µ

}
, ∀t ≥ 0.

In view of (15), it can be shown that, for all t ≥ 0,∥∥∥z(0∼n−1) (t)
∥∥∥2 ≤ 2

λmin (P )
V (t)

≤ 1

λmin (P )
max

{∥∥∥z(0∼n−1) (0)
∥∥∥2
P
+
∥∥∥ξ̃ (0)∥∥∥2, 2ε+ δ

µ

}
.

Then, combining condition (20) and (21), as well as As-
sumption 4, produces∥∥∥z(0∼n−1) (t)

∥∥∥2 ≤ 1

λmin (P )
max

{
δ20 , 2

ε+ δ

µ

}
< d2d.

The above result indicates that the tracking error between
x(0∼n−1) (t) and x

(0∼n−1)
d (t) is less than dd for all t ≥ 0.

Therefore, it follows from Condition 1 that the feasibil-
ity constraint (2) is satisfied. Moreover, since x

(0∼n−1)
d is

asymptotically stable, using Theorem 1 we can derive the
closed-loop sub-FAS (1) is UUB, and the states x(0∼n−1),
together with the estimation error ξ̃, ultimately converge into
the ellipsoid Ξµ,ε,δ (0). Thus, the proof is complete. □

4 Illustrative Example

In this section, a numerical example is introduced to illus-
trate the effectiveness of the proposed fault-tolerant control
law.

Consider the following second-order sub-FAS:[
ẍ1

ẍ2

]
=f (x1, x2) + ∆f (x1)

+B (x1, x2, ẋ1) [(I − η (t))u+ ξ (t)] (22)

with

f (x1, x2) =

[
−x1

sinx2

]
,∆f (x1) =

[
θx2

1

0

]
,

B (x1, x2, ẋ1) =

[
ẋ1

(x2
1+1)

1

(x2
1+1)

x2 − 5 −1

]
,

where x =
[
x1, x2

]T ∈ R2 and u ∈ R2 are the state vector
and input vector, respectively. θ ∈ R is an uncertain variable
satisfying 0 ≤ θ ≤ 0.1. In the simulation, θ and the initial
states x(0∼1) (0) are chosen as

θ = 0.08, x(0∼1) (0) =
[
1 4 −2 3

]T
.

The actuator faults η (t) and ξ (t) are set to
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η (t) =

[
0.2sin (t) + 0.3 0

0 0.1cos (t) + 0.4

]
,

ξ (t) =

[
0

−0.5e−t + 0.5

]
.

It is obvious that the above system satisfies Assumption 1-4,
and

ρ (x1) = 0.1x2
1, c = 0.5, δ0 = 0.5, δ1 = 0.5.

Moreover, the considered sub-FAS (22) clearly has the
following singular set S:

S =
{
x(0∼1)

∣∣∣−x2 − ẋ1 + 5 = 0, x(0∼1) ∈ R4
}
.

To make sure the Condition 1 is satisfied, the following ref-
erence system is introduced, and its state response x(0∼1)

d (t)
is expected to be used as the reference signal:[

ẍd1

ẍd2

]
=

[
−1 −1
2 −8

] [
ẋd1

ẋd2

]
+

[
0 −1
2 −8

] [
xd1

xd2

]
. (23)

Obviously, with x
(0∼1)
d (0) = x(0∼1) (0), it can be proved

that system (23) is asymptotically stable, and x
(0∼1)
d belongs

to the feasible set F for all t ≥ 0. Further, we can get

dd = inf
t≥0

{∥∥∥x(0∼1)
d − Z

∥∥∥∣∣∣Z ∈ S
}
= 1.5

√
2.

Next, we design

A0∼1 =

[
2 0 3 0
0 2 0 3

]
which makes

eig [Φ (A0∼1)] = {−1,−1,−2,−2}

where eig (A) represents the set of eigenvalues of the matrix
A. Then, it can be verified that the following:

P =


10 0 4 0
0 10 0 4
4 0 2 0
0 4 0 2


satisfies the Lyapunov inequality (5) with µ = 1.5, such that

PT
L (A0∼1) =

[
4 0 2 0
0 4 0 2

]
.

Under the above settings, we can show that condition (19)
is satisfied with ε = 0.5. Regarding the tracking control for
the considered system (22), let us define tracking error

z(0∼1) = x(0∼1) − x
(0∼1)
d .

Finally, follows from Theorem 1, the fault-tolerant controller
can be designed as

u = −B−1 (·) (u0 + ur + ua)

where 
u0 = A0∼1z

(0∼1) + f (·)− x
(2)
d

ur = 1
1−0.5ϑP

T
L z(0∼1)

ua = B (·) ξ̂

with

ϑ =
1

4× 0.5
(ρ (·) + σ (·))2 ,

σ (·) = 0.5 · cond (B (·)) · ∥u0 + ua∥ ,
˙̂
ξ = − (1.5 + 1) ξ̂ +BT (·)PT

L z(0∼1), ξ̂ (0) = 0.

The simulation results of states response x(0∼1) and con-
trol input u are shown in Fig. 1. It can be observed that the
closed-loop system is fully stabilized within 10 seconds. To
make a clear presentation, the phase portrait of x2 and ẋ1,
which induce the singular set S, is depicted in Fig. 2, where
the red line represents the singular set S, the blue line and
green line are the trajectories of closed-loop system and ref-
erence signal, respectively. From this figure, we can find that
the tracking error is bounded, and the feasibility constraint
(2) is always met. Such results illustrate the effectiveness of
proposed fault-tolerant method. Moreover, the adaptive esti-
mation of additive fault ξ is plotted in Fig. 3. It is shown that
estimation error is also bounded, which follows the conclu-
sion of Theorem 1.

0 5 10 15

-5

0

5

10

0 5 10 15

-4

-2

0

2

4

0 5 10 15

-5

0

5

10

0 5 10 15

-4

-2

0

2

4

Fig. 1: Simulation results of closed-loop system.
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Fig. 2: Phase portrait of state response.

5 Conclusion

In this paper, a fault tolerance strategy is proposed to cope
with a class of uncertain sub-FASs with actuator faults. The
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Fig. 3: Adaptive estimation of additive fault.

main contribution of the proposed method include: (a) Dif-
ferent from the stabilization problems of sub-FASs investi-
gated in existing literature, the multiplicative and additive
fault of actuator is first considered; (b) Motivated by the FAS
approach, a tracking control law is developed to UUB stabi-
lize the considered system under the feasibility constraint;
(c) A sufficient condition that make the feasibility constraint
always satisfied is further derived. In conclusion, this work is
a foundational research on the fault-tolerant control for sub-
FASs, and it is also a supplement to the recently proposed
FAS theory. In the future, uncertain sub-FASs with both ac-
tuator faults and sensor faults will be further investigated.
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1 Introduction

With more and more research focusing on the near
space vehicle (NSV) such as SR-72, X-43 and so on,
the high reliability design requirement become
noteworthy. The actuation system is one of the most
important subsystem to realize vehicle trajectory
control [1-4]. Dissimilar redundant actuation system
(DRAS) composed with a traditional hydraulic actuator
(HA) and a new electro-hydrostatic actuator (EHA)
has attracted growing interest in large civil aircraft
fields such as the A350 and A400M vehicles [5-6].
However, for the vehicle with high power/weight ratio in
the military domain, new type dissimilar redundant
actuation system (NT-DRAS) composed of EHA and
EMA is more suitable due to the distributed flexible
layout advantage of EHA and electro-mechanical actuator
(EMA) [7]. To further improve the actuation
reliability, fault-tolerant control (FTC) technique is used
to minimize effects of possible faults and maintain the
system performance at a desired level [8]. There are
some research results focused on the traditional DRAS
FTC problems, including flight control level [9] as well
as the actuation level [10].

To support the FTC design, the fault types should
be diagnosed and identified precisely, so that the FTC
strategies can be chosen directed at the occurred faults
[11]. Focused on the fault diagnosis and fault
identification problem, there are lists of research results.
Data driven and Model based method are usually used
in this process, there are also comprehensive strategy
which synthesize both the data driven and model based
method [12]. System conditions are also considered in
some research, condition monitoring is regarded an
important fault diagnosis link [13]. In the last fault
identification step, residual errors are usually used to

*This work is supported by National Natural Science Foundation (NNSF)
of China under Grant 52105049 and 52175038.

compare the pre-set threshold, so that the system fault
can be detected [14]. With the growing trend of artificial
intelligence, deep learning technique is also used in fault
diagnosis to perform the multiple feature extraction and
information fusion problem, however, a mass of data are
very necessary in this process [15]. The above
research results usually can detect the occurred faults, to
identify the specific fault modes in the complicated
NT-DRAS, still remains a problem.

This paper presents a multi-dimensional fault
characterization model based fault identification method:
all the system output signals are used to analyze the fault
occurrence mechanism first, so that a fault reasoning
mechanism can be determined to identify the
pre-considered fault. Model discrimination algorithm
is used in this paper to quantify the approximation
errors. Based on both the fault characterization model
and error calculation algorithm, the pre-considered fault
modes can be identified efficiently and precisely.

2 System Statement
2.1 NT-DRAS System

The schematic structure of a NT-DRAS is composed of
one EHA channel and one EMA channel(see Fig. 1), each
of them can work independently, this kind of “stand-alone
operation” mode provide more choices for the NSV under
different work conditions. According to the operating
characteristic of EHA and EMA, it can be determined that
EHA is the main work channel and EMA is the back-up
channel when EHA channel subjects to certain fault or
completely failure. Based on the two different work
channels, the third operating mode: EHA and EMA
driving the control surface together by using synchronous
control algorithm, can be used under certain conditions
such as high loaded and quick response condition. Various
working modes can support FTC designs.
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Fig. 1: Schematic of NT-DRAS

Table 1: Operating Modes of NT-DRAS

Operating
Modes EHA EMA Working

Condition
Mode- 1 active passive normal
Mode-2 passive active EHA failed
Mode-3 active active high loaded

Table 1 illustrates different operating modes and
specific working state of both EHA and EMA: under
normal condition, only EHA is used to drive the control
surface while EMA can be regarded as load of EHA at
this moment. In this operating mode, the chamber of
EHA is separated into low and high pressure volumes,
respectively. The pressure difference can push the EHA
piston to move. Meanwhile, EMA is pulled passively
by the control surface actuated by EHA. Consequently,
EMA channel of NT-DRAS is considered to be in a
no-load mode. Mode-2 and Mode-3 are alternative
modes used to perform FTC strategies under fault and
abnormal conditions.

2.2 State Space Model of Mode 1

As studied in the literature[7], the state variable vector
can be defined as  Teha eha eha eha, , ,x x P  x , so that the state
space equations can be obtained as
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In state space form, Eq. (1) can be represented as
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where  tu is the system input,  ty is the system output,

  Lw t F is unknown disturbance. The state, input, output,
and disturbance matrices are presented in Equation (3).

2.3 Analysis of Fault Modes and Corresponding
Parameters

In operating mode- 1, which EHA is in active working
mode while EMA is in passive working mode, EMA and
the actuated control surface can be regarded as the load
of EHA, therefore, Bema and Bd can be seen constant;
Similarly, the mass of EHA, EMA and the control
surface stay consistent without physical damage, leading
the three parameters meha , mema and md to be constant;
As the component of EHA, the area and volume of
EHA hydraulic cylinder also stay consistent without
physical damage, leading the parameters Aeha and Veha to
be constant, the pump output VP stay as constant since
the pump structure is fixed designed. Without changing
system structure and mass, the total moment of inertia
of motor and pump Jm stay constant. In this paper, the
electromagnetic torque constant Km is also regarded as
designed fixed constant. The rest system parameters
Cehal , Beha , Eeha and Re all have their own changing law
caused by corresponding gradual fault types, which are
introduced in the following section.

Table 2: Fault Modes and Parameter Illustrations

Number Parameter Illustrations

Fault-1
Hydraulic cylinder leakage:
leakage coefficient ehalC

Fault-2
Motion damping increasing:
damping coefficient ehaB

Fault-3
Oil deterioration:
bulk modulus ehaE

Fault-4
Resistance increasing:

motor armature resistance eR
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The gradual faults of EHA can be classified in the above
categories shown in Table 2, where the faults correspond
with relative parameter drift: Fault-1 represents that leakage
coefficient ehalC changes due to the hydraulic cylinder
leakage, Fault-2 represents that damping coefficient ehaB
changes due to the increasing motion damping, Fault-3
represents that bulk modulus ehaE changes due to oil
deteriorates caused by the air in oil, and Fault-4 represents
that eR changes due to its increasing caused by heat
production.

The relative parameters drift with the gradual fault
degrees are within limited ranges. Though similar to the
system model uncertainty in fault-free conditions, the
gradual faults cause more severe parameter drift, which can
be regarded as gradual faults caused by the system
uncertainty. In order to model these faults in NT-DRAS,
uncertainty matrices modelling method are used to describe
the parameter uncertainty caused by these EHA faults. The
NT-DRAS model with faults can be represented as：
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where ΔA and ΔB are deviations in the original state and
input matrices caused by parameter changes due to the
gradual faults. It is necessary to state that the gradual faults
caused deviation matrices have more adverse effect
compared with the system model uncertainty under
fault-free conditions. There is no ΔC in the above system
description, as it is assumed that all of the sensors can work
normally. The system matrices and the fault module
matrices can be expressed as
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where coefficients of the state and input matrices, A and B ,
matrices have been defined by using Eq. (3);

 22 eha eha ema dB m m ma     represents damping
fault induced factor; 32 eha eha eha= 4 E A Va   is the bulk
modulus fault factor;    33 eha ehal eha= 4 E C Va     

represents the bulk modulus as well as the internal leakage
fault factor; 34 eha P eha=4 E V Va  represents the bulk
modulus fault factor;  41 m m eb K J R  represents the
motor armature resistance fault factor.

3 Multidimensional Fault Characterization of
NT-DRAS

3.1 Fault Reasoning Mechanism Structure

In this paper, the NT-DRAS output signals, including the
system displacement, velocity, cylinder pressure and motor
speed, are used as multidimensional signals to form a fault
reasoning mechanism. All the four signals can be used as
fault characterization since when certain fault occur, all the
signals demonstrate changing laws based on the system
operation mechanism.

Fig. 2: Multidimensional fault characterization based fault
reasoning mechanism

As shown in Fig. 2, when fault-1 occur, the hydraulic
cylinder leakage can make the cylinder pressure decrease
obviously, represented as eha P , the motor speed would
increase ( eha  ) in order to compensate and maintain the
cylinder pressure at a normal level. However, the system
output eha x and eha &x still decrease compared with the
system under normal condition; when fault-2 occur, the
motion damping increasing can provide reverse pressure
which make the cylinder pressure decrease obviously
( eha P ), the motor speed would increase ( eha  ) to
provide positive-going pressure of the cylinder, overcoming
the increased motion damping. However, the system output

eha x and eha &x still decrease since fault-2 occur; when
fault-3 occur, oil deterioration because of air bubble would
make the system pressure response unstable with obvious
fluctuations ( eha cP ) since the oil fluid characteristics is
effected, even the motor speed increase ( eha  ) as well as
the system output velocity( eha &x ), the system displacement
output still decrease ( eha x ). When fault-4 occur, the motor
speed would decrease obviously ( eha  ), the cylinder
pressure also decrease causally ( eha P ), as well as the
system velocity ( eha &x ) and the displacement ( eha x ).

3.2 Multidimensional Fault Characterization Model

Based on the fault reasoning mechanism, the
multidimensional fault characterization model can be
determined. The four models for the analyzed fault modes
can be represented as the following forms:
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where i 1, 2,3, 4 , and the model system matrices are
defined as follows:

 Model-1:

 
   

1
33

T
1

33 eha ehal eha

0 0 0 0
0 0 0 0
0 0 0
0 0 0 0

0 0 0 0

= 4 E C V

  
  
  
      
 

    

ΔA

ΔB

g

a

a

(7)

 Model-2:

 

22
2

T
2

0 0 0 0
0 0 0
0 0 0 0
0 0 0 0

0 0 0 0

  
          
 

ΔA

ΔB

a

(8)

 Model-3:

 
   

3
32 33 34

T
3

33 eha ehal eha

0 0 0 0
0 0 0 0

ˆ0
0 0 0 0

0 0 0 0

ˆ = 4 E C V

  
  
  
        
 

    

ΔA

ΔB

g

a a a

a

(9)

 Model-4:

 

4

T
4 41

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0

  
  
        
  

ΔA

ΔB b

(10)

In order to use the multidimensional fault characterization
model in fault identification process, the following fault
identification mechanism in Fig. 3 is given.

Fig. 3: Fault identification mechanism based model discrimination
algorithm

As shown in Fig. 3, both the NT-DRAS and the all the
models in the Model Set are given reference command, and
then the multidimensional system output state signals are
used to calculate the residual vector. The residual vector are
performed by using an integral operator with specific time
interval. All the calculated state signal residual integrations
are then compared with the pre-set thresholds. When all the
four calculated values satisfy a certain given threshold
condition in the form of Fig. 3 simultaneously, that means
the NT-DRAS has the same fault mode with a
multidimensional fault characterization model, therein, the
current fault mode of NT-DRAS can be identified as the
same with the model.

4 Simulation Analysis
4.1 Fault Mechanism Verification

In normal condition without fault, the system matrices are
set as follows
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Table 3: Fault corresponding parameter variation ranges

Fault Types Variation Ranges

Fault-1 10 10
ehalC : 0.1 10 1.0 10    [(m3/s)/Pa]

Fault-2 4 5
ehaB : 1.0 10 1.0 10   [Ns/m]

Fault-3 8 7
ehaE : 5.0 10 8.0 10   [Pa]

Fault-4 eR : 0.245 0.275 [Ω]

The system single fault corresponding parameter
variation ranges are set as shown in Table 3: In each fault
conditions, the critical values of the variation ranges are
imported into the system matrices respectively, and then the
multidimensional states of system responses can be
simulated.

(a)
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(b)

(c)

(d)

Fig. 4: Multidimensional state signal characterization under single
fault conditions

As shown in Fig. 4, the system state response when only a
single fault occurs is given. It can be seen that compared
with the normal state, when Fault-1 occur, it can have the
greatest effect on the system performance (see Fig. 4a).
Under this type fault condition, in order to track the given
step signal command order, even as the motor speed reaches
its maximum value (see Fig. 4d), the cylinder pressure can
only reach a low level (see Fig. 4c), leading the system
output velocity to slow down to the slowest degree (see Fig.
4b); When Fault-2 occur, it can have a secondary effect on
the system performance (see Fig. 4a): in order to track the
given step signal command order, the motor speed also
reaches a high level (see Fig. 4d); however, since the motion
damping increases, the cylinder pressure reaches the highest
level due to the reverse motion damping caused force (see
Fig. 4c), but can only have limited system output velocity
(see Fig. 4b). When Fault-3 occur, it can have the minimal

effect on the system performance (see Fig. 4a): Fig. 4a,b and
d show that the system output state almost have the same
performance level as the system under normal state
conditions. However, the cylinder pressure is at a low level
due to the bulk modulus changes caused by oil deterioration
(see Fig. 4c). When Fault-4 occur, it can also have obvious
effect on the system performance (see Fig. 4a): the EHA
motor resistance increases due to heat production caused
high temperature, leading to the motor speed decreasing
significantly (see Fig. 4d), and the cylinder pressure and the
system output velocity also decrease eventually (see Fig.
4b,c). The above simulation results show that the fault
reasoning mechanism is correct. Based on changing law of
the multidimensional state response signals, the fault modes
can be identified.

4.2 Fault Identification Effectiveness Verification

In this section, the fault identification effectiveness is
verified by using both fault model discrimination and
corresponding approximation error comparison.

Fig. 5: Fault identification by using fault model discrimination

Fig. 6: Fault model output states approximation errors compared
with NT-DRAS under fault condition
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As shown in Fig. 5, compared with the system under
normal conditions, the displacement output has obvious
degradation. The left three output states also demonstrate
fault status. Under this condition, the NT-DRAS and Fault
Model-1 have almost the same output state curve, which
means Fault Model-1 is the fault discrimination model under
this fault condition: the system output velocity and cylinder
pressure have obvious degradation while the motor speed
has obvious increasing. This fault mechanism betray that
Fault-1(hydraulic cylinder leakage) occur.

Moreover, the fault model output states approximation
errors are shown in Fig. 6. The approximation errors can be
calculated by using the given algorithm in Fig. 3. For the
discriminant Fault-Model 1, the four output states
approximation errors compared with NT-DRAS are shown
in Table 4. It can be seen that the output state errors between
Fault Model-1 and NT-DRAS are all less than the pre-set
thresholds.

Table 4: Quantitative approximation errors

Errors Calculated
value Pre-set thresholds

eha eha0

1   
t Mx x dt

t
0.0000719 1 0.0001  Modelx

eha eha0

1    & &
t Mx x dt

t
0.000136 1 0.00015  &Modelx

eha eha0

1   
t MP P dt

t
2177.9508 1 2500  ModelP

eha eha0

1   
t M dt

t
  3.326975 1 5  Model

Based on the fault model discrimination results in Fig. 5
and the fault model output states approximation errors in Fig.
6, as well as the quantitative results of approximation errors,
Fault-1(hydraulic cylinder leakage) can be identified by
using fault occur mechanism analysis and approximation
error calculation method.

5 Conclusions

This paper studied a new type dissimilar redundant
actuation system (NT-DRAS). To support the FTC
strategies of this NT-DRAS, a multidimensional fault
characterization based fault identification method is
proposed. Based on the fault occurrence mechanism, multi
fault signals are used in the fault reasoning mechanism, so
that a certain fault type can be identified.
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Abstract: This paper investigates the failure compensation load frequency control of multi-area power systems in the circum-
stance of actuator faults. Firstly, the distributed observer is proposed. It can estimate the actuator fault signals of the multi-area
power systems in a distributed manner. And then the failure compensation load frequency control is designed based on the
cyclic-small-gain method and the information of fault estimation signals, which is obtained from the observer. As a result, the
controller can not only eliminate the influence of actuator faults, but also improve the robustness of the interconnections and load
frequency disturbances, as well as ensure the stability of the systems further. In addition, an illustrative example is given to verify
the proposed method.

Key Words: Multi-Area Power Systems, Load Frequency Control, Distributed Observer, Failure Compensation, Cyclic-Small-
Gain

1 Introduction

The multi-area power system is composed of multiple
subsystems in general, which are connected by interconnec-
tions. With the development of society, the correlation be-
tween the multi-area power systems and people’s life is high-
er and higher [1–6]. As an important criterion, frequency is
applied to measure the quality of power and it is need to take
the control measures to reduce the frequency deviation be-
tween different areas. In addition, during the actual process
of producing, some components in the system may fail, es-
pecially the actuator. Once it occurs, it will affect the control
performance of the system, and even cause disaster in severe
cases [7, 8]. Therefore, in order to avoid this situation, it is
necessary to take advantage of load frequency control to en-
sure the safe and effective operation of the multi-area power
systems, which can also compensate for the impact of the
fault in the system.

For power systems in open networks with limited band-
width, a memory-based event-triggered H∞ load frequen-
cy control method was proposed in [9]. A method of data-
driven cooperative was developed in multi-area power sys-
tems, which was according to the multi-agent deep rein-
forcement learning in continuous action domain in [10]. In
[11], the event-triggered H∞ load frequency control under
a hybrid network attack consisting of denial-of-service at-
tack and deception attack was studied. Moreover, in [12], a
dynamic-memory event-triggered H∞ load frequency con-
trol was first proposed for denial-of-service attacks, and the
load frequency control model was also to be reconstructed.

Besides, failure compensation control is a variety of fault
tolerant control. Since it was reported in 1997, researchers
have proposed many fault tolerant control methods for ac-
tuator failures. In [13], the adaptive compensation control
method was based on event-triggered timing consistency.

This work is supported in part by the National Natural Science Founda-
tion of China under Grant 62103094; in part by the Natural Science Foun-
dation of Jilin Province in China under Grant YDZJ202201ZYTS379; and
in part by the Doctoral Scientific Research Foundation of Northeast Electric
Power University in China under Grant BSJXM-2021107.

For a sort of nonlinear systems with multiple redundant in-
puts, a new adaptive actuator failure compensation control
scheme was presented in [14]. And in the stabilization prob-
lem of a class of reaction-diffusion equations described by
a cascade partial differential equation-ordinary differential
equation system, the influence of actuator failure was elim-
inated by using the compensation term, which was in the
form of a smoothing function [15].

Based on the above mentioned, many literatures have in-
vestigated the load frequency control of multi-area power
systems. Then, for the purpose of getting the information
of actuator failures in a distributed way, so as to eliminate
the influence of actuator failures in multi-area power sys-
tems, the fault compensation load frequency control is put
forward. And the innovations are as follows:

1) The distributed observer is proposed, which can in-
dependently observe the actuator fault signals in each
area.

2) With the intention of eliminating the effect of actuator
failures, the load frequency control is designed by mak-
ing use of the estimation information of actuator fault
signals, which are obtained from the observer.

3) By using the cyclic-small-gain method, the influence of
actuator faults and load frequency disturbances in the
multi-area power systems is eliminated, and the robust-
ness of the interconnections is enhanced, so that the
changes of system frequency deviation gradually con-
verge to 0.

2 Problem Formulation

This paper takes into account the multi-area power sys-
tems with N subsystems (or subsystems in N areas), which
are connected by interconnections. The dynamic of ith area
of the interconnected system is described as follows [16]

ẋi(t) =Aixi(t) +Bi(ui(t) + fi(t)) +

N∑
j=1
j 6=i

Eijxj(t)

+Di∆Pdi , (1)
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where xi ,
[
∆fi ∆Pgi ∆Xgi ∆Ei ∆δi

]T
is the

system state of ith area. And the specific parameters are in
following:

Ai=



1
TPi

KPi

TPi
0 0

KPi

2πTPi

∑
j=1
j 6=i

Ksij

0 − 1
TTi

1
TTi

0 0

− 1
RiTGi

0 − 1
TGi
− 1
TGi

0

KEiKBi 0 0 0
KEi

2π

∑
j=1
j 6=i

Ksij

2π 0 0 0 0

 ,

Bi =
[
0 0 1

TGi
0 0
]T
,Fi =

[
−KPi

TPi
0 1
TGi

0 0
]T
,

Eij =


0 0 0 0

KPi

2πTPi
Ksij

0 0 0 0 0
0 0 0 0 0

0 0 0 0 − KEi

2πTPi
Ksij

0 0 0 0 0

 .

where ∆fi(t),∆Pgi(t),∆Xgi ,∆Ei(t),∆δi(t) are the
changes of frequency, power output, governor valve posi-
tion, integral control and rotor angle deviation, respectively;
TPi , TTi , TGi are the time constants of power system,
turbine and governor, respectively; Ri,KPi

,KEi
,KBi

are
speed regulation coefficient, power system gain, integral
control gain and frequency bias factor, respectively; the
interconnection gain between the ith area and the jth area
is Ksij ; xi(t) ∈ Rni is the ith subsystem’s state vector;
xj(t) ∈ Rnj is the jth subsystem’s state vector, which
is adjacent to xi(t); ui(t) ∈ Rli is the ith subsystem’s
control input vector; and fi ∈ Rli represents the actuator
failure. ∆Pdi ∈ Rli×li is load frequency disturbance
vector. The dimensions of system matrices in (1) are
Ai ∈ Rni×ni , Bi ∈ Rni×li , Di ∈ Rni×li . Eij ∈ Rni×nj is
the matrix that connects the ith system and the jth system
and Eij =

∑nij

k=1DijkεTijk, where both Dijk and εijk are
5-dimensional vectors, nij is a positive integer.

In order to address the impact of actuator faults and load
frequency disturbances on the system, the goal of this paper
is to design the distributed observer to obtain estimated in-
formation of actuator faults. On the other hand is to use the
obtained information to design the fault compensation load
frequency controller to improve the robustness of the inter-
connections. It can make the changes in system frequency
deviation approach to 0, and thus maintain the performance
of multi-area power systems.

3 Main Result

For the purpose of obtaining the reconstructed actuator
fault signals, the observer is designed as follows:

˙̂xi(t) =Aix̂i(t) +Bi(ui(t) + f̂i(t))− Li(x̂i − xi)

+

N∑
j=1
j 6=i

Eij x̂j(t) (2)

where f̂i(t) = −Fi(x̂i(t) − xi(t)), and Fi will be designed
later, x̂i ∈ Rni and x̂j ∈ Rnj are the estimation of xi and
xj ; Li is the observer gain and it also will be designed later.

Let ei = x̂i − xi, so that the error system is

ėi(t) =Aiei(t) +Bif̃i(t)− Liei +

N∑
j=1
j 6=i

Eijej(t)

−Di∆Pdi

where f̃i(t) = f̂i(t) − fi(t). Therefore, ˙̃
fi(t) = −Fiei.

Combine the ėi and ˙̃
fi and let ēi =

[
ei f̃i

]T
, then taking

the derivative of ēi, one has

˙̄ei = Āiēi − L̄iC̄iei +

N∑
j=1
j 6=i

Ēij ēj − D̄i∆Pdi (3)

where Āi =

[
Ai Bi
0 0

]
, L̄i =

[
Li
Fi

]
, C̄i =

[
I
0

]T
, Ēij =[

Eij 0
0 0

]
, D̄i =

[
D̄i

0

]
.

Theorem 1. For given αi > 0, if there exist matrices Wi =
WT
i > 0, Zi with suitable dimensions and positive scalars

ηi, ϑi satisfying the LMI as below
He(WiĀi − ZiC̄i) +

∑
j=1
j 6=i

ϑj
∑nji

k=1 ε̄jikε̄
T
jik + I

∗
∗
∗

WiΩ
T
i Wi 0

−ϑiI 0 0
∗ −η2i I 0
∗ ∗ (η2i ‖D̄i‖2F − α2

i )I

 < 0 (4)

where Li = W−1i Zi,Ω
T
i Ωi =∑N

j=1
j 6=i

∑nij

k=1 D̄ijkD̄T
ijk, D̄ijk = [Dijk; 0], ε̄jik = [εjik; 0].

For the case of ∆Pdi = 0, the information of observer’s
estimate errors can be converge to 0; for the case of
∆Pdi 6= 0, the αi-level H∞ performance is guaranteed
(i.e.,

∫∞
0
ēTi ēidτ < α2

i

∫∞
0

∆PT
di

∆Pdidτ ).

Proof. Please see appendix A.

Because the system performance is maintained under the
adverse effects of actuator faults, so that the failure compen-
sation control is designed in the form of

ui = Kixi − f̂i
where Ki will be given later. The system state equation be-
comes

ẋi(t) = Aixi(t)+Bi(Kixi(t)− f̃i(t)) +

N∑
j=1
j 6=i

Eijxj(t) (5)

The following lemma describes the cyclic-small-gain
method, which can prove the stability of the system.

Lemma 1. [17] For any given constant ξi > 0, where i
is from 1 to N , suppose that the cyclic-small-gain condition
holds, which is in the following.

N−1∑
j=1

j
∑

1≤i1≤i2≤···≤ij+1≤j+1

ξi1ξi2 · · · ξij+1 < 1 (6)
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Then, the following linear equation


−1 ξ2 ξ3 · · · ξN
ξ1 −1 ξ3 · · · ξN
ξ1 ξ2 −1 · · · ξN
...

...
...

. . .
...

ξ1 ξ2 ξ3 · · · −1




c1
c2
c3
...
cN

 =


−1
−1
−1

...
−1


can be solved as

ci=

∏N
j=1,j 6=i(ξj + 1)

1−
∑N−1
j=1 j

∑
1≤i1≤i2≤···≤ij+1≤j+1 ξi1ξi2 · · · ξij+1

>0

Theorem 2. Consider the system (1) under controller ui and
observer (2). For any given σi > 0, if there exists any con-
stant ξi > 0 satisfies the condition (6), and any constants
πi > 0, γi > 0, the matrix Mi ∈ Rli×ni and the positive
definite symmetric matrix Qi ∈ Rni such that the following
LMI holds

He(AiQi +BiMi) + πi

ciξi
Ēi Qi Qi

∗ − π
ci

0

∗ ∗ −I
∗ ∗ ∗
∗ ∗ ∗

0 Bi
0 0
0 0

(σ2
i − γ2i )I 0
∗ −σ2

i I

 < 0 (7)

where i = 1, . . . , N , Ēi = Ei1E
T
i1+Ei2E

T
i2+· · ·+EiNET

iN .
Then, for the case of f̃i = 0, the system state can asymp-
totically converges to 0; For the case that f̃i 6= 0, the γi-
level H∞ performance is guaranteed (i.e.,

∫∞
0
xTi xidτ <

γ2i
∫∞
0
f̃Ti f̃idτ ), where the control gain Ki = MiQ

−1
i .

Proof. Please see appendix B.

4 Simulation

In order to verify the effectiveness of the proposed
method, an example of a three-area multi-area power sys-
tem is used. The system parameters are as follows:
Area 1:

A1 =


−0.05 6 0 0 −0.955

0 −3.472 3.472 0 0
−5.878 0 −13.021 −13.021 0

4 0 0 0 1.592
6.283 0 0 0 0

 ,

B1 =
[
0 0 13.021 0 0

]T
, D1 =

[
−6 0 0 0 0

]T
,

E12 = E13 =


0 0 0 0 0.1434
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −0.2388
0 0 0 0 0

 ,

D121 = D131 =
[
0.159 0 0 −0.265 0

]T
,

ε121 = ε131 =
[
0 0 0 0 0.9

]T
.

Area 2:

A2 =


−0.04 4.5 0 0 −0.716

0 −3.157 3.157 0 0
−5.805 0 −14.468 −14.468 0

4 0 0 0 1.592
6.283 0 0 0 0

 ,

B2 =
[
0 0 14.468 0 0

]T
, D2 =

[
−4.5 0 0 0 0

]T
,

E21 = E23 =


0 0 0 0 0.1074
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −0.2388
0 0 0 0 0

 ,
D211 = D231 =

[
0.119 0 0 −0.265 0

]T
,

ε211 = ε231 =
[
0 0 0 0 0.9

]T
.

Area 3:

A3 =


−0.05 5.75 0 0 −0.915

0 −2.976 2.976 0 0
−6.448 0 −14.881 −14.881 0

4 0 0 0 1.592
6.283 0 0 0 0

 ,

B3 =
[
0 0 14.881 0 0

]T
, D3 =

[
−5.75 0 0 0 0

]T
,

E31 = E32 =


0 0 0 0 0.1374
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −0.2388
0 0 0 0 0

 .

D311 = D321 =
[
0.153 0 0 −0.265 0

]T
ε311 = ε321 =

[
0 0 0 0 0.9

]T
.

and n12 = n13 = n21 = n23 = n31 = n32 = 1. And
also, the load frequency disturbance is selected as ∆Pdi =

1
100(t+0.1) , the actuator faults are f1 = 10, f2 = 15, and
f3 = 20. Therefore, considering the effects of actuator fault-
s and load frequency disturbances, after being compensated
by the controller, the performance of the multi-area power
systems is shown in the following simulation figures. The
actuator fault of the system and its estimation are shown in
Fig. 1. As described in it, the observer can estimate the
information of actuator faults in three areas, which demon-
strate the availability of the observer. And Fig. 2 displays the
changes in frequency deviation and their observed values in
three areas. Besides, Fig. 3 describes the system states
of three areas. It can be seen from them that the variation
of frequency deviation and the states of three areas gradu-
ally approach to 0, which illustrates that the controller can
eliminate the influence of actuator faults and load frequen-
cy disturbances. In addition, it can improve the robustness
of the interconnections and further make sure the stability of
the multi-area power systems.
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Fig. 1: The actuator faults and their estimations of systems
in three areas
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Fig. 2: The changes of frequency ∆fi and its estimation ∆f̂i
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Fig. 3: The states of systems in three areas

5 Conclusion

In this paper, the problem of failure compensation load
frequency control based on distributed observer was studied.
The distributed observer was proposed, which can observe
actuator faults in each area independently. The failure com-

pensation load frequency control was designed, which used
the observed information to eliminate the influence of actu-
ator faults. It can improve the robustness of the interconnec-
tions and load frequency disturbances, as well as make the
deviation of the frequency closes to 0, and achieve the de-
sired control performance. Finally, the effectiveness of this
method was demonstrated through an illustrative example.

6 Appendix

Appendix A

Consider the Lyapunov function as V =
∑N
i=1 Vi =∑N

i=1 ē
T
i Wiēi, where Wi = WT

i > 0 and then taking the
derivative of all Vi, then the following result is given:

V̇ =

N∑
i=1

ēTi He(WiĀi −WiL̄iC̄i)ēi

+ 2

N∑
j=1
j 6=i

nij∑
k=1

ēTi WiĒij ēj − 2

N∑
i=1

ēTi WiD̄i∆Pdi

According to Eij =
∑nij

k=1DijkεTijk and 2XTY ≤
(1/ι)XTX + ιYTY,∀ι > 0, then one has

2

N∑
i=1

ēTi Wi

∑
j=1
j 6=i

Ēij ēj ≤
N∑
i=1

1

ϑi
ēTi Wi

∑
j=1
j 6=i

nij∑
k=1

D̄ijkD̄T
ijk

×Wiēi +

N∑
i=1

ϑiē
T
j

∑
j=1
j 6=i

nij∑
k=1

ε̄ijkε̄
T
ijkēj

≤
N∑
i=1

ēTi (
1

ϑi
Wi

∑
j=1
j 6=i

nij∑
k=1

D̄ijkD̄T
ijkWi

+
∑
j=1
j 6=i

ϑj

nji∑
k=1

ε̄jikε̄
T
jik)ēi

−2

N∑
i=1

ēTi WiD̄i∆P̄di ≤
1

η2i
ēTi WiWiēi

+η2i ‖D̄i‖2F∆P̄T
di∆Pdi

Then, it can get that

V̇ ≤
N∑
i=1

ēTi (He(WiĀi − ZiC̄i) +
1

η2i
WiWi

+
1

ϑi
Wi

∑
j=1
j 6=i

nij∑
k=1

D̄ijkD̄T
ijkWi

+
∑
j=1
j 6=i

ϑj

nji∑
k=1

ε̄jikε̄
T
jik)ēi + η2i ‖D̄i‖2F∆P̄T

di∆Pdi (8)
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1) for the case of ∆Pdi = 0, formula (8) is converted into

V̇ ≤
N∑
i=1

ēTi (He(WiĀi − ZiC̄i)

+
1

ϑi
Wi

∑
j=1
j 6=i

nij∑
k=1

D̄ijkD̄T
ijkWi

+
∑
j=1
j 6=i

ϑj

nji∑
k=1

ε̄jikε̄
T
jik)ēi

Then, according to condition (4), Vi < 0. Therefore,
the observer estimation errors can converge to 0, the
proof is completed.

2) for the case of ∆Pdi 6= 0, and under zero initial condi-
tion, i.e., Vi(0) = 0, one has

∫ ∞
0

(ēTi ēi − α2
i∆P

T
di∆Pdi + V̇i − V̇i)dτ

=

∫ ∞
0

(ēTi ēi − α2
i∆P

T
di∆Pdi + V̇i)dτ − Vi(∞)

≤
∫ ∞
0

(ēTi ēi − α2
i∆P

T
di∆Pdi + V̇i)dτ

where αi > 0. According to condition (4), it has

ēTi (He(WiĀi − ZiC̄i) +
1

η2i
WiWi

+
1

ϑi
Wi

∑
j=1
j 6=i

nij∑
k=1

D̄ijkD̄T
ijkWi

+
∑
j=1
j 6=i

ϑj

nji∑
k=1

ε̄jikε̄
T
jik)ēi + ∆P̄T

di(η
2
i ‖D̄i‖2F

− α2
i )∆Pdi < 0,

which means that the load frequency disturbance ∆Pdi
is suppressed by αi-level H∞ performance and V̇i < 0.

Appendix B

Consider the system state equation (5) and choose the
Lyapunov function as Vi = xTi Pixi, where Pi ∈ Rni and
Pi = PT

i > 0, then the derivation of Vi is

V̇i =xTi He(PiAi + PiBiKi)xi − 2xTi PiBif̃i

+ 2xTi Pi Σ
j=1
j 6=i

Eijxj

1) for f̃i = 0,

V̇ =

N∑
i=1

V̇i

≤
N∑
i=1

[xTi He(PiAi + PiBiKi)xi + 2xTi Pi(Ei1x1

+ Ei2x2 + · · ·+ EiNxN )]

≤
N∑
i=1

[(xTi He(PiAi + PiBiKi)xi +
πi
ciξi

xTi Pi

× ĒiPixi +
(1 + ξi)ci

πi
‖xi‖2 −

ciξi
πi
‖xi‖2)

+

N∑
i=1

ci
πi

(−‖xi‖2 + ξi

N∑
j=1,j 6=i

‖xj‖2)]

According to the lemma 1, one has

V̇i ≤
N∑
i=1

[(xTi He(PiAi + PiBiKi)xi

+
πi
ciξi

xTi PiĒiPixi +
ci
πi
‖xi‖2)− ‖x‖

2

πi
]

≤
N∑
i=1

[xTi (He(PiAi + PiBiKi) +
πi
ciξi

PiĒiPi

+
ci
πi

)xi]

Moreover, condition (7) can be reduced toHe(AiQi +BiMi) + πi

ciξi
Ēi Qi Qi

∗ − π
ci

0

∗ ∗ −I

 < 0

which expresses that

He(AiP
−1
i +BiKiP

−1
i ) +

πi
ciξi

Ēi +
ci
πi
P−1i P−1i

+P−1i P−1i < 0

where Qi = P−1i ,Mi = KiP
−1
i . Further it can get

that

He(PiAi + PiBiKi) +
πi
ciξi

PiĒiPi +
ci
πi
< 0

Hence, the fault compensation load frequency con-
troller effectively mitigates the impact of actuator faults
and load frequency disturbances, enhances the robust-
ness of the interconnections, and also it can guarantee
optimal system performance.

2) for f̃i 6= 0, on the basis of case 1)

V̇ ≤
N∑
i=1

[xTi (He(PiAi + PiBiKi) +
πi
ciξi

PiĒiPi

+
ci
πi

)xi − 2xTi PiBif̃i]

Because of −2xTi PiBif̃i ≤ 1
σ2
i
xTi PiBiB

T
i Pixi +
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σ2
i f̃

T
i f̃i, where σi > 0, one gets

V̇ ≤
N∑
i=1

[xTi (He(PiAi + PiBiKi) +
πi
ciξi

PiĒiPi

+
ci
πi

)xi +
1

σ2
i

xTi PiBiB
T
i Pixi + σ2

i f̃
T
i f̃i]

then under zero initial condition, i.e., Vi(0) = 0, one
has ∫ ∞

0

(xTi xi − γ2i f̃Ti f̃i + V̇i − V̇i)dτ

=

∫ ∞
0

(xTi xi − γ2i f̃Ti f̃i + V̇i)dτ − Vi(∞)

≤
∫ ∞
0

(xTi xi − γ2i f̃Ti f̃i + V̇i)dτ

where γi > 0. Furthermore, one has

xTi xi − γ2i f̃Ti f̃i + xTi (He(PiAi + PiBiKi)

+
πi
ciξi

PiĒiPi +
ci
πi

)xi +
1

σ2
i

xTi PiBiB
T
i Pixi

+ σ2
i f̃

T
i f̃i

=

[
xTi
f̃Ti

]T
Oi

[
xTi
f̃Ti

]
where

Oi =

[
Ri 0
0 (σ2

i − γ2i )I

]
and Ri = He(PiAi + PiBiKi) + 1

σ2
i
PiBiB

T
i Pi +

πi

ciξi
PiĒiPi + ci

πi
+ I . Condition (7) turns out[
Hi 0
0 (σ2

i − γ2i )I

]
< 0 (9)

and Hi = He(AiQi + BiMi) + 1
σ2
i
BiB

T
i + πi

ciξi
Ēi +

ci
πi
QiQi +QiQi. Next, multiplying both sides of equa-

tion (9) by the matrix
[
Pi 0
0 I

]
,Oi < 0 can be obtained.

As a result, one has∫ ∞
0

xTi xidτ < γ2i

∫ ∞
0

f̃Ti f̃idτ.

So the estimation error f̃i can be suppressed by theH∞
performance. Thus, the proof ends here.
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基于全驱系统理论的高超声速飞行器容错跟踪控制器设计 
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摘   要: 高超声速飞行器无论是在军事还是民用、经济上，都具有巨大的潜力与价值。然而，强耦合、强不确定性、故

障等问题的存在，对其控制器的设计带来了巨大的挑战。为了解决高度与速度之间的耦合问题，增加控制器的可靠性

以及实用性，本文针对存在不确定参数以及故障的高超声速飞行器纵向模型，设计了一种多输入多输出容错跟踪控制

器。首先进行模型预处理，即将原模型转变为高阶全驱系统标准形式，与此同时也建立了直接的输入输出关系，由此

进一步根据高阶全驱系统理论，设计基础控制律；利用自适应控制原理设计参数自适应律完成对不确定性参数的估计

以及对故障的容错工作，使得系统的跟踪误差最终能够趋于零。再利用Lyapunov稳定性定理证明所设计系统稳定；最

终通过仿真验证控制律可行性。 

关键词: 高超声速飞行器，高阶全驱系统理论，自适应故障补偿，容错控制 

 

Design of hypersonic vehicle tracking controller based on high-

order fully actuated system theory 
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Abstract:  Hypersonic aircraft have great potential and value in military, civil and economic terms. However, the existence of 

strong coupling, uncertainty, failure and other problems brings great challenges to the design of its controller. In order to solve 

the coupling problem between height and speed as well as increase the reliability and practicability of the controller, this paper 

designs a multi-input and multi-output fault-tolerant tracking controller for the longitudinal model of the hypersonic aircraft with 

uncertain parameters and faults. First of all, the model pretreatment is carried out, that is, the original model is transformed into 

a standard form of a high-order fully actuated system. At the same time, a direct input-output relationship is also established, so 

as to further design the basic control law according to the theory of the high-order fully actuated system; use the adaptive control 

principle to design parameter adaptive law to complete the estimation of uncertainty parameters. And the fault tolerance work of 

the fault, so that the tracking error of the system can eventually tend to zero. The Lyapunov stability theorem is used to prove 
the stability of the designed system; finally, the feasibility of the control law is verified through simulation. 

Key Words: hypersonic vehicle, high-order fully actuated system theory, adaptive failure compensation, fault-tolerant control 

 
  

 

1 引言 

高超声速飞行器由于其独特的机体-发动机一体

化设计结构[1] 以及恶劣的高空高速飞行环境，导致其

模型具有多变量、强非线性、强耦合、强不确定性等

问题的存在。为了解决这些问题，设计合适的控制器，

近年来研究人员提出不少研究方法，其中常见的包括

反馈线性化方法[2] 、自适应控制方法[3] 、反步控制方

法[4] 、滑模控制法[5] 、神经/模糊控制法[6] 等。 

文献[7] 为提高高超声速飞行器控制方法实用性，

提出了一种神经网络复合学习非反步控制方法，该方

法能高效估计不确定的未知参数，无需设计虚拟控制

量，极大简化了控制器设计的计算量。文献[8] 将比例

微分( PD )控制的非线性动态逆方法应用于高超声速

                                                           
*此项工作得到国家自然科学基金资助，项目批准号：62188101. 

飞行器的复杂非线性动力学模型，为提高飞行器非线

性控制器设计性能提供了新思路。文献[9] 提供的非线

性复合控制策略，主要结合了耦合观测器的前馈补偿

器以及动态系统逆反馈控制器，最终减弱俯仰角速率

的柔性影响，能够实现速度以及航迹角的跟踪控制。 

与此同时，考虑到高超声速飞行器高空、高速等

造成的复杂作业环境，为确保其安全性，控制器设计

的过程中还必须要考虑到控制系统对故障的容错能

力。在这个方面，文献[10] 主要采用了滑模控制法，为

消除抖振以及更好的鲁棒性，利用高阶线性化模型构

建自适应终端滑模，结合径向基函数神经网络与自适

应滑模控制的容错控制方法，最终能实现高超声速飞

行器的跟踪控制。文献[11] 利用被动容错思想以及自适

应技术估计执行器故障信息，设计了自适应非线性容

错控制器，所设计控制器的鲁棒性以及容错能力较强。
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文献[12]  提出了一种基于近端策略优化算法的高超声

速飞行器容错制导控制一体化设计方法，解决了存在

不确定参数和执行器故障的高超声速飞行器的末制

导阶段问题。 

近年来研究人员提出了一种新的研究理论——

高阶全驱系统理论[13] ，该方法能够使更多的系统拥有

全局稳定性，为非线性系统设计了合理的能控性体系，

将李雅普诺夫稳定性和镇定拓展到亚稳定性和亚镇

定[14] ，简化了闭环系统响应分析以及稳定性分析，不

论是在时滞系统还是时变系统中都能够得到很好的

应用[15] 。高超声速飞行器纵向模型原模型虽为一阶形

式，但此时输入输出间并不存在直接的关系，因此本

文考虑采用高阶全驱系统理论，利用升阶处理建立阶

全驱系统标准形式的同时能够建立直接的输入输出

关系，简化控制器的设计以及稳定性的分析。 

本文针对考虑双舵面出现反向型故障以及失效

故障的高超声速纵向模型，对高度和速度进行容错跟

踪控制工作。首先针对高超声速飞行器通用的纵向模

型，在无故障情况下，利用高阶全驱系统理论实现对

飞行器的高度与速度跟踪控制。然后在双舵面冗余的

情况下，当舵面出现失效故障以及反向型故障问题时，

结合自适应控制并利用Lyapunov稳定性定理设计高

度及速度容错跟踪控制器。最后利用仿真软件验证所

设计的控制器具有所需的跟踪能力与容错能力。 

2 模型分析 

为实现对高超声速飞行器巡航阶段的纵向高度

和速度的容错跟踪控制，本文主要利用高阶全驱系统

理论，为高超声速飞行器设计一个合适的多输入多输

出的跟踪控制器。 

2.1  纵向模型分析  

本文采用如下通用的纵向控制模型[17] ： �̇ = � cos � − 
� − � sin ��� �2.1� ℎ̇ = � sin � �2.2� �̇ = � + � sin ��� − �� − ���� cos ���� �2.3� �̇ = � − �̇ �2.4� �̇ = ��� �� �2.5� 

其中，�，�，�分别为飞行器的航迹角、攻角以及俯

仰角速率，���与 ��为飞行器俯仰力矩以及俯仰转动

惯量。�，
，�分别为推力项、阻力项以及升力项，�，�，�分别为重力常数、飞行器质量以及径向距离。

需要设计的控制量为舵偏角"#以及油门开度$，控制

器的输出为飞行器的高度ℎ以及速度�。由式（2.1）至

（2.5）可看出，控制输入与输出之间并无直接关系，

为了实现对高超声速飞行器跟踪控制控制工作，则需

要对上式进行进一步的升阶处理，从而建立控制器的

输入输出直接关系，在此过程中同样完成了将原系统

模型转变为高阶全驱系统形式的工作，此时高阶全驱

系统理论可以得到直接且方便的应用。 

由下式（2.6）~（2.9）可见，舵偏角"#与油门开

度$直接出现在推力项T以及俯仰转动力矩���中。 � = 12 &��'() �2.6� 


 = 12 &��'(+ �2.7� 

T = 12 &��'(- �2.8� 

��� = 12 &��'/‾ 1(23 + (24 + (2567 �2.9� 

其中&，'，/‾分别为空气密度、参考气动面积以及平均

气动弦长，升力系数()、阻力系数(+、推力系数(-以
及俯仰转动力矩���中系数的具体展开式如下： () = ()3� + ()9 �2.10� (+ = (+3;�� + (+3� + (+9 �2.11� (- = (-<$ + (-9 �2.12� (23 = (23;�� + (23� + (29 �2.13� (24 = �/‾/2��� >(23;4�� + (234� + (24 ? �2.14� (256 = /#�"# − �� �2.15� 

其中各项参数的具体值见表 3.1，/#为一常数。飞行器

发动机动态模型见式（2.16），其中$@则是控制器的输

出控制指令，AB与C分别为油门开度调定系统的频率

和阻尼。 $̈ = −2CAB$̇ − AB�$ + AB�$@ �2.16� 

取状态向量E = [ℎ  �  �  �  �  $  $̇]-，控制输入H = ["#   $@]-。为使控制输出由控制输入直接控制，需

要对高度ℎ取到四阶导数、速度�取到三阶导数，此时

速度与高度的表达式与控制输入H产生直接关系。不

考虑参数不确定性情况以及故障情况、未建模动态等

未知影响，可以得到： Iℎ�J��K L = IMN�E�MO�E�L + IPQ�E� P��E�PR�E� PJ�E�L H �2.17� 

其中矩阵 IPQ�E� P��E�PR�E� PJ�E�L 具体表达式见文献[18] ，在

无大机动的巡航阶段满足非奇异条件，MN�E�，MO�E�，PQ�E�，P��E�，PR�E�，PJ�E�为含有状态量的函数。 

2.2  不确定性分析 

考虑到系统存在不确定参数的情况，需要引入自

适应参数估计算法以实现对系统未知参数的估计。 

将飞行器质量 m，重力常数�，常数/#，平均气动

弦长/‾，空气密度&，、参考气动面积'，俯仰转动惯量 ��考虑为系统存在的不确定参数，此时需要对式

（2.17）进行进一步处理，即将其中含有未知参数的

项单独提出，此时输入-输出方程转变为： 
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Iℎ�J��K L = 1MN9�E�0 7 + SΦN-�E�ΦO-�E�U Θ +
IPQQ�E� PQ��E�P�Q�E� P���E�L I1/WQR 00 1/WQJL H �2.18� 

其中函数MN9�E�与矩阵SΦN-�E�ΦO-�E�U为含有状态量的函数，Θ、WQR、WQJ为含有未知参数的矩阵与函数。 

经过上述转换，最终能使得系统中含有的所有未

知量在Θ = [WQ  ⋯ WQ�]-与WQR、WQJ中出现，具体表达

式如下： WQ = 10QY&R'R/�R  WZ = 10�9��  W� = 10�9&�'��/��   W[ = 10Q9�  WR = 10Q9&�'�/��  WQ9 = 10QR&�'�/‾�/�� ��  WJ = 10�Y&'��/�  WQQ = 10Q\&�'�/‾/#/�� ��  WY = 10QY&'�/�  WQ� = 10QY&�'�/‾/�� ��   W\ = 10Y&'/�  WQR = 4 × 10^QR ���/&�'�/‾/#  W_ = 10RQ�R  WQJ = 2 × 10^R�/&'AB�  

2.3  故障模型分析  

本文主要研究存在双舵面冗余的情况下可能存

在的两种故障形式： 

（1）舵面出现失效故障； 

（2）舵面出现反向型故障。 

考虑到上述两种故障模式，取故障模型[18] 为： "#` = a`b`"#@ ,  d = 1,2 �2.19� 

其中a`表示舵面控制方向，b`表示舵面失效的程度。

当舵面出现失效故障时，a` = 1, b` ∈ �0,1�，当舵面出

现反向型故障时，a` = −1, b` ∈ �0,1]。 

舵偏角总体的控制信号可以表达为： "# = f#Q"#Q + f#�"#� �2.20� 

其中"#Q和"#�分别表示两个舵偏角信号，f#Q和f#�则
为两者的控制增益。将式（2.19）代入式（2.20）得到： "# = �f#QaQbQ +  f#�a�b��"#@ �2.21� 

取b =   f#QaQbQ + f#�a�b�，H@ = ["#@   $@]-将式

（2.21）代入式（2.18）得到： 

Iℎ�J��K L = SΦN-ΦO-U Θ + 1hN90 7 +
IPQQ�E� PQ��E�P�Q�E� P���E�L ⎣⎢⎢

⎡ bWQR 0
0 1WQJ⎦⎥⎥

⎤ H@ . �2.22� 

3 控制器设计 

在完成模型预处理工作后，根据高阶全驱系统理

论，取控制输入为： 

H@ = I"#@$@ L = − SWoQY 00 WoQJU IPQQ�E� PQ��E�P�Q�E� P���E�L^Q × 

pSq9ℎ + qQℎr + q�ℎs + qRℎKt9� + tQ�r + t��s U + 1MN9�E�0 7 + SΦN-ΦO-U Θu 

− Sℎv�J��Kv U − Sq9ℎv + qQℎvr + q�ℎvs + qRℎvKt9�v + tQ�vr + t��vs Uw �3.1� 

其中WQY = WQR/b，WoQY，WoQJ，Θu分别为WQY，WQJ，Θ的
估计值。ℎv和�v分别为高度参考轨迹与速度参考轨迹，

且ℎv满足四阶有界可导条件，�v满足三阶有界可导条

件，q9~R和t9~�为可设计实数参数矩阵，其中： q9~R = [q9 qQ q� qR] t9~R = [t9 tQ t�] 
在设计参数矩阵q`，d = 0,1,2,3，以及参数矩阵t`，d = 0,1,2时，需要保证所设计的参数能够使得矩阵Φ�A9~R�与Φ�t9~��满秩且稳定，其中： 

Φ�A9~R� = z 000−q9
100−qQ

010−q�
001−qR

{ 

Φ�t9~R� = | 0 1 00 0 1−t9 −tQ −t�} 

于此同时，取 Φ�A9~R, t9~�� = IΦ�A9~R� 0J×R0R×J Φ�t9~��L �3.2� 

所设计的参数矩阵也需要保证Φ�A9~R, t9~��满
秩且稳定。 

取参考轨迹具体表达式如下： 

⎣⎢⎢
⎢⎡ ℎ̇vℎ̈vℎKvℎv�J�⎦⎥⎥

⎥⎤ = z0 1 0 00 0 1 00 0 0 1−q9 −qQ −q� −qR
{ ⎣⎢⎢

⎢⎡ℎv − ℎ~ℎ̇vℎ̈vℎKv ⎦⎥⎥
⎥⎤
 

��̇v�̈v�Kv
� = | 0 1 00 0 1−t9 −tQ −tR} ��v − �~�̇v�̈v � 

即 

ℎ̇v�9~R� = Φ�A9~R� ⎣⎢⎢
⎢⎡ℎv − ℎ~ℎ̇vℎ̈vℎKv ⎦⎥⎥

⎥⎤ �3.3� 

�̇v�9~�� = Φ�t9~�� ��v − �~�̇v�̈v � �3.4� 

ℎ~和�~分别为目标高度值与速度值，为常数。经

分析可得，参考轨迹最终能趋于目标值，满足ℎv = ℎ~，�v = �~，能够满足跟踪控制要求。 
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3.1  参数设计 

按照高阶全驱系统理论体系，以速度跟踪部分为

例，选择将极点配置在�−10, −0.6 ± �0.8�，经计算可

以得到t9~�的表达式： t9~� = [t9, tQ, t�] = [10  13  11.2] 
此时有 

Φ�t9~�� = | 0 1 00 0 1−10 −13 −11.2} �3.5� 

为得到满足 Lyapunov 稳定性定理的对应矩阵P�t9~��[19] ，定义[19] ： 

det�� + Φ� ≜ � /�̀R
`�9 �` , 

adj�� + Φ-� ≜ � (�̀�
`�9 �` . 

经计算得到各项系数以及矩阵的值如下： /9� = −10, /Q� = 13, /�� = −11.2, /R� = 1 

(9� = |13 −10 012 0 101 0 0 } 

(Q� = |−11.2 0 10−1 −11.2 −130 −1 0 } 

(�� = |1 0 00 1 00 0 1} 

为方便后续的计算，取： 

�9 = � /�̀R
`�9 Φ` �3.6� 

假设存在正定矩阵 Q 满足： Φ-� + �Φ = −� 

取正定矩阵 Q 为： 

� = |2 1 01 6 00 0 1} �3.7� 

经计算可以得到： 

��t9~�� = − � (�̀��9̂ Q�
`�9 �Φ`

= |4.0717 1.9032 0.10.9914 3.1412 0.310.1 0.3772 0.783} 

同理可以得到 Φ�q9~R�, ��q9~R�。取： Φ�q, t� = IΦ�q9~R� 0J×R0R×J Φ�t9~��L �3.8� 

P�q, t� = IP�q9~R� 0J×R0R×J P�t9~��L �3.9� 

3.2 参数自适应律设计 

观察到WQY中存在的两个不确定参数WQR和b，导

致舵偏角信号的方向问题未知，这里选择采用

Nussbaum 增益自适应控制方法。 

本文中选取： ���� = exp ����sin�2��� �3.9� 

此时有： 

H@ = I"#@$@ L = − I���� 00 WoQJL IPQQ�E� PQ��E�P�Q�E� P���E�L^Q × 

pSq9ℎ + qQℎr + q�ℎs + qRℎKt9� + tQ�r + t��s U + 1MN9�E�0 7 + SΦN-ΦO-U Θu 

− Sℎv�J��Kv U − Sq9ℎv + qQℎvr + q�ℎvs + qRℎvKt9�v + tQ�vr + t��vs Uw �3.10� 

将式（3.10）代入（2.18），化简可得： 

Sℎ�r �9~R���r �9~��U = Φ�q9~R,  t9~� � Iℎ��9~R��� �9~��L − t SΦN-ΦO-U Θ�
+ W̃QJWQJ t����  

+ ����bWQR t�Q�� − t�Q�� �3.11� 

其中t = [tN tO], tN = [0 0 0 1 0 0 0]-，tO = [0 0 0 0 0 0 1]- �Q = 1PQQP�� − PQ�P�Q 1PQQP�� −PQQPQ�P�QP�� −PQ�P�Q7 
�� = 1PQQP�� − PQ�P�Q 1−PQ�P�Q PQQPQ�−P�QP�� PQQP��7 
�� = � Iℎ��9~R��� �9~��L + Sℎv�J��Kv U SΦN-ΦO-U − Θ̂ − 1hN90 7 

Θ� = Θ − Θ̂,   W̃QJ = WQJ − WoQJ � = I−q9~R 0Q×R0Q×J −t9~�L 
取自适应律： Θur = [ΦN ΦO]��q, t� Iℎ��9~R��� �9~��L �3.12� 

Ẇ̂QJ = −�� -��-��q, t� Iℎ��9~R��� �9~��L �3.13� 

�̇ = −f��� -�Q-��q, t� Iℎ��9~R��� �9~��L �3.14� 

其中P�q, t� = IP�q9~R� 0J×R0R×J P�t9~��L，P 矩阵为满足 Φ-�q, t���q, t� + ��q, t�Φ�q, t� = −� 

的正定矩阵，Q 也为正定矩阵。 

3.3 稳定性证明 

取 Lyapunov 函数为： 

�) = Iℎ��9~R��� �9~��L- ��q, t� Iℎ��9~R��� �9~��L + Θ�Θ�- + 1WQJ W̃QJ� �3.15� 

对上式求导可得： 
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�)r = Iℎ��9~R��� �9~��L- [Φ�q, t�-��q, t�
+ ��q, t�Φ�q, t�] Iℎ��9~R��� �9~��L 

+2 ����bWQR �� -�Q-��q, t� Iℎ��9~R��� �9~��L
− 2�� -�Q-��q, t� Iℎ��9~R��� �9~��L + Θ�r Θ�-
+ Θ�Θ�r - 

+2 W̃QJWQJ �� -��-��q, t� Iℎ��9~R��� �9~��L
− 2Θ̃Q-[ΦNΦO]��q, t� Iℎ��9~R��� �9~��L
− 2WQJ >W̃QJẆ̂QJ? 

结合式（3.12）、（3.13）、（3.14）化简得到： 

�)r = Iℎ��9~R��� �9~��L- [Φ�q, t�-��q, t�
+ ��q, t�Φ�q, t�] Iℎ��9~R��� �9~��L
+ 2f� � bWQR �����̇ + �̇� 

对�r在[0, �]上求积分可得： 

0 ⩽ �) ⩽ V)�0� − ¢  £
9 Iℎ��9~R��� �9~��L- Φ�q, t� Iℎ��9~R��� �9~��L a¤

+ 2f� ¢  £
9 � bWQR ���� + 1� �̇a¤ 

即： 

0 ⩽ �) ⩽ V)�0� + 2f� ¢  £
9 � bWQR ���� + 1� �̇a¤ 

�)��� ⩽ ¢  £
9 �W9���� + 1��̇a¤ + /9 �3.16� 

其中/9为合适的常数，因此�)���，�，¥  £9 �W9���� +1��̇a¤在[0, ��有界，  � ∈ [0, ∞�，因此Iℎ��9~R��� �9~��L，Θ�，W�QR，
W̃QJ 有界。而 Iℎ��9~R��� �9~��L = Iℎ�9~R���9~��L − Sℎv�9~R��v�9~�� U，因此

Iℎ�9~R���9~��L有界，即ℎ与�的各阶导数都有界，由 Barbalat

引理[20] 可知，由于¥  £9 Iℎ��9~R��� �9~��L- Φ�q, t� Iℎ��9~R��� �9~��L a¤在� → ∞时存在，当� → ∞，有： 

Iℎ��9~R��� �9~��L- Φ�q, t� Iℎ��9~R��� �9~��L = 0 

即Iℎ��9~R��� �9~��L = 0，误差最终能够收敛到零。 

4 仿真设计 

为了验证存在参数不确定性以及故障时控制器

的设计是否满足要求，进行以下仿真内容。 

取高超声速飞行器的初始高度H = 110000M�， 

速度初始值V = 15060M�/�,取高度跟踪目标值为ℎ~ = 111000M�，速度跟踪目标值为�~ = 15160M�/�。高度参考轨迹为： 

⎣⎢⎢
⎢⎡ ℎ̇vℎ̈vℎKvℎv�J�⎦⎥⎥

⎥⎤ = z0 1 0 00 0 1 00 0 0 1−0.05 −0.5 −1.3 −0.9{ ⎣⎢⎢
⎢⎡ℎv − ℎ~ℎ̇vℎ̈vℎKv ⎦⎥⎥

⎥⎤
 

速度参考轨迹为： 

��̇v�̈v�Kv
� = | 0 1 00 0 1−10 −13 −11.2} ��v − �~�̇v�̈v � 

其中模型中所涉及到的系数值见下表1： 

表 1.系数值 

系数 值 ()9 0 ()3 0.6203 (+9 0.003772 (+3 0.0043378 (+3;
 0.6450 (234
 -0.2289 (23;4
 0.3015 

(-9 © 0 Φ < 10.0224 Φ ≥ 1 

(-� ©0.02376 Φ < 10.00336 Φ ≥ 1 

(29  5.361 × 10^\ (23  0.36617 (23;
 -0.035 (24  -0.796 

飞行器参数见下表2： 

表 2.飞行器参数 

参数 值 �/��¬P� 9375 &/��¬P/M�R� 0.24325 × 10^J /̅/�M�� 80 /# 0.0292 '/�M��� 3603 �/�M�� 20902244  ��/��¬P ∙ M��� 7000000  � 3.31929× 10^QQ 
未知参数WoQR与WoQJ的初始值分别取WoQR�0� = 2.1，WoQJ�0� = 0，而未知参数矩阵Θu的初始值取: Θu�0� = [0.5 0.1 0.5 0.1 0.5 0.7 0.1 0.1 0.1 0.5 0.5 0.5] 
取参数矩阵q9~R = [0.05  0.5  1.3  0.9]，参数矩阵t9~� = [10  13  11.2]，状态量的初始值取： 
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°ℎ  �  �  �  �  $  $̇ ± = [110000ft   15060ft/s  0rad  0.1rad  0rad/s  0%/100  0] 
考虑到舵面失效以及反向型故障，设计故障仿

真： 

（1）0 < � ≤ 50s，系统正常工作； 

（2）50� < � ≤ 100�，系统发生失效故障，取

失效系数b = 0.1； 

（3）100� < � ≤ 150�，系统发生反向型故

障，此时取σ = −0.1。 

仿真结果如下： 

 
(a) 高度跟踪曲线 

 
(b) 高度跟踪误差 

图 1: 故障下高度跟踪曲线 

 
(a) 速度跟踪曲线 

 
(b) 速度跟踪误差 

图 2: 故障下速度跟踪曲线 

 

(a)   舵偏角1变化曲线 

 
(b)   舵偏角2变化曲线 

图 3: 故障下舵偏角变化曲线 

 

图4: 故障下油门开度变化曲线 

 
(a) 航迹角曲线              (b)    攻角曲线 

 
(c)     俯仰角曲线 

图 5: 存在故障时航迹角、攻角、俯仰角变化曲线 
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(a)   �变化曲线 

 

(b)    ����变化曲线 

图 6: 故障下����与�的变化曲线 

图 1与图 2中显示了发生故障时飞行器的速度跟

踪曲线以及高度跟踪曲线，由图中可以看到，在故障

发生后，跟踪曲线在发生一定波动后能够趋于所设计

的跟踪速度以及高度，所设计的控制器仍能实现跟踪

控制功能，且满足跟踪误差要求。 

图 3以及图 4主要显示了故障下飞行器油门开度

以及两个舵面舵偏角的变化，从图中可以看到，在发

生反向型故障后，所设计的控制器仍能使得两者在一

定变化后趋于稳定，进一步验证了控制器设计的合理

性。 

图 5 描述了故障下飞行器航迹角、攻角以及俯仰

角速率的变化曲线，由仿真结果显示，在发生故障时

三者有所波动，但最终能够较快地趋于稳定，能够满

足性能要求。 

图 6 中显示了 Nussbaum-type 函数的变化过程，

由图中可以看出，所设计的函数能够较好地解决舵面

偏转方向不定的工作，能够实现所需的容错控制要求，

使得系统具有更好的稳定性以及安全性。 

5 总结 

基于高阶全驱系统理论，本文针对存在不确定参

数以及故障的高超声速飞行器，设计了一种多输入多

输出的高度与速度容错跟踪控制器。经理论推导与仿

真实验验证，所设计的控制器能够保证系统的稳定性，

实现容错跟踪控制工作。 

本次研究过程中，仅考虑了参数不确定性以及故

障对飞行器稳定性的影响，高超声速飞行器控制器设

计中还有许多的要素在本文中并没有加以考虑，包括

非最小相位问题、跟踪收敛速度的问题、由未建模动

态引起的不确定性问题等，在后续的研究中可以将其

纳入考虑范围。在设计过程中，存在较难测量甚至不

可测的数据，如高阶数据 ℎK 以及 �s  ，实用性较差；与

此同时，由于系统本身是非线性的，将系统原模型线

性化后，无法利用系统本身的性能设计更高效的控制

器，因此在后续的研究中，可以考虑利用系统本身的

物理特性进行控制器的设计，以提高控制器性能。 
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Neural Observer-Based Intelligent Fault-Tolerant Control of

Multi-Helicopters Under Actuator Faults: A Fully Actuated

System Approach

Qiyang Miao1, Jingping Xia1, Bin Jiang1,2, and Ke Zhang1,2

1. College of Automation Engineering Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. National Key Laboratory of Helicopter Aeromechanics, Nanjing, China

Abstract: This paper investigates the fault-tolerant formation control of multiple unmanned helicopters under actuator faults
through a neural-based fully actuated system approach (FASA). First, the kinematic and dynamic model of the helicopter with
actuator faults is established, from which the fully actuated system description of a helicopter is derived. Second, to mitigate
the dependence on model accuracy, a neural observer is designed to approximate the lumped uncertainty including the nonlinear,
coupling, and faulty terms of a helicopter. Third, based on the estimated system dynamic, a triple-layered FASA controller is
proposed to achieve the leader-follower formation control of helicopters. Finally, numerical simulations are conducted to validate
the efficiency of the proposed algorithm.

Key Words: Helicopters, actuator faults, formation control, fault-tolerant control, fully actuated system approach.

1 Introduction

Helicopters outperform fixed-wing aircraft in maneuver-

ability and surpass multi-rotors in loading capacity. When

multiple helicopters are organized into a formation, they can

fulfill crucial roles in missions ranging from cargo trans-

portation to fire extinguishing.

Individual stability and global consensus of the heli-

copters are both crucial to their formation. To confront the

complexity of helicopters’ dynamics, a disturbance observer

was utilized in [1], and recurrent neural networks were em-

ployed in [2]. Helicopters’ dynamics were commonly sta-

bilized separately by partitioning the translational and ro-

tational dynamics, which always requires online estimation

for the difficulty in attaining a precise model. To pursue the

consensus of helicopter formation. In [3], a nonlinear model

predictive control strategy was employed. In [4], a hybrid

control framework with collision avoidance was proposed.

To ensure the flexibility of the formation, distributed control

schemes of helicopters were mostly employed.

As the scale of the formation expands, the possibility

of faults escalates. The tolerance of faults either relies on

the robustness of the controller to suppress the influence of

faults, or seek for the estimation and compensation of faults

through model-based observers [5] or data-reliant approxi-

mators [6]. The fault-tolerant control (FTC) of helicopters is

seldom studied, throughout the limited literature, observer-

based techniques such as [7] and [8] have been repeatedly

employed in the research on the FTC of helicopters.

As a rarely investigated subject, the under-actuated nature

of the helicopter introduces difficulty in designing and tun-

This work was supported in part by the National Natural Science Foun-

dation of China under Grants (62173180, 62020106003, 62188101), in part

by the National Key Laboratory Foundation of Helicopter Aeromechanics

(2023-HA-LB-067-04), in part by the Qing Lan Project of Jiangsu Province
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(xcxjh20230314). (Corresponding author: Ke Zhang).

E-mail: qiyang miao@nuaa.edu.cn; xiajingping@nuaa.edu.cn; bin-

jiang@nuaa.edu.cn; kezhang@nuaa.edu.cn;

ing the controller. The recently proposed fully actuated sys-

tem approach (FASA) provides a convenient design process

for complicated systems by canceling their non-linearity and

arbitrarily assigning the poles. In [9], FASA was utilized for

the attitude and orbit control of spacecraft. In [10], the fault-

tolerant formation control of heterogeneous multi-agent sys-

tems was resolved through the FASA. It is noteworthy that

the FASA is applicable not only to naturally fully actuated

systems, but also to under-actuated systems such as direct

current motors and quadrotors in [11] and [12].

Based on the prevailing practice of the formation control

and FTC of helicopters, a neural-based FASA is proposed to

achieve fault-tolerant formation control of multi-helicopters.

The contributions of this paper are as follows:

1) The leader-follower formation control of helicopters is

effectively addressed through the FASA, offering advantages

in controller tuning convenience. In contrast, research [1]

required tuning more than 20 parameters in the controller,

while the work in [2] involved tuning 14 parameters, with

the constraint that the movements in three dimensions share

the same set of parameters. The FASA-based formation con-

troller presented in this paper provides the flexibility to regu-

late all six degrees of movement by tuning only two matrices,

achieved by assigning 12 poles.

2) The neural-based FASA is less dependent on model ac-

curacy by employing the radial basis function (RBF) neural

networks to approximate the coupled lumped non-linearity

and uncertainty. The cancellation of system dynamics in ex-

isting FASA research is either through a pre-acquired model

or through an extended state observer. The former requires

accurate model identification, and the latter can not guaran-

tee satisfactory performance before the convergence of the

observer. The neural-based observer constructed in this pa-

per can utilize the information from previous tasks to opti-

mize the weights of the networks, providing improved per-

formance of formation convergence.

3) Both additive and multiplicative actuator faults of he-

licopters are resolved in this paper, which is seldom investi-

gated in the research of helicopter formation control. Com-
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pared with [10] which requires adaptive Nussbaum function

and [13] which requires fuzzy logic systems to estimate the

faulty terms, the FTC technique in this paper is integrated

into the FASA and requires no additional design of FTC

modules, and extends the application scope of FASA to the

fault-tolerant formation control of helicopters.

2 System Model and Preliminaries

2.1 Helicopter model under actuator faults

The mathematical model of the ith (i = 1, 2, · · · , n) heli-

copter is derived from [14]. The kinematic and dynamic of

the position subsystem are established as:

Λ̇i = vi miv̇i = Rebif
b
i

f bi =
[
0 0 −TMi

]T
+Rbei

[
0 0 mig

]T
(1)

where Λ and vi denote the position and velocity of the ith
helicopter under the earth frame, mi denotes the mass of the

helicopter, Rebi = (Rbei)
T denotes the rotation matrix from

body frame to earth frame, g denotes the gravitational accel-

eration, TMi = KTMω
2
ePMi denotes the thrust of the main

rotor governed by the collective pitch input of the main ro-

tor PMi, KTM is the thrust coefficient, and ωe denotes the

engine speed which can be deemed as constant in this paper.

The kinematic and dynamic of the attitude subsystem are

established as:

Ω̇i =Miωi Jiω̇i = −ωi
×Jiωi + τ bi

τ bi =





cMb − TMi
hm 0 0

0 cMa + TMi
hm 0

0 0 lt









Pbi
Pai
TTi





+





−TMiym −QMPai − TTiht
QMPbi − TMilm
−TMilmPbi −QM





(2)

where Ω = [φi, θi, ψi]
T

and ω denote the Euler angles and

angular velocity, Ji denotes the inertial matrix, Matrix Mi

denotes the translation from the derivative of Euler angles

to the angular velocity, Pbi, Pai respectively denote the lat-

eral and longitudinal cyclic pitch input, TTi = KTTω
2
ePTi

denote the thrust of the tail rotor governed by the collective

pitch of the tail rotor PTi, KTT , cMb , cMa , hm, ht, ym, lt, lm
and QM are constant model parameters. Considering the re-

sponse process of the actuators, the four control inputs PMi,

Pbi, Pai, and PTi are generated through the first-order dy-

namic such that ṖMi = (PMi d − PMi)/Ts, where Pmi d
denotes the desired collective pitch generated by the con-

troller, and Ts denotes the time constant of the actuator.

The collective and cyclic pitch angles of the main ro-

tor are dictated by the lift and tilt of the swash plate, typ-

ically actuated by three struts. In the event of a fault oc-

curring in one of the struts, both the collective and cyclic

pitch angles will be impacted. For simplicity of analysis,

taking the longitudinal cyclic pitch input as an example,

the influence of the faults on the collective and cyclic pitch

angles can be modeled as: Pa fi = Pai + ∆Pai, where

∆Pai = (ρai − 1)Pai+ δPai, Pa fi denotes the cyclic pitch

under faulty occasion, ρai denotes the multiplicative fault

ratio, δPai denotes the additive faulty increment. Conse-

quently, the thrust of the main rotor under faulty occasion

can be modeled as TM fi = TMi +∆TMi.

2.2 Graph theory

The Laplacian matrix of a graph is defined by L = D−A,

where A = [aij ] ∈ Rn×n is the adjacent matrix where

aij denotes the communication weight between different

nodes so that aij > 0 if the communication between heli-

copter i and j is effective, and D = diag {d1, d2, · · · , dn}
is the degree matrix where di =

∑n
j=1 aij . Define B =

diag {b1, b2, · · · , bn} to describe the communication with

the leader so that bi > 0 if the communication between heli-

copter i and the virtual leader is effective.

2.3 RBF neural networks

For any continuous unknown functions f ∈ Rr, RBF neu-

ral networks can approximate it with an ideal RBF weight

matrix W ∈ Rm×r under error ǫ bounded by Lǫ such that

f = W
T
h(x) + ǫ, where h(x) ∈ Rm×1 denotes the radial-

basis function vector, h(x) = [h1(x), h2(x), · · · , hm(x)]T ,

and x ∈ Rk denotes the input vector of the networks.

Each RBF neuron is defined as hj = exp
(
−‖x− cj‖

2/b2j
)
,

where cj and bj denote the center and radius of the function.

Assumption 1 The ideal RBF weight matrix is bounded as

‖W‖F ≤ LW , where LW is a positive constant.

2.4 Mathematical lemmas

Lemma 1 (see [1]) If the topology of the helicopter forma-

tion is an undirected and connected graph G, where at least

one helicopter can receive information from the leader, ma-

trix H = L+B is symmetric and positive definite.

Lemma 2 (see [15]) if matrix A ∈ Rn×n satisfies

Reλi(A) ≤ −γ/2, where i = 1, 2, · · · , n and γ > 0, then

there exists a positive definite matrix P ∈ Rn×n satisfying

ATP + PA ≤ −γP .

3 Main Results

3.1 Fully actuated system description of helicopter

Because the helicopter is an under-actuated system, to de-

rive the fully actuated system (FAS) description, the position

and attitude subsystems shall be separately analyzed.

Concerning the position subsystem, define νTi =
[0, 0,−TMi]

T ,Ge = [0, 0, g]T , andGTi = [0, 0,−∆TMi]
T ,

the position subsystem in (1) can be rewritten as Λ̈i =
1
mi
Rebi (vTi +GTi) + Ge. Define the control input of the

position subsystem upi =
1
mi
RebivTi+Ge, the fully actuated

system description of the position subsystem can be derived:

Λ̈i = upi +
1

mi

RebiGTi (3)

Concerning the attitude subsystem, the control effectiveness

matrix is defined as:

Br = diag {cMb − hmmig, c
M
a + hmmig, lt} (4)

The lumped uncertainty matrix is defined as:

Dri =




∆Pbi − TMiym −QMPai − TTiht − δTMihmPbi
δTMihmPai +∆Pai +QMPbi − TMilm

−TMilmPbi −QM





(5)
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where δTMi = TMi − mig, define the control input of the

attitude subsystem uri = [Pbi, Pai, TTi]
T , and eliminate the

variable ωi in (2), the fully actuated system description of

the attitude subsystem can be derived:

Ω̈i = Ji
−1

(

−C
(

Ω̇i,Ωi

)

Ω̇i +Bruri +Dri

)

(6)

where the term C
(

Ω̇i,Ωi

)

can be found in [16].

Remark 1 As can be concluded from the fully actuated sys-

tem description of the helicopter in (3) and (6), directly cal-

culating the coupling and nonlinear terms of the helicopter

dynamics poses significant challenges, which brings diffi-

culty in applying the FASA, and the need of approximation.

3.2 Neural observer

To approximate the lumped uncertainty characterized by
1
mi
RebiGTi and Dri − C

(

Ω̇i,Ωi

)

, neural observers are uti-

lized in both subsystems.

Taking the design of the neural observer in the atti-

tude subsystem as an example, supposing that J−1
i (Dri −

C(Ω̇i,Ωi)) can be approximated by the RBF neural net-

works denoted by W
T

rih (xri) + ǫ, the system described by

(6) becomes:

Ω̈i =W
T

rih (xri) + ǫ+ J−1
i Bruri (7)

Because the ideal weight matrix W ri can not be directly at-

tained but be estimated, the neural observer is designed as:

¨̂
Ωi = ŴT

rih (xri) + J−1
i Bruri + krehi

˙̂
W ri = αrh (xri) e

T
hi − βr ‖ehi‖ Ŵri

(8)

where Ω̂ and Ŵri denote the estimations of Ω and W ri,

the estimation error ehi = Ω̇ −
˙̂
Ω since Ω̇ can be di-

rectly measured by the gyroscope of the helicopter, xri =
[Ωi, Ω̇i, PMi, uri]

T ,kr, α, and βr are adjustable parameters.

Theorem 1 Define the estimation error of the ideal weight

matrix W̃ri = W ri − Ŵri, as long as the neural observer is

designed as (8) and Assumption 1 holds, the estimation error

of the state Ω̇ and the weight W ri are ultimately uniformly

bounded (UUB).

Proof : Choose Lyapunov candidate Vni = 1
2αre

T
hiehi +

1
2 tr

{

W̃T
riW̃ri

}

.

V̇ni ≤ −αrkre
T
hiehi − βr ‖ehi‖

∥
∥
∥W̃ri

∥
∥
∥

2

+ βr ‖ehi‖
∥
∥
∥W̃ri

∥
∥
∥

∥
∥W ri

∥
∥+ αre

T
hiǫ

≤ −αrkr‖ehi‖
2
− βr ‖ehi‖ (1− η)

∥
∥
∥W̃ri

∥
∥
∥

2

+
βr
η

‖ehi‖
∥
∥W ri

∥
∥
2
+ αr ‖ehi‖ ‖ǫ‖

≤ ‖ehi‖ (−αrkr ‖ehi‖ − βr (1− η)
∥
∥
∥W̃ri

∥
∥
∥

2

+
βr
η
L2
W + αrL

2
ǫ)

(9)

where η > 0 is a positive scalar. As long as αrkr ‖ehi‖ +

βr (1− η)
∥
∥
∥W̃ri

∥
∥
∥

2

> βr

η
L2
W + αrL

2
ǫ , V̇ni < 0 holds, esti-

mation error ehi and W̃ri are UUB with the residul set de-

fined by αrkr ‖ehi‖+βr (1− η)
∥
∥
∥W̃ri

∥
∥
∥

2

≤ βr

η
L2
W +αrL

2
ǫ .

The proof of Theorem 1 is completed.

Similarly, the stability of the neural observer of the posi-

tion subsystem can be proven, the input vector of the neural

observer in the position subsystem is xpi = [Λ̇i, PMi, u
T
ri].

Remark 2 The lumped uncertainty in the helicopter dy-

namic including actuator faults is approximated by the RBF

neural networks. This approach differs from the extended

state observer employed in [12] because the uncertainty esti-

mated through the RBF networks is state-dependent whereas

that through the extended state observer is time-dependent,

the latter is unable to establish the mapping from the states

of helicopters to the uncertainty. With the neural observer,

the weight matrix of the RBF networks can be trained in

advance, enabling the preliminary estimation of lumped un-

certainty at the beginning of the next flight.

3.3 Controller design based on FASA

Fig. 1: Neural-based FASA control scheme.

The control scheme in this paper is composed of three lay-

ers: The bottom attitude controller, the middle command

transformation, and the top formation controller, as illus-

trated in Fig. 1.

3.3.1 Bottom layer: Attitude controller

The control objective of the bottom layer attitude con-

troller is to obtain the control input of the attitude subsys-

tem uri to track the desired attitude represented by Euler

angles. With the previous design of the neural observer, the

FAS model of the attitude subsystem becomes:

Ω̈i = ŴT
rih (xri) + ǫnr + J−1

i Bruri (10)

Note that (10) is different from (7) because the term ǫnr de-

notes the lumped estimation error of the observer and ap-

proximation error of the neural networks. According to the

stability analysis of Theorem 1 and the assumption estab-

lished in Assumption 1, ǫnr is bounded by Lnr.
The control input of the bottom layer uri is chosen as:

uri = B−1
r Ji

(

υri − ŴT
rih (xri)

)

υri = Ar1ėri +Ar0eri
(11)
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where eri denotes the tracking error defined by: eri = Ωdi−
Ωi,Ar1 andAr0 denote the gain matrices calculated through

the assignment of poles through the FASA:

[
Ar0 Ar1

]
= −ZrF

2
r V

−1
r (12)

where Vr = [Zr, ZrFr] and Fr = blockdiag(Fr1, Fr2) de-

notes the arbitrarily chosen pole matrix in which Fr1, Fr2 ∈
R3×3, and Zr is an arbitrary matrix such that detVr 6= 0.

With the controller design presented in (11), the error dy-

namic of the attitude tracking error is transformed into:

ëri = −Ar1ėri −Ar0eri + Ω̈di + ǫnr (13)

which is equivalent to the state-space form:

[
ėri
ëri

]

=

[
03×3 I3×3

−Ar0 −Ar1

]

︸ ︷︷ ︸

Φr

[
eri
ėri

]

+

[
03×1

Ω̈di + ǫnr

]

(14)

Theorem 2 As long as the Ω̈ is bounded by LΩd > 0, and

the bottom layer attitude controller is designed as (11), the

attitude tracking error eri is UUB, i.e, the helicopter can

track the desired attitude with the performance regulated by

the assigned poles through FASA.

proof: Choose Lyapunov candidate Vr = 1
2e
T
riPreri, where

eri = [ėri, eri]
T and Pr is determined according to Lemma

2 such that ΦTr Pr + PrΦr ≤ −ςrPr.

V̇r =
1

2
ēTriPr

(

Φr ēri +

[
03×1

Ω̈d + εnr

])

+
1

2

(

Φr ēri +

[
03×1

Ω̈d + εnr

])T

Pr ēri

=
1

2
ēTri

(
ΦTr Pr + PrΦ

T
r

)
ēri + ēTriPr

[
03×1

Ω̈d + εnr

]

≤ −
ςr
2
ēTriPr ēri +

1

2
‖ēri‖

2
+

1

2
‖PrL‖

2
∥
∥
∥Ω̈d + εnr

∥
∥
∥

2

≤ −
λmin (ςrPr − I)

λmax (Pr)
Vr +

1

2
‖PrL‖

2
∥
∥
∥Ω̈d + εnr

∥
∥
∥

2

(15)

where PrL = Pr[03×3, I3×3]
T . Once the the eigenvalues

of Pr is appropriately designed through the pole assignment,

the attitude tracking error is UUB with the residual set de-

fined by: er ∈ {Vr ≤
‖PrL‖2‖Ω̈d+ǫnr‖

2
λmax(Pr)

2λmin(ςrPr−I)
}. The proof

of Theorem 2 is completed.

3.3.2 Middle layer: Generation of attitude command

The desired attitude is generated from the control input

of the position subsystem upi = [upi x, upi y, upi z] through

the following transformation:

TMi = mi

√

u2pi x + u2pi y + (g − upi z)
2

φdi = arcsin (mi(upi y cos(ψi)− upi x sin(ψi))/TMi)

θdi = arctan (upi x cos(ψi) + upi y sin(ψi)/(upi z − g))
(16)

The collective pitch input of the main rotor can be calculated

by PMi = TMi/(KTMω
2
e). The desired yaw angle of the

helicopter ψdi can be arbitrarily determined.

3.3.3 Top layer: Formation controller

The control objective of the formation controller is to ac-

quire the control input of the position subsystem upi such

that the formation tracking error epi = pi − ∆i − pd is

convergent. Because a distributed control scheme is em-

ployed, the formation tracking error can not be directly

obtained, instead, the formation error is defined as ξi =
∑n
j=1 aij (Λi −∆ij − Λj)+bi (Λi − Λd −∆i), where ∆ij

denotes the relative geometry between helicopter i and j, Λd
denotes the position of the leader, and ∆i denotes the rel-

ative geometry between helicopter i and the leader. Define

ep = [ep1, ep2, · · · , epn] and ξ = [ξ1, ξ2, · · · , ξn]. It can

be derived that ep = (H ⊗ I3×3)ξ, which implies that the

convergence of ep is equivalent to that of ξ.

The derivative of the formation error yields:

ξ̈i =
(∑n

j=1
aij + bi

)(

upi +
1

mi

RebiGTi

)

−
∑n

j=1
aij

(

∆̈ij + Λ̈j

)

− bi

(

Λ̈d + ∆̈i

) (17)

The formation controller for the ith helicopter is:

upi =
υpi +

∑n
j=1 aij

(

∆̈ij + Λ̈j

)

+ bi

(

Λ̈d + ∆̈i

)

∑n
j=1 aij + bi

υpi = −Ap1ξ̇i −Ap0ξi −WT
pih(xpi)

(18)

where Ap0 and Ap1 are calculated from from the same tech-

nique introduced in (12) and WT
pih(xpi) denotes the approx-

imation of 1
mi
RebiGTi.

With the formation controller presented in (18), the dy-

namic of the formation error is transformed into:

ξ̈i = −A1ξ̇i −A0ξi +
(∑n

j=1
aij + bi

)

ǫnp (19)

where ǫnp denotes the bounded lumped approximation and

estimation error of the neural observer. Define Ei =
∑n
j=1(aij + bi)ǫnp and E = [E1, E2, · · · , En]

T , the state-

space form of the formation error dynamic is established as

follows:
[
ξ̇

ξ̈

]

=

([
03×3 I3×3

−Ap0 −Ap1

]

⊗ In×n

)

︸ ︷︷ ︸

Φp

[
ξ

ξ̇

]

+

[
03n×1

E

]

(20)

Theorem 3 With the formation controller proposed in (18),

the formation error is UUB, i.e., the leader’s trajectory can be

tracked by the follower helicopters under desired geometry

and performance regulated by the design of Φp.

proof: The stability analysis is similar to that of Theorem 2,

the Lyapunov candidate is chosen as Vp = 1
2ξ
T
Ppξ, where

Pp is determined according to Lemma 2 such that ΦTp Pp +
PpΦp ≤ −ςpPp. Referring to the analysis of Theorem 2, the

following inequality holds:

V̇p ≤ −
λmin (ςpPp − I)

λmax (Pp)
Vp +

1

2
‖Pp‖

2
‖E‖

2
(21)

The formation error is UUB with the residual set defined by:

ξ ∈ {Vp ≤
‖Pp‖

2‖E‖2λmax(Pp)
2λmin(ςpPp−I)

}. The proof of Theorem 3 is

completed.
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Remark 3 The proposed scheme excels in regulating the

overall formation performance through the FASA with min-

imal tuning parameters. The pole matrices of the attitude

controller and the poles of the Z axis in the formation con-

troller should be first determined, and then the poles of the

formation controller of the X-Y axes shall be placed approx-

imately ten times closer to the imaginary axis compared with

the poles of the pitch-roll axes.

4 Numerical Simulation

A numerical simulation of the proposed FASA-based

scheme is conducted to illustrate its effectiveness. Three

helicopters are simulated to form a desired formation while

tracking the virtual leader.

The parameters of the helicopter are: m1,2,3 = 8kg,

J1,2,3 = diag{0.18, 0.34, 0.28}, cMb = cMa = 52Nm/rad,

hm = 0.24m, ym = lm = 0m, ht = 0.1m, lt = 0.9m,

QM = 4.6, KTM = 0.058, KTM = 0.001. The assigned

pole matrices of the attitude and position subsystem are:

Fr = diag{−2,−2,−3,−25,−25,−25}

Fp = diag{−0.3,−0.3,−1,−0.6,−0.6,−2.5}
(22)

The parameters of the neural observer in the attitude subsys-

tem are kr = 60, αr = 1, βr = 0.01. The parameters of

the neural observer in the attitude subsystem are kp = 10,

αp = 0.1, βp = 0.01. Note that the inputs of the RBF net-

works need to be scaled to the same level of magnitude. 100

RBF neurons are utilized in this paper.

The trajectory of the virtual leader is designed as

Λd = [15 sin(0.05t), 15 sin(0.05t − π/2) + 15,−t]T and

first/second-order filters are utilized to acquire the smooth

derivative of the command signals. The topology of the for-

mation is described by a12 = a13 = a21 = a23 = a31 =
a32 = 1, b1 = b2 = 8. The formation geometry is described

as ∆12 = [2,−2, 0]T , ∆13 = [2, 2, 0]T , ∆23 = [0, 4, 0]T ,

∆1 = [0, 0, 0]T .

The initial positions of helicopters are p1 ini = [0; 0; 0]T ,

p2 ini = [−8; 8; 0]T , p3 ini = [−8;−8; 0]T . Define the

multiplicative fault ratio of the ith helicopter as ρi =
[ρmi, ρai, ρbi]

T , and the additive fault of the ith helicopter

as δPi = [δPMi, δPai, δPbi]. The fault condition of the

helicopters are: ρ1 = [1, 1, 0.65]T , ρ2 = [1, 0.9, 0.8]T ,

ρ3 = [0.9, 0.8, 0.7]T , δP1 = [−0.02, 0, 0.01]T , δP2 =
[−0.02, 0.01, 0]T ,δP3 = [0, 0.02, 0.01]T . Helicopter 1,2 and

3 respectively encounters fault at t = 50s, t = 100s, and

t = 150s.
The tracking performance of the helicopter formation is

presented in Fig. 2 and Fig. 3. The control inputs of the

helicopters under faults are presented in Fig. 4. The attitudes

of helicopters are presented in Fig. 5. The estimation of the

RBF neural networks is illustrated in Fig. 6.

It can be concluded from the simulation results that the

controllers designed through the neural-based FASA ef-

fectively achieve the distributed formation control of heli-

copters. The attitude and position of helicopters are conve-

niently stabilized through the assignment of poles and the

complex dynamics caused by the intricate mechanic, aero-

dynamic, and actuator faults are efficiently approximated by

the neural observer. For example, as is revealed in Fig. 6, the

lumped uncertainty estimated by Ŵrihψ (i=1,2,3) denotes

Fig. 2: 3D view of formation trajectories.
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Fig. 3: Formation tracking errors of helicopters.

the reverse torque caused by the main rotor, which demon-

strates both the characteristic of helicopters and the perfor-

mance of the RBF neural observer.

To further illustrate the benefit of the neural observer, a

comparison experiment is conducted in Fig. 7. In the first

case, the weight matrices of the RBF neural networks are

randomly initialized. In the second case, the weight matri-

ces are trained from previous simulations in which no faults

occur to the helicopters. The convergence speed of the for-

mation tracking error in the second case is noticeably faster

than that in the first case, which demonstrates the advantage

of the neural observer in that the information from previous

missions can be utilized to optimize the next mission.

5 Conclusion

The distributed formation control of multiple helicopters

under actuator faults is addressed in this paper. The bene-

fits are threefold: 1) The formation control of helicopters is

resolved with FASA. The intricate dynamics of helicopters
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Fig. 4: Collective and cyclic pitch inputs of helicopters.
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Fig. 5: Attitudes of helicopters.
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Fig. 6: Estimations of lumped uncertainty by the RBF neural

networks.

are conveniently eliminated and reconfigured. 2) The neu-

ral observer provides an approximation of lumped uncer-

tainty, minimizing reliance on pre-acquired models and al-

lowing for the utilization of previous flight data. 3) Multi-

plicative and additive actuator faults are effectively compen-

sated through FASA without the need for an additional FTC

module design.
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Abstract: This paper explores a fully actuated system approach for interval observer design with applications in fault detection.
Leveraging the full-actuation property, a stabilization control law is initially implemented to cancel open-loop nonlinearities, re-
sulting in a constant high-order linear system. Subsequently, two interval observer design approaches are introduced. Employing
the parametric design method, the challenge of determining the observer gain and nonsingular transformation matrix is converted
into solving the generalized Sylvester matrix equation. This method allows for the free assignment of the eigenstructure of the
observer error system. Additionally, a fault detection logic is presented. Finally, the feasibility and effectiveness of the proposed
interval observers are demonstrated through an illustrative example.

Key Words: Fully actuated system approach, Interval observer, Fault detection, Parametric design

1 Introduction

Observers play a crucial role in control theory and engi-
neering, offering various methodologies for estimating sys-
tem states and unknown inputs. Commonly used observers,
including the Luenberger observer, Kalman observer (fil-
ter), proportional-integral observer, sliding mode observer,
and disturbance observer, typically provide point-wise esti-
mates. In contrast, the interval observer, initially introduced
in [1], distinguishes itself by furnishing both upper and lower
estimation bounds. These bounds encapsulate the actual
system state, and the interval observer excels in scenarios
where unknown input signals, such as noises, disturbances,
and parametric uncertainties, are present but bounded. Un-
like traditional observers, the interval observer places a mild
constraint by only requiring that the unknown inputs be
bounded, making it particularly adaptable. Statistical char-
acteristics like the covariance matrix are no longer necessary
for handling unknown inputs. Over the past two decades,
intensive research efforts have been dedicated to exploring
the capabilities of interval observers [2]. Notably, the inter-
val observer has demonstrated commendable performance in
state estimation and fault detection [3] [4].

While interval observers exhibit remarkable properties,
their design and applications have predominantly been con-
fined to linear systems. However, extending the utility of
interval observers to nonlinear systems remains challenging.
In addressing this issue, one approach involves transforming
the original nonlinear system into local linear systems, such
as linear parameter-varying systems or Takagi-Sugeno fuzzy
systems [5]. Another avenue for nonlinear cases requires the
consideration of a specific class of weak nonlinear systems
[6]. Notably, a recent method known as the fully actuated
system approach, originally proposed by Duan [7], presents

*Corresponding author. This work was supported by the Science, Tech-
nology, and Innovation Commission of Shenzhen Municipality, China, un-
der Grant No. ZDSYS20220330161800001, and the Shenzhen Science and
Technology Program under Grant No. KQTD20221101093557010. This
work was also supported by the Science Center Program of the National
Natural Science Foundation of China (NSFC) under Grant No. 62188101,
as well as the NSFC under Grant No. 62350055.

a novel solution. The fully actuated system approach op-
erates parallel to the well-established state-space method,
transforming the (high-order) physical dynamic model into
a fully actuated model from a mathematical perspective. In
contrast to the state-space method, which converts the high-
order model into a set of first-order dynamic equations, the
newly proposed fully actuated system method can straight-
forwardly eliminate all nonlinearities within the open-loop
system. Moreover, it allows for the free assignment of the
closed-loop system’s eigenstructure in alignment with spe-
cific performance objectives [8]. This unique characteris-
tic streamlines the design of controllers and observers, gar-
nering considerable attention within the control community.
The significance of the fully actuated system method is ex-
emplified in recent studies. For instance, [9] integrates the
high-order fully actuated system approach with distributed
learning to address secondary control issues in islanded DC
microgrids. Additionally, for nonideal time-varying high-
order fully actuated systems, [10] proposes an innovative
low-power observer-based fault-tolerant controller frame-
work.

To the best of the authors’ knowledge, interval observer
design and its application to fault detection based on the
fully actuated system approach have not been explored to
date. Given the advantages of interval observers, embarking
on this endeavor for fully actuated systems holds significant
merit. The contributions of this paper can be summarized as
follows:

1) Two interval observer design methods are introduced
for nonlinear systems, employing the fully actuated sys-
tem approach, for the first time.

2) The parametric design method is used to design the ob-
server gain and similarity transformation matrix, which
offers all degrees of design freedom and facilitates the
freely assignable eigenstructure.

The paper is structured as follows. Section 2 introduces
the nonlinear fully actuated system and preliminaries. Sec-
tion 3 presents two interval observer design approaches, gain
calculation, and fault detection method. Section 4 uses an
example to demonstrate the effectiveness of the proposed in-
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terval observers, in terms of state estimation and fault detec-
tion. Section 5 concludes the paper.

In the paper, some frequently used notations are prede-
fined here. The symbols R,C,R+ and Z+ denote the real
number set, the complex number set, the nonnegative real
number set, and the nonnegative integer set, respectively.
The symbols 0 and I represent the null matrix and iden-
tity matrix of appropriate dimensions, respectively. For
A ≥ B,A,B ∈ Rm×n, it means each element [A]ij ≥
[B]ij , i = 1, 2, . . .m, j = 1, 2, . . . n. For vector x ∈ Rn

and matrices Ai ∈ Rn×n, i = 1, 2, . . .m,

x(0˜m) =
[
xT ẋT · · ·

(
x(m)

)T ]T
,

A0˜m =
[
A0 A1 · · · Am

]
,

Φ (A0˜m) =


0 I

. . .
I

−A0 −A1 · · · −Am

 .

2 System Description and Preliminaries

Consider the following fully actuated system:

{
x(m) = f

(
x(0˜m−1)

)
+B

(
x(0˜m−1)

)
u+ Efa +Dw

y = Cx(0˜m−1),
(1)

where x ∈ Rn is the system state vector, u ∈ Rr is the
control input vector, y ∈ Rp is the measurement output vec-
tor, fa ∈ Rϑ is the actuator fault vector, and w ∈ Rq is the
bounded disturbance vector. f (·) and B (·) are sufficiently
differentiable nonlinear vector and matrix functions, respec-
tively, and the following full-actuation condition holds:

detB
(
x(0˜m−1), t

)
̸= 0, ∀x, ẋ, . . . x(m) ∈ Rn, t ≥ 0.

The matrices B
(
x(0˜m−1)

)
∈ Rn×r, C ∈ Rp×nm, E ∈

Rn×ϑ, D ∈ Rn×q . Assume all the state can be obtained
from the output channel, i.e., rankC = p = nm.

Owing to the presence of nonlinearities, designing an
effective interval observer that rigorously bounds the ac-
tual system state between upper and lower estimates
(x(0˜m−1) ≤ x(0˜m−1) ≤ x̄(0˜m−1)) proves challenging.
Consequently, establishing a linearized framework becomes
imperative for interval observer design. To this end, we com-
mence by designing the following stabilization controller:{

u = −B−1
(
x(0˜m−1)

) (
A0˜m−1x

(0˜m−1) + u∗)
u∗ = f

(
x(0˜m−1)

)
− v.

(2)

where Ai ∈ Rr×r, i = 0, 1, . . . ,m − 1 are parametric ma-
trices to be designed and v ∈ Rr is the external signal.

Substituting (2) into system (1), we obtain a high-order
linear closed-loop system

x(m) +A0˜m−1x
(0˜m−1) = v +Dw, (3)

which can be written in the following state-space form:

ẋ(0˜m−1) = Φ(A0˜m−1)x
(0˜m−1) + Γv + D̊w, (4)

where Γ =


0
...
0
I

 , D̊ =


D0

...
Dm−2

D

.

Note that some additional disturbance coefficient matrices
D0, . . . Dm−2 are added in (4). The following definitions,
assumptions, and lemmas are necessary for interval observer
design.

Definition 1. A Matrix is called a Hurwitz matrix if all its
eigenvalues have negative real parts. A matrix is called a
Metzler matrix if its off-diagonal elements are nonnegative.

Assumption 1. The initial system state x(0˜m−1) (0) and the
disturbance w are unknown but bounded such that

x(0˜m−1) (0) ∈
[
x(0˜m−1) (0) , x̄(0˜m−1) (0)

]
, w ∈ [w,w] .

Lemma 1. [11] Any solution of the system

ẋ = Ax+ w, x ∈ Rn, w : Z+ → Rn
+,

with a Metzler matrix A ∈ Rn×n, is elementwise nonnega-
tive for all t ≥ 0, provided that x (0) ≥ 0.

Lemma 2. [6] Given vectors x, x̄, x ∈ Rn with x ≤ x ≤ x̄
and a constant matrix A ∈ Rm×n, the following inequality
holds:

A+x−A−x̄ ≤ Ax ≤ A+x̄−A−x,

where A is expressed as the difference of two element-
wise nonnegative matrices A+ and A−, i.e., A = A+ −
A−, A+, A− ≥ 0.

3 Main Results

3.1 Interval Observer Design
The interval observer provides upper and lower estimation

for system states, that is, the observer consists of two parts:
upper bound observer and lower bound observer. The sys-
tem matrix of the error dynamic system should be not only
Hurwitz stable but also Metzler. In the subsequent content,
two possible design methods are provided.

Based on the obtained linear closed-loop system (4), the
interval observer can be designed as

ẋ
(0˜m−1)

= Φ(A0˜m−1) x̄
(0˜m−1) + L

(
y − Cx̄(0˜m−1)

)
+Γv + D̊+w − D̊−w

ẋ(0˜m−1) = Φ(A0˜m−1)x
(0˜m−1) + L

(
y − Cx(0˜m−1)

)
+Γv + D̊+w − D̊−w,

(5)
where L ∈ Rnm×p is the observer gain to be determined,
D̊+ and D̊− are two elementwise nonnegative matrices sat-
isfying D̊ = D̊+ − D̊−, D̊+, D̊− ≥ 0. The following theo-
rem states the existence of interval observer (5).

Theorem 1. Under the Assumption 1, if there exist a se-
ries of parametric matrices A0˜m−1 and an observer gain
matrix L ∈ Rnm×p such that Φ (A0˜m−1)− LC is simulta-
neously Hurwitz stable and Metzler, system (5) is an interval
observer for the nonlinear fully actuated system (1) such that
x(0∼m−1) ≤ x(0∼m−1) ≤ x(0∼m−1),∀t ≥ 0.

Proof. Define the upper and lower bound errors by
ē(0˜m−1) = x̄(0˜m−1) − x(0˜m−1), e(0˜m−1) = x(0˜m−1) −
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x(0˜m−1), respectively. Calculate their derivatives and then
the error system of interval observer (5) is

ė
(0˜m−1)

= (Φ (A0˜m−1)− LC) ē(0˜m−1)

+D̊+w − D̊−w − D̊w

ė(0˜m−1) = (Φ (A0˜m−1)− LC) e(0˜m−1)

+D̊w − D̊+w + D̊−w.

Lemma 2 provides that

D̊+w − D̊−w − D̊w ≥ 0,

D̊w − D̊+w + D̊−w ≥ 0.

Therefore, according to Lemma 1, the error system is asymp-
totically stable and elementwise nonnegative, i.e.,

lim
t→∞

e(0∼m−1) = ϵ1 ≥ 0,

lim
t→∞

e(0∼m−1) = ϵ2 ≥ 0,

provided that the error system matrix Φ (A0˜m−1) − LC is
Hurwitz and Metzler, as well as Assumption 1 holds.

The requirement of both Hurwitz and Metzler for the er-
ror system matrix Φ (A0˜m−1) − LC is restrictive. The
following text provides another interval observer based on
the similarity transformation, which reduces the design dif-
ficulty. Define a nonsingular transformation x(0˜m−1) =
V z(0˜m−1), V ∈ Rnm×nm. The transformed state-space
system is derived as

ż(0˜m−1) = Φ̃ (A0˜m−1) z
(0˜m−1) + Γ̃v + D̃w, (6)

where Φ̃ = V −1Φ (A0˜m−1)V, Γ̃ = V −1Γ, D̃ = V −1D̊.
The newly proposed interval observer is as follows:

ż
(0˜m−1)

= Φ̃z̄(0˜m−1) + L̃
(
y − C̃z̄(0˜m−1)

)
+Γ̃v + D̃+w − D̃−w

ż(0˜m−1) = Φ̃z(0˜m−1) + L̃
(
y − C̃z(0˜m−1)

)
+Γ̃v + D̃+w − D̃−w

x̄(0˜m−1) = V +z̄(0˜m−1) − V −z(0˜m−1)

x(0˜m−1) = V +z(0˜m−1) − V −z̄(0˜m−1),

(7)

where L̃ = V −1L, C̃ = CV . In addition, D̃+ =(
V −1D̊

)+

and D̃− =
(
V −1D̊

)−
are two elementwise

nonnegative matrices satisfying D̃ = D̃+− D̃−, D̃+, D̃− ≥
0. The next theorem explains the existence of interval ob-
server (7).

Theorem 2. If there exist a series of parametric matrices
A0˜m−1, an observer gain matrix L ∈ Rnm×p, and a non-
singular matrix V ∈ Rnm×nm, such that Φ̃ (A0˜m−1)− L̃C̃
is simultaneously Hurwitz stable and Metzler, with the As-
sumption 1 and

z̄(0˜m−1) (0) = U+x̄(0˜m−1) (0)− U−x(0˜m−1) (0) , (8)

z(0˜m−1) (0) = U+x(0˜m−1) (0)− U−x̄(0˜m−1) (0) , (9)

where U = V −1, then system (7) is an interval observer for
the nonlinear fully actuated system (1). The original system
state estimation is obtained by{

x̄(0˜m−1) = V +z̄(0˜m−1) − V −z(0˜m−1)

x(0˜m−1) = V +z(0˜m−1) − V −z̄(0˜m−1),

which guarantees the bounded condition x(0∼m−1) ≤
x(0∼m−1) ≤ x(0∼m−1),∀t ≥ 0.

Proof. The upper and lower errors are defined as
ē(0˜m−1) = z̄(0˜m−1) − z(0˜m−1), e(0˜m−1) =
z(0˜m−1) − z(0˜m−1). Then, the error dynamic system can
be calculated as follows:

ė
(0˜m−1)

=
(
Φ̃ (A0˜m−1)− L̃C̃

)
ē(0˜m−1)

+D̃+w − D̃−w − D̃w

ė(0˜m−1) =
(
Φ̃ (A0˜m−1)− L̃C̃

)
e(0˜m−1)

+D̃w − D̃+w + D̃−w.

According to Lemma 2, we have

D̃+w − D̃−w − D̃w ≥ 0,

D̃w − D̃+w + D̃−w ≥ 0.

Considering Lemma 1, the error system is asymptotically
stable and elementwise nonnegative, i.e.,

lim
t→∞

e(0∼m−1) = ε1 ≥ 0,

lim
t→∞

e(0∼m−1) = ε2 ≥ 0,

provided that the error system matrix Φ̃ (A0˜m−1) − L̃C̃ is
Hurwitz and Metzler, as well as the initial condition (8), (9)
and Assumption 1 hold.

3.2 Gain Calculation
In the whole procedure, we need to first design a sta-

bilization control law, achieving linear closed-loop system
(3) with arbitrarily assignable parametric matrices, and then
construct interval observer, as shown in (5) and (7). There-
fore, there are two design aspects to be considered:

• design the parametric matrices A0˜m−1; and
• design the observer gain matrix L and the nonsingular

transformation matrix V (only in the second observer).
To design parametric matrices A0˜m−1, we take advan-

tage of the following lemma.

Lemma 3. [7] For an arbitrarily selected F ∈ Rmn×mn,
all the matrix A0˜m−1 and the nonsingular matrix V ∈
Rmn×mn satisfying

Φ (A0˜m−1) = V FV −1

are given by

A0˜m−1 = −ZFnV −1 (Z,F ) , (10)

V = V (Z,F ) =


Z
ZF

...
ZFn−1

 , (11)

where Z ∈ Rm×mn is an arbitrary parameter matrix
satisfying

detV (Z,F ) ̸= 0.

According to (10), the parametric matrices A0˜m−1 can
be directly computed by choosing an arbitrary matrix Z, as
long as the constraint (11) is not violated.
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For interval observer (5), an appropriate observer gain
makes Φ (A0˜m−1) − LC not only Hurwitz but also Met-
zler. Making Φ (A0˜m−1)− LC stable implies similarity to
a matrix whose eigenvalues reside on the left-hand side of
the complex plane; that is,

(Φ (A0˜m−1)− LC)
T
˜FT ,

where eig (F ) = {si | Re (si) < 0, i = 1, 2, . . . , nm}. Fur-
ther, it comes to

V −T
(
ΦT (A0˜m−1)− CTLT

)
V T = FT .

Pre-multiplying V and letting WT = LTV T , we obtain the
generalized Sylvester equation

ΦT (A0˜m−1)V
T +

(
−CT

)
WT = V TFT . (12)

The generalized Sylvester equation has parametric solutions
for V and W . By adjusting the free matrix Z, the gain matrix
L = V −1W , and it makes Φ (A0˜m−1) − LC Hurwitz and
Metzler. The readers can refer to [12] for more details about
solving the generalized Sylvester matrix equation.

In the above process, if system (4) is observable, all the so-
lutions to the generalized Sylvester equation (12) guarantee
Φ (A0˜m−1)−LC a Hurwitz matrix; however, it is notewor-
thy that only a subset of solutions achieves the property of
making Φ (A0∼m−1)−LC a Metzler matrix simultaneously,
and in some instances, no solutions fulfill this criterion. In
such scenarios, we resort to the second interval observer (7),
which relies on a similarity transformation. The design con-
dition for interval observer (7) naturally arises in

V −T (Φ (A0˜m−1)− LC)
T
V T = FT .

The above equation can be equivalently transformed into
a generalized Sylvester equation, akin to (12). By en-
suring the appropriateness of a specified F , namely, that
F is both Hurwitz and Metzler, the error state matrix
V −1 (Φ (A0∼m−1)− LC)V follows suit.

3.3 Fault Detection
This section realizes the fault detection by employing the

proposed interval observers (5) and (7). Since the interval
observer provides the upper and the lower state estimation
bounds, it is easy to get the estimation bounds for the output
vector, by y = Cx̄(0˜m−1) and y = Cx(0˜m−1). Then, the
upper and the lower residuals are defined by{

r̄ = Cx̄(0˜m−1) − Cx(0˜m−1)

r = Cx(0˜m−1) − Cx(0˜m−1).

An intuitive method to detect fault is to check if

0 ∈ [r, r̄] .

If 0 ∈ [r, r̄], it can be inferred that the system operates at the
healthy mode, and if 0 /∈ [r, r̄], some faults may occur in the
system. As a result, the traditional threshold generation is no
longer needed here.

4 Illustrative Example

In this section, a simple example adapted from [13] is
used to demonstrate the feasibility and effectiveness of the
proposed interval observers. Readers are invited to consult
the authors’ GitHub repositories at https://github.com/WJ-
Ren/FASA-Set.git for access to the MATLAB codes. Con-
sider the following third-order fully actuated system:{ ...

x = 2
(
ẋ2 + xẍ

)
θ + u+ fa +Dw

y = Cx(0˜2),

where θ = 1 and C = I3. Based on Lemma 3, let F =
diag (−1,−2,−3) and Z =

[
−1 2 −1

]
, we acquire

A0˜2 =
[
6 11 6

]
. So that the stabilization control law

is determined by

u = −
[
6 11 6

]
x(0˜2) − 2

(
ẋ2 + xẍ

)
+ v,

resulting in the following linear closed-loop system

x(3) +
[
6 11 6

]
x(0˜2) = v +Dw.

The above system can be equivalently written in the form of

ẋ(0˜2) = Φ
([

6 11 6
])

x(0˜2) + Γv + D̊w,

where Γ =
[
0 · · · 0 1

]T
, D̊ =

[
D0 D1 D

]T
.

Here, we choose D̊ =
[
1 −1 −1

]T
, and v =

20 sin t+ 20.
For the interval observer (5), let

F1 = diag
([

−15 −16 −17
])

,

Z1 =

 −1 0 1
0 −1 1
3 0 −1

 .

By solving the generalized Sylvester matrix equation (12),
we obtain

L1 =

 16.2605 −0.3926 −3.9311
−0.0124 15.9073 0.8354
−6.2199 −11.3998 9.8322

 ,

V1 =

 −6.2012 −22.8822 −22.4942
−0.4189 15.5347 −0.4030
−1.8400 −7.0195 4.3742

 ,

which lead to

Φ (A0˜2)−LC =

 −16.2605 1.3926 3.9311
0.0124 −15.9073 0.1646
0.2199 0.3998 −15.8322

 .

Upon inspecting this matrix, it becomes evident that it is a
Metzler matrix, as its off-diagonal elements are nonnegative,
and its eigenvalues align with F1. In such instances, a spe-
cific matrix Z1 is deliberately chosen, rendering Φ (A0∼2)−
LC a Metzler matrix, and concurrently, Hurwitz. Neverthe-
less, as the system’s order or dimension increases, the task
of selecting a suitable free matrix Z1 might become more
challenging. To address this concern, the interval observer
(7) was introduced.
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Fig. 1: State estimation by interval observer (5).

To design interval observer (7), let F2 = F1 and Z2 = I3
and then solve equation (12), producing

L2 =

 14.9981 1.0630 −0.0050
0.0316 16.0595 1.0950
−5.3148 −10.4344 10.9424

 ,

V2 =

 −15.0314 −1.0640 −0.0076
−0.0280 −16.0896 −1.1110
5.3111 10.4305 −10.9929

 .

In the simulation, the initial system state x(0˜2) (0) =[
x (0) ẋ (0) ẍ (0)

]T
is randomly selected in [−1, 1].

The initial state estimation value of the interval observer
(5) is x̄(0˜2) (0) = −x(0˜2) (0) =

[
2 2 2

]T
. Us-

ing (8) and (9), the initial value of the interval ob-
server (7) is calculated as z̄(0˜2) (0) = −z(0˜2) (0) =[
0.1424 0.1331 0.3383

]T
. The unknown input is a

time-varying random signal generated in [−4, 4]; thus, the
upper and lower bounds w = −w = 4. The faulty scenario
is set as

fa =

{
0, 0 ≤ t < 2
10, t ≥ 2.

The interval estimation outcomes generated by the pro-
posed interval observers (5) and (7) are illustrated in Figs.
(1) and (2), respectively. Moreover, the fault detection re-
sults produced by interval observers (5) and (7) are presented
in Figs. (3) and (4), respectively. Note that if 0 /∈ [ri, ri]
holds for any of i = 1, 2, 3, fault happens. These results col-
lectively affirm that the suggested interval observers exhibit
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Fig. 2: State estimation by interval observer (7).
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Fig. 3: Fault detection results by interval observer (5).
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Fig. 4: Fault detection results by interval observer (7).

good performance in terms of both state estimation and fault
detection via the fully actuated system approach.

5 Conclusion

This paper delved into the fully actuated system approach
for interval observer design with applications in fault detec-
tion. Based on the full-actuation property, a nonlinear sta-
bilization control law was employed to eradicate all non-
linearities within the open-loop system. Building upon the
constant linear closed-loop system, we introduced two inter-
val observers, devising their gain matrices through a para-
metric approach centered around the generalized Sylvester
matrix equation. The efficacy of the proposed interval ob-
servers in state estimation and fault detection was demon-
strated through an illustrative example. The scope of fu-
ture research encompasses the exploration of set-theoretic
observer designs, active fault diagnosis techniques, and the

development of fault-tolerant control strategies tailored for
nonlinear systems by the fully actuated system approach.
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Abstract: A novel trajectory replanning method is proposed to solve the path planning problem for autonomous robots under 
actuator faults which is intended to cooperate with the existing fault-tolerant control of nonlinear systems to ensure autonomous 
robots' safe and stable operation. This method proposes formulas to estimate and correct remaining time and establishes an 
optimal time allocation objective function and optimal trajectory coefficient objective function to obtain the replanned trajectory. 
The simulation results show the method’s effectiveness in the replanned trajectory in the case of actuator faults. 
Key Words: Autonomous Robot, Trajectory replanning, Actuator faults 

 
 

1 Introduction 
Autonomous robots have gained increasing attention in 

recent years due to their ability to plan and follow the 
optimal trajectory to perform the tasks. For example, 
unmanned aerial vehicles can automatically inspect high-
voltage circuits, sweeping robots can autonomously 
complete cleaning tasks, and unmanned cars can drive 
themselves to their destination [1-3]. Autonomous robots are 
nonlinear multi-input and multi-output systems with strong 
coupling and underactuated properties. These inherent 
characteristics make it vulnerable to system component 
faults. Considering autonomous robots' low-cost and non-
redundant architecture, actuator faults are common and can 
be catastrophic [4]. Therefore, developing a fault-tolerant 
control (FTC) method for actuator faults is essential. 

In the past decades, a growing requirement for system 
safety has inspired extensive research on FTC. Generally, 
FTC can be classified into two categories: the passive FTC 
and the active FTC. Many sophisticated control methods 
have been proposed, including fixed-time control [5], 
sliding-mode control (SMC) [6], model predictive control 
(MPC) [7] and neural network control [8], etc. For instance, 
an adaptive SMC scheme is proposed in [9] to compensate 
for the adverse effects of actuator faults. A single-layer 
neural network is introduced in [10] to deal with the 
uncertainty of the system model and a passive FTC scheme 
for attitude tracking is designed with backstepping control 
method. A robust fault estimation observer is given in [11] 
to obtain the actuator fault information, and a novel active 
FTC scheme for spacecrafts is designed with full state 
constraints and input saturation. 

Despite the significant progress made in recent years, 
outstanding issues still need to be resolved in FTC design for 
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nonlinear systems. For instance, existing FTCs do not 
establish the relationship between the reference trajectory 
and remaining resources (such as residual thrust); moreover, 
they do not provide solutions regarding the precise tracking 
of the original trajectory by the faulty system. In practical 
applications, the existing FTCs may drive the actuators to 
their physical limits and force them to work beyond their 
normal operating load. Zhou et al. considers the safety 
control problem of a quadrotor UAV under actuator faults 
and external disturbances based on quantifying system 
performance and safety margins, but the reference trajectory 
is a deterministic exponential function which does not 
conform to the general form of trajectory planning [12]. 

Motivated by these issues, a novel trajectory replanning 
method for autonomous robot under actuator faults is 
presented in this paper. It is intended to cooperate with the 
existing FTC method of nonlinear systems to ensure 
autonomous robots' safe and stable operations. Firstly, the 
remaining execution time of the faulty robot is initially 
estimated based on the autonomous robot's differential 
flatness transformation and the actuator's remaining ability. 
Secondly, the optimal time allocation objective function is 
proposed to get the optimal time. Thirdly, the optimal 
trajectory coefficient objective function is proposed, and the 
offset penalty factor is introduced to obtain the optimal 
trajectory coefficient. Then, fault thrust constraint is used to 
correct the remaining execution time. Finally, the replanned 
trajectory that satisfies all constraints is obtained. 

The remainder of the paper is organized as follows. 
Section 2 provides the preliminary and problem formulation. 
In Section 3, we introduce the trajectory replanning method. 
Section 4 provides simulation experiments and applies them 
to tail-sitter aircraft to illustrate the effectiveness of the 
proposed method. Section 5 concludes this paper. 

Key Laboratory of Mechanical Transmission for Advanced Equipment of 
Chongqing University (Grant No. SKLMT-ZZKT-2022M01). 
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2 Preliminaries and Problem Formulation 
Before proceeding with the detailed design of the 

proposed methodology, the following two points should be 
noted: 

(1) The fault time has been recorded and the fault factor 
∧𝑖 estimated by the adaptive law has been obtained before 
estimating the remaining execution time. 

(2) Due to the errors in the estimated model parameters 
(e.g., mass and inertia matrix), the thrust values of the 
individual motors on the path obtained by differential 
flatness transformation only approximate the actual thrust 
values. 

When the actuator fault factor is ∧𝑖<∧𝑓 , the FTC method 
tracks the replanned trajectory. To determine when to 
choose the replanned trajectory, using the fault factor ∧𝑓  
estimated from expert experience is inaccurate. The 
auxiliary evaluation index 𝑃𝑑  is introduced in this method to 
solve the above problem. 

When an actuator fault occurs in an autonomous robot, the 
execution time of the standard actuator is different from the 
execution time with the fault because only part of the 
actuator’s effectiveness is retained. Therefore, a reasonable 
extension of the original execution time can compensate for 
the delay caused by actuator faults. This method presents an 
estimation and correction method for calculating the 
remaining execution time of the autonomous robot. 

Unreasonable time allocation can result in overshooting 
and unstable deviations in state variables such as velocity, 
acceleration, and jerk for the autonomous robot. To address 
this issue, this method proposes a new optimal allocation 
method that considers the following two aspects. 

(1) During the straight segment, it is essential to ensure 
that the autonomous robot moves at a consistent speed. 

(2) During the steering segment, it is recommended to 
reduce the rate of state variable changes of the autonomous 
robot to prevent loss of control. 

The 3D trajectory of an autonomous robot can be 
expressed as polynomials [13]. 

⎩⎪
⎪
⎨
⎪
⎪⎧ ∑ 𝒑1𝑖(𝑡 − 𝑇0)𝒊   ,   𝑇1 ≤ 𝑡 < 𝑇2

𝑛
𝑖=0

∑ 𝒑2𝑖(𝑡 − 𝑇1)𝒊   ,   𝑇2 ≤ 𝑡 < 𝑇3
𝑛
𝑖=0

⋮

∑ 𝒑(𝑚−1)𝑖(𝑡 − 𝑇𝑚−1)𝒊   ,   𝑇𝑚−1 ≤ 𝑡 ≤ 𝑇𝑚
𝑛
𝑖=0

(1) 

where 𝒑1𝑖, 𝒑2𝑖, … , 𝒑(𝑚−1)𝑖 are the polynomial coefficient of 
the trajectory to be solved. 𝑚 is the number of path points, 
and 𝑇0, 𝑇1, … , 𝑇𝑚−1 is the time required for each segment 
of the trajectory. 

Using the above Eq.(1) to optimize the replanned 
trajectory will deviate from the original trajectory. If the 
offset is too large, this can result in a lack of stability in the 
differential fault output and reduce the robustness of the 
autonomous robot. The trajectory offset penalty function is 
added to overcome the issue when resolving the polynomial 
coefficients to derive the ideal trajectory coefficients. Fig.1 
shows the schematic for the replanned 2D trajectory of the 
autonomous robot. 

where points A, B, C and D are the task points that the 
autonomous robot needs to pass through; segment AD is the 
original planned trajectory, and segment FD is the replanned 
trajectory; point F is the actuator fault’s moment. 

 

Fig. 1: The schematic for replanned 2D trajectory 

3 Method of Path Replanning  
In this section, a method for generating an optimized path 

is given by introducing an auxiliary evaluation index 𝑃𝑑 , 
predicting and correcting the remaining execution time, 
establishing an optimal time allocation function and 
establishing a trajectory coefficient optimal function. 

3.1 Auxiliary Evaluation 𝑷𝒅 

When an actuator fault occurs in the autonomous robot 
(e.g. ∧𝑖<∧𝑓 ), it is necessary to choose the replanned 
trajectory. However, due to the model error and disturbance, 
the estimated fault factor ∧𝑖  cannot converge to the true 
value and can only be used as an approximation. If the thrust 
obtained from the differential flatness transformation is still 
within the range of 𝑇𝑖 <∧𝑖 𝑇max, it will significantly increase 
the remaining execution time after choosing the replanned 
trajectory [14]. To determine when to choose the original 
trajectory of the replanned, only relying on the fault factor 
∧𝑓  estimated by expert experience is inaccurate. Therefore, 
an auxiliary evaluation index 𝑃𝑑  is established as follows: 

𝑃𝑑 = ∑ 𝐻(𝑇𝑖 −∧𝒊 𝑇max) (2) 

where 𝑃𝑑  denotes the extent to which the ideal thrust value 
exceeds the constrained value; 𝑇𝑖 is the motor thrust value 
after differential flatness transformation of the trajectory and 
𝑇max  is the maximum value of the motor thrust. 𝑯( )  is 
defined as follows: 

𝐻(𝑇𝑖 −∧𝒊 𝑇max) = {
0, 𝑇𝑖 −∧𝒊 𝑇max < 0
1, 𝑇𝑖 −∧𝒊 𝑇max ≥ 0 (3) 

When the auxiliary evaluation index 𝑃𝑑 ≤ 2𝜉∆𝑡𝑓 /∆𝑡, the 
autonomous robot tracks the original trajectory. When the 
auxiliary evaluation index 𝑃𝑑  2𝜉∆𝑡𝑓 /∆𝑡 , autonomous 
robot tracks the replanned trajectory.  𝜉  is the evaluation 
coefficient, which is generally taken as 0.2. ∆𝑡𝑓  is the 
remaining time of the original trajectory, and ∆𝑡 is the time 
for each calculation of the ideal thrust value. 

3.2 Predicting and Correcting the Execution Time 

Based on the schematic in Fig.1, the normal remaining 
execution time is represented by ∆𝑡𝑓

𝑛 = 𝑡𝑘 − 𝑡𝑓 .  
For autonomous robots, it’s important to note that the 

motor thrust does not vary linearly with the moving speed 
due to the nonlinear coupled dynamics. Suppose the 
remaining time is estimated using the fault factor alone, as 
shown in Eq (4). In that case, the extended time will likely 
still be insufficient, and the value of motor thrust 
transformed by the differential flatness will likely exceed the 

A(t0)

B(t1) C(t2)

D(tk)

F(tf )
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constrained thrust value. Therefore, a thrust correction term 
is introduced to make the necessary corrections to estimate 
the remaining execution time ∆𝑡𝑓

𝑝 . 

∆𝑡𝑓
𝑝 = 1

𝛽 ∧𝑚𝑎𝑥
∆𝑡𝑓

𝑛 (4) 

∆𝑡𝑓
𝑝 = 1

𝛽 ∧𝑚𝑎𝑥
∆𝑡𝑓

𝑛
(1 +

𝛼(𝑇𝑖−𝑚𝑎𝑥 −∧𝑚𝑎𝑥 𝑇max)
∧𝑚𝑎𝑥 𝑇max ) (5) 

where 𝛼, 𝛽 > 0  is the gain parameter; ∧𝑚𝑎𝑥= max{∧𝑖} 
denotes the maximum value of the actuator fault factor; 
𝑇𝑖−𝑚𝑎𝑥 denotes the maximum value of the motor thrust on 
the whole segment of the trajectory. 

The above equation shows that if the maximum value of 
motor thrust exceeds the maximum thrust value of the faulty 
motor, the remaining execution time will be further extended. 

Once the preliminary estimate of the remaining execution 
time has been obtained, it is necessary to follow the two 
steps of time allocation optimization in Section 3.3 and 
trajectory coefficient optimization in Section 3.4. Afterward, 
perform the differential flatness transformation again to 
determine the value of the motor thrust on the replanned 
trajectory and verify whether it satisfies the fault thrust 
constraints. If this condition is not satisfied, the remaining 
execution time will need to be corrected to obtain a 
replanned trajectory that meets the constraints. The 
corrected remaining execution time ∆𝑡𝑓

𝑝  is defined as follow: 

∆𝑡𝑓
𝑝 = 𝑡𝑓

𝑝 + 𝑣𝐸
𝐸𝑚𝑎𝑥 − 𝑝𝑡𝑠

𝑝𝑡𝑠
(6) 

where 𝑝𝑡𝑠  0  is the threshold factor and 𝑣𝐸 > 0  is the 
correction factor; let 𝐸𝑚𝑎𝑥 = 𝑇𝑖𝑚𝑎𝑥 −∧𝑚𝑎𝑥 𝑇𝑚𝑎𝑥. 

If 𝐸𝑚𝑎𝑥 ≤ 𝑝𝑡𝑠 , it indicates that the time allocation is 
reasonable and no time correction is needed. If 𝐸𝑚𝑎𝑥  𝑝𝑡𝑠, 
it means that the motor thrust value on a segment of the 
replanned trajectory exceeds the constrained thrust value, 
and an increase in the remaining execution time ∆𝑡𝑓

𝑝  is 
required. 

3.3 Optimal Time Allocation 

Establish the time allocation function and consider the 
effects of the snap constraint term, uniform velocity 
constraint term, and deflection constraint term. The optimal 
time allocation objective function is as follows: 

minimize
𝑡

𝐹TA = 𝛾1𝐽
snap1

+ 𝛾2𝐽
avg

+ 𝛾3𝐽
ψ

 

subject to ∑ 𝑇𝑖 = ∆𝑡𝑓
𝑝 (7) 

where 𝐽snap1  denotes the trajectory smoothing constraint 
term in the Minimum-Snap algorithm, but each segment 
times is unknown in Eq.(7); 𝐽avg  denotes the uniform 
velocity constraint term and 𝐽ψ denotes the deflection angle 
constraint term; 𝛾1, 𝛾2, 𝛾3 denote the weighting coefficients, 
the velocity penalty factor and the deflection rate penalty 
factor for 𝐽snap1, 𝐽avg and 𝐽ψ, respectively. 
i) Constraint term 𝑱𝐬𝐧𝐚𝐩𝟏. 𝐽snap1 is the 4th-order derivative 
integral of the trajectory position in the Minimum-Snap 
algorithm. The algorithm means minimizing the differential 
dynamics and saving energy. Therefore, the smaller the item, 
the lower the theoretical energy consumption of the 
trajectory. 𝐽snap1 expression is as follows: 

𝐽snap1 = [

𝒑1
⋮

𝒑𝑀
]

T

[

𝑄1(𝑡1) ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑄𝑀 (𝑡𝑀 )] [

𝒑1
⋮

𝒑𝑀
] (8) 

where 𝑄1(𝑡1), ⋯ , 𝑄𝑀 (𝑡𝑀 ) is a polynomial function about 
time 𝑡. 
ii) Constraint term 𝑱𝐚𝐯𝐠. 𝐽avg is the effect of the distance 
between the trajectory points on the time allocation. The 
smaller this term is, the more it conforms to the principle of 
distribution by distance and ensures uniform velocity. Its 
expression is as follows: 

𝐽avg = ∑ Exp
(

𝑘(𝑇𝑖+1 − 𝑇𝑖) −
∆𝑡𝑓

𝑝 . 𝑙𝑖

𝐿sum )
(9) 

where 𝐿sum is the total original trajectory length from the 
fault point to the endpoint; 𝑙𝑖 is the length of the Euclidean 
distance between the current trajectory point and the next 
trajectory point; 𝑇𝑖 is the time spent on each segment of the 
trajectory; 𝑘 > 0 is the gain parameter. 
iii) Constraint term 𝑱𝛙. 𝐽ψ is the effect of the known rate 
of the deflection angle on the time allocation, and the 
expression is as below: 

𝐽ψ = ∑ �̈�(𝑡𝑖) (10) 

where �̈�(𝑡𝑖)  denotes the rate of change of the deflection 
angular velocity 

The values of 𝛾1, 𝛾2, and 𝛾3 must be chosen according to 
the characteristics of the mission. The higher the value of 𝛾1, 
the lower the energy consumption of the trajectory segment 
and the better the continuity of the trajectory state; the higher 
the value of 𝛾2 , the more it conforms to the principle of 
distance distribution, and the smaller the value of 𝛾3 , the 
more the attitude changes are smooth. In summary, 𝛾1 is 
usually a large value, 𝛾2 is a medium value, and 𝛾3 is a small 
value. 

3.4 Optimal Trajectory Coefficient 

To solve the offset problem, the trajectory offset penalty 
function is introduced when solving the polynomial 
coefficients to obtain the optimal trajectory coefficients. The 
objective function 𝐹𝑂𝑆  is as follows: 

minimize
𝑡

𝐹𝑂𝑆 = 𝛾4𝐽
snap2

+ 𝛾5𝐽
offset

 

subject to 𝐴𝑖𝑝𝑖 = 𝑑𝑖 (11) 
where 𝐽snap2 denotes the denotes the trajectory smoothing 
constraint term in the Minimum-Snap algorithm, but the 
trajectory coefficients are unknown in Eq.(11); 𝐽offset  is the 
trajectory offset penalty term; 𝛾4, 𝛾5  denote the weight 
coefficients and offset penalty factor, respectively. 
Additionally, the state variables must satisfy a series of 
continuity constraints. 

When solving the above problem, we first identify the 
fixed and free variables of the trajectory for subsequent 
operations. 

𝑫 = 𝑴T
[
𝒅𝐹
𝒅𝑃 ] (12) 

where 𝒅𝐹  and 𝒅𝑃  are vectors consisting of position, velocity 
and acceleration; 𝒅𝐹  denotes the trajectory fixed variable, 
which is determined and unchangeable; 𝒅𝑃  denotes the 
trajectory free variable, which can be changed according to 
the demand of the objective function; 𝑴  denotes the 
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trajectory variable mapping matrix, and 𝑫  denotes the 
trajectory variables. 

The autonomous robot is guaranteed to pass through the 
set trajectory points with continuous velocity and 
acceleration. Then, the constrained problem is converted 
into an unconstrained quadratic programming problem and 
can be solved in closed form by combining the matrix 
multiplications in [15]. 

𝐽snap2 = [
𝒅𝐹
𝒅𝑃 ]

T
𝑴𝑨−T𝑸𝑨−1𝑴T

[
𝒅𝐹
𝒅𝑃 ] (13) 

where 𝑸 denotes the diagonal matrix about time 𝑡 in Eq. (8), 
and 𝑨  denotes the time coefficient mapping matrix; 𝑹  is 
denoted as 𝑴𝑨−T𝑸𝑨−1𝑴T and 𝐽snap2 can be alternatively 
expressed as 

𝐽snap2 = [
𝒅𝐹
𝒅𝑃 ]

T

[
𝑹𝐹𝐹 𝑹𝐹𝑃
𝑹𝑃𝐹 𝑹𝑃𝑃 ] [

𝒅𝐹
𝒅𝑃 ] (14) 

Decompose the 𝐽snap2 and  take a partial derivative for 𝒅𝑃 . 
𝜕𝐽snap2

𝜕𝒅𝑃
= 2𝒅𝐹

T𝑹𝐹𝑃 + 2𝒅𝑃
T𝑹𝑃𝑃 (15) 

To solve the problem of large deviation in replanned 
trajectory, a penalty function for trajectory offset is proposed. 
The penalty value generated by 𝐽offset  should be smaller 
than that generated by 𝐽snap2 when the deviation is small. 
Fig.2 shows the schematic for the penalty offset trajectory. 

 
Fig. 2: The schematic for the penalty offset trajectory 

As shown in Fig.2, 𝑑0 denotes the spacing of the offset 
penalty threshold, and 𝑑𝑖 denotes the spacing between the 
sampling points on the trajectory and the folded trajectory. 
The dashed line indicates the replanned trajectory that 
exceeds the set threshold, and the solid line indicates the 
replanned trajectory that does not exceed the set threshold. 
The offset penalty function 𝐺(𝑑𝑖) is formulated as follows: 

𝐺(𝑑𝑖) = {
𝑘𝑎𝑑𝑖 + 𝑏, 𝑑𝑖 < 𝑑0

𝑒𝑘𝑏𝑑, 𝑑𝑖 ≥ 𝑑0
(16) 

where 𝑘𝑎  0 and 𝑘𝑏  0 are the gain parameters; 𝑏 is the 
constant. 

Since 𝐺(𝑑𝑖)  is a segmented function, the discrete 
accumulation method is used to obtain the trajectory offset 
penalty function 𝐽offset . 

𝐽offset = ∫ 𝐺(𝑝𝑑(𝑡))𝑑𝑠
𝑇sum

0
 

= ∑ 𝐺(𝑝𝑑(𝑘𝑑𝑡))‖𝑣(𝑘𝑑𝑡)‖
𝑇sum/𝑑𝑡

𝑘=0
𝑑𝑡 (17) 

where 𝑝𝑑(𝑡) denotes the distance of the optimal trajectory 
from the folded trajectory and 𝑑𝑡 the discrete sampling either 
time . 

The optimal replanned trajectory coefficients are obtained 
by solving the objective function described above. Compare 

it with the trajectory coefficients of the Snap1 constraint 
term in Section 3.3 and record the difference between the 
corresponding coefficients using the least squares method. 

𝐸𝑇 = (𝑷pm1 − 𝑷pm2)
T
(𝑷pm1 − 𝑷pm2) (18) 

where 𝑷pm1  are the trajectory coefficients of the Snap1 
constraint term; 𝑷pm2  are the optimal replanned trajectory 
coefficients; 𝐸𝑇  is the degree of difference between these 
two coefficients; 𝜀𝑎 is the threshold factor. 

If 𝐸𝑇 ≤ 𝜀𝑎, the coefficients satisfy the optimal trajectory 
coefficients of the optimal time allocation. If 𝐸𝑇  𝜀𝑎, it is 
necessary to replace the 𝑷pm1  coefficients with 𝑷pm2  and 
repeat the steps in Section 3.3 and Section 3.4 until 𝐸𝑇 ≤ 𝜀𝑎 
is satisfied or the number of iterations 𝑁max is more than 50 
times. 

3.5 Trajectory Replanning Solution 

Fig.3 shows the flowchart of the trajectory replanned 
method. 

 
Fig. 3: The flowchart of the trajectory replanning method 

By using the given trajectory replanning method, the path 
replanning steps are organized as follows: 

(1) Obtain the fault factor ∧𝑚𝑎𝑥  and the thrust value 
𝑇𝑖−𝑚𝑎𝑥 transformed by the differential flatness and establish 
switching conditions for trajectory replanning. 

(2)   Estimate the remaining execution time ∆𝑡𝑓
𝑝 . 

(3) Establish and solve objective function 𝐹𝑇𝐴 .and 
objective function 𝐹𝑂𝑆 . 
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Estimate the remaining 
execution time

Replace the trajectory
coefficients in Snap1

Correct remaining 
execution time

Track original 
trajectory

No

Yes

Yes

No

No

Yes

𝑃𝑑 ≤ 2𝜉
∆𝑡𝑓

∆𝑡
 ?

 and ∧𝑖<∧𝑓
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(4) Check whether the difference 𝐸𝑇  of the trajectory 
coefficients is greater than 𝜀𝑎.  

(5) Obtain the thrust value 𝑇𝑖−𝑚𝑎𝑥  on the replanned 
trajectory transformed by the differential flatness and check 
whether the difference is greater than ∧𝑚𝑎𝑥 𝑇max. 

(6) Correct the remaining execution time ∆𝑡𝑓
𝑝  and repeat 

steps (2)-(5) to obtain the optimal trajectory. 

4 Simulation Analysis 
This section uses a tail-sitter aircraft with actuator faults 

to validate the trajectory replanning method. Fig.4 shows the 
structure of this aircraft and the defined coordinate frames. 
All simulations are conducted via MATLAB R2022a 
environment in a 64-bit PC with 2.50GHz Core (TM) i5-
7300HQ CPU. 

 
Fig. 4: The structure of the tail-sitter and the coordinate frames 

This paper assumes that the fault time and the estimated 
fault factor ∧𝑚𝑎𝑥  are known. The start point is chosen as 
(0,0,0) and the endpoint is chosen as (10,2,5). The remaining 
parameters of the simulations are given in Table 1. 

Table 1 Parameters of the simulations 

Parameters Value 
Aircraft mass 𝑚 1.125 

Aircraft inertial matrix 𝑱  diagሺ0.074,0.017,0.09ሻ 
Lift coefficient 𝐶𝐿𝑇  2.23 

Drag coefficient 𝐶𝐷𝑇  0.07 
Mid-points (2,5,3),(5,3,5),(8,5,5) 

Fault factor ∧𝑚𝑎𝑥 0.85 
Gain parameter 𝛼, 𝛽 10,0.8 
Threshold factor 𝑝𝑡𝑠 0.6 
Correction factor 𝑣𝐸  0.05 

Penalty factor  𝛾1, 𝛾2, 𝛾3 8,3,1 
Penalty factor 𝛾4, 𝛾5 8,4 

Gain parameter 𝑘𝑎, 𝑘𝑏 1,2 
Threshold factor 𝜀𝑎 0.8 

Maximum iterations 𝑁max 50 
 
According to the novel trajectory replanning method 

described in Section 3, assuming that the actuator fault 
occurs at 𝑡𝑓 = 1.5s  and the fault factor estimated by the 
adaptive method is ∧𝑚𝑎𝑥= 0.85, Fig.5 shows the replanned 
trajectory of tail-sitter aircraft. 

 
Fig. 5: The replanned trajectory of the tail-sitter 

From Fig.5, the blue star is the fault point. The trajectory 
generated after each iteration passes through the middle 
points, which ensures the continuity of the trajectory. The 
first, fifth and ninth (optimal trajectory) of replanned 
trajectories are shown in the figure. The optimal trajectory is 
shown as a green line. It is clear that the optimal trajectory 
has the least deviation and is closer to the original trajectory 
than the other iterative trajectories. 

 
Fig. 6: The trajectory coefficient error value of each iterations 

From Fig.6, the optimal coefficients converge faster in the 
first few iterations. After the fourth iteration, the optimal 
coefficient error converges to 0.6512. The thrust value, 
which is transformed by the differential flatness, does not 
satisfy the thrust constraints. Therefore, a correction for the 
remaining flight time is required. After the ninth iteration, 
the optimal coefficient error value converges to 0.7342 less 
than the setting threshold coefficient 𝜀𝑎 , and the optimal 
trajectory coefficients are finally obtained. 

Fig.7 shows the optimized allocation time for each 
iteration. The original remaining time from the fault point to 
the endpoint is 3.3721s. After increasing the time through 
the trajectory replanning method, the estimated time is 
5.1321s. However, this does not satisfy the thrust constraints 
and needs to be corrected. By the fifth iteration, the corrected 
remaining flight time is 5.8425s, but failed to meet the 
threshold factor 𝜀𝑎. It is not until after the ninth iteration that 
the optimal allocation time is obtained.  

Trajectory tracking experiments were carried out based on 
a control algorithm learned from [16]. Fig.8 (a) shows the 
moving performance by tracking the original trajectory, 
while Fig.8 (b) shows the effect after tracking the replanned 
trajectory. The start and terminal points were chosen as 
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(0,0,0)m and (40,0,0)m, respectively. It can be seen from the 
figure that the maximum deviation of tracking the replanned 
trajectory is 0.2236m, which is 45.5% less than the 
maximum deviation when tracking the original trajectory. 

 
Fig. 7: The optimal time allocation 

 

(a) Original trajectory tracking performance 

 

(b) Replanned trajectory tracking performance  

Fig. 8: Trajectory tracking performances  

5 Conclusion 
A novel trajectory replanning method is proposed to solve 

the path planning problem for autonomous robots under 
actuator faults. Moreover, to ensure security, the switching 
condition, the time allocation and the offset distance are 

included as the main factors for the trajectory replanning. 
Simulation results in this paper have indicated the 
effectiveness and advancement of the proposed method. 

Future work of trajectory design involves considering 
dynamic obstacles, multiple autonomous robots, and sensor 
faults in complex environments. 
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Fault-tolerant Pursuit-evasion Games for Quadrotor Helicopters
Based on a Fully-actuated System Approach
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Abstract: This paper proposes a fault-tolerant control scheme for the pursuit-evasion (PE) game between two quadrotor heli-
copters. Initially, the quadrotor helicopters are modeled based on the high-order fully-actuated (HOFA) approach, allowing to
eliminate the nonlinear dynamics of the quadrotor helicopters. Subsequently, the game strategies for the pursuer, faults and the
evader are designed. The optimal control rate is obtained by solving the Hamilton-Jacobi-Isaacs (HJI) equation using a critic
neural network. It is demonstrated that the proposed fault-tolerant control (FTC) law assists the fault-affected pursuer in success-
fully capturing the evader and estimating the upper bound of bias fault. Finally, the effectiveness of the fault-tolerant PE game
control scheme is validated through numerical simulations.

Key Words: Fully-actuated systems, adaptive fault-tolerant control, pursuit-evasion game, quadrotors, adaptive dynamic pro-
gramming

1 Introduction

Over the past few decades, quadrotors have garnered
widespread attention in both civilian and military domains
and have been widely used in finding applications, surveil-
lance, searching operations, and disaster management due
to their high maneuverability, low cost, and vertical take-off
and landing capabilities [1]. A primary challenge in control-
ling quadrotors is their underactuated and nonlinearly cou-
pled system nature. With four control inputs and six degrees
of freedom (DOF) [2], if the speed of the rotor is used as the
control quantity, it is difficult to apply the method of con-
trolling the linear system. To simplify control processes,
differential flatness theory can transform the underactuated
system of a quadrotor into a fully actuated system [3]. How-
ever, this results in a still nonlinear system. If the quadrotor
system could be transformed into a linear system, it would
facilitate the more convenient application of linear control
theories.

Physically speaking, many systems models of objects es-
tablished through physical laws are second-order or higher-
order, and the model of a quadrotor is among these. These
systems, when fully actuated, exhibit properties that en-
able the negation of all non-linearities, ultimately result-
ing in a linear, steady-state, closed-loop system. This can
be achieved using the HOFA system method [4]. How-
ever, quadrotors cannot be transformed into a strict-feedback
form, which is a prerequisite for the HOFA approach. Con-
sequently, a modified HOFA approach with recursive actions
is proposed [5], applicable to mixed-high-order dynamic
systems. This method allows for the division of a quadrotor
system into three HOFA subsystems. Each of these HOFA
subsystems is then processed in such a way that they can be

This work is supported by the Science Center Program of National Nat-
ural Science Foundation of China (62188101), the National Natural Science
Foundation of China (62233009, 62020106003, 62303220), the Natural
Science Foundation of Jiangsu Province of China (BK20230881), the China
National Postdoctoral Program for Innovative Talents (BX20230490), the
China Postdoctoral Science Foundation (2023M731665), the Postdoctoral
Program of Jiangsu Province (2023ZB230), the 111 Project (B20007), Pri-
ority Academic Program Development of Jiangsu Higher Education Insti-
tutions. Corresponding author: Yuhang Xu.

controlled like linear systems. Once the system is simpli-
fied, further scenarios like system faults or pursuit-evasion
dynamics can be considered.

In a two-player PE game, one agent, known as the pursuer,
aims to capture another agent called the evader, while the
evader strives to avoid capture [6]. The two agents compete
with each other and have opposite purposes, so this scenario
is characterized as a zero-sum differential game involving
two participants. Isaacs pioneered the concept of zero-sum
differential strategies [7], where the control rate is defined as
the saddle point solution of the differential game. A devia-
tion from this saddle point in an agent’s control rate results in
suboptimal performance. The control rates can be obtained
by solving the Riccati equation [8, 9]. When high-order sys-
tems are addressed through the HOFA system approach, the
application of optimal control theory becomes more feasible
[10]. Hence, studying PE games utilizing the HOFA sys-
tem method is an advantageous approach. This paper, there-
fore, explores a zero-sum differential PE game based on the
HOFA system methodology.

Control systems represent hybrid systems that consist of
multiple components. During operation, it’s not always pos-
sible to ensure that all components function normally at all
times. Failures may occur due to aging or changes in ex-
ternal environments [11]. In the context of the quadrotor,
factors such as actuator failures or ground influences can
destabilize flight [12, 13]. Furthermore, in the process of
pursuit, when the pursuer fails, it may cause system insta-
bility or failure of the pursuit. Therefore, considering fault
conditions and knowing the system’s ability to tolerate faults
is crucial in the design of algorithms. This paper considers
the scenario in which the pursuer experiences a bias fault in
the control input during the PE game process.

Based on differential game strategies and adaptive dy-
namic programming, this paper presents an optimal fault-
tolerant control scheme that ensures system stability. By en-
gaging the pursuer, biased faults, and the evader in a strate-
gic game, the control law enables the pursuer to successfully
catch the evader and get the upper bound of fault. The nov-
elties of this paper can be summarized as follows two as-
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pects: (1) To the best of our knowledge, it is the first time
to consider the fault-tolerant control problem for the pursuit-
evasion game under the HOFA framework. (2) Focusing on
faults that occur in the pursuer during the pursuit process, a
fault control law is designed using the HOFA method, effec-
tively achieving the FTC goal.

2 Preliminaries

In this section, the quadrotor model utilized in this paper is
introduced, along with the faults model and the construction
of the PE game.

2.1 Faulty Quadrotor Model
Supposing that the quadrotor is rigid and symmetrical,

with the origin of the body frame coinciding with the quadro-
tor’s center of gravity.

Fig. 1: Quadrotor Model

As shown in Fig. 1 of the quadrotor system, [x, y, z]T ∈
R3denotes position relative to the inertial frame, [ϕ, θ, ψ]T ∈
R3denotes the roll, pitch, and yaw angles relative to the in-
ertial frame.

Due to the fragility of the system, in the event of a fail-
ure, the system may be destabilized by a large change in an-
gle. So modeling needs to consider the occurrence of faults.
We consider potential bias faults occurring in the control of
the roll and pitch angles. The fault dynamical model of the
quadrotor is represented as follows,

ẍ = u1(cosψ sin θ cosϕ+ sinψ sinϕ)

ÿ = u1(sinψ sin θ cosϕ− cosψ sinϕ)

z̈ = u1 cos θ cosϕ− g

ϕ̈ = u2 + ū2

θ̈ = u3 + ū3

ψ̈ = u4

. (1)

where g denotes the gravitational acceleration, and u1 de-
notes the resultant force along the body’s z-axis. To simplify
the complexities of controller design and the model, virtual
control torques u2, u3, u4 are employed as control inputs for
roll, pitch, and yaw angles. The transformation from virtual
control to actual control inputs is delineated in [3]. And the
constants ū2, ū3 ∈ R denote the unknown faults occurring
in the control process.

2.2 Problem Statement
This paper considers the use of the system (1) for a

Pursuit-Evasion (PE) game. To facilitate the application of

optimal control theory, the HOFA approach is employed to
simplify the system. Furthermore, in response to faults oc-
curring in the pursuer during the pursuit process, an adaptive
fault-tolerant control algorithm is proposed to ensure that the
pursuer remains stable throughout the pursuit.

3 Main Result

In this section, regarding the transformation of the system,
we discuss how to convert the system into a fully-actuated
system. This involves explaining the process of conduct-
ing a pursuit-evasion (PE) game within a fully actuated sys-
tem framework, along with demonstrating the efficacy of the
fault-tolerant control law. In terms of solving for the fault
tolerant control law, we present a method for designing a
critic neural network to ascertain the optimal value of the HJI
equation. Additionally, the convergence of the critic neural
network is proven.

3.1 Quadrotor model transformation
According to the method described in [5], the HOFA

method with recursive actions can be applied to the con-
trol of a 6-DOF quadrotor. This involves decomposing the
quadrotor model into three subsystems and transforming
these subsystems into fully actuated systems.

To facilitate derivation, we first define some terms,

x1 = z, x2,1 = [x, y]T , x2,2 = [ϕ, θ]T , x3 = ψ,

ū2,3 =

[
ū2
ū3

]
, g2 =

[
cosψ sinψ
sinψ − cosψ

]
,

h1 = cos θ cosϕ, h2 =

[
sin θ cosϕ

sinϕ

]
, u2,3 =

[
u2
u3

]
.

(2)

Decomposing the quadrotor system (1) into three subsys-
tems,we can obtain

x
(2)
1 = u1h1 − g, (3){

x
(2)
2,1 = u1g2h2

x
(2)
2,2 = u2,3 + ū2,3

, (4)

x
(2)
3 = u4. (5)

where the controlled variables are the altitude in (3), the hor-
izontal position in (4), and the yaw angle in (5).

Since subsystem (3) and (5) already constitute a HOFA
system, the corresponding controller is presented directly.

For the subsystem (3), the control law u1 is defined as
follows,

u1 = −(h1)
−1(−g − v1). (6)

where v1 is external input.
After simplification, subsystem (3) can be obtained

x
(2)
1 = v1. (7)

For the subsystem (5), the control law u4 and the simpli-
fied subsystem are defined as follows,

u4 = −(a0x3 + a1x
(1)
3 − v4), (8)

x
(2)
3 + a0x3 + a1x

(1)
3 = v4, (9)
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where v4 is external input, a0, a1 are used to configure the
poles of the system to make the subsystem (5) stable.

For the system (4), it can be obtained by derivating of x(2)2,1

x
(3)
2,1 = u

(1)
1 g2h2 + u1g

(1)
2 h2 + u1g2h

(1)
2 . (10)

with

h
(1)
2 =

[
− sin(θ) sin(ϕ) cos(θ) cos(ϕ)

cos(ϕ) 0

]
z
(1)
2,2,

g
(1)
2 = ψ(1) ·

[
− sin(ψ) cos(ψ)
cos(ψ) sin(ψ)

]
.

(11)

In order to simplify the calculation, u1g2h
(1)
2 can be

rewriting as follows,

u1g2h
(1)
2 = u1g2

[
− sin(θ) sin(ϕ) cos(θ) cos(ϕ)

cos(ϕ) 0

]
z
(1)
2,2

= L2z
(1)
2,2.

(12)
Then

x
(3)
2,1 = u

(1)
1 g2h2 + u1g

(1)
2 h2 + L2z

(1)
2,2. (13)

Next, proceed to differentiate with respect to (13),

x
(4)
2,1 = u

(2)
1 g2h2 + u

(1)
1 g

(1)
2 h2 + u

(1)
1 g2h

(1)
2 + u

(1)
1 g

(1)
2 h2

+u1g
(2)
2 h2 + u1g

(1)
2 h

(1)
2 + L

(1)
2 x

(1)
2,2 + L2x

(2)
2,2.

(14)
Let

G2 = u
(2)
1 g2h2 + u

(1)
1 g

(1)
2 h2 + u

(1)
1 g2h

(1)
2

+u
(1)
1 g

(1)
2 h2 + u1g

(2)
2 h2 + u1g

(1)
2 h

(1)
2 + L

(1)
2 x

(1)
2,2.

(15)

So (14) can be rewritten as follows,

x
(4)
2,1 = G2 + L2x

(2)
2,2. (16)

Substituting the expression of x(2)2,2 in (4) into (16) gives,

x
(4)
2,1 = G2 + L2(u2,3 + ū2,3), (17)

and the controller can be set to make the system a simpler
form,

u2,3 = −(L2)
−1(G2 − v2,3), (18)

where v2,3 is a vector of external inputs v2 and v3. The rep-
resentation of v2,3 are as follows,

v2,3 =

[
v2
v3

]
. (19)

By simplifying (17), we can obtain

x
(4)
2,1 = v2,3 + L2ū2,3. (20)

Remark 1: The control in (18) and G2 contains the high-
order derivatives of u1, which necessitate smooth estimation
through appropriate techniques. □
Remark 2: To avoid singularity in (6) and (18), it is nec-
essary to impose constraints on cos(θ), cos(ϕ) at near-zero
intervals. Those constraints are straightforward and applica-
ble for large-angle flight maneuvers [14]. □

Remark 3: When the flight angle of the UAV is small during
the pursuit, L2 will change in a small range, so L2 is treated
as a constant coefficient matrix in this paper. □

Now, we can put (7), (9), (20) together. And system can
be expressed as follows,

x
(2)
1 = v1

x
(4)
2,1 = v2,3 + L2ū2,3

x
(2)
3 + a0x3 + a1x

(1)
3 = v4

. (21)

From (21), it can be seen that each subsystem becomes a
fully actuated subsystem, that is, the system is converted into
a fully actuated system. The system can be transformed into
state space according to the method in [10].

We can get the state of the system as follows,
s = [z; z(1);x;x(1);x(2);x(3); y; y(1); y(2); y(3);ψ;ψ(1)]
Subsequently, the system can be reformulated as follows,

s(1) = As+Bv + F, (22)

where A is the state transition matrix of the system, B is the
input matrix of the system, and F is a matrix about the fault.

A =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 −a0 −a1



, B =



0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1



,

Sf =


05∗2
1 0
03∗2
0 1
02∗2

 , v =


v1
v2
v3
v4

 , G = SfL2, F = Gū2,3.

(23)
where F = 012∗4 for a fault-free system.

3.2 Controller design of fault-tolerant PE game
Taking the pursuit-evasion game into account, considering

the occurrence of a fault in the pursuer during the pursuit-
evasion process, and using simplified models (22) for both
pursuer and evader, we can obtain the system for both sides
as follows,

s(1)p = Asp +Bvp + Fp, s
(1)
e = Ase +Bve + Fe,

Bp = B,Be = −B, δ = sp − se,

δ(1) = Aδ +Bpvp +Beve +Gūa,

δ = [δ3; δ
(1)
3 ; δ1; δ

(1)
1 ; δ

(2)
1 ; δ

(3)
1 ; δ2; δ

(1)
2 ; δ

(2)
2 ; δ

(3)
2 ; δ4; δ

(1)
4 ]
(24)

where sp is the state of pursuer, se is the state of evader, ūa is
the bias fault of pursuer, vp is the external input of pursuer,
ve is the external input of evader, Fp and Fe are variables
similar to F as described in equation (22), with Fe being a
012∗4 matrix.
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Through the paper [15], by joining the game with the fault,
we can get the maximum value of the fault that can be tol-
erated. Define the performance index function of the system
as follows,

J(δ(0), ve, vp, up) =

∫ ∞

0

(δTQδ + vTp Rvp

− r2vTe Rve − θūTaMūa).

(25)

where the matrix Q is a positive semi-definite matrix, the
matrix R and the matrix M are positive definite matrices,
and the parameters r and θ are positive constants.

By engaging in a game between the pursuer, the faults,
and the evader, the problem can be expressed as follows,

J∗(δ(0)) =min
vp

max
(ūa,ve)

∫ ∞

0

(δTQδ + vTp Rvp

− r2vTe Rve − θūTaMūa).

(26)

By selecting through the game the minimizing player vp,
maximizing player ve and ūa, the inequalities that need to be
satisfied at the saddle point are as follows,

J(δ(0), v∗p , ve, ūa) ≤ J(δ(0), v∗p, v
∗
e , ū

∗
a)

≤ J(δ(0), vp, v
∗
e , ū

∗
a).

(27)

At the saddle point (v∗p, v
∗
e , ū

∗
a), the pursuer forms a sad-

dle point equilibrium with its fault and the evader. At this
point, every player plays optimally. Moreover, satisfying the
saddle point solution also implies that regardless of the order
of optimization, the final strategy is optimal [16].

Through (25) and (24), the Hamiltonian function can be
set as follows,

H(δ,∆J∗(δ), vp, ve, ūa) = δTQδ + vTp Rvp − r2vTe Rve−
θūTaMūa + (∆J∗(δ))T (Aδ +Bpvp +Beve + SfL2ūa).

(28)
where ∆J∗(δ) = ∂J∗(δ)/∂δ.

From the extreme value condition, we can derive the equa-
tions as follows,

∂H

∂vp
= 0,

∂H

∂ve
= 0,

∂H

∂ūa
= 0. (29)

Through the Hamiltonian equation (28) and the three par-
tial differential equations in (29), the optimal control rates
for the pursuer and evader, as well as the worst-case fault,
can be obtained as follows,

u∗p = −1

2
R−1BT

p ∆J
∗(δ),

u∗e =
1

2r2
R−1BT

e ∆J
∗(δ),

ū∗a =
1

2θ
M−1GT∆J∗(δ).

(30)

Using the control variables in (30) to substitute the control
variable in (28), the Hamilton-Jacobi-Isaacs (HJI) equation
can be derived as follows,

H(δ,∆J∗(δ), v∗p, v
∗
e , ū

∗
a) = δTQδ +∆J∗(δ)TAδ

− 1

4
∆J∗(δ)TBpR

−1BT
p ∆J

∗(δ)

+
1

4θ
∆J∗(δ)TGM−1GT∆J∗(δ)

+
1

4r2
∆J∗(δ)TBeR

−1BT
e ∆J

∗(δ) = 0.

(31)

Theorem 1: Consider the system (24), using optimal con-
trol policy in (30). Under the condition of satisfying (32),
it is guaranteed that the pursuer can successfully capture the
evader in case of failure.

λmin(Q)− λmax(A)−
1

2
λmaxP4 ≥ 0,

1

4
λmin(P1)−

1

4r2
λmax(P2)

− 1

4θ
λmax(P3)−

1

2
λmax(P4) ≥ 0.

(32)

where

P1 = BpR
−1BT

p , P2 = BeR
−1BT

e , P3 = GM−1GT ,

P4 =
1

−2
P1 +

1

2r2
P2 +

1

2θ
P3.

Proof:Choose the Lyapunov function as

V (δ) = J∗(δ) +
1

2
δT δ (33)

Deriving it can be obtained

V̇ (δ) =δT δ̇ +∆J∗(δ)(Aδ +Bpvp +Beve +Gūa)

=δT δ̇ − δTQδ − 1

4
∆(J∗(δ))TBpR

−1BT
p ∆J

∗(δ)

+
1

4θ
∆(J∗(δ))TGM−1GT∆J∗(δ)

+
1

4r2
∆(J∗(δ))TBeR

−1BT
e ∆J

∗(δ)

≤− (λmin(Q)− λmax(A)−
1

2
λmax(P4))||δ||2

− (
1

4
λmin(P1)−

1

4r2
λmax(P2)

− 1

4θ
λmax(P3)−

1

2
λmax(P4))||∆J∗(δ)||2.

(34)
Under the condition of (32), V̇ (δ) < 0 is established,

which means the system is stable and the pursuer can catch
the evader. □
Theorem 2: For the system (24), considering the Hamilto-
nian function (28) and the control strategy (30), the system
can reach saddle-point equilibrium.
Proof: According to Theorem 1,δ → 0 can be reached
according to the control strategy chosen, so we can set
J∗(δ(∞)) = 0. Considering the performance function (25),
we can obtain

J(δ(0)) =

∫ ∞

0

(δTQδ + vTp Rvp − r2vTe Rve − θūTaMūa)dt

= J(δ(0)) +

∫ ∞

0

J̇∗(δ)dt+ J∗(δ(0))− J∗(δ(∞)).

According to the HJI equation (31) and Hamiltonian func-
tion (28), by completing the square method, we can simplify
the above equation as follows,

J(δ(0)) = J∗(δ(0)) +

∫ ∞

0

(vp − v∗p)
TR(vp − v∗p)− r2(ve

− v∗e)
TR(ve − v∗e)− θ(ūa − ū∗a)

TM(ūa − ū∗a)dt.

It can be seen that J(δ(0)) satisfies the inequality (27),
that is, satisfies the saddle point condition, and the proof is
completed. □
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Since the J∗(δ) in the HJI equation (31) is difficult to
solve, the neural network method described below is used
to approximate it.

3.3 Online NN Implementation
In this subsection, the optimal controller design based on

the neural network is used to acquire the optimal value in the
HJI equation (31). The design procedure of the critic neural
network is given and the convergence of the network weights
is proved.

The value function is approximated using a single-layer
neural network of the form as follows,

J∗(δ) =WTσ (δ) + ϵ (δ) . (35)

where W ∈ Rl is the weight vector of the network, σ(δ) ∈
Rl is the activation function of the network, l is the number
of neurons in the critic NN hidden layer, ϵ (δ) is the approx-
imation error of the network.

The derivation of J∗(δ) with respect of δ is as follows,

∆J∗(δ) = (∆σ(δ))TW +∆ϵ(δ). (36)

where ∆J∗(δ) = ∂J∗(δ)
∂δ , ∆σ(δ) = ∂σ(δ)

∂δ , ∆ϵ(δ) = ∂ϵ(δ)
∂δ .

Substituting the value function (35) into (28), the Hamil-
ton function of the system can be obtained as

H(δ,∆J,vP , ve, ūa,W ) = δTQδ + vTp Rvp − r2vTe Rve

− θūTaMūa + ((∆σ(δ))TW +∆ϵ(δ))T δ̇.
(37)

From (31), when the system control law is the optimal
control law, the approximate residual of the network can be
defined as

eh =− ϵ (δ)
T
δ̇ = δTQδ + vTp Rvp − r2vTe Rve

− θūTaMūa + ((∆σ(δ))TW )T δ̇
(38)

Given that the ideal W is unknown, the critic neural net-
work and its derivative are approximated as follows,

J̄∗(δ) = W̄Tσ (δ) ,∆J̄∗(δ) = (∆σ(δ))T W̄ . (39)

Then we can get the approximate Hamiltonian function,

H(δ,∆J̄(δ),vp, ve, ūa, W̄ ) = δTQδ + vTp Rvp − r2vTe Rve

− θūTaMūa + ((∆σ(δ))T W̄ )T δ(1) = e.
(40)

During the iteration of the neural network, set E = 1
2e

T e
as the evaluation function of the network, and then set the
update rate of the weights as follows,

W̄ = −keα. (41)

where α = ∆σ(δ)δ(1), k is a learning rate during the itera-
tion process.

The weight approximation error is defined as W̃ = W −
W̄ , then we has

e = (eh − W̃Tα), ˙̃W = − ˙̄W = k(eh − W̃Tα)α. (42)

Based on (30) and (35), the ideal control strategy is

u∗p = −1

2
R−1BT

p ((∆σ(δ))
TW +∆ϵ(δ)). (43)

It can be approximated as

∧
u
∗
p = −1

2
R−1BT

p (∆σ(δ))
T W̄ . (44)

Similarly, the control rates of the evader and the worst case
of fault can be obtained as

∧
u
∗
e =

1

2r2
R−1BT

e (∆σ(δ))
T W̄ ,

∧
u
∗
a =

1

2θ
M−1GT (∆σ(δ))T W̄ .

(45)

With this setup, only critical NN is needed to complete the
training, and no actor NN is needed.
Theorem 3: Considering the system (24), if the critic NN
weights are updated according to (41), then the weight ap-
proximation error is uniformly ultimately bounded (UUB).
Proof: The proof process is similar to Theorem 3 in [17].
Set the Lyapunov function as V2 = 1

2kW̃
T W̃ . And V̇2 ≤ 0

exists within the set ||W̃ || ≥ || ehαb
||, where ||α|| ≤ αb and

αb ≥ 0. According to the Lyapunov stability theorem, the
weight approximation error is UUB. □

4 Numerical Simulation

In this section, we demonstrate the simulation results of
using the optimal control strategy based on adaptive dynamic
programming in the PE game.

Considering the quadrotor model (1), where the system
parameters are set by g = 9.8m/s2, we assume that er-
rors only occur on the pursuer. To ensure the attitude sta-
bility of the quadrotor during the pursuit-evasion process, it
is necessary to suppress the magnitude of the control quan-
tity. Therefore, the values of the matrices Q, M and R will
be set smaller. The diagonal elements of Q are set to [0.001;
0.015; 0.0000155; 0.001; 3; 5; 0.0000155; 0.001; 4.3; 5.3;
0; 0], the diagonal elements of R are [1; 5; 5; 1], and the
diagonal elements of M are [1; 2]. To set the poles of sub-
system (5) to -3, we set ao to 9 and a1 to 6. The parameters
in performance function (25) are γ =

√
1.5 and θ = 10. For

the critic neural network, its activation function σ(δ) , learn-
ing rate k and weight vector W̄ with its initial value W̄0 are

k = 0.1, W̄ = [W̄1, W̄2, . . . W̄18, W̄19],

W̄0 = [0.02, 0.02, 0.02, 0.02, 0.02, 0.5, 0.02, 0.02, 0.02,

0.2, 0.02, 0.02, 0.02, 0.0006, 0.033, 1, 0.0008, 0.03, 1],

σ(δ) = [δ23 , (δ
(1)
3 )2, δ21 , (δ

(1)
1 )2, (δ

(2)
1 )2, (δ

(3)
1 )2, δ22

(δ
(1)2
2 ), (δ

(2)
2 )2, (δ

(3)
2 )2, δ24 , (δ

(1)
4 )2, δ3δ

(1)
3 ,

δ1δ
(3)
1 , δ2δ

(3)
2 , δ

(3)
1 δ

(1)
1 , δ

(3)
1 δ

(2)
1 , δ

(3)
2 δ

(1)
2 , δ

(3)
2 δ

(2)
2 ].

To demonstrate the efficacy of the proposed fault-tolerant
control rates, simulations are conducted in the following sce-
nario, {

ūa = [0.0001; 0.0001], 0 ≤ t ≤ 5;

ūa = [0.0005; 0.0005], t ≥ 5.

Fig. 2 shows the motion trajectories of the pursuer and
evader. Fig. 3 displays the distance between the pursuer and
the evader. From the graph, it is apparent that the pursuer
catches the evader in the case of fault. Fig. 4 illustrates the
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Fig. 2: the motion trajectories of the pursuer and evader

Fig. 3: Distance of pursuer and evader

Fig. 4: Weight of critic NN

variation of the estimated weights. The weight change in
the graph is not obvious. But it also can be seen that all
the estimated weights finally converge to a constant value,
proving the effectiveness of the critic neural network.

5 Conclusion

This paper presents the design, analysis, and simulation
results of a fault-tolerant PE game control scheme. It uti-
lizes a modified HOFA approach with recursive actions to

simplify the quadrotor system, which is then used to study
the PE game. Moreover, it considers bias faults occurring
in the control of the roll and pitch angles. Finally, a fault-
tolerant control law using critic NN to solve is developed.
The algorithm’s effectiveness is validated through simula-
tions. Future work is to apply the algorithm to an actual
hardware platform.
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Power Systems with Electrolytic Aluminum Load Under New

Event-triggered Mechanism
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Abstract: In this paper, the problem of event-based fault-tolerant model predictive load frequency control is investigated for the
power system where the electrolytic aluminum load participates in frequency modulation and actuator faults. A dynamic event-
triggered mechanism containing an internal dynamic variable (IDV) and an adjustable variable is designed to reduce the data
transmission burden. The fault-tolerant model predictive control (FTMPC) problem is expressed as a “min-max” optimization
problem (OP). According to the Lyapunov-like function that depends on the IDV, an auxiliary OP with constrained linear matrix
inequalities is constructed. By solving the auxiliary OP, the FTMPC controller gains that ensure the input-to-state stability of the
closed-loop system can be obtained. The effectiveness of the proposed algorithm is verified through a simulation example.

Key Words: Electrolytic aluminum load, fault-tolerant control, model predictive control, load frequency control, dynamic event-

triggered mechanism

1 Introduction

Frequency fluctuation is an important index of output

power quality in power systems, and it is necessary to main-

tain it within the desired nominal values. Load frequency

control (LFC) is an effective method to address the prob-

lem of frequency deviation. In recent years, a lot of result-

s have been reported [1–3]. However, with the access of

large-scale new energy in the power grid, it brings new chal-

lenges to the frequency stability of the power systems. Tradi-

tional thermal power units have limited frequency regulation

capacity, which makes it difficult to smooth the frequency

fluctuation caused by new energy sources connected to the

grid. Therefore, it is necessary to seek new regulation re-

sources to calm the frequency fluctuation. The electrolytic

aluminum load is characterized by high thermal inertia and

good control [4] and has a huge potential for frequency regu-

lation. To this end, researchers have explored the superiority

of electrolytic aluminum load participating in grid frequency

regulation [5–7].

Currently, most power systems realize data transmission

through communication networks, but inevitably lead to var-

ious network-induced phenomena such as time delay and

packet dropouts. These phenomena bring new challenges to

the LFC performance of power systems [8]. In addition, due

to the limited communication bandwidth, the transmission of

large amounts of data puts a heavy burden on the communi-

cation network [9]. To solve the above problems, researchers

have proposed event-triggered mechanisms (ETMs) [10, 11],

which require the fulfillment of predefined event-triggered

conditions before releasing packets, and thus can reduce the

transmission of redundant packets. Static ETMs (SETM-

s) [12, 13] are not able to maximize the saving of network

resources due to their fixed threshold. Therefore, more and

This work is supported by the National Natural Science Foundation

of China under Grant 62073303 and the Key Program of Hubei Provincial

Technical Innovation Project under Grant No. 2023BAB080.

more scholars are keen on studying dynamic ETMs (DETM-

s) [14–16], which are more flexible than SETMs. However,

the current DETMs have much space for improvement to fur-

ther save network resources.

Actuator faults are unavoidable in power systems due to

the influence of the external environment and the aging of the

equipment, and actuator faults may lead to system instabili-

ty [17]. Consequently, many experts and scholars have paid

attention to fault-tolerant control and studied the problem

of fault-tolerant LFC [18, 19]. Additionally, some scholars

have fully considered the hard constraints and other practical

factors in the power system, introduced fault-tolerant model

predictive control (FTMPC), and studied the fault-tolerant

model predictive LFC problem [20]. However, the fault-

tolerant model predictive LFC problem for electrolytic alu-

minum load participating in frequency modulation has not

been reported, let alone discussed the DETM-based fault-

tolerant model predictive LFC problem for electrolytic alu-

minum load participating in frequency modulation. Thus,

we need to design a new DETM and study the fault-tolerant

model predictive LFC problem based on this DETM for elec-

trolytic aluminum load participating in frequency modula-

tion.

The main contributions of this work are summarized as

follows: 1) a new DETM containing two adjustment vari-

ables is proposed to conserve network resources; 2) the fault-

tolerant model predictive load frequency controllers are de-

signed for the power system where electrolytic aluminum

load participates in frequency regulation; 3) the recursive

feasibility and input-to-state stability (ISS) are analysed.

2 Problem Formulation

Consider the following LFC system with electrolytic alu-

minum load participation:{
ẋ(t) = Ãx(t) + B̃u(t) + F̃w(t),

y(t) = C̃x(t),
(1)
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where

x(t) = [Δf ΔPm ΔPv

∫
ACEi

ΔId ΔIdcon ΔPAL]
T,

y(t) = ACE = βΔf, w(t) = ΔPd,

Ã =

[
Ã11 Ã12

03×4 Ã22

]
, Ã12 =

⎡⎢⎢⎣
0 0 − 1

M
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎦ ,

Ã11 =

⎡⎢⎢⎣
− D

M
1
M 0 0

0 − 1
Tch

1
Tch

0

− 1
RTg

0 − 1
Tg

0

β 0 0 0

⎤⎥⎥⎦ ,

Ã22 =

⎡⎢⎣ − 1
TES

0 0

KI − KP

TES
0 0

0 KP−V KSR

TSR
− 1

TSR

⎤⎥⎦ ,

B̃ =

⎡⎣0 0
1

Tg
0 0 0 0

0 0 0 0 1
KP−ITES

KP

KP−ITES
0

⎤⎦T

,

C̃ = [β 0 0 0 0 0 0],

F̃ =
[− 1

M 0 0 0 0 0 0
]T

.

For the explanations about the parameters in Eq. (1),

please refer to [6] for details.

We give the following discrete LFC system:{
x(k + 1) = Ax(k) +Bu(k) + Fw(k),
y(k) = Cx(k),

(2)

where, A = eÃTP , B =
∫ TP

0
eÃtB̃dt and F =

∫ TP

0
eÃtF̃ dt

with TP being the sampling period, x(k) ∈ R
nx is the sys-

tem state, y(k) ∈ R
ny is the system output, and u(k) ∈ R

nu

is the system control input.

Suppose that the disturbance w(k) satisfies

‖w(k)‖2 ≤ p2, (3)

where p > 0 is constant.

The following input constraints are considered:

|[u(k)]ν | ≤ [ū]ν , ν ∈ V � {1, 2, . . . , nu} , (4)

where ū is a given vector.

To mitigate the communication burden while maintaining

control performance, we present the following DETM:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sm+1 = mink∈N+{k > sm | λ1η(k)
+ς1ξ(k)x

T(k)Ω(k)x(k)− ς2e
T(k)Ω(k)e(k) ≤ 0},

η(k + 1) = λ2η(k) + ς3ξ(k)x
T(k)Ω(k)x(k)

−ς4e
T(k)Ω(k)e(k),

ξ(k) = ξ + κ 2
πarccot(e

T(k)e(k)),
(5)

where sm stands for the mth instant for data release with

s0 = 0, η(k) is an internal dynamic variable (IDV) with

η(k) ≥ 0, ξ(k) is an adjustment variable (AV), Ω(k) is a

weighting matrix, λ1 ≥ 0, 0 ≤ λ2 ≤ 1, ς1 ≥ 0, ς2 > 0,

ς3 ≥ 0, ς4 > 0, ξ ≥ 0 and κ ≥ 0 are given constants, and

e(k) = x(k)− x(sm).

Note that in DETM (5), there exist an IDV η(k) and an

AV ξ(k), which are devised to improve the ability to adjust

the release of data packets. In addition, we get

ξmin � ξ < ξ(k) ≤ ξ + κ � ξmax. (6)

Let

x̃(k) = x(sm), ∀k ∈ [sm, sm+1). (7)

Then, we get

e(k) = x(k)− x̃(k). (8)

We know that ∀k ∈ [0,∞), e(k) = x(k) − x(sm) and (8)

hold as k varies from 0 to +∞.

Consider the following state feedback controller:

u(k) = H(k)x̃(k), (9)

where u(k) = [u1(k), u2(k), . . . , unu(k)]
T and H(k) de-

notes the feedback gain matrix.

Noting that actuator faults may occur in power system, we

consider the following actuator fault model:

uf (k) = βu(k), β = diag(β1, β2, . . . , βnu), (10)

where uf (k) = [uf
1 (k), u

f
2 (k), . . . , u

f
nu

(k)]T represents the

control signals enforced by the faulty actuators, βi, ∀i =
1, 2, . . . , nu denote the degree of actuator faults.

We assume that βi satisfies the following conditions:

0 ≤ βi ≤ 1. (11)

According to (10), the system (2) with partial actuator

faults is described as{
x(k + 1) = Ax(k) +Bβu(k) + Fw(k),
y(k) = Cx(k).

(12)

Applying (8) and (9) to (12), we can obtain the following

closed-loop control system:

x(k+1) = (A+BβH(k))x(k)−BβH(k)e(k) +Fw(k).
(13)

For ease of presentation, we denote

·(k + n | k) � ·(n, k), ·(k | k) � ·(k).
The following prediction model is given:⎧⎪⎪⎨⎪⎪⎩

x(n+ 1, k) = (A+BβH(k))x(n, k)
−BβH(k)e(n, k) + Fw(n, k),
η(n+ 1, k) = λ2η(n, k) + ς3ξ(n, k)x

T(n, k)Ω(k)
x(n, k)− ς4e

T(n, k)Ω(k)e(n, k).
(14)

Consider the following objective function

J∞(k) =
∞∑
l=0

(‖x(n, k)‖2� + ‖u(n, k)‖2ℵ

− τw(n, k)Tw(n, k)).

(15)

Construct the following optimization problem (OP):

OP1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
u(k)

max
w(k)

J∞(k),

|[u(k)]ν | ≤ [ū]ν , ν ∈ V, (16a)[
xT(n, k), η

1
2 (n, k)

]T

∈ Λ, (16b)
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where

Λ � {[xT(n, k), η
1
2 (n, k)]T|xT(n, k)R̃(k)x(n, k)

+ η(n, k) ≤ γ}. (17)

Here R̃ > 0 and γ > 0 are the weighting matrix to be de-

signed and optimisation index, respectively.

Definition 1. For system (13), the set Λ is a positively

invariant set (PIS) if [xT(n, k), η
1
2 (n, k)]T ∈ Λ, ∀n ∈ N.

Definition 2 [14]. For the closed-loop system (13) and

DETM (5) with initial state x(0) = x0 and η(0) = η0, the

ISS is ensured if there exist functions χ1 ∈ KL and χ2 ∈ K
such that

‖x(k)‖22 ≤ χ1

(
‖x0‖22 + η0, k

)
+ χ2

(
‖w(k)‖2∞

)
,

where ‖ω(k)‖2∞ Δ
= supk∈Z+

{‖ω(k)‖2}.

Lemma 1. Consider DETM (5) with η(0) > 0, if the

parameters λ1 ≥ 0, 0 ≤ λ2 ≤ 1, ς1 ≥ 0, ς2 > 0, ς3 ≥ 0 and

ς4 > 0 satisfy λ1ς4 ≤ λ2ς2 and ς1ς4 ≤ ς2ς3, then η(k) ≥ 0,

∀k ∈ N
+.

Proof. The proof approach is the same as that in [15], so

it is omitted here.

The main purpose of this paper is to design FTMPC con-

trollers, which can tolerate the actuator faults and ensure the

ISS of system (13) under DETM (5). The following two

tasks will be studied.

1) An auxiliary OP of OP1 is constructed, and the con-

troller gain H(k) is obtained from the feasible solution of

this auxiliary OP.

2) Give sufficient conditions to guarantee the ISS of sys-

tem (13) under the DETM-based FTMPC algorithm.

3 Main Results

3.1 An LMI-based auxiliary OP of OP1
Consider the following Lyapunov-like function:

V (η(k), x(k)) = xT (k)R̃(k) + η(k). (18)

At each time instant k, we suppose the following inequal-

ity:

V (η(n+ 1, k), x(n+ 1, k))− V (η(n, k), x(n, k))

≤ −
(
‖x(n, k)‖2� + ‖u(n, k)‖2ℵ

)
+ τwT (n, k)w(n, k).

(19)

Summing up both sides of (19) from n = 0 to n = ∞, we

get
− V (η(k), x(k))

≤ −J∞(k)− V (η(∞, k), x(∞, k))

≤ −J∞(k).

(20)

According (17) to (20), we obtain

J∞(k) ≤ V (η(k), x(k)) ≤ γ. (21)

Note that γ in (22) is an upper bound of J∞(k) of OP1,

we construct the following auxiliary OP:

OP2 : min
H(k)

γ,

s.t.(13), (16a), (16b), (19).
(22)

Theorem 1. Let the scalars λ1 ≥ 0, 0 ≤ λ2 ≤ 1, ς1 ≥ 0,

ς2 > 0, ς3 ≥ 0, ς4 > 0, ξ ≥ 0, κ ≥ 0 and τ > 0, and

the matrices  > 0 and ℵ > 0 be given. If a scalar γ > 0
and matrices Q̃(k) > 0, U > 0, T (k) > 0, Y (k) > 0 and

G(k) > 0 exist such that, ∀ν ∈ V, the following LMIs[
	(1,1)

1 ∗
	(2,1)

1 	(2,2)
1

]
≤ 0, (23)

[
−	̃(1,1)

1 ∗
Y (k) U

]
≥ 0, (24)

[U ]νν ≤ [ū]2ν , (25)

hold, where

	(1,1)
1 = diag

{
	̃(1,1)

1 , 	̃(2,2)
1 ,−τγI

}
,

	̃(1,1)
1 = Q̃(k)−G(k)−G(k),

	̃(2,2)
1 = ς4

(
T (k)−GT(k)−G(k)

)
,

	(2,1)
1 =

⎡⎢⎢⎣
AG(k) +BβY (k) −BβY (k) γF

ℵ 1
2Y (k) −ℵ 1

2Y (k) 0


1
2G(k) 0 0√

ς3ξmaxG(k) 0 0

⎤⎥⎥⎦ ,

	(2,2)
1 = diag{−Q̃(k),−γI,−γI,−T (k)},

then, conditions (16a) and (19) are satisfied, and the feed-

back gain matrix H(k) and the weighting matrix Ω(k) are

designed by

H(k) = Y (k)G−1(k),Ω(k) = γT−1(k). (26)

Proof. From (14), we get

η(n+ 1, k)− η(n, k)

= (λ2 − 1)η(n, k)

+ ς3ξ(n, k)x
T(n, k)Ω(k)x(n, k)

− ς4e
T(n, k)Ω(k)e(n, k)

≤ ς3ξ(n, k)x
T(n, k)Ω(k)x(n, k)

− ς4e
T(n, k)Ω(k)e(n, k).

(27)

Substituting (18) into (19) yields

xT(n+ 1, k)R̃(k)x(n+ 1, k) + η(n+ 1, k)

− xT(n, k)R̃(k)x(n, k)− η(n, k)

+ ‖x(n, k)‖2� + ‖u(n, k)‖2ℵ
− τwT(n, k)w(n, k) ≤ 0.

(28)

According to (6), (13) and (27), the inequality (28) holds

if

[(A+BβH(k))x(n, k)−BβH(k)e(n, k)

+ Fw(n, k)]TR̃(k)[(A+BβH(k))x(n, k)

−BβH(k)e(n, k) + Fw(n, k)]

− xT(n, k)R̃(k)x(n, k)

+ ς3ξmaxx
T(n, k)Ω(k)x(n, k)

− ς4e
T(n, k)Ω(k)e(n, k)

+ ‖x(n, k)‖2� + ‖u(n, k)‖2ℵ
− τwT(n, k)w(n, k) ≤ 0.

(29)

591  



We write (29) as the following equivalent form:

ζT(k)
(
B1 + B2R̃(k)BT

2 + B3ℵBT
3

)
ζ(k) ≤ 0, (30)

where

ζ(k) =
[
xT(n, k) eT(n, k) wT(n, k)

]T
,

B1 = diag
{
− R̃(k) + ς3ξmaxΩ(k),−ς4Ω(k),−τI

}
,

B2 =
[
A+BβH(k) −BβH(k) F

]T
,

B3 =
[
H(k) −H(k) 0

]T
.

By the Schur complement, (30) is guaranteed if[
	(1,1)

2 ∗
	(2,1)

2 	(2,2)
2

]
≤ 0, (31)

where

	(1,1)
2 = diag

{
−R̃(k),−ς4Ω(k),−τI

}
,

	(2,1)
2 =

⎡⎢⎢⎣
A+BβH(k) −BβH(k) F

ℵ 1
2H(k) −ℵ 1

2H(k) 0


1
2 0 0√

ς3ξmaxI 0 0

⎤⎥⎥⎦ ,

	(2,2)
2 = diag{−R̃−1(k),−I,−I,−Ω−1(k)}.

Pre- and post-multiply the left-hand

side matrix of inequality (31) by diag{
γ− 1

2GT(k), γ− 1
2GT(k), γ

1
2 I, γ

1
2 I, γ

1
2 I, γ

1
2 I, γ

1
2 I
}

and its transpose respectively. Then, by denoting

γR̃−1(k) = Q̃(k) and (26), we have[
	(1,1)

3 ∗
	(2,1)

1 	(2,2)
1

]
≤ 0, (32)

where

	(1,1)
3 = diag

{
	̃(1,1)

3 , 	̃(2,2)
3 ,−τγI

}
,

	̃(1,1)
3 = −GT(k)Q̃−1(k)G(k),

	̃(2,2)
3 = −ς4G

T(k)T−1(k)G(k).

Since −GT(k)Q̃−1(k)G(k) ≤ Q̃(k) − GT(k) − G(k)
and −GT(k)T−1(k)G(k) ≤ T (k) − GT(k) − G(k),
then (32) holds if (23) is satisfied.

Now, we prove that conditions (24) and (25) guaran-

tee (16a).

Similar to the proof process in [1], and noting γR̃−1(k) =
Q̃(k), we obtain

max
n∈N

|[u(n, k)]ν |2

= max
n∈N

|[H(k)x̃(k)]ν |2

= max
n∈N

[[
H(k)Q̃

1
2 (k)Q̃− 1

2 (k)x̃(k)
]
ν

∣∣∣2
≤ max

n∈N

∥∥∥[H(k)Q̃
1
2 (k)

]
ν

∥∥∥2 ∥∥∥Q̃− 1
2 (k)x̃(k)

∥∥∥2
≤
∥∥∥[Y (k)G−1(k)Q̃

1
2 (k)

]
ν

∥∥∥2 .

(33)

Then, (16a) holds if there exists a matrix U > 0 satisfying

U − Y (k)G−1(k)Q̃(k)G−T(k)Y T(k) ≥ 0.

By the Schur complement, we get[
GT(k)Q̃−1(k)G(k) ∗

Y (k) U

]
≥ 0. (34)

Noting GT(k)Q̃−1(k)G(k) ≥ GT(k)+G(k)− Q̃(k), we

get (34) from (25). Then, (16a) holds if (24) and (25) are

satisfied.

3.2 Sufficient conditions for PIS
To ensure that Λ is a PIS, we give sufficient conditions and

give the corresponding LMIs.

Theorem 2. Let the scalar θ satisfying 0 ≤ θ ≤ 1 − λ2.

Then, (16b) holds if there exist a scalar γ > 0 and a matrix

Q̃(k) > 0 such that⎡⎣ I ∗ ∗
x(k) Q̃(k) ∗√
η(k) 0 γ

⎤⎦ ≥ 0, (35)

[
C

(1,1)
1 ∗

C
(2,1)
1 C

(2,2)
1

]
≤ 0, (36)

where

C
(1,1)
1 = diag

{
C̃

(1,1)
1 , C̃

(2,2)
1 ,− θ

p2
I

}
,

C̃
(1,1)
1 = (1− θ)

(
Q̃(k)−GT(k)−G(k)

)
,

C̃
(2,2)
1 = ς4

(
T (k)−GT(k)−G(k)

)
,

C
(2,1)
1 =

[
AG(k) +BβY (k) −BβY (k) F√

ς3ξmaxG(k) 0 0

]
,

C
(2,2)
1 = diag

{− Q̃(k),−T (k)
}
,

Proof. Noting that γR̃−1(k) = Q̃(k), by Schur comple-

ment we know that (35) guarantees
[
xT(n, k), η

1
2 (n, k)

]T
∈

Λ. Due to the presence of disturbance, assuming that[
xT(n, k), η

1
2 (n, k)

]T
∈ Λ, we need to prove that[

xT(n+ 1, k), η
1
2 (n+ 1, k)

]T
∈ Λ.

The invariant set (17) holds at k + 1 if

1

γ
‖ x(n+ 1, k)‖2

R̃(k)
+

1

γ
η(n+ 1, k)

− 1− θ

γ
‖x(n, k)‖2

R̃(k)
− 1− θ

γ
η(n, k)

− θ

p2
wT(n, k)w(n, k) ≤ 0.

(37)

Substituting (3) and (35) into (37), we have that
1
γ ‖ x(n+ 1, k)‖2R̃(k) +

1
γ η(n + 1, k) ≤ (1 − θ) + θ = 1,

thus, ‖ x(n+ 1, k)‖2R̃(k)+η(n+1, k) ≤ γ. This proves that[
xT(n+ 1, k), η

1
2 (n+ 1, k)

]T
∈ Λ.

The subsequent proof process is similar to Theorem 1

and is omitted here. Then, we get that (36) can be ob-

tained from (37). Finally, the condition (16b) is guaranteed

by (35) and (36).
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From the sufficient conditions given above, we transform

OP2 into the following auxiliary OP:

OP3 : min
H(k)

γ,

s.t.(23), (24), (25), (35), (36).
(38)

Based on OP3, we give the following FTMPC algorithm.

Algorithm 1.

Step 1. At k = 0, set an initial state x(0), the matrices 
and ℵ, and the scalars λ1, λ2, ς1, ς2, ς3, ς4, ξ, κ and η(0).
Step 2. If the error e(k) between x(k) and x(sm) meet-

s the event-triggered condition in DETM (5), then update

x(sm) by x(k); otherwise, implement x(sm) on the con-

troller.

Step 3. Obtain the feedback gain matrix H(k) and the

matrix Ω(k) by solving OP3, and then calculate u(k) by (9).

Step 4. Implement u(k) on system (13). Set k = k + 1
and return to Step 2.

3.3 Feasibility and stability analysis
Theorem 3. Give the weight matrices  > 0 and ℵ > 0,

and the scalars λ1, λ2, ς1, ς2, ς3, ς4, ξ, κ and η(0). If there is

a feasible solution for OP3 at k, then, at any instant t > k,

there also exists a feasible solution for OP3. Furthermore,

system (13) is ISS under the designed FTMPC controller.

Proof.
1) Proof of recursive feasibility. For OP3, we need to

prove that (35) is feasible at any future time instant t > k.

From (35), (36) and Theorem 2, we know that Λ is a PIS,

which ensures that (35) is feasible at any time t > k in the

future.

2) Proof of ISS. Define

V �(η(k), x(k)) � xT(k)R̃�(k)x(k) + η(k), (39)

where R̃�(k) > 0 denote the optimal R̃(k) to OP3 at time

instant k.

According to (39), we get

λmin(R̃
�(k))‖x(k)‖22 + η(k)

≤ V �(η(k), x(k)) ≤ λmax(R̃
�(k))‖x(k)‖22 + η(k),

(40)

where λmin(·) and λmax(·) represent the maximal and mini-

mal eigenvalue of a matrix. From (39), we further have

�1‖χ(k)‖22 ≤ V �(η(k), x(k)) ≤ �2‖χ(k)‖22, (41)

where �1 = min{λmin(R̃
�(k)), 1}, �2 =

max{λmax(R̃
�(k)), 1} and χ(k) =

[
xT(k) η1/2(k)

]T
.

Let �(k) = ς3ξ(k)x
T(k)Ω(k)x(k) − ς4e

T(k)Ω(k)e(k).
For a constant λ2, there exists a parameter ι ∈ (0, 1 − λ2)
such that λ2 − 1 + ι < 0. From (27) and (28) , we have

xT(1, k)R̃�(k)x(1, k)− xT(k)R̃�(k)x(k) + �(k)

+ ‖x(k)‖2� + ‖u(k)‖2ℵ − τ‖w(k)‖22
+ (λ2 − 1 + ι)η(k) < 0.

(42)

It is noted that R̃�(k) and R̃�(k + 1) are feasible solu-

tion and optimal solution to OP3 at k + 1, respectively, and

λ2η(k) + �(k)− η(k) = η(k + 1)− η(k). Then, we have

xT(k + 1)R̃�(k + 1)x(k + 1)− xT(k)R̃�(k)x(k)

+ η(k + 1)− η(k) + ‖x(k)‖2� + ‖u(k)‖2ℵ
+ ιη(k)− τ‖w(k)‖22 < 0.

(43)

From (39), it follows:

V �(η(k + 1), x(k + 1))− V �(η(k), x(k))

< −�3‖χ(k)‖22 + τ‖w(k)‖22,
(44)

where �3 = min{λmin(), ι}.

According to conditions (41) and (44), we have

‖χ(k)‖22 ≤ χ1

(
‖χ(0)‖22, k

)
+ χ2

(
‖w(k)‖2∞

)
, (45)

where χ1 ∈ KL and χ2 ∈ K. Note that ‖x(k)‖22 ≤ ‖χ(k)‖22
and ‖χ(0)‖22 = ‖x(0)‖22 +λ(0). This yields a condition that

satisfies Definition 1. The proof is complete.

4 A Numerical Example

In this section, we give a numerical example to demon-

strate the effectiveness of the FTMPC algorithm. Ta-

ble 1 gives the parameters for the power system.

Table 1: Parameters of the power system

Parameters Values Parameters Values

Tch 0.3 M 10

Tg 0.1 TES 0.2

R 0.05 TSR 0.1

D 1.0 KSR 7.5

β 21.0

Let ū = [0.1, 0.1, 0.1], and the scalars λ1 = 1, λ2 = 0.45,

ς1 = 0.3, ς2 = 12, ς3 = 5, ς4 = 2, ξ = 0.1, κ = 1.4,

θ = 0.5, η(0) = 0.96, p = 0.14 and τ = 4, and the matrices

 = 15I and ℵ = I . Set x(0) = [0.09, 0, 0, 0, 0, 0, 0]T.

Suppose that in the first 90 s, there exist step load dis-

turbance that ΔPd = 0.02 pu, and actuator fault with β =
diag(0.5, 0.5) at k ≥ 0.
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Fig. 1: Evolution of DETM (5).

Fig. 1 illustrates the evolution of DETM (5), which shows

that it is effective in saving resources. The Δf and ACE tra-

jectories of electrolytic aluminum load participating in fre-

quency modulation are given in Fig. 2, which indicate that

the designed FTMPC controllers have excellent control per-

formance in the case of actuator faults. Additionally, perfor-

mance comparison with and without electrolytic aluminum

load is presented in Fig. 3, which demonstrates the superior-

ity of electrolytic aluminum load participating in frequency

modulation.
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Fig. 2: Δf and ACE trajectories of electrolytic aluminum

load participating in frequency modulation.
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Fig. 3: Performance comparison of frequency modulation

with and without electrolytic aluminum load.

5 Conclusion

In this paper, a DETM-based fault-tolerant model predic-

tive LFC strategy is proposed for the power system where

electrolytic aluminum load participates in frequency regu-

lation. A novel DETM with an IDV and an AV has been

proposed, which effectively reduces the consumption of net-

work resources. A Lyapunov-like function with an IDV has

been constructed to put forward an auxiliary OP. The feasi-

bility and ISS of the devised FTMPC algorithm have been

analyzed. The superiority of electrolytic aluminum load par-

ticipating in frequency regulation and the effectiveness of the

control strategy of the system in case of actuator faults are

verified by a simulation example.
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1 INTRODUCTION
As we know, faults may occur at any components and

units of the process pumps, and may lead to severe
undesirable severe undesirable impact on the overall
system. Therefore, the detection or prediction of the
operating states of process pumps is significant importance
[1-2]. For grey prediction models can achieve rapid and
high accuracy predictions under small-sample conditions,
some results have been reported in [3]. A grey neural
network model on the foundation of grey models and used
it to track and predict textile color trends was proposed in
[4]. [5] improved the grey prediction model and applied it
to predict aquaculture water quality. [6] established a grey
theory model for the ownership of household appliances in
China and predicted appliance ownership. [7] proposed
modifications to the differential equation structure of the
GM(1, N) model, enhancing its modeling capability and
prediction accuracy. [8] combined fuzzy theory with grey
prediction models to form an intelligent grey prediction
model, effectively improving predictive capabilities.

Noted that the states of process pumps are influenced
by unknown factors, and using the single prediction
method may be less accurate. Therefore,
the multi model fusion algorithms have attracted wide
attention. [9] applied the grey prediction model to PID
control systems, compensating for the output of the
loading system through grey prediction, outperforming
traditional PID control systems. In [10], a new method was
proposed for predicting landslide displacement, namely
the BNGM(1,1,t2)-based prediction method. In [11], a new
self-adaptive optimized grey model was proposed to
realize accurate predictions of electric vehicles sales and
stock. Therefore, this paper utilizes different optimization
methods such as the residual grey Markov model to
optimize the basic grey prediction model, enhancing the
accuracy of predicting and analyzing process pump
operational data.
.

2. The basic form of the model GM(1,1)
Assuming the original sequence of the process pump is

denoted as
(0)X shown in Equation (1).

(0) (0) (0) (0)
1 2( , , , )nX x x x  (1)

where n represents the number of sequences,
and (0) 0, 1,2, ,mx m n   .

By using accumulation of the sequence (0)X , we can
obtain the following sequence (1)X

(1) (1) (1) (1)
1 2( , , , )nX x x x  (2)

where (1) (0)

1
, 1,2, ,

m

m i
i

x x m n


   .

It gets the first-order differential of the equation (2),
then the GM model is obtained as

(1)
(1)dX aX b

dt
  (3)

Where a is the grey development coefficient, indicating
the development trend of the sequence (1)X , and b is the
grey action quantity of the model, denoting the relationship
of data changes.
Discretizing the equation (3) yields

(0) (1) (1)
1 1( ( ))
, 1, 2, , 1

k k kx a p x x b
k n

   

 
(4)

where p is the background coefficient value, which is
typically setting to 0.5. Therefore, the background value of
the grey prediction model is shown as following

(1) (1) (1)
1 1

1 ( ), 1,2, , 1
2k k kz x x k n     (5)

Combining (4) and (5), we obtain:

(0) (1)
1 1

1( ) , 1, 2, , 1
2k kx a z b k n      (6)

Then we can give the following equation
 TnY B a b (7)

where
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(0) (1)
2 2
(0) (1)
3 3

(0) (1)

1
1

,

1

n

n n

x z
x z

Y B

x z

   
          
   

      

  
(8)

The parameters a and b can be solved as

1( )T T
n

a
B B B Y

b
 

 
 

(9)

Performing Laplace transform on (3) yields

(1) (1) (1)
0s s

bsx x ax
s

   (10)

Let (1) (0)
0 1x x , (10) can be rewritten as

(0)
(1) 1

2s
xb ax

a s as sa
  


(11)

By using Laplace transform, the solution to the
differential equation can be given as

(1) (0)
1( ) at

t
b bx x e
a a

   (12)

Therefore, the response sequence (1)x̂ of the GM(1,1)
model is shown as

(1) (0)
11ˆ ( )

, 1,2, ,

ak
k

bx x e
a

b k n
a


  

  
(13)

The response sequence can be restored to the predicted
sequence via cumulative reduction

(0) (1) (1)
1 1ˆ ˆ ˆk k kx x x   (14)

By solving a and b , and substituting them into
equations (13) and (14), the grey prediction values of the
original sequence can be obtained.
The following section is evaluation metrics for grey

models. The original sequence (0)X of the process pump
is subjected to the ratio test method to verify the data's
smoothness, and the method is given as

2 2(0)
1 1 1

(0) , 2,3, , , ,k n n
k k

k

x k n e e
x

 


  
 

   
 

 (15)

If condition (15) is satisfied for all k , it indicates that
the sequence meets the requirements of the grey model and
can be directly used in the grey model. Otherwise,
adjustments should be made by mathematical
transformations.
For model predictive ability verification,

residual verification and posterior difference check are
employed. The relative residual verification method is
given as

(0) (0)

(0)

ˆ
, 1, 2, ,k k

k
k

x x
k n

x



   (16)

If residual 0.2k  , the model's predictive ability has

reached the predetermined level; for relative
residual 0.1k  , the model possesses good predictive

capability.
To enhance the accuracy of prediction, a post-residual

test is conducted. The post-residual ratio is represented as

2

1

SC
S

 (17)

where 2 (0) (0) 2
1

1

1 ( )
n

i
i

S x x
n 

  , 2 2
2

1

1 ( )
n

i
i

S
n

 


  .

The small probability error is given as

 10.6754kP p S    (18)

1S can reflect the dispersion of the original sequence, and

2S can reflect the dispersion between the predicted
sequence and the original sequence. When the predicted
values of the model are closer to the original values, the
variance 2S of the residual sequence becomes smaller,
while the dispersion of the original sequence is relatively
larger. Therefore, for a model with better predictions, C
should be relatively smaller. So, a comprehensive
evaluation of the model can be given according to the
magnitudes of C and P .

Table I. MODEL METRICS

outstanding

qualified

satisfactory

unsatisfactory

3. Grey Model Optimization
For the regular GM(1,1) model, there is significant room

for optimization in both the modeling process and the
prediction results. For the optimization of the grey model
itself, methods such as optimizing initial values and
background values can be introduced. For the predicted
results, this paper adopts the metabolic model and Markov
chain method.

A. Optimization Method for GM(1,1) Initial Values

As the modeling of GM(1,1) involves the cumulative
sequence of the original series, does
not participate in the calculation of initial values during
the modeling and solving process. However, in the model
response equation, the initial values are involved in the
response. Therefore, introducing a suitable constant is
essential, as shown in equation (19).

(0) (0) (0)
1( , , , ), 0nX c x x c  (19)

As the grey model fits the data into an exponential
sequence, i.e., , the constant can be chosen
as 0(0)c x be b   .

Then, (19) can be rewritten as
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(0) (0) (0)
1( , , , )nX b x x  (20)

B. Optimization Method for GM(1,1) Background
Values

The actual background value is represented as
1(1) (1)

1
k

tk k
z x dt



   (21)

Therefore, Equation (5) is the trapezoidal formula for
(21), leading to an error in the grey model's background
value.
To reduce the error between the trapezoidal formula and
the integral, (21) can be written as

(1) (1) (1) (1) (1)
1 1 2 1

3 3

1 3 3 3
8k k kk k

z x x x x 
 

 
    

 
(22)

The terms (1)
1
3

k
x


and (1)

2
3

k
x


do not exist in the discrete

sequence. Quadratic Newton interpolation can be used to
eliminate these terms. Then the background value can be
shown in equations (23) and (24) by the method of
subsection process

(1) (1) (1) (1)
2 1

1 ( 8 5 )
12n n n nz x x     (23)

(1) (1) (1) (1)
1 2 1

1 ( 8 5 )
12
, 1, 2,..., 2

k k k kz x x

k n

     

 
(24)

C. Metabolic GM(1,1) Model

As time goes on, some factors in the system may cause
changes in the development trend, which can lead to
significant deviations in the model predictions. Therefore,
grey prediction can be divided into multiple steps. Each
step predicts a portion of new information, and discards
the oldest information to achieve the goal of using the
current information in the prediction process. This method
is known as the metabolic model.

First, a portion of the original sequence is taken as input
for GM(1,1) modeling. Assuming the extracted length is
m and the total sample length is n , where m n , the
input sequence for the first modeling is denoted

as
(0) (0) (0) (0)

1 2( , , , )mX x x x  .
Second, the input sequence with a length of is used for

grey prediction, resulting in a one-step prediction (0)
1ˆmx  .

The prediction result is then incorporated into the input
sequence for the second modeling, discarding the initial
input. Therefore, the input sequence for the second
modeling is denoted as (0) (0) (0) (0)

2 3 1ˆ( , , , )mX x x x   .
Third, the second step is

repetitive activitiesproce-eding towards the end of predictio
n.

D. Residual Grey Markov Model

To solve the problem of large dispersion, a combination
of the Markov model and the GM(1,1) model can be
employed to rectify errors in the grey model's prediction

results, and enhanced the accuracy of predicted data. For
the Residual Grey Markov Model, the residuals of the grey
model can be used to be the input. The modeling process is
introduced below.

For the training data, fitting and restoration are
performed through the Residual Correction Method. Firstly,
the absolute value of the residual sequence is taken as the
initial data for grey prediction, resulting in the fitted
residual value ê . Then, a positive-negative sequence m
is obtained based on the positive and negative values of the
original residual sequence, where values greater than 0 are
represented as 1im  , and values less than 0 are represented
as 1im   . Finally, the original sequence and the
positive-negative sequence are multiplied by the fitted
residual value to obtain the corrected sequence, which is
then added together for correction, as shown in Equation
(25).

(0) (0)ˆ ˆ ˆ , 1,2,...,k k k kx x m e k n    (25)

For the predicted data, the residuals are subjected to
Markov state division, resulting in a Markov state transition
matrix. Finally, the state transition matrix is used to predict
the next state. The original data's grey prediction results are
then added to the predicted residual sequence of the next
state, thereby correcting the prediction results. The residual
Markov model is illustrated in Figure 1.

Figure 1 Residual Grey Markov Model Diagram

4. Experimental Analysis
A. Experimental Data
In this paper, inspection data from a single-stage pump

over a continuous 12-day period is selected. The inspection
values of vertical vibration, horizontal vibration (front and
rear), and axial vibration, considered as influencing factors
during the equipment's operation, were chosen for
modeling the grey prediction model for the pump's
vibration data. The first 10 days of the experimental data
were used as training data, while the last two days were
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used as validation data. The experimental data is presented
in Table II.

Table II. Experimental Data of Single-Stage Pump

Number A B C D E
1 3.480 1.630 4.436 4.082 0.991
2 2.710 1.924 4.282 4.038 1.450
3 3.418 2.752 5.222 5.098 0.792
4 4.226 2.112 5.314 5.017 1.620
5 2.420 2.370 4.100 3.990 1.720
6 2.140 2.330 3.710 3.480 1.480
7 3.562 2.993 4.858 5.025 1.211
8 3.569 3.034 6.227 4.860 1.923
9 3.984 4.628 5.691 5.923 1.377
10 3.514 3.718 5.817 5.358 1.131
11 3.899 3.525 5.924 5.851 1.369
12 4.304 4.682 5.593 6.001 1.291

In the above table, A represents Front vertical vibration
(mm/s), B represents Rear vertical vibration (mm/s), C
represents Front horizontal vibration (mm/s), D represents
Rear horizontal vibration (mm/s), and E represents Axial
vibration (mm/s).

B. Model Optimization Comparison

After conducting level ratio tests and shifts on the
experimental data in Table II, experiments were performed
separately for initial value optimization and background
value optimization. The model experiments were carried
out in the Matlab programming environment. The
comparative results of the model experiments are shown in
Figure3.7.

Figure 2 Relative residual comparison plots for fitting and predicting
experimental data of a single-stage pump: (a) front vertical vibration; (b)
rear vertical vibration; (c) front horizontal vibration; (d) rear horizontal

vibration; (e) axial vibration

From Figure 2, it can be observed that compared to the
prediction model with initial value optimization, the grey
prediction model with background value optimization has
relatively smaller relative residuals. Additionally, for the
predicted values, the grey prediction model with
background value optimization shows relative residuals for
the five vibration status values that are less than or close to
0.2, indicating better predictive performance. Due to the
fluctuating characteristics of the actual status values, there
are points with relative residuals greater than 0.2 on the
training data for all three models. Therefore, metabolic
optimization and Markov chain correction were applied to
the experimental data based on background value
optimization.

C. Grey Metabolic Model Prediction

According to the modeling process of the Grey
Metabolic GM(1,1) model, the input data is the training
data, and a single-step prediction is performed to obtain the
final predicted data. Metabolic prediction is conducted for
the 11th and 12th sets of serial numbers in the experimental
data from Table II. The results are shown from Table III to
VII.

Table III. Comparison of Metabolic Predictions for Front
Vertical Vibration (mm/s)

Number A B C D E
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11 3.899 3.688 0.054 3.688 0.054
12 4.304 3.771 0.124 3.692 0.142

Table IV. Comparison of Metabolic Predictions for Rear
Vertical Vibration (mm/s)

Number A B C D E
11 3.525 4.213 0.195 4.213 0.195
12 4.682 4.503 0.038 4.523 0.034

Table V. Comparison of Metabolic Predictions for Front
Horizontal Vibration (mm/s)

Number A B C D E
11 5.924 5.494 0.061 5.494 0.061
12 5.593 5.649 0.010 5.603 0.002

Table VI. Comparison of Metabolic Predictions for Rear
Horizontal Vibration (mm/s)

Number A B C D E
11 5.851 5.911 0.002 5.911 0.002
12 6.001 6.099 0.016 6.079 0.013

Table VII. Comparison of Metabolic Predictions for Axial
Vibration (mm/s)

Number A B C D E
11 1.369 1.460 0.066 1.460 0.066
12 1.291 1.460 0.138 1.493 0.156

From Table III to VII, A represents actual value, B
represents Optimized predicted values of GM(1,1)
background values, C represents Relative residual of
optimized GM(1,1) background values, D represents
Predicted values of GM(1,1) metabolic model, and E
represents Relative residuals of GM(1,1) metabolic model.
From Table III to VII, for the second predicted value,

the Metabolic Grey Model shows a certain reduction in
relative residuals compared to the Background Value
Optimized Grey Model, proving that the Metabolic Model
has a corrective effect on the prediction results. In the
prediction results for the 12th set, Table IV to VI show
that the relative residuals of the Metabolic Model are
reduced by 0.004, 0.008, and 0.003 compared to the
Background Value Optimized Model, indicating that the
Metabolic Model has an optimizing effect. In the
Metabolic Model, the value of the first predicted point
relies on the original training data for prediction, and its
input is consistent with the original model, resulting in
consistent performance with the Background Value
Optimized Model at the first predicted point. This is also a
drawback of the Metabolic Model in optimizing the
prediction for the first point. To solve this problem, the
Markov Chain model is further introduced to correct the
prediction results based on the residuals fitted from the
training data.

D. Residual Grey Markov Model Prediction

After optimizing the background values for the training
data in Table II using grey forecasting, the predicted
results were obtained. The residuals, representing the
difference between the original sequence and the fitted
sequence, are shown in Table VIII.
In the table VIII, table IX, table X, A denotes Front

vertical residual, B represents Rear vertical residual, C
represents Front horizontal residual, D represents Rear
horizontal residual, and E represents Axial residual.
If the residual is greater than 0, it is denoted as state 1,

otherwise, it is denoted as state 2. Then the one-step
residual state probability matrix can be obtained. The
relative residuals are given via correction of training data,
which are shown in Table IX.

Table VIII. Residuals of the Vibration State Values from the
Background-Optimized Grey Model

Num
ber A B C D E

1 0 0 0 0 0
2 -0.255 0.058 -0.148 -0.065 0.077
3 0.375 0.646 0.775 0.712 -0.591
4 1.104 -0.238 0.554 0.638 0.228
5 -0.781 -0.229 -0.614 -0.744 0.318
6 -1.141 -0.524 -1.268 -1.305 0.069
7 0.201 -0.122 0.132 -0.331 -0.210
8 0.127 -0.347 -0.180 0.862 0.492
9 0.461 0.976 0.734 0.147 -0.063
10 -0.091 -0.212 0.017 0.091 -0.319

Table IX. The relative residuals for the Residual Grey Markov
Forecast are shown

Number A B C D E

1 0 0 0 0 0
2 0 0 0 0 0
3 0.132 0.099 0.006 0.029 0.245
4 0.090 0.069 0.031 0.026 0.080
5 0.060 0.070 0.003 0.011 0.003
6 0.272 0.051 0.205 0.183 0.151
7 0.081 0.098 0.071 0.048 0.043
8 0.085 0.026 0.052 0.057 0.133
9 0.021 0.116 0.060 0.054 0.109
10 0.068 0.064 0.060 0.055 0.111
11 0.128 0.326 0.010 0.064 0.061
12 0.183 0.063 0.037 0.039 0.260

From Table IX, it can be observed that the Residual
Grey Markov Chain model exhibits a high degree of fit on
the training data. The majority of the fitted relative
residuals for most state values are below 0.2, and even
below 0.1. The table shows that the model performs well in
predicting the values of front and rear horizontal vibrations,
and relative residuals are all below 0.1. It also demonstrates
good predictive ability for front vertical vibration values,
with relative residuals all below 0.2. However, there are
relatively larger relative residuals for the first predicted
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point of rear vertical vibration and the second predicted
point of axial vibration. Due to the advantage of the
Metabolism model in correcting the second predicted value,
a one-step prediction of the Residual Grey Markov Chain
with Metabolism can be performed. The Metabolism state
transition matrix is incorporated into the Markov chain,
combining the advantages of Metabolism and Markov to
achieve dual optimization, as shown in Tables X and XI.
Table X. The table for the relative residuals of the Residual

Metabolism Markov Forecast is as follows

Number A B C D E
11 0.128 0.326 0.010 0.064 0.061
12 0.065 0.063 0.037 0.071 0.017
Table XI. The comprehensive index table for the Residual

Markov Metabolism Forecast is as follows

Evaluation
metrics A B C D E

P 0.833 0.917 0.917 0.917 0.833
C 0.495 0.424 0.371 0.378 0.448

In the table XI and XII, A represents Front vertical
metrics, B represents Rear vertical metrics, C represents
Front horizontal metrics, D represents Rear horizontal
metrics, and E represents Axial metrics.
From Tables IX and X, the data for numbers 11 and 12

show that in the prediction of front vertical and axial
vibration values, the relative residuals of the second point
predicted by the Residual Grey Markov Metabolism model
are significantly reduced compared to the Residual Grey
Markov model. This reduction makes the relative residuals
for the prediction of axial vibration values by the model
less than 0.1. Overall, through the evaluation of C and P
values, the Residual Grey Markov Metabolism model
shows better predictive performance in comprehensive
indicators, as seen in Table XI. The prediction results
between model-predicted values and actual values are
shown in Figure 3.

Fig. 3 Prediction diagram of vibration level for a single-stage
pump based on the Grey model:(a) Front vertical vibration;(b) Rear
vertical vibration;(c) Front horizontal vibration;(d) Rear horizontal

vibration;(e) Axial vibration.
From Figure 3, it can be observed that all three

prediction models demonstrate certain predictive
capabilities and effects. The Metabolism model utilizes
new information to offset old information for stepwise
prediction, resulting in improved accuracy for the predicted
data. However, the first point's prediction is not effectively
corrected. The Residual Grey Markov Metabolism model,
can achieve correction for the first predicted point and
better alignment with the original data. The results indicate
that the Residual Grey Markov Metabolism model exhibits
a good predictive effect on the experimental data, providing
conditions for predicting the vibration values of process
pumps.

5. Model Validation Methods
In this section, the 12 sets of inspection data for

single-stage pumps in March 2022 are validated, and the
results of comprehensive evaluation indicators are shown
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in Tables XII. The relative residual results are shown in
Figures 3.9 and 3.10.
Table XII. Comprehensive Evaluation Indicators for Single-Stage

Pump Prediction

Evaluation
metrics A B C D E

P 1 1 1 1 1
C 0.153 0.285 0.344 0.155 0.273

According to Table XII, it can be seen that the
evaluation of the residual Grey Markov metabolism model
for single-stage pumps' vibration data prediction results is
good, indicating a good predictive ability of the model. As
shown in Figure 4, the predictive model was established
using the first 10 sets of experimental data, and the relative
residuals of the remaining 2 sets of data were obtained.
The relative residuals of the predicted points on the
residual curve of the single-stage pump are all less than
0.2, which proves the superior predictive ability of the
model in terms of overall prediction results. The prediction
results between the model's predicted values and the actual
values are plotted in Figure 5.

Fig. 4 Relative residual plot for single-stage pump prediction

Fig. 5 Prediction diagrams of vibration level for single -stage
pump based on grey model:(a)Front vertical vibration;(b)Rear

vertical vibration;(c)Front horizontal vibration;(d)Rear horizontal
vibration;(e)Axial vibration.

From Figure 5, it can be observed that in the
comparison between the original value curve and the
prediction model curve, the predicted values and fitted
values are relatively close to the original values in terms of
magnitude and trend. This indicates that the residual grey
Markov metabolic model based on grey theory has a
superior predictive effect on the verification data of
single-stage pumps and multi-stage pumps.

6. CONCLUSION
This chapter provides an overview of the background

and fundamental modeling process of grey system theory,
as well as the issues and optimization methods in the
GM(1,1) model. The optimization methods covered
include initial value optimization, background value
optimization, metabolism combination optimization, and
Markov chain combination optimization. Experiments and
analyses were conducted for each optimization method.
Finally, the chapter applies the residual grey Markov
metabolism model to predict and correct the vibration
values of a process pump. The prediction results meet the
theoretical requirements of the model.
（Due to the large number of diagrams, we can consider
only single-stage process pumps or multi-stage process
pumps, and focus on only one type.）
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Abstract: This paper is concerned with the problem of finite-time fault detection (FD) for T-S fuzzy systems under the encoding-
decoding mechanism (EDM). In order to relieve the communication burden and enhance the transmission reliability, the EDM is
introduced in the sensor-to-filter channel. The sufficient conditions are derived to guarantee the finite-time boundedness (FTB)
with prescribed H∞ performance of the filtering error system (FES). Moreover, the parameters of the FD filter are determined
by means of the linear matrix inequality method. Finally, the feasibility of the developed FD filtering algorithm is illustrated by
a numerical simulation with comparative experiments.

Key Words: Encoding-Decoding Mechanism, Finite-Time Fault Detection, T-S Fuzzy Systems

1 Introduction

The T-S fuzzy model has excellent modeling ability for
handling nonlinearity, and it has received a lot of attention-
s in the field of control [1]. With the increasing demand
for system reliability, the fault detection (FD) problem for
fuzzy systems has increasingly become a research hotspot
[2]. In [3], a novel switched fuzzy FD observer has been
designed with the help of the asynchronous premise recon-
struction method for a class of T-S fuzzy systems, where the
H∞ performance has been discussed over infinite-time hori-
zon. Recently, it has been recognized that many practical
systems require achieving certain performance within finite-
time horizon. Accordingly, a finite-time FD filtering method
has been given in [4] for T-S fuzzy systems, where the suffi-
cient criteria have been provided to guarantee that the resid-
ual dynamic system is stochastically finite-time bounded. So
far, there is still a vast research space for the finite-time FD
issues of T-S fuzzy systems.

The network-induced phenomena may occur during the
data transmission due to limited network bandwidth, which
deteriorate the system performance [5]. As it is well recog-
nized, it is an effective strategy to introduce the encoding-
decoding mechanism (EDM) for relieving the communica-
tion burden and improving the transmission reliability [6]. In
recent years, some research methods have been developed on
the EDM-based filtering or control problems for networked
systems subject to limited communication constraints [7, 8].
For instance, the issue of finite-time distributed filtering has
been addressed in [9] for time-varying switching systems
under EDM, where new sufficient conditions have been de-
rived to ensure the stochastic finite-time boundedness (FTB)
with desirableH∞ performance for the filtering error system
(FES). However, the EDM-based FD problem for T-S fuzzy
systems has not been studied yet, which constitutes the main
motivations of this paper.
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This work was supported in part by the National Natural Science Foun-
dation of China under Grant 12171124, the Natural Science Foundation
of Heilongjiang Province of China under Grant ZD2022F003, and the
Alexander von Humboldt Foundation of Germany.

To summarize the above analysis, we focus on the finite-
time FD problem based on EDM for T-S fuzzy systems. The
main contribution of this paper are highlighted as follows:
1) the FD problem for T-S fuzzy system is studied, where
the EDM is introduced in the communication network be-
tween sensor and filter to save bandwidth resources; 2) suf-
ficient criteria are derived to ensure that the FES meets the
FTB with satisfactory H∞ performance, where the impact
of decoding error on filtering performance is fully consid-
ered by introducing a new performance index containing the
upper bound of decoding error; and 3) a novel FD filtering
scheme based on EDM is designed for T-S fuzzy systems
under finite-time constraints.

2 Problem Formulation

The following discrete-time T-S fuzzy system is consid-
ered:

Plant Rule i: IF µ1,k is Hi1, µ2,k is Hi2, · · · and µp,k is
Hip, THEN

xk+1 = Aixk +Biwk +Gifk,

yk = Cixk, i = 1, 2, . . . , q, (1)

where k ∈ [0, N ], q is the number of IF-THEN rules;
µk = [µ1,k µ2,k · · · µp,k] is the premise variable vector;
Hij (j = 1, 2, . . . , p) are fuzzy sets; xk ∈ Rn represents
the state vector; yk = [y1,k y2,k · · · ym,k]T ∈ Rm is the
measurement output with yσ,k being the measurement sig-
nal sensed by the σ-th sensor node; wk ∈ Rw represents the
external disturbance belonging to l2[0, N ], fk ∈ Rf is the
fault signal. Ai, Bi, Gi and Ci are constant matrices with
appropriate dimensions.

The defuzzified output of T-S fuzzy system (1) can be de-
scribed as follows:

xk+1 =

q∑
i=1

hi (µk) (Aixk +Biwk +Gifk) ,

yk =

q∑
i=1

hi (µk)Cixk, (2)

where hi (µk) (i = 1, 2, . . . , q) are fuzzy basis functions
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with

hi (µk) =
φi (µk)∑q
i=1 φi (µk)

.

Here, φi (µk) = Πpj=1Hij (µj,k) ≥ 0,
∑q
i=1 φi (µk) >

0, and Hij (µj,k) is the grade of membership of µj,k in
Hij . Hence, one has hi (µk) ≥ 0 (i = 1, 2, . . . , q) and∑q
i=1 hi (µk) = 1.
The measurement output of the system is transmitted to

the remote filter through the communication network. To
alleviate the communication burden, the EDM is introduced,
where the process of encoding and decoding is specifically
described as follows.

1) Encoding: At the encoder side, the measurement out-
put yσ,k of sensor node σ (σ ∈ {1, 2, . . . ,m}) is coded by
the following principle:

qσ,k = E (yσ,k, Lσ, sσ)

=



1, yσ,k ∈
[
−Lσ,−Lσ + 2Lσ

sσ

)
,

2, yσ,k ∈
[
−Lσ + 2Lσ

sσ
,−Lσ + 2 2Lσ

sσ

)
,

...

sσ, yσ,k ∈
[
−Lσ + (sσ − 1) 2Lσ

sσ
, Lσ

]
,

(3)

where [−Lσ, Lσ] is the known range of yσ,k (∀k ∈ [0, N ]),
sσ represents the pre-set number of sub-intervals that are ob-
tained by dividing [−Lσ, Lσ].

2) Decoding: The following decoding scheme is adopted:

ȳσ,k = Dσ(qσ,k) = −Lσ +
2(qσ,k − 0.5)Lσ

sσ
, (4)

where ȳσ,k is the decoding value output by the decoder corre-
sponding to sensor σ. Defining ȳk = [ȳ1,k ȳ2,k · · · ȳm,k]T ,
we have

ȳk = D(qk) = yk + εk, (5)

where εk , D(qk) − yk stands for the decoding er-
ror, qk = [q1,k q2,k · · · qm,k]

T and D(qk) =
[D1(q1,k) D2(q2,k) · · · Dm(qm,k)]

T . Combining (4) with
(3), the decoding error εk satisfies

εTk εk ≤
m∑
σ=1

(
Lσ
sσ

)2

, d̂. (6)

For the physical plant represented by (2), we construct the
following fuzzy FD filter:

Filter Rule j: IF µ1,k is Hj1, µ2,k is Hj2, · · · and µp,k is
Hjp, THEN

x̂k+1 = Af,j x̂k +Bf,j ȳk,

rk = Cf,j x̂k +Df,j ȳk, j = 1, 2, . . . , q, (7)

where x̂k ∈ Rn and rk ∈ Rf stand for the filter state and
the residual, respectively. Af,j , Bf,j , Cf,j and Df,j are FD
filter parameters to be designed. Then, the defuzzified output
of fuzzy FD filter (7) is presented as:

x̂k+1 =

q∑
j=1

hj (µk) (Af,j x̂k +Bf,j ȳk) ,

rk =

q∑
j=1

hj (µk) (Cf,j x̂k +Df,j ȳk) . (8)

In the sequel, for brevity, we use hi to denote hi (µk) and
define x̃k = xk − x̂k, ηk =

[
x̃Tk x̂Tk

]T
, ϑk =

[
wTk fTk

]T
and r̃k = rk−fk. According to (2), (5) and (8), the following
FES can be obtained:

ηk+1 =

q∑
i=1

q∑
j=1

hihj

(
Âijηk + B̂iϑk + Ĝjεk

)
,

r̃k =

q∑
i=1

q∑
j=1

hihj

(
Ĉijηk + D̂ϑk + Ĥjεk

)
, (9)

where

Âij =

[
Ai −Bf,jCi Ai −Af,j −Bf,jCi
Bf,jCi Af,j +Bf,jCi

]
,

B̂i =

[
Bi Gi
0 0

]
, Ĝj =

[
−Bf,j
Bf,j

]
, D̂ =

[
0 −I

]
,

Ĉij =
[
Df,jCi Cf,j +Df,jCi

]
, Ĥj = Df,j .

Definition 1 [9] The FES (9) is finite-time bounded, if the
inequality ηTk Rηk < γ2 (∀k ∈ {1, 2, . . . , N}) can be de-
rived under the conditions{

ηT0 Rη0 ≤ α2
1,∑N

k=0

(
ϑTk ϑk + d̂

)
≤ α2

2,
(10)

where N ∈ Z+, 0 < α1 < γ, α2 ≥ 0 and R > 0. Besides,
d̂ is defined in (6).

Definition 2 [9] The FES (9) satisfies the prescribed H∞
performance, if the inequality

N∑
k=0

r̃Tk r̃k < λ2
N∑
k=0

(
ϑTk ϑk + d̂

)
(11)

holds in the case of zero initial condition, where λ > 0 is the
prescribed level of disturbance attenuation.

For the sake of realizing FD, we choose the following
residual evaluation function Jk and threshold Jth:

Jk =

{
k∑
l=0

rTl rl

}1/2

,

Jth = sup
vk∈l2,fk=0

Jk. (12)

Then, the following criteria are used to determine if the fault
has occurred:

Jk ≤ Jth ⇒ no faults,

Jk > Jth ⇒ faults occur ⇒ alarm. (13)

3 Main results

The analysis about FTB and H∞ performance of FES (9)
will be presented firstly.

Theorem 1 Given the FD filter matrices Af,j , Bf,j , Cf,j ,
Df,j , scalars N ∈ Z+, δ > 1, 0 < α1 < γ, α2 ≥ 0, matrix
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R > 0, the FES (9) is finite-time bounded with prescribed
H∞ performance, if there exist scalars κ0 > 0, κ1 > 0,
β > 0 and matrix P > 0 such that

Ω+ΥTiiPΥii +ΨTiiΨii < 0, i = 1, 2, . . . , q, (14)

4Ω + (Υij +Υji)
T
P (Υij +Υji)

+ (Ψij +Ψji)
T
(Ψij +Ψji) < 0, 1 ≤ i < j ≤ q, (15)

κ0R < P < κ1R, (16)
δNκ1α

2
1 + ϱδNα2

2 ≤ κ0γ
2, (17)

where

Ω = diag
{
−δP,−ϱI,−βI, (β − ϱ)d̂

}
,

Υij =
[
Âij B̂i Ĝj 0

]
,

Ψij =
[
Ĉij D̂ Ĥj 0

]
, ϱ = λ2δ−N .

Proof: To begin, based on the constraint (6) with respect
to the decoding error εk, it is clear that the following inequal-
ity holds for any β > 0:

β
(
d̂− εTk εk

)
≥ 0. (18)

Then, choose a Lyapunov function candidate as Vk =
ηTk Pηk. According to (9), (18) and applying Lemma 2 in
[10], one has

Wk , Vk+1 − δVk − ϱ
(
ϑTk ϑk + d̂

)
≤ ηTk+1Pηk+1 − δηTk Pηk − ϱ

(
ϑTk ϑk + d̂

)
+β
(
d̂− εTk εk

)
=

q∑
i=1

q∑
j=1

q∑
u=1

q∑
v=1

hihjhuhv

(
Âijηk + B̂iϑk

+Ĝjεk

)T
P
(
Âuvηk + B̂uϑk + Ĝvεk

)
−δηTk Pηk − ϱ

(
ϑTk ϑk + d̂

)
+ β

(
d̂− εTk εk

)
=

q∑
i=1

q∑
j=1

q∑
u=1

q∑
v=1

hihjhuhvξ
T
k

(
Ω+ΥTijPΥuv

)
ξk

=
1

4

q∑
i=1

q∑
j=1

q∑
u=1

q∑
v=1

hihjhuhvξ
T
k

[
4Ω + (Υij +Υji)

T

×P (Υuv +Υvu)
]
ξk

≤ 1

4

q∑
i=1

q∑
j=1

hihjξ
T
k

[
4Ω + (Υij +Υji)

T

×P (Υij +Υji)
]
ξk

=

q∑
i=1

h2i ξ
T
k

(
Ω+ΥTiiPΥii

)
ξk

+
1

2

q∑
i=1

q∑
j=1,j>i

hihjξ
T
k

[
4Ω + (Υij +Υji)

T
P

× (Υij +Υji)] ξk, (19)

where ξk =
[
ηTk ϑTk εTk 1

]T
and β > 0.

From (14) and (15), it is easy to infer that

Vk+1 − δVk − ϱ
(
ϑTk ϑk + d̂

)
< 0. (20)

Based on the above inequality and noticing δ ≥ 1, for any
k ∈ [0, N ], one has

Vk < δVk−1 + ϱ
(
ϑTk−1ϑk−1 + d̂

)
< δ2Vk−2 + δϱ

(
ϑTk−2ϑk−2 + d̂

)
+ ϱ

(
ϑTj ϑj + d̂

)
...

< δkV0 + ϱ
k−1∑
j=0

δk−1−j
(
ϑTj ϑj + d̂

)

< δNV0 + ϱ
N−1∑
j=0

δN−1−j
(
ϑTj ϑj + d̂

)

< δNV0 + ϱδN
N−1∑
j=0

(
ϑTj ϑj + d̂

)
. (21)

According to (16), (17) and Definition 1, it can be further
obtained that

ηTk Rηk ≤ 1

κ0
ηTk Pηk

<
1

κ0
δNηT0 Pη0 +

1

κ0
ϱδN

N−1∑
j=0

(
ϑTj ϑj + d̂

)
<

1

κ0
δNκ1η

T
0 Rη0 +

1

κ0
ϱδNα2

2

≤ 1

κ0
δNκ1α

2
1 +

1

κ0
ϱδNα2

2

≤ γ2. (22)

Therefore, the FES (9) is finite-time bounded.
Secondly, the following index is introduced to prove that

the FES (9) satisfies the H∞ performance:

W̄k , Vk+1 − δVk + r̃Tk r̃k − ϱ
(
ϑTk ϑk + d̂

)
. (23)

According to (9), it can be calculated that

r̃Tk r̃k

=

q∑
i=1

q∑
j=1

q∑
u=1

q∑
v=1

hihjhuhv

(
Ĉijηk + D̂ϑk + Ĥjεk

)T
×
(
Ĉuvηk + D̂ϑk + Ĥvεk

)
=

q∑
i=1

q∑
j=1

q∑
u=1

q∑
v=1

hihjhuhvξkΨ
T
ijΨuvξk. (24)

Then, combining (14), (15), (19), (24) with (23) and employ-
ing the Lemma 2 in [10], one has

W̄k ≤
q∑
i=1

q∑
j=1

q∑
u=1

q∑
v=1

hihjhuhvξ
T
k (Ω

+ΥTijPΥuv +ΨTijΨuv
)
ξk

≤
q∑
i=1

h2i ξ
T
k

(
Ω+ΥTiiPΥii +ΨTiiΨii

)
ξk
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+
1

2

q∑
i=1

q∑
j=1,j>i

hihjξ
T
k

[
4Ω + (Υij +Υji)

T
P

× (Υij +Υji) + (Ψij +Ψji)
T
(Ψij +Ψji)

]
ξk

< 0,

which can deduce the inequality

Vk+1 < δVk −
[
r̃Tk r̃k − ϱ

(
ϑTk ϑk + d̂

)]
. (25)

Letting k = N , the following inequality can be obtained by
iterating on (25):

VN+1 < δN+1V0 −
N∑
j=0

δN−j
[
r̃Tj r̃j − ϱ

(
ϑTj ϑj + d̂

)]
.

(26)

Due to VN+1 ≥ 0 and V0 = 0, one has

−
N∑
j=0

δN−j
[
r̃Tj r̃j − ϱ

(
ϑTj ϑj + d̂

)]
> 0. (27)

Noticing δ ≥ 1, the following inequality holds:

N∑
j=0

r̃Tj r̃j ≤
N∑
j=0

δN−j r̃Tj r̃j

< ϱ
N∑
j=0

δN−j
(
ϑTj ϑj + d̂

)

≤ ϱδN
N∑
j=0

(
ϑTj ϑj + d̂

)

= λ2
N∑
j=0

(
ϑTj ϑj + d̂

)
. (28)

Thus, the FES (9) is finite-time bounded with H∞ perfor-
mance. �

Subsequently, the FD filter gains will be determined by
the matrix inequality technique.

Theorem 2 Given the scalarsN ∈ Z+, δ > 1, 0 < α1 < γ,
α2 ≥ 0, matrix R > 0, the FES (9) is finite-time bounded
with prescribedH∞ performance, if there exist scalars κ0 >
0, κ1 > 0, β > 0, matrices Af,j , Bf,j , Cf,j , Df,j and
P > 0, such that (16), (17) and the following inequalities
are satisfied:

Ξii =

Ω Ξii12 Ξii13
∗ −P 0
∗ ∗ −I

 < 0, i = 1, 2, . . . , q, (29)

Ξ̂ij =

4Ω Ξ̂ij12 Ξ̂ij13
∗ −P 0
∗ ∗ −I

 < 0, 1 ≤ i < j ≤ q, (30)

where

Ξ̂ij1s = Ξij1s + Ξji1s, s = 2, 3,

Ξij12 =


ĀTi P + C̄Ti Bf,j + Î2Af,j

B̂Ti P
Bf,j
0

 ,

Ξij13 =


C̄Ti D

T
f,j + Î2C

T
f,j

D̂T

DT
f,j

0

 , Āi = [Ai Ai
0 0

]
,

C̄i =
[
Ci Ci

]
, Î1 =

[
−In
In

]
, Î2 =

[
0n
In

]
, Î3 =

[
In
In

]
.

and other parameters are given as in Theorem 1. Moreover,
the FD filter parameters Cf,j and Df,j can be obtained di-
rectly by solving the linear matrix inequalities (LMIs). Be-
sides, Af,j and Bf,j can be obtained by

Af,j =
(
ÎT1 P Î1

)−1

ÎT1 AT
f,j ,

Bf,j =
(
ÎT1 P Î1

)−1

ÎT1 BTf,j . (31)

Proof: By the aid of Schur complement lemma, (15) is e-
quivalent to

Ξ̌ij =

4Ω (Υij +Υji)
T

(Ψij +Ψji)
T

∗ −P−1 0
∗ ∗ −I

 < 0. (32)

Pre- and post-multiplying with diag {I, P, I} for Ξ̌ij , it is
easy to obtain that (32) is equivalent to

Ξ̌ij =

4Ω (Υij +Υji)
T
P (Ψij +Ψji)

T

∗ −P 0
∗ ∗ −I

 < 0. (33)

Some parameters in (33) are rewritten as follows:

Âij = Āi + Î1Af,j Î
T
2 + Î1Bf,jC̄i, Ĝj = Î1Bf,j ,

Ĉij = Cf,j Î
T
2 +Df,jC̄i, Ĥj = Df,j ,

where

Āi =

[
Ai Ai
0 0

]
, C̄i =

[
Ci Ci

]
, Î1 =

[
−In
In

]
,

Î2 =

[
0n
In

]
, Î3 =

[
In
In

]
.

Furthermore, letting Af,j = Af,j Î
T
1 P and Bf,j =

Bf,j Î
T
1 P , it can be derived that (33) is equivalent to (30).

Thus, (30) is equivalent to (15). Similarly, it can be deduced
that (29) is equivalent to (14).

Lastly, for any j ∈ {1, 2, . . . , q}, we can obtain P , Cf,j ,
Df,j , Af,j and Bf,j directly by solving the LMIs. More-
over, according to the definition of Af,j and Bf,j , the ex-
plicit expression of Af,j and Bf,j can be described by (31).

�
4 An Illustrative Example

Consider the T-S fuzzy system (1), where the number of
IF-THEN rules is q = 2 and the system matrices are given
as follows:

A1 =

[
−0.6 0.4
0.3 0.2

]
, B1 =

[
0.5
−0.2

]
, G1 =

[
0.3
0.4

]
,

C1 =

[
0.2 0.1
0.3 −0.4

]
, A2 =

[
0.2 0.5
0.4 −0.3

]
,
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B2 =

[
0.2
−0.3

]
, G2 =

[
−0.4
0.5

]
, C2 =

[
−0.2 0.1
−0.3 0.4

]
.

The fuzzy basis functions are adopted as h1(x1,k) =
sin2(x1,k)

2+cos2(x1,k)
and h2(x1,k) = 1 − h1(x1,k). Assume that

the disturbance is simulated by wk = e−k/1000sin(1.5k)ρk
with ρk subjecting uniform distribution on [−0.4, 0.4]. The
ranges of measurements y1,k and y2,k are [−0.15, 0.15] and
[−0.3, 0.3], respectively (i.e. L1 = 0.15, L2 = 0.3). The
numbers of sub-intervals are s1 = 8 and s2 = 16. The
parameters related to finite-time boundedness are N = 60,
R = I4, α1 = 0.4, α2 = 2.67, γ = 3.5 and the level of
disturbance attenuation is prescribed as λ = 1.4. Besides,
the known parameter δ in Theorem 2 is set as δ = 1.001.

With the help of Theorem 2, the parameters of FD filter
are obtained as:

Af,1 =

[
−0.0506 0.0344
0.0209 0.0305

]
,

Bf,1 =

[
−0.0077 −0.0409
0.0098 0.0036

]
,

Cf,1 =
[
−0.0030 0.0066

]
,

Df,1 =
[
−0.0072 0.0148

]
,

Af,2 =

[
0.0360 0.0452
0.0407 −0.0160

]
,

Bf,2 =

[
0.0006 0.0188
−0.0125 −0.0212

]
,

Cf,2 =
[
0.0166 −0.0191

]
,

Df,2 =
[
0.0184 0.0432

]
.

Let the initial values of the system and filter be x0 =
[0.2 0.3]T and x̂0 = [0 0]T . The fault to be detected is
given by

fk =

{
0.5, 20 ≤ k ≤ 40,

0, otherwise.

Fig. 1 and Fig. 2 depict the system measurement and its
decoded value through the EDM, which reflect that the da-
ta capacity transferred in the network is reduced under the
EDM. The residual rk is presented in Fig. 3. The resid-
ual evaluation function and threshold are shown in Fig. 4.
From Fig. 3, it can be found that the residual is sensitive to
the fault. In Fig. 4, the evaluation function Jk exceeds the
threshold Jth after short time steps since the fault occurred.
According to (12), we can get that 0.0124 = J23 < Jth =
0.0137 < J24 = 0.0141, which means that the fault is suc-
cessfully detected with only 4 time steps behind. Besides,
by observing the trajectories of ηTk Rηk and γ2 in Fig. 5, it
can be verified that the FES is finite-time bounded.

In addition, in order to further analyze the impact of ED-
M on FD performance, we also provide the simulations (as
shown in Fig. 6) of Jk and Jth under the situation of set-
ting the numbers of sub-intervals in EDM to smaller values
(i.e. s1 = 4, s2 = 8). By observing Fig. 6, we find that
the evaluation function exceeds the threshold after a little
longer time steps since the fault occurred. Specifically, one
has 0.0147 = J28 < Jth = 0.0152 < J29 = 0.0154, which
means that the fault is detected with 9 time steps behind. It
is obvious that the FD effect in this situation is not as good

as when the numbers of sub-intervals are set as s1 = 8 and
s2 = 16.

Comparing the FD results in the above two cases, it can
be found that when the numbers of sub-intervals in EDM
are set to smaller values, the FD effect deteriorates. This is
because the smaller the number of sub-intervals, the bigger
the decoding error. Therefore, it is necessary to balance the
effectiveness of FD and the savings in network bandwidth
based on actual requirements.

Fig. 1: The first component of measurement and its decoded
value

Fig. 2: The second component of measurement and its de-
coded value

5 Conclusions

The problem of finite-time FD has been investigated in
this paper for T-S fuzzy systems, where the EDM has been
introduced to save resources of network bandwidth. By us-
ing the Lyapunov stability theory, sufficient criteria have
been established to guarantee that the FES is finite-time
bounded and H∞ performance index is guaranteed. Fur-
thermore, the explicit expressions of the FD filter gains have
been determined based on the solutions of the LMIs. In the
end, a numerical example with comparisons has demonstrat-
ed the feasibility of the proposed FD strategy.
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Fig. 3: Residual signal rk

Fig. 4: Residual evaluation function and threshold (s1 = 8,
s2 = 16)

Fig. 5: Trajectories of ηTk Rηk and γ2
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Abstract: This study proposes a fault diagnosis method based on attention-LSTM for the satellite attitude control system. First, 
the hidden correlation information between high-dimensional variables is exploited through the variable attention layer. Then, 
deep temporal features are extracted with using the LSTM network layer. Finally, the time attention layer is introduced to 
increase the weight of important temporal information, effectively avoiding the problem of being forgotten due to too long input 
sequence and too many deep temporal features. The identification accuracy of slow fault in satellite attitude control system can 
be improved. The method is validated using data from the satellite semi-physical simulation platform, which demonstrates the 
effectiveness of this method. 
 
Key Words: Fault diagnosis, LSTM networks, Satellite attitude control system, Attention mechanism 
 

 
 

1 INTRODUCTION 

With the development of modern society, science, and 
technology, modern engineering and control technology 
have rapidly development. Simultaneously, the control 
system becomes more and more complex and huge. 
Therefore, to ensure the safe and reliable long-term 
operation of the system, it is particularly important to make 
it more maintainable. Due to the complexity of the external 
operating environment, the control system is often 
influenced by various forms of fault, such as actuator and 
sensor faults, which greatly affects the reliability and safety 
of the system. Therefore, it is crucial to detect and identify 
these faults as soon as possible. 

In recent years, as space exploration programs continue to 
advance, higher requirements have been placed on the 
design of satellites. The reliability of the Attitude Control 
System (ACS), one of the most important subsystems of the 
satellite, determines the successful completion of the 
mission [1]. However, the challenging operating conditions 
of satellites increase the possibility of satellite attitude 
control system failure, and once the satellite attitude control 
system fails, the satellite will deviate from the correct orbit 
or even lose control of the satellite as a whole, which will 
eventually lead to mission failure [2]. Therefore, it is 
important to study fault diagnosis technology to improve the 
safety and reliability of satellite attitude control system. 

With the rise of artificial intelligence, artificial 
intelligence algorithms have also begun to be studied and 
applied in the field of satellite fault diagnosis. It is mainly 
divided into rough set theory (RST), machine learning (ML), 
deep learning (DL) and information fusion (IF). In [3], a 
variable precision fuzzy neighborhood rough set model 
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(VPFNRS) method is proposed by combining rough set 
theory and fuzzy theory, and the feasibility and correctness 
of the proposed method are verified by the fault diagnosis of 
satellite power system. In [4], a multi-class support vector 
machine (SVM) model based on directed acyclic graph 
(DAG) was designed and applied to satellite momentum 
wheel voltage telemetry data, effectively improving the 
accuracy of fault detection. In [5], an improved random 
forest (RF) algorithm was applied to realize the fault 
isolation of the satellite three-axis reaction wheel. In [6], 
variable sequence-Long Short Term memory network 
(LSTM) was applied to the Kepler spacecraft reaction 
flywheel data set to complete the fault detection and 
prediction of reaction flywheel. Aiming at the problem of 
satellite telemetry data containing a lot of noise, [7] 
proposed a diagnosis method based on PCA and ResNet to 
realize fault diagnosis of satellite control system. In [8], 
convolutional neural network (CNN) was applied to the 
fault diagnosis of satellite thrusters to realize the fault 
detection and fault location of thrusters, and the feasibility 
of the proposed model was verified by the attitude control 
test platform. In [9], variational autoencoders (VAE) are 
combined with gated cycle unit (GRU) networks to propose 
a new unsupervised deep learning algorithm to realize 
spacecraft fault detection. In [10], the stacked autoencoder 
(SAE) network was combined to realize fault detection and 
isolation of satellite attitude control system. Because of its 
unique recursive cycle architecture, recurrent neural 
network can more easily capture the time series 
characteristics of satellite attitude control system. LSTM, as 
an improved network of recurrent neural network, has a 
stronger ability to capture data hidden time series 
information, which can play a great role in the diagnosis and 
research of slow-change faults of satellite attitude control 
system. In view of the problem that the attention mechanism 
has poor ability to extract time domain features, the slow 
fault diagnosis effect of satellite attitude control system is 
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poor. This paper proposes a fault diagnosis method based on 
Attention-LSTM. 

The rest of the paper is organized as follows. Section 2 
introduces Long short-term memory network. A fault 
diagnosis method based on Attention-LSTM is proposed in 
Section 3. In Section 4, the satellite platform is used to 
obtain the experimental simulation data required by the 
diagnostic models, and carried out fault diagnosis 
simulation experiment research, so as to verify the 
feasibility of the designed fault diagnosis method. Finally, 
Section 5 summarizes the work of this paper. 

2 Long short-term memory network 

In the field of image and object recognition, the network 
model using feedforward neural network performs well, but 
in many fields with time series characteristics, such network 
model cannot take advantage of the time series 
characteristics of data, so the final model effect is poor. The 
birth of a series of models such as recurrent neural network 
(RNN) has officially solved the problem that the former 
models cannot use time series information. 

After multiple network recursion of RNN, the gradient 
explosion or gradient disappearance occurs, and the 
influence of the information at the earlier time on the 
information at the later time becomes less and less. As a 
result, RNN cannot learn useful information at the far end, 
resulting in the problem of long-distance dependence. 
LSTM, as an improvement of RNN, solves this problem to 
some extent [11]. 

The LSTM network structure is shown in Fig 1. 
Compared to RNN, LSTM introduces three gating 
mechanisms: The forgetting door, input door and output 
door can save information and control the input and output 
of information. The input door can control the input status of 
information at the current moment and screen out irrelevant 
content. The forgetting door can retain and forget the output 
information at the previous moment, and the output door can 
control the output status of information at the current 
moment. At the same time, LSTM introduces cell state to 
realize the function of information transmission in the whole 
LSTM [12]. 

 
Fig 1 Specific network structure diagram of LSTM 

First of all, the forgetting door combines the output 
information of the hidden layer at the previous time with the 
input information at the current time, and obtains the 
proportion of forgotten information through the sigmoid 
activation function to determine the old information to be 
forgotten. 

 1( [ , ] )t f t t ff w h X b      (1) 

where, tf  is the output of the forgetting gate, the range is 0 
to 1; The weight matrix 

fw  represents the forgetting gate; 

fb  is the offset item of the forgetting gate;   is the sigmoid 
activation function; 1th   is the output information of the 

previous hidden layer; tX  is the input information of the 
hidden layer at the current time. 

Then the input gate determines what new information is 
stored in the current cell state. There are two steps. First, the 
output information of the hidden layer at the previous time is 
combined with the input information at the current time, and 
the proportion of updated information is obtained through 
the sigmoid activation function to determine the information 
needed to be updated. The second is to combine the output 
information of the hidden layer at the previous time with the 
input information at the current time, and obtain the new 
temporary cell state information through the tanh activation 
function. 
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where, it is the output of the input gate; The weight matrix 

iw  represents the input gate; bi is the offset entry of the input 
gate; tC is temporary cell state information; cw is the 
corresponding weight matrix of tC ; cb is the corresponding 
offset term of tC ; tanh  is the tanh activation function. 

Finally, the output layer determines the information 
required for the output of the hidden layer. First, the output 
information of the hidden layer at the previous time is 
combined with the input information at the current time, and 
the proportion of output information is obtained through the 
sigmoid activation function to determine the required output 
information; The second is to calculate the output of the 
output gate and the new cell state through the tanh activation 
function to obtain the new hidden layer information. 

 1( [ , ] )
tanh( )

t o t t o

t t t

o w h X b

h o C

   

 
  (3) 

where, to  is the output of the output gate; The weight matrix 

ow  represents the output gate; ob  is the offset entry of the 
output gate; th  is the output of the hidden layer at the current 
time. 

3 Attention-LSTM fault diagnosis model 

In order to solve the problem that the accuracy of the 
model decreases with the increase of the number of network 
layers, Relu activation function and batch normalization 
processing are added to the variable attention layer, 
Bi-LSTM network layer and time attention layer, so as to 
accelerate the model convergence and prevent the model 
gradient disappearing and gradient explosion. 

3.1 Variable attention layer 

In the Attention-LSTM fault diagnosis model, the core of 
variable Attention layer is the variable attention mechanism, 
which is borrowed from the self-attention mechanism in 
Transformer model. First, the input sequence matrix X is 
mapped to two different Spaces to form two different 
matrices, namely the Query matrix and the Key matrix. 
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where, RN TX  is the input sequence matrix; T is the time 
step of the input sequence matrix, N is the number of 
variables of the input sequence matrix; 

q kd d  is the 
dimension of the mapping; R , Rq k

T d T dQ kW W   is a 
randomly generated weight matrix. 

Then the dot product of Query and Key is processed to 
obtain the attention score, and the attention score matrix is 
scaled. Then, the scaled attention score matrix is 
probabilized using Softmax function, so that the obtained 
attention score probability matrix reflects the correlation 
degree of N monitoring variables in T time step. Finally to 
score probability matrix and the original input matrix X for 
matrix multiplication, which makes the output characteristic 
of the matrix contains a variable domain. 

 Attention( , , ) softmax( ) R
T

N T

k

QK
Q K X X

d
    (5) 

where, RN TX  is the input sequence matrix; T Is the time 
step of the input sequence matrix, N is the number of 
variables of the input sequence matrix; Attention is the 
variable attention mechanism. 

3.2 LSTM Network layer 

First, the input sequence matrix of the LSTM network 
layer is  

 1 1 1
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Then, the LSTM network layer extracts the features of the 
input sequence at every moment, and the calculation 
formula of the internal hidden layer information is 
 1( , ) R fd

t t th L h X    (7) 
where, L represents LSTM network layer internal operation; 

th  represents the hidden layer of information at that moment; 

fd  represents the dimension of the hidden layer map. 
Since the original LSTM network can only extract time 

sequence information from a single direction, and the 
telemetry data in the satellite attitude control system has a 
strong time correlation, this paper adopts Bi-LSTM 
(BI-LSTM) to extract forward and reverse time sequence 
information of the input data. The Bi-LSTM network 
architecture is shown in Fig 2. 

 
Fig 2 Network architecture diagram of Bi-LSTM 

In the Bi-LSTM network, the network reads the forward 
time information and reverse time information of the input 
data at the same time, and then calculates the forward and 
reverse hidden layer information. 
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where, R fd

th 


represents the current moment of the 
forward hidden layer information; 1 R fd

th  


represents the 
forward hidden layer information of the previous moment; 

R fd

th 


represents the current moment of the reverse 
hidden layer information; 1 R fd

th  


reverse hidden layer 
information representing the next moment in the future. 

3.3 Time attention layer 

Although LSTM network can solve the problem of long 
distance dependence caused by gradient disappearing or 
gradient explosion to some extent, LSTM network still has 
serious long distance dependence problem due to the 
inherent recursive loop architecture of RNN series network. 
In fault diagnosis, the fault information at the earlier time is 
more helpful to the fault diagnosis of the attitude control 
system. In order to highlight the importance of the output 
results at the earlier fault time for fault diagnosis, the time 
attention layer is introduced and the weighted summation of 
fault characteristics at each moment is carried out with the 
help of the time attention mechanism. In this way, the results 
obtained through the time attention layer incorporate more 
information about earlier moments than the output of the last 
time step of the LSTM network layer, thereby increasing 
their importance. 

Firstly, Relu activation function and batch normalization 
are performed on the final output sequence matrix of the 
LSTM network layer, and then weight vector is introduced 
to integrate important information, and probability vector of 
weight score is obtained through Softmax function. Finally, 
the final output sequence matrix of the original LSTM 
network layer is countermultiplied with the weight score 
probability vector to get the final output of the time attention 
layer. 
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where, 2R fT dX  is the final output sequence matrix of 
LSTM network layer; 2R fdw is a randomly generated 
weight vector; T is the time step of the input sequence matrix, 
and 2 fd is the mapping dimension of the hidden layer. 

4 NUMERICAL SIMULATIONS 

4.1 Satellite semi-physical simulation platform 

This study uses data from the dark matter particle 
explorer platform to confirm the viability of the proposed 
network. Dark matter particle explorer platform is a 
simulation test system designed based on the actual in-orbit 
flight state of dark matter particle explorer “Wukong”, 
which launched in late 2015 in China. Dark matter particle 
explorer platform can simulate the main external interfaces 
and dynamics characteristics of the dark matter particle 
explorer. Its physical map is shown in Fig. 3. 
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Fig 3 Satellite semi-physical simulation platform 

In terms of equipment composition, the dark matter 
particle explorer platform consists of a satellite simulation 
platform and an attitude control dynamics simulation system. 
The satellite simulation platform includes two parts: 
on-board computer simulator and on-board stand-alone 
simulator, and the attitude control dynamics simulation 
system is a test system to verify the correctness of satellite 
attitude control function, performance, attitude, and control 
algorithm. Fig. 4 shows the structure of the equipment of the 
dark matter particle explorer platform. 

 
Fig 4 Structure diagram of the equipment composition of the 

satellite platform 

4.2 Fault selection and data processing 

The fault types selected in this experiment are all slow 
faults, and compound faults are added, so as to test the 
capability of LSTM network layer in time domain feature 
extraction. The selected faults are all from the actuator, 
namely, the output torque attenuation of reaction wheel A, 
the output torque attenuation of reaction wheel C, and the 
torque attenuation of reaction wheel A and C. The 
corresponding fault type description and variable type 
description are shown in Table 1. 

Table 1 Fault types and label categories 
Fault Lable

Fault-free F0
Flywheel A Output Torque Decay F1
Flywheel C Output Torque Decay F2
Flywheel A and C Output Torque Decay F3

The Attention-LSTM fault diagnosis experiment adopts 
the same data acquisition, pre-processing and data set 
partitioning methods as the TV Transformer fault diagnosis 
experiment. For each fault type, 24h data is collected 
respectively. The data samples for each type are 86400 × 17, 
and there are 4 categories in total, so the total sample is 
345,600 × 17. After downsampling all the data and changing 
the sampling step from 1s to 10s, the total sample after 
sampling is 34560 × 17. If the time step is set to 60, that is, T 
= 60, the total number of samples in the dataset is 576 × 60 × 
17. The total sample number of the data set was divided into 
the training set and the test set according to the ratio of 3:1. 
The sample number of the training set was 432 × 60 × 17, and 
the sample number of the test set was 144 × 60 × 17. 

4.3 Experiment-related parameter settings 

In this experiment, the Attention-LSTM satellite attitude 
control system fault diagnosis model is run under the Pytorch 
deep learning framework, and the specific operating 
environment is as follows: Python 3.8 version, Pytorch 1.7 
version, Cuda 11.0 version. The hardware environment is 
10-core Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz and 
RTX 3090 GPU. 

4.4 Experimental results 

According to the experimental analysis, under the above 
optimal parameter Settings, the highest accuracy of the test 
set can reach 97.25% in the training process of 
Attention-LSTM, and the final stability is near 96.5%, and 
the training time is 45.5 minutes. The change of 
Attention-LSTM recognition accuracy in the training process 
is shown in Fig 5. 

 
Fig 5 Change chart of Attention-LSTM recognition 

accuracy 
In order to further verify the effectiveness of 

Attention-LSTM network model in fault diagnosis of 
satellite attitude control system, this paper compares its 
results with a series of network models, and the comparison 
results are shown in Table 2. The comparison network 
models are attention-LSTM without adding the temporal 
Attention layer, time variable Transformer (TV 
Transfoemer), TV Transformer with only the temporal 
attention module, and original Transformer (Vanilla) 
Transfoemer, time-only attention module Vanilla 
Transformer, 1D-CNN, Bi-LSTM, and Att-BLSTM. In the 
comparison experiment, the operating environment and 
training parameters of each network model remain 
unchanged. 
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Table 2 Description of the results of the comparison 
experiments 

Network Model 
accuracy 

rate (%) 

training 

time (min) 

Attention-LSTM 96.5 45.5 

Attention-LSTM with no TA 

layer 
93.67 41.37 

TV transformer 89.85 28.07 

TV Transformer with only TA 

module 
73.17 16.13 

Vanilla Transformer 88.67 25.41 

Vanilla transformer with only 

TA module 
70.33 12.93 

1D-CNN 83.89 20.62 

Bi-LSTM 88.5 38.74 

Att-BLSTM 90.5 40.06 

 
As can be seen from the table, the recognition accuracy of 

Attention-LSTM network has been improved to a certain 
extent compared with other networks. However, due to the 
recursive loop architecture of LSTM network, it does not 
have the ability to process data in parallel, so the training is 
longer. Due to the mediocre ability of the attention 
mechanism to extract time domain features, it can be seen 
from the table that the recognition accuracy of TV 
Transformer with only time attention module is worse than 
that of Vanilla Transformer with only time attention module. 

5 CONCLUSIONS 

In this paper, the development of recurrent neural 
network (RNN) is briefly introduced. The internal structure 
of LSTM neural network is systematically introduced and 
the Attention-LSTM fault diagnosis model is described in 
detail, and the variable Attention layer, LSTM network layer 
and time attention layer are introduced in detail. Then, the 
fault diagnosis degree of Attention-LSTM fault diagnosis 
model to satellite platform experimental data is analyzed in 
detail. For the Attention-LSTM network model, this chapter 
also carries out t-SNE visual qualitative analysis to observe 
the feature extraction degree of each unit in the 
Attention-LSTM network model. 
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Abstract: In this paper, the bearing fault problem of rotating equipment is studied by using support vector machine (SVM)
model classification method. In order to solve the problem of low accuracy of using SVM to detect the fault for bearing, the
method of variational mode decomposition (VMD) is introduced to extract features from original vibration data and
the intelligent optimization algorithm of MSGWO is introduced to optimize parameters of SVM, which can improve fault
diagnosis performance of classification system. A variety of comparative experiments are carried out by using FEMTO-ST
bearing data set which is open source on the internet. The results show that the proposed algorithm has high prediction
accuracy and is superior to the present methods in classification.

Key Words: SVM, Rotating Equipment Bearings Fault, VMD, Improved Grey Wolf Optimization Algorithm.

1 Introduction
Rotating equipment is widely used in all aspects of

industrial production, and its reliability directly affects the
production efficiency of enterprises[1,2]. With the increasing
of consumption, the performance of bearing is gradually
degraded. Adding the influence of complex working
condition, the probability of failure aggrandizes randomly
[3]. Therefore, it is important to detect faults of bearing in
time by making full use of all kinds of sensor data.
The vibration signal of rolling bearing is nonlinear and

complex, which is affected by many factors, so it is very
important to extract efficient information from it. However,
in a certain time range, the In a certain time range, the
statistical character of the vibration signal changes with time,
so it must be analyzed and processed. Time-frequency
analysis methods mainly include wavelet transform,
empirical mode decomposition (EMD) and local mean
decomposition (LMD)[5-7]. EMD can adaptively
decompose the signal into multiple characteristic mode
functions. [8] proposed a bearing fault diagnosis method
based on EMD and improved Chebyshev distance, and
verified its accuracy and robustness through experiments. [9]
put forward a new variable metric method, called mode
decomposition (variable mode decomposition, VMD).
However, in the application of VMD, it is difficult to
accurately choose the decomposition level and the quadratic
penalty factor. In [10], in order to overcome the problem of
information loss, the approximate complete reconstruction
criterion is used to determine the appropriate number of
modes for bearing vibration signals. Taking wheel bearing
fault of high-speed locomotive as an example, the validity of
this method is verified by comparison with the original
VMD, EMD and EEMD methods.
With the development of machine learning, the

combination of intelligent learning algorithm and rolling
bearing fault identification has been open and challenging
issue.The method of SVM solves the problems that ANN is
easy to fit and BPNN is easy to fall into local optimal, so it
has been widely used in various fields of pattern recognition.
[11] established a hybrid support vector machine model and
applied it to bearing fault classification. The selection of
structural parameters of support vector machine is a difficult
problem, which directly affects the performance of support

vector machine. Grey Wolf Optimization (GWO) algorithm
has the advantages of good optimization performance and
easy implementation, and is widely used in the optimization
of SVM structural parameters. [12] proposed a rolling
bearing fault diagnosis model based on GMO-SVM. The
experimental results show that the GWO-SVM fault
diagnosis model is more effective than the SVM model, but
it has the limitation of falling into local optimal. Therefore,
these algorithms can still be improved. [13] developed an
improved GWO algorithm to optimize SVM and applied it
to the fault diagnosis of power system. The experimental
results showed that IGWO-SVM model could prevent the
population from falling into the local optimal, and the
convergence speed was greatly improved, which proved the
feasibility of the improved algorithm.
In this paper, an intelligent optimization algorithm of

VMD-MSGWO-SVM is proposed to detect the faults of
bearing of rotating equipment. Firstly, the bearing vibration
signal is decomposed by VMD method, and the feature
matrix is constructed by combining with the time-domain
signal features. Then, an optimization algorithm based on
MSGWO is proposed to determine the optimal penalty
factor C and kernel function parameter g of SVM. Thirdly,
the optimized SVM model is trained through the extracted
eigenmatrix, and the test set is input into the trained
diagnosis model. Finally, the fault diagnosis method
proposed in this paper is evaluated comprehensively from
three aspects: optimization fitness curve, accuracy and
diagnosis time, and the effectiveness of the proposed
method is demonstrated by experimental analysis.
This article is organized as follows: The second section

introduces the relevant theoretical basis. The proposed
method is summarized in Section 3, and the experimental
and simulation results are presented in detail in Section 4.
The fifth section gives a brief summary of this paper.

2 Theoretical basis
2.1 VMD

The multi-component signal is decomposed into a series
of submodes by using adaptive Wiener filter banks. In VMD,
the output can be written to solve a constrained variational
problem, and its mathematical equation can be expressed as:
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where, k is the frequency center of each IMF; ku is the thk
IMF; { }ku represents the set of modal components,
{ }k represents the set of center frequencies corresponding to
the modal components, ( )t is the Dirac function, and f is
the original vibration signal.
By introducing Lagrange multiplication operator  and

quadratic penalty factor  into equation (1), the variational
model of VMD algorithm is solved. Then the constrained
variational problem can be transformed into an
unconstrained variational problem, and the Lagrange
expression can be obtained as follows
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(2)

the method of alternate direction method of multipliers
multiplier(ADMM) method is used to solve the optimal
solution of the constructed Lagrange function, and the update
formulas of k modal components and center frequencies are
obtained as follows
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where, 1ˆ ( )n
ku  is the residual quantity; 1n

k
 is the power

spectrum center of gravity of the current mode; Inverse FFT
transformation of ˆ ( )ku  yields the real part ˆ ( )ku t .

2.2 MSGWO

The algorithm of GWO is proposed by Mirjalili et al. In
[14]. The basic principle is to imitate te population system of
the gray wolf. The gray wolves are divided into   、 、

and  , and the gray wolf  accepts the leadership of the
the wolves   、 、 during the hunting process. The process
of gray wolf algorithm can be divided into three stages:
encircling, pursuit and attack. However, the GWO algorithm
only uses linear hunting to capture prey, which limits its
search range and accuracy, resulting in slow convergence
and poor local optimization ability. To solve these problems,
this paper proposes a fusion GWO algorithm, which includes
improving the population initialization method of GWO,
adaptively updating the location of gray wolves, and
improving the control parameter a .
1) Improved Tent Chaos initialization population
The initialization of a swarm algorithm affects its search

performance. Since there is no prior information, individuals
are usually generated by random initialization. However,
sometimes individuals are not evenly distributed in the
search domain, which may cause individuals to be far from
the global optimal solution, and result in a low convergence
rate. Chaos is a common phenomenon in nonlinear systems
with the characteristics of ergodicity, randomness and

regularity. Searching by chaotic variables has more
advantages than unordered random search. The analysis of
Tent chaotic iterative sequence shows that there are small
periods and unstable periodic points in the sequence. In order
to avoid Tent chaotic sequence falling into small period
points and unstable period points during iteration, a random

variable 1(0,1)rand
N

 is introduced into the original Tent

chaotic mapping expression. The improved Tent chaotic
mapping expression is as follows:
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where N is the number of particles in the sequence, and
rand (0,1) is the random number between [0,1]. Introducing

random variable
1(0,1)rand
N


not only maintains the

randomness, ergodicity and regularity of Tent chaotic
mapping, but also effectively avoids iteration falling into
small periodic points and unstable periodic points.
2) Adaptive hunting weight coefficient.
In the original GWO hunt, the weight coefficients of the

three wolves are the same, which apparently contradicts the
hierarchy of real wolves. Inspired by the mass renewal
formula in the gravity search algorithm [15], the method of
adaptive weight coefficients based on fitness is introduced to
measure the contribution of different leading wolves. The
mathematical model is defined as follows:
Minimization function:
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Maximization function:
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Where, f and  are the fitness and weight coefficients of
the corresponding wolves, and  is the meaningless
intermediate variable.
3) Improve control parameters a .
The parameter a in GWO is used to control the

exploration and development process. The hunting process of
gray wolves in nature is complex, and simple linear changes
cannot effectively characterize their search process. This
paper uses a sinusoidal variation to improve the linear search
process, and its expression is as follows:

1 sin( )
2 _

itera
Max iter

     (8)

where iter represents the number of current iterations and
max_iter denotes the maximum number of iterations.
Fig.1 shows a difference between this nonlinear function

and the linear function in the standard GWO. It can be seen
from the Fig.1, the nonlinear function in this paper has a
wider value of a in the early iteration stage, and its scope
for exploration is also wider. In the later iteration, a is
smaller, which is conducive to local development of the
algorithm and speed up convergence.
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Fig.1 Improved control parameter curve

2.3 SVM

Viewing fault diagnosis as a classification task, we can
consider the presence of two-dimensional eigenvectors

1 21 2, , , n nx x x  ,Where
11 2, , , nx x x belongs to normal

class no ,
1 1 1 21 2, , ,n n n nx x x   belongs to fault class

fa , Mark the data in no as 1 and the data in fa as -1.
The aim of the Support Vector Machine (SVM) is to create
an optimal classifier [13], specifically, to formulate an
optimal classification hyperplane. The structure of the SVM
classifier is as follows:

* *( ) ( )Tx w x b   (9)
Here x represents the two-dimensional feature vector to be
classified, *w stands for the optimal p-dimensional column
vector to be determined, and *b is the optimal threshold.
( )x signifies the p-dimensional transformation of sample
x from the input space to the feature space, also denotes
the p-dimensional feature vector. The classifier categorizes
the dataset ux as follows:

, ( ) 0,
, .

u no

u fa

x if x
x otherwise
  

 

(10)

To solve the optimal hyperplane, it can be converted to

, . 1

1 2

1min
2

( ) 1
. . , 1, 2, ,

0

n
T

iw b i

i i

i

w w C

y x
s t i n n











  
  





(11)

Where C is the Regularization parameter, there is a
penalty coefficient, which determines the trade-off between
empirical risk and complexity (VC dimension). i is a non-
negative relaxation variable introduced into constraints. The
optimization issue is converted into a dual quadratic
programming challenge:
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Where i is the Lagrange multiplier vector that needs to

be adjusted, ( , )i jK x x is the kernel function used to replace
the inner product [ ( ) ( )]i jx x  in the feature space, and the
decision function obtained after solving the above problems
is

* *

1
( ) sgn[ ( , ) ]

n

i i i j
i

f x y K x x b


  (13)

Where sgn( ) is a symbolic function. Using different
kernel functions as kernel functions of SVM, learning
devices can be formulated to achieve various kinds of
nonlinear decision boundaries in the input space.

3 Construction of characteristic matrix
In fault diagnosis, it is one of the most important steps

to select appropriate fault characterization and extract
characteristic values that can effectively reflect the fault
type. In this paper, sample entropy combined with
representative time domain index is used to construct feature
matrix to explore its effectiveness in fault identification of
rolling bearings. Due to the relatively difficult collection of
low-frequency fault samples, it can take years to obtain data
for all fault types in experiments. So the open source
FEMTO-ST bearing data set is used in this paper.
In order to visually observe the time domain

characteristics of vibration signals, the
time domain waveforms is drawn to show the vibration
performance of normal bearings, bearings with different
fault types and fault depths by using the acquired vibration
data. The vertical axis represents acceleration and the
horizontal axis is time (unit /s) in Fig.2 to Fig.5.

Fig2. Normal bearing vibration signal

Fig3. Outer ring failure vibration signal

Fig4. Inner ring fault vibration signal

Fig5. Vibration signal of rolling element fault
Observing the time domain signal diagram of bearings in

different fault states, the difference can be intuitively found.
Note that the differences in the time domain signal actually
reflects the characteristics of different types of faults.
However, it is time-consuming and impractical to directly
observe all the time domain signals. Therefore, we can
describe and distinguish these different fault types by
calculating the time domain characteristic index. In this
paper, we choose two representative characteristic indexes
of time domain, i.e., effective value and margin index. It
should be pointed out that only selecting time domain
features to construct feature matrix is not comprehensive
enough. In this paper, the original vibration signal is
processed through VMD decomposition in the frequency
domain, and IMF with limited bandwidth is separated, and
then the sample entropy (SE) value of each IMF is
calculated. Unlike EMD, VMD can automatically adjust the
number of decomposition, but it needs to be set by itself.
Using the method in [10], the number of VMD
decomposition in this paper are adopted as follows:

4, 2000K   . The VMD model was constructed by
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MATLAB_R2021a to decompose the original vibration
signal.

(a) IMF time domain diagram and frequency domain diagram of
normal bearings

(b) IMF time-domain and frequency-domain diagrams under
outer ring failure

(c) IMF time-domain and frequency-domain diagrams under
inner circle failure

(d)IMF time-domain diagram and frequent-domain diagram
under rolling element failure

Fig.6 Test bearing normal and fault decomposition spectrum
As shown in Fig.6, there are obvious differences in the

spectrum distribution and amplitude of bearing IMF under
different states. SE values of each IMF are calculated, the
difference of IMF is quantified by decomposition, and the
feature matrix is constructed by combining with two time-
domain indicators, which is convenient to be used as the
feature input of the identification model.

4 Experimental and simulation results
The collected experimental data are intercepted according

to 2048 sample points in each group, and divided into
different groups according to the fault types. Each label has
50 groups data, and comparative experiments are conducted
by constructing SVM, PSO-SVM and GGO-SVM diagnostic
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models to verify the feasibility and effectiveness of the
MSGGO-SVM method. The specific diagnostic model
construction process is shown in Fig 7.
Then VMD is used to decompose the original signal and

calculate the effective value of vibration signal, margin index
and SE value of each IMF, and the TDI-SE feature matrix is
constructed. Therefore, the experimental data were converted
into 50*6 sets of data after feature extraction, of which 35*6
sets were used as the training set and the remaining 15*6 sets
of evolution data were used as the test set. The first two
columns of each group of samples are listed as time domain
features, and the last four columns correspond to four energy
entropy features, and each type of sample is marked, as
shown in Table 1.

Fig7.VMD-MSGWO-SVM model construction flow chart

Table 1:Fault Type And Label Value

Fault category Fault code Tag value

Normal bearing f0 1

Outer ring fault f1 2

Inner ring fault f2 3

Ball failure f3 4

In this paper, PSO-SVM and GGO-SVM models are
constructed respectively, and the superiority of MSGGO-
SVM model is verified from different aspects. The quality of
the model is judged by the diagnosis time and diagnosis
accuracy. In terms of parameter settings, the population
number and iteration times were ensured to be consistent,
and GWO parameter Settings were consistent with MSGWO.
The training data set was input into each model and 15
groups of test sets were predicted. The prediction results
were shown in Fig 7~9.

Fig.8 PSO-SVMmodel diagnosis results

Fig.9 GWO-SVM model diagnosis results

Fig.10 MSGWO-SVM model diagnosis results
In order to intuitively analyze the superiority of MSGGO-

SVM model, Table 2 statistics the recognition rate and time
of each model. And the comparison of fitness curves of
different algorithms is shown in Fig.10.

Table 2:Performance Comparison Of Different Algorithms

Model C、g
Recognition

rate
Time/s

SVM 10、0.01 80.00 %(48/60) 0.495
PSO-SVM 44.877、2.0164 93.33%(56/60) 9.555

GWO-SVM
47.8066、
9.0786

96.67%(58/60) 2.496

MSGWO-
SVM

79.3735、
6.1115

98.21%(59/60) 2.865
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Fig.11 Fitness curve comparison diagram
According to the recognition results of each model, the

recognition of MSGWO-SVM model is the most accurate
among all established models, and the time is more than half
less than that of PSO-SVM. Compared with the GWO-SVM
model, the recognition rate of MSGWO-SVM is slightly
higher, because MSGWO individual updating strategy tends
to be complex, more time is spent on training time, but by
comparing the fitness value curve, it can be found that due to
the introduction of improved Tent chaos initialization
population and the introduction of adaptive weights to update
the position of wolves, By making the wolves more accurate
in their exploration direction, MSGWO can search deeper for
prey, that is, converge faster. However, the SVM model is
difficult to achieve high-quality diagnosis because the
parameters are set to default values, and the recognition
accuracy is only 80.00% and the classification error is high.
Therefore, compared with the diagnostic accuracy of SVM,
PSO-SVM and GWO-SVM models, the proposed model
based on VMD-MSGWO-SVM has higher advantages in the
direction of motor bearing fault diagnosis.

5 Conclusion
In order to solve the problem that GWO optimization

algorithm only uses linear hunting to capture prey, which
limits its search range and accuracy, and results in slow
convergence speed and poor local optimization ability, a
multi-strategy fusion improved GWO is proposed. The linear
update strategy in standard GWO is modified to nonlinear, so
that the value of a is wider and the scope of it can be used for
exploration is wider. Adaptive weight coefficients based on
fitness are introduced to measure the contribution of different
leading wolves to improve the position updating method of
other wolves. The MSGGO-SVM fault diagnosis model is
constructed, and the penalty factors of support vector and

kernel function parameters are fine-tuned by this
optimization method, to prevent under fitting of
classification results. The test results show that this method
is superior to other fault diagnosis models in the bearing fault
diagnosis of rotating equipment, and provides effective
guidance for decision-making in actual operation. In the
future, this algorithm will be further optimized and applied to
the research of motor bearing fault diagnosis under
unbalanced data sets, which is a promising topic.
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Abstract: In this paper, the fault estimation and fault-tolerant compensation control of autonomous underwater vehicles (AUVs) with 

actuator faults are studied by using the high-order full actuated (HOFA) system control method. Firstly, the first-order model of AUV is 

transformed into the relevant HOFA system model, and secondly, based on the model, an intermediate estimator is constructed by introducing 

intermediate variables, and the controller is designed by parameterization method. Finally, the fault estimation and compensation control of 

the AUV system are realized, and the simulation results verify the effectiveness of the proposed method. 
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1 Introduction 

In recent years, due to the flexibility, high autonomy, 

and simplicity of operation of autonomous underwater 

vehicles (AUVs), their wide use in marine science, 

environmental monitoring, oil and gas exploration, and 

military applications has attracted much attention, making 

them an indispensable tool for underwater environmental 

monitoring and marine resource exploration [1]-[2]. AUVs 

work in complex and changing underwater environments, 

making them prone to failures. To successfully complete 

missions and return safely, they must have a certain 

tolerance for failures, which has made fault-tolerant control 

(FTC) for AUVs a hot research topic.  

An active fault-tolerant control method was proposed 

for AUVs, and a reconfigurable controller was designed to 

prevent actuator saturation in the event of a failure [3]. 

Trajectory tracking control of AUVs with actuator faults 

was studied by using adaptive rules as online estimators to 

compensate for faults in AUV performance [4]. A 

reinforcement learning (RL) FTC method was proposed for 

trajectory tracking of AUVs with propulsion faults [5]. In 

this paper, a new integral extended state observer (IESO) 

was designed to mitigate the influence of estimation errors. 

In [6], an adaptive asymptotic backstepping tracking control 

algorithm was proposed to compensate for uncertainties. 

Reference [7] constructed a new FTC scheme by designing a 

virtual velocity control vector and using adaptive dynamic 

programming (ADP) based on single disturbance network. 

Fault diagnosis (FD) is an important component of 

active FTC, and it is a prerequisite for compensating for 

faults and ensuring the effectiveness of FTC. The FD 

 
*This work is supported by National Natural Science Foundation (NNSF) 

of China under Grant 62163012. 

technology mainly focuses on detecting, isolating, and 

identifying faults that have occurred in the system. As an 

important branch of the FD technology, fault estimation (FE) 

can obtain information such as the form, location, and 

magnitude of faults, and fault-tolerant controller design 

based on FE information can compensate for faults and 

ensure good control performance. Considering the 

randomness of disturbances or faults, reference [8] 

constructed external disturbances as uncertainties in a 

random model and applied an improved robust filtering 

method to estimate the system state, reducing the impact of 

uncertainties in random systems. Reference [9] considered 

multiple sensor and actuator fault modes for AUVs and 

designed a fault diagnosis problem based on particle filters. 

Reference [10] proposed a FD method for AUVs based on 

online Bayesian nonparametric topic models. 

As a nonlinear and strongly coupled system, AUVs are 

often simplified as augmented first-order linear system 

models in most controller design. As the number of system 

variables increases, and the system dimension becomes 

larger, analyzing the stability of the system becomes more 

difficult. High-order fully actuated (HOFA) systems are a 

new representation form for control design and a universal 

model for most physical systems. Unlike traditional models, 

HOFA systems have clear physical backgrounds, 

guaranteeing the fully actuated characteristics of actual 

systems, effectively simplifying control design, and 

avoiding the disadvantages of ill-conditioned matrices and 

numerical instability in model reduction [11]-[17]. This 

paper adopts the HOFA system method and takes the 

derivatives of the depth variable, which is the pre-control 

variable of AUVs, as the state variables of the HOFA system, 

forming a new state space model. Based on this model, 

considering the occurrence of rudder angle faults, FE and 

fault-tolerant compensation control (FTCC) are conducted. 

The idea is as follows: a fault estimator is designed by 

introducing intermediate variables, and a FTCC law is also 
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designed. The sufficient conditions for the system to be 

uniformly ultimately bounded are constructed and the 

observer and FTCC gains are given. The FE and FTC of 

AUVs are realized. 

2 Problem Description 

2.1 System description 

AUVs have six degrees of freedom, and their control 

systems can manage six degrees of freedom, namely, 

forward/backward, up/down, left/right, yaw, pitch, and roll. 

According to reference [18], the linear nominal system of 

AUVs at a speed of is obtained (disturbances are not 

considered here):  

0u = −                              (1a) 

q =                                   (1b) 

4 ' 3 ' 2
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, , , ,x y zL m I I I are respectively the length, mass and 

the moment of inertia of AUVs around the coordinate 

system , ,x y z , , , , , ,u v w p q r are the components of the 

linear and angular velocity of the AUV’s motion along the 

three axes, respectively, ,  are the attitude angles, they are 

heeling Angle and longitudinal angle, respectively. 

( ) ( ),Z M 
  are hydrodynamic coefficients, s  is the 

rudder Angle of AUV’s pitching rudder,  is the density of 

sea water, ,W B are gravity and buoyancy force of AUVs 

respectively, Bz is the axis coordinate of the AUV’s  center 

of buoyancy, and   is the depth of AUVs. 

The objective is to achieve tracking control of the depth 

of AUVs under actuator failures, specifically when there is a 

malfunction in the rudder angle s . 

2.2 Establishment of (HOFA) Systems Model 

By employing the HOFA system control method, 

system (1) can be transformed into a HOFA system that is 

only correlated with depth and rudder angle. The model is as 

follows:  

0
ˆˆ
sa u b  = −                          (2) 

Let  
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Improper operation or equipment failure may lead to 

inaccurate readings from the linked rudder angle actuator, 

which is considered as actuator failure. In this case, system 

(4) can be described as: 
(0~2) 0~2 (0~2)

(0~2)

( ) s aA B Bs

y C

  



 =  + +


=
     (5) 

where, 
1 1

s R  and
3 1y R   indicates control inputs and 

system outputs, respectively, as  indicates actuator failure,

0~2( )A , 3 1B R   and 3 3C R   are matrices with 

appropriate dimensions that (0~2)( ( ), )A C are observable. 

Assumption A1: actuator faults as  satisfy as 

and 0  . 

Lemma 2.1[23]: Suppose that 
n nA R   satisfies: 

0Re ( ) , 1,2
2

i

u
A i n  − =                (6) 

where 0 0u  , then there exists a positive definite matrix 

n nP R   satisfying: 

0 .TA P PA u P+  −                          (7) 

Lemma 2.2[23]: For any 0 0u  , there exist a set of 

matrices 
r r

iv R   , 0,1, 1i n= −  satisfying the 

following condition: 

0Re ( ) , 1,2
2

i c

u
A i nr  − =                (8) 

Lemma 2.3[19]: Let , ,D F E  and M  be real matrices 

of appropriate dimensions, with M  satisfying TM M= . 

Then, for all TF F I  , 0T T TM DFE E F D+ +   if, 

and only if, 0   exists such that 
1 0T TM DD E E −+ +  . 

3 Fault Estimation and Fault-Tolerant Control 

In this section, we mainly address two issues: one is 

that the estimator is designed to solve the fault estimation 

problem by introducing intermediate variables, the other is 

that a fault-tolerant controller is constructed based on fault 

compensation. 

Design of Fault Estimator 

Introduce the intermediate variable: 
(0~2)

as K = −  , where is K  the given matrix, and   

satisfies the following equation: 
0~2 (0~2)

(0~2)

( )(
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+ +
            (9) 
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Design the following estimator： 
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ˆ( ),

s aA B Bs

L y C

  



= + +

+ −
           (10) 

(0~2)ˆŷ C=                                                   (11) 

0~2 (0~2)

(0~2)

( ) ˆˆ ˆ (

ˆ )s

AKB K

B EK

  

 

= − −

+ +                 (12) 

 
(0~2)ˆˆ

as K = +                                       (13) 

where， (0~2)̂ , ̂ , ŷ  , ˆ
as  are the estimates of 

(0~2) , ,

y  and as respectively. 

Let 
TK wB=                                 (14) 

Design the estimation error: 
(0~2) (0~2) (0~2)ˆ  = −                        (15) 

ˆ  = −                                    (16) 

ˆ
a as s = −                                   (17) 

we can obtain the error system： 
0~2(0~2) (0~2)

( )( ) ,A LC B  = − +        (18) 

 1 2( ) at s S S





 
= +  

 
                   (19) 

where
1

TS wB B= − ,
0~2

2 ( )( )T T
AS wB wBB= − + . 

Theorem 1. Suppose that HOFA system (19) and (18), 

satisfies Assumptions A1, Let ( 1,2)iu i = , 0 ,w and   

be two arbitrarily selected non-negative real numbers, and 

there exists a matrix L  such that the 
0~2

( )( )A LC −  

satisfies equation (7). Then, the intermediate (10)-(13) 

ensures that the closed-loop system is bounded stability. 

Proof：Consider a Lyapunov function of the following 

form： 

                        
(0~2) (0~2)1 1

( )
2 2

T TV    = +           (20)   

Combining (18) and (19) there are： 

0~2

0~2

(0~2)

(0~2)

(0~2) (0~2)

2

1 1

( )

( )

1
( ) [( )

2

( )]( )

( ) ( )

1
( )

2

T T

T T T T

T T T

a

A

A

V LC

LC

B S

S S s





   

  





= −

+ −

+ +

+ + +

        (21) 

Bringing K  = + into eq. (21), we can get：  

0~2

0~2

(0~2)

(0~2)

(0~2) (0~2)

2

(0~2) (0~2)

( )

( )

1
( ) [( )

2

( )]( )

( ) ( )

( ) ( )

T T

T T T

T

A

A

V LC

LC

B S

BK





   

 





 −

+ −

+ +

+

 

1 1

1
( )

2

T T T

aS S s  + + +                     (22) 

According to Lemma 2.3, we can get： 

0~2

0~2

(0~2)

(0~2)

0 2 2

(0~2) (0~2)

1 (0~2) (0~2)

0

1 1

( )

( )

1
( ) [( )

2

( )]( )

( ) ( )

( ) ( )

( ) ( )

1
( )

2

T T

T

a

T T T T

T

T

T T

A

A

V LC

LC s

S B S B

BK

S S



 

  

 

  

 

−





 −

+ − +

+ + +

+

+

+ +

        (23) 

According to Young’s inequality[20],we can get： 

21

2 2

T T

as


   


 +                        (24) 

Using Assumption A1 and Lemma 2.1, we have： 

(0~2) (0~2)1

(0~2) (0~2)

1 (0~2) (0~2)

0

0 2 2

22

( ) ( )
2

( ) ( )

( ) ( )

( ) ( )

1

2 2

T

T

T

T T T T

T

u
V

BK

S B S B

u

 

 

  

  


  



−

 −

+

+

+ + +

+
− +

              (25) 

Form (25), get: 

2 2(0~2) 2

1 2

1
( )

2
V     


 − − +           (26) 

Where,
2 11

1 0
2

u
w B  −= − − , 

2

2 0 2( )TS B = − + 2

2

u +
+ . 

Then, it can be obtained by equation (20): 
2 2(0~2)( )V   +                       (27) 

According to (26) and (27), we can get: 

.V V  − +                                 (28) 

where， 1 2min[ , ]  = , 
21

2
 


= .                                                            

Fault Tolerant Compensation Tracking Controller 

Design 

Design fault-tolerant controllers: 

1 1 2 3

0

1
( )

ˆs e e e av v v s
u b

   = + + −
−

        (29) 

where, r is reference depth， e r  = −  indicates the 

depth error, when r  is a constant value,

( ) ( ) ( )n n

e n  +
=  . Specifically, 
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0 0
ˆ ˆˆ

e e s aa u b u bs   = = − −                 (30) 

Substituting Eq. (29) into Eq. (30) yields the system: 

3 2 1
ˆ( )e e e ea v v v   = + + +                 (31) 

let (0~2)
T

e e e e    =  
, State space expression with 

tracking error as a variable: 
(0~2) (0~2)

e c eA =                       (32) 

0~2
( )( ) ,A LC B  = − +               (33) 

 1 2( ) at s S S





 
= +  

 
                (34) 

where

1 2 3

0 1 0

0 0 1

ˆ

c

v v a v

A

 
 
 
 + 

= ， 1

TS wB B= − ,

0~2

2 ( )( )T T
AS wB wBB= − + . 

Theorem 2. Suppose that HOFA system (32)- (34), 

satisfies Assumptions A1, Let ( 0,1,2)iu i = , w , 0 and 

  be two arbitrarily selected non-negative real numbers, 

and 
r r

iv R   , 0,1, 1i n= −  be a set of matrices 

satisfying (8). Then, the estimator (10)-(13) and the 

controller (29) ensure that the tracking error of the 

closed-loop system bounded stability. 

Proof: Consider a Lyapunov function of the following 

form： 

(0~2) (0~2)

(0~2) (0~2)

1
( ) ( )

2

1 1
( ) ( )

2 2

T

e e

T T

V Z 

   

=

+ +

         (35) 

Combining (32) -(34) there are:  

0~2

0~2

(0~2) (0~2)

(0~2)

(0~2) (0~2)

(0~2)

1 1 2

( )

( )

1
( ) [ ]( )

2

1
( ) [( )

2

( )]( ) ( )

1
( ) ( )

2

T T

e c c e

T T

T T

T T T T T

a

A A

A

A

V Z Z

LC

LC B

s S S S

 



  

    





= +

+ −

+ − +

+ + + +

 (36) 

Bringing K  = + into eq. (36), we can get： 

0~2

0~2

(0~2) (0~2)

(0~2)

(0~2) (0~2)

(0~2) (0~2)

( )

( )

1
( ) [ ]( )

2

1
( ) [( )

2

( )]( ) ( )

( ) ( )

T T

e c c e

T T

T

T T

a

A A

A

A

V Z Z

LC

LC B

s BK

 



  

  





= +

+ −

+ − +

+ +

 

(0~2)

1 1 2

1
( ) ( )

2

T T T TS S S   + + +             (37) 

According to Lemma 2.3, we can get： 

  

0~2

0~2

(0~2) (0~2)

(0~2)

(0~2)

(0~2) (0~2)

0 2 2

1 (0~2) (0~2)

0

1 1

( )

( )

1
( ) [ ]( )

2

1
( ) [( )

2

( )]( )

( ) ( )

( ) ( )

( ) ( )

1
( )

2

T T

e c c e

T T

T

T T T

a

T T T T

T

T T

A A

A

A

V Z Z

LC

LC

s BK

S B S B

S S

 





  

  

  

 

−





 +

+ −

+ −

+ +

+ + +

+

+ +

      (28) 

According to Youngs inequality [20], we can get： 

21

2 2

T T

as


   


 +                      (39) 

Using Assumption A1 and Lemma 2.1, we have：   

(0~2) (0~2)0

(0~2) (0~2)1

(0~2) (0~2)

1 (0~2) (0~2)

0

0 2 2

22

( ) ( )
2

( ) ( )
2

( ) ( )

( ) ( )

( ) ( )

1

2 2

T

e e

T

T T

T

T T T T

T

u
V Z

u

BK

S B S B

u

 

 

 

  

  


  



−

 −

−

+

+

+ + +

+
− +

            (40) 

Form (40), get:   

2 2
(0~2) (0~2)0

max 1

2 2

2

( )
2

1

2

e

u
V Z   

  


 − −

− +

     (42) 

Where,
2 11

1 0
2

u
w B  −= − − , 

2

2 0 2( )TS B = − +  

2

2

u +
+ . 

 Then, it can be obtained by equation (35): 
2 2 2(0~2) (0~2)

max ( ) eV Z    + +      (42) 

According to eq. (37) and eq. (38), we can get: 

( ) .V t V  − +                                (43) 

where， 0
1 2min[ , ]

2

u
  = ， 2

2


 = .                                                                           

Control Gain Acquisition 

Based on Lemma 2-1 [21] in the Reference [22], there 

are the following conclusions: 
For a fully actuated system like system (29), Lemma 

2-1 proves that the system satisfies: 
1

cA VFV −=                              (44) 
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Matrix 1 3v R   and matrix V , W  satisfying condition 

(45) are given by equations (46). 

  1

1 2 3v v v v WV −= = −              (45) 

    

2 3

2

ˆW aZF ZF

Z

V ZF

ZF

 = − +


 
  

=  
   

                       (46) 

where requirement F is satisfied 

3 3 1 3

2

,

. .det 0
T

F F R Z R
F

s t Z ZF ZF

     
 

  
     

. 

The observer gain L  can be found by the pole 

configuration method. 

4 Simulation Result 

In this section, the depth control of an AUV is used as 

an example to verify the effectiveness of the designed 

controller. 

According to system (2) the HOFA system for an AUV 

with a speed of 2 m/s can be obtained as: 

2.0435 0.26908 s  = − +                 (47) 

Then the system (47) is modelled in case of actuator 

failure: 
(0~2) 0~2 (0~2)

(0~2)

( ) s aA B Bs

y C

  



 =  + +


=
       (48) 

where
0~2

0 1 0

( ) 0 0 1

0 0 2.0435

A

 
 

 =
 
 − 

0

0

0.26908

B

 
 

=
 
  

,

1 0 0

0 1 0

0 0 1

C

 
 

=
 
  

. 

Table 1: Actuator Faults 

t  [0,5) [5,15) [15,35) 

(as t） 
0  1 0  

t  [35,45) [45,57) [57,80) 

(as t） 2  0  sin(0.5 )t
 

The initial conditions are  (0) 0 0 0
T

x = , take

 1 1 1Z = ,

10 0 0

0 1 0

0 0 5

F

− 
 

= −
 
 − 

 , 33w = ， 

By Lemma 1, we get  50 65 13.9565v = , 

Secondly, the pole , using the 

'place' command in MATLAB to find L . 

1 1 0

0 10 1

0 0 2.9565

L

 
 

=
 
  

.  

Additive faults as  as shown in Table 1, two types of 

fault signals are considered, namely constant signals and 

sine signals.  

 
Fig. 1: Actuator faults and their estimation 

 

 

  
Fig. 2: 1s Depth control simulation results 

 
Fig. 3: 2s Depth control simulation results 

 

 

 10 1 5p = − − −
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The simulation results are shown in Fig. 1-3. In Fig. 1, the 

actual value and estimated value comparison of actuator 

fault as  are displayed. From the Fig. 1, the actuator fault can 

be estimated well using the estimator designed in this paper.   

Fig. 2-3 respectively depict the simulation results of depth 

control for the AUV at a forward speed of 2 m/s, under 

controllers 1s (compensated design) and 2s

( (0~2)
2

ˆ
s ev = uncompensated design). Before 20 seconds, 

it navigates on the water surface, and after 20 seconds, it 

starts to dive. 

From Fig. 3, despite the absence of compensating faults, 

the impact of actuator faults on the AUV is reduced under 

controller 2s , while under controller 1s , the impact of 

faults on the system state is not even visible due to the 

compensating effect, as shown in Fig. 2. It is evident that 

fault compensation control of AUVs is achieved under the 

FTCC proposed. This paper sets up a controller based on 

tracking error, without designing a parameter adjustment 

mechanism for the target output, so the depth drops sharply 

in a short period of time. Simulation results verify that the 

controller designed by the HOFA system control method 

can indeed achieve fault estimation and depth control of 

AUVs, with good results obtained. 

5 Summary 

In this paper, taking the AUV system as the research 

object, considering the effect of the rudder angle generating 

actuator additive faults, the fault estimator and fault-tolerant 

compensation controller applicable to the AUV are designed 

based on the HOFA system, and the FE and FTCl of the 

compensation are realized. Finally, the effectiveness of the 

designed controller is verified by simulation. This study 

investigates the tracking value considered as a constant in a 

simple, and in the future, will consider time-varying 

tracking values to demonstrate the effectiveness of 

designing controllers. 
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A Projection-based Binary Classification Method for Fault
Detection of T-S fuzzy Systems with Multiplicative Faults
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Abstract: The main objective of this paper is to address the detection issues of multiplicative faults in T-S fuzzy systems. To
this end, the orthogonal projection, as an effective tool to deal with the problem of fault detection and isolation, is introduced
first. Then, the image subspace and kernel space of T-S fuzzy systems is introduced, and then formulated in the time-varying
framework. Based on it, the time-varying fuzzy projection-based binary classification scheme is proposed. The core of the method
is to construct the orthogonal projectors based on the dynamics of the nominal system and faulty system respectively, and develop
a binary fault detection logic. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.

Key Words: Takagi-Sugeno (T-S) fuzzy system, fault detection, binary-classification method, multiplicative faults

1 Introduction

Driven by the growing demand for system reliability and
security, fault detection methods have attracted intensive at-
tention in both academia and industry over the past decades
[1, 2]. Among the research on linear systems, observer-
based fault detection schemes constitute the main stream
of investigation[3–5]. In this context, the Takagi-Sugeno (T-
S) fuzzy dynamic modeling technology has been proven to
be an effective tool for approximating nonlinear industrial
processes [6–9]. In recent years, a framework has been es-
tablished for the controller and observer design issues of T-S
fuzzy systems [10, 11]. In [12], an optimal fault detection
scheme for T-S fuzzy systems is proposed, thereby extending
the so-called unified solution to fuzzy systems.

On another research frontier, studies on multiplicative
faults have attracted growing attention [13, 14]. In auto-
matic control systems, multiplicative faults, resulting from
the abnormal changes of system parameters or discrepan-
cies in controller parameters, represent a common type of
faults. To address the impact of such faults on the system, the
projection method, as a standard technique for statistics and
machine learning, has recently gained attention [15, 16]. In
this sense, the optimal fault detection for dynamic systems
can be achieved by defining appropriate signal norms [17].
The implementation of this method depends on the nominal
system model and (limited) information about model uncer-
tainty, which is a typical classification problem. When there
are system models describing fault operation in addition to
the nominal model, these two models can be used to realize
fault detection, which can be transformed into a binary fault
classification task. To the best of our knowledge, the detec-
tion of multiplicative faults in fuzzy systems remains an open
issue, which motivates this work.

Inspired by the idea of the projection-based fault detection
schemes, the fault detection issue in T-S fuzzy systems with
multiplicative faults is investigated. To be specific, the T-S
fuzzy system is introduced firstly. Based on it, with the aid
of coprime factorization technique, the image space and the
kernel space of fuzzy systems is defined. Then, the fault

This work has been supported by the National Natural Science Founda-
tion of China under Grants 62322303, 62073029, and U21A20483.

detection issue is formulated as a binary classification prob-
lem, and the residual signal is obtained by projecting the
real-time collected data vector onto the image space and the
kernel space of both the nominal model and the faulty model,
respectively. Finally, the problem for multiplicative fault de-
tection is solved by setting the appropriate threshold with the
gap metric technique.

The structure of this paper is organized as follows. Section
II is dedicated to the preliminaries and problem formula-
tion. The projection-based binary classification scheme is
presented in Section III, and a case study is given in Section
IV. Conclusions and future works are presented in Section V.

Notations. Standard notations are adopted in this paper.
PU denotes the orthogonal projection onto subspace U , and
its norm is denoted by ∥PU∥. U⊥ represents the orthogonal
complement of U . P∼

U indicates the adjoint of PU . ◦ denotes
the multiplication of operators.

2 Preliminaries and problem formulation

In this section, the T-S fuzzy systems under consideration
are introduced first. It is followed by the review of orthogonal
projection and gap metric in Hilbert space and, based on it,
the problem formulation.

2.1 System description
The T-S fuzzy model is described by fuzzy IF-THEN rules,

which can be applied to approximate the nonlinear system.
The pth rule of the T-S fuzzy model is of the following form:
Plant rule ℜp: IF θ1(k) is Hp

1 and θ2(k) is Hp
2 and · · · and

θn(k) is Hp
n , THEN

Σ :

{
x(k + 1) = Apx(k) +Bpu(k)
y(k) = Cpx(k) +Dpu(k)

(1)

where θ(k) = [θ1(k), θ2(k), · · · , θn(k)] denotes the premise
variables. Hp

m(m = 1, 2, · · · , n) denotes the fuzzy sets.
ℜp, p∈{1, 2, . . . , τ} indicates the pth inference rule. τ repre-
sents the number of fuzzy inference rules. u(k) ∈ Us denotes
the control input variable, y(k) ∈ Ys denotes the system out-
put vector, and x(k) ∈ X s denotes the state variable. Σ
denotes the plant model. Ap, Bp, Cp, Dp are the system ma-
trices corresponding to the pth model. Us and Ys represent
the input and output space, respectively.
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Let µp(θ(k)) represent the corresponding normalized
fuzzy membership function, which satisfies

µp(θ(k)) ≥ 0,

τ∑
p=1

µp(θ(k)) = 1, p = 1, 2, · · · , τ.

In the sequel, we denote µp(k) as µp(θ(k)) for brevity.
Thus, the overall T-S fuzzy system can be inferred as

Σ :

{
x(k + 1) = A(µ(k))x(k) +B(µ(k))u(k)
y(k) = C(µ(k))x(k) +D(µ(k))u(k)

(2)

where

A(µ(k)) =
τ∑

p=1
µp(k)Ap, B(µ(k)) =

τ∑
p=1

µp(k)Bp

C(µ(k)) =
τ∑

p=1
µp(k)Cp, D(µ(k)) =

τ∑
p=1

µp(k)Dp.

For the sake of simplicity, in the sequel, Σ will be used to
denote the T-S fuzzy system (2). In addition, the following
notation

Σ = (A(µ(k)), B(µ(k)), C(µ(k)), D(µ(k)))

is adopted.
With the aid of the above T-S fuzzy systems, the uncertain

plant model with multiplicative faults is denoted by

Σ∆,f = (A(µ(k)) + ξA(k), B(µ(k)) + ξB(k),

C(µ(k)) + ξC(k), D(µ(k)) + ξD(k)), (3)

where ξA(k), ξB(k), ξC(k), and ξD(k) denote the fault in-
duced changes in system parameters and the model uncertain-
ties.

2.2 Orthogonal projection and gap metric
The Hilbert space H is a vector space equipped with an

inner product denoted as ⟨·, ·⟩. For a vector α ∈ H, the norm
of α is defined by the inner product as ∥α∥ =

√
⟨α, α⟩. By

projecting α onto U , the distance between α and its projection
PUα is calculated to determine whether α belongs to the
subspace U .

An orthogonal projection on a subspace U , denoted by PU ,
is endowed with the inner product

⟨m(k), n(k)⟩2,[k1,k2]
=

√√√√ k2∑
k=k1

mT (k)n(k),

where m(k), n(k) ∈ U ⊂ l2,[k1,k2].
It is evident that if operators PU satisfies

∀m,n ∈ U ,P2
U = PU ,

⟨PUm,n⟩2,[k1,k2]
= ⟨m,PUn⟩2,[k1,k2]

,
(4)

it is idempotent and self-adjoint. Therefore, it can be inter-
preted as an operator for orthogonal projection onto U .

In light of [16], the following conclusions are of great
significance for our study:

• ∀m ∈ U ,PUm=m⇔⟨PUm,m−PUm⟩2,[k1,k2]
= 0;

• ∀m ∈ U ,m = PUm+ PU⊥m,
where PU⊥ is the orthogonal complement of U ;

• given n ∈ l2,[k1,k2],∀x ∈ U ⊂ l2,[k1,k2],
⟨n−m,m−n⟩2,[k1,k2]

=||n−m||2,[k1,k2]

≥||n−PUn||2,[k1,k2].
Given the closed subspace U , the distance between n and

U , denoted as dist(n,U), is defined as

dist(n,U) = inf
m∈U

||n−m||2,[k1,k2], (5)

which is equivalent to

dist(n,U) = ∥n− PUn∥2,[k1,k2] = ∥PU⊥n∥2,[k1,k2]. (6)

Moreover, in order to measure the distance between two
subspaces S and T [16], the following definition of gap met-
ric is necessary

D(S, T ) = max
{−→

D (S, T ),
−→
D (T ,S)

}
, (7)

−→
D (S, T )= sup

s ∈ S
∥s∥2,[k1,k2]=1

dist(s,T )=sup
s∈S

inf
t∈T

∥s−t∥2,[k1,k2]

∥s∥2,[k1,k2]
,

−→
D (T ,S)= sup

t ∈ T
∥t∥2,[k1,k2] =1

dist(t,S)=sup
t∈T

inf
s∈S

∥t−s∥2,[k1,k2]

∥t∥2,[k1,k2]
,

which leads to

0 ≤ D(S, T ) ≤ 1,

for D(S, T ) < 1,
−→
D (S, T ) =

−→
D (T ,S) = D(S, T ),

for D(S, T ) = 0,S = T , and D(S, T ) = 1,S ⊥ T .

Here,
−→
D (S, T ) and

−→
D (T ,S) are called directed gap, and

S, T ∈ l2,[k1,k2].

2.3 Problem formulation
As the signals in the system can be represented as vectors

in the Hilbert space, and the dynamics of the system can be
modeled as subspaces in the Hilbert space, the fault detec-
tion problems based on projection-based binary classification
method for T-S fuzzy systems with multiplicative faults are
investigated in this paper. To be specific, attentions will be
firstly paid to the T-S fuzzy model, which is fundamental to
establish the image representation and the kernel represen-
tation for fuzzy systems within the time-varying framework.
On this basis, the main objective of the binary-classification

method is to construct the data vector
[
u
y

]
∈ l2,[k1,k2] based

on the projection operators on nominal subspace and faulty
subspace. By comparing the two corresponding distances,
the detection logic is ultimately set to determine whether the
multiplicative faults have occurred. In order to verify the
superiority of the proposed method in this paper, the fault
detection performance results will be obtained by comparing
it with observer-based fault detection methods.

3 Main results

In this section, the definitions of coprime factorizations and
subspaces for T-S fuzzy systems is firstly introduced. Based
on it, the binary-classification problem is studied with the aid
of the projection-based method.
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3.1 Normalized factorizations and subspaces
Roughly speaking, the basic idea of the projection-based

fault detection approach lies in orthogonally projecting the
process data onto the image subspace and kernel subspace.
Considering the time-varying fuzzy framework, the closed-
loop dynamics of a state feedback controller with vΣ(k) as
reference vector is defined as u(k) = F (k)x(k) + vΣ(k)

x(k + 1) = AF (µ(k))x(k) +B(µ(k))vΣ(k)
y(k) = CF (µ(k))x(k) +D(µ(k))vΣ(k)

(8)

where

AF (µ(k)) = A(µ(k)) +B(µ(k))F (k),

CF (µ(k)) = C(µ(k)) +D(µ(k))F (k).

F (k) is the controller gain matrix. Next, the time-varying
fuzzy observer-based residual generator is constructed as
follows: x̂(k + 1) = AL(µ(k))x̂(k) +BL(µ(k))u(k) + L(k)y(k)
ŷ(k) = C(µ(k))x̂(k) +D(µ(k))u(k)
rn(k) = y(k)− ŷ(k), rΣ(k) = W (k)rn(k)

(9)
where

AL(µ(k)) = A(µ(k))− L(k)C(µ(k))

BL(µ(k)) = B(µ(k))− L(k)D(µ(k)).

L(k) represents the observer gain matrix. W (k) denotes the
weighting matrix. x̂(k) denotes the state estimate. ŷ denotes
the system output estimate. With the time-varying framework,
the fuzzy time-varying operators can be easily described as

M=(AF (µ(k)), B(µ(k)), F (k), I) (10)
N =(AF (µ(k)), B(µ(k)), CF (µ(k)), D(µ(k))) (11)

M̂=(AL(µ(k)),−L(k),W (k)C(µ(k)),W (k)) (12)

N̂=(AL(µ(k)),BL(µ(k)),W (k)C(µ(k)),W (k)D(k)) (13)

where (M ,N ) and (M̂ , N̂ ) are the right coprime pairs
(RCP) and left coprime pairs (LCP) of system, respectively.

Definition 1. Given the RCP and LCP of the fuzzy model
(2), and (M ,N ), (M̂, N̂ ) satisfying (10)-(13), the fuzzy
time-varying operators

IΣ : l2,[k1,k2] → l2,[k1,k2] × l2,[k1,k2]

IΣ(vΣ) :=

[
M (vΣ)
N (vΣ)

]
=

[
u
y

]
, vΣ ∈ l2,[k1,k2] (14)

KΣ : l2,[k1,k2] × l2,[k1,k2] → l2,[k1,k2]

KΣ(u, y) := M̂ (y)− N̂ (u) = rΣ = W (k)rn (15)

are called the system image representation (SIR) and system
kernel representation (SKR) of the system Σ.

Corresponding to the SIR and SKR, the image subspace
and the kernel subspace of the fuzzy system (2) is defined.

Definition 2. Given fuzzy system (2) and the corresponding
time-varying fuzzy matrices (10-13), the l2,[k1,k2] subspace

IΣ and KΣ defined by

IΣ=
{[

u
y

]
:

[
u
y

]
=

[
M (vΣ)
N (vΣ)

]
=IΣ(vΣ), vΣ∈l2,[k1,k2]

}
(16)

KΣ =

{[
u
y

]
: KΣ(u, y) = M̂ (y)− N̂ (u) = 0

}
(17)

are called image subspace and kernel subspace of the fuzzy
system Σ.

To address the projection-based fault detection in T-S fuzzy
systems, the normalized factorization will be introduced. For
fuzzy systems, normalized right coprime factorizations (RCF)
and left coprime factorizations (LCF) are defined by isometric
and co-isometric operators [18].

Definition 3. Given an operator R, if it satisifies R∼ ◦
R = I, or R ◦ R∼ = I, then it is called isometric and
co-isometric.

Definition 4. The normalized RCF and LCF of Σ, denoted
by IΣn and KΣn , are isometric and co-isometric operator
defined by

I∼
Σn

◦ IΣn
= I,KΣn

◦ K∼
Σn

= I.

The corresponding RCP and LCP, denoted as (MΣn ,NΣn)

and (M̂Σn , N̂Σn) can be given by solving the Riccati equa-
tion in the following theorem.

Theorem 1. Given the system model (2), (M̂Σn , N̂Σn) are
as follows

M̂n=(ALn
(µ(k)),−Ln(k),Wn(k)C(µ(k)),Wn(k))

N̂n=(ALn(µ(k)), BLn(µ(k)),Wn(k)C(µ(k)),Wn(k)D(µ(k)))

Ln(k)=(B(µ(k))DT(µ(k))+A(µ(k))P(k)CT(µ(k))W 2
n(k))

Wn(k)=(I+D(µ(k))DT(µ(k))+C(µ(k))P(k)CT(µ(k)))−1/2

where P (k) > 0 is the solutions to the following Riccati
recursions

P (k+1)=ALn
(µ(k))P (k)AT

Ln
(µ(k))+Ln(k)L

T
n (k)+

+BLn(µ(k))B
T
Ln

(µ(k))

with P (k0) = Pk0
, where Pk0

is boundary matrix.

3.2 A binary classification scheme
To begin with, we would like to emphasise that in the

presence of a system model describing faulty operations,
alongside the nominal model, fault detection can be accom-
plished by utilizing both models. This constitutes a binary-
classification fault detection task. The primary goal of this
binary-classification is to determine which subspace the col-

lected process data
[
u
y

]
belongs to.

From the above definition , let

IΣi,n
=

[
Mi,n

Ni,n

]
, i = 0, 1

indicate normalized the SIR of Σi. IΣ0,n
, IΣ1,n

are the image
subspace defined on the nominal system Σ0 and faulty system
Σ1, respectively,

IΣi,n =

{[
u
y

]
:

[
u
y

]
= IΣi,nvΣ, vΣ ∈ l2,[k1,k2]

}
.
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Without loss of generality, it is assumed that the system
operates either in the nominal or faulty operations, that is to
say, [

u
y

]
∈ IΣ0,n

or

[
u
y

]
∈ IΣ1,n

and any data vector
[
u
y

]
belongs to IΣn := IΣ0,n ∪ IΣ1,n .

Define PIΣi
be the operator of orthogonal projection to

the nominal and faulty image subspace IΣi,n as

PIΣi
=LIΣi,n

◦ LI∼
Σi,n

,LI∼
Σi,n

=PL2LI∼
Σi,n

, i = 0, 1.

Based on it, the process data
[
u
y

]
∈ l2,[k1,k2] can be orthog-

onally projected onto the nominal system image subspace
IΣ0,n

and the faulty subspace IΣ1,n

pIΣi
= PIΣi

[
u
y

]
, i = 0, 1. (18)

With the aforementioned data vector
[
u
y

]
and its corre-

sponding projection pIΣi
, the difference can be defined

rIΣi
:=

[
u
y

]
−pIΣi

=(I−PIΣi
)

[
u
y

]
, (19)

which can be applied as the projection-based residual genera-
tor, namely rIΣi

. Define PI⊥
Σi

= I − PIΣi
as the projection

onto the orthogonal complement of IΣi,n
, i = 0, 1. Then any

data vector can be shown as[
u
y

]
= PIΣi

([
u
y

])
+ PI⊥

Σi

([
u
y

])
, i = 0, 1. (20)

On the basis of the result, the norm of rIΣi
is described by

∥rIΣi
∥2,[k1,k2] =

∥∥∥∥PI⊥
Σi

([
u
y

])∥∥∥∥
2,[k1,k2]

, i = 0, 1. (21)

By defining proper threshold Jth,0, Jth,1, the detection
logic can be implemented for fault detection

if
∥∥rIΣ0

∥∥ ≤ Jth,0 and
∥∥rIΣ1

∥∥ > Jth,1 =⇒ fault-free
if

∥∥rIΣ0

∥∥ ≤ Jth,0 and
∥∥rIΣ1

∥∥ ≤ Jth,1 =⇒ intersection
if

∥∥rIΣ0

∥∥ > Jth,0 and
∥∥rIΣ1

∥∥ ≤ Jth,1 =⇒ faulty
(22)

with Jth,0 and Jth,1 representing the corresponding threshold,
respectively.

Remark 1. Under the conclusion above, there is an inter-
section of IΣ0,n

∩ IΣ1,n
̸= O, where O represents the empty

set.

3.3 Threshold setting
In this subsection, the threshold setting issues for T-S fuzzy

systems with model uncertainties modeled by (3) will be
addressed.

To this end, consider the existence of the possible model
uncertainties,

IΣ =

[
M
N

]
=

[
Mn +∆Mn

Nn +∆Nn

]
= IΣn + IΣ∆ , (23)

where IΣ∆
=

[
∆Mn

∆Nn

]
denotes the uncertainty induced

changes in image representation, which satisfies

sup ∥IΣ∆
∥ = γI < 1. (24)

Let

IΣ∆
=

{[
u
y

]
:

[
u
y

]
=IΣ(vΣ)=

[
(Mn+∆Mn)(vΣ)
(Nn+∆Nn

)(vΣ)

]
,vΣ∈l2,[k1,k2]

}
.

(25)
The threshold is set as

Jth,i= max

||∆I ||∞≤γI ,

u
y

∈IΣ∆

dist

([
u
y

]
,IΣi,n

)
, i=0, 1. (26)

From [19],the direct gap
−→
ξ (IΣ∆

, IΣi,n
) from the uncertain

image subspace to the nominal image subspace and faulty
image subspace can be computed respecitively
−→
ξ (IΣ∆

, IΣi,n
) = ∥(I−PIΣi

)◦PIΣ∆
∥,PIΣ∆

= IΣ∆
◦I∼

Σ∆
.

It is evident that

∥rIΣi
∥2,[k1,k2] =

∥∥∥∥(I − PIΣi

)[u
y

]∥∥∥∥
2,[k1,k2]

=

∥∥∥∥(I−PIΣi

)
◦PIΣ∆

[
u
y

]∥∥∥∥
2,[k1,k2]

≤
−→
ξ(IΣ∆

,IΣi,n
)

∥∥∥∥[uy
]∥∥∥∥

2,[k1,k2]

.

(27)

Analogous to the definition given in [20],

IΣi,∆I
=

{
IΣ∆i

: ∥∆Ii∥ = ∥IΣ∆ − IΣi,n∥ ≤ γIi

}
,

is given. γIi
, i = 0, 1 indicates the upper bound of the unc-

etainty on the nominal image subspace and faulty subspace.
From (20)-(21), it can be seen that∥∥∥∥[uy

]∥∥∥∥
2,[k1,k2]

=

∥∥∥∥PIΣi

[
u
y

]∥∥∥∥
2,[k1,k2]

+
∥∥rIΣi

∥∥
2,[k1,k2]

, (28)

which leads to

∥rIΣi
∥2,[k1,k2]≤

γIi√
1− γ2

Ii

∥∥∥∥PIΣi

([
u
y

])∥∥∥∥
2,[k1,k2]

=Jth,i.

(29)

esponding system IΣi,n , i = 0, 1.
In summary, the projection method for dynamic systems

based on image space has been studied, as the implementation
of adjoint systems in projection-based residual generation re-
quires a large amount of discrete convolution computations
[17]. To deal with this issue, an alternative solution is pro-
posed.

Theorem 2. Given the fuzzy system (2) with model uncer-
tainty satisfying (3), and the observer-based residual rΣi

generated by (9), the evaluation function and the threshold
are given as

Ji=∥rΣi
∥2,[k1,k2] (30)

Jth,i=
γIi√
1−γ2

Ii

√√√√∥∥∥∥[uy
]∥∥∥∥2

2,[k1,k2]

−∥rΣi
∥22,[k1,k2]

(31)

where γIi represents the upper limit of system uncertainty for
corresponding system IΣi

, i = 0, 1.
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Proof. Let

KΣn
:= [−N̂n M̂n], (32)

it is straightforward that KΣn
(u, y) is equivalent to the

observer-based residual generator (9), that is

KΣn
(u, y) = M̂n(y)− N̂n(u) = rΣn

. (33)

Recalling the Definition 4 and KΣn
◦ IΣn

= O, we have

[
IΣi

K∼
Σi

]
◦
[
I∼
Σi

KΣi

]
= I.

Based on it, (19) is written as

rIΣi
= (I − PIΣi

)

[
u
y

]
= K∼

Σi
◦ KΣi

([
u
y

])
(34)

which can be described by∥∥rIΣi

∥∥
2,[k1,k2]

=

∥∥∥∥KΣi

([
u
y

])∥∥∥∥
2,[k1,k2]

= ∥rΣi
∥2,[k1,k2].

(35)
where rΣi

, i = 0, 1 indicate residual generated by the SKR
of the nominal system and the faulty system, respectively.

According to (24), (28) and (35), we have

∥rΣi
∥2,[k1,k2] ≤

γIi√
1−γ2

Ii

√√√√∥∥∥∥[uy
]∥∥∥∥2

2,[k1,k2]

−∥rΣi
∥22,[k1,k2]

(36)
where γIi denotes the upper limit of system uncertainty for
IΣi , i = 0, 1. The proof is completed.

4 An example

In this section, a numerical example is given to verify the
efficiency of the proposed results.

Consider the following T-S fuzzy dynamic models
Region Rule ℜm: IF y1(n) is Hm

1 , THEN{
x(n+ 1)=(Am+δA+∆A)x(n)+(B+∆B)u(n)
y(n) = Cx(n)+Du(n),m = 1, 2, 3

(37)

where

A1 =

 0.990 −0.000 0.008
−0.003 0.959 0.020
0.007 0.020 0.970

, B=

0.0128 0.0000
0.0000 0.0127
0.0000 0.0001


A2 =

 0.987 −0.000 0.011
−0.004 0.955 0.023
0.010 0.023 0.964

, C=

[
1 0 0
0 1 0

]

A3 =

 0.982 −0.000 0.016
−0.004 0.950 0.027
0.015 0.028 0.954

, D=

[
0.870 0.010
0.120 1.130

]

δA =

−0.014 −0.001 0.011
0.001 0 −0.001
0.014 0.001 −0.012

 .

The membership functions for the premise variable y1 are
shown in Fig. 1. It can be seen that the premise variables
can be divided into 1) S1 := {y1 | 25 < y1 ≤ 30}; 2) S2 :=
{y1 | 30 < y1 ≤ 35} ; 3) S3 := {y1 | 35 < y1 ≤ 40}; and 4)

S4 := {y1 | 40 < y1 ≤ 45}. ∆A = 0.0001 cos(0.04k)Am

and ∆B = 0.001 sin(0.04k)B represent the model uncertain-
ties. Based on it, the upper bounds of the uncertainty projec-
tion operator on the nominal image subspace and the faulty
image subspace are denoted as γI0

and γI1
, respectively, sat-

isfying γI0 =0.0372 and γI1 =0.0629. The multiplicative
fault, represented by δA, is considered from the 2000th sam-
ple, leading to the changes in the system output yi, i = 1, 2,
as illustrated in the Fig. 2.

We first demonstrate the performance of the binary classi-
fication fault detection scheme. The detection performance
is shown in Fig. 3, from which it can be observed that the
detection scheme we proposed can effectively detect the mul-
tiplicative faults.

To further demonstrate the propose methods, the compar-
ison with the observer-based fault detection scheme is pro-
vided. Let

KΣr
=

[
−N̂r M̂r

]
M̂r = (ALr (µ(k)),−Lr(k),Wr(k)C(µ(k)), I)

N̂r = (ALr
(µ(k)), BLr

(k),Wr(k)C(µ(k)), D(µ(k)))

withALr
(µ(k))=A(µ(k))−Lr(k)C(µ(k)).

From [20], we have

KΣr=QΣKΣ0, QΣ=(ALr (µ(k))), L(k)−Lr(k), C(µ(k), I),

it holds that

∥rr∥2,[k1,k2]=

∥∥∥∥KΣr

([
u
y

])∥∥∥∥
2,[k1,k2]

=

∥∥∥∥QΣKΣ0

([
u
y

])∥∥∥∥
2,[k1,k2]

.

Assumed ∥∆I∥ ≤ γI , we have

∥rr∥2,[k1,k2] ≤ qΣγI

∥∥∥∥[uy
]∥∥∥∥

2,[k1,k2]

where qΣ indicates the norm of the operator QΣ. According
to the analysis above, we have

Jr=∥rr∥2,[k1,k2], Jth,r = qΣγI

∥∥∥∥[uy
]∥∥∥∥

2,[k1,k2]

,

and threshold with qΣ = 6.5175 and γI = 0.0231. Com-
pared to the observer-based fault detection system, the detec-
tion performance of binary-classification scheme has been
improved, as evident from the results shown in the Fig. 4. As
a result, through the comparative experiment, it can be con-
cluded that the proposed fault detection method is effective.

5 Conclusions

In this paper, a fault detection scheme for T-S fuzzy sys-
tems based on binary classification is proposed. Specifically,
the T-S fuzzy system is first introduced. Then, the image
space and the kernal space of the time-varying fuzzy model
are constructed by using the coprime factorization technique.
On this basis, the residual signal is obtained by projecting the
process data vectors onto the kernel and image subspaces of
nominal systems and the faulty systems, and the multiplica-
tive fault detection of the fuzzy system is realized by setting
the residual-driven threshold via the gap metric technology.
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Fig. 1: Membership function for fuzzy system

Fig. 2: Output signal yi and input signal ui, i = 1, 2

Fig. 3: The detection performance of projection-based fault
detection

Fig. 4: The comparison results of observer-based fault
detection

Finally, the superiority of the projection-based fault detection
approach over the observer-based fault detection approach
in detecting multiplicative faults is illustrated through a case
study. Future work will focus on the issues of multiple fault

classification for fuzzy systems.
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Abstract: This paper presents a distributed fault detection scheme for plantwide chemical processes with randomly occurring
faults (ROFs). First, we introduce a general two-port system model for the plantwide chemical processes. The distributed fault
detectors are designed for plantwide systems where interactions between process units are accounted for. Then, the fault-sensitive
condition as well as disturbances attenuation condition are formulated. Based on the vector dissipativity condition, the detection
gains are obtained offline via solving linear matrix inequalities (LMIs), and the global evaluation functions are calculated for
online fault detection. Finally, a numerical example is provided to illustrate the effectiveness of the proposed approach.

Key Words: Distributed, Dissipativity, Fault Detection, Randomly Occurring Fault

1 Introduction

The increased complexity of chemical processes in the
modern process industry has resulted in considerable eco-
nomic benefits. This has led to the prevalence of com-
plex process plants, which consist of multiple intercon-
nected process units or subsystems, collectively referred to
as plantwide systems. In order to effectively improve both
material and energy efficiency, these units have been con-
structed to interact with each other through the integration of
energy and recycle loops of materials [1]. However, the risk
of plant sensitivity to flaws such as sensor and actuator fail-
ures has increased as a result of the process units’ significant
usage of material recycling and heat integration. These faults
can potentially lead to economic, environmental, and safety
issues [2] or even jeopardize the task execution [3] if they are
not addressed properly in plantwide system designs. Fur-
thermore, plant-wide fault detection frequently occurs in a
distributed manner, with a fault detection system monitoring
each process unit and communicating with the fault detectors
of other process units. Despite the rise of distributed state es-
timation (e.g., [4,5]) and distributed control (e.g., [6–8]), dis-
tributed fault detection (DFD) for plant-wide processes has
seen limited development. Only a few approaches, such as a
multivariate analysis-based distributed monitoring and fault
diagnosis approach in [9, 10], and cascade process networks
developed using a model-based approach in [11], have been
proposed in the field of process control.

However, due to a variety of factors, including fading
measurement signals, the unpredictability of the wireless
networks throughout extended distances, the limited band-
width of the communication channels, and unpredictable
fluctuations in the network load [12], the faults in the
plantwide chemical process can happen in a random way.
This kind of faults is often called, randomly occurring faults
(ROFs). In the existing literature, the fault-tolerant con-
trol [13], fault estimation methods [14–16] were developed.

*This work is supported by National Natural Science Foundation of
China (NSFC) under Grant 62103283 and the Australian Research Council
under Discovery Projects DP220100355.

†Corresponding author: Wangyan Li.

As for the corresponding fault detection problems, only lim-
ited preliminary research has been reported. For instance,
a single networked multi-rate system with network-induced
fading channels and ROFs is investigated in [12] for the fault
detection problem. However, the obtained result is some-
what conservative due to the adopted criterion is essentially
fault attenuation rather than fault sensitivity. When it comes
to plantwide systems, it becomes more complex due to the
fact that ROFs can propagate to different units. It is interest-
ing to look at the corresponding DFD problems for plantwide
systems with ROFs.

Inspired by the discussions mentioned above, this work
proposes a general model-based distributed plantwide fault
detection approach for plantwide processes with randomly
occurring faults. The main issues with this method involve:
(1) focusing on how interactions between process units affect
distributed fault detection; and (2) considering the faults to
occur in a random way, which is more reasonable in practice.
Compared with the existing results, the contributions can be
summarized as follows:

1) A more general two-port representation where the fault
and disturbance signals can propagate through the inter-
connection input is considered, which covers the mod-
els in [19, 20] as a special case;

2) In this study, the fault is considered to occur in a ran-
dom way, which is more reasonable in practice;

3) A global evaluation function is proposed for distributed
fault detection propose. Also, based on this, a new fault
detection mechanism is expected to be established.

The remaining parts of this paper are divided into the fol-
lowing sections: The DFD problem for plantwide systems is
formulated in Section 2. In Section 3, the dissipativity anal-
ysis of the error dynamics is performed to obtain detector
gains and conduct fault detection. In addition, a case study
illustrating the suggested DFD design is presented in Section
4, followed by the conclusions.

Notation. The n-dimensional Euclidean space can be de-
scribed as Rn, and the symbol ∥ · ∥ is the Euclidean norm
in Rn. The transposition and inverse of a matrix M are
represented as M⊤ and M−1, respectively, and the pres-
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ence of M > 0 (or M < 0) signifies that the matrix M
is positive definite (or negative definite). Notation ◦ means
Hadamard product. 1 denotes a vector or matrix with ev-
ery element being 1. I and Icol are an identity matrix and
a column of identity matrices with appropriate dimensions,
respectively. M ≤≤ 0 represents all the elements in ma-
trix M are less than 0. M = [mij ] indicates that the i-th
row and j-th column entry of the matrix M is denoted by
mij . Row

j∈N
[Mj ] (respectively, Col

j∈N
[Mj ]) means arranging a

set of matrices in a row (respectively, column) form, i.e.,
Row
j∈N

[Mj ] ≜ [M1,M2, · · · ,MN ]. diag
j∈N

[Mj ] represents the

block-diagonal matrix consisting of matrices Mj (j ∈ N ).
In symmetric block matrices, terms arising from symme-
try are indicated with an ellipsis ∗. The space of square
summable n-dimensional vector-valued functions is denoted
by l2([0,∞),Rn). Moreover, the expected value of a ran-
dom variable x is represented by E{x}. Prob{·} represents
the occurrence probability of the event {·}.

2 Problem Formulation

Let N = {1, 2, · · · , N} be the collection of N subsys-
tems of a plantwide system. The corresponding state space
description of the i-th unit can be obtained as follows:

xi,k+1 = Aixi,k +Biui,k +Bpiupi,k +Wiωi,k (1)
ypi,k = Cpixi,k +Diui,k +Dpiupi,k +Dwiωi,k (2)
yi,k = Cixi,k (3)

where xi,k ∈ Rn refers to the system state at time k for the
unit i. The measured output is yi,k ∈ Rny , and the inter-
connecting output is ypi,k ∈ Rnyp as it connects other units.
ui,k ∈ Rnu and upi,k ∈ Rnup denote the manipulated in-
put, and the interconnecting input, respectively. The exoge-
nous disturbance input, represented by ωi,k ∈ Rω , belongs
to l2([0,∞),Rω). Ai, Bi, Bpi

, Ci, Cpi
, Di, Dpi

, Dwi
and

Wi are matrices that have suitable dimensions for the given
context.

Let fi,k ∈ Rf be the fault signal to be detected, when the
actuators experience random failures,

ui,k = uci,k + ξifi,k (4)

where uci,k ∈ Rnuc is the controller output, and variable
ξi ∈ R is a random variable characterizing the probability of
fault occurring, which obeys the following Bernoulli distri-
bution:

Prob{ξi = 1} = pi,

Prob{ξi = 0} = 1− pi,

where pi ∈ [0 1] is a positive scalar. When ξi = 1, it means
the actuators experience faults. Otherwise, the actuators are
healthy.

Furthermore, the i-th plant’s interactions with other plants
are described by

upi,k =
∑

j∈N\{i}

hpijypj ,k (5)

where the plant is excluded from set N by setting N\{i}.
The connection between the i-th and j-th plants are de-
scribed by hpij ∈ {0, I}. In particular, if plants i and j are

connected (we assume plants are not self-connected), hpij =

I , otherwise, hpij = 0. By denoting up,k = Col
i∈N

[upi,k],

and yp,k = Col
i∈N

[ypi,k], the network topology of the whole

plantwide system can be represented by

up,k = Hpyp,k (6)

where hpij is the i-th row and j-th column block entry ele-
ment of a topology matrix Hp [6].

In this study, we investigate the distributed fault detection
problems in the plantwide system by considering two types
of faults: local faults denoted as fi, which occur specifi-
cally at unit i, and remote faults denoted as fj , which oc-
cur at units other than unit i. We aim to design distributed
fault detectors based on residuals, where each plant’s dis-
tributed estimators are constructed with the node’s connec-
tion taken into account. The structure of the considered sys-
tem is distributed in the sense that every plant includes a
state estimator that connects with other interacting plants to
exchange information. Thus, the distributed estimator for
the i-th node could have the following possible structure:

x̂i,k+1 = Aix̂i,k +Biuci,k +Bpi ûpi,k

+
∑
j∈N

hpijKij(yj,k − ŷj,k) (7)

ŷi,k = Cix̂i,k (8)

where Kij represents the estimator gain to be determined.
ŷi,k and ûpi,k are estimates of yi,k and upi,k, respectively.
Subsequently, the residual ri,k can be defined by

ri,k = Mi(yi,k − ŷi,k) (9)

where the matrix Mi represents the residual gain matrix that
needs to be determined.

In order to ensure that the state estimation problem is well-
posed, the following assumption is developed.

Assumption 1. Dp ≜ Row
i∈N

[Dpi
], Cp ≜ Row

i∈N
[Cpi

], D ≜

Row
i∈N

[Di], Dw = Row
i∈N

[Dwi
]. Matrix I−HpDp is invertible.

In what follows, defining ei,k = xi,k − x̂i,k for each unit,
then subtracting (7) from (1) yields the following estimation
error

ei,k+1 = Aiei,k +Wiωi,k + ξiBifi,k −
∑
j∈N

hpijKijCjej,k

+Bpi

( ∑
j∈N

Lijej,k +
∑
j∈N

Dpf ijξjfj,k

+
∑
j∈N

Dpwijωj,k

)
, (10)

where the i-th row and j-th column block entry element of
matrices L, Dpf , and Dpw are represented by the matrices
Lij , Dpf ij , and Dpwij , respectively. The above matrices can
be described as follows:

L = (I −HpDp)
−1HpCp,

Dpf = (I −HpDp)
−1HpD,
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Dpw = (I −HpDp)
−1HpDw.

Let

Ãii = Ai −KiiCi +Bpi
Lii, L̃fii = Bi +Bpi

Dpf ii,

Ãij = BpiLij − hpijKijCj , L̃fij = BpiDpf ij ,

W̃ii = Wi +Bpi
Dpwii,

then one can represent (10) as

ei,k+1 = Ãiiei,k +
∑

j∈N\{i}

Ãijej,k + ξiL̃fiifi,k + W̃iiωi,k

+
∑

j∈N\{i}

ξjL̃fijfj,k +
∑

j∈N\{i}

Bpi
Dpwijωj,k.

(11)

The residual (9) now becomes

ri,k = MiCiei,k. (12)

This research aims to construct distributed fault detectors
that concurrently satisfy the following requirements:

1) Under the assumption of zero initial conditions and
ωi,k = 0, the faults have the maximum effect on the
residual ri,k (maximize the effects), i.e.,

∑
j∈N

T∑
k=0

E{∥rj,k∥2} ≥ β2
∑
j∈N

T∑
k=0

∥fj,k∥2 (13)

for ∀ 0 < T < ∞, where scalar β > 0.
2) Under the assumption of zero initial conditions and

fi,k = 0, the exogenous disturbance has the minimum
effect on the residual ri,k (minimize the effects), i.e.,

∑
j∈N

T∑
k=0

E{∥rj,k∥2} ≤γ2
∑
j∈N

T∑
k=0

∥ωj,k∥2 (14)

for ∀ 0 < T < ∞, where scalar γ > 0.
Taking into account the aforementioned requirements, to

design a residual evaluation stage, we can compute a global
evaluation function J(ri) and a threshold J̄i,th as follows:

J(ri) = E


{

k∑
s=k−L

r⊤i,sri,s

} 1
2

 , J̄i,th = sup
ωi,k∈l2
fi,k=0

J(ri).

In this way, the following rule can be used to detect when
faults will occur in any plant:

J(ri) > J̄i,th with faults,
J(ri) ≤ J̄i,th faults-free. (15)

3 Dissipativity Analysis

First, recall the definition of vector dissipativity, and here,
we will rephrase the definition as presented in [17, 18]:

Assumption 2. The dissipation matrix W (represented as
W = [wij ]) satisfies the following properties: non-negative,
non-singular, semi-stable, and column sub-stochastic (as
discussed in [21]). Moreover, for any entry element wij of
the dissipation matrix W , it holds that wij > 0 if hpij = I
and wij = 0 if hpij = 0.

Definition 1. (Vector dissipativity [17]) The error dynamics
(11) is said to be vector dissipative for the supply rate func-
tion vector S(uk, rk) = [S1(uk, rk), · · · ,SN (uk, rk)]

⊤, if
there exists a nonnegative definite storage function vector
V(ek) = [V1(e1,k), · · · ,VN (eN,k)]

⊤, and a dissipation ma-
trix W(W = [wi,j ]) that is satisfying Assumption 2, such
that the dissipativity inequality holds for any k > 0 as fol-
lows:

E{V(ek+1)} ≤≤ E{WV(ek) + S(uk, rk)}. (16)

In the following, we divide the content into three subsec-
tions to design DFDs with the desired demands. In the first
two subsections, the requirements satisfying the robustness
constraint (14) and fault sensitivity constraint (13) will be
found independently. A feasible solution to satisfy both con-
straints will be presented in the last subsection, where we
can obtain the detection gains and conduct fault detection.

3.1 Dissipativity-based fault sensitivity design for DFD
Proposition 1. The error dynamics (11) without exogenous
disturbance is said to be vector dissipative w.r.t the sup-
ply rate S(fk, rk) where Si(fk, rk) =

∑
j∈N

hpij(∥rj,k∥
2 −

β2∥fj,k∥2) if there exists a family of matrices {Yij}j∈N ,
positive definite matrices {Pj}j∈N , positive semi-definite
matrices {Zj}j∈N , a scalar β and a dissipation matrix
W = [wij ] that is satisfying Assumption 2 such that the fol-
lowing LMI is satisfied:

Πi =


Pi Π12

i Π13
i Π14

i Π15
i

∗ Π22
i 0 0 0

∗ ∗ Π33
i 0 0

∗ ∗ ∗ Π44
i 0

∗ ∗ ∗ ∗ Π55
i

 > 0 (17)

where

Π12
i = PiAi − YiiCi + PiBpi

Lii,

Π13
i = Row

j∈N\{i}
[PiBpi

Lij − hpijYijCj ],

Π14
i = piPiBi + piPiBpi

Dpf ii,

Π15
i = Row

j∈N\{i}
[pjBpiDpf ij ],

Π22
i = wiiPi + C⊤

i ZiCi,

Π33
i = diag

j∈N\{i}
{wijPj + hpijC

⊤
j ZjCj},

Π44
i = −β2I, Π55

i = diag
j∈N\{i}

{−hpijβ
2I}.

In this scenario, the desired detector gains for plant i can
be obtained as follows:

Kii = P−1
i Yii, Kij = P−1

i Yij , (18)

and we can obtain the residual gain Mi by factorizing Zi.

Proof. Assume that ωi,k = 0 (i ∈ N ) in system (1), and
define the storage function Vi(ei,k) = e⊤i,kPiei,k. Next,
note that E{ξi − pi} = 0, E{(ξi − pi)

2} = pi(1− pi) and
E{ξi} = E{ξ2i } = pi (i ∈ N ), then the proof can refer to
the well-established procedures outlined in [20, Theorem 1],
where the similar results have been rigorously demonstrated
in [19, 20]. Thus, it is omitted here.
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Proposition 2. Assume that there exists a set of matri-
ces {Yij}j∈N , positive definite matrices {Pj}j∈N , symmet-
ric matrices {Zj}j∈N , scalar β, and a dissipation matrix
W = [wij ] that is satisfying Assumption 2. Then, if the error
dynamics (11) without considering any disturbances, satis-
fies the fault sensitivity constraint (13), it implies that the
following optimization problem

max
β>0

β s.t. Πi > 0 (19)

is feasible.

Proof. The proof is left out because of the limited space.

3.2 Dissipativity-based robustness design for DFD
Proposition 3. The error dynamics (11) without faults is
said to be vector dissipative for the supply rate S(ωk, rk)
where Si(ωk, rk) =

∑
j∈N

hpij(γ
2∥ωj,k∥2 − ∥rj,k∥2) if there

exists a set of matrices {Yij}j∈N , positive definite matrices
{Pj}j∈N , positive semi-definite matrices {Zj}j∈N , a scalar
γ and a dissipation matrix W = [wij ] that is satisfying As-
sumption 2 such that the following LMI is satisfied:

Ξi =


Pi Ξ12

i Ξ13
i Ξ14

i Ξ15
i

∗ Ξ22
i 0 0 0

∗ ∗ Ξ33
i 0 0

∗ ∗ ∗ Ξ44
i 0

∗ ∗ ∗ ∗ Ξ55
i

 > 0 (20)

where

Ξ12
i = PiAi − YiiCi + PiBpi

Lii, Ξ22
i = wiiPi − C⊤

i ZiCi,

Ξ13
i = Row

j∈N\{i}
[PiBpi

Lij − hpijYijCj ], Ξ44
i = γ2I,

Ξ14
i = PiW̃ii, Ξ33

i = diag
j∈N\{i}

{wijPj},

Ξ15
i = Row

j∈N\{i}
[Dpwij ], Ξ55

i = diag
j∈N\{i}

{hpijγ
2I}.

In this scenario, the desired detector gains for plant i can
be obtained as follows:

Kii = P−1
i Yii, Kij = P−1

i Yij , (21)

and we can obtain the residual gain Mi by factorizing Zi.

Proof. The proof is omitted here since it can be obtained
like the proof in Proposition 1.

Proposition 4. Assume that there exists a set of matrices
{Yij}j∈N , positive definite matrices {Pj}j∈N , symmetric
matrices {Zj}j∈N , a scalar γ, and a dissipation matrix
W = [wij ] that is satisfying Assumption 2. Then, if the er-
ror dynamics (11) without considering any faults, satisfies
the robustness constraint (14), it implies that the following
optimization problem

min
γ>0

γ s.t. Ξi > 0 (22)

is feasible.

Proof. The proof is left out because of the limited space.

3.3 Simultaneous fault sensitivity and robustness de-
sign

As of present, the vector dissipativity requirements for
the fault sensitivity constraint (13) and robustness constraint
(14) have been derived respectively. However, we aim to ob-
tain the detection gains to satisfy both constraints. In this
respect, the following proposition is presented.

Proposition 5. Assume that there exists a set of matri-
ces {Yij}j∈N , positive definite matrices {Pj}j∈N , symmet-
ric matrices {Zj}j∈N , scalars β, γ and dissipation matrix
W = [wij ] that is satisfying Assumption 2. Then, if the error
dynamics (11) satisfies the fault sensitivity constraint (13)
and robustness constraint (14) simultaneously, it implies that
the following optimization problem

max
β,γ>0

β − γ (23)

s.t.

Πi > 0 Ξi > 0

is feasible.

Proof. The proof becomes straightforward by combining
Proposition 1-4.

4 A Case Study

Consider a two-port system of (1)-(3) with parameters:

A1 =

[
0.61 0.14
0.01 0.5

]
, A2 =

[
−0.42 0.14
0.2 0.71

]
,

Bp1
=

[
0.6 0.3
0.52 0.75

]
, Bp2

=

[
0.156 −0.13
0.12 0.5

]
,

Cp1 =

[
0.5 0.4
0.3 0.9

]
, Cp2 =

[
−0.38 −0.4
−0.2 0.7

]
,

Dp1
=

[
1.32 0.2
0.8 3.2

]
, Dp2

=

[
1.9 0.12
0.8 3.8

]
,

B1 =

[
0.73
1.42

]
, B2 =

[
0.85
0.51

]
, W1 =

[
0.41
0.7

]
,

D1 =

[
−2.4
5.8

]
, D2 =

[
1.4
4.5

]
, W2 =

[
0.31
−0.5

]
,

Dw1
=

[
3
0.4

]
, Dw2

=

[
1.98
5

]
, W =

[
0.8 0.2
0.1 0.7

]
,

C1 =
[
1.6 0.85

]
, C2 =

[
−3 0.16

]
, Ts = 15,

p1 = 0.5, p2 = 0.5.

Subsequently, utilizing CVX toolbox [22], we employ the
optimization approach outlined in Proposition 5 to determine
the values for the gains K11, K12, K21, K22, M1, M2, as
well as scalars β and γ. The corresponding results obtained
are shown in Table 1.
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Table 1: Variables of the designed fault detection observer

Design Variables Values Design Variables Values

K11

[
0.0731
−0.0118

]
M1 0.4342

K12

[
−0.0813
0.0648

]
M2 0.8421

K21

[
−0.0341
0.0018

]
β 1.2089

K22

[
−0.0116
−0.2246

]
γ 2.2250
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Fig. 1: Evolution of Residual

For the purpose of simulation, we have chosen initial val-
ues of x1,0 = [0.2 − 0.5]⊤, x2,0 = [0.3 − 0.3]⊤, and
x̂i,0 = [0 0]⊤, where i = 1, 2. These initial conditions
are considered over the time steps k = 0, 1, . . . , 200. The
disturbance inputs are modeled as ω1,k = 10−3 sin π

4 k and
ω2,k = 10−3 sin π

8 k, respectively. In order to enhance the
clarity of our simulations, we assume that faults cease to per-
sist after a certain time period. In this case, the system fault
signal can be given in the following form:

f1,k =

{
0.02 50 ≤ k ≤ 150

0 otherwise
,

f2,k =

{
0.03 50 ≤ k ≤ 150

0 otherwise
.

The dynamic evolution of residual signal ri can be seen in
Fig. 1, and the corresponding evolution functions

J(ri) = E


{

k∑
s=k−L

r⊤i,sri,s

} 1
2


for both the faulty case and the faults free case are shown in
Figs. 2 and 3.

According to the fault detection rule (15), the evaluation
function J(ri) remains below the threshold, indicating a

fault-free situation. In this sense, the figures reveal prompt
detection of random fault signals after 50 time steps, with
the selected thresholds determined as J̄1,th = 0.0522 and
J̄2,th = 0.5401, respectively. Also, when random faults oc-
cur during the time step interval [50, 150], the residuals rise
significantly. Finally, the faults cease to persist after 150
time steps, aligning with the expected results. In conclusion,
the simulation results demonstrate the successful detection
of randomly occurring faults, affirming the effectiveness of
the proposed method.
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Fig. 2: Evolution of J(r1) in Plant 1
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Fig. 3: Evolution of J(r2) in Plant 2

5 Conclusion

In this paper, we have focused our attention on the dis-
tributed fault detection problem for plantwide processes with
randomly occurring faults. A general model-based dis-
tributed plantwide fault detection scheme has been proposed
to deal processes with arbitrary network topologies. Both
the fault-sensitivity and robustness conditions have been de-
veloped for distributed plantwide fault detection. The dis-
tributed fault detectors are designed based on the vector dis-
sipativity condition, where the parameters of the estimator
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and residue generator are calculated offline via solving lin-
ear matrix inequalities.

Our future directions of this paper might involve conduct-
ing studies on distributed fault detection to determine the
minimal sensor nodes problem [23–25] for the plantwide
processes, leveraging Polynomial Chaos Expansions (PCE)
[26] to approximate the random fault variables in plantwide
systems, and fault detection problem based on multiple hy-
pothesis testing [27].
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Abstract: Pneumatic control valve plays a crucial role in the industrial control system. This paper proposes a hybrid neural 

network model for predicting the remaining useful life (RUL) of pneumatic control valve system. Firstly, highly related features 

are selected by the pearson correlation coefficient (PCC) to minimize the computational burden of the model. Then, 

convolutional neural networks (CNN) is employed to extract local features of sequence data, and Transformer is used to capture 

global representations. Finally, all the features are fed into the CNN-Transformer model. The dataset generated by development 

and application of methods for actuator diagnosis in industrial control systems (DAMADICS) platform is verified. The 

experimental result shows that the proposed hybrid model has high prediction accuracy and stability. 

Key Words: Pneumatic Control Valve, Remaining Useful Life, CNN-Transformer 

 

1 Introduction 

As a vital component in automation systems, the 
pneumatic control valve ensures industrial production 
safety. It has the advantages of stable performance and 
agile response [1]. In prolonged usage in harsh 
environments, pneumatic control valves may experience 
valve leakage, abnormal valve pressure differential and 
other failures [2], which may cause instability and 
performance deterioration of the valve, and even serious 
damage to the industrial system [3]. Therefore, the 
health management of the control valve is crucial to the 
safe and efficient operation of the industry [4]. Effective 
fault classification and accurate prediction of Remaining 
Useful Life (RUL) in actual production can minimize 
unnecessary maintenance tasks and lower maintenance 
expenses. 

At present, RUL prediction methods can be 
categorized into two types: mechanistic models and 
data-driven approaches [5]. The model-based method is 
to build a degradation model conform-ing to the 
operation law of the device according to the internal 
mechanism of the device, so as to predict the 
relationship between the input and output of the sensor 
data. [6] proposed an adaptive Wiener process degr-
adation model integrating the influence of random shock, 
and used the maximum expectation method to estimate 
various parameters of the prediction model. With the 
increasingly complex structure of modern machinery 
and equipment and the influence of working envir-
onment, it is difficult to establish an accurate model for 
RUL prediction of equipment. In contrast, the data-
driven approach, by analyzing various data monitored by 
sensors in the process of equipment degradation, obtains 
the potential degradation law of the equipment from the 
data, so as to predict the RUL of the equipment. The 

data-driven approach can be subdivided into the 
traditional machine learning methods and the deep 
learning methods. Based on traditional machine learning 
methods, for example, [7] employed a model based on 
hybrid particle swarm optimization of support vector 
machine parameters to estimate engine RUL, and [8] 
used support vector regression to fit RUL. However, 
difficulties in feature design and insufficient 
generalization are drawbacks associated with these 
traditional methods. With the swift advancement of 
hardware and software infrastructure, deep learning 
algorithms have been widely concerned in many fields 
because of their powerful ability to deal with complex 
nonlinear relations, and have a broader application 
prospect in RUL prediction. 

[9] employed an enhanced Temporal Convolutional 
Network (TCN) by incorporating a convolutional 
autoencoder in the preprocessing layer. This approach 
demonstrates better predictions of the RUL of nuclear 
plant electric. However, it exists a challenge in capturing 
long-term temporal dependencies. In [10], a long short-
term memory recurrent neural network (LSTM-RNN) is 
designed to construct a clearly capacity-oriented RUL 
predictor. This method reduces the gradient disap-
pearance of RNN. The disadvantage is that the network 
structure is complex and the training parameters are 
large. [11-13] used gate recurrent unit (GRU) as the 
backbone network of RUL prediction, which enables the 
model to maintain good accuracy even with short 
training time, but such networks can store less long-term 
dependence and memory ability. 

Note that, although the existing deep learning 
algorithms demonstrate good performance in RUL 
prediction, they still face different challenges that affect 
the accuracy of predictions. The TCN network in [9] 
ignored long-term dependencies in the time series, and 
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the LSTM-RNN network structure in [10] was complex, 
leading to a lengthy training time. Moreover, there are 
few researches on RUL prediction direction of 
pneumatic control valve at present. Therefore, based on 
previous researches, this paper proposes a RUL 
prediction approach of pneumatic control valve based on 
CNN-Transformer model, which overcomes the above 
problems. 

The primary contributions of this paper can be 

summarized as follows:  

1) Selecting reasonable sensor data to reduce the 

computation load of the model and using Savitzky- 

Golay filter to eliminate noise interference from the 

data. 

2) The proposed CNN-Transformer network in this 

paper can not only extract local features, but also 

capture long-term dependencies among sequential data 

to enhance the accuracy and computational efficiency of 

model prediction. 
The model proposed in this paper will be validated 

using the dataset generated from the DAMADICS 
platform, followed by comparison with other models. 
The obtained results demonstrate superior predictive 
performance, and highlight the efficacy of the approach 
proposed in this paper. The subsequent structure of this 
paper is as follows: Section 2 presents the configuration 
of the pneumatic regulating valve, Section 3 outlines the 
proposed RUL prediction approach, Section 4 presents 
the experimental and simulation findings, and lastly, 
Section 5 provides a comprehensive summary of the 
study and outlines potential future research directions.  

2 Pneumatic Control Valve System 

2.1 Model Description 

The pneumatic control valve primarily consists of 

three components: the pneumatic actuator, regulating 

valve, and associated accessories, illustrated in Figure 1 

below.  
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Fig. 1. Pneumatic control value basic structure 

The working principle of the pneumatic actuator is as 

follows: within the control chamber of the actuator, 

there is a piston-type pneumatic actuator. When the 

compressed air on the piston is pressurized, the piston 

moves upward, pushing the valve stem to move toward 

the valve core. The valve core automatically opens 

under the action of spring force. The valve's opening is 

determined by the command signal sent by the actuator. 

After amplification by the amplifier, the signal is 

transmitted through the electromagnetic valve or 

pneumatic control valve of the actuator to the control 

valve. When the input signal matches the preset value, 

the control valve closes; when the input signal is less 

than the predetermined value, the control valve opens. 

Accessories include: filter pressure regulator, 

positioner, position feedback switch lamp, etc. The 

primary function of these attachments is to eliminate 

factors that may be generated internally or externally, 

such as: air source changes, friction, etc.  

2.2 Pneumatic Control Valve Failure 

According to the structure of the control valve, 

DAMADICS platform divides all the fault types of the 

pneumatic control valve into abrupt fault and incipient 

fault. This classification encompasses all possible 

scenarios of faults in the valve and its related 

attachments. There is no warning before the abrupt fault 

occurs, and the size of the fault is independent of time, 

such as valve blockage, distortion of the push rod, and 

electrical converter fault and so on. Incipient faults are 

generally due to equipment wear, corrosion, aging, 

fatigue and others, such as valve plug or valve seat 

erosion fault, external leakage fault, etc., which is 

characterized by little change in the detection data 

before the fault occurs, so it will be found by the system 

only when the fault reaches a certain critical value. 

Table 1 illustrates various prevalent fault. 

Table 1: Fault Names and Types 

Fault code Fault Name Fault Type 

f3 
Valve plug or valve 

seat erosion 
Incipient 

f5 External leakage Incipient 

f6 Internal leakage Incipient 

f13 
Rod displacement 

sensor fault 
Incipient 

f14 

Electro-pneumatic 

transducer pressure 

sensor fault 

Abrupt 

f15 
Positioner feedback 

fault 
Abrupt 

f17 
Unexpected pressure 

change fault on valve 
Incipient 

 

3 Basic Theory of Model  

This Section mainly introduces the methods and 

model theories in this paper, including PCC analysis, 

the Savitzky-Golay filter, CNN network and 

Transformer network. Firstly, the PCC analysis is used 

to select highly related features. Next, the Savitzky-

Golay filter is utilized to smooth and fit the noise in the 

data curve. Then, the CNN is employed to extract the 

local features of the time series. Finally, the output data 

from the CNN serves as input to the Transformer model, 

which further processes the data to obtain the prediction 

results. The schematic diagram of this method is 

illustrated in Figure 2 below. The following sections 

will provide details on each specific module. 
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Fig. 2. The schematic of proposed approach 

3.1 Feature Selection 

Due to the diversity of performance variable selection 

for pneumatic control valves, not all variables are 

beneficial for model training. Some variables remain 

largely unchanged throughout the entire degradation 

process, which may have a negative impact on the 

model training process. Therefore, this article uses the 

PCC correlation coefficient formula to compute the 

correlation between these parameter variables and RUL. 

The PCC is calculated as follow: 
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where ��  represents the values of the x-variable in a 
sample, �  denotes the mean of the x-variable values, 
and ��  represents the values of the y-variable in a 
sample, and �  indicates the mean of the y-variable 
values. The correlation coefficient values ranges from -
1.0 to 1.0. Values close to one in absolute terms indicate 
a strong dependence between variables. In contrast, if 
the PCC value close to 0, it indicates that the 
dependency between the variables is weak. Through the 
above PCC analysis, we select six highly correlated 
features with RUL as input for the prediction model, as 
shown in Table 2. 

Table 2: Parameters of Pneumatic Control Valve 

Parameters Description 

CV External controller output 

P1 Value input pressure 

P2 Value output pressure 

X Rod displacement 

F Flow sensor measurement 

T Liquid temperature 

3.2 Savitzky-Golay Filtering 

The Savitzky-Golay filter is a signal processing 

filtering method used for smoothing and fitting noise in 

curves to extract trends and features in signal. The main 

idea of this filter is to use a polynomial to fit and 

approximate data points within a given window, 

resulting in smoothed data points. The fitting 

polynomial is typically of low order, such as linear or 

quadratic.  

The advantages of this filter include: 

1) The original signal trend is retained while 
effectively removing noise from the signal.  

2) Preserves the smoothness of the signal without 
introducing additional phase delays.  
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The above is the general formula for the one-

dimensional form of the Savitzky-Golay filter, where n 

is the size of the window, � is the independent variable 

(usually time or position), � is the data to be smoothed, 

��  represents the position within the window, and �� is 

the polynomial coefficient, obtained by fitting the least 

square method.  

3.3 Convolutional Neural Network 

CNN is a kind of feedforward neural network with 

deep structure and convolutional operation, which 

performs well in local feature extraction. The CNN 

primarily consists of three parts: the convolutional layer, 

the pooling layer and the fully connected layer. In this 

paper, the convolution layer is responsible for 

extracting local features, setting a sliding window of 

fixed length, and intercepting different time periods at 

different starting points according to this length as the 

convolution kernel, which contains the feature 

information during this period. The specific formula is 

shown in equation (3): 
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where ��
	 represents the feature graph obtained by the 
-

th convolution kernel of the �-th convolution layer, ���

(	)
 

represents the weight matrix connecting adjacent 
convolution layers, �	  is the biased value, and � is the 
activation function acting on the convolution layer. 

Then, the pooling layer will integrate the feature 
output of the convolutional layer, which mainly has the 
functions of suppressing noise, reducing information 
redundancy, preventing network overfitting, enhancing 
the model's fault tolerance rate, etc. After the data is 
processed by the pooling layer, local data features are 
obtained. Typical pooling functions comprise average 
pooling, maximum pooling, global average pooling, 
mixed pooling, random pooling, and others. Due to the 
fact that maximum pooling can preserve more texture 
information of the feature matrix, this paper adopts 
maximum pooling operation. 

3.4 Transformer Neural  

With the development of Multi-Head-Attention 

(MHA), the Transformer network is able to capture long 
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-term and short-term dependencies in data and obtain 

global temporal information. It’s based on encoder-

decoder structure, which is composed of input and 

output embedding layer, position coding module, multi-

head attention module and feedforward neural network 

module. The model structure is shown in the Figure 3. 
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Fig. 3. Detailed Transformer structure in RUL prediction 

model 

Among them, Positional Encoding (PE) gives the 

model the ability to identify the temporal relationship of 

the sequence, and PE is calculated using sine and cosine 

functions of different frequencies, as shown in 

equations (4) and (5) below: 
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where ��� represents the position of the element in the 
vector, � represents the dimension, and �����	 represents 
the model dimension. 

The encoder module is composed of MHA module 
and feedforward neural network module, MHA refers to 
use of multiple attention mechanisms to calculate 
attention separately, and then fuse the results together. 
Firstly, the position-encoded input data X is converted 
into a query matrix Q, a key matrix K, and a value 
matrix V, with the following formula (6) to (8), where 

��、��、�� are weight matrices. 

Q
Q XW=                                  (6) 

K
K XW=                                  (7) 

V
V XW=                                   (8) 

Then, the obtained weights are scaled using the 
����� � activation function, and the value vector ! is 
multiplied by the scaled weights, as in equation (9): 

T

k

QK
Attention softmax V

d
=
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Since using only one attention layer makes it difficult 
to learn the internal correlations of time-series data, a 
multi-head attention mechanism is employed. This 
allows the model to learn feature information from 
different positions, as shown in the following equations 
(10) to (11): 

( , , ) ( , )
i n

MultiH Q K V concat head head W= K    (10) 

( , , )
Q K V

i i i i
head Attention QW KW VW=         (11) 

where ℎ# ��  is the i-th attention head, the ��$� � 
function is used to concatenate multiple attention heads, 
n represents the number of attention heads, W is the 
multi-head attention weight matrix. 

4 Experimental Verification and Result 

Analysis 

4.1 Data Pre-processing 

DAMADICS platform is a standard platform for 
pneumatic control valve fault analysis developed based 
on real data from a sugar factory in Poland. All the data 
studied in this paper are generated on this platform. 
Among the data parameters generated by many sensors, 
six parameters, namely controller output signal CV, 
pressure P1 in front of the valve, pressure P2 in back of 
the valve, valve stem displacement X, fluid flow rate F 
and fluid temperature T, are selected as the data 
characteristics of the experimental research. 

For the fault data generated by the platform, first of 
all, the Savitzky-Golay filter is used to eliminate noise 
and other interference in the data. Then, to prevent low 
training speed or even failure to converge due to 
differences in the scales and units of different feature 
data, normalization is applied to the dataset. The specific 
equation is as follows: 

( ) min( )
'( )

max( ) min( )

x t x
x t

x x

−
=

−
                      (12) 

where, x(t) is the monitoring data of the device at time t, 
max(�)  and min (�)  are the maximum and minimum 

values of all the monitoring data of the device 

respectively, and �*(�) is the normalized data. 

4.2 Performance  Metrics 

In this paper, two commonly used indicators in the 
field of life prediction are used to verify the validity and 
accuracy of the model prediction results, namely, Root 
Mean Square Error (RMSE) and average Score (Score). 
RMSE can measure the difference between the 
predicted value and the true value, and reflect the 
divergence of the prediction error. The smaller the value 
of both, the better the prediction effect of the model. Its 
calculation equation is as follows. 
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where �+, is the predicted RUL of test sample � , �	  is the 
actual RUL of test sample � , and N is the number of 
samples tested. 
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        (14) 

As can be seen from equation (14), there are two 
different scoring functions for advance prediction and 
lag prediction. When the actual value is less than the 
predicted value, it belongs to lag prediction; when the 
actual value is greater than the predicted value, it 
belongs to advance prediction. In the actual industrial 
production, there is a tendency to advance prediction, so 
this scoring method will punish the delayed prediction, 
which is very in line with the actual demand. 

4.3 Hyperparameter Settings 

In model training, in order to make full use of the 

data in the training set, this paper adopts a sliding 

window with step length of 1 and length of 20 to 

segment the data in the training set, and then splicing 

the features, and then input them into the model for 

RUL prediction. The hyperparameters of the model in 

this paper are as follows. 

Table 3: Hyperparameters of the Model 

Parameter name 
Parameter 

setting 

Sampling window 20 

Model learning rate lr 0.001 

optimizer Adam 

Number of self-attention mechanism 

heads 
4 

Number of Encoder layers 4 

Number of Decoder layers 6 

Batch-size 30 

 

In this paper, the Adam optimization algorithm is 

employed to find suitable parameters to minimize the 

error. It combines the advantages of adaptive gradient 

algorithms and root mean square propagation 

algorithms. Its strengths lie in high computational 

efficiency and good handling capabilities for datasets 

with significant noise. 

4.4 Result and Analysis 

In this paper, two sets of control valve fault data of 
valve stem displacement sensor and valve pressure 
abnormal fault are selected to train the network to verify 
the effectiveness of the proposed method. In the process 
of model training, 80% of the data is taken as the 
training set, the Adma algorithm is used to optimize the 
model weight, and finally the remaining 20% of the 
sample data is tested. The forecast results are shown in 
the Figure 5 and Figure 6. 

Taking the experimental results under Unexpected 
pressure change fault on valve as an example. Figure 4 
illustrates the comparison of training durations for three 
different models. It can be observed that the training 
time of the CNN-Transformer model has increased 
compared to the CNN network due to its higher 
complexity. However, it has reduced training time 
significantly compared to the traditional Transformer 
network and the training efficiency has increased by 
26.25%. 

 

Fig. 4. Training Duration for Each Model 

 

Fig. 5. RUL prediction based on Rod displacement sensor 

fault 

 

Fig. 6. RUL prediction based on Unexpected pressure change 

fault on valve 

Figure 5 shows the RUL result of the Rod 
displacement sensor fasult, Figure 6 shows the RUL 
result of the Unexpected pressure change fault on valve, 
where the horizontal coordinate is the time period, the 
vertical coordinate is the RUL value, the blue line is the 
actual value of the residual life of the regulator, and the 
red line represents the predicted value of the residual life 
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of the regulator. The predicted value of the two 
prediction graphs fluctuated slightly between the real 
value and the predicted value. Although there is a 
significant deviation between the predicted results and 
the true RUL in the early stages of prediction, with the 
accumulation of running time, the predicted result of the 
model in this paper was basically consistent with the real 
RUL value, and the prediction accuracy was high. 

In order to further verify the superiority of CNN 
Transformer in predicting the RUL of pneumatic control 
valves, comparative experiments are conducted with 
some recent high-frequency research models. A CNN 
model and a Transformer model are constructed here, 
and the life prediction results are compared using the 
same experimental environment. The experimental 
results are shown in Table 4 and Table 5. 

Table 4: RMSE Comparison of Prediction Results 

Methods 

Rod displacement 

sensor fault 

Unexpected 

pressure change 

fault 

CNN 46.03 31.05 

Transformer 43.31 30.74 

CNN-Transformer 35.56 27.13 

Table 5: Score Comparison of Prediction Results 

Methods 
Rod displacement 

sensor fault 

Unexpected 

pressure change 

fault 

CNN 653.59 562.87 

Transformer 263.21 459.60 

CNN-Transformer 169.32 195.28 

 

Table 4 shows the RMSE obtained by the model and 
its comparison with other models, while Table 5 displays 
the Score achieved by the model and its comparison with 
other models. It can be observed that the CNN-
Transformer model in terms of RMSE reduces by an 
average of 17.6% compared to the CNN model and by 
an average of 14.8% compared to the Transformer 
model. The Score is 54.8% lower than the CNN model 
and 56.1% lower than the Transformer model. The 
proposed CNN-Transformer model demonstrates good 
performance on both evaluation metrics, which shows 
that the model has good stability and can achieve the 
balance between the overall performance and the safety 
performance. 

5 Conclusion 

In order to improve the accuracy of RUL prediction 
of pneumatic control valve, this paper combines CNN 
and Transformer to propose a new CNN-Transformer 
based RUL prediction model. Through experimental 
verification, the following conclusions are reached: 

1) In the data preprocessing section, PCC can 
minimize the computational burden of the model, and 
Savitzky-Golay can eliminate noise interference in the 
data. 

2) CNN can effectively extract local features, and 
then Transformer can extract global features. This 
method can ensure that the prediction model can 

excavate the complex mapping relationship between 
input features and pneumatic control valve.  

3) Through the data set generated by DAMADICS 
platform, it is proved that compared with other models, 
the average absolute error of the model proposed in this 
paper is reduced by 17.6% and 14.8%, and the average 
score is reduced by 54.8% and 56.1%, respectively. 

In the follow-up research, it should be noted that all 
the data in this paper come from the simulation model, 
so there will be a certain gap with the actual production 
data. The prediction model studied in this paper should 
be applied to other types of control valve data sets to 
enhance the robustness of the model. 
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Abstract: The problem of finite-frequency fault detection (FD) for a class of nonlinear systems with Lipschitz nonlinearities,
unknown faults, and bounded disturbances is explored. To start with, a finite-frequency FD filter based on an adaptive event-
triggered mechanism is put forward, and the augmented filter system is transformed into a linear parameter varying (LPV) system
by the reconstructed Lipschitz property. Then, two sufficient conditions for the LPV system to be asymptotically stable with a
full-frequency H∞ disturbance attenuation index bound and a finite-frequency H− fault-sensitive index bound are derived. Next,
the obtained sufficient conditions are sorted into numerically solvable linear matrix inequalities to obtain the desired FD filter
parameters. Finally, an illustrative example is carried out to demonstrate the advantages of the presented FD scheme.

Key Words: Fault detection, finite frequency, nonlinear Lipschitz systems

1 Introduction

For industrial automation and process control systems,
subsystem or physical component faults are typically in-
evitable [1]. The fault signals in the actual system may have
a significant impact on the system’s performance and even
cause the system to crash. Therefore, fault detection (FD)
techniques that aim to detect the occurrence of unknown
faults in dynamic systems as early as possible have drawn
substantial attention in the automation community [2]. To
achieve the purpose of FD, many advanced technical means
have been applied, such as observer methods, filter strate-
gies, and parity space vector schemes [3]. On this basis,
plenty of representative research results have been reported
in the field of FD in the past decades [4]-[5].

Note that the FD schemes in [4]-[5] are developed in the
full frequency domain, and the frequency domain character-
istics of the fault signals are ignored. As illustrated in [6],
fault signals in practical systems generally occur in the finite
frequency domain. Therefore, finite-frequency FD strate-
gies can significantly reduce the conservatism of the above
full-frequency FD approaches. Fortunately, the Generalized
Kalman-Yakubovich-Popov (GKYP) lemma provides an ef-
fective method for finite frequency analysis and design [7].
By establishing the equivalent relation between frequency
domain inequalities and linear matrix inequalities (LMIs) in
the finite frequency domain, the GKYP lemma is widely ex-
ploited in the analysis of finite frequency performance in-
dices, and also provides great convenience for the design of
finite frequency FD schemes [8]-[9]. Although the devel-
opment of finite-frequency FD techniques has come a long
way, it should be emphasized that FD strategies based on
GKYP lemma are only applicable to linear systems. Con-
sidering the nonlinear characteristics that generally exist in
engineering practical systems, the methods in [8]-[9] cannot
be applied directly. To this end, a multitude of scholars have
paid attention to the design of finite frequency FD schemes
for nonlinear systems [10]-[11].

This work was supported by the National Natural Science Foundation
of China (62373192). (Corresponding author: Chenxiao Cai.)

On the other hand, most FD studies on nonlinear system-
s employ traditional time-triggered mechanisms with fixed
sampling periods, which may lead to a waste of communi-
cation resources and increase maintenance costs. To do this,
the FD protocol based on event-triggered mechanism (ET-
M) is proposed for Lipschitz nonlinear systems to overcome
the shortcomings of time-triggered mechanisms [12]. For
the static ETM in [12], the trigger threshold parameter is a
predefined constant, so the trigger parameter is not flexible
in the face of fluctuations in the external environment. To
improve the flexibility of triggering threshold, adaptive ET-
S (AETS) based on adaptive technology is developed, and
the problem of finite-frequency FD for nonlinear networked
systems is further studied in [13]. Encouraged by the above
observations, this paper endeavors to construct the finite fre-
quency FD paradigm for nonlinear Lipschitz systems with
network-induced delays, AETS, and external disturbances.
The salient features of this study lie in the following two as-
pects.

1) An AETS is proposed to reduce the channel congestion
caused by the time-triggered schemes in [8]-[11], and
the triggering events can be adaptively adjusted accord-
ing to system dynamics.

2) An AETS-based finite frequency FD filter is construct-
ed for nonlinear Lipschitz systems to restrain the simul-
taneous effects of external disturbances, transmission
delays, and constrained bandwidth.

2 Problem Statement

2.1 System Description
Consider the following class of nonlinear system{

ẋ(t) = Ax(t) + Φ(x(t)) + Ed(t) + Ff(t),

y(t) = Cx(t),
(1)

where x(t) ∈ Rn denotes the system state, d(t) ∈ Rd repre-
sents the bounded external disturbance, f(t) ∈ Rf indicates
the bounded finite frequency fault, and y(t) ∈ Rl means
the measured output. Φ(x(t)) : Rn → Rn refers to the
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Lipschitz nonlinear term with respect to x(t). In addition,
A ∈ Rn×n, E ∈ Rn×d, F ∈ Rn×f , and C ∈ Rl×n are
known constant system matrices.

Define qh and tkh as the current sampling instant and the
latest triggered instant, respectively. Then, the next triggered
instant is

tk+1h , tkh+ min{qh|ψT(t)Mψ(t)

− σ(t)yT(tkh)My(tkh) ≥ 0, (2)

where ψ(t) = y(tkh+qh)−y(tkh) stands for the data error.
M ∈ Rl×l implies the positive definite symmetric weight
matrix to be designed, and y(tkh+qh) and y(tkh) represent
the current sampled output and the latest transmitted output,
respectively. σ(t) is the adaptive event-triggered threshold,
and its update law is

σ̇(t) =
1

σ(t)

[ 1

σ(t)
− σ0

]
ψT(t)Mψ(t), (3)

where σ0 > 0 is a given constant.
Similar to the reference [13], define tk+1h = tkh + qh,

and then the interval [tkh + ϑtk , tk+1h + ϑtk+1
) can be di-

vided into [tkh + ϑtk , tk+1h + ϑtk+1
) =

∪q−1
i=0 Ei, where

Ei = [tkh+ ih+ϑtk+i, tkh+(i+1)h+ϑtk+i+1). Further,
let δ(t) = t − tkh − ih, t ∈ Ei, one has 0 ≤ δm ≤ δ(t) <
h + δM = δ̄, where δm and δM indicate the minimum and
maximum values of the network delay, respectively.

To detect the fault signal in the system (1), the finite fre-
quency FD filter is established as{

˙̂x(t) = Âx̂(t) + B̂ŷ(t),

r(t) = Ĉx̂(t) + D̂ŷ(t),
(4)

where x̂(t) ∈ Rn means the filter state, ŷ(t) = y(t− δ(t))+
ψ(t) indicates the filter input, and r(t) ∈ R represents the
residual signal. Also, Â ∈ Rn×n, B̂ ∈ Rn×l, Ĉ ∈ R1×n,
and D̂ ∈ R1×l are unknown filter gains.

Define η(t) =
[
xT(t) xTf (t)

]T
. Then, the augmented

filter system can be derived as
η̇(t) = Āη(t) +Adη(t− δ(t)) + BΦ(x(t)) + Ed(t)

+ Ff(t) + Gψ(t),
r(t) = Cη(t) + Cdη(t− δ(t)) +Hψ(t),
y(t− δ(t)) = C̄η(t− δ(t)),

(5)

where

Ā =

[
A 0

0 Â

]
,Ad =

[
0 0

B̂C 0

]
,B =

[
I
0

]
,

F =

[
F
0

]
, E =

[
E
0

]
,G =

[
0

B̂

]
,H = D̂,

C =
[
0 Ĉ

]
, Cd =

[
D̂C 0

]
, C̄ =

[
C 0

]
.

Lemma 1: [14] Consider Lipschitz nonlinear term Φ(·) :
Rn → Rn, the following descriptions are equivalent:
(1) Φ(·) satisfy the Lipschitz condition respect to x(t), i.e.,

∀x, z ∈ Rn

||Φ(x)− Φ(z)|| ≤ rΦ||x− z||, (6)

where rΦ > 0 is a known Lipschitz constant.

(2) For any i, j = 1, · · · , n, there exist functions φij :
Rn × Rn → Rn and scalars rφij

, r̄φij , such that
∀x, z ∈ Rn

Φ(x)− Φ(z) =
n∑
i=1

n∑
j=1

φijHij(x− z), (7)

where φij = φij(x
zj−1 , xzj ) satisfying rφij

≤
φij ≤ r̄φij ,Hij = en(i)e

T
n (j), and es(i) =

[0, · · · , 0,
ith︷︸︸︷
1 , 0, · · · , 0]T ∈ Rs, s ≥ 1 is a vector of

the canonical basis of Rs.
Applying Lemma 1, system (5) can be reconstructed into

the following linear parameter varying (LPV) system
η̇(t) = A(Λ)η(t) +Adη(t− δ(t)) + Ed(t)

+ Fϱ(t) + Gψ(t),
r(t) = Cη(t) + Cdη(t− δ(t)) +Hψ(t),

(8)

where A(Λ) = Ā + BΛ and Λ =∑n
i=1

∑n
j=1 φij(x

0j−1 , x0j )Hij .
By Lemma 1, parameter Λ belongs to the bounded con-

vex set En, and define the vertex set of En as VEn = ג} ∈
Rn×n, ijג ∈ {rφij

, r̄φij}}. In this paper, Λ̌ is employed to
represent the vertex in VEn that corresponds to the bounded
convex set En.

2.2 Problem Formation
The finite frequency domain of the fault signal is de-

scribed in this subsection, and the design problems of this
paper are further derived.

Definition 1: Assume that the fault vector f(t) belongs to
the following low frequency domain

Ωω := {ω ∈ R|(ω + ωl)(ω − ωl) ≤ 0}, (9)

where ω is the frequency of the fault signal, and ωl > 0.
Based on Definition 1, the design problems of this paper

can be described as follows.
(1) Under the zero initial condition, the LPV system (8)

is asymptotically stable and has a full-frequency H∞
index bound γ, i.e.,∫ +∞

0

rT(t)r(t)dt ≤ γ2
∫ +∞

0

dT(t)d(t)dt. (10)

(2) Under the zero initial condition, the LPV system (8) has
a finite-frequency H− index bound β, i.e.,∫ +∞

0

rT(t)r(t)dt ≥ β2

∫ +∞

0

fT(t)f(t)dt, (11)

holds for all solutions of system (8) satisfying f(t) ∈
L2[0,∞), such that [13]∫ +∞

0

(−ωlη(t) + jη̇(t))(ωlη(t) + jη̇(t))∗dt ≤ 0.

(3) The evaluation function Jr(t) and the
detection threshold Jth are designed as

Jr(t) =
√

1
t

∫ t
0
rT(ν)r(ν)dν, Jth =

supϱ(t)=0,d(t)∈ℓ2[0,∞) Jr(t)[1]. Then, the fault can
then be detected using the following mechanism:
Jr(t) > Jth =⇒ Alarm.
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3 Design of Fault Detection Filter

3.1 Finite Frequency Performance Analysis
Lemma 2 [15]: Given a positive scalar γ, if there are pos-

itive definite symmetric matrices P1,R1,Z1,M, such that

IT
1 Ψ1I1 + ST

1 Θ1S1 +NT
1 Ξ1N1 + Y1 < 0, (12)

then the system (8) is asymptotically stable and has an H∞
index bound γ in the full frequency domain, where

I1 =

[
A(Λ) Ad 0 E G
I 0 0 0 0

]
,Ψ1 =

[
δ̄2Z1 P1

P1 0

]
,

S1 =

[
C Cd 0 0 H
0 0 0 I 0

]
,Θ1 =

[
I 0
0 −γ2I

]
,

N1 =

[
0 C̄ 0 0 I
0 0 0 0 I

]
,Ξ1 =

[
M 0
0 −σ0M

]
,

Y1 =


R1 −Z1 Z1 0 0 0

Z1 −2Z1 Z1 0 0
0 Z1 −R1 −Z1 0 0
0 0 0 0 0
0 0 0 0 0

 .
Lemma 3 [15]: Given a positive scalar β, if there exist

symmetric matrices P2,R2,Z2 > 0,Q > 0,M > 0, such
that

IT
2 Ψ2I2 + ST

2 Θ2S2 +NT
2 Ξ2N2 + Y2 < 0, (13)

then the system (8) has an H− performance index bound β
in the finite frequency domain (9), where

I2 =

[
A(Λ) Ad 0 Fx G
I 0 0 0 0

]
,

Ψ2 =

[
−Q+ δ̄2Z2 P2

P2 ω2
lQ

]
,

S2 =

[
C Cd 0 0 H
0 0 0 I 0

]
,Θ2 =

[
−I 0
0 β2I

]
,

N2 =

[
0 C̄ 0 0 I
0 0 0 0 I

]
,Ξ2 = Ξ1,

Y2 =


R2 −Z2 Z2 0 0 0

Z2 −2Z2 Z2 0 0
0 Z2 −R2 −Z2 0 0
0 0 0 0 0
0 0 0 0 0

 .
Lemma 4. (Finsler’s Lemma) [16]: Let x ∈ Rn, L ∈

Rn×n, and K ∈ Rn×m. The following descriptions are
equivalent: (i) K⊥L(K⊥)T < 0; (ii) ∃χ ∈ Rm×n :
L + Kχ + χTKT < 0; where K⊥ is any matrix such that
K⊥K = 0.

3.2 Finite Frequency Performance Design
In this subsection, according to Lemma 4, the matrix in-

equalities in Lemmas 2 and 3 are converted to LMIs in The-
orems 1 and 2, respectively.

Theorem 1: Given a positive scalar γ and matri-
ces N1, N2, if there exist symmetric matrices P1 =[
P11 P12

⋆ P13

]
> 0,R1 =

[
R11 R12

⋆ R13

]
> 0,Z1 =

[
Z11 Z12

⋆ Z13

]
> 0,M > 0 and matrices T1 =[

T1 T2
T3 T3

]
,L,M, Ĉ, D̂, such that

W1 =

 W11 W12 W13

⋆ W14 W15

⋆ ⋆ W16

 < 0, (14)

then the system (8) is asymptotically stable and has an H∞
index bound (10) in the full frequency domain, where

W11 =


−1 0 0 0
⋆ W1

11 W2
11 P11 + TT

1 (A+ Λ̌)
⋆ ⋆ W3

11 PT
12 + TT

2 (A+ Λ̌)
⋆ ⋆ ⋆ R11 − Z11

 ,
W1

11 = δ̄2Z11 − [T1]s,W2
11 = δ̄2Z12 − T2 − TT

3 ,

W3
11 = δ̄2Z13 − [T3]s,

W12 =


Ĉ D̂C 0 0

P12 + L MC 0 0
P13 + L MC 0 0
R12 − Z12 Z11 Z12 0

 ,

W13 =


0 0 0 D̂
0 TT

1 E − T1N1 −T2N2 M
0 TT

2 E − T3N1 −T3N2 M
0 (A+ Λ̌)TT1N1 (A+ Λ̌)TT2N2 0

 ,

W14 =


R13 − Z13 ZT

12 Z13 0
⋆ W1

14 −2Z12 Z11

⋆ ⋆ −2Z13 ZT
12

⋆ ⋆ ⋆ −R11 − Z11

 ,
W1

14 = − 2Z11 + CTMC,

W15 =


0 LTN1 LTN2 0
Z12 CTMTN1 W1

15 CTM
Z13 0 0 0

−R12 − Z12 0 0 0

 ,
W1

15 = CTMTN2,

W16 =


−R13 − Z13 0 0 0

⋆ W1
16 W2

16 NT
1 M

⋆ ⋆ −γ2Id NT
2 M

⋆ ⋆ ⋆ (1− σ0)M

 ,
W1

16 = − γ2Id + [ETT1N1]s,W2
16 = ETT2N2.

Proof. Based on Lemma 2, inequality (12) can be rewrit-
ten as [

B1

I

]T
C1

[
B1

I

]
< 0, (15)

where

B1 =
[
A(Λ) Ad 0 E G

]
,

C1 =


δ̄2Z1 P1 0 0 0 0
⋆ C1

1 C2
1 0 0 CTH

⋆ ⋆ C3
1 Z1 0 C4

1

⋆ ⋆ ⋆ C5
1 0 0

⋆ ⋆ ⋆ ⋆ −γ2I 0
⋆ ⋆ ⋆ ⋆ ⋆ C6

1

 ,
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and C1
1 = CTC + R1 − Z1,C

2
1 = CTCd + Z1,C

3
1 =

−2Z1 + CT
d Cd + C̄TMC̄,C4

1 = CT
d H + C̄TM,C5

1 =
−R1 −Z1,C

6
1 = HTH+ (1− σ0)M.

Evidently, [
−I
BT

1

]⊥
=
[
BT

1 I
]
.

Using Lemma 4, if the matrix X1 such that

C1 +

[
−I
BT

1

]
X1 + XT

1

[
−I
BT

1

]T
< 0, (16)

then inequality (15) is satisfied.
Selecting X1 =

[
T1 0 0 0 T1J1 0

]
, where

J1 =

[
N1 0
0 N2

]
, then inequality (16) is equivalent to

D1 =


D1

1 D2
1 T T

1 Ad 0 D3
1 T T

1 G
⋆ D4

1 D5
1 0 D6

1 CTH
⋆ ⋆ D7

1 Z1 D8
1 D9

1

⋆ ⋆ ⋆ D10
1 0 0

⋆ ⋆ ⋆ ⋆ D11
1 D12

1

⋆ ⋆ ⋆ ⋆ ⋆ D13
1

 < 0.

where D1
1 = δ̄2Z1 − [T1]s,D2

1 = P1 + T T
1 A,D3

1 =
T T
1 E − T1J1,D

4
1 = CTC + R1 − Z1,D

5
1 = CTCd +

Z1,D
6
1 = ATT1J1,D

7
1 = −2Z1 + CT

d Cd + C̄TMC̄,D8
1 =

AT
d T1J1,D

9
1 = CT

d H + C̄TM,D10
1 = −R1 − Z1,D

11
1 =

−γ2I + [ETT1J1]s,D
12
1 = J T

1 T T
1 G,D13

1 = HTH + (1 −
σ0)M.

By Schur complement, one has

F1 =



−I 0 C Cd 0 Dy H
⋆ F1

1 F2
1 T T

1 Ad 0 F3
1 T T

1 G
⋆ ⋆ F4

1 Z1 0 F5
1 0

⋆ ⋆ ⋆ F6
1 Z1 F7

1 C̄TM
⋆ ⋆ ⋆ ⋆ F8

1 0 0
⋆ ⋆ ⋆ ⋆ ⋆ F9

1 F10
1

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ F11
1


< 0,

(17)

where F1
1 = δ̄2Z1 − [T1]s,F2

1 = P1 + T T
1 A,F3

1 =
T T
1 E − T1J1,F

4
1 = R1 − Z1,F

5
1 = ATT1J1,F

6
1 =

−2Z1 + C̄TMC̄,F7
1 = AT

d T1J1,F
8
1 = −R1 − Z1,F

9
1 =

−γ2I + [ETT1J1]s,F
10
1 = J T

1 T T
1 G,F11

1 = (1− σ0)M.
Define TT

3 Â = L, TT
3 B̂ = M, and according to the con-

vexity principle [17], it can be seen that if (17) holds for all
Λ̌ ∈ VEn , then inequality (14) can be obtained.

Theorem 2: Given scalars β > 0,M1 and ma-
trices M2, N3, N4, if there exist symmetric matrices

P2 =

[
P21 P22

⋆ P23

]
,R2 =

[
R21 R22

⋆ R23

]
,Q =[

Q1 Q2

⋆ Q3

]
> 0,Z2 =

[
Z21 Z22

⋆ Z23

]
> 0,M > 0 and

matrices T2 =

[
T4 T5
T3 T3

]
,L,M, Ĉ, D̂, such that

W2 =

 W21 W22 W23

⋆ W24 W25

⋆ ⋆ W26

 < 0, (18)

then system (8) has an H− index bound (11) in the finite
frequency domain (9), where,

W21 =


W1

21 W2
21 P21 + TT

4 (A+ Λ̌) W3
21

⋆ W4
21 PT

22 + TT
5 (A+ Λ̌) W5

21

⋆ ⋆ W6
21 W7

21

⋆ ⋆ ⋆ W8
21

 ,
W1

21 = δ̄2Z21 −Q1 − [T4]s,W3
21 = P22 + L,

W2
21 = δ̄2Z22 −Q2 − T5 − TT

3 ,W5
21 = P23 + L,

W4
21 = δ̄2Z23 −Q3 − [T3]s,W6

21 = R21 − Z21 + ω2
lQ1,

W7
21 = R22 − Z22 + ω2

lQ2,W8
21 = R23 − Z23 + ω2

lQ3,

W22 =


0 MC 0 0
0 MC 0 0
0 Z21 Z22 0

ĈTM1 ZT
22 Z23 0

 ,

W23 =


0 TT

4 F − T4N3 −T5N4 M
0 TT

5 F − T3N3 −T3N4 M
0 (A+ Λ̌)TT4N3 (A+ Λ̌)TT5N4 0
0 LTN3 W1

23 0

 ,
W1

23 = LTN4 + ĈTM2,

W24 =


W1

24 MT
1 D̂C 0 0

⋆ W2
24 −2Z22 Z21

⋆ ⋆ −2Z23 ZT
22

⋆ ⋆ ⋆ −R21 − Z21

 ,
W1

24 = − 1− 2M1,W2
24 = −2Z21 + CTMC,

W25 =


0 0 0 MT

1 D̂
Z22 CTMTN3 W1

25 CTM
Z23 0 0 0

−R22 − Z22 0 0 0

 ,
W1

25 = CTMTN4 + CTD̂TM2,

W26 =


−R23 − Z23 0 0 0

⋆ W1
26 W2

26 NT
3 M

⋆ ⋆ β2If NT
4 M

⋆ ⋆ ⋆ (1− σ0)M

 ,
W1

26 = β2If + [FTT4N3]s,W2
26 = FTT5N4.

Proof. By Lemma 2, it can be deduced that[
B2

I

]T
C2

[
B2

I

]
< 0, (19)

where

B2 =
[
A(Λ) Ad 0 F G

]
,

C2 =


C1
2 P2 0 0 0 0
⋆ C2

2 C3
2 0 −CTFy −CTH

⋆ ⋆ C4
2 Z2 0 C5

2

⋆ ⋆ ⋆ C6
2 0 0

⋆ ⋆ ⋆ ⋆ C7
2 0

⋆ ⋆ ⋆ ⋆ ⋆ C8
2

 ,

and C1
2 = −Q + δ̄2Z2,C

2
2 = −CTC + R2 − Z2 −

ω1ω2τQ,C3
2 = −CTCd + Z2,C

4
2 = −2Z2 − CT

d Cd +
C̄TMC̄,C5

2 = −CT
d H + C̄TM,C6

2 = −R2 − Z2,C
7
2 =

β2I,C8
2 = −HTH+ (1− σ0)M.
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Obviously, [
−I
BT

2

]⊥
=
[
BT

2 I
]
.

By Lemma 4, if there exist matrix X2 such that

C2 +

[
−I
BT

2

]
X2 + XT

2

[
−I
BT

2

]T
< 0, (20)

then inequality (19) hold.
Letting X2 =

[
T2 0 0 0 T2J2 0

]
, where J2 =[

N3 0
0 N4

]
. Then, (20) can be rewritten as

D2 =


D1

2 D2
2 T T

2 Ad 0 D3
2 T T

2 G
⋆ D4

2 D5
2 0 D6

2 −CTH
⋆ ⋆ D7

2 Z2 D8
2 D9

2

⋆ ⋆ ⋆ D10
2 0 0

⋆ ⋆ ⋆ ⋆ D11
2 D12

2

⋆ ⋆ ⋆ ⋆ ⋆ D13
2

 < 0,

(21)

where D1
2 = −Q + δ̄2Z2 − [T2]s,D2

2 = P2 +
T T
2 A,D3

2 = T T
2 Fx − T2J2,D

4
2 = −CTC + R2 −

Z2 + ω2
lQ,D5

2 = −CTCd + Z2,D
6
2 = ATT2J2,D

7
2 =

−2Z2 − CT
d Cd + C̄TMC̄,D8

2 = AT
d T2J2,D

9
2 = −CT

d H +
C̄TM,D10

2 = −R2−Z2,D
11
2 = β2I+[FTT2J2]s,D

12
2 =

J T
2 T T

2 G,D13
2 = −HTH+ (1− σ0)M.

Actually, (21) is equivalent to

XTY1X < 0, (22)

where

X =



I 0 0 0 0 0
0 I 0 0 0 0
0 C Cd 0 Fy H
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


,

Y1 =



Y1
2 Y2

1 0 T T
2 Ad 0 Y3

1 T T
2 G

⋆ Y4
1 0 Z2 0 Y5

1 0
⋆ ⋆ −I 0 0 0 0
⋆ ⋆ ⋆ Y6

1 Z2 Y7
1 C̄TM

⋆ ⋆ ⋆ ⋆ Y8
1 0 0

⋆ ⋆ ⋆ ⋆ ⋆ Y9
1 Y10

1

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Y11
1


,

and D1
2 = −Q + δ̄2Z2 − [T2]s,Y2

1 = P2 + T T
2 A,Y3

1 =
T T
2 F−T2J2,Y

4
1 = R2−Z2+ω

2
lQ,Y5

1 = ATT2J2,Y
6
1 =

−2Z2 + C̄TMC̄,Y7
1 = AT

d T2J2,Y
8
1 = −R2 − Z2,Y

9
1 =

β2I + [FTT2J2]s,Y
10
1 = J T

2 T T
2 G,Y11

1 = (1− σ0)M.
On the other hand,

R⊥ =



0
CT

−I
CT
d

0
0
HT



⊥

=


I 0 0 0 0 0 0
0 I CT 0 0 0 0
0 0 CT

d I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 HT 0 0 0 I

 .

According to Lemma 4, if there is a matrix W such that

Y1 +RW +WTRT < 0, (23)

then inequality (22) is satisfied.
Choose the form of matrix W as W =[
0 0 M1 0 0 W̄2 0

]
,where W̄2 =

[
0 M2

]
,

then (23) becomes

F2 =



F1
2 F2

2 0 T T
2 Ad 0 F3

2 T T
2 G

⋆ F4
2 CTM1 Z2 0 F5

2 0
⋆ ⋆ F6

2 MT
1 Cd 0 −W̄2 MT

1 H
⋆ ⋆ ⋆ F7

2 Z2 F8
2 C̄TM

⋆ ⋆ ⋆ ⋆ F9
2 0 0

⋆ ⋆ ⋆ ⋆ ⋆ F10
2 F11

2

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ F12
2


< 0, (24)

where F1
2 = −Q + δ̄2Z2 − [T2]s,F2

2 = P2 + T T
2 A,F3

2 =
T T
2 F − T2J2,F

4
2 = R2 − Z2 + ω2

lQ,F5
2 = ATT2J2 +

CTW̄2,F
6
2 = −I − [M1]s,F

7
2 = −2Z2 + C̄TMC̄,F8

2 =
AT
d T2J2 + CT

d W̄2,F
9
2 = −R2 − Z2,F

10
2 = β2I +

[FTT2J2]s,F
11
2 = J T

2 T T
2 G + W̄T

2 H,F12
2 = (1− σ0)M.

According to the convexity principle [17], it is not difficult
to find that if (24) holds for all Λ̌ ∈ VEn , then inequality (18)
can be obtained.

Based on Theorems 1-2, the FD filter gains can be ob-
tained by solving the following optimization problem

max β
s.t. (14), (18). (25)

Then, the desired FD filter gains Â and B̂ can be calculat-
ed by Â = T−T

3 L, B̂ = T−T
3 M.

4 Simulation Example

Considering a nonlinear system as follows

A =

[
−8 3
4 −6

]
, E =

[
−0.05
0.2

]
, F =

[
0.6
−0.2

]
,

C =
[
1 0

]
,Φ(x(t)) =

[
0.3sin(x2(t))
0.1cos(x1(t))

]
.

By Lemma 1, one gets

VEn =

{[
0 ±0.1

±0.3 0

]}
.

Select unknown disturbance as d(t) = −0.05sin(3t). In
addition, select the low-frequency fault vector that satisfies
ωl = 0.1 as

f(t) =

{
0, if t < 10s,
0.25 + 0.1cos[0.03π(t− 10)], otherwise.

The remaining parameters are selected as h = 0.1s, σ0 =
300, σ(0) = 0.15, δ̄ = 0.3,M1 = −0.2,M2 =[
−0.1 −0.2

]
, γ = 0.5. Then, the optimal H− perfor-

mance index is computed by β = 1.1282, and the weight
matrix is M = 0.3447, and the filter gains are

Â =

[
−0.4866 0.6038
1.3769 −1.2295

]
, B̂ =

[
0.0134
0.0057

]
,

Ĉ =
[
0.0057 0.0085

]
, D̂ = −0.4184.
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Fig. 1: Response curves of the residual signal (a) and the
residual evaluation function (b).
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Fig. 2: Response curves of the execution interval (a) and the
dynamic threshold parameter (b).

Figures 1-2 show the simulation results under the estab-
lished FD scheme. As shown in Figures 1 (a)-(b), after the
fault occurs, the amplitude of residual signal r(t) of the finite
frequency FD scheme (4) increases rapidly, and the residu-
al evaluation function Jr(t) quickly exceeds the detection
threshold Jth and emits an alarm. In addition, Figure 2 (a)
shows the response curve of the execution interval of the
developed AETM. As shown in Figure 2 (a), the AETM
scheme was triggered only 157 times in the whole simula-
tion process. Figure 1 (b) also shows the response curve of
the dynamic threshold σ(t). From Figure 1 (b), it can be
seen that the dynamic threshold σ(t) changes in real-time
according to the adaptive updating law (3), and eventually
converges to a constant value. The above simulation result-
s show that the strategy proposed in this paper can detect
the faults in the nonlinear Lipschitz system in time, and the
designed data transmission mechanism can save network re-
sources effectively.

5 Conclusions

The problem of finite-frequency FD based on the AET-
M scheme is discussed for nonlinear Lipschitz systems with
network transmission delays and external disturbances. The
augmented filter system is linearized to an LPV system by
introducing the reformulated Lipschitz property. Then, suf-
ficient conditions are presented to guarantee the LPV sys-
tem is asymptotically stable and satisfies the full-frequency
H∞ performance bound and the finite-frequencyH− perfor-
mance bound, and these conditions are further converted to
LMIs to obtain the desired filter gains. Finally, a demonstra-
tive example has been carried out to validate the availability
and superiority of the proposed algorithm.
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Abstract: Intelligent condition monitoring and fault detection can reduce downtime and improve the reliability of wind tur-
bines. However, the variable external environment has led to varying operational conditions of wind turbines, which presents
challenges to precise modeling and accurate fault detection. This paper proposes a fault detection method based on operational
state recognition for the gearbox subsystem. First, a dynamic time warping-based indicator is designed and employed for un-
supervised clustering for different operational states. Then, a classification model and a regression model are sequentially used
for operational state recognition and normal behavior modeling, respectively. Subsequently, during online detection, based on
the probabilities of each real-time sample belonging to different operating status categories, multiple judgment processes are
executed and summarized as the final detection result. Finally, experiments using field data from real wind farms are conducted
to verify the effectiveness and superiority of the proposed method.

Key Words: Fault detection, operational state recognition, dynamic time warping, normal behavior modeling.

1 Introduction

In order to promote the construction of ecological civi-
lization and the transformation of energy structure, the de-
velopment of renewable energy has received increasing at-
tention. Wind energy, as a typical and highly industrialized
renewable energy source, is currently experiencing a period
of significant development worldwide [13]. According to
the Global Wind Energy Council (GWEC) [2], the cumula-
tive installed capacity of global wind power had reached 906
GW by the end of 2022.

However, with the surge in wind power installations in
various countries, design flaws and inadequate operation and
maintenance (O&M) practices are being increasingly ex-
posed, leading to frequent component faults that result in sig-
nificant economic losses and safety hazards. Effective O&M
practices have become essential for ensuring the safety and
reliability of wind turbines (WTs) [6, 10].

WTs are complex structures including multiple compo-
nents, among which the gearbox is the key subsystem con-
necting the blade and the generator. The failure of the gear-
box will directly affect the operational status of various key
components in the WTs. Besides, the downtime and eco-
nomic losses caused by gearbox failures are usually at the
forefront of various components [4]. Therefore, the imple-
mentation of condition monitoring and fault detection for the
gearbox is of great significance for improving operational re-
liability and reducing O&M costs [8, 15].

The existing literature on gearbox fault detection mainly
consists of model-based and data-driven methods. The for-
mer aims to construct physical models of the main compo-
nents in the gearbox to describe the fault evolution process.

Beden et al. [1] approach the issue from the perspective of
stress analysis and use the finite element analysis method
to systematically analyze the bending stress of helical gears
in the gearbox and obtain the tooth surface damage status
of the gears. In [17], a mathematical relationship derivation
model is established based on the deterioration of lubricating
oil and the degree of particle pollution to analyze the status
of gearbox lubricating oil and obtain the representation of
the operating status of the gearbox. Interval observers are
employed in [9] to consider the parametric uncertainty and
noise problems. The fault can then be identified if the mea-
surements fall inside the interval obtained from the math-
ematical model. However, due to characteristics such as
structural complexity, highly nonlinear parametric correla-
tions, and uncertain disturbances, the mathematical models
find it hard to precisely describe the real systems, which then
becomes a hindrance in the application of practical scenarios
[7].

By contrast, the data-driven methods can depict the op-
erational states of WTs based on measured sensor data and
do not rely on precise mathematical models, and therefore
become mainstream in literature. Besides, the supervisory
control and data acquisition (SCADA) systems have been
deployed in modern WTs and can provide valid data founda-
tions. In [11], the support vector machine is used for fault di-
agnosis and the sparrow search algorithm is used to optimize
the penalty factor and kernel function parameter selection.
In [3], an improved twin support vector machine is used for
normal behavior modeling for fast computation. With the
advancement of deep learning, more and more neural net-
work based methods are utilized in fault diagnosis. Wang
et al. [12] use deep neural networks to model the normal
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operational states of the lubricating oil pressure and predict
the changing trend based on relevant features. The authors
in [14] utilize a dual-stage attention-based recurrent neu-
ral network, incorporating a specially designed input atten-
tion mechanism based on long short-term memory to capture
time-varying correlations among variables in wind turbines
for improved variable estimation. Li et al. [5] introduce the
unsupervised spatial-temporal aware graph encoder-decoder
(STAGED) model for industrial fault diagnosis, which effec-
tively captures the complicated interactions between mea-
surements and temporal evolutions to accurately locate fault
roots

However, there are also some challenges that remain for
further studies. The complexity and variability of wind con-
ditions lead to variable operating conditions of WTs. In par-
ticular, the gearbox is responsible for increasing the speed of
the rotor and transmitting it to the generator for power gen-
eration, and therefore needs to withstand both the load on
the rotor side and the load caused by the rotation of the gear
components. The complexity of the operating states in the
gearbox is particularly evident. The modeling needs to en-
compass different operating states. Furthermore, since dif-
ferent wind conditions have different proportions in histori-
cal data, how to balance different wind conditions to avoid
uneven training still needs to be further studied.

Motivated by the above discussions, this paper proposes
a fault detection method considering variable operational
states for the gearbox subsystem. First, the operational states
are divided in an unsupervised manner. Some parameters
which can represent the states of WTs are selected and dif-
ferent states can be divided by comparing with the set base-
lines. Then, a classification model is trained to generate the
probabilities of various operating states to which a real-time
sample belongs. To overcome the sample imbalance prob-
lem, a sampling weighting allocation strategy is designed
to guarantee the classification performance. The expected
normal behaviors are trained based on each operational state
clustering and jointly determine the detection results.

The main contributions of this paper are summarized as
follows:

(1) The modeling of the gearbox takes different opera-
tional states into consideration. Through separate monitor-
ing and weighted summary of various states, the modeling
performance can be effectively improved.

(2) A sampling weighting allocation strategy is designed
to address the sample imbalance problem of different op-
erational state clusters, which can guarantee classification
performance and improve the identification performance of
states during online detection.

(3) Field SCADA data are collected to evaluate the pro-
posed method. Case studies and comparison experiments
are conducted to verify the effectiveness and superiority.

The rest of this paper is organized as follows. Section 2
presents the details of the proposed fault detection method.
Section 3 describes the experimental results. Conclusions
are presented in Section 4.
2 fault detection method

To achieve precise condition monitoring and fault detec-
tion for the gearbox subsystem, a fault detection method
that can consider various operational states is designed. The

framework, illustrated in Fig. 1, consists of the operational
states classification step, model training step, and online de-
tection step. The details are presented as follows.

Fig. 1: The framework of fault detection method

2.1 Operational States Classification
The first step aims to evaluate and divide different clusters

representing distinct operational states. The wind speed v,
as the input of WTs, determines the possible states. Mean-
while, the generator speed g and the output active power P
characterize the current working condition. Therefore, these
three variables are selected as the operational state parame-
ters, denoted by Xo. A data normalization step is first con-
ducted to avoid issues of different dimensions:

Ẋo =
Xo − X̄o

σ
(1)

where X̄o is the mean vector and σ is the standard deviation
vector.

The selection of parameters such as wind speed, genera-
tor speed, and output active power as inputs for the Wind
Turbines (WTs) is crucial for accurately representing the op-
erational states of the turbines. These parameters are chosen
based on their direct impact on the turbine’s performance
and their sensitivity to operational anomalies. Wind speed
directly affects the turbine’s power output and operational ef-
ficiency, while generator speed and output active power are
key indicators of the turbine’s electrical performance. To-
gether, these parameters provide a comprehensive view of
the turbine’s operational state, enabling effective monitoring
and fault detection.

The value of W , the length of the sliding window, is deter-
mined based on a trade-off between temporal resolution and
computational efficiency. A larger window captures more
temporal information but increases computational complex-
ity, while a smaller window may miss important trends. In
our experiments, W is empirically set to capture approxi-
mately 10 minutes of operation, which is found to be effec-
tive for identifying stable operational segments and ensuring
manageable computational load.

To generate the correlation between different samples,
a data segment with stable power generation under steady
wind conditions is selected as the baseline. The sliding win-
dow technique is employed to construct the baseline sample
Ẋs as follows:

Ẋs = [v1, ..., vW ; g1, ..., gW ;P1, ..., PW ] (2)

where W is the length of the sliding window. Each sample is
compared with the baseline Ẋs by calculating the distance.

It is worth noting that the correlation mainly evaluates
fluctuations without paying attention to phase differences.
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For example, in Fig. 2, two wind speed samples should be
close and belong to the same cluster. Obviously, reasonable
results cannot be obtained based on Euclidean distance. To
this end, the dynamic time warping (DTW) [16] is intro-
duced and the distance between a sample and the baseline
is calculated as:

D=argmin
W

√√√√ K∑
k=1,wk=(i,j)

(Ẋo[i]− Ẋs[j])
2

(3)

where W is the warping path, K is the length of the warping
path. Each variable performs the calculation separately and
obtains the corresponding DTW distance. For i-th sample,
the final distance is expressed by:

Di= [Dvi ;Dgi ;DPi
] (4)

where Dvi , Dgi , DPi
are the DTW distances by wind speed,

generator speed, and output active power for i-th sample re-
spectively.

Fig. 2: Examples of wind samples

The samples under different operational states exhibit dis-
tinct results at these DTW distances. Therefore, a common
clustering method, K-means is used to achieve unsupervised
partition of different states.

2.2 Model Training
The experimental data are divided into a training set and

a testing set to evaluate the performance of the proposed
method. The division is based on a temporal split, with the
first 70% of the data chronologically used for training and
the remaining 30%.

2.2.1 Classification Model

After the previous clustering method, each divided clus-
ter can represent a specific operational state. Subsequently,
a classification model is trained to calculate the probability
of a sample falling into each state. The classification model
uses additional operational measurements, such as temper-
ature, rotor speed, and pitch angle, as input. In practice,
the ensemble learning method, eXtreme Gradient Boosting
(XGBoost), is employed as the classification model. XG-
Boost utilizes additive models by constructing multiple base
learners to learn the deviation between the results of the pre-
vious base learners and the actual values. Through the learn-
ing of multiple learners, it can continuously reduce the clas-

sification difference and ensure training efficiency. How-
ever, the imbalance in samples between clusters negatively
impacts the classification performance. Therefore, a sam-
pling weight allocation strategy is initially designed. The
sampling weight αi of samples in the i-th cluster is derived
by:

αi =

∑no

j=1 Nj

Ni
(5)

, where no is the number of divided clusters, Ni is the num-
ber of samples in i-th cluster.

Through the sampling weight allocating strategy, the clas-
sification model can learn each category in a balanced man-
ner and guarantee the performance. Then, based on each
cluster, a regression model is trained to learn the expected
normal state of this cluster.

2.2.2 State Recognition Regression

The operation of the gearbox relies on the lubrication oil
subsystem and cooling subsystem for cooling. Therefore,
the gearbox bearing temperature can represent the states of
the gearbox and potential faults usually manifest as abnor-
mal temperature increases. The target variable for the model
is the bearing temperature, which is denoted as y. Other rel-
evant variables, denoted as X, are chosen as the input for
the model based on prior knowledge, similar to the input for
the classification model. The Gated Recurrent Unit (GRU)
is introduced as the regression model. GRU has a relatively
simple structure and can capture dependencies on long se-
quences. At timeslot t, GRU can generate a hidden state ht

and the update is decided by two gates: update gate zt and
reset gate rt, which are calculated as:

zt = σ (WzX+Uzht−1 + bz)
rt = σ (WrX+Urht−1 + br)

h̃t = tanh(WhX+Uh(rt ⊙ ht−1) + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

(6)

, where Wz,Wr,Wh ∈ Rm×n, Uz,Ur,Uh ∈ Rm×m,
and bz,br,bh ∈ Rm are parameters to learn. m is the size
of hidden state, n is the number of relevant variables, σ is the
logistic sigmoid function and ⊙ represents Hadamard prod-
uct.

A total of no GRU models are trained independently cor-
responding no divided operational states. For each model,
the residuals between the actual measured values and pre-
diction values are calculated. Then, a threshold should be
set to characterize the residual range during normal opera-
tion. The PauTa criterion is adopted and the threshold Ui of
the i-th model is calculated by:

Ui = µi + 3σi (7)

, where µi and σi are the mean value and standard deviation
of the residual sequence from the i-th model.

2.3 Online Detection
During the detection phase, for a real-time data sample

Xr, three variables, wind speed, generator speed, and output
active power are first selected. Then, through normalization
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operation, three DTW distances are calculated as the input of
the well-trained XGBoost model. The classification model
can output the probability that the sample belongs to each
category, expressed by:

P = [P1, P2, ..., Pno ] (8)

, where Pi is the probability of Xr falling into i-th cluster.
Thereafter, each well-trained GRU model will generate a

prediction value of the monitoring variable based on Xr. At
the comparison step between the predicted residual and cor-
responding threshold, to take into account the volatility of
variables and avoid the influence of outliers, a percentage
overrun criterion is designed. Specifically, as of the previous
day of the current sample Xr, when Pd% of the residuals
exceed the threshold, a positive alarm is delivered.

Finally, each GRU model can generate a binary judgment
result I ∈ {0, 1} and the detection result Dr for Xr is de-
rived by:

Dr =
∑no

i=1
Pi · Ii (9)

The detection result represents the level of confidence in the
occurrence of a fault in the form of probability, which can
provide more detailed and accurate information compared to
binary judgment results.

3 Experiments

3.1 Dataset Description
The collected data come from a field wind farm in west-

ern China. There are totally 31 WTs and six gearbox fault
scenarios. We select a typical bearing fault as a case study
to present the detailed detection results. The dataset ranges
from January 2016 to May 2017 with a sampling interval of
5min. The failure was confirmed on March 21, 2017. The
dataset is divided into the training set ranging from January
2016 to September 2016 and the testing set ranging from
January 2017 to May 2017.

The temperature measured by the sensor installed in the
bearing can reflect the operational state of the gearbox and
hence be regarded as the target variable. The relevant vari-
ables are selected by prior knowledge, listed in Table 1.

3.2 Case Study
First, three variables, wind speed, active power, and gen-

erator speed are selected as parameters representing opera-
tional states for clustering. The baseline sample under steady
wind conditions, with a sliding window length of 10, is
shown in Fig. 3.

By calculating the DTW distances between each sample
and the baseline sample, the K-means clustering algorithm
is employed to achieve the unsupervised partition. By in-
crementally increasing the number of clusters, the sums of
squared errors (SSE) of clustering results are counted to de-
termine the final clustering number, shown in Fig. 4.

The number of clusters is determined as the minimum
number with no significant change in SSE, which is set as
5 in this case. Then, the final clustering results on the power
curve are illustrated in Fig. 5. It can be seen that even at
similar wind speeds, differences in power generation due to
power curtailment schemes, abnormal operations, etc. will
lead to different categories.

Table 1: Relevant Variables List

Category Variables

Operation parameters of gearbox
Gearbox oil temperature
Gearbox inlet pressure
Gearbox outlet pressure

Environmental parameters
Ambient temperature

Wind speed
Wind direction

System parameters

System state
Active power

Reactive power
Generator speed

Power factor
Yaw angle

Yaw cabin location
Cabin control temperature

Cabin temperature
Pitch angle of paddle1, 2, 3

Fig. 3: Baseline sample under steady wind conditions

Then, an XGBoost classification model is trained with the
clustering results as labels. The sample numbers of different
clusters are counted and the corresponding sampling weights
are allocated, which is shown in Fig .6.

Based on each cluster, a GRU regression model is trained
to depict the expected operational states of the gearbox. For
each sample in this case, based on the category with the high-
est probability, we present the prediction results, illustrated
in Fig. 7, where the black line is the actual measured values,
the green line is the predicted values of the training set, and
the blue line is the predicted values of the testing set. The
red star is the fault confirmation time.

The predicted residuals and the threshold are shown in
Fig. 8. We only present the model prediction results for
each sample under the category to which it belongs with the
highest probability. Actually, for each real-time sample, the
models trained under each category will make real-time pre-
dictions and warning judgments and the final detection re-
sults are the weighted sum of probabilities by category. To
avoid frequent false alarms caused by outliers, the percent-
age overrun criterion is designed and the parameter Pd% is
set as 25%. The first detection was on March 4, 2017, which
is 17 days earlier than the confirmation time. The detailed
results of the first alarm point are shown in Table 2. The fi-
nal detection confidence is 0.94, which represents a higher
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Fig. 4: SSE with different numbers of clusters

Fig. 5: Clustering results on power curve

value identified as a fault.

3.3 Comparison Analysis
To verify the superiority of the proposed method, we con-

duct the comparison analysis in this subsection. The main
contributions are the operational states classification step and
the sampling weight allocating strategy. Therefore, we re-
moved these steps for verification. XGBoost-GRU method
means the sampling weight allocating strategy is removed,
and GRU method means only one regression model is trained
for all samples. The predicted results for all 31 WTs are
shown in Fig. 9. The root mean square error (RMSE) is
adopted as the indicator.

It can be concluded that the proposed method can achieve
optimal predicted results over all datasets. For the XGBoost-
GRU method, the sample imbalance problem will influence
the classification performance. For categories with fewer
samples, the increase in misclassification will then lead to

Fig. 6: The number of samples and weights of different clus-
ters

Fig. 7: Predicted results of the bearing temperature

Fig. 8: Predicted residuals of the bearing temperature

decreases in prediction performance. For the GRU method,
the model will focus more on the major operational state and
ignore some with fewer occurrences, thereby compromising
predictive performance.

Further, we present the confusion matrices of detection
results under different methods, which are shown in Ta-
ble 3-5, where TP means positive judgment of normal WT,
TN means positive judgment of faulty WT, FP means false
alarm, and FN means missed alarm. It can be concluded that
the proposed method can achieve optimal detection results.
The improvement of prediction accuracy can help to more
effectively distinguish faults and noise and hence improve
the detection accuracy. Moreover, the proposed method can
evaluate each operational state more evenly, thus better re-
sponding to unknown potential faults. The case study and
comparative experiments demonstrate the effectiveness and
superiority of the proposed method.

Fig. 9: Predicted results of 31 WTs with different methods
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Table 2: Detection Results

Category Probability Judgement result
1 0 0
2 0.03 1
3 0.89 1
4 0.02 1
5 0.06 0

Table 3: Detection results with the proposed method

Normal WT Faulty WT
No alarm TP=21 FN=0

Alarm FP=4 TN=6

4 Conclusion

This paper proposes a fault detection method consider-
ing various operational states for the gearbox subsystem in
WTs. First, the operational states are divided based on sim-
ilarity distance. Then, a classification model is trained to
determine the probability of each real-time sample being in
different clusters, and a sampling weight allocating strategy
is designed to avoid the sample imbalance problem. Next,
during online detection, regression models trained based on
different cluster samples will perform judgments and jointly
determine the final detection results. The confidence results
with continuous numerical values can provide more accurate
and detailed detection information. Extensive experiments
are conducted and the results demonstrate the effectiveness
and superiority of the proposed method.
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Abstract: As a complex and significant part of the hypersonic aircraft operating under high speeds and harsh flight conditions, 
its structure and thrust systems are sometimes fragile to suffer from unforeseeable failures that can seriously degrade the flight 
performance and even cause mission failures of the aircraft. To deal with such problems from the perspective of online fault 
detection and diagnosis (FDD) for flight control reconfiguration, a data-driven intelligent FDD scheme for the hypersonic 
aircraft is proposed in this study considering both the structure and thrust faults. First, a six-degree-of-freedom nonlinear model 
of the aircraft is employed to generate sampling data of different flight status under various faults. Then, a data preprocessing 
method and a Deep Residual Autoencoder network (DRAE) are utilized to predict and classify the structure and thrust faults. To 
alleviate the vanishing gradient issue, a residual block is integrated in the encoder for efficient training. Numerical simulations 
show that the FDD algorithm based on the designed scheme can extract the characteristics of different faults for online failure 
prediction and classification with expected accuracy. 
Key Words: hypersonic aircraft, fault detection and diagnosis, deep autoencoder network, residual mechanism. 
 

 
 

1 Introduction 
With the rapid development of modern aerospace 

technology, hypersonic aircrafts are playing an important 
role in current and future flight missions. It is worth noting 
that the hypersonic aircrafts are facing various challenges, 
such as extreme operation conditions, diversified missions, 
intelligence requirements, integrated designs, flight safety, 
optimal performance, and other unpredictable harsh 
working environment. Among these challenges, the flight 
safety and successful mission execution capabilities of 
hypersonic aircrafts are the most significant issue [1]. For a 
hypersonic vehicle that operates under complicated and 
harsh flight conditions, it would usually suffer from actuator 
and sensor faults, structural damage and thrust fault [2].  
Such failures can affect flight attitude and trajectory profile 
with degraded control performance. Notably, the structural 
damage and thrust fault frequently occur due to the high 
speed and flexible body of the aircraft. It will pose huge 
challenges to the control safety and flight mission 
accomplishment. In particular, the wing surface damage and 
inlet deformation will directly cause a sharp decline in flight 
capabilities and difficulty in performing flight missions. 
This would further make scramjet engine fail to ignite, and 
the aircraft will lose control and crash into the ground/ocean. 
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Therefore, it is of great practical significance to ensure the 
hypersonic aircraft flight reliability under faulty conditions. 
To deal with the above-mentioned faults in flight, the fault 
detection and diagnosis (FDD) technique is an effective way 
for the aircraft to be quickly aware of the faults and respond 
to them with control reconfiguration for flight performance 
recovery or mission adjustment. As a cutting edge technique, 
artificial intelligence has been a promising way for handling 
FDD problems in recent years [3]. To be brief, the intelligent 
FDD for identifying structural damage and thrust faults of 
hypersonic aircrafts have become important to ensure safe 
and reliable flight in harsh and complex operation 
environments [4].  

Note that the mainstream FDD methods can be roughly 
classified into three categories: model-based, data/signal 
processing-based, and knowledge-based methods [5]. The 
model-based approaches are suitable when the precise 
mathematical model of the system is known, including 
techniques such as observer-based, equivalent space-based, 
and parameter estimation-based methods [6]. For instance, 
Ramdani et al. [7] utilized a predictive-corrective approach 
to estimate the mixed state variables for fault diagnosis in 
complex aircraft propulsion systems, mitigating the 
challenge of state estimation. Zhai et al. [8] proposed a 
diagnostic method based on parameter separation and 
recombination techniques with regional segmentation 
analysis for nonlinear systems with multiple sensor faults. 
The main drawback of model-based FDD method is that it 
relies heavily on the precise mathematical model knowledge. 
In contrast, the signal processing-based FDD method does 
not require an exact mathematical model of the system. It 
mainly obtains the characteristic information of faults 
through signal processing technique [9]. Hao and Wang [10] 
proposed a FDD method for spacecraft attitude control 
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systems based on wavelet analysis, which is used to 
diagnose typical attitude control engine faults. As for the 
knowledge-based approach, it is applicable in situations 
where precise mathematical models and signal models of 
systems cannot be obtained, thus possessing advantages in 
the diagnosis of complex nonlinear system faults [11]. Deep 
learning, as an evolutional technique in the field of 
intelligent fault diagnosis, has received much attention in 
recent years [12]. The deep learning-based method aims to 
iteratively embed feature transformations and autonomously 
mine representative information hidden in massive raw data, 
and directly establish precise mapping relationships among 
the operational flight status of aircraft. Liu et al. [13] 
proposed a method for gearbox fault diagnosis using an 
improved Deep Boltzmann Machine (DBM) with 
computational analysis using real laboratory data. Olyaei et 
al. [14] proposed an aircraft FDD method using deep 
learning and image processing algorithms, which 
transformed sensor data into frequency domain for image 
processing, and thereby identifying faults. 

Motivated by the strong adaptability and effectiveness of 
learning-based approach for FDD, this paper aims to design 
a learning-based data-driven FDD scheme for the structural 
damage and thrust fault identification of a hypersonic 
aircraft. The main task is to extract the flight characteristics 
under different faults for online failure prediction and 
classification with expected accuracy. Specifically, a data 
preprocessing method and a Deep Residual Autoencoder 
network (DRAE) are utilized to predict and classify the 
structure and thrust faults. To alleviate the vanishing 
gradient issue in training, a residual block is integrated in the 
encoder for efficient training. Extensive numerical 
simulations for a hypersonic aircraft flight model are 
conducted to verify the efficiency of the proposed method. 

The article is organized as follows. Section 2 presents the 
basic modeling procedure for structural and thrust faults of 
hypersonic aircrafts. Section 3 introduces a network training 
and learning architecture based on DRAE for FDD of 
hypersonic aircrafts. Section 4 details the numerical 
simulation settings and presents the test results, and Section 
5 concludes the paper. 

2 Modeling and Problem Formulation 

2.1 The Dynamic Model 

For the hypersonic aircraft thrust, the reactive force result 
from the high-speed expulsion of gases within the engine. 
The thrust can be mathematically formulated through the 
following relation [15]: 
  c e a a HP m u S p p     (1) 

where cm  represents the mass flow rate of the fuel 
consumed per unit time; eu  represents the average exit 
velocity of the gas from the nozzle; aS  represents the 
cross-sectional area of the engine nozzle; ap  represents the 
static pressure of the gas flow at the engine nozzle; Hp  
represents the atmospheric static pressure at a specified 
altitude. 

The aerodynamic forces exerted on a hypersonic aircraft 
can be decomposed into the drag force X  , liftY  , and lateral 
force Z . Their magnitudes are related to the dynamic 
pressure of the incoming flow and the characteristic area of 

the aircraft. The detailed relationship can be expressed as 
[15]: 
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where xc , yc , and zc  are drag, lift, and lateral force 
coefficients, respectively. q  denotes the dynamic pressure, 
and S  represents the reference area of the aircraft. 

The aerodynamic moments acting on the aircraft can be 
decomposed along the body coordinate system into three 
components: xM , yM , and zM , representing the rolling 
moment, yawing moment, and pitching moment, 
respectively. The aerodynamic moments can be expressed as 
[15]: 
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where , ,x y zm m m  denote the non-dimensional scale factors, 
named the roll moment coefficient, yaw moment coefficient, 
and pitch moment coefficient, respectively; L  is the 
reference length of the aircraft. 

2.2 The Faults Model 

This paper predominantly focuses on two critical fault 
models: structural damage and thrust faults of the aircraft. 

The structural failure of an aircraft generally refers to 
damage to the fuselage, resulting in changes to the 
aerodynamic and structural parameters of the aircraft. For 
instance, changes in the lift-to-drag ratio will become worse 
due to the wing surface defects, which can further affect the 
aircraft's flight performance and stability. 

The thrust system fault of an aircraft typically usually 
refers to malfunctions occurring in the aircraft's engines, 
consequently degrading the thrust power output. For 
instance, surge faults can result in diminished airflow and 
severe obstruction of the airflow channel, ultimately leading 
to undesirable thrust. 

The models of faults considered in this paper are 
introduced below. 

Structural damage. The occurrence of wing damage 
leads to a proportional decrease in both aerodynamic force 
and moment due to the broken and narrowed surface 
reference area of the aircraft. 
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where 0S  represents the reference area of the aircraft under 
healthy conditions, ft  represents the time when the fault 
occurs, and k is the loss-of-efficiency coefficient, which can 
be modeled as a randomly sampled scalar between 0 and 1. 

Thrust fault. Considering the non-catastrophic failures 
for thrust degradation in aircraft thrust systems, this paper 
adopts the diminished gas ejection velocity resulting from 
engine failures, i.e., the surge fault, as the fault model for the 
thrust system. 
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where ( )inu t  represents the desired gas ejection velocity, 
( )outu t  denotes the actual gas ejection velocity, and 
fu represents the gas velocity loss. 

2.3 Uncertainty Modeling 

To consider the complex flight operation conditions, 
uncertainties need to be modeled because of the 
time-varying mass, deviations of aerodynamic coefficients, 
and wind disturbances, and other relevant inner and external 
perturbations that are ignored in the modeling stage. 

In this paper, the center of gravity deviation that denotes 
the differences between the actual center of gravity and the 
theoretical center of gravity of an aircraft. The deviation of 
the actual center of gravity from the theoretical center of 
gravity in the three directions of the airframe coordinate 
system is denoted as x  , y  , and z . The resultant 
specific disturbance moments can be expressed as follows: 
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where 
1 1 1 1 1
, , , ,yx y zxM M M M M      ,and

1z
M    represent 

the disturbance moments of roll, yaw and pitch generated by 
the center of mass deviation. ,A NC C  , and zC denote the 
axial force coefficient, normal force coefficient, and lateral 
force coefficient, respectively. 

Considering the discrepancies between the actual 
aerodynamic parameters and the employed ones during 
flight, it becomes necessary to model the perturbed 
aerodynamic parameters. Specifically, random 
perturbations are introduced to the coefficients of lift, drag, 
and side force, as well as the three-channel aerodynamic 
moment coefficients, within predefined limits. Specifically, 
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where ' ' ' ' ', , , ,x yX Y Z M M and '
zM  represent the perturbed 

aerodynamic forces and moments, , , , ,
x y z x yc c c m md d d d d  , and 

zmd denote the perturbation ratios. 
Consider that the wind velocity will perform stochastic 

variations in both the wind magnitude and direction due to 
the complicated environmental factors and flight altitude 
and speeds. It is widely acknowledged that wind 
disturbances can influence both the angle of attack and the 
sideslip angle. Such wind disturbances will cause 
unpredictable perturbations in the angle of attack and 
sideslip angle, which can be formulated as: 
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where w  is the wind speed, A  denotes the direction of the 
wind with respect to the aircraft's trajectory, V  is the 
velocity of the aircraft,   is the flight path angle, w  
represents the angle of attack caused by the wind and w  
represents the sideslip angle caused by the wind. 

3 FDD Scheme for The Hypersonic Aircraft 
As described in previous sections, the structural damages 

and thrust faults of hypersonic aircrafts usually manifest 

diverse and random characteristics. As an effective solution, 
the deep learning-based FDD methods have the capability to 
autonomously extract crucial structure and thrust faults 
information of hypersonic aircrafts from extensive flight 
data, unveil concealed relationships within the dataset, and 
effectively accomplish FDD tasks for the hypersonic 
aircraft. 

3.1 Deep Autoencoder Design 

The Deep Autoencoder (DAE) represents a neural 
network architecture frequently utilized for feature learning 
and dimensionality reduction. Functioning as an 
unsupervised learning method, its purpose is to acquire 
sophisticated representations of input data, while 
endeavoring to preserve essential features from the original 
data [16]. 

The operational environment of hypersonic aircrafts is 
characterized by extreme conditions, such as high velocity, 
temperature, and pressure variations. The DAE 
demonstrates robust performance under such varying 
conditions, making them suitable for consistent fault 
diagnosis across a range of flight scenarios [17]. 

The DAE mainly consists of two parts: encoder and 
decoder. The structure of the network can be represented as 
Fig.1 [18]. 

 

 
 

Fig.1 : The structure of the DAE network 
 

The encoder component of DAE maps the input flight 
data including attitude, angular velocity, and other 
information into a lower-dimensional latent space. 
Comprising multiple hidden layers with a decreasing 
number of neurons in each layer, the encoder progressively 
compresses the input flight data. The ultimate layer of the 
encoder signifies the encoded or latent representation of the 
input [19]. Note that the hypersonic aircrafts generate 
complex, high-dimensional data. The DAE excels in 
encoding this high-dimensional data into a 
lower-dimensional space, effectively capturing the essential 
features necessary for FDD. This dimensionality reduction 
is critical in simplifying the complex data patterns 
associated with hypersonic flight. The encoding process can 
be expressed as follows: 
 ( )i ix f x    (9) 
where ix  is the sample in the input flight data 
x , f represents the encoding process, ix  is the encoder 
output. The output encoding can be regarded as an abstract 
representation of the original flight data, capturing essential 
features and patterns inherent in the data. 

The decoder segment undertakes the task of 
reconstructing the original input data from the encoded 
representation. The decoder translates the abstract, encoded 
representations back into a more interpretable form. This 
translation is essential for understanding the nature of the 
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detected faults and for communicating this information to 
engineers and decision-makers. In processing the data from 
hypersonic aircrafts, the decoder also plays a role in noise 
reduction and data cleaning.  By learning to ignore irrelevant 
variations and noise in the data during the reconstruction 
process, the decoder enhances the accuracy and reliability of 
the FDD. The decoding process can be expressed as follows: 
 ( )i ix g x   (10) 
where ix  is the output of the decoder, g  denotes the 
decoding process. The output decoding is the reconstruction 
of the original flight data. The primary objective of the 
decoder is to transform the low-dimensional encoding 
representation produced by the encoder back into 
high-dimensional data that is equivalent to the original flight 
data. 

The training process of DAE relies on minimizing a loss 
function that quantifies the discrepancy between the input 
data and its corresponding reconstruction. The Mean 
Squared Error (MSE) metric is often selected for this 
purpose. MSE can be defined 
 2(1/ ) i iMSE n x x     (11) 
 arg min ( , )R L x x    (12) 
where n  represents the number of flight samples, L  denotes 
the loss function. 

The flight data may exhibit anomalies subsequent to the 
structural or dynamic fault occurring in a hypersonic aircraft, 
and the DAE is particularly adept at identifying anomalies in 
data. By learning to reconstruct normal operational data, 
these networks can highlight deviations that indicate 
potential faults. In hypersonic aircrafts, where even small 
anomalies can lead to significant issues, the anomaly 
detection capability of the DAE is invaluable. 

3.2 Residual Mechanism 

The core idea underlying residual mechanisms is the 
introduction of residual or shortcut connections within deep 
neural networks. Unlike traditional deep networks where 
each layer directly learns a mapping from input to output, 
residual networks enable the learning of residual mappings, 
or residuals, which are then added to the original input to 
produce the final output. The mathematical model of a 
residual block can be presented as Fig.2 [20]. 

 
Fig.2 : The structure of the DAE network 

 
Residual connections alleviate the vanishing gradient 

problem, which often hinders the training of deep networks. 
By introducing skip connections that allow gradients to flow 
easily through the FDD network, training deeper models 
becomes more feasible. As for the FDD of hypersonic 
aircrafts, deeper networks can capture more complex and 
subtle relationships in the data, which is crucial for 
identifying and diagnosing potential faults accurately. 

Networks equipped with residual mechanisms often exhibit 
improved convergence behavior. This is particularly 
advantageous in the aerospace domain, where the 
computational cost of training models is significant. 

3.3 DRAE for FDD 

As one of the mainstream algorithms of deep learning, 
DAE can independently extract valuable and differentiated 
features from high-dimensional data, enhance the effect of 
subsequent supervised learning, and is suitable for FDD. 
The network’s data dimensionality reduction capabilities 
help process complex aircraft operating data and extract 
required fault characteristics. The residual connections 
allow the network to learn incremental updates of inputs, 
reduce the possibility of gradient disappearance, and are 
suitable for multi-hidden layer training of aircraft FDD 
networks. The FDD networks for aircrafts can process 
inputs from multiple sensors, some of which may be critical 
to identifying a specific fault. The residual connections 
enable direct paths for information flow from early layers to 
later ones. This property is particularly valuable for 
capturing subtle fault-related features. Therefore, the DRAE 
is used to extract the characteristics of flight data and mine 
the mapping relationship of various fault information on the 
flight status of the aircraft.  

The FDD model consists of four parts: fault injection and 
data collection, data preprocessing, DAE unit based on 
residual mechanism (DRAE), output. The schematic of the 
FDD is shown in Fig.3. The details are as follows: 
 Fault injection and data collection: Inject faults into the 

aircraft dynamics model, use a typical 
six-degree-of-freedom aircraft model to implement 
simulation and generate flight data. Timestamps are 
synchronized to maintain temporal consistency. 

 Data preprocessing: The FDD networks are tasked 
with analyzing diverse sensor data streams to detect 
and classify potential faults in real-time. The effective 
data preprocessing is fundamental to ensure the 
network’s robustness and diagnostic accuracy. 

 DRAE: The DRAE network is mainly composed of an 
autoencoder network with residual blocks. The 
activation function is Rectified Linear Unit (ReLU). 
The specific network structure and parameters are 
given in section 4. 

Output: Output from the last hidden layer in the DRAE 
network. The proposed DRAE model is shown in 
Algorithm 1. 
 
Algorithm 1. The DRAE for hypersonic aircrafts 
Input: The hypersonic aircraft flight data set containing 
information on structural and thrust faults, x   
Output: Diagnosed fault categories (structure or thrust) for 
the input data x . 
Process:  

1. Data preprocessing: 
a. Normalize the input flight data x . 
b. Split the normalized data into training ( trainx ), and   
testing ( testx  ) sets. 

2. Building the Deep Residual Autoencoder. 
3. Training the Autoencoder using trainx . 
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4. Extracting Features and Classifier Training. 
5. Fault Diagnosis: 

a. Extract features from testx using the trained encoder. 
b. Employ the trained classifier to predict fault types 
(structure or thrust) based on these features. 

End  
 

 
 

Fig.3 : Schematic of the FDD 
 

4 Numerical Simulation 

4.1 Fault Injection and Data Collection 

In this paper, we employ a comprehensive 
six-degree-of-freedom nonlinear model for aircraft and 
investigate the effects of structural damage and thrust fault 
during the cruise phase. The aircraft’s cruising altitude is set 
at 27 kilometers, and its flight velocity is 6 Mach. 

The flight status consists of four scenarios: one normal 
condition(N) and three faulty conditions: 25% thrust fault 
(P25), 25% structural damage failure (S25), and a 
combination of both faults (C25). 

4.2 Data Preprocessing 

Prior to model training, the data needs to be filtered and 
pre-processed as the data collected contains time series with 
high dimensionality. Considering the limited data available 
from the aircraft sensors, 10 variables related to the aircraft 
structural damage and thrust fault are selected, as shown in 
Table 1. The aircraft status includes normal status (N) and 
multiple fault status (P25, S25, and C25), indicated by 
0/1/2/3, respectively. 

Table 1 : Variables related to the aircraft 

Parameters Unit 

Pitch Angle DEG 

Yaw Angle DEG 

Roll Angle DEG 

Pitch Angle Rate DEG/SEC 

Yaw Angle Rate DEG/SEC 

Roll Angle Rate DEG/SEC 

Angle of Attack DEG 

Sideslip Angle DEG 

Flight Speed M/SEC 

Aircraft Status 0/1/2/3 
 
To enable the diagnostic model to learn fault features, the 

data is segmented by means of a sliding window of length 10 
and step size 1. Fig.4 shows how the sliding window splits. 

 
Fig.4 : The sliding window splitting method 

 
Due to the limited computational resources for hypersonic 

aircrafts, efficient data processing should be adopted to 
achieve fast online FDD. Therefore, for multivariate time 
series, data splicing is used to achieve the fusion of 
multivariate series, and finally univariate data are obtained. 
Fig.5 shows how the data is spliced. 

The dataset of the four states in IV.A is obtained, and then 
the data is preprocessed to get a total of 4000 sets of samples. 
The dataset is divided into training set and testing set in the 
ratio of 7 to 3. 

 

 
 

Fig.5 : Data splicing method 

4.3 Results and Analysis 

The established DRAE model mainly includes three parts: 
autoencoder, residual block, and classification layer with the 
structure shown in Table 2. 

Table 2 : The structure of DRAE model 

Layer Structure 

L1 Conv1D(3×32) 
L2 Conv1D(3×64) 
L3 Conv1D(3×128) 
L4 Conv1D(3×128) 
L5 Add (L1, L4) 
L6 ConvTranspose1D 
L7 ConvTranspose1D 
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L8 ConvTranspose1D 
L9 Dense (4) 

 
Therein, the Conv1D (3×32) represents a 

one-dimensional convolution layer, and its convolution 
kernel size is 1×3 with 32 channels, and ConvTranspose1D 
represents a transposed one-dimensional convolution layer. 
The prediction classification results of the DRAE model are 
shown in Fig.6. 

N
P25 S25 C25
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t 
L

a
b
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Fig.6 : The confusion matrix of output result 

 
The confusion matrix shows the correctness of the 

classification for each case, where the columns represent the 
predicted labels and the rows represent the actual labels. 
C25 has the highest accuracy at 99.7%, while N has the 
lowest at 95%. This result may be attributed to the increased 
occurrence of data anomalies resulting from the interaction 
of structure and thrust faults and the influence of intricate 
working conditions. The final average diagnostic accuracy 
rate is 97.7%, which shows the effectiveness of the 
conducted method applied to the hypersonic aircrafts under 
structural and thrust faults. 

5 Conclusion 
This paper aims to classify the failure modes and failure 

mechanisms of hypersonic aircrafts with structure and thrust 
faults. Specifically, a data-driven intelligent FDD scheme is 
proposed for hypersonic aircrafts based on the DRAE 
network to predict and classify the structure and thrust faults. 
To alleviate the vanishing gradient issue, a residual block is 
integrated in the encoder for efficient training. The failure 
model of the aircraft is implemented using a 
six-degree-of-freedom nonlinear model of the aircraft. The 
preprocessed data is input into the constructed DRAE 
network for training and testing, and finally the accurate 
detection and classification of structural damage and thrust 
fault is achieved. 
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Abstract: The utilization of intelligent algorithms for decision-making and optimization in the collaborative maintenance of
helicopter swarm addresses the challenge of maximizing the reliability of swarm task execution under limited maintenance
resources. Consequently, optimization of maintenance decisions has become a focal point of research both domestically and
internationally. The problem of allocating maintenance resources under resource constraints, known as selective maintenance,
can naturally be modeled as a Markov decision process. For solving this problem, employing multi-objective optimization
algorithms is a logical choice. However, due to the large number of optimization decision variables involved in this practical
problem, traditional algorithms may encounter difficulties. Reducing the search space of decision variables can alleviate this
challenge. With this in mind, this study proposes a multi-objective optimization algorithm based on fuzzy theory. Finally, we
validate the feasibility of the model and intelligent decision-making solutions through an illustrative example.

Key Words: Selective Maintenance, Maintenance Optimization, Reliability, Helicopter Swarm, Fuzzy Evolution, Multi-
objective Optimization

1 Introduction

The advancement of science and technology has signif-
icantly enhanced the effectiveness and efficiency of swarm
cooperation systems composed of multiple helicopters [1].
However, the numerical advantage and economies of scale
afforded by helicopter swarms also pose considerable chal-
lenges for collaborative maintenance. In complex and
dynamic battlefield environments, helicopter swarms may
encounter various uncertainties and emergencies, mak-
ing it difficult to devise or adapt maintenance strategies.
Therefore, developing optimized collaborative maintenance
decision-making schemes tailored to helicopter swarms is
imperative for achieving rapid, simple, and cost-effective
maintenance solutions while minimizing maintenance down-
time. Such research endeavors aim to reduce the mainte-
nance costs and duration of helicopter swarms while maxi-
mizing their operational efficiency [2].

Maintenance strategists, operating within finite mainte-
nance resources, selectively maintain certain components
within the entire system to optimize system performance un-
der specified conditions. Rice [3] first introduced the concept
of selective maintenance in 1998 and developed correspond-
ing reliability mathematical models for binary serial-parallel
systems. These models account for maintenance personnel’s
maintenance behaviors on the system during task intervals
to maximize the system reliability for the next task. Due
to the limited ability of binary systems to reflect the com-
plexity of maintenance activities, researchers have shifted
their focus to the selective maintenance planning problem
for multi-state systems [4–9]. Wang et al. [10] utilized ge-
netic algorithms to solve a selective maintenance model for

This work is supported by Aeronautical Science Foundation of China
(20220057052001), National Natural Science Foundation of China un-
der Grants (62173180), National Key Laboratory Foundation of Heli-
copter Aeromechanics (2023-HA-LB-067-04), Qing Lan Project of Jiangsu
Province of China, in part by the Fundamental Research Funds for the Cen-
tral Universities under Grants (NE2022002, NC2022003).(Corresponding
author: Ke Zhang)

large-scale equipment under sequential task conditions. Liu
et al. [11] established a combinatorial optimization model
and employed an enhanced ant colony algorithm to search
for the optimal solution set. Tian et al. [12] developed
a multi-objective selective maintenance sequence planning
model based on hierarchical maintenance tree diagrams and
improved the multi-objective gravitational search algorithm
to solve the multi-objective optimization model.

Helicopter swarms find widespread applications across
various domains, yet research on the maintenance of heli-
copter swarm equipment remains scarce. In addition, current
maintenance decision-making approaches often depend on
conventional multi-objective optimization algorithms. How-
ever, considering the complexity of swarm equipment with
numerous components, this approach tends to require signif-
icant time investment, thereby hindering maintenance time-
liness. Building upon prior research, this paper proposes a
maintenance model tailored for helicopter swarm equipment.
Leveraging the characteristics of the maintenance behavior
of helicopter swarms, a mixed series-parallel system is em-
ployed to characterize the swarm, while a Markov decision
process is employed to depict the maintenance process. To
address the multi-objective decision optimization problem,
a fuzzy-based genetic algorithm is designed, which exhibits
advantages over traditional algorithms in terms of conver-
gence, distribution, and diversity.

2 Problem Formulation and System Model

2.1 System Descriptions and Assumptions
In this section, we propose a cooperative maintenance

model of helicopters in the form of Markov decision chains.
Each helicopter is composed of various types and quanti-
ties of components, arranged in different forms, such as se-
ries and parallel connections. In traditional studies, com-
ponents are typically considered to be binary-state, that is,
either functional or faulty. However, in real-world scenarios,
components are often characterized by multiple states, dete-
riorating from a perfect state to a faulty state. Maintenance
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activities occur exclusively during task downtime intervals,
with no possibility of performing maintenance actions while
the helicopters are engaged in task execution, as in Fig. 1.

Task 1 Task 2 Task m  

Maintenance 1 Maintenance 2 Maintenance m-1

Fig. 1: Maintenance task execution diagram

Complex helicopters typically consist of numerous com-
ponents. Analyzing from the perspectives of reliability and
component service life, the helicopter system can be viewed
as a complex hybrid series-parallel system, as in Fig. 2. A
helicopter swarm is formed by serially connecting Q heli-
copters, and the i th(i = 1, 2, ..., Q) helicopter consists of
Qi modules. Each module serves different functions, such as
the power module, communication module, payload module,
etc. The w th module of the i th helicopter is further com-
posed of Qiw components, and the j th(j = 1, 2, ..., Qiw)
component in the w th module of the i th helicopter is de-
noted as Ciwj .

Fig. 2: Series-parallel hybrid system

In addition, riwj represents the reliability of component
Ciwj , assuming that the reliability of component follows the
Weibull distribution with scale parameter η and shape pa-
rameter β. Thus, the total quantity of the helicopter compo-
nents QC is given by

QC =

Q∑
i=1

Qi∑
w=1

Qiw∑
j=1

Ciwj (1)

Consider a component within a helicopter system that can
exist in multiple states S(k) = [S111(k), ..., Siwj(k)] ∈
S, k = 1, 2, ...,K at task k. The state vector denotes the
components’ states in each helicopter after the maintenance
k, which happens in break k during the task k and task k+1.
Analogously, we use S̄(k) =

[
S̄111(k), ..., S̄iwj(k)

]
∈ S̄ to

refer to the components’ states after the task k without any
maintenance operations.

Let
{
s0iwj(k), s

1
iwj(k), ..., s

L−1
iwj (k)

}
∈ Siwj(k) or{

s̄0iwj(k), s̄
1
iwj(k), ..., s̄

L−1
iwj (k)

}
∈ S̄iwj(k) represents the

state of a component, i.e. the performance of the component.
When the component state is s0iwj(k) or s̄0iwj(k), it indicates
that the component has completely failed. On the contrary, a

state of sL−1
iwj (k) or s̄L−1

iwj (k) represents the component being
in perfect. Commencing from the perspective of practical
implementation, a performance threshold denoted as striwj(k)
exists. When the state performance of a component falls be-
low this threshold, the component is deemed to be in a fault
condition, thereby impinging upon the operation of the over-
all helicopter system. The range from striwj(k) to sL−1

iwj (k)
signifies that the component has experienced some perfor-
mance degradation but is still functional.

Let the action vector denote the integer variables corre-
sponding to the maintenance strategies for all components in
task k. Additionally, A(k) = [a111(k), ..., aiwj(k)], where
aiwj(k) denotes the maintenance strategy applied to the iwj
th component of the k th task.

Over time, the effective age of helicopter components in-
crementally accumulates during the execution of tasks. The
augmentation of effective age implies the degradation of
component performance. For each component, the prob-
ability of its performance state at a given effective age
t is calculated as piwj,l,k = P

{
Siwj(k) = sliwj(k)

}
or

piwj,l,k = P
{
S̄iwj(k) = s̄liwj(k)

}
. The process of depict-

ing the degradation of component performance states as a
Markov process is illustrated in the Fig. 3, where µl1,l2,iwj,k

means the intensity transiting from performance state l1 to
l2.

  
1, , ,r rt t iwj km
-

,0, ,rt iwj km

1, , ,rL t iwj km
-

11, , ,rL t iwj km
--

1,0, ,L iwj km
-

1( )L

iwjs k-1( )L

iwjs k- ( )rt

iwjs k( )rt

iwjs k 1 ( )rt

iwjs k-1 ( )rt

iwjs k- 0 ( )iwjs k0 ( )iwjs k  

Fig. 3: The degradation transition of the iwj th component
state in the k th task

2.2 System Reliability
The degradation of the multi-state element is postulated

to adhere to the non-homogeneous continuous-time Markov
chain (NHCTMC). Employing recursion, we resolve the
Chapman-Kolmogorov’s (C-K) forward equation to derive
the time-dependent state probabilities for each constituent
element within the system

piwj,l,k=


exp

(∫ t

0

∑x−1
i=0 µx,i,iwj,k(s)ds

)
, x = L− 1∑L−1

i=x+1

∫ t

0
piwj,i,k(τL−1)µi,x,iwj,k(τL−1)

exp
(
−
∫ t

τL−1
µx,x,iwj,k(s)ds

)
dτL−1,

otherwise

(2)

Subsequently, the determination of the system-wide state
probabilities is executed through the application of the
Laplace transform method [13]

uiwj,k(t) =

sL−1
iwj (k)∑
l=0

piwj,l,k(t) · zs
l
iwj(k) (3)

Assuming that the intricate helicopter system is equiva-
lent to a complex hybrid series-parallel system, amalgamat-
ing the characteristics of both series and parallel systems.
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Given the manifold nature of the system configurations, two
fundamental operators are employed to represent series(ξs)
and parallel(ξp) configurations, respectively [14].

In the context of a series structure, the component with the
minimal capacity serves as the bottleneck for the entire sys-
tem. Considering that all components within the w th mod-
ule of the i th helicopter are interconnected serially during
the k th task, its u-function is delineated as follows

Uiw,k(t) = ξs (uiw1,k(t), uiw2,k(t), ..., uiwQiw,k(t))

=
L−1∑
l1=0

· · ·
L−1∑

lQiw
=0

piw1,l1,k · · · piwQiw,lQiw
,k(t)

× z
min

(
s0iw1(k),...,s

L−1
iwQiw

(k)
)

=

L·Qiw∑
l=0

piw,l,k(t) · zs
l
iw(k)

(4)

In the scenario where each module is interconnected in
a parallel configuration within the internal structure of the
i th helicopter system, the aggregate capacity of the entire
system is the summation of the capacities of all individual
components, and its u-function is expressed as follows

Ui,k(t) = ξp (Ui1,k(t), Ui2,k(t), ..., UiQi,k(t))

=
L−1∑
l1=0

· · ·
L−1∑
lQi

=0

pi1,l1,k · · · piQi,lQi
,k(t)

× z

(
s0i1(k)+···+sL−1

iQi
(k)

)

=

L·Qi∑
l=0

pi,l,k(t) · zs
l
i(k)

(5)

From the perspective of helicopter swarm maintenance
planning, each helicopter is interconnected in a series con-
figuration during the k th task. The u-function is defined as
follows

Uk(t) = ξs (U1,k(t), U2,k(t), ..., UQ,k(t))

=

L−1∑
l1=0

· · ·
L−1∑
lQ=0

p1, l1, k · · · pQ, lQ, k(t)

× zmin(s01(k),...,s
L−1
Q (k))

=

L·Qi∑
l=0

pl,k(t) · zS
l(k)

(6)

Upon obtaining the performance level and probability dis-
tribution, the system reliability can be computed. As the sys-
tem ages over time, it is crucial to ensure that its performance
remains above the performance threshold PTk throughout
the task duration. Fig. 4 demonstrates that the states sat-
isfy the specified requirement. For task k, assuming S(k)
follows a Markov process and represents the required de-
mand level, its reliability R(k) is defined as Rk(A(k)) =
Pr {S(k) ≥ PTk}.

2.3 Component Age Reduction Model
Introducing the Kijima II imperfect maintenance model to

simulate the maintenance process, this model is utilized to

Performance 

Siwj(k)

Effective age

PTk

Performance 

threshold

Current taskBreak
Previous 

task

Siwj(k) PTk

Fig. 4: Performance threshold requirements during task exe-
cution

depict the age deterioration during the execution of tasks by
a swarm of helicopters [15]. By the Kijima II model, it is
discerned that

tiwj(k) = λiwj · t̄iwj(k) (7)

where tiwj(k) represents the effective age of the component
after undergoing imperfect maintenance; t̄iwj(k) denotes the
effective age of the component after completing the k th task;
λiwj signifies the effective age regression factor correspond-
ing to the k th maintenance action, reflecting the mainte-
nance effectiveness. Based on practical observations, it is
established that replacement maintenance is performed when
λiwj = 0, as

tiwj(k) = 0 (8)

and no maintenance action is undertaken when λiwj = 1.
The effective age is given by

tiwj(k) = t̄iwj(k) (9)

a smaller value of λiwj corresponds to a favorable mainte-
nance outcome, as illustrated in Figure. 5.

Time

Current 
taskBreak

Previous 
task

Effective age

iwj =1

iwj =0

iwj (0,1)

Fig. 5: Effective age difference under three maintenance
policies

The calculation method for the effective age regression
factor is provided in the reference [16]

λiwj = 1−

(
Ciwj

Crm
iwj

) 1
miwj

(10)
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where Ciwj represents the maintenance costs allocated to the
component after the completion of the k th task; Crm

iwj de-
notes the cost incurred for conducting replacement mainte-
nance on components, representing the upper limit of main-
tenance cost. Additionally, miwj is a characteristic constant
associated with the inherent attributes of the component. The
greater the value of miwj , the more effective it is in main-
taining elements with lower cost.

2.4 System Cost
While preventive maintenance is the most effective strat-

egy for enhancing system reliability, it is also associated with
the highest cost. The system cost for task k is defined as fol-
lows

Ck(A(k)) =
K∑

k=1

Q∑
i=1

Qi∑
w=1

Qiw∑
j=1

[
ckiwj (aiwj)

+c0iwj(k)
] (11)

where ckiwj (aiwj) denotes the cost incurred from performing
maintenance task k on component Ciwj incurred when exe-
cuting maintenance task, where c0iwj(k) represents the fixed
cost associated with activities such as dismantling and instal-
lation.
3 Helicopter Swarm Maintenance Decision

3.1 Motivation
Considering the practicalities of helicopter swarm main-

tenance, a significant number of components are involved
in maintenance operations. This results in a vast decision
space, posing considerable challenges for problem-solving,
including computational burden and precision of solutions.
To address this issue, we propose a multi-objective optimiza-
tion algorithm based on fuzzy theory (FMOA). The utiliza-
tion of fuzzy techniques will reduce the search space of so-
lutions, thereby enhancing the speed and accuracy of the so-
lution process.

3.2 Multi-objective Optimization Problem
In mathematical terms, a Multi-Objective Optimization

Problem (MOP) is defined as

min Ck(A(k))

max Rk(A(k))

subject to Ck(A(k)) < CT

Rk(A(k)) > RT

k = 1, 2, ...

(12)

where A(k) = [a111(k), ..., aiwj(k)] represents an QC-
dimensional decision vector derived from the decision space.
Ck(A(k)) and Rk(A(k)) denotes the objective function of
the optimization problem, where minimizing or maximiz-
ing its value is our optimization objective. Additionally,
the decision space must adhere to relevant constraints. In
the presence of multiple objectives, a solution may excel
in one objective while performing poorly in others, due to
conflicts and incomparability among objectives. Such solu-
tions, which cannot be improved in any one objective with-
out compromising at least one other objective, are termed
non-dominated solutions or Pareto solutions.

3.3 Fuzzy Theory
A fuzzy set is a mathematical concept that extends the tra-

ditional notion of a set by allowing elements to have degrees
of membership rather than strictly belonging or not belong-
ing. A membership function, in the context of fuzzy sets, is a
mathematical function that assigns a degree of membership
to each element of a set. It quantifies the extent to which
an element belongs to the fuzzy set, indicating its level of
membership on a continuous scale.

3.4 Proposed Framework
The proposed algorithm 1 consists of two main phases:

the fuzzy optimization phase and the precise optimization
phase. In the first phase, the solution space undergoes
fuzzy processing after optimization operations. In the sec-
ond phase, optimization operations are applied to the sub-
optimal solution space obtained at the end of the first phase.

Algorithm 1 Framework of the proposed FMOA
Require: N (population size), MAX(maximum iteration num-

ber), Proportion(the proportion of the fuzzy optimization
phase in the entire phase), V el

Ensure: P̄ (Final population)
1: Initializing the population P
2: while Number of Iterations ≤MAX do
3: if Number of Iterations ≤ Proportion then
4: P ′ ← Fuzzy Optimization Operation(P )
5: else if Number of Iterations > Proportion then
6: P ′ ← Precise Optimization Operation(P )
7: end if
8: P ′ ← Offspring(P, P ′)
9: end while

In the precise optimization phase, NSGA [17] algorithm
is employed as a method for addressing multi-objective op-
timization problems. A detailed explanation of the fuzzy
optimization phase will be provided in the next subsection.
Offspring operation offspring(P,P’) simulates the process of
natural evolution by performing operations such as selection,
crossover, and mutation on newly generated action space
vectors and old action space vectors to produce new action
space vectors.

3.5 The Fuzzy Optimization Phase
In the fuzzy optimization phase, the rationale behind di-

viding the entire fuzzy evolution phase into multiple fuzzy
sub-phases with decreasing degrees of fuzzification is to pro-
gressively enhance the precision of the algorithm’s solution.
The mathematical delineation of the method for partitioning
fuzzy evolutionary sub-phases is as follows

S =

⌊√
2 · Proportion

V el

⌋
(13)

Sub(n) = V el · (S · n− n2

2
), n = 1, 2, ..., S (14)

where S represents the number of sub-phases; Sub(n) rep-
resents the accumulated step length of the n th fuzzy sub-
phases; V el denotes the rate of progression across sub-
phases.The difference between Sub(n) and Sub(n− 1) rep-
resents the step length of the n th fuzzy sub-phases.
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The described procedure divides the entire fuzzy opti-
mization phase into multiple fuzzy sub-phases. The purpose
is to reduce the fuzziness level of the original action space
vector, thereby enhancing the diversity and accuracy of the
solutions. In the n th fuzzy sub-phase, the following opera-
tions will be performed

ϕ1
i =

⌊
10n ·Ai(k)

⌋
· 10n (15)

ϕ2
i =

⌈
10n ·Ai(k)

⌉
· 10n (16)

µF̃1
(Ai(k)) =

1

Ai(k)− ϕ1
i

(17)

µF̃2
(Ai(k)) =

1

ϕ2
i −Ai(k)

(18)

Ãi(k) =


ϕ1
i ,µF̃1

(Ai(k))>µF̃1
(Ai(k))

ϕ2
i ,µF̃1

(Ai(k))<µF̃1
(Ai(k))

random(ϕ1
i , ϕ

2
i ) ,µF̃1

(Ai(k))=µF̃1
(Ai(k))

(19)

where Ai(k) represents the i th value in the original action
space vector; Ãi(k) represents the i th value in the fuzzified
action space vector. ϕ1

i and ϕ2
i denote the fuzzy target val-

ues of (Ai(k)), where Ai(k) is either fuzzified into ϕ1
i or

ϕ2
i ; µF̃1

(Ai(k)) and µF̃2
(Ai(k)) represent the membership

function values of Ai(k) in fuzzy sets F̃1 and F̃2, respec-
tively.

4 Computational Results

To validate the proposed model and algorithms for heli-
copter swarm maintenance decision-making, numerical sim-
ulations were conducted for this problem to minimize main-
tenance costs under constraints on system reliability.

This study focuses on a helicopter swarm system with re-
connaissance and strike capabilities. The system comprises
two types of helicopters: two reconnaissance and four attack
helicopters, totaling six helicopters. The reconnaissance he-
licopters are responsible for real-time surveillance and target
identification in the designated area, while the attack heli-
copters are tasked with precise targeting and destruction of
the identified targets. The parameters of the reconnaissance
helicopters are presented in Table 1, and the parameters of
the attack helicopters are presented in Table 2.

Table 1: Reconnaissance-type helicopter related parameters
Component ckiwj c0iwj ηiwj βiwj

Ci11 1 1.5 20 3
Ci12 0.5 1.2 30 2.5
Ci13 3 4 26 2.6
Ci21 5 5.5 26 1
Ci22 7 8.5 21 2.5
Ci23 6 8 31 3.1
Ci24 3 5.5 16 2.4
Ci31 3 4.5 14 2
Ci32 1 1.1 17 3.2
Ci33 2 2.6 21 2
Ci34 1 2.3 25 2.6
Ci41 0.8 1 26 2.6
Ci42 1 1.5 26 2.5

Table 2: Attack-type helicopter related parameters
Component ckiwj c0iwj ηiwj βiwj

Ci11 1 1.5 20 3
Ci12 0.5 1.2 30 2.5
Ci13 3 4 26 2.6
Ci21 5 5.5 26 1
Ci22 7 8.5 21 2.5
Ci23 6 8 31 3.1
Ci24 3 5.5 16 2.4
Ci31 3 4.5 14 2
Ci32 1 1.1 17 3.2
Ci33 2 2.6 21 2
Ci34 1 2.3 25 2.6
Ci41 1 1.5 26 2.5
Ci42 0.8 1.2 15 2.7
Ci43 2 2.5 13 2.9

The algorithm in this study is configured as follows: the
initial population size is set to 90, with a maximum evalu-
ation limit of 10,000 iterations. Besides, the availability of
finite resources CT is 100, and the system reliability thresh-
old RT is 0.85. The number of tasks K is set to 5.

The helicopter swarm consists of 6 helicopters and 82
components. Given the problem, the size of the solution
space is 782 + 482 ≈ 2× 1089, making an exhaustive search
infeasible. However, with MATLAB 2023a installed and an
Intel i5-12400F processor, employing traditional evolution-
ary algorithms would consume approximately 30 minutes of
computational time. Utilizing intelligent optimization algo-
rithms to solve this model is a more rational choice.

The maintenance model established in this study is solved
using the conventional algorithm NSGA [18] and the pro-
posed algorithm FMOA, respectively, with the runtime sum-
marized in Table 3. The proposed algorithm in this paper
enables faster decision-making for the maintenance model,
which is highly effective in practical application scenarios.

Table 3: The execution time under different algorithms
Algorithm NSGA FMOA

Runtime(min) 29.5 20.7

Specifically, the solutions obtained for all tasks are pre-
sented: {R1, C1} = {0.94, 98.2} for task 1; {R2, C2} =
{0.93, 97.4} for task 2; {R3, C3} = {0.9, 94.9} for task 3;
{R4, C4} = {0.88, 90} for task 4; {R5, C5} = {0.92, 98.9}
for task 5.

5 Conclusion

In this paper, we propose an intelligent decision-making
solution for helicopter swarm maintenance based on fuzzy
logic principles and multi-objective optimization algorithms.
Since maintenance practices occur during task intervals,
the maintenance process is modeled as a Markov decision
process. A fuzzy-based intelligent decision optimization
algorithm is proposed and designed to achieve intelligent
decision-making under the Markov decision process. The ef-
fectiveness of our model and algorithm is validated through
numerical simulations. Future work will focus on further
model development for maintenance and exploring solution
methods for similar problems.
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Abstract: This paper proposes a fully actuated system (FAS) approach for the robust control problem of single-link flexible-
joint manipulators (SLFJMs) with perturbed inertia. Unlike previous studies, the method proposed in this paper only requires
the design of a simple robust state feedback controller to achieve high-precision control without the use of neural networks,
observers, etc. Meanwhile, the control problem of FASs with perturbed input matrices is still rarely studied, and this paper
proposes an effective control method for this case, which broadens the application scope of the FAS approach. Firstly, the
SLFJM with perturbed inertia is transformed into a FAS with perturbed input matrix using an appropriate state transformation.
Meanwhile, a converted control problem is formulated for the transformed FAS. Then, a robust controller is designed based on
the full-actuation property, which ensures that the states are globally bounded and eventually converge into an arbitrarily small
region centered at the origin. Finally, the effectiveness of the method is demonstrated by simulation.

Key Words: Fully Actuated System Approach, Robust Control, Single-Link Flexible Joint Manipulators, Perturbed Inertia

1 Introduction

Due to the advantages of flexible joints, including high
flexibility and fast operating speed, single-link flexible-joint
manipulators (SLFJMs) are widely used in industrial and
aerospace applications [1, 2]. Since flexible joints are prone
to vibration in motion [3], the problem of high-precision
control of SLFJMs has received considerable attention in re-
cent decades. Moreover, the SLFJMs always contain vari-
ous uncertainties, so many control methods have been pro-
posed to overcome the unfavourable effects of uncertainties
on high-precision control. In [4], a robust adaptive fuzzy
tracking controller is designed for SLFJMs with imprecise
dynamics. In the presence of imprecise dynamics, it has
been further considered that the angular position and veloc-
ity of the motor shaft are not measurable [5], and the need
to meet prescribed performance [6, 7]. In addition, [8] and
[9] consider the control problem under two types of exter-
nal disturbances and under matched and unmatched distur-
bances, respectively. However, in all the above studies, the
input matrices of the state space models of the SLFJMs do
not contain uncertainties.

Along this research direction, considering the widespread
phenomenon of motor shaft inertia fluctuation in applica-
tions, this paper considers the case of inertia perturbation
in the SLFJM. In this case, the uncertainty is in the input
matrix of the state-space model of the SLFJM. It is there-
fore very challenging to ensure high-precision control of the
SLFJM. There has been limited research in this area in recent
years. In [10], the original model is first transformed into a
high-order system, and then a self-organising neural-fuzzy
network is used to approximate the uncertain input matrix.
On the other hand, [11] and [12] overcome the effects of the
uncertainties caused by the perturbed matrix by using a com-
posite observer and an EID estimator, respectively. However,

This work is supported by the Science Center Program of the National
Natural Science Foundation (NNSF) of China under Grant 62188101.

the above studies require the use of adaptive neural network-
s, observers or estimators to complete the control design. It
is difficult to obtain high accuracy control using only robust
state feedback controllers.

Recently, a new theory known as the fully actuated sys-
tem (FAS) approach has been proposed, which constructs a
complete theoretical framework for the control of nonlinear
systems. It has been pointed out in [13] that the FAS mod-
el is actually a model of the control system and not just a
small part of the physical control system. Therefore, it is
natural that the FAS approach is also a general approach. In
particular, a number of robust control methods have been de-
veloped within the FAS framework. The direct robust stabil-
ising controllers and the robust tracking controllers for FASs
have been given in [14]. The full-actuation property allows
us to completely cancel out the known nonlinear term, thus
maximally transforming the control problem of a nonlinear
system into that of a linear system, bringing simplicity to
the control design while making it easy to achieve global re-
sults. Due to the above advantages, the FAS approach has
been further developed for the control of other complicated
uncertain systems, such as type I systems [15], high-order
strict feedback systems [16], strongly interconnected non-
linear systems [17] and sub-fully actuated systems [18].

In this paper, the stabilization control of the SLFJM in the
case of perturbed inertia is considered based on the FAS ap-
proach. First, the uncertain FAS model corresponding to the
original SLFJM is obtained by a state transformation. The
uncertainty of this model consists of two types: nonlinear
uncertainty and constant perturbed input matrix. Then, the
equivalent converted control problem is given and the robust
state feedback controller is designed using the full-actuation
property. Finally, it is proved by stability analysis that the
controller ensures that the states are globally bounded and
eventually converge into an arbitrarily small region centered
at the origin. The main contributions of this paper are in t-
wo points. Firstly, different from [10–12], this paper only
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designs a robust controller based on the full-actuation prop-
erty, without the need to use neural networks or observer-
s. Therefore, the control method is very simple. Secondly,
very few studies in the FAS framework have considered the
uncertain control input matrix, and this paper provides an
effective control method for this case.

The paper is divided into six sections. In Section 2, the
problems to be solved are formulated, and some prelimi-
nary results are presented in Section 3. In Section 4, a direct
robust controller for transformed FAS with perturbed input
matrix is given, and the stability of the closed-loop system
is proved. Simulation results are presented in Section 5, fol-
lowed by a brief conclusion.

In this paper, we notate the minimum eigenvalue and the
i-th eigenvalue of a nonsingular matrix A ∈ Rm×m as
λmin(A) and λi(A), respectively. For a vector z ∈ Rm,
we define its following norms ‖z‖2 = zTz and ‖z‖2A =
zTAz. Moreover, for a vector x ∈ Rr and a set of matrices
Ai ∈ Rr×r, i = 0, 1, . . . , n − 1, the following symbols are
frequently used in this paper:

x(0∼k) =
[
xT ẋT · · · (x(k))T

]T
,

A0∼n−1 =
[
A0 A1 · · · An−1

]
,

Φ (A0∼n−1) =


0 I

. . .
I

−A0 −A1 · · · −An−1

 .
2 Problem Formulation

2.1 The Original Problem
Based on the SLFJM model presented in [4, 7, 19], we

further consider the perturbation of the motor inertia as well
as the system subjected to the external disturbance d(t). The
dynamic equation is as follows:{

Iq̈1 +MgL sin q1 + k (q1 − q2) = 0
Jq̈2 − k (q1 − q2) = u+ d (t) ,

(1)

where q1, q2 are the angles of the link and the motor, u is
the torque of the motor, d (t) is the unknown external distur-
bance to the motor, I and J are moments of inertia relative
to the link and the motor, respectively, M is the link mass, L
is the distance from the flexible-joint to the center of mass of
the link, and k is the spring stiffness. We assume that there
is an uncertainty in the moment of inertia J, which can be
decomposed into the following form:

J = J0 + ∆J, (2)

where J0 is the known nominal value and ∆J represents the
uncertainty.

Considering the engineering application background of
the SLFJM model (1), we give the following assumptions
that are quite easy to satisfy.

Assumption 2.1. The constants k, J, and I are non-zero,
and the constant J0 > 0.

Assumption 2.2. There exist two known positive numbers
J̄ < 0.5J0 and d̄ such that

|∆J | ≤ J̄ , (3)

and
|d (t)| ≤ d̄. (4)

Remark 2.3. The above assumptions are common and
weak. Assumption 2.1 is a very common assumption that
can be satisfied in all previous studies on SLFJM control
(see [1–12]). Assumption 2.2 requires that the bound of the
perturbed inertia is less than half of the nominal value. Com-
pared to the assumptions that the parameter perturbations do
not exceed 10 or 20 per cent [10, 12], Assumption 2.2 is very
relaxed. At the same time, the requirement for the external
disturbance in Assumption 2.2 is very common.

Based on the above preparation, the control problem stud-
ied in this paper for the SLFJM model is as follows.

Problem 2.4. Let the system (1) satisfy Assumptions 2.1
and 2.2. Find a feedback control law u = u (q1, q2, q̇1, q̇2)
such that the states can be globally bounded and finally con-
verge into an arbitrarily small region centered at the origin.

Remark 2.5. Convergence to an arbitrarily small region
means that the stabilization problem can be solved. This is
acceptable because in practical engineering, many controls
usually make the state ultimately bounded. In contrast, this
paper achieves further better control by making the state ar-
bitrarily close to the origin. In addition, the global stabiliza-
tion result can be obtained in this paper.

2.2 The Converted Problem
To solve Problem 2.4, we first convert the original SLFJM

model (1) into a perturbed FAS model. We provide the fol-
lowing result to show the transformed FAS model.

Proposition 2.6. Let Assumptions 2.1 and 2.2 be met. Un-
der the following transformation

x = q1
ẋ = q̇1

ẍ =
k

I
q2 −

MgL

I
sin q1 −

k

I
q1

x(3) =
k

I
q̇2 −

MgL

I
q̇1 cos q1 −

k

I
q̇1,

(5)

the original SLFJM model (1) is equivalently transformed
into the following perturbed FAS:

x(4) = f
(
x(0∼2)

)
+ ∆f (x, ẍ, t) + (B + ∆B)u, (6)

where

f
(
x(0∼2)

)
= −MgL

I
ẍ cosx+

MgL

I
ẋ2 sinx− k

I
ẍ

− k

J0
ẍ− kMgL

IJ0
sinx, (7)

∆f (x, ẍ, t) =
k∆J

J0 (J0 + ∆J)
ẍ+

kMgL∆J

IJ0 (J0 + ∆J)
sinx

+
k

JI
d (t) , (8)

B =
k

IJ0
6= 0, (9)

and
∆B = − k∆J

IJ0 (J0 + ∆J)
. (10)
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Proof. Step 1: Obtaining the transformed model.
It follows from Assumption 2.1 and the first equation of

(1) that

q2 =
I

k
q̈1 +

MgL

k
sin q1 + q1. (11)

Taking the differential of (11), gives

q̇2 =
I

k
q
(3)
1 +

MgL

k
q̇1 cos q1 + q̇1. (12)

Further taking the differential of (12), yields

q̈2 =
I

k
q
(4)
1 +

MgL

k

d (q̇1 cos q1)

dt
+ q̈1

=
I

k
q
(4)
1 +

MgL

k

(
−q̇21 sin q1 + q̈1 cos q1

)
+ q̈1

=
I

k
q
(4)
1 −

MgL

k
q̇21 sin q1 +

MgL

k
q̈1 cos q1

+q̈1. (13)

Substituting (11) and (13) into the second equation of (1),
yields

q
(4)
1 =

MgL

I
q̇21 sin q1 −

MgL

I
q̈1 cos q1 −

k

I
q̈1 −

k

J
q̈1

−kMgL

JI
sin q1 +

k

JI
u+

k

JI
d. (14)

Considering the uncertainty in J , as shown in (2), we have

q
(4)
1 = f

(
q
(0∼2)
1

)
+ ∆f (q1, q̈1, t)

+

(
k

IJ0
− k∆J

IJ0 (J0 + ∆J)

)
u, (15)

where

f
(
q
(0∼2)
1

)
=

MgL

I
q̇21 sin q1 −

MgL

I
q̈1 cos q1 −

k

I
q̈1

− k

J0
q̈1 −

kMgL

IJ0
sin q1, (16)

and

∆f (q1, q̈1, t) =
k∆J

J0 (J0 + ∆J)
q̈1 +

kMgL∆J

IJ0 (J0 + ∆J)

× sin q1 +
k

JI
d (t) . (17)

According to Assumption 2.1, we obtain

k

J0I
6= 0. (18)

Based on the above results, we introduce the following rela-
tion

x = q1, (19)

then system (15)-(17) is equivalent to the perturbed FAS (6)-
(10).

Step 2: Deriving the corresponding transformation.
Recalling (19), we easily obtain

ẋ = q̇1. (20)

Taking the differential of (20) and using the first equation of
(1), we have

ẍ = −MgL

I
sin q1 −

k

I
q1 +

k

I
q2. (21)

Taking the differential of (21), we obtain

x(3) =
k

I
q̇2 −

MgL

I
q̇1 cos q1 −

k

I
q̇1. (22)

The combination of the equations (19)-(22) clearly gives the
transformation (5).

Next, we propose the following proposition for the trans-
formation (5).

Proposition 2.7. The transformation (5) is a one-to-one
mapping and keeps the origin unchanged.

Proof. It follows from transformation (5) that
q1 = x
q̇1 = ẋ

q2 =
I

k
ẍ+

MgL

k
sinx+ x

q̇2 =
I

k
x(3) +

MgL

k
ẋ cosx+ ẋ.

(23)

For an arbitrary q =
[
q1 q̇1 q2 q̇2

]T
, the unique x(0∼3)

is given by transformation (5). Conversely, for an arbi-
trary x(0∼3), the unique q is obtained by transformation (23).
Thus transformation (5) is a one-to-one mapping.

Let q = 0, then according to the transformation (5) we
obtain x(0∼3) = 0. Similarly, let x(0∼3) = 0, then q = 0 can
be obtained by the transformation (23). Therefore, it can be
proven that the origin remains unchanged.

Remark 2.8. According to transformation (23), if x(0∼3) is
arbitrarily close to the origin, then it is natural to obtain that
q is arbitrarily close to the origin.

Finally, based on the above discussion, Problem 2.4 is e-
quivalently converted into the following question.

Problem 2.9. Let the perturbed FAS (6)-(10) satisfy As-
sumptions 2.1 and 2.2. Find a feedback control law u =
ū
(
x(0∼3)

)
such that the state x(0∼3) is globally bounded and

finally converges into an arbitrarily small region centered at
the origin.

3 Preliminaries

In order to control the perturbed FAS (6)-(10), the follow-
ing lemmas proposed in [14] are needed.

Lemma 3.1 ([14]). Let A ∈ Rn×n satisfy

Reλi (A) ≤ −µ
2
, i = 1, 2, · · · , n, (24)

where µ > 0. Then there exists a positive definite matrix
P ∈ Rn×n satisfying

ATP + PA ≤ −µP. (25)

Lemma 3.2 ([14]). For any µ > 0, there exist a matrix
A0∼n−1 ∈ Rr×nr satisfying

Reλi (Φ (A0∼n−1)) ≤ −µ
2
, i = 1, 2, · · · , nr. (26)
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It is known from Lemma 3.1 that, when the condition in
(26) holds for some µ > 0, there exists a positive definite
matrix P satisfying

ΦT(A0∼n−1)P + PΦ (A0∼n−1) ≤ −µP. (27)

Partition P as

P =
[
P1 P2 · · · Pn

]
, Pi ∈ Rnr×r, (28)

we can further introduce the following notation which will
be frequently used in the paper:

PL , Pn. (29)

The following proposition gives all parametric solutions
of A0∼n−1, which is given by [14].

Proposition 3.3 ([14]). For an arbitrarily chosen F ∈
Rnr×nr, all the matrix A0∼n−1 ∈ Rr×nr and the nonsin-
gular matrix V ∈ Rnr×nr satisfying

Φ (A0∼n−1) = V FV −1 (30)

are given by

A0∼n−1 = −ZFnV −1 (Z,F )

V = V (Z,F ) =


Z
ZF

...
ZFn−1

 , (31)

whereZ ∈ Rr×nr is an arbitrary parameter matrix satisfying

detV (Z,F ) 6= 0. (32)

Remark 3.4. For the values of n and r in equations (26)-
(29), we specifically take n = 4 and r = 1 in the following.

4 Control Design

Assumption 2.2 needs to be satisfied for the perturbed
FAS (6)-(10), from which we get

|∆f (x, ẍ, t)| ≤ J̄

|J0 + ∆J |

∣∣∣∣ kJ0 ẍ
∣∣∣∣+

J̄

|J0 + ∆J |

×
∣∣∣∣kMgL

IJ0
sinx

∣∣∣∣+

∣∣∣∣ kJI
∣∣∣∣ d̄

≤ 2J̄

J0

∣∣∣∣ kJ0 ẍ
∣∣∣∣+

2J̄

J0

∣∣∣∣kMgL

IJ0
sinx

∣∣∣∣
+

2

J0

∣∣∣∣kI
∣∣∣∣ d̄, (33)

and ∣∣∣∣∆BB
∣∣∣∣ =

|∆J |
|J0 + ∆J |

≤ 2J̄

J0
< 1. (34)

For simplicity, we introduce the following notation for equa-
tion (33):

ρ (x, ẍ) =
2J̄

J0

∣∣∣∣ kJ0 ẍ
∣∣∣∣+ 2J̄

J0

∣∣∣∣kMgL

IJ0
sinx

∣∣∣∣+ 2

J0

∣∣∣∣kI
∣∣∣∣ d̄. (35)

To solve Problem 2.9, we give the following robust control
method for the perturbed FAS (6)-(10).

Theorem 4.1. Suppose that perturbed FAS (6)-(10) satisfies
Assumptions 2.1 and 2.2. Let µ and α be two arbitrarily
given positive numbers, A0∼3 ∈ R1×4 be a row vector satis-
fying (26), and P > 0 and PL ∈ R4 be given by (27)-(29).
Then, the following controller

u = − 1

B

(
f
(
x(0∼2)

)
+ v
)

v = A0∼3x
(0∼3) +

ρ̃2
(
x(0∼3)

)
4α

(
1− 2J̄

J0

)PT
L x

(0∼3), (36)

with

ρ̃
(
x(0∼3)

)
= ρ (x, ẍ) +

2J̄

J0

∣∣∣f (·) +A0∼3x
(0∼3)

∣∣∣ , (37)

guarantees that the state x(0∼3) finally converges into the fol-
lowing region

Θ =

{
x(0∼3)

∣∣∣∣∥∥∥x(0∼3)∥∥∥2 ≤ 2α

µλmin (P )

}
. (38)

Proof. Substituting the controller (36) into the perturbed
FAS (6)-(10), gives

x(4) = −A0∼3x
(0∼3) + ϕ

(
x(0∼3), t

)
, (39)

where

ϕ
(
x(0∼3), t

)
= ∆f (x, ẍ, t)

−
ρ̃2
(
x(0∼3)

)
4α

(
1− 2J̄

J0

)PT
L x

(0∼3)

−∆B

B

(
f
(
x(0∼2)

)
+ v
)
, (40)

with v is as shown in the second equation of (36). The above
closed-loop system (39) can be rewritten in the following
form:

ẋ(0∼3) = Φ (A0∼3)x(0∼3) +

[
0

ϕ
(
x(0∼3), t

)] . (41)

Since A0∼3 satisfies (26), there exists a positive definite ma-
trix P satisfying (27). Then we choose the following Lya-
punov candidate function:

V =
1

2

∥∥∥x(0∼3)∥∥∥2
P
. (42)

In view of (27), we have

V̇ =
1

2

(
x(0∼3)

)T (
ΦT (A0∼3)P + PΦ (A0∼3)

)
x(0∼3)

+
(
x(0∼3)

)T
PLϕ (·)

≤ −µV +W, (43)

where

W =
(
x(0∼3)

)T
PLϕ (·) . (44)
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Let us consider W. It follows from (33)-(35) and (40) that

W ≤
∣∣∣∣(x(0∼3))T PL∣∣∣∣ |∆f (·)| −

ρ̃2 (·)
∣∣∣(x(0∼3))T PL∣∣∣2

4α

(
1− 2J̄

J0

)
+

∣∣∣∣∆BB
∣∣∣∣ ∣∣∣∣(x(0∼3))T PL∣∣∣∣ ∣∣∣f (·) +A0∼3x

(0∼3)
∣∣∣

+
ρ̃2 (·)

4α

(
1− 2J̄

J0

) ∣∣∣∣∆BB
∣∣∣∣ ∣∣∣∣(x(0∼3))T PL∣∣∣∣2

≤ ρ (·)
∣∣∣∣(x(0∼3))T PL∣∣∣∣− ρ̃2 (·)

4α

∣∣∣∣(x(0∼3))T PL∣∣∣∣2
+

2J̄

J0

∣∣∣∣(x(0∼3))T PL∣∣∣∣ ∣∣∣f (·) +A0∼3x
(0∼3)

∣∣∣
= ρ̃ (·)

∣∣∣∣(x(0∼3))T PL∣∣∣∣− ρ̃2 (·)
4α

∣∣∣∣(x(0∼3))T PL∣∣∣∣2
≤ α. (45)

It follows from (43) that

V̇ ≤ −µV + α. (46)

Therefore, we have

V ≤ V (0) e−µt +
α

µ

(
1− e−µt

)
. (47)

Then we can easily obtain

lim
t→∞

V ≤ α

µ
. (48)

Further, we have

lim
t→∞

∥∥∥x(0∼3)∥∥∥2 ≤ 2α

µλmin (P )
. (49)

The proof is completed.

Remark 4.2. Since the positive numbers µ and α can be
arbitrary, it is clear that Θ can be adjusted to be arbitrarily
small so as to meet our expectations. Since the region Θ can
be adjusted to be arbitrarily small and the initial values of
x(0∼3) can be arbitrarily selected, the requirement of Prob-
lem 2.9 is satisfied.

5 Simulation Results

The numerical simulation is carried out using the follow-
ing parameters provided in [12]:

M = 2kg, L = 1m, I = 2kg ·m2,

k = 10N ·m/rad, J0 = 0.5kg ·m2. (50)

Considering that the perturbation of the inertia is generally
small in the engineering background, we give the perturbed
inertia and its upper bound as follows:

∆J = 0.1J0 = 0.05kg ·m2, J̄ = 0.2J0 = 0.1kg ·m2.
(51)

Also based on engineering considerations (see [10]), we
choose the external disturbance d (t) and the corresponding
upper bound as

d (t) = 0.2 sin (2πt) N ·m (52)

0 2 4 6 8 10
-0.5

0

0.5

Fig. 1: The states q1 and q̇1.

and
d̄ = 0.3N ·m, (53)

respectively.

5.1 Controller Design
According to Theorem 4.1, the robust controller is shown

in equation (36). Next, we design the parameters required by
the controller (36). Select µ = 2 and

F = diag

([
−2 −2
2 −2

]
,−5,−10

)
. (54)

Then according to Proposition 3.3, the matrix A0∼3 can be
compute as

A0∼3 =
[
400 320 118 19

]
. (55)

In view of (27)-(29), we can obtain

P =


16.8292 8.8087 1.7963 0.0461
8.8087 6.8633 1.4739 0.0529
1.7963 1.4739 0.5143 0.0189
0.0461 0.0529 0.0189 0.0026

 , (56)

and

PT
L =

[
0.0461 0.0529 0.0189 0.0026

]
. (57)

Further, we choose
α = 0.001. (58)

It follows from (35), (51) and (53) that

ρ (x, ẍ) = 8 |ẍ|+ 78.4 |sinx|+ 6. (59)

Then it follows from (37) that

ρ̃
(
x(0∼3)

)
= 8 |ẍ|+ 78.4 |sinx|+ 6 + 0.4 |f (·)

+
[
400 320 118 19

]
x(0∼3)

∣∣∣ .(60)

5.2 Results
Choose the following initial values for system (1):

q1 (0) = 0.18rad, q̇1 (0) = −0.28rad/s,

q2 (0) = 0.61rad, q̇2 (0) = −0.86rad/s.

Then the simulation results are displayed in Figs 1, 2 and 3,
which show the validity of the proposed method. After about
4 seconds, all states converge into an extremely small area
near the origin. In addition, the control amount is relatively
small, and its absolute value does not exceed 50 N ·m.
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Fig. 2: The states q2 and q̇2.
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Fig. 3: The control input.

6 Conclusion

Most of the control studies of SLFJMs with dynamic mod-
el (1) are limited to deterministic systems, and it is always
difficult to obtain global convergence characteristics. And
for those that rarely consider parameter perturbations, they
either transform the perturbations into a generalized distur-
bance or estimate them using intelligent control methods,
both of which have a certain level of complexity. The FAS
system transformed from the original SLFJM model has a
constant perturbed input control matrix, which is not eas-
ily addressed by the existing control strategies in the FAS
framework. In this case, the robust control problem of the
SLFJM with perturbed inertia is very challenging. In this
paper, a new robust control method is proposed based on the
FAS approach, which can satisfactorily solve the problem.
As a result, the state vector of the SLFJM is globally bound-
ed and finally converges into an arbitrarily small region cen-
tered at the origin.

In future research, more complicated situations will be
considered, such as robust control problems for single-order
FASs or multi-order FASs with perturbation input matrices.
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Abstract: This paper investigates the robust bounded-H∞ stabilization for a class of high-order fully actuated systems (FASs)
with time-varying uncertainty and disturbance. Based on the FAS approaches and the H∞ control, a robust bounded-H∞ con-
troller is designed, which guarantees that the system state and its derivatives of each order are globally bounded. Furthermore,
a combined disturbance, composed of part time-varying uncertainty and disturbance, is given. With the help of the combined
disturbance, the impact of the uncertainty and the disturbance on system output can be attenuated simultaneously, because the
closed-loop high-order FAS has the bounded-H∞ performance. A simulation example is provided to demonstrate the effective-
ness of the proposed control method.

Key Words: Fully Actuated System Approaches, Nonlinear Systems, Robust Control, H∞ Control

1 Introduction

Since Duan proposed firstly the fully actuated system
(FAS) approaches in series of articles [1–6], the approaches
have received wide attention. Using the FAS approaches
can not only offset directly system nonlinear terms, but also
obtain a nonlinear system with linear main part or closed-
loop linear one under specific conditions. It is more suit-
able for controller design than the first-order state space ap-
proaches. (The reader is referred to [1–6] and its relevant
works for a detailed discussion about the advantages of the
FAS approaches.) Relying on these advantages of the FAS
approaches, many significant works based on the FAS ap-
proaches have been done, including but not limited to the
fault-tolerant control [7, 8], the predictive control [9, 10],
and the event-triggered control [11, 12]. In practical appli-
cations, some results can also be seen in [13–15]. However,
there is relatively little research to focus on the H∞ control
based on the FAS approaches.

H∞ control can effectively attenuate external disturbance.
Many related works have been obtained [16–19]. For FASs,
there are some works [20, 21]. [20] investigated the H∞
control for second-order fully actuated cooperative manipu-
lators; The H∞ control problem for second-order fully ac-
tuated single-link robot arm was solved in [21]. However,
the investigated systems in [20, 21] only consider external
disturbance. The time-varying uncertainty is ignored, which
often occurs in practical applications.

Therefore, motivated by the aforementioned concerns,
this paper investigates the robust bounded-H∞ stabilisation
for a class of high-order FASs with time-varying uncertainty
and disturbance. Based on the FAS approaches and the
bounded-H∞ control proposed in [22], the robust bounded-
H∞ controller for the high-order FAS is designed, which

This work was supported in part by the Science Center Program of
National Natural Science Foundation of China (grant no. 62188101), the
Major Program of National Natural Science Foundation of China (grant nos.
61690210 and 61690212), the Self Planned Task of State Key Laboratory of
Robotics and System (HIT) (grant no. SKLRS201716A), and the National
Natural Science Foundation of China (grant no. 61333003).

ensures that the state and its derivatives of each order are
globally bounded.

The main contributions and innovations of this paper are
summarized as follows:

1) The bounded-H∞ control for high-order FAS is inves-
tigated firstly, which is more difficult to design robust con-
troller than second-order ones [20, 21];

2) The unknown uncertainty of system includes time-
varying factor, which is more complex than the FAS with-
out time-varying one [3]. Besides, the external disturbance
is also considered in the system, which further increases the
difficulties of controller design;

3) The combined disturbance is used, which contains the
uncertainty and the external disturbance;

4) The closed-loop system satisfies the bounded-H∞ per-
formance index. Therefore, all the impact of the uncertainty
and the disturbance on the system output can be attenuated.

The remainder of this paper is organized as follows: The
problem formulation is given in Section 2. Some useful pre-
liminaries are provided in Section 3. In Section 4, the robust
bounded-H∞ controller is designed for the high-order FAS,
and a main theorem is offered. In Section 5, the effectiveness
of the proposed control method is validated. The conclusion
appears in Section 6.

In the sequential sections, denote the k-th order deriva-
tive of a function f(t) by f (k)(t), and the i-th eigenvalue of

a matrix A by λi (A). Then, define ∥x∥ =
(
xTx

) 1
2 for a

vector x ∈ Rn. Besides, some symbols are frequently used:

x(0∼k) =


x
ẋ
...
x(k)

 ,

A0∼n−1 =
[
A0 A1 · · · An−1

]
,
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Φ
(
A0∼n−1

)
=


0 1
...

. . .
0 0 · · · 1

−A0 −A1 · · · −An−1

 , (1)

where k, n ∈ Z+, and Ai (i = 0, 1, · · · , n− 1) are a set of
proper constants.

2 Problem Formulation

Consider the following high-order FASs: x(n) = f
(
x(0∼n−1)

)
+∆f

(
x(0∼n−1), t

)
+Ψ

(
x(0∼n−1)

)
ω(t) + L

(
x(0∼n−1)

)
u,

y (t) = x,
(2)

where x, u, y ∈ R are the system state, the input
and the output, respectively; Ψ

(
x(0∼n−1)

)
, f

(
x(0∼n−1)

)
,

L
(
x(0∼n−1)

)
∈ R with Ψ(0) = f (0) = 0 are three known

continuous functions; ∆f
(
x(0∼n−1), t

)
is the time-varying

uncertainty; ω(t) ∈ L2 is a bounded external disturbance.
Therein, L2 denotes a square integrable space. For system
(2), two assumptions need to be satisfied:

Assumption 1 detL
(
x(0∼n−1)

)
̸= 0 or ∞ for ∀x(i) ∈ R,

i = 0, 1, · · · , n− 1.

Assumption 2 There are a known continuous function
ρ
(
x(0∼n−1)

)
≥ 0 and an unknown bounded function

D (t) ∈ L2 satisfying∥∥∥∆f
(
x(0∼n−1), t

)∥∥∥ ≤ ρ
(
x(0∼n−1)

)
+D (t) .

Remark 1 Assumption 1 is very common, and often
presents in the works to study the FAS approaches [3, 13].
Furthermore, Assumption 2 is also milder than [3] because
we consider the time-varying factor in the uncertain func-
tion. It should be illustrated that many engineering systems
satisfy Assumptions 1, 2, including but not limited to RLC
circuit [11] and pendulum system [23].

3 Preliminaries

Lemma 1 [24] For any real number ε > 0, the following
inequality holds:

xy ≤ εp

p
|x|p + 1

qεq
|y|q ,∀ (x, y) ∈ R2, (3)

where p > 1 and q > 1 are the constants satisfying
(p− 1) (q − 1) = 1.

Lemma 2 [3] For any µ > 0, there exist a series of con-
stants Ai ∈ R, i = 0, 1, · · · , n− 1 , such that

Reλi

(
Φ
(
A0∼n−1

))
< −µ

2
, i = 1, 2, · · · , n. (4)

Lemma 3 [3] If the matrix Φ
(
A0∼n−1

)
∈ Rn×n satisfies

Reλi

(
Φ
(
A0∼n−1

))
< −µ

2
, i = 1, 2, · · · , n

with µ > 0, then there is a positive definite matrix
P
(
A0∼n−1

)
∈ Rn×n, such that

Φ
(
A0∼n−1

)T
P + PΦ

(
A0∼n−1

)
≤ −µP. (5)

Lemma 4 [22, 25, 26] Let Θ(t), Υ(t) and ζ (t) be real con-
tinuous functions with ζ ≥ 0 defined in t ∈ [a, b]. If the
inequality

Θ(t) ≤ Υ(t) +

∫ t

a

ζ (s)Θ (s) ds (6)

holds, then

Θ(t) ≤ Υ(t) +

∫ t

a

ζ (s)Υ (s) e
∫ t
s
ζ(h)dhds. (7)

Definition 1 For high-order FAS (2), if there exists the con-
troller u, such that the response of output satisfies the fol-
lowing bounded-H∞ performance index∫ t

0

∥y (s)∥2 ds ≤ γ̄2

∫ t

0

∥ω̄ (s)∥2 ds+ d
(
x(0∼n−1) (0)

)
,

(8)
then the closed-loop system has the bounded-H∞ perfor-
mance, where d

(
x(0∼n−1) (0)

)
is a positive number, γ̄

is the disturbance attenuation coefficient, and ω̄ (t) =√
ω2 (t) +D2 (t) is the combined disturbance.

Control objective of this paper is given according to the
form of the following problem:

Problem 1 For high-order FAS (2), design a robust
bounded-H∞ controller, such that

1) the state and its derivatives of each order are globally
bounded;

2) the closed-loop system satisfies the inequality (8).

For simplicity of the deducing process, some functions
will be abbreviated, e.g., f

(
x(0∼n−1)

)
, ∆f

(
x(0∼n−1), t

)
and L

(
x(0∼n−1)

)
are denoted by f , ∆f and L, respectively.

4 Main Result

In this section, the robust bounded-H∞ controller for sys-
tem (2) will be designed, and the main theorem of this paper
is given in advance in order to illustrate simply our work.

For high-order FAS (2), the robust bounded-H∞ con-
troller is designed directly as

u = us + uh (9)

with
us = − 1

L

(
A0∼n−1x(0∼n−1) + f

)
(10)

and

uh =− 1

L
PT
Hx(0∼n−1)

×
(
1

4
ρ2 +

1

4γ2
+

1

4γ2
Ψ2

)
, (11)

where A0∼n−1 is the vector making Φ
(
A0∼n−1

)
satisfy (4),

γ > 0 is a design parameter, and PH is defined in (15).
Now, the theorem of this paper is given as follows:

Theorem 1 For high-order FAS (2) satisfying Assumptions
1, 2, if the control law is designed according to (9)-(11), then

1) the state and its derivatives x, ẋ,· · · ,x(n−1) are glob-
ally bounded,

2) the closed-loop system has the bounded-H∞ perfor-
mance.
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Proof: The proof process of Theorem 1 is divided into the
following two steps.

Step 1 Some pretreatments
Substituting (9) and (10) into the system (2) obtains

x(n) = −A0∼n−1x(0∼n−1) +∆f +Ψω + Luh.

Thus, one has

ẋ(0∼n−1) = Φ
(
A0∼n−1

)
x(0∼n−1)

+

[
0(n−1)×1

∆f +Ψω + Luh

]
. (12)

Choose the Lyapunov function candidate as

V1 =
1

2

(
x(0∼n−1)

)T

Px(0∼n−1), (13)

where P is a positive definite matrix satisfying the inequality
(5).

Taking derivative for (13) and using Lemma 3, there is

V̇1 =
1

2

(
x(0∼n−1)

)T (
ΦTP + PΦ

)
x(0∼n−1)

+
(
x(0∼n−1)

)T

P

[
0(n−1)×1

∆f +Ψω + Luh

]
≤− 1

2
µ
(
x(0∼n−1)

)T

Px(0∼n−1)

+
(
x(0∼n−1)

)T

PH∆f +
(
x(0∼n−1)

)T

PHΨω

+
(
x(0∼n−1)

)T

PHLuh, (14)

where

PH = P

[
0(n−1)×1

1

]
. (15)

Now, we handle the terms
(
x(0∼n−1)

)T
PH∆f and(

x(0∼n−1)
)T

PHΨω in (14). According to Assumption 2
and Lemma 1, the following inequalities hold.(

x(0∼n−1)
)T

PH∆f ≤
∥∥∥∥(x(0∼n−1)

)T

PH

∥∥∥∥ |ρ| × 1

+

∥∥∥∥(x(0∼n−1)
)T

PH

∥∥∥∥× |D|

≤ 1

4

∥∥∥∥(x(0∼n−1)
)T

PH

∥∥∥∥2 ρ2 + 1

+
1

4γ2

∥∥∥∥(x(0∼n−1)
)T

PH

∥∥∥∥2
+ γ2D2, (16)

(
x(0∼n−1)

)T

PHΨ× ω ≤ 1

4γ2

∥∥∥∥(x(0∼n−1)
)T

PH

∥∥∥∥2
×Ψ2 + γ2ω2. (17)

Therefore, the inequality (14) is rewritten into

V̇1 ≤− µV1 +

∥∥∥∥(x(0∼n−1)
)T

PH

∥∥∥∥2
×
(
1

4
ρ2 +

1

4γ2
+

1

4γ2
Ψ2

)
+ 1 + γ2ω̄2 +

(
x(0∼n−1)

)T

PHLuh (18)

with ω̄ (t) =
√
ω2 (t) +D2 (t).

Remark 2 ω̄ (t) =
√

ω2 (t) +D2 (t) contains the un-
known uncertain term and the external disturbance, and can-
not be offset directly by the controller design.

Step 2 The performance analysis of system (2)
Choose the final Lyapunov function as

V = V1 + ε > 0, (19)

where ε > 0 is a small constant.

Remark 3 The aim introducing the constant ε is to help us
complete the subsequent proof, of which the value is not re-
quired to be known for the controller design. It should be
emphasized that such treatment is also done in [22, 26].

From (11), (13) and (19), it is known that V̇ satisfies

V̇ ≤− (µ− 1)V1 + 1 + γ2ω̄2

− 1

2

(
x(0∼n−1)

)T

Px(0∼n−1)

≤− µ̃V1 + 1 + γ2ω̄2 − 1

2
λmin (P )

∥∥∥x(0∼n−1)
∥∥∥2

≤− µ̃V1 − ε+ ε+ 1 + γ2ω̄2

− 1

2
λmin (P )

∥∥∥x(0∼n−1)
∥∥∥2

≤− µ̂V + b− 1

2
λmin (P )

∥∥∥x(0∼n−1)
∥∥∥2 , (20)

where µ̃ = µ−1 > 0 which is easily satisfied as long as µ >
1, µ̂ = min {1, µ̃}, λmin (P ) is the minimum eigenvalue of
P , and b = b̄+ γ2ω̄2 with b̄ = ε+ 1 is a bounded constant.

Due to − 1
2λmin (P )

∥∥x(0∼n−1)
∥∥2 ≤ 0, it is obtained from

(20) that
V̇ (t) ≤ −µ̂V + b

which illustrates that the state and its derivatives x,
ẋ,· · · ,x(n−1) are globally bounded.

Further, because of V > 0 and (20), there is

V̇ +
1

2
λmin (P )

∥∥∥x(0∼n−1)
∥∥∥2 − γ2ω̄2 ≤ b̄ ≤ τV, (21)

where τ is a proper constant. Integrating (21) obtains

V (t) ≤
∫ t

0

−1

2
λmin (P )

∥∥∥x(0∼n−1) (s)
∥∥∥2

+ γ2ω̄2 (s) ds

+ V (0) +

∫ t

0

τV (s) ds. (22)

According to Lemma 4, if we respectively define Θ(t) =

V (t), Υ(t) = V (0) +
∫ t

0
− 1

2λmin (P )
∥∥x(0∼n−1) (s)

∥∥2 +
γ2ω̄2 (s) ds; ζ (s) = τ , then

Θ(t) ≤ Υ(t) +

∫ t

0

ζ (s)Υ (s) e
∫ t
s
ζ(h)dhds. (23)

Next, we will prove that Υ(t) > 0 holds. To seek a con-
tradiction, suppose that there is a time t = t̄ such that
Υ(t̄) ≤ 0. Therefore, from (23), one has

V (t̄) ≤ τ

∫ t̄

0

Υ(s) e
∫ t̄
s
τdhds ≤ 0, (24)
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which yields a contradiction because of V (t) > 0.
Thus, Υ(t) = V (0) +

∫ t

0
− 1

2λmin (P )
∥∥x(0∼n−1) (s)

∥∥2 +

γ2ω̄2 (s) ds > 0 which means that

V (0) +

∫ t

0

γ2ω̄2 (s) ds >

∫ t

0

1

2
λmin (P )

∥∥∥x(0∼n−1) (s)
∥∥∥2

ds,

(25)
and thus∫ t

0

∥y (s)∥2 ds ≤ γ̄2

∫ t

0

∥ω̄ (s)∥2 ds+ d (x (0)) (26)

with γ̄ = γ
√

2
λmin(P ) and d (x (0)) = 2

λmin(P )V (0). Ac-
cording to Definition 1, the closed-loop system (2) has the
bounded-H∞ performance. Therefore, the impact of the
combined disturbance ω̄ on system output can be attenuated
to the given extent γ̄.

Up to now, Theorem 1 has been proved.

Remark 4 From (26), because the combined disturbance ω̄
contains the part uncertain term and the disturbance, their
impact on system output can be attenuated simultaneously
by adjusting the value of γ to ensure the small value of γ̄.

Remark 5 The controller (9) includes directly or indirectly
the matrices P and A0∼n−1 to ensure (4), (5) and µ > 1, of
which the selection can be found in Propositions 3.3-3.4 in
[2].

5 Simulation Study

Consider the following system investigated in [27]: ẋ1 = 0.1x2
1 − x2,

ẋ2 = 0.2x1x2 + x1 + 2u,
y = x1.

(27)

From the first equation of (27), there are

ẍ1 = 0.2x1ẋ1 − ẋ2 (28)

and
x2 = 0.1x2

1 − ẋ1. (29)

Then, substituting the second equation of (27) and (29) into
(28) obtains {

ẍ = f +∆f + xω − 2u
y = x

(30)

with f = 0.4xẋ − 0.02x3 − x, where x1 is replaced by x.
Differently, the time-varying uncertainty ∆f and the exter-
nal disturbance term xω are introduced for proving the ro-
bustness of our control method. Therein, for ∆f and ω, we
consider the following two cases:

Case A: ∆f = ω = 0;
Case B: ∆f = ẋ2 + 0.5e−3t sin (4πt) and

ω =

 3 sin (2πt) , t ≤ 1.2;
18, 1.2 < t ≤ 2.2;
6e−2t, t > 2.2.

In fact, Case A is an ideal case. That is, the system (30)
does not suffer from the uncertainty and the disturbance. Ob-
viously, the system (30) satisfies Assumptions 1-2. Accord-
ing to Theorem 1, the robust bounded-H∞ controller is de-
signed as follows:
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time/s
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-0.5

0
10

-3

Fig. 1: y with two cases

u = us + uh (31)

with
us =

1

2

(
A0∼n−1x(0∼n−1) + f

)
, (32)

uh =
1

2
PT
Hx(0∼n−1)

×
(
1

4
ẋ4 +

1

4γ2
+

1

4γ2
x2

)
. (33)

Therein, the design matrices (parameter) are chosen respec-
tively as γ = 0.1,

A0∼1 =
[
48 14

]
, (34)

P =

[
3.7917 0.0208
0.0208 0.0729

]
, (35)

and thus

PH =

[
0.0208
0.0729

]
.

The system initial value is x(0∼1) (0) = [ −0.28 0.2 ]T.
The simulation results are shown in Figs.1-3. Fig.1 shows
the trajectories of x with two cases, namely, the system out-
put y. The trajectories of ẋ and u with two cases are depicted
in Figs.2-3, respectively. From Figs.1-2, the boundedness of
x and ẋ is shown. Moreover, it can be seen from Fig.1 that
the curves of the output y with two cases are basically consis-
tent, which illustrates that the robust bounded-H∞ controller
can attenuate the impact of the time-varying uncertainty and
the disturbance on system output. The above fact illustrates
the effectiveness of our control method.

6 Conclusions

This paper solves the robust bounded-H∞ control prob-
lem for a class of high-order FASs with time-varying un-
certainty and external disturbance. It has been proven that
the designed robust bounded-H∞ controller guarantees the
global boundedness of the system state and its derivatives of
each order, and can attenuate the impact of the uncertainty
and the disturbance on system output by adjusting the de-
sign parameter. Therefore, the control method proposed in
this paper has stronger robustness. A simulation example
proves the effectiveness of the proposed control method.
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Abstract: This article addresses an adaptive tracking control problem for uncertain high-order fully actuated (HOFA) systems
with unknown parameters and disturbances. Under the framework of backstepping, the unknown parameter is estimated and the
external disturbance is handled by using adaptive control and H∞ technique, respectively. Moreover, the Levant differentiator is
employed to reduce the computation burden. Additionally, the boundedness of signals in the closed-loop system is proven using
the Lyapunov theory. Finally, the effectiveness of the proposed scheme is validated through the simulation study.

Key Words: High-order fully actuated systems, adaptive backstepping, H∞ control, differentiator.

1 Introduction

In real applications, most of systems are the high-order
form, which presents some challenge to the state-space-
based traditional backstepping. Hence, a new strategy called
high-order fully actuated (HOFA) is proposed [1], which
avoids to convert a high-order system into the corresponding
first-order one, and reduces the computation process [2]. Au-
thors in [3] design a direct adaptive stabilizing controller and
tracking controller for HOFA systems. A high-order back-
stepping method is proposed in [4] to establish stabilizing
controller. By utilizing the backstepping, an adaptive event-
triggered fuzzy control scheme of HOFA systems is intro-
duced in [5]. However, it should be pointed out that how to
combine backstepping with HOFA approach is still an open
field.

It is well known that the differential explosion is a main
issue existed in the backstepping, which can be solved by
using the dynamic surface control and command filter. A
HOFA scheme is designed by combing the command filter
in [6], which is not required to convert the original system
into the first-order one. Under the output constraint, an adap-
tive control approach is investigated on the basis of the dy-
namic surface technique and barrier function for unknown
strict-feedback high-order systems [7]. Compared with the
traditional backstepping method, a simple design process is
introduced and a compensating strategy is established [8] to
reduce the filtering error. The above methods can solve the
differential explosion problem, however, they are sensitive
to design parameters and may cause the overshoot.

In the industrial process, the external disturbance cannot
be avoided. Among many ways to deal with disturbances,
H∞ is an effective method, but there are few results combin-
ing with the HOFA backstepping technique. In [9], the dis-
turbance is handled for HOFA nonlinear systems with strict-

This work was partially supported by the National Natural Science
Foundation of China (62373208, 62003097, 62033003), and Taishan Schol-
ar program of Shandong Province of China (tsqn202306218).

feedback structure, however, it cannot be used to address the
system with unknown parameters. Authors of [10] only em-
ploy one adaptive law to estimate the uncertain parameter to
solve the overestimated problem, and an adaptive stability
controller is given for the HOFA plant. However, the above
schemes still exist the computation complex problem.

Based on the above discussions, this work considers a
nonlinear HOFA model with unknown parameters and dis-
turbances. The adaptive controller andH∞ method are com-
bined to address unknown parameters and external distur-
bances. Moreover, the differentiator is introduced to reduce
the computational complexity caused by the repeated differ-
entiation of the virtual controller.

The organization of the remainder is given as: In Section
2, some preliminaries are introduced. The main result is giv-
en in Section 3. Simulation study and conclusion are demon-
strated in Sections 4 and 5, respectively.

Notations: ℜ is the real number domain; ℜr represents r
dimensional Euclidean space; ℜi×j describes the i × j ma-
trix; [·]T represents the transpose of a matrix; 0i×j is a zero
matrix of i × j and Ir represents the r-dimensional identity
matrix.

2 Preliminaries

Consider the following nonlinear plant with unknown pa-
rameters and external disturbances

x
(m1)
1 =f1

(
x
(0∼m1−1)
1

)
+ g1

(
x
(0∼m1−1)
1

)
x2 + ψ1

T

×
(
x
(0∼m1−1)
1

)
θ + s1

(
x
(0∼m1−1)
1

)
ω

ẋi =fi (x̄i) + gi (x̄i)xi+1 + ψi
T (x̄i) θ + si (x̄i)ω

ẋn =fn (x̄n) + gn (x̄n)u+ ψn
T (x̄n) θ + sn (x̄n)ω

y =x1 (1)

where i = 2, 3, · · · , n − 1; m1 > 1 is an integer;
xi ∈ ℜr is the state variable; u ∈ ℜr and y ∈ ℜr are
the control input and system output, respectively; xi =
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[(
x
(0∼m1−1)
1

)T
, x2, · · · , xi

]T
; fi (·) ∈ ℜr is a known vec-

tor, gi (·) ∈ ℜr×r, si (·) ∈ ℜr×r and ψT
i (·) ∈ ℜr×r are

known functions, θ ∈ ℜr is an unknown constant vector;
ω ∈ ℜr is an uncertain external disturbance; and

x
(0∼m1−1)
1 =


x
ẋ
...

x
(m1−1)
1


The goal of this paper is to design the controller and adap-

tive law to make sure that
(1) When ω (t) = 0, all signals in the closed-loop system are
bounded;
(2) When ω (t) ∈ L2, the following inequality holds:∫ T

0

||y (t)− yr (t) ||2dt ≤ λ

∫ T

0

||ω (t) ||2dt+Ω0T (2)

where yr ∈ ℜr is the desired output signal, Ω0 is a positive
constant, and λ > 0 is an H∞ performance index.

In order to obtain the above control goal, some assump-
tions and lemmas are required.

Assumption 1 [11] The reference signal yr and its deriva-
tives up to the (m1 + n− 1)th are continuous and bounded.

Assumption 2 [1] gi (x̄i) is a sufficiently smooth func-
tion, which satisfies the following full-actuation condition:
gi (x̄i) ̸= 0 for ∀x̄i ∈ Rm1+i−1, i = 1, 2, ..., n.

Lemma 1 [12] Consider the following Levant differentia-
tor:

k̇1 (t) = k2 (t)− h1|k1 (t)− α (t) | 12 sign (k1 (t)− α (t))

k̇2 (t) = −h2sign (k1 (t)− α (t)) (3)

where α (t) and k1 (t) are the input and output, respectively,
if there exists α0t whose first derivative is Lipschitz such that
|α (t)−α0 (t) | ≤ ε, then one can approximately select pos-
itive parameters h1 and h2 such that the following condition
holds within a finite time:

|k1 (t)− α0 (t) | ≤ ε̄1
|k̇1 (t)− α̇0 (t) | ≤ ε̄2

where ε̄1 and ε̄2 are positive scalars determined by h1 and
h2.

Lemma 2 [13] For any µ > 0, there exists a matrix
A0∼m1−1 that satisfies the following condition:

Re
(
λi
(
Φi
(
A0∼m1−1

)))
< −µ

2
, i = 1, 2, ...,m1 (4)

where A0∼m1−1 = [A0 A1 ... Am1−1] and Aj ∈
ℜr×r, j = 1, ...,m1 − 1.

Lemma 3 [13] If Φ
(
A0∼m1−1

)
satisfies (4), then there

must exist a positive definite matrix P
(
A0∼m1−1

)
∈

ℜm1r×m1r such that

Φ
(
A0∼m1−1

)T
P
(
A0∼m1−1

)
+ P

(
A0∼m1−1

)
Φ
(
A0∼m1−1

)
≤ −µP

(
A0∼m1−1

)
(5)

with

Φ
(
A0∼m1−1

)
=


0 Ir
...

. . .
0 0 · · · Ir

−A0 −A1 · · · −Am1−1


3 Main Results

3.1 Controller design
First, a series of coordinate transformations is designed as

z1 = x1 − yr

zi = xi − αi−1

zn = xn − αn−1 (6)

where αi ∈ ℜr, i = 1, ..., n− 1 are virtual controllers.
Then, the controller design includes the following n steps.
Step 1: From z1 = y − yr and (1), one has

z
(m1)
1 = f1 + g1z2 + g1α1 + ψ1

Tθ + s1ω − y(m1)
r (7)

The virtual controller is selected as

α1 =− g−1
1

(
A0∼m1−1z

(0∼m1−1)
1 + f1 − y(m1)

r + ψT
1 θ̂

+Γ1) (8)

where Γ1 ∈ ℜr is an unknown vector function designed lat-
er, and θ̂ ∈ ℜr is the estimated value of θ.

Substituting (8) into (7) yields

z
(m1)
1 =−A0∼m1−1z

(0∼m1−1)
1 + ψ1

Tθ̃ + s1ω

− Γ1 + g1z2 (9)

with θ̃ = θ − θ̂.
Then, (9) is converted into

ż
(0∼m1−1)
1 =Φ

(
A0∼m1−1

)
z
(0∼m1−1)
1

+

[
0(m1−1)×1

ψT
1 θ̃ + s1ω − Γ1 + g1z2

]
(10)

Choose the Lyapunov function as

V1 =
1

2

(
z
(0∼m1−1)
1

)T
P
(
A0∼m1−1

) (
z
(0∼m1−1)
1

)
+

1

2
θ̃Tθ̃ (11)

For simplicity, let P (A0∼m1−1) and Φ(A0∼m1−1) as P
and Φ, respectively. Then, it follows from Lemma 3, (10)
and (11) that one has

V̇1 =
1

2

[(
ż
(0∼m1−1)
1

)T
Pz

(0∼m1−1)
1 +

(
z
(0∼m1−1)
1

)T
P

×ż(0∼m1−1)
1

]
− θ̃T

˙̂
θ

=
1

2

[(
z
(0∼m1−1)
1

)T
ΦTPz

(0∼m1−1)
1 +

(
z
(0∼m1−1)
1

)T
PΦ

×z(0∼m1−1)
1

]
+
(
z
(0∼m1−1)
1

)T
PH

(
g1z2 + ψT

1 θ̃

+s1ω − Γ1)− θ̃T
˙̂
θ (12)
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with PH = P
(
A0∼m1−1

) [ 0(m1−1)r×r
Ir

]
.

According to Young’s inequality, it gives(
z
(0∼m1−1)
1

)T
PHs1ω ≤ 1

2γ

(
z
(0∼m1−1)
1

)T
PHs1s

T
1 P

T
H

× z
(0∼m1−1)
1 +

1

2
γωTω (13)

where γ is an adjustable positive constant, which combines
with Lemma 3, we have

V̇1 ≤− 1

2
µ
(
z
(0∼m1−1)
1

)T
Pz

(0∼m1−1)
1 +

1

2
γωTω

−
(
z
(0∼m1−1)
1

)T
PH

(
Γ1 −

1

2γ
s1s

T
1 P

T
Hz

(0∼m1−1)
1

)
− θ̃T

(
˙̂
θ − ψ1P

T
Hz

(0∼m1−1)
1

)
+
(
z
(0∼m1−1)
1

)T
PHg1z2

(14)

So far, Γ1 can be defined by

Γ1 =
1

2γ
s1s

T
1 P

T
Hz

(0∼m1−1)
1 (15)

Step i (2 ≤ i ≤ n − 1). To solve the problem of differ-
ential explosion, we introduced the Levant differentiator to
filter the derivatives of the virtual controller. In this paper,
xi,c is used to represent the filter output of the differentiator,
that is

xi,c = α̇i − ei (16)

where ei represents the filtering error.
It can be deduced from Lemma 1 that ei is bounded within

a finite time. Then, computing the derivation of αi−1 and
applying Lemma 1 has

α̇i−1 = ei−1 + xi−1,c (17)

Based on (6) and (17), it produces

żi =fi + gizi+1 + giαi + ψT
i θ + siω − xi−1,c

− ei−1 (18)

Consider the following Lyapunov function

Vi = Vi−1 +
1

2
zTi zi (19)

and its derivative as

V̇i =V̇i−1 + zTi żi (20)

≤− 1

2
µ
(
z
(0∼m1−1)
1

)T
P
(
A0∼m1−1

)
z
(0∼m1−1)
1 −

i−1∑
k=2

×
(
ck −

1

2

)
zk

Tzk +
i− 1

2
γωTω +

i−2∑
l=1

1

2
el

Tel − θ̃T

×

(
˙̂
θ − ψ1P

T
Hz

(0∼m1−1)
1 −

i−1∑
p=2

ψpzp

)
+ χi + zTi (fi

+gizi+1 + giαi + ψT
i θ + siω − xi−1,c − ei−1

)
(21)

where el is a filter error, and

χi =

{ (
z
(0∼m1−1)
1

)T
PHg1z2, (i = 2)

zTi−1gi−1zi, (i > 2)

Design the virtual controller as

αi = − 1

gi−1

(
zi + cizi + fi + ψT

i θ̂ + Γi − xi−1,c

)
(22)

where ci > 0 is a design parameter, Γi is an unknown func-
tion designed later, and

zi =
{
gT1 P

T
Hz

(0∼m1−1)
1 , (i = 2)

gTi−1zi−1(i > 2)

Based on Young’s inequality, it has

zTi siω ≤ 1

2γ
zTi sis

T
i zi +

1

2
γωTω (23)

−zTi ei−1 ≤ 1

2
zTi zi +

1

2
eTi−1ei−1 (24)

By using (22), (23) and (24), we have

V̇i ≤− 1

2
µ
(
z
(0∼m1−1)
1

)T
P
(
A0∼m1−1

)
z
(0∼m1−1)
1

−
i∑

k=2

(
ck −

1

2

)
zk

Tzk +
i

2
γωTω +

i−1∑
l=1

1

2
el

Tel

− θ̃T

(
˙̂
θ − ψ1P

T
Hz

(0∼m1−1)
1 −

i∑
p=2

ψpzp

)

− zTi

(
Γi −

1

2γ
sis

T
i zi

)
+ zTi gizi+1 (25)

Then, Γi is designed by

Γi =
1

2γ
sis

T
i zi (26)

Step n: Similar to Step i, it gives

α̇n−1 = en−1 + xn−1,c (27)

Due to (6) and (27), it is easy to obtain

żn =ẋn − α̇n−1

=fn + gnu+ ψT
n θ + snω − xn−1,c − en−1 (28)

Select the Lyapunov function as

Vn = Vn−1 +
1

2
zTn zn (29)

Taking the time-derivative of Vn has

V̇n =V̇n−1 + zTn żn

≤− 1

2
µ
(
z
(0∼m1−1)
1

)T
P
(
A0∼m1−1

)
z
(0∼m1−1)
1

−
n−1∑
k=2

(
ck −

1

2

)
zTk zk +

n− 1

2
γωTω +

n−2∑
l=1

1

2
eTl el

− θ̃T

(
˙̂
θ − ψ1P

T
Hz

(0∼m1−1)
1 −

n−1∑
p=2

ψpzp

)
+ zTn−1gnzn + zTn

(
fn + gnu+ ψT

n θ

+snω − xn−1,c − en−1) (30)
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Then, the real controller is designed as

u = −g−1
n

(
zn + cnzn + fn + ψT

n θ̂ + Γn − xn−1,c

)
(31)

where Γn = 1
2γ sns

T
nzn and zn = gTn−1zn−1.

Substituting (31) into (30) gets

V̇n ≤ −1

2
µ
(
z
(0∼m1−1)
1

)T
P
(
A0∼m1−1

)
z
(0∼m1−1)
1

−
n∑
k=2

(
ck −

1

2

)
zTk zk +

n

2
γωTω +

n−1∑
l=1

1

2
el

Tel

− θ̃T

(
˙̂
θ − ψ1P

T
Hz

(0∼m1−1)
1 −

n∑
p=2

ψpzp

)
(32)

Then, the adaptive law can be designed as

˙̂
θ = ψ1P

T
Hz

(0∼m1−1)
1 +

n∑
p=2

ψpzp − βθ̂ (33)

3.2 Stability analysis
Theorem 1 Under Assumptions 1-2, if virtual controllers,
control input signal and adaptive law are designed as (8),
(22), (29) and (32), respectively, the HOFA system (1) satis-
fies the following properties:

(1) All signals in the closed-loop system are bounded;
(2) H∞ tracking index is achieved.

Proof. By substituting (33) into (32), we have

V̇n ≤ −1

2
µ
(
z
(0∼m1−1)
1

)T
P
(
A0∼m1−1

)
z
(0∼m1−1)
1

−
n∑
k=2

(
ck −

1

2

)
zk

Tzk +
n

2
γωTω +

n−1∑
l=1

1

2
eTl el

+ βθ̃Tθ̂ (34)

From Young’s inequality, it can be derived that

βθ̃Tθ̂ = βθ̃Tθ − βθ̃Tθ̃ (35)

≤ 1

2
βθ̃Tθ̃ +

1

2
βθTθ − βθ̃Tθ̃ =

1

2
βθTθ − 1

2
βθ̃Tθ̃

According to (34) and (35), it has

V̇n ≤ −1

2
µ
(
z
(0∼m1−1)
1

)T
P
(
A0∼m1−1

)
z
(0∼m1−1)
1

−
n∑
k=2

(
ck −

1

2

)
zk

Tzk +
n

2
γωTω +

n−1∑
l=1

1

2
eTl el

+
1

2
βθTθ − 1

2
βθ̃Tθ̃ (36)

From Lemma 3, there is a positive constant ϵ such that
n∑
l=1

1
2el

Tel ≤ ϵ. Therefor, when ω = 0, the inequality (36)

can be transformed into

V̇n ≤ −cV +K (37)

where c = min
{

1
2µ, c2 −

1
2 , ..., cn − 1

2 ,
1
2β
}

and K = ϵ +
1
2βθ

2.

Let q = K
c and integrate (37) over the interval (0, t) re-

sults in

V (t) ≤ q + [V (0)− q] e−ct (38)

which means that the property (1) of Theorem 1 holds.
When ω ∈ L2, (36) can be transformed into

V̇n ≤ n

2
γ ∥ω∥2 − 1

2
µ̄
∥∥∥z(0∼m1−1)

1

∥∥∥2 +Ω0 (39)

where µ̄ = µλmin(P ) and Ω0 = ϵ+ 1
2βθ

2.
Integrating (39) yields∫ T

0

1

2
µ̄
∥∥∥z(0∼m1−1)

1

∥∥∥2 dt ≤ ∫ T

0

n

2
γ ∥ω∥2 dt+Ω0T (40)

which can be further transformed as∫ T

0

∥y(t)− yt(t)∥2 dt ≤ λ

∫ T

0

∥ω∥2 dt+Ω0T (41)

where λ ≥ nγ
µ̄ .

Therefore, H∞ tracking index is achieved. �
4 Simulation Results

According to [14], consider a manipulator simulation sys-
tem as

Jq̈ +Bq̇ +N sin q = τ

Mτ̇ + H̄τ = u− K̄mq̇ (42)

where q̈, q̇ and q represent the acceleration, velocity and po-
sition of the manipulator, respectively. τ̇ and τ are the veloc-
ity and motor shaft angle, respectively. u is the motor torque.
Moreover, J = 1, B = 1, N = 2, M = 1, H̄ = 0.7 and
K̄m = 9.

By setting x1 = q, x2 = τ , the model (42) can be refor-
mulated as follow:

ẍ1 = f1 (x̄1) + ψT
1 (x̄1) θ + g1 (x̄1)x2 + s1 (x̄1)ω

ẋ2 = f2 (x̄2) + ψT
2 (x̄2) θ + g2 (x̄2)u+ s2 (x̄2)ω

y = x1 (43)

where f1 (x̄1) = −ẋ1, ψT
1 (x̄1) = − sinx1, f2 (x̄2) =

−9ẋ1, ψT
2 (x̄2) = −0.35x2, s1 (x̄1) = 1, s2 (x̄2) = 0.1,

ω = [10 sin (2πft)] e(−0.1t), and f = 0.02.
The parameters are chosen as P

(
A0∼m1−1

)
=[

1.2157 0.0013
0.0013 0.0025

]
, A0∼m1−1 = [380 200].

Simulation results are shown in Figs. 1-4. From Fig. 1, it
can be seen that the system output is able to track the refer-
ence signal well. Fig. 2 shows the trajectory of the control
input signal u. The output of the filter is presented in Fig.
3. Fig. 4 presents the filtering error, which indicates that the
design filter has a good performance.
5 Conclusion

In this paper, the adaptive tracking control problem of
nonlinear HOFA systems with unknown parameters and dis-
turbances is addressed. With the help of the backstepping
method, an adaptive H∞ controller is built to deal with un-
known parameters and disturbances. The proposed method
can guarantee the boundedness of all signals and the system
stability is analyzed by employing Lyapunov stability the-
ory. A manipulator simulation is made to demonstrate the
effectiveness of the designed scheme.
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Fig. 1: Controller Tracking Performance
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Abstract: This paper investigates the problem of stabilization control of hydroelectric generating units. Firstly, the fully actuated
system model of the linear hydraulic turbine is established by using the theory of fully actuated system. Then the control law is
designed by using the direct parameterization method, which can configure the closed-loop poles of the hydraulic turbine system
expectation or region and ensure the stable operation of the hydraulic turbine regulating system with a small control gain. Finally,
a nonlinear active disturbance rejection control method is proposed for the internal and external disturbances in the control of the
fully actuated system. The simulation results demonstrate the effectiveness of the proposed control method.

Key Words: Fully Actuated System Approach, Direct Parameterization Approach, Active Disturbance Rejection Control, Tur-
bine Regulation System

1 Introduction

Hydroelectric power plants are important water facilities
for the conversion of water energy into electrical energy, and
clean energy forms of power generation are becoming in-
creasingly prominent in the grid. According to the World Hy-
dropower Outlook report released by the International Hy-
dropower Association, it is pointed out that in 2022, the new
global installed hydropower capacity will be 34 GW and
hydropower will account for more than 15% of the global
power supply. And the installed capacity of China’s Three
Gorges Group will reach 125 million KW by 2022. There-
fore, hydroelectric generating units play an extremely im-
portant role in the generation of electricity to the power grid
and at the same time, this will also bring more complex chal-
lenges to the stable operation of hydroelectric power plants.

Turbine regulation system is a comprehensive control sys-
tem integrating water, machine and electricity. In [1], the
system structure can be categorized into the control system
as well as the controlled system, where the controlled system
is mainly the turbine and generator and the control system is
the governor. In recent years, the research on the control de-
sign of hydroelectric unit governors has attracted the atten-
tion of scholars. Many effective control methods have been
proposed, it is mainly divided into traditional PID control
and modern control.

In the traditional control of turbine regulation system, PID

This work is supported by the Support Plan for Scientific and Tech-
nological Innovation Team of Colleges and Universities in Henan Province
(No. 22IRTSTHN011), Outstanding Youth Fund of Henan Provincial Natu-
ral Science Foundation (No. 242300421054), Zhengzhou Science and Tech-
nology Collaborative Innovation Project in 2022, National Natural Science
Foundation General Project (62173126), Central Plains Science and Tech-
nology Innovation Leading Talent Support Program (234200510027) and
Henan Provincial Education Science Planning Project (2023YB0270).

control is an error feedback-based control method that aims
to bring the system output to the desired value by control-
ling the error. In [2,3], the traditional PID controllers com-
monly used in hydropower plants are simple in structure and
easy to adjust the parameters. With the optimization and im-
provement of control strategies, scholars at home and abroad
have proposed some optimization parameter algorithms such
as fuzzy adaptive PID control, fractional order PID control,
BP neural network PID control, etc. Although these algo-
rithms can improve the system requirements, it is difficult to
accurately control the complexity of the turbine regulation
system itself and the increase in unstable conditions leads to
poor regulation quality of PID control.

With the intelligence of computers and the inability of
traditional PID to cope with today’s more complex turbine
regulation systems, modern control strategies show certain
advantages and their control algorithms mainly include slid-
ing mode control algorithms, fuzzy control algorithms, adap-
tive control algorithms, etc. Literature [4,5,6] have designed
improved sliding mode controller, which mainly considers
the vibration jitter problem of the system in sliding mod-
e control. Although this controller can effectively reduce
the vibration phenomenon and trajectory tracking error in
the sliding mode control, it is more complicated to design
the improved sliding mode control rate. Literature [7,8] es-
tablished T-S fuzzy model using single-point fuzzification,
product inference and average-weighted defuzzification for
the complex characteristics of the hydraulic turbine regula-
tion system and proposed a fuzzy controller. But the con-
troller’s relatively low control accuracy as well as the inap-
propriate selection of fuzzy rules may lead to a poor control
effect. The Literature [9] designed a nonlinear adaptive wa-
ter gate control method based on differential geometry and
adaptive control theory for the inherent nonlinear parameter
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uncertainty of hydroelectric generating units and the control
algorithm improves the adaptive ability of the system param-
eter uncertainty. However, the adaptive controller needs to
constantly monitor the system changes in real time and ad-
just the parameters dynamically, which will make the system
less stable or even destabilized under certain circumstances.

Through the detailed analysis of the above control meth-
ods, it can be found that the traditional and modern control
strategies cannot achieve the desired effect of the control sys-
tem. Academician Guangren Duan proposed a fully actuated
system control method. In the literature [10], it was pointed
out that the fully actuated system has unique advantages in
terms of controller design. It is further pointed out that the
fully actuated system model is obtained either by directly
obtaining the fully actuated system model from the original
model of the laws of physics or by transforming the origi-
nal system into a model of the fully actuated system using
the variable elimination equivalence transformation. In re-
cent years, the research applications of high-order fully ac-
tuated (HOFA) systems have become increasingly popular,
which are mainly applied to higher-order backstepping de-
sign, adaptive control design, robust control design and op-
timal control design. In the literature [11], a direct approach
for the design of robust stabilizing controllers and robust
tracking controllers for an uncertain single high-order ful-
ly actuated (HOFA) systems model are proposed. And the
global convergence of the state vector of the system to an el-
lipsoid of arbitrarily small radius is illustrated in a first-order
strict-feedback system (SFS) application. In reference [12],
the problem of optimal control of a dynamical system rep-
resented by a general high-order fully actuated (HOFA) sys-
tems model is presented, where the core of the control is the
objective of minimizing the quadratic form of the state and
its derivatives. This optimal control technique is applied to
spacecraft attitude control and exhibits a stable and smooth
dynamic response.

In the control process of the fully actuated system, be-
cause the stable operation of the turbine regulation system is
affected by unit vibration, water hammer phenomenon in the
overwater system, pressure water head fluctuation and the in-
fluence of power supply side output change under the com-
pound energy of the power system. The core of the active
disturbance rejection control is to estimate and compensate
for these influences by attributing them to the total pertur-
bation of the system. Therefore, to have better steady-state
performance as well as dynamic performance of the turbine
regulation system, this paper proposes a combination of the
fully actuated system theory and active disturbance rejection
control. In the following, the application of the method of
combining a fully actuated system with active disturbance
rejection control to a hydraulic turbine regulation system is
discussed in detail.

The remainder of the paper is structured as follows: The
second part presents the mathematical model of the turbine
regulation system and the related parameter notation. The
third part first models the turbine system based on the theory
of a fully actuated system, and then the controller design is
carried out based on this model using parametric methods.
The fourth part further controls the turbine regulation sys-
tem based on the fully actuated system in combination with

active disturbance rejection control. The fifth part verifies
the effectiveness of the designed control algorithm by sim-
ulating the turbine regulation system based on the design of
the fully actuated system controller and active disturbance
rejection control controller. Finally, Part VI provides some
concluding remarks.
2 Mathematical modeling of the turbine regula-

tion system

The turbine regulation system consists of the water diver-
sion system, the hydraulic servo system, the turbine system
and the generator system, respectively. The system is a non-
minimum phase system due to the effect of the water ham-
mer in the diversion system. According to the literature [13],
the linear dynamics of the turbine regulation system is mod-
eled as follows



ṅ = −emn − en
Tab

n+
emα
Tab

α+
emh
Tab

h− 1

Tab
mg0

α̇ =
1

Ty
(u− α)

ḣ =
eneqn
eqhTab

n+

(
eqα
eqhTy

− eqnemα
eqhTab

)
α− eqα

eqhTy
u

−
(
eqnemh
eqhTab

+
1

eqhTw

)
h+

eqn
eqhTab

mg0

(1)
Where n, α, h are turbine state vectors of dimension 1,

representing the rotational speed, guide vane opening, head;
u,mg0 are the input vectors of a system of dimension 1,
representing the control input of the governor and the load
disturbance torque respectively; en represents the integrat-
ed self-regulation parameters of the unit; Tab represents the
time constant of inertia of the rotating part of the unit and
the load; Tw, Ty represent the pressure diversion system wa-
ter flow inertia time constant and the receiver reaction time
constant, respectively; emn, emα, emh, eqn, eqα, eqh repre-
sent turbine torque and flow rate to the speed, guide vane
opening and head transfer coefficient, respectively.

According to the theory of fully actuated system, it is
known that system (1) is an under-actuated system and it is
necessary to transform this system into a fully actuated sys-
tem by means of eliminating the element and upgrading the
level. A study of the dynamic characteristics of the system
(1) in the literature [13] shows that the system is greatly af-
fected by interference factors and is in an unstable state, so
the stable operation of the turbine is ensured by the combina-
tion of fully actuated system and active disturbance rejection
control.
3 Fully actuated system modeling and controller

design

In the literature [14], the hydraulic turbine regulation sys-
tem is known to be controllable. According to the knowledge
of the multiple-input-multiple-output canonical type of lin-
ear system theory, it is possible to transform system (1) into
second Luenberger canonical type of the following

˙̂x = Âcx̂+ B̂cu (2)

Where
Âc = SAS−1
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Here the controllability index of this system second con-
trollable norm type is µ1 = 2, µ2 = 1 .

According to the literature [15], equation (2) can be
rewritten as a fully actuated system model of the following
form

Eq̈ +A1q̇ +A0q = B̃u (3)

where

E =

[
1 0
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]
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In equation (3), q ∈ R2×1 is the state variable of the sys-
tem, q1, q2 are the rotational speed and head of the turbine
speed control system, respectively. u ∈ R2×1 is the control

input. B̃ and E,Ai, i = 0, 1 are real coefficient matrices of
dimension 2.

In order to design the controller of the fully actuated sys-
tem (3) using the direct parametric method, the following
two assumptions need to be satisfied.

Assumption 1:det(E) = 0.
Assumption 2:det(B̃) 6= 0.
Lemma 1:[16] For the fully actuated system (3), the con-

troller can be designed as follows{
u = B̃−1 [(A1q̇ +A0q) + u∗]

u∗ = Ā0∼ξ−1q
(0∼ξ−1) + ν, ξ = 2

(4)

where ν is the external input vector and matrix Ā0∼ξ−1, ξ =
2 is required to be designed. Controllers designed using ful-
ly actuated characteristics can cancel the open-loop system
characteristics to obtain the desired linear constant closed-
loop system characteristics.

The fully actuated system model (3) can be transformed
into the following first-order linear constant closed-loop sys-
tem form by the above controller design

EcẊ = AcX +Bcν (5)

where
X =

[
q q̇

]T
(6)

Ec =

[
In 0
0 E

]
(7)

Ac =

[
0 In
−Ā0 −Ā1

]
(8)

Bc =
[
0 In

]T
(9)

The matrix E is a dissatisfaction rank matrix. According
to the literature [10], it is known that the closed-loop system
(5) has three finite relative eigenvalues and one infinite rel-
ative eigenvalue. Then, a direct parameterization is used to
design the desired matrix Ā0∼ξ−1, ξ = 2 after the following
three steps.

Step 1: Define two constraints
F ∈ R3×3

Z ∈ R2×3

V (Z,F ) =
[
Z ZF

]T (10)

The matrix Z is the parameter matrix to be designed. Ma-
trix F is the Jordan standard type of finite eigenvalues of
the closed-loop system. Matrix V is the generalized finite
eigenvector matrix of the closed-loop system.

Step 2: Define the following matrix{
V∞ ∈ R2×1

EV∞ = 0, rankV∞ = 1
(11)

The matrix V∞ corresponds to an infinite eigenvec-
tor matrix with infinite relative eigenvalues as V c∞ =

[0 0 V∞]
T

.
Step 3: Satisfy the following relationship
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Ā0∼ξ−1 =

[
EZF 2 W∞

]
V −1e (Z,F )

Ve (Z,F ) =
[
V (Z,F ) V c∞

]
detVe (Z,F ) 6= 0

(12)

The W∞ ∈ R2×3 arbitrary parameter matrix and the pa-
rameter matrix Z can give the closed-loop system (5) eight
degrees of freedom, which can be rationally utilized to con-
figure the closed-loop poles of the system expectation or re-
gion and the stable operation of the turbine regulation system
is ensured with low eigenvalue sensitivity; strong suppres-
sion capability of higher-order unmodeled dynamics; and s-
mall control gain[17].

After the above three steps, the turbine regulation sys-
tem is transformed into a linear constant closed-loop system
(5), whose characteristic structure is mainly determined by
the matrices F and Z. Therefore a set of constant matrices
Ā0∼ξ−1, ξ = 2 is derived so that the closed-loop system (5)
has the desired eigenstructure to satisfy the control require-
ments of the complex system.

4 Active disturbance rejection controller design

The active disturbance rejection controller consists of
three components. The first part is the tracking differentiator
(TD), whose main function is to organize the transition pro-
cess and extract the differential signal for the turbine speed.
The second component, the expanded state observer (ESO)
is the estimation of the internal and external uncertainties of
the turbine system as total disturbances. The third part is the
state error feedback control law, which compensates the esti-
mated total disturbance accordingly, allowing the system to
obtain good steady-state performance and immunity to dis-
turbances.

To improve the performance of the hydraulic turbine regu-
lation system when subjected to uncertain internal and exter-
nal perturbations, this paper adopts a nonlinear active distur-
bance rejection control method to further control the whole
fully driven system. It can be known that x1 = q1, x2 =
q̇1, y = x1. According to the literature [18], the tracking d-
ifferentiator (TD) of the hydraulic turbine regulation system
is designed in the form

x1(k + 1) = x1(k) + h ∗ x2(k)

x2(k + 1) = x2(k) + h ∗ fh
fh = fhan(x1(k)− v(k), x2(k), r, h)

(13)

where the function fhan is represented as

d = rh2

a0 = hx2

y = x1 + a0

a1 =
√
d(d+ 8 |y|)

a2 = a0 + sign(y)(a1 − d)/2

sy = (sign(y + d)− sign(y − d))/2

a = (a0 + y)sy + a2(1− sy)

sa = (sign(a+ d)− sign(a− d))/2

fhan = −r
(a
d

)
sa − rsign(a)(1− sy)

Where parameter r is the velocity factor and h is the sam-
pling period.

The expansion state observer (ESO) is designed in the for-
m 

e = z1 − y
ż1 = z2 − β1e
ż2 = z3 − β2fal(e, α1, δ) + bυ1

ż3 = −β3fal(e, α2, δ)

(14)

where the function fal is expressed as

fal(e, α, δ) =


e

δα−1
, |e| ≤ δ

|e|αsign(e), |e| > δ

where δ and α are the coefficients of the nonlinear fal
function (0 < α < 1, δ > 0) ; β1, β2, β3 is the gain coeffi-
cient of the expanded state observer and z1, z2, z3 is the out-
put state observation signal of the expanded state observer.

Based on the designed tracking-differentiator and the ob-
servation signals output from the expanded state observer,
using the error signal e1 and the error differentiation signal
e2 , the state error feedback law is applied in a nonlinear
manner 

e1 = v1 − z1
e2 = v2 − z2
u0 = −fhan(e1, c ∗ e2, r0, h1)

υ1 =
u0 − z3
b0

(15)

Where u0 is the output of the state error feedback con-
trol law; b0 is the feedback compensation factor; υ1 is the
controller output.

5 Simulation

In this section, to realize the stable operation of the hy-
droelectric power plant unit within a specified limited range,
the effectiveness of the designed control algorithm is veri-
fied based on the design of the fully actuated system con-
troller described above and by simulating the turbine regula-
tion system. The system parameters for the turbine regula-
tion system equation (1) are selected as follows[19]

Ta = 5.5s, Tb = (0.24 ∼ 0.5)Ta, Tab = 7.7s,

eqα = 0.789, eqn = −0.2901, eqh = 0.45,

emα = 0.7, emn = −1.0673, emh = 1.32,

en = 1.2673, Tw = 2.0s, Ty = 0.2s,

The parameters of the active disturbance rejection con-
troller are as follows

TD : r = 10, h = 0.01

ESO : α1 = 0.5, α2 = 0.25,

δ = 0.03, β1 = 30, β2 = 600, β3 = 300

NLSEF : b0 = 0.45, r0 = 10, h1 = 0.03, c = 0.8

External input vector υ =
[
υ1 υ2

]T
, the control param-

eter matrix of the system are set as follows
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Z =

[
1 0 1
0 1 0

]
, F =

−1.3124 0 0
0 −3.7843 0
0 0 −5.2601



V∞ =

[
0
−1

]
,W∞ =

[
0 0 0
1 0 0

]
The expectation matrix to be designed are as follows

Ā0 =

[
−6.9034 0

0 −3.7843

]
, Ā1 =

[
−6.5725 0

0 −1

]
Bringing the matrices Ā0, Ā1 into the controller gives the

following desired linear constant closed loop system (16).{
q̈1 + 6.5725q̇1 + 6.9034q1 = υ1

q̇2 + 3.7843q2 = υ2
(16)

Simulation of a hydraulic turbine at an initial speed of 0,
a step signal with an amplitude of 1 is applied at the initial
moment to simulate the stable operation of the turbine unit
under the no-load conditions as shown in Fig. 1. A 10% load
fluctuation signal is added at the initial moment to simulate
the stable operation of the turbine unit under load conditions
as shown in Fig. 2. The correction coefficient b0 determines
the variation range of the estimated value of the total distur-
bance and the size of the compensation component, and the
stable operation of the turbine unit under different correction
coefficients is shown in Fig. 3.

From the simulation results, it can be seen that the system
is subjected to a unit step as well as an increased load, and
the turbine speed has a small jitter as it approaches the in-
put signal. However, it has remained stable since then and
no overshoots have been generated. The overshoot of the
turbine speed decreases with the increase of the correction
coefficient b0 , and the value of the correction coefficient b0
is in the range of [0.45,0.75], which can provide good com-
pensating feedback in case of large perturbation fluctuation
in the system.
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Fig. 1: Turbine speed curve under no-load condition
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Fig. 2: Turbine speed curve under load conditions

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

b0=0.35

b0=0.45

b0=0.55

b0=0.85

b0=1.25

Fig. 3: Turbine speed curves under different correction coef-
ficients

6 Conclusions

In this paper, the problem of hydraulic turbine stabiliza-
tion control based on the theory of fully actuated system and
active disturbance rejection control algorithm is investigated.
The hydraulic turbine fully actuated system was first mod-
eled and then the controller was designed using a direct pa-
rameterization method to offset the open-loop system char-
acteristics of the turbine and obtain the desired linear con-
stant closed-loop system. On this basis, active disturbance
rejection control algorithm is introduced for the uncertain-
ty disturbance problem in the hydraulic turbine calibration
control. Finally, the effectiveness of the proposed control
method is verified by simulation.
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Abstract: In this paper, the sampled-data H∞ control problem of a nonlinear high-order fully actuated system is investigated.
Based on the full-actuation feature of the system, the sampled-data form of a high-order fully actuated controller is constructed.
Using the looped functional method, a local Lipschitz condition is introduced to derive some solvable criteria ofH∞ performance
analysis and control design in terms of linear matrix inequalities, respectively. A numerical example concerning vehicle steering
control is provided for the control method verification.

Key Words: High-Order Fully Actuated System, H∞ Control, Sampled-Data Control, Local Lipschitz Condition

1 Introduction

Nonlinear systems are universally present in practical ap-
plications, such as robotics and spacecraft [1]. With the
development of digital control and computer technology,
sampled-data control is widely used in practical systems be-
cause of its high efficiency and low cost [2], [3]. However,
due to the complex nonlinearity, it is challenging to design a
nonlinear sampled-data controller that enables the system to
exhibit a desired performance. Accordingly, the research on
sampled-data control for nonlinear systems possess impor-
tant theoretical significance and application background.

To complete the control design of nonlinear systems,
amounts of effective methods have been proposed so far,
such as feedback linearization [4] and Takagi-Sugeno fuzzy
control [5]. Recently, high-order fully actuated (HOFA) sys-
tem approach proposed in [6] has attracted much attention
due to its convenience of control design. By utilizing the
full-actuation feature of the system, the HOFA system ap-
proach can completely eliminate the nonlinearity of the sys-
tem and establish the desired closed-loop eigenstructure. In
[7], the HOFA system approach is used to develop a predic-
tive control strategy, which can realize the coordinated con-
trol for HOFA multiagent systems. In [8], the stabilization
problem of nonlinear systems with impulsive effects is stud-
ied by using the HOFA system approach and a matrix analy-
sis method. The adaptive event-triggered control for a class
of uncertain HOFA systems is studied in [9], which reveals
that the constraints imposed on the sampled-data by event-
triggered conditions can decrease system performance. Al-
though some great research progress has been made on the
HOFA system approach, the nonlinear sampled-data control
for HOFA systems deserves in-depth research.

Due to the asynchronous behavior between the sampled-
data controller and the HOFA system, some nonlinear errors
are inevitably generated when the controller is used to elim-
inate system dynamics. In the existing results of HOFA sys-
tem approach, control gains are directly provided according
to the desired closed-loop eigenstructure in the absence of

This work was partly supported by the National Natural Science Foun-
dation of China under 62373220, the Shandong Provincial Natural Science
Foundation of China under Grant ZR2023MF011, and the Science Cen-
ter Program of National Natural Science Foundation of China under Grant
62188101. (Corresponding author: Dawei Zhang.)

nonlinear errors [6]. However, the expected control effect
can not be achieved by the sampled-data controller in the
presence of nonlinear errors. How to deal with the nonlin-
ear asynchronous errors turns into an interesting problem in
nonlinear sampled-data control. Besides, the local Lipschitz
condition [10] is always used to model the nonlinear terms in
many practical nonlinear systems and the looped functional
method is well recognized as an efficient technical tool in
deriving less conservative existence conditions of a sampled-
data controller, which offer us basic research methods.

Based on the above discussion, this paper focuses on han-
dling the sampled-data H∞ control problem of nonlinear
HOFA systems. A sampled-data controller is tailored based
on the form of the HOFA system. The closed-loop system
is modeled as a sampled-data system with unknown nonlin-
ear errors. A local Lipschitz condition is introduced to treat
the nonlinear error explicitly. Further, the existence condi-
tions ofH∞ performance analysis and control design are de-
rived for the closed-loop system using the looped functional
method along with the local Lipschitz condition. Finally, a
case study is provided to value the control design method.

The main contributions of this paper are summarized as
1) A sampled-data controller is constructed for the nonlin-

ear HOFA systems based on the full-actuation feature.
By introducing a local Lipschitz condition, the difficul-
ties on analysis and synthesis caused by the nonlinear
error between the open-loop system and the sampled-
data controller are addressed.

2) Based on the looped functional method and the local
Lipschitz condition, some solvable criteria of H∞ per-
formance analysis and control design are derived. The
control gain is obtained by the design result to ensure
satisfactory system performance.

Notation: N is the set of nonnegative integers and Rn
is the n dimensional Euclidean space. For a symmet-
ric matrix P , P < 0 means that P is negative defi-
nite. For a square matrix X , Sym{X} = X + XT . I
and 0 denote appropriately dimensioned identity matrix and
zero matrix respectively. For a vector ξ ∈ Rn, ∥ξ∥ de-
notes the Euclidean norm of ξ. diag{...} means the block-
diagonal matrix. x(i)(t) represents the i-th derivative of x(t).
x(0∼n−1)(t) =col{x(t), x(1)(t), ..., x(n−1)(t)}.
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2 Problem Formulation

Consider the following nonlinear HOFA system

x(n)(t) = f(x(0∼n−1)(t)) +Bu(t) + Eω(t), (1)

where x(i) ∈ Rp(i = 0, 1, ..., n − 1) is the state vector,
f(x(0∼n−1)(t)) ∈ Rp is the nonlinear function, u(t) ∈ Rp
is the control input, ω(t) ∈ Rq is the unknown disturbance
satisfying ω(t) ∈ L2[0,∞), B ∈ Rp×p and E ∈ Rp×q
are the system input and disturbance input matrices, respec-
tively, and B is non-singular. The system state x(0∼n−1)(t)
satisfies the following general assumption

Assumption 1. In system (1), each state x(i) ∈ Rp (i =
0, 1, ..., n− 1) is assumed to be bounded in the compact set
Ω = {x(0∼n−1)(t)|xij ≤ x

(i)
j (t) ≤ xij , i = 0, 1, . . . , n −

1, j = 1, 2, . . . , p}, where scalar x(i)j (t) is the j-th compo-
nent of x(i)(t).

Considering the full-actuation feature of system (1) and
the non-singular matrix B, the sampled-data form of a high-
order fully actuated controller is expressed as

u(t) = −B−1(Kx(0∼n−1)(kh) + f(x(0∼n−1)(kh))), (2)

for t ∈ [kh, (k + 1)h), where h is the sampling period;
kh (k ∈ N) is the latest sampling instant; and K ∈ Rp×np
is the control gain to be designed.

Substituting the control input (2) into system (1) yields

x(n)(t) = f(x(0∼n−1)(t))− f(x(0∼n−1)(kh))

−Kx(0∼n−1)(kh) + Eω(t).
(3)

By denoting ξ(t) = x(0∼n−1)(t), the closed-loop system
can be rewritten as

ξ̇(t) = Φξ(t)+f̃(ξ(t))−f̃(ξ(kh))−K̃ξ(kh)+Ẽω(t), (4)

where f̃(ξ(t))=col{0, ..., 0, f(ξ(t))}, K̃=col{0, ..., 0,K},
Ẽ=col{0, ..., 0, E} and

Φ =


0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
0 0 0 · · · 0

 .
The following assumption is useful in deriving the results.

Assumption 2. f̃(ξ(t)) satisfies the following local Lips-
chitz condition

∥f̃(ξ(t))− f̃(ξ(kh))∥ ≤ σ∥ξ(t)− ξ(kh)∥, (5)

where σ is the Lipschitz constant that can be computed by
the nonlinear function f(ξ(t)) and the compact set Ω.

The purpose of this paper is to design the sampled-data
controller (2) such that system (4) is exponentially stable
with satisfactory H∞ performance level γ and prescribed
convergence rate 2δ. More specifically, the designed con-
troller can ensure that

1) system (4) is exponentially stable with convergence rate
2δ for ω(t) ≡ 0;

2) the system state ξ(t) satisfies
�∞
0
ξT (s)ξ(s)ds ≤

γ2
�∞
0
ωT (s)ω(s)ds for ω(t) ̸= 0 and ξ(0) = 0.

3 Main Results

In this section, the H∞ performance analysis of system
(4) is carried out. Then, based on the performance analy-
sis result, the criterion on the existence of the sampled-data
controller (2) such that the HOFA system (4) is exponentially
stable with prescribed H∞ performance is established.

3.1 H∞ Performance Analysis
Theorem 1. For given positive constants h, σ, γ and δ, and
a matrix K, system (4) is exponentially stable with H∞ per-
formance level γ and convergence rate 2δ, if there exist sym-
metric matrices P > 0, Q > 0, Ri > 0 (i = 1, 2), matrices
Mi and Zi (i = 1, 2), and a positive scalar λ such thatΨ+ hΨ1 hZ2 εT1 Ẽ

∗ −hR2 0
∗ ∗ −γ2I

 < 0, (6)

Ψ+ hΨ2 he−2δhZ1 εT1 Ẽ
∗ −he−2δhR1 0
∗ ∗ −γ2I

 < 0, (7)

where

Ψ = Ξ+ eT1 (2δP + I)e1 + λσ2εT2 ε2 − λeT5 e5

+ Sym{eT2 Pe1 + e−2δhZ1ε2 + Z2ε3},
Ψ1 = εT4Qε4 + eT2 R1e2,Ψ2 = −e−2δhεT4Qε4 + eT2 R2e2,

Ξ = Sym{εT1 (−e2 +Φe1 − K̃e3 + e5)},
ε1 =M1e1 +M2e2, ε2 = e1 − e3,

ε3 = e4 − e1, ε4 = col{e3, e4},
ei = [0np×(i−1)np Inp×np 0np×(5−i)np], i = 1, 2, 3, 4, 5.

Proof. Inspired by the looped functional method well used
for sampled-data control systems, we construct the following
Lyapunov functional

V (t) = V0(t) + V1(t) + V2(t), (8)

where

V0(t) = ξT (t)Pξ(t),

V1(t) = ((k + 1)h− t)

� t

kh

e2δ(s−t)ηT2 Qη2ds,

V2(t) = ((k + 1)h− t)

� t

kh

e2δ(s−t)ξ̇T (s)R1ξ̇(s)ds

+ (kh− t)

� (k+1)h

t

e2δ(s−t)ξ̇T (s)R2ξ̇(s)ds,

with η2 = col{ξ(kh), ξ((k + 1)h)}. Denote η1(t) =
col{ξ(t), ξ̇(t)} and ζ(t)=col{η1(t), η2, f̃(ξ(t))−f̃(ξ(kh))}.
For system (4) with ω(t) ≡ 0, one has that

2ζT (t)(εT1 (−e2 +Φe1 + e5 − K̃e3))ζ(t) = 0 (9)

holds for arbitrary matrices Mi ∈ Rnp×np(i = 1, 2).
Taking the derivative of (8) and using equation (9), local

Lipschitz condition (5) and the zero-order Bessel-Legendre
inequality, we obtain

V̇ (t) + 2δV (t)

≤ ζT (t)(Ψ− eT1 e1 + ((k + 1)h− t)(Z2R
−1
2 ZT2 +Ψ1)

+ (t− kh)(e−2δhZ1R
−1
1 ZT1 +Ψ2))ζ(t). (10)
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Then using the Schur complement and convex combina-
tion methods, it follows from LMIs (6) and (7) that V̇ (t) +
2δV (t) < 0. That is, system (4) is exponentially stable with
convergence rate 2δ for ω(t) ≡ 0.

Further, for system (4) with ω(t) ̸= 0, one gets

V̇ (t) + 2δV (t)

≤ ζT (t)(Ψ + ((k + 1)h− t)(Z2R
−1
2 ZT2 +Ψ1)

+ (t− kh)(e−2δhZ1R
−1
1 ZT1 +Ψ2))ζ(t)− ξT (t)ξ(t)

+ 2ζT (t)εT1 Ẽω(t)− γ2ωT (t)ω(t) + γ2ωT (t)ω(t).
(11)

It can be derived from LMIs (6) and (7) that

V̇ (t) ≤ γ2ωT (t)ω(t)− ξT (t)ξ(t). (12)

Integrating (12) on t ∈ [0,∞) under zero initial condi-
tion yields

�∞
0
ξT (s)ξ(s)ds ≤

�∞
0
γ2ωT (s)ω(s)ds, which

completes the proof.

3.2 Control Design
Theorem 2. For given positive constants h, σ, γ, λ and δ,
and a constant ϱ, system (4) is exponentially stable withH∞
performance level γ and convergence rate 2δ, if there exist
symmetric matrices P̄ > 0, Q̄ > 0, R̄i > 0 (i = 1, 2), and
matrices X,Y and Z̄i (i = 1, 2) such that

Ψ̄ + hΨ̄1 hZ̄2 εT5 Ẽ εT6
∗ −hR̄2 0 0
∗ ∗ −γ2I 0
∗ ∗ ∗ −Λ

 < 0, (13)


Ψ̄ + hΨ̄2 he−2δhZ̄1 εT5 Ẽ εT6

∗ −he−2δhR̄1 0 0
∗ ∗ −γ2I 0
∗ ∗ ∗ −Λ

 < 0, (14)

where

Ψ̄ = Ξ̄ + 2δeT1 P̄ e1 − λeT5 e5

+ Sym{eT2 P̄ e1 + e−2δhZ̄1ε2 + Z̄2ε3},
Ψ̄1 = εT4 Q̄ε4 + eT2 R̄1e2, Ψ̄2 = −e−2δhεT4 Q̄ε4 + eT2 R̄2e2,

Ξ̄ = Sym{εT5 (−Xe2 +ΦXe1 − Ỹ e3 +Xe5)},
ε5 = e1 + ϱe2, ε6 = col{Xe1, λσXε2},
Λ = diag{I, λI}, Ỹ = col{0, ..., 0,Y}.

Moreover, the control gain can be computed by K =
Y X−1.

Proof. Let M1 = X−1 and M2 = ϱX−1, and introduce
P̄ = XTPX, Q̄ = diag{X,X}TQdiag{X,X}, R̄i =
XTRiX, Z̄i = diag{X,X,X,X, Inp×np}TZiX(i =
1, 2) and Y = KX . Then, using Schur comple-
ment, LMIs (13) and (14) can be derived by pre- and
post- multiplying both sides of LMIs (6) and (7) with
diag{X,X,X,X, Inp×np, X, Iq×q}T and its transpose, re-
spectively. The proof is completed.

4 A Case Study

Consider the steering tracking control problem with the
following vehicle model [10],

ξ̇(t) = f(ξ(t)) +Bu(t) + Eω(t), (15)

where ξ(t) = col{Vx(t), Vy(t), ψ̇(t)}, u(t) =
col{Fx(t), δf (t), δr(t)} are the system state and the
control input, respectively; ω(t) = Fy(t) is the external
disturbance that represents lateral winds; B and E are the
input matrices given by

B =

 4
M 0 0

0
2Cf

M
2Cr

M

0
2CfLf

Iz
2CrLr

Iz

 , E =

 0
1
M
0

 ,
and f(ξ(t)) = col{Vy(t)ψ̇(t), c1Vy(t)+c2ψ̇(t)

Vx(t)
−

Vx(t)ψ̇(t),
c3Vy(t)+c4ψ̇(t)

Vx(t)
} is the nonlinear function

with constant terms

c1 =
−2(Cf + Cr)

M
, c2 =

−2(LfCf − LrCr)

M
,

c3 =
−2(LfCf − LrCr)

Iz
, c4 =

−2(L2
fCf + L2

rCr)

Iz
,

where the physical meanings of the above symbols are listed
in Table 1.

Table 1: Physical Meanings of Symbols
Symbols Physical meanings
M Vehicle mass
Vx(t) Vehicle longitudinal velocity
Vy(t) Vehicle lateral velocity
ψ̇(t) Vehicle yaw rate
Fx(t) Longitudinal traction and braking force
Fy(t) Lateral wing force
Cf , Cr Wheel cornering stiffnesses
δf (t), δr(t) Steering angles of wheels
Lf , Lr Distance from the CG to wheel axles
Iz Yaw moment inertia

According to actual steering condition, under Assumption
1, the variation ranges of longitudinal velocity, lateral veloc-
ity and yaw rate are set to be Vx(t) ∈ [10, 30](m/s), Vy(t) ∈
[−0.2, 0.2](m/s) and ψ̇(t) ∈ [−0.1, 0.1](rad/s), respec-
tively. The Lipschitz constant σ of f(ξ(t)) is calculated
as 24.9007. Then by choosing the vehicle parameters
as M = 1070(kg), Iz = 2100(kg ·m2), Cf = Cr =
45312(N/rad), Lf = 1.1(m) and Lr = 1.3(m), one

gets f(ξ(t)) = col{Vy(t)ψ̇(t), 16.9391ψ̇(t)−169.3907Vy(t)
Vx(t)

−

Vx(t)ψ̇(t),
8.6309Vy(t)−125.1474ψ̇(t)

Vx(t)
}, and

B =

0.0037 0 0
0 84.6953 84.6953
0 47.4697 57.1006

 , E =

 0
0.0009

0

 .
The target state ξd(t) = col{Vxd(t), Vyd(t), ψ̇d(t)} is

chosen as

ξd(t) =


col{10, 0, 0}, t ∈ [0, 5),

col{2t, 0, t−5
100 }, t ∈ [5, 10),

col{30− t, 0, 20−t200 }, t ∈ [10, 20),

col{10, 0, 0}, t ∈ [20,∞),

(16)
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Fig. 1: The response curves of Vx(t) and Vxd(t).
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Fig. 2: The response curves of Vy(t) and Vyd(t).

which simulates the behavior of a vehicle driving at a con-
stant speed before and after accelerating and steering.

By setting theH∞ performance level γ = 1, the sampling
period h = 0.02(s), the convergence rate 2δ = 4 and the
design parameter ϱ = 0.2, the control gain can be computed
by Theorem 2 as

K =

35.7067 0 0
0 35.7069 0
0 0 35.7082

 .
The initial state of the vehicle is Vx(0) = 11(m/s),

Vy(0) = 0(m/s) and ψ̇(0) = 0(rad/s), and ω(t) =
e−tcos(t)(N). The response curves of ξ(t) and ξd(t) are
shown in Figs. 1-3. It can be observed from Figs. 1-3 that a
satisfactory control effect can be achieved by using the pro-
posed sampled-data controller. Further, it can be computed
by simulation results that√�∞

0
(ξ(s)− ξd(s))T (ξ(s)− ξd(s))ds√�∞

0
ωT (s)ω(s)ds

≤0.2545,

which is less than the preset γ=1.
5 Conclusion

The sampled-data H∞ control problem of nonlinear
HOFA systems has been studied in this paper. A local Lips-
chitz condition has been introduced to deal with the nonlin-
ear error induced by sampled data. H∞ performance analy-
sis and control design results have been proposed by further
using the looped functional method. An illustrative example
has been given to show that a prescribed control effect of the
HOFA system under unknown disturbance can be achieved
by the designed sampled-data controller.
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Fig. 3: The response curves of ψ̇(t) and ψ̇d(t).
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Abstract: The aim of this paper is to explore the quad-rotor UAV tracking control and obstacle avoidance strategies based on the
High-Order Fully Actuated system approach. The attitude description of the UAV is firstly established. Considering the uncer-
tainty of UAV parameters and the existence of bounded perturbation, a mathematical model of UAV attitude and position with
high-order fully actuated system characteristics is established, and a robust controller based on high-order fully actuated system
method is designed. The controller is designed to enable UAVs to track targets and maintain good position and attitude control
performance in the face of environmental changes and perturbations, and the controller ensures that the system state converges to
almost any ellipsoid area. On the basis of the controller design, this study further considers the obstacle avoidance problem of the
quad-rotor UAV. By combining the designed drone controller, an effective obstacle avoidance strategy is designed to ensure that
the UAV can avoid obstacles during its movement, thus improving its adaptability and safety in the real environment. Finally, we
verify the effectiveness of the designed controller through simulation.

Key Words: High-Order Fully Actuated system approach, quad-rotor UAV tracking control, robust controller, obstacle avoidance
strategy

1 Introduction

Quad-rotor UAVs have strong adaptability and high ma-
neuverability, and have broad application prospects in mili-
tary, civilian and other fields. They have great research value
and wide applications, and have become one of the hot spots
at home and abroad. Many scholars have conducted impor-
tant research on UAV tracking control. For example [1] stud-
ied the common trajectory tracking problems of quad-rotor
UAVs based on sliding mode control, then proposed a SMC
method to weaken the chattering phenomenon resulted from
the switching control action and perform precisely the posi-
tion and attitude trajectory tracking. [2] proposed a trajec-
tory tracking control algorithm based on back-stepping and
linear active disturbance rejection control (LADRC) in view
of the underactuated and strong coupling characteristics of
quad-rotor UAVs. [3] aimed at problems such as actuator
saturation, trajectory tracking, formation and obstacle avoid-
ance planning in multi-UAV formation obstacle avoidance
control, and proposes an anti-saturation UAV formation ob-
stacle avoidance control strategy for a single UAV. For the
trajectory tracking problem, the back-stepping control strat-
egy is used to simplify the second-order nonlinear system
into two first-order subsystems and reduce the system com-
plexity.

The above results are actually affected by the first-order
state space model. For first-order state-space models de-
scribing linear dynamical systems, it is relatively easy to ob-
tain control strategies and their stability results. However,
when first-order state-space models are applied to nonlin-
ear systems, the situation becomes more complicated. As a
typical nonlinear strongly coupled system, the position and
attitude control system of a quad-rotor UAV also faces the
same problem.

This work was supported in part by the National Natural Science
Foundation of China under Grant 62188101, 62303135, 62033005, and
62320106001, and in part by the Natural Science Foundation of Hei-
longjiang Province (ZD2021F001). (corresponding author: Yi Zeng)

In order to solve this problem, Duan introduced the High-
Order Fully Actuated system approach (HOFA) in [4]-[9].
[4]-[7] provide an in-depth introduction and explanation of
the HOFA system method. In [4], a basic control method
suitable for nonlinear systems under certain conditions is
proposed. Three generalized strict feedback system types
were transformed into HOFA systems in [5]. And [6]-[7]
respectively proposed robust control and adaptive control
schemes based on high-order inversion. Obtaining an HOFA
system model is the most critical aspect of this method. Once
the HOFA system model is obtained, the corresponding con-
trol strategy can be obtained immediately. By reading the
literature we can conclude that controllers built with high-
order fully actuated systems are not only able to counteract
known nonlinear effects, but also allow more systems have
global stability. It will also extend Lyapunov stability to fur-
ther stability and sub-stableness, making the response anal-
ysis and stability analysis of the closed-loop system easier,
so it is easier to solve the system’s stabilization problem.
Therefore, the HOFA has broad application prospects in the
field of nonlinear control.

This paper first establishes a HOFA system model of a
quad-rotor UAV under the condition that there are parameter
uncertainties and bounded external disturbances in the quad-
rotor UAV. According to the proposed HOFA system model
of quad-rotor UAV tracking control, and according to [6], a
robust controller is designed that can drive the system state
to converge to almost any ellipsoid region. The main contri-
bution of this article is to design a UAV controller using the
HOFA, which further enriches the application of the HOFA
system.

2 Description of the problem

To establish a mathematical model of the system, a coor-
dinate system must first be established. Firstly, the modeling
method of quadrotor UAV in [11] used in the paper is briefly
introduced as follows.
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2.1 Ground coordinate system
In the coordinate system of the quadcopter UAV, the

ground coordinate system is E(oexeyeze). The coordinate
origin oe is an arbitrary point on the ground. The oexe axis
refers to any direction, the oeze axis is perpendicular to the
ground and points in the opposite direction to the center of
the earth, and xeoeye is the horizontal plane, which con-
forms to the right-hand spiral law.

2.2 Body coordinate system
The fuselage coordinate system of the quad-rotor UAV is

B(obxbybzb). The origin ob is at the center of mass of the
UAV, the axis obxb is selected to coincide with one bracket of
the vertical cross of the quad-rotor UAV, the axis obyb coin-
cides with another bracket, and the axis obzb is perpendicular
to the xbobyb plane and points above the UAV, conforming
to the right-hand spiral law.

2.3 Attitude angle
The attitude angle of the UAV is determined by the rela-

tionship between the body coordinate system and the ground
coordinate system. The pitch angle θ is the angle between
the obxb axis and the xeoeye plane. The yaw angle ψ is the
angle between the projection of the axis obxb and the plane
xeoeye and the axis oexe. The roll angle ϕ is the angle be-
tween the axis obzb and the vertical plane containing the axis
obzb.

3 Dynamic modeling

The motion of a rigid body UAV can be divided into two
parts: translation of the center of mass and rotation around
the center of mass. Six degrees of freedom are required to
describe the motion of a UAV: three linear motions of the
center of mass translation and three angular motions of rota-
tion around the center of mass.

Let ξ = [x, y, z]T ∈ R3 and Ψ = [ϕ, θ, ψ]
T ∈ R3, x, y, z

respectively represent the position coordinates of the UAV.
ϕ, θ, ψ respectively represent the three attitude angles of the
quad-rotor UAV: roll angle, pitch angle and yaw angle.

By citing the model in [1], we can get the dynamic model
of the quadcopter UAV as:



ẍ = −K1

m ẋ+ cosϕ sin θ cosψ+sinϕ sinψ
m u1,

ÿ = −K2

m ẏ + cosϕ sin θ sinψ−sinϕ cosψ
m u1,

z̈ = −K3

m ż − g + cosϕ cos θ
m u1,

ϕ̈ =
Iy−Iz
Ix

θ̇ψ̇ − K4

Ix
ϕ̇+ 1

Ix
u2,

θ̈ = Iz−Ix
Iy

ϕ̇ψ̇ − K5

Iy
θ̇ + 1

Iy
u3,

ψ̈ =
Ix−Iy
Iz

ϕ̇θ̇ − K6

Iz
ψ̇ + 1

Iz
u4.

(1)

u1, u2, u3, u4 are calculated according to the following
formula:

u1
u2
u3
u4

 =


b b b b
0 −lb 0 lb

−lb 0 lb 0
d −d d −d



ω2
1

ω2
2

ω2
3

ω2
4

 , (2)

among them, l is the distance from the propeller axis to the
center of mass of the UAV, and d is the torque coefficient of
the propeller.

4 Controller design

The symbols that need to be used in this section are as
follows:

x0∼n−1 =


x
ẋ
...

x(n)

 ,
A0∼n−1 =

[
A0 A1 · · · An−1

]
,

Φ
(
A0∼n−1

)
=


I

. . .
I

−A0 −A1 · · · −An−1

 .
The HOFA model with perturbation criteria is:

x(n) = f
(
x(0∼n−1)

)
+∆f

(
x(0∼n−1)

)
+L

(
x(0∼n−1)

)
u.

(3)
After establishing the HOFA system model, the character-

istics of the HOFA system can be directly used to design the
control law.

Lemma 1 [6]: When the system model is given as the
HOFA system in (1), the system can be stabilized by ap-
plying the following control law:

u = −L−1
(
x(0∼n−1)

) (
A0∼n−1x(0∼n−1) + u∗

)
u∗ = f

(
x(0∼n−1)

)
+

1
4ερ

2
(
x(0∼n−1)

)
· PTL

(
A0∼n−1

)
x(0∼n−1).

(4)

The system state can converge to the following ellipsoid
region:

Θµ,ε(0)

=
{
x(0∼n−1)

(
x(0∼n−1)

)T
P
(
A0∼n−1

)
x(0∼n−1) ≤ ε

µ

}
,

where ε is a positive number, ρ2(x(0∼n−1)) is the upper
limit of system uncertainty, A0∼n−1 and PTL (A0∼n−1) can
be obtained through the following Proposition 1 and Lemma
2.

Proposition 1 [7]: For any chosen matrix F ∈ Rnr×nr,
the matrix A0∼n−1 and the non-singular matrix V ∈
Rnr×nr satisfy Φ

(
A0∼n−1

)
= V FV −1, in which:

A0∼n−1 = −ZFnV −1(Z,F ),

V = V (Z,F ) =


Z
ZF
...
ZFn−1

 ,
where Z ∈ Rr×nr satisfies detV (Z,F ) ̸= 0.

Lemma 2 [7]: For any µ > 0, there exists a set
of matrices Ai ∈ Rr×r, i = 0, 1, . . . , n − 1 satisfies:
Reλi

(
Φ
(
A0∼n−1

))
< −µ

2 ,i = 1, 2, . . . , nr.
When the above conditions hold, we have a positive defi-

nite matrix P
(
A0∼n−1

)
that satisfies the following inequal-

ity:
ΦT

(
A0∼n−1

)
P
(
A0∼n−1

)
+ P

(
A0∼n−1

)
Φ
(
A0∼n−1

)
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< −µP
(
A0∼n−1

)
, in which:

P
(
A0∼n−1

)
=

[
P1 P2 · · · Pn

]
,

PL
(
A0∼n−1

)
= P

(
A0∼n−1

) [ 0
Ir

]
= Pn.

The desired position xd, yd, zd and the desired yaw an-
gle ψd of the quad-rotor UAV are usually given by remote
control instructions. Inspired by [3], the desired roll angle
ϕd and pitch angle θd can be calculated by the following for-
mula: 

ϕd = arcsin (sinϕdUx − Uy cosψd) ,

θd = arcsin
(
Ux cosψd+Uy sinψd

cosϕd

)
,

Ux = cosϕd sin θd cosψd + sinϕd sinψd,
Uy = cosϕd sin θd sinψd − sinϕd cosψd.

(5)

Therefore, the six states of the UAV are known. The po-
sition controller and attitude controller are respectively de-
signed according to the errors of the UAV’s state variables.

4.1 Position controller
Inspired by [1], the quad-rotor UAV position system with

disturbance is:
ẍ = −K1

m ẋ+ cosϕ sin θ cosψ+sinϕ sinψ
m u1 + d1,

ÿ = −K2

m ẏ + cosϕ sin θ sinψ−sinϕ cosψ
m u1 + d2,

z̈ = −K3

m ż − g + cosϕ cos θ
m u1 + d3,

(6)

which is an under-driven subsystem. Let
cosϕ sin θ cosψ+sinϕ sinψ

m = a,
cosϕ sin θ sinψ−sinϕ cosψ

m = b,
cosϕ cos θ

m = c.

Suppose when a̸=0, b̸=0, select the full rank matrix Q = 0 1 −b
c

1 0 −a
c

0 0 1

, we weigh the matrix Q at the left and right

ends of Equation 14 at the same time, and we get the follow-
ing formula:

ÿ − b
c z̈ = K3b

mc ż −
K2

m ẏ + b
cg

ẍ− a
c z̈ = K3a

mc ż −
K1

m ẋ+ a
c g

z̈ = −K3

m ż − g

+

 0
0
c

u1 +∆D1.

(7)
This is a standard under actuated subsystem, which is con-

verted into a high-order fully Actuated subsystem according
to the method in Document [4]:

ma

bK3
y(4) − ma

K3c
z(4) = x(3) − K2a

bK3
y(3) +

K1

m
x(2)

− K2
3

m2c
ż +

(
K3a

mc
− a

c
+
ma

K3c

)
g − K3a

m
u1 +∆D.

(8)

Let:
ma

bK3
y − ma

cK3
z = T,

f(x, y, z, g) =x(3) − K2a

bK3
y(3) +

K1

m
x(2) − K2

3

m2c
ż

+

(
K3a

mc
− a

c
+
ma

K3c

)
g,

Te = T − T ∗.

According to [6], it can be concluded that:

T (i)
e = T (i) − (T ∗)

(i)
, i = 0, 1, . . . , n. (9)

{
f (x, y, z, g) = f (xe, ye, ze, g) ,

L
(
T (0∼n−1)

)
= L

(
T

(0∼n−1)
e , t

)
.

(10)

Therefore, formula (8) can be transformed into the follow-
ing formula:

ma

bK3
y(4)e − ma

K3c
z(4)e = x(3)e − K2a

bK3
y(3)e +

K1

m
x(2)e

− K2
3

m2c
że +

(
K3a

mc
− a

c
+
ma

K3c

)
g − K3a

m
u1 +∆D.

(11)
The robust tracking controller of the quad-rotor UAV po-

sition subsystem is:
u1 = −

(−K3a
m

)−1
(
A0∼3T

(0∼3)
e + u∗1

)
u∗1 = 1

4ερ
2
(
T

(0∼3)
e

)
· PTL

(
A0∼3

)
T

(0∼3)
e

+f (xe, ye, ze, g)− (T ∗)
(4)
.

(12)

Now we solve A0∼3 and PTL
(
A0∼3

)
according to propo-

sition 1 and Lemma 2.
When taking µ = 8,we design the parameter matrices as:

F =


−5 0 0 0
0 −6 0 0
0 0 −7 0
0 0 0 −8

 , (13)

Z =
[
1 1 1 1

]
, (14)

V =


1 1 1 1
−5 −6 −7 −8
25 36 49 64

−125 −216 −343 −512

 , (15)

which satisfies det V ̸= 0. Then, we can get:

A0∼3 =
[
0 0 −1 0

]
, (16)

Φ
(
A0∼3

)
=


0 1 0 0
0 0 1 0
0 0 0 1

−1680 −1066 −251 −26

 . (17)

According to the value of µ, we select the following ma-
trix equation:(

Φ
(
A0∼3

)
+ 4I

)T
P + P

(
Φ
(
A0∼3

)
+ 4I

)
= −I, (18)

which satisfy the following inequality:

ΦT
(
A0∼3

)
P + PΦ

(
A0∼3

)
≤ −µP. (19)

By solving equation (26), we have:

PL = P

[
0
Ir

]
= P


0
0
0
1

 =


1011.5000
418.3638
57.6276
2.6422

 . (20)

According to Lemma 1, the position controller we design
will drive the system state to any ellipsoid domain.
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4.2 Attitude controller
Quote from [1], the attitude subsystem of the quad-rotor

UAV is: 
ϕ̈ =

Iy−Iz
Ix

θ̇ψ̇ − K4

Ix
ϕ̇+ 1

Ix
u2,

θ̈ = Iz−Ix
Iy

ϕ̇ψ̇ − K5

Iy
θ̇ + 1

Iy
u3,

ψ̈ =
Ix−Iy
Iz

ϕ̇θ̇ − K6

Iz
ψ̇ + 1

Iz
u4.

(21)

This is a fully driven system. After adding interference, it
can be written in the following form:

M̈ = g(M, Ṁ) + L(M)V +∆G(M,Ṁ), (22)

in which,

g(M,Ṁ) =


Iy−Iz
Ix

θ̇ψ̇ − K4

Ix
ϕ̇

Iz−Ix
Iy

ϕ̇ψ̇ − K5

Iy
θ̇

Ix−Iy
Iz

ϕ̇θ̇ − K6

Iz
ψ̇

 ,

L(M) =

 1
Ix

1
Iy

1
Iz

 ,
Me =M −M∗. (23)

In the same way, according to [6], equation (30) can be
transformed into the following form:

M̈e = g(Me, Ṁe) + L(Me)V +∆G(Me, Ṁe). (24)

According to the method in [6], the robust tracking con-
troller of the attitude subsystem of the quad-rotor UAV is
designed as follows:


U = −L (Me)

−1
(
A0∼1M

(0∼1)
e + U∗

)
U∗ = 1

4ερ
2
(
M

(0∼1)
e

)
· PTL

(
A0∼1

)
M

(0∼1)
e

+g
(
M

(0∼1)
e

)
− (M∗)

(2)
.

(25)

Now we solve A0∼1 and PTL
(
A0∼1

)
according to propo-

sition 1 and Lemma 2.
When taking µ = 10, we design the parameter matrices

as:

F =


−6 0 0 0 0 0
0 −7 0 0 0 0
0 0 −8 0 0 0
0 0 0 −9 0 0
0 0 0 0 −10 0
0 0 0 0 0 −11

 , (26)

Z =

 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 , (27)

V =

[
Z
ZF

]
=


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
−6 0 0 −9 0 0
0 −7 0 0 −10 0
0 0 −8 0 0 −11

 ,
(28)

which satisfies det V ̸= 0. Then, we can get:

A0∼1 =

 54 0 0 15 0 0
0 70 0 0 17 0
0 0 88 0 0 19

 , (29)

Φ
(
A0∼1

)
=


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−54 0 0 −15 0 0
0 −70 0 0 −17 0
0 0 −88 0 6 −19

 .
(30)

According to the value of µ, we select the following equa-
tion (39):(

Φ
(
A0∼1

)
+ 5I

)T
P + P

(
Φ
(
A0∼1

)
+ 5I

)
= −I, (31)

which satisfy the following inequality:

ΦT
(
A0∼1

)
P + PΦ

(
A0∼1

)
≤ −µP. (32)

By solving equation (32), we have:

PL = P

[
0
Ir

]
=


7.0000 0 0

0 2.5857 0
0 0 1.4012

0.7500 0 0
0 0.2571 0
0 0 0.1358

 . (33)

According to Lemma 1, the attitude controller we de-
signed will drive the system state to almost any ellipsoid do-
main.

At this point, we have completed the design of the con-
troller.

5 The MPC-based obstacle avoidance controller

5.1 Discretization equations and model predictions of
quad-rotor UAVs

According to [10], [15], [16] and [17], we can use model
predictive control algorithms in the process of UAV obsta-
cle avoidance. First, we can write the quad-rotor UAV mo-
tion model of the high-order fully actuated system obtained
above into a discretized form:

X(k + 1) = f(X(k), U(k)). (34)

For specific discretization methods, we can refer to [15].
Then perform the following steps: Xpre(k | k) = X(k),

Xpre(k + i+ 1 | k) = Xpre(k + i | k)+
δ · f (X(k), U(k)) , i ∈ [0, N − 1].

(35)

In the formula, Xpre(k | k) = X(k) represents that at
time k, the predicted value Xpre(k | k) is equal to the cur-
rent state value X(k); Xpre(k + i | k) represents the pre-
dicted state at the k+imoment in the prediction time domain
[k, k +N ]; δ represents the sampling time.
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5.2 Obstacle Avoidance (Barrier Method)
By the method in [10], this paper adds a barrier function

to the target index. The core idea is to consider the location
of obstacles in the cost function J , penalize situations that
are close to obstacles.

Jobs,i =
Sobs

(xi − x0)
2
+ (yi − y0)

2
+ (zi − z0)

2
+ ζ

. (36)

Among them, Sobs is a selectable weight coefficient,
(xi, yi, zi) and (x0, y0, z0) are the coordinates of each obsta-
cle and the position coordinates of the UAV, ζ takes a very
small positive number.

Every time the drone takes a step, the controller must re-
peatedly calculate the following formula to derive and exe-
cute the input at each moment.

min
Ui

N∑
i=1

∥X(k + i | k)−Xref (k + i | k)∥2Q

+ ∥U∥2R +

Nobs∑
j

Jobs ,j ,

(37)

s.t.
{
Umin ≤ U ≤ Umax,
Xmin ≤ X ≤ Xmax.

(38)

WhereN is the prediction range,Nobs is the total number
of obstacles, Xpre(k + i | k) is the prediction state from the
current time to ith steps in the future, Xref (k+ i | k) and U
represent the state reference and input vector respectively.

6 Simulation

Now we verify the effectiveness of the designed attitude
and position controller through simulation, the simulation
experiments on obstacle avoidance using model predictive
control will not be carried out here. Select m = 1.2 kg,
g = 9.8 m/s2, J = diag(0.0091, 0.0096, 0.0189)kg ·
m2, K1 ∼ K3 = (0.010, 0.012, 0.019)N · s/m, K4 ∼
K6 = (0.0022, 0.0024, 0.0031)N · m · s/rad, the initial
state variable error of the UAV is (xe, ye, ze, ϕe, θe, ψe) =(
−0.5, 0.4,−0.3,− π

36 ,−
π
40 ,−

π
30

)
, ε = 0.1, ∆D =

0.2 cos 3t, ∆G(M, Ṁ) = (0.1 sin t, 0.2 sin 2t, 0.05 cos t)T .
The simulation results are shown in Fig.1 and Fig.2 re-

spectively. It can be seen that after a period of time, the state
errors tend to 0, which indicates that the controller success-
fully achieved tracking.

7 Conclusion

We can see from the simulation results that based on the
controllers involved in the High-Order Fully Actuated sys-
tem, we can better enable no one to achieve the ideal state,
and the convergence speed is relatively fast.
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Adaptive Deep Neural Network Sliding Mode Control for UAVs
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Abstract: This paper proposes an adaptive attitude maneuver control strategy based on deep neural network (DNN) for quad-
copters to improve the attitude tracking performance and attenuate the effects of nonlinear and uncertainty. Obtaining an accurate
dynamic model is extremely challenging, due to the disturbances of wind speed, air pressure, temperature, and other environ-
mental factors. To solve this issue, we establish an affine function model to describe the black box model of quadcopters. The
DNN trained over a large time scale is used to approximate the nonlinearity and uncertainty. Then an adaptive sliding mode
control (SMC) is combined with the DNN to achieve accurate tracking of attitude trajectory. An update algorithm is proposed
to ensure the real-time performance of the controller. The Lyapunov based stability analysis is used to prove the stability of the
stability of the closed loop system. The experimental results show the good performance of proposed control strategy.

Key Words: SMC, Quadcopter, Deep neural network, Adaptive control, Attitude tracking

1 Introduction

Quadcopter Unmanned Aerial Vehicles (UAVs) [1] have
advantages such as small size, strong payload capacity, and
flexible maneuverability, demonstrating broad application
potential in military [2], agriculture [3], aerial surveying, and
logistics delivery fields. Trajectory changes in the UAV sys-
tem are achieved through cascade control, which is based on
attitude control. Therefore, attitude tracking control is an
important aspect of UAVs. UAV model operates as a black
box with unknown structural details and parameters, coupled
with its susceptibility to external disturbances, the resulting
attitude model complexity is notable.

Existing research primarily concentrates on mitigating the
nonlinear characteristics inherent in the UAV system. Chen
[4] employs a SMC for inner loop to achieve the desired atti-
tude, subsequently contributing to the overall control law.
Xu [5] introduces an adaptive controller that dynamically
adjusts controller gains based on disturbance gradients at
different time scales, thereby improving control efficiency.
However, previous studies all required an accurate model or
involved complex calculations.

Neural Networks (NN) have gained widespread use in
quadrotor UAV control systems. In the work by Razmi [6],
a method combining NN adaptive approaches with SMC is
introduced. This method enhances the system’s ability to re-
ject disturbances, reduces its dependency on parameters, and
improves overall stability and robustness. In another study
by Dierks[7], NN is utilized for online learning of the com-
plete dynamics of the UAV, while an NN observer estimates
translational and angular velocities.

Traditional NN face challenges such as limitations in han-
dling diverse operating conditions, dealing with strong cou-
pling nonlinear characteristics in quadrotor UAV models,
system complexity, constrained learning capabilities, and in-
adequacy in covering all UAV operating conditions. When
applied to complex nonlinear systems, they require extensive

This work is supported by the National Natural Science Foun-
dation of China (62173141), Shanghai Municipal Natural Sci-
ence Foundation (22ZR1417900). Corresponding author: Jing Xu,
email:jingxu@ecust.edu.cn.

training data and may struggle to adapt to new environments.
Sun[8] introduced a real-time DNN adaptive control archi-
tecture for uncertain nonlinear dynamic systems, addressing
unknown drift dynamics and parameter uncertainties to track
desired time-varying trajectories.

The key contributions are as follows:
1. An adaptive DNN-SMC is raised. The adaptive DNN

mitigates system nonlinearities and uncertainties, minimiz-
ing parameter reliance and boosting stability under diverse
conditions.

2. The adaptive method is implemented through the de-
sign of update laws, which are divided into large and small
time scales. This approach meets the needs for rapid changes
in quadrotor drones as well as the real-time requirements of
the controller.

2 Problem Description and Important Lemmas

2.1 Problem Description
The attitude dynamics model of the quadrotor is given by

[9, 10]: 
ϕ̈ = θ̇ψ̇

Iy−Iz
Ix

+ Jr
Ix
θ̇Ωr +

τϕ
Ix

− κ1l
Ix
ϕ̇,

θ̈ = ϕ̇ψ̇ Iz−IxIy
− Jr

Iy
ϕ̇Ωr +

τθ
Iy

− κ2l
Iy
θ̇,

ψ̈ = θ̇ϕ̇
Ix−Iy
Iz

+
τψ
Iz

− κ3

Iz
ψ̇,

(1)

where ϕ, θ, ψ represent roll, pitch, and yaw, respectively;
Ix, Iy, Iz represent moment of inertia about x-axis, y-axis,
and z-axis, respectively; Jr represent the moment of iner-
tia about propeller blades; τϕ, τθ, τψ represent roll torque,
pitch torque, and yaw torque, respectively; κ1, κ2, κ3 are the
damping coefficients experienced by the propellers; l rep-
resent the distance between rotor centers; Ωr represents the
rotor speed of the quadrotor, given by:

Ωr = −ω1 + ω2 − ω3 + ω4, (2)

where ωi(i = 1, 2, 3, 4) represent the i-th propeller speeds.
Define u(t) ≜ [u2, u3, u4]

T = [τϕ, τθ, τψ]
T . The relation-
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ship between inputs and propeller speeds is:
u1
u2
u3
u4

 = c1


1 1 1 1
0 1 0 −1
1 0 −1 0

− c2
c1

c2
c1

− c2
c1

c2
c1



ω2
1

ω2
2

ω2
3

ω2
4

 , (3)

where u1 is the total thrust produced by the four rotors; c1, c2
represent the lift coefficient and the counter torque coeffi-
cient, respectively. When the UAV model is hovering, it can
be considered that the total lift force is equal to the gravity of
the UAV. Define x1 = [ϕ, θ, ψ]T , x2 = [ϕ̇, θ̇, ψ̇]T . The state
model of the quadrotor can be represented using an affine
function. The model (1) can be transformed into the follow-
ing affine form: ẋ1 = x2,

ẋ2 = f(x,Ωr) + ∆f(x,Ωr) +Gu(t) + ∆Gu(t),
y = x1,

(4)
where ∆f(x) and ∆G are the uncertainty terms of the
quadrotor model; f(x,Ωr) is the nonlinear dynamics func-
tion of the quadrotor model; G is the control input matrix:

f(x,Ωr) =

θ̇ψ̇
Iy−Iz
Ix

+ Jr
Ix
θ̇Ωr − k1l

Ix
ϕ̇,

ϕ̇ψ̇ Iz−IxIy
− Jr

Iy
ϕ̇Ωr − k2l

Iy
θ̇,

θ̇ϕ̇
Ix−Iy
Iz

− k3
Iz
ψ̇,

 ,
G = diag

{
1
Ix
, 1
Ix
, 1
Iz

}
.

(5)

Rrewrite the control input equation as the following linear
parameter equation:

Gu(t) = Y (u(t))ϑ, (6)

where ϑ is the system parameter vector, consisting of un-
known inertial components, Y (u(t)) is the control input ma-
trix, that is: {

Y (u(t)) = diag{u2, u3, u4},

ϑ =
[

1
Ix
, 1
Iy
, 1
Iz

]T
.

(7)

2.2 Design Methodology
This paper adopts an adaptive DNN-SMC as shown in

Figure 1, to achieve control that does not depend on model
parameters.

Due to the problem that the UAV model cannot be accu-
rately modeled, this paper uses DNN to learn the nonlinear
part of the UAV to compensate the controller, enhancing the
control effect of the controller.

An adaptive method is used, dividing the DNN into two
parts: outer layer parameters and hidden layer parameters.
The outer layer parameters and controller parameters are up-
dated together on a small time scale to adapt to the rapid
changes in the UAV model. The hidden layer parameters
are updated through time triggering to save computational
resources. This ensures that the DNN meets the real-time
requirements of the UAV system.

Fig. 1: Control Framework Diagram

Define the tracking errors e1 : [t0,∞) → R3 and e2 :
[t0,∞) → R3 as:

e1 ≜ x1d − x1, e2 ≜ ẋ1d − x2, (8)

where x1d = [ϕ, θ, ψ] : [t0,∞) → R3 is the sufficiently
smooth desired trajectory; ẋ1d = [ϕ̇, θ̇, ψ̇] : [t0,∞) → R3 is
the first derivative of the desired trajectory.

2.3 Lemmas and Assumptions
The following lemma is needed for the derivation of the

controller design in the next section:

Lemma 1. [11] Using a DNN model to approximate a con-
tinuous function f(x) : Rq → Rn, in the form of:

f(x) =W ∗Tσ∗(Φ∗(x)) + ϵ(x), (9)

where x = [x1, x2, · · · , xq]T ∈ Rq is the input vector of the
DNN, Φ∗(x) : Rq → Rp is the hidden layer node function,
σ∗ : Rp → RL is the bounded vector of activation func-
tions,W ∗ ∈ RL×n is the bounded outer layer weight matrix,
ϵ : Rq → Rn is the bounded function reconstruction error
related to the weights, activation functions, and hidden layer
node functions. The hidden layer node function can be rep-
resented as: Φ∗(x) = (QTk ϕk ◦ QTk−1ϕk−1 ◦ · · · ◦ QT1 ϕ1) :
Rq → Rp. Here: k ∈ Z represents the number of hidden
layers, with k ≥ 3 in the DNN, ◦ denotes composition, Q
and ϕ correspond to the weights and activation functions of
the hidden layers, respectively.

Analyzing the actual UAV model, the following assump-
tion can be made:

Assumption 1. [8] Within a certain interval, there
are predetermined constants W ∗, σ∗, σ̂, ϵ ∈ R, ensur-
ing that the parameters within the DNN are bounded,
such as supx∈ℵc ∥W

∗∥ ⩽ W ∗, supx∈ℵc ∥σ
∗∥ ⩽

σ∗, supx∈ℵc ∥σ̂∥ ⩽ σ̂, supx∈ℵc ϵ ⩽ ϵ, where ℵc de-
notes a singly compact connected set in which f(x) is
continuous, and supx∈ℵc represents the supremum over
x ∈ ℵc.

3 Estimation of Unknown Dynamics Functions
Based on Deep Learning

3.1 Modeling Unknown Dynamics with DNN
Based on Lemma 1, in conjunction with Equation (9), the

nonlinear part f(x,Ωr) of the quadrotor model (4), along
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with the unknown parameter parts ∆f(x,Ωr) and ∆Gu(t),
can be approximated and estimated using a DNN, as follows:

Fϵ(χ) =W ∗Tσ∗(Φ∗(χ)) + ϵ(χ)

≈ f(x,Ωr) + ∆f(x,Ωr) + ∆Gu(t),
(10)

In this equation: Fϵ(χ) = col{f1, f2, f3} represents the
model’s nonlinear functions and uncertainties in UAV dy-
namics; Φ∗(x) : Rq → Rp is the ideal hidden layer node
function; σ∗ : Rp → RL is the bounded vector of ideal ac-
tivation functions; W ∗ ∈ RL×n is the ideal bounded outer
layer weight matrix; ϵ : Rq → Rn is the bounded function
reconstruction error related to the weights, activation func-
tions, and hidden layer node functions, which can be mini-
mized indefinitely through pre-training and online learning.
The ideal hidden layer node function can be represented as:
Φ∗(x) = (QT

kϕk◦QT
k−1ϕk−1◦· · ·◦QT

1ϕ1) : Rq → Rp, where
k ∈ Z denotes the number of hidden layers, with k ≥ 3 in
the DNN, ◦ denotes composition, Qk and ϕk correspond to
the weights and activation functions of the hidden layers, re-
spectively; χ is the input to the DNN, based on Equation (3),
it can be seen that there is a mapping relationship between
u1, u2, u3, u4, and Ωr, thus, the input to the DNN is set as:

χ = [u1, u2, u3, u4, ϕ, θ, ψ]
T, (11)

comprising of control inputs and attitude angles. Substitut-
ing Equation (10) into Equation (4), without considering the
reconstruction error, we obtain: ẋ1 =x2,

ẋ2 =F (χ) +Gu(t) + ϵ(χ),
y =x1,

(12)

where F (χ) =W ∗Tσ∗(Φ∗(χ)).

3.2 DNN Training Methods
The input and output for the DNN training data are {χ,

yt}. Combining Equation (4) and Equation (12), the compu-
tation formula for the DNN training target is as follows:

yt = ẋ2 −Gu(t), (13)

where u can come from any controller, yt serves as the tar-
get element of the training set. During online training from
the designed controller, when the control effectiveness ma-
trix for the UAV system with uncertain parameters cannot be
obtained, Equation (18) is used. By updating the outer layer
parameters and calculating the DNN output, further target
data for the DNN is obtained.

Pre-training on historical and simulated datasets enhances
the DNN’s fit to flight control system characteristics, reduc-
ing online update times. Datasets from various UAVs under
identical conditions will train the DNN.

The method involves adjusting PID control for different
attitude angles to follow a set trajectory, recording these
adjustments. This strategy divides the control process into
three segments based on the size of the attitude angle: ℶs =
[−π

8 ,
π
8 ), ℶm = [π8 ,

π
4 ) ∪ [−π

4 ,−
π
8 ), ℶl = [π4 ,

3
8π) ∪

[− 3
8π,−

π
4 ). Data from extreme angle adjustments are com-

bined for DNN pre-training. This data is cleaned, normal-
ized, randomized, and split into training, validation, and test
sets.

4 Adaptive DNN-SMC Design

The controller designed in this article is based on a parallel
control architecture, consisting of a DNN controller operat-
ing on a large time scale and an adaptive SMC operating on
a small time scale.

4.1 SMC Design
For attitude control, design the sliding surface s = kfe1+

e2, ensuring the system is asymptotically stable. Let

ṡ = ẍ1d − ẋ2 + kf ė1 = 0, (14)

Substitute Equation (12) into the controller expression:

ueq(t) = G−1(ẍ1d − F (χ)− ϵ(χ) + kf ė1), (15)

where ueq is the control input. To eliminate residuals, the
SMC expression is designed as:

u∗(t) = G−1(ẍ1d − F (χ) + kssgn(s) + kf ė1), (16)

where sgn(·) is the sign function, ks is a controller parame-
ter. To improve the stability of the controller, introduce con-
trol feedback terms e1 and e2 to obtain the controller expres-
sion:

u∗(t) =G−1(k1e1 + k2e2 + ẍ1d − F (χ)

+ kssgn(s) + kf ė1),
(17)

where k1, k2 are controller parameters.

4.2 Adaptive SMC Design
Set the outer layer weight as an adaptive function. The un-

known nonlinear part of the quadrotor UAV is compensated
for using DNN learning:

F̂i(χ) = Ŵ Tσ̂i(Φ̂i(χ)), (18)

where σ̂i : Rp → R13 and Φ̂i(χ) : R7 → Rp are respec-
tively the ith activation function and the estimate of the DNN
hidden layer, i ∈ N is the iteration number of the estimated
DNN, Ŵ : [t0,∞] → R13×3 is an unknown bounded ideal
outer layer weight matrix. The error between the ideal outer
layer weight and the weight estimate is defined as:

W̃ (t) ≜W ∗ − Ŵ (t). (19)

The estimation of the control matrix can be obtained from
equation (6) as:

Ĝu(t) = Y (x, u, t)ϑ̂, (20)

where Ĝ : R3 → R3×3 is the estimate of the control ef-
fectiveness matrix. Define the parameter estimation error
ϑ̃ : [t0,∞) → R3 as:

ϑ̃ ≜ ϑ− ϑ̂, (21)

where ϑ̂ : [t0,∞] → R3 is the estimated value of the data
matrix parameters.

Design the following adaptive SMC:

u =Ĝ−1(x)(k1e1 + k2e2 + ẍ1d − Ŵ Tσ̂i(Φ̂i(χ))

+ kssgn(s) + kf ė1),
(22)
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which can be rewrited by:

ẍ1d =Ĝu− (k1e1 + k2e2 − Ŵ Tσ̂i(Φ̂i(χ))

+ kssgn(s) + kf ė1),
(23)

Design the adaptive law for weight estimation as:

˙̂
W = −ΓW σ̂i(Φ̂i(χ))s

T, (24)

where ΓW ∈ RL×L is a given positive definite diagonal ma-
trix. Design the adaptive law for the input parameter vector
as:

˙̂
ϑ = −ΓϑY

Ts, (25)

where Γϑ ∈ R3×3 is a given positive definite diagonal gain
matrix. Deriving equation (8) with respect to t:{

ė1(t) = e2(t),
ė2(t) = ẍ1d(t)− ẋ2(t),

(26)

combining equations (12) and (23), we obtain:
ė1 =e2,

ė2 =Ĝu(t)−Gu(t)− kssgn(s)− kf ė1,

+ F̂ (χ)− F (χ)− k1e1 − k2e2

(27)

Substituting equation (6) into equation (27), we obtain the
following closed-loop error system:

ė1 =e2,

ė2 =− Y ϑ̃− kssgn(s)− kf ė1

+ F̂ (χ)− F (χ)− k1e1 − k2e2.

(28)

4.3 Controller Stability Analysis
Based on the Lyapunov theorem, this section proves the

asymptotic stability of the closed-loop system.

Theorem 1. Consider the nonlinear system (4), where the
initial condition is x(t0) ∈ ℵc, and the assumption con-
dition 1 is satisfied. Given known upper bounds σ∗ ≥ 0,
σ̂ ≥ 0, W ∗ ≥ 0, ϵ ≥ 0, it is possible to make the defined tra-
jectory tracking error semi-globally asymptotically stable,
i.e., lim

t→∞
e1 = 0, lim

t→∞
e2 = 0, lim

t→∞
ϑ̃ = 0, lim

t→∞
W̃ =

0, t ≥ t0, by using the controller output (22), the outer
layer parameter adaptive update law (24), and the parame-
ter estimation update rate (25), and satisfying the following
assumption conditions:{

ks > (σ∗ + σ̂)W ∗ + ϵ,
k1 = 1 + k2kf .

(29)

Proof. Construct a Lyapunov function:

VL(z, t) =
1

2
eT
1e1 +

1

2
sTs

+
1

2
ϑ̃TΓ−1

ϑ ϑ̃+
1

2
tr(W̃ TΓ−1

W W̃ ),

(30)

where z ≜ [eT
1, e

T
2, ϑ̃

T, vec(W̃ )T]T, vec(·) is the operation of
concatenating each column of a matrix into a single column
vector, tr(·) is the trace of a matrix.

Taking time derivative of equation (30) yields:

V̇L(z, t) = eT
1 ė1 + sTṡ+ ϑ̃Γ−1

ϑ
˙̃
ϑ+ tr(W̃ TΓ−1

W
˙̃
W ), (31)

Substituting equation (28) into equation (31) yields:

V̇L(z, t) = eT
1e2 + kfs

Te2 − k1s
Te1 − k2s

Te2

+ sT(−Y ϑ̃+ F̂ (χ)− F (χ)− kssgn(s)− kf ė1)

+ ϑ̃Γ−1
ϑ

˙̃
ϑ+ tr(W̃ TΓ−1

W
˙̃
W ),

(32)
Since eT

1s = sTe1 and e2 = s− kfe1, ė1 = e2, simplifying
(32) yields:

V̇L(z, t) = (1− k1 + k2kf )s
Te1 − kfe

T
1e1 − k2s

Ts

+ sT(−Y ϑ̃+ F̂ (χ)− F (χ)− kssgn(s))

+ ϑ̃Γ−1
ϑ

˙̃
ϑ+ tr(W̃ TΓ−1

W
˙̃
W ),

(33)

Since ϑ and W ∗ are constants, thus ϑ̇ = Ẇ ∗ = 0, Taking
the time derivative of ϑ̃ and W̃ yields:{

˙̃
ϑ = − ˙̂

ϑ,
˙̃
W (t) = − ˙̂

W (t).
(34)

Substituting equation (34) into equation (33) yields:

V̇L(z, t) = (1− k1 + k2kf )s
Te1 − kfe

T
1e1 − k2s

Ts

+ sT(−Y ϑ̃+ F̂ (χ)− F (χ)− kssgn(s))

− ϑ̃Γ−1
ϑ

˙̂
ϑ− tr(W̃ TΓ−1

W
˙̂
W ),

(35)

Based on the property of trace (considering real vectors
a, b ∈ Rn, there is tr(abT) = bTa), substituting equations
(25), (24), (10), (18) into equation (35) yields:

V̇L = (1− k1 + k2kf )s
Te1 − kfe

T
1e1 − k2s

Ts+ sTϵ(x)

− sT(kssgn(s)) + sTW ∗T (σ̂i(Φ̂i(χ))− σ∗(Φ∗(χ))),
(36)

Under the assumption 1, it can be obtained:

V̇L ≤− kf∥e1∥2 − k2∥s∥2

− (ks − (σ̂ + σ∗)W ∗ − ϵ)∥s∥1,
(37)

By the inequality (29), it can be obtained:

V̇L ≤ −kf∥e1∥2 − k2∥s∥2. (38)

Through (30) and (38), it can be concluded that VL(z, t) ∈
L∞, meaning that, z(t) ∈ L∞, i.e., [eT

1, e
T
2, ϑ̃

T, vec(W̃ )T] ∈
L∞. From equations (19), (8), (21), it is obtained that
x1(t), x2(t), ϑ̂(t), Ŵ (t) ∈ L∞. According to assumption 1,
it can be obtained that σ̂(·), ϵ(x(t)), Ĝ−1(x(t)), Ĝ(x(t)) ∈
L∞. Since Ĝ(x(t)), u(t), ϑ̂(t) ∈ L∞, through equation (6),
it is known that, Y (x, u, t) ∈ L∞. Thus, it can be con-
cluded: −k1∥e1∥2−k2∥s∥2 → 0. When t→ ∞, ∥e1∥ → 0,
∥s∥ → 0, and for all t ≥ t0, it satisfies x1(t) ∈ ℵc,
x2(t) ∈ ℵc.

5 Experimental Analysis

5.1 Platform Introduction
This section establishes a simulation platform for testing

and evaluating the proposed algorithm. Both the DNN and
NN are pre-trained to showcase their capability in learning
the nonlinear characteristics. The proposed algorithm is then
compared against the adaptive NN control method [12] and
the SMC method [13].
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5.2 Experimental Setup
Experiments will be conducted from two aspects: pre-

training results and large-angle tracking analysis.
The structural parameters of UAV are as follows:
Ix = Iy = 7.5 × 10−3 kg · m2, Iz = 1.3 × 10−2 kg ·

m2, Jr = 2.7×10−4 kg·m2,m = 0.8 kg, l = 0.165 m, c1 =
2× 10−7, c2 = 9× 10−5, κ1 = κ2 = κ3 = 0.

The initial state of the quadrotor drone is (in radians):

x1 = [0, 0, 0]T, x2 = [0, 0, 0]T (39)

The desired tracking attitude of the quadrotor drone is de-
signed as follows:

x1d =

[
3

8
sin (

2

5
πt),

3

8
cos (

2

5
πt), 0

]T

. (40)

The uncertainty model of the quadrotor drone is chosen as
follows:

∆f(x) = 0.02
[
sinϕ, cosθ, cosψ

]T
,

∆Gu = 0.02
[
sinϕu2, cosθu3, cosψu4

]T (41)

The proposed adaptive DNN-SMC takes the form of
Equation (22), and the specific controller parameters are as
follows: k1 = 1.5, k2 = 1, kf = 0.5, ks = 0.25, ϑ̂(0) =
[1/(8×10−3), 1/(8×10−3), 1/(3×10−2)]T, Γw = 3I13×13,
Γϑ = 1.5I3×3.

5.3 Experimental Results Analysis
5.3.1 Pre-training Results Analysis

In accordance with the approach outlined in Section 3.2,
the parameters for proportion, integral, and derivative are as
follows: when the angle falls within the range ℶs, the values
are 2.5, 0.2, and 0.7, respectively; within ℶm, they are 5, 0.5,
and 1.4; and within ℶl, they are 8, 0.5, and 3.

Fig. 2: The structure of DNN

The schematic diagram of the deep neural network de-
signed in this paper is shown in Fig. 2. DNN has 7 in-
puts and 3 outputs. The hidden layers consist of 15 Tanh
activation layers, 5 Sigmod activation layers, and 8 Sigmod
activation layers. The outputs are calculated through a fully
connected layer. On the other hand, the shallow NN has 7
input layers, connected by a fully connected layer, activated
by the Sigmod function, and has 3 outer layer.

The pre-training uses the stochastic gradient descent
method with a learning rate of 0.01. The ratio of training set,
test set, and validation set is 16:4:5, and the random seed is
42. The dataset is split, and the mean squared error (MSE)
is used to calculate the loss.

Table 1: Comparison of DNN and NN Performance

Training Loss Validation Loss Iterations

NN 4.3787× 10−05 4.1887× 10−05 500
DNN 2.3896× 10−05 2.3232× 10−05 500

The performance comparison of pre-training between
shallow NN and DNN is shown in Table 1. From the ta-
ble, DNN has stronger learning ability on different datasets,
faster convergence speed, and smaller loss on both the train-
ing and validation sets compared to NN.

5.3.2 Analysis of Control Effectiveness

The controller calculates every 0.01 seconds and trains the
NN and DNN parameters every 2 seconds using training data
collected in the past.

Figures 3a and 3b present the attitude tracking and er-
ror curves for a quadrotor drone using three different con-
trol strategies. Upon examining the tracking performance,
it is evident that the adaptive DNN method outperforms the
others by achieving the highest tracking accuracy and the
quickest convergence rate. The adaptive NN method demon-
strates some level of adaptability, albeit with a slower con-
vergence compared to the DNN approach. Conversely, the
SMC method exhibits the lowest performance, characterized
by notable tracking errors.

Figure 3c illustrates the quadrotor drone’s attitude track-
ing output response under three control methods, indicating
comparable energy consumption across the controllers. No-
tably, both NN and DNN controls enhance quadrotor man-
agement atop SMC, with DNN requiring less energy than
NN for superior control performance.

Table 2 compares the effects of SMC, PID, NN, and DNN
control methods. Both NN and DNN have an update pe-
riod of 2 seconds. The comparison is made from the aspects
of tracking accuracy and non-linear approximation accuracy.
Each loop in the table represents the mean square deviation
within four seconds, where loop 1 represents 0 to 4s, loop 2
represents 4 to 8 seconds, and so on. From the analysis of
tracking accuracy, DNN has the highest tracking accuracy,
followed by NN and SMC, and PID has the worst tracking
accuracy. By analyzing each loop, it can be found that the
tracking accuracy of NN and DNN improves with each up-
date, and the tracking accuracy of DNN converges faster and
has a better effect. From the analysis of non-linear approx-
imation accuracy, the non-linear approximation accuracy of
DNN is higher than that of NN. By analyzing each loop, it
can be found that the non-linear approximation accuracy be-
comes higher with parameter updates. In summary, DNN
has fast convergence speed and high convergence accuracy,
making it more suitable for quadrotor drone controller de-
sign.

6 Conclusion

This paper addresses the problem of nonlinearity and un-
certainty in the black-box model of unmanned aerial vehicles
(UAVs), which makes it difficult to accurately model them.
To solve this problem, an adaptive DNN-SMC is designed
to achieve trajectory tracking control for quadcopter UAVs.
The adaptive DNN is trained offline and online to learn and
compensate for the nonlinear and uncertain parts of the quad-
copter UAV, reducing the reliance on controller parameters
and improving control performance. The stability of the
proposed approach is analyzed using Lyapunov-based stabil-
ity analysis methods. Experimental results demonstrate that
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Table 2: Comparison of Control Methods
Control Method Tracking Accuracy (rad2) Nonlinear Approximation Accuracy

NN-SMC 0.0386 235.2

Period 2s
4s 8s 12s 16s 4s 8s 12s 16s

0.1681 0.4046 0.0161 0.0031 1484 90.88 39.19 8.870
DNN-SMC 0.0228 197.87

Period 2s
4s 8s 12s 16s 4s 8s 12s 16s

0.1459 0.0096 0.0024 0.0006 1415 20.63 8.054 4.281

pre-training the DNN with prior control data allows the con-
troller to achieve better tracking performance even at large
angles. The paper also discusses the implementation of the
adaptive DNN control method.

(a) Roll angle trajectory tracking curve

(b) Roll angle trajectory tracking error curve

(c) Roll angle trajectory tracking output curve

Fig. 3: Attitude trajectory tracking curves
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Fangyuan Li1, Guangxin Liu1, Xiaoning Shen1, Cheng Li1, Xinpo Lin1, Yabin Gao1, Jianxing Liu1

1. Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
E-mail: xn shen@hit.edu.cn

Abstract: This paper presents a novel robust approach for buck converters voltage tracking by utilizing the high-order fully
actuated (HOFA) theory. Initially, the HOFA model of the buck converter is derived, followed by an analysis of disturbances
encountered in real-world scenarios. In order to mitigate the adverse consequences arising from imprecise or abrupt alterations
in circuit parameters, a robust tracking controller is devised to enhance the overall robustness of the system. Ultimately, simula-
tions are performed to compare the proposed controller with the dual-loop PI controller. The results indicate that the proposed
controller exhibits a quicker dynamic response and greater robustness compared to the dual-loop PI controller. Additionally, the
process of selecting parameters of this method is simpler and more convenient.

Key Words: Fully-actuated system theory, Buck converter, Robust controller, Dual-loop PI controller

1 Introduction

With the rapid development of technology, the role of

electronic devices in industrial applications is becoming in-

creasingly prominent. Power management system is es-

sential for ensuring these devices operate at maximum ef-

ficiency and performance. The buck converter, as a common

step-down dc-dc converter, finds widespread application in

a variety of fields, including electric vehicles, mobile power

sources, communication devices, and aircraft power systems

[1–3]. It has become a crucial part of power management

system due its predominant energy efficiency and compact

design. It can effectively convert high voltage to lower volt-

ages to fulfill the varied power needs of different electronic

devices.

The buck converter operates on the basis of changing the

duty cycle to change the output voltage. There are primarily

two operating modes about this converter: continuous con-

duction mode (CCM) and discontinuous conduction mode

(DCM). When working in continuous conduction mode, the

inductor current never goes below zero during the whole op-

erating cycle. Discontinuous conduction mode, on the other

hand, allows the inductor current to reach zero before the

switch is turned off. When it comes to modulation tech-

niques, the buck converter incorporates three commonly em-

ployed methods, namely pulse width modulation (PWM),

pulse frequency modulation (PFM), and pulse skip modu-

lation (PSM). Specifically, PWM operates by establishing

a consistent frequency and manipulating the duty cycle via

voltage or current feedback.

The dc-dc converter’s intrinsic non-linear properties are

caused by the existence of the switching device [4].At the

moment, the first-order state-space model serves as the foun-

dation for the modeling strategy used for the buck converter

[5–7]. Nevertheless, this approach interferes with the sys-

This work was supported in part by the National Natural Science Foun-
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tem’s full-actuate characteristics, which makes controller de-

sign more difficult [8]. The fully actuated system theory

proposed by Duan in 2020 offers a more efficient method

for the study of non-linear systems and the controller design

that goes along with it, as opposed to the difficult task of

designing Lyapunov functions [8–17].

Unlike the state-space approach, the fully actuated system

theory removes variables to enhance system order. Subse-

quently, a high-order system model is obtained. For high-

order systems exhibiting fully actuated characteristics, spe-

cific feedback control can transform them into closed-loop

systems with an arbitrarily assignable eigenstructure, which

behave more powerfully in the control of many nonlinear

systems [9]. At present, scholars have applied the fully actu-

ated system theory in various fields such as robotics, space-

craft, fuel cells, and so on [18–22]. In the area of power

electronics, Fang et.al developed the HOFA model for the

buck converter and established an improved control strategy,

which transformed the error model into a third-order model,

achieving system stability and enhancing disturbance rejec-

tion through pole assignment [23]. However, configuring

poles for a third-order system is more challenging than for

a second-order system.

In this paper, to simplify parameter design process and

enhance system robustness, a novel robust voltage tracking

method based on the high-order fully actuated (HOFA) sys-

tem theory is proposed for the buck converters. Initially, the

actual model of the buck converter is represented, and the

system model is transformed into an HOFA model. Fol-

lowing that, a robust controller, abbreviated R-HOFA for

simplicity, is built to improve the system’s robustness. Fi-

nally, simulations are performed to compare the R-HOFA to

a dual-loop PI controller (D-PI). The results validate the effi-

ciency of the proposed R-HOFA, exhibiting a more straight-

forward and user-friendly parameter selection procedure.

2 Modeling the Buck Converter

This section describes the state space model of the buck

converter and how the fully actuated system theory is applied

to turn this model into an HOFA model. A feedback control

law is specified to make the system a constant linear closed-

loop system.
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2.1 Buck Converter
The typical configuration of a buck converter circuit is

shown in Fig. 1, which includes a control switch (Sw), an

input power source (Vin), a load resistor (R), an inductor

(L), a capacitor (C), and a diode (D).

inV
outVCD R

wS

PWM

L

Li
Ci

Fig. 1: Buck converter circuit

Assuming precise parameters and the lack of interference

in the buck converter circuit, two possibilities can be sepa-

rated based on the switch on-off states, as shown in Fig. 2.

inV
outVC R

L

Li
Ci

(a) Sw = ON

outVCD R

L

Li
Ci

(b) Sw = OFF

Fig. 2: Buck converter circuit: Sw is ON and OFF

According to Fig. 2, the operation of the buck converter

with ON Sw can be described as follows:

diL
dt

=
1

L
(Vin − Vout)

dVout

dt
=

1

C

(
iL − Vout

R

) (1)

The operation of the buck converter with OFF Sw can be

described as,

diL
dt

= −Vout

L
dVout

dt
=

1

C

(
iL − Vout

R

) (2)

By combining equations (1) and (2), the system can be

modeled in a unified manner:

diL
dt

=
1

L
(uVin − Vout)

dVout

dt
=

1

C

(
iL − Vout

R

) (3)

where u represents the control variable, which actually de-

notes the duty cycle of the PWM signal.

However, the previous modeling process did not take into

consideration the impact of factors such as imperfections in

circuit component characteristics and external disturbances

on control precision in actual applications. A more exten-

sively applicable modeling technique is presented below so

as to precisely construct the controller.

The parameters in the model are established as follows,

assuming variations in resistance, inductance, capacitance,

and input voltage from their nominal values and the exis-

tence of unknown noise in the external environment:

R = R0 +ΔR

L = L0 +ΔL

C = C0 +ΔC

Vin = Vin0
+ΔVin

d1(t), d2(t)

(4)

where R0, L0, C0, Vin0 represent the nominal portion and

ΔR,ΔL,ΔC,ΔVin represent the deviation portion. Exter-

nal unknown bounded disturbances, such as unmodeled fea-

tures, electromagnetic interference, and so on, are denoted

by d1(t), d2(t), assuming that their first derivatives exist and

are bounded. Under these conditions, the model (3) of the

buck converter can be rewritten as:

diL
dt

=
1

L0 +ΔL
(u (Vin0

+ΔVin)− Vout) + d1(t)

dVout

dt
=

1

C0 +ΔC

(
iL − Vout

R0 +ΔR

)
+ d2(t)

(5)

The model (5) can also be expressed more simple as fol-

lows:

diL
dt

=
1

L0
(uVin0

− Vout) +D1(t)

dVout

dt
=

1

C0

(
iL − Vout

R0

)
+D2(t)

(6)

where the lumped disturbances D1(t), D2(t) are given by：

D1(t) =
(ΔVinL0 − VinΔL)u+ VoutΔL

LL0
+ d1(t)

D2(t) =
ΔC(Vout −R0iL)

R0C0C
+

VoutΔR

R0RC
+ d2(t)

(7)

2.2 HOFA Model
Eliminating the inductor current iL from the actual model

(6) and letting the output voltage Vout be the system state

x, the actual model can be rewritten as the following higher-

order system model:

ẍ = − 1

R0C0
ẋ− 1

L0C0
x+

Vin0

L0C0
u+Δf(x, ẋ) (8)

where Δf(x, ẋ) represents the total uncertainty, which can

be expressed by the following equation:

Δf(x, ẋ) =
(D1 + Ḋ2)

C0
(9)

Assuming the total uncertainty has an upper bound, satis-

fying:

‖Δf(x, ẋ)‖2 ≤ ρ(x, ẋ) (10)

where ρ(x, ẋ) is a non-negative continuous scalar function.
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The coefficient in front of the control variable is non-zero

in the higher-order system model (8), which means that for

every state and t > 0, the following equation always holds:

det

(
Vin0

L0C0

)
�= 0 (11)

Consequently, the buck converter system model (8) meets

the criteria of being fully actuated, suggesting that model (8)

is the HOFA model. Hence, there exists a feedback control

law given by [8]:

u =
L0C0

Vin0

(
1

R0C0
ẋ+

1

L0C0
x− a1ẋ− a0x+ v

)
(12)

where a0 and a1 are arbitrary parameters, and v is the fol-

lowing controller to be constructed. At this point, model (8)

can be turned into a constant linear closed-loop system with

desired performance, namely:

ẍ+ a1ẋ+ a0x = v +Δf(x, ẋ) (13)

The model mentioned above can be represented in state-

space form as follows:

Ẋ = AcX +

[
0

v +Δf(X)

]
(14)

where，

Ac =

[
0 1

−a0 −a1

]
∈ R2×2 (15)

To summarize, by utilizing fully actuated system theory

and putting the feedback control law (12) into practice, the

control issue of the original system can be converted into the

control problem of constant linear closed-loop system with

the required properties. This operation significantly simpli-

fies the design of the controller.

3 Control Strategy Design Based on Fully Actu-
ated System Theory

This section focuses on the design of the controller, taking

into account both ideal and realistic circumstances. For con-

venience of analysis, assume the intended constant voltage

is indicated by Vref and the tracking error is designated by

ε = Vref − Vout.

3.1 Ideal Controller
When model parameter perturbations and external distur-

bances are ignored, i.e., Δf(x, ẋ) = 0, the system model

can be represented as follows:

ẍ+ a1ẋ+ a0x = v (16)

To guarantee that the buck converter can stabilize the volt-

age at the desired level, the controller only needs to be con-

figured as follows:

v = a0Vref (17)

The ideal controller is obtained by combining the follow-

ing controller (17) with the feedback control rate (12):

u = L0C0

Vin0

(
1

R0C0
ẋ+ 1

L0C0
x− a1ẋ− a0x+ a0Vref

)
(18)

The model (16) can now be expressed as follows:

ε̈+ a1ε̇+ a0ε = 0 (19)

Since a0, a1 are arbitrary parameters, design the model’s

characteristic roots to be different negative real roots, in-

dicated as r1 �= r2 < 0. The solution to the differential

equation (19) in this situation is:

ε(t) = C1e
r1t + C2e

r2t

lim
t→∞ ε(t) = 0

(20)

According to the previous analysis, it is feasible to accom-

plish the desired features of the buck converter model and

thereby achieve the effect of voltage tracking through param-

eter design by constructing the following controller accord-

ing to equation (17). However, relying solely on configuring

poles to enhance the disturbance rejection capability of the

system may not be sufficient.

3.2 Robust Controller
The parameters in the model are constantly susceptible

to perturbations in real-world scenarios, and external distur-

bances cannot be disregarded. A robust controller is devel-

oped for model (13) to reduce the impact of model uncertain-

ties. The following controller is designed in a given manner

[10]:

v = a0Vref +
1

4ξ
ρ2PT

2

[
ε
ε̇

]
(21)

where ξ is any given positive number, ρ is an upper bound

on the total uncertainty of the system, the matrix P2 ∈ R2×1

is part of a symmetric positive definite matrix P ∈ R2×2,

which is parameterized by a0, a1. The relationship between

P2 and P is satisfied:

P2 = P

[
0
1

]
(22)

Combining the proposed controller (21) with the previ-

ously designed feedback control law (12) results in a com-

plete robust controller, which we call it R-HOFA:

u =
L0C0

Vin0

(
1

R0C0
ẋ+

1

L0C0
x− a1ẋ− a0x

+a0Vref +
1

4ξ
ρ2PT

2

[
ε
ε̇

]) (23)

With this controller, the buck converter’s tracking error

ε and its derivative ε̇ are guaranteed to converge within an

ellipsoid centered at zero [10]:

Θ(0) =

{
X =

[
ε
ε̇

]∣∣∣∣XTPX <
2ξ

μ

}
(24)

where μ is determined by the following equation：

Reλi(Ac) < −μ

2
, i = 1, 2 (25)

The stability proof procedure of the controller (21) and the

selection of all parameters can be found in [10].
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4 Simulation Results

This section analyzes the simulation results of two control

strategies, robust controller (R-HOFA) and dual-loop PI (D-

PI), in different experimental scenarios under the premise

that the uncertainty satisfies the upper bound assumption.

Table 1 provides the nominal values for each parameter and

Table 2 shows the control parameters for R-HOFA and D-PI.

Table 1: System Parameters of Buck Converter

Input voltage(Vin0 ) 30V

Reference output voltage(Vref ) 5V

Inductance(L0) 2mH

Capacitance(C0) 4700μF

Resistance(R0) 10Ω

PWM frequency(f ) 10kHz

Table 2: Controllers’ Parameters

a0 500

a1 60000

ρ 1000

ξ 0.01

PT
2

[
579.514 1.927

]
Kouter

P 1

Kouter
I 20.3

Kinner
P 3× 105

Kinner
I 8× 105

4.1 Responsive Characteristics using Nominal Parame-
ter Values

The nominal values of each component of the buck con-

verter are listed in Table 1, but in actual circuits, there is

often some deviation between the real value and the nom-

inal value. Assuming that the resistance, inductance, and

capacitance all exist with a 20% random tolerance, the out-

put voltage waveforms using two kinds of different control

strategies are shown in Fig. 3 and Fig. 4.
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Fig. 3: Output voltages about R-HOFA and D-PI using

nominal parameter values when Vref = 5V

According to the findings presented in Fig. 3, it is evi-

dent that R-HOFA exhibits a shorter rise time compared to

D-PI, along with a swifter response. Furthermore, R-HOFA

demonstrates the ability to track variations in reference volt-

age without overshooting. Conversely, D-PI exhibits inad-
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Fig. 4: Output voltages about R-HOFA and D-PI using

nominal parameter values when Vref = 5,17,23,18,9V in

order

equate control in some scenarios, particularly between the

time intervals of 200ms and 350ms, as shown in Fig. 4.

4.2 Input Voltage Fluctuation
The way of setting the nominal parameter values of the

buck converter in the controller remains the same as in sec-

tion 4.1. Considering the case of abrupt changes in input

voltage, it drops from 30V to 20V at 50ms and rises from

20V to 40V at 100ms.
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(a) Input voltage fluctuation
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(b) R-HOFA
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(c) D-PI

Fig. 5: Input voltage drops to 20V at 50ms and rises to 40V

at 100ms
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It can be seen from Fig. 5(a) that the input voltage drops

from the original 30V to 20V at 50ms, and rises from 20V

to 40V at 100ms. Fig. 5(b) and Fig. 5(c) are the output volt-

age waveforms of the two methods of R-HOFA and D-PI

respectively, which shows that the output voltage of the two

methods is basically stable at 5V at 50ms and 100ms, further

highlights the robustness of both approaches in accommo-

dating rapid fluctuations in input voltage.

4.3 Load Resistance Fluctuation
The values of the parameters remain still, and the input

voltage is held constant at 30 V. Considering the case of

abrupt changes in load resistance, it rises from 10Ω to 30Ω
at 50 ms and drops from 30Ω to 5Ω at 100 ms.
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Fig. 6: Load resistance rises to 30Ω at 50ms and drops to

5Ω at 100ms

Fig. 6(a) shows the fluctuation in the load resistance of

the buck converter, which simulates the sudden change of

the load resistance and the output voltage waveforms of the

two methods R-HOFA and D-PI can be found in Fig. 6(b).

The output voltage waveform of D-PI exhibits significant

variations when the load resistance experiences abrupt fluc-

tuations at 50ms and 100ms, as shown in Fig. 6(b). Con-

versely, the result of R-HOFA remains stable, suggesting

that R-HOFA demonstrates greater robustness in the pres-

ence of abrupt changes in the load resistance.

5 Conclusions

This study examines the design methodology of a robust

controller utilizing the fully actuated system theory on buck
converter. To validate the efficacy of the proposed R-HOFA,

three sets of simulation experiments are conducted. A com-

parative analysis is performed with the D-PI, and based on

the experimental findings, several conclusions are drawn:

• The R-HOFA demonstrates faster responsiveness com-

pared to the D-PI.

• Both R-HOFA and D-PI exhibit smoother and more ro-

bust output voltage waveform when subjected to varia-

tions in the input power supply.

• The output voltage of the R-HOFA remains stable at the

desired voltage even when there are abrupt changes in

the load resistance, whereas the D-PI exhibits a signifi-

cant deviation.

• In terms of parameter tuning, R-HOFA requires only

the configuration of a suitable pole and a large upper

bound ρ to achieve an output voltage waveform with-

out overshooting and with a fast response. In contrast,

the D-PI necessitates multiple tuning iterations to ob-

tain a corresponding output voltage waveform without

overshooting.

Overall, the simulation experiments confirm that the R-

HOFA outperforms the D-PI in terms of response character-

istics and robustness, while also offering a simpler parameter

setting process. The efficacy of employing the fully actuated

system theory in controller design of dc-dc buck converter is

evidenced, as it enhances system performance while stream-

lining the design process. And also it can be concluded that

the fully actuated system theory has extraordinary signifi-

cance and application value in the field of power electronics.
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Abstract: Model uncertainties and external disturbances significantly impact the performance of trajectory tracking control
in robotic systems. This paper proposes a novel control strategy based on high-order fully actuated (HOFA) system theoretical
methods. The robotic system with nonlinear properties is transformed into a closed-loop linear system by pseudo-linear parameter
design. The tracking controller is designed for the linearized system by combining robust control methods. Recognizing the
system’s susceptibility to disturbances during operation, a nonlinear disturbance observer (NDO) is designed to estimate and
compensate for the lumped disturbances, and the stability of the system is demonstrated. Finally, comparative simulations based
on the UR5 robot validate the effectiveness of the proposed control strategy.

Key Words: High-order fully actuated system, Trajectory tracking, Robust control, Robotic systems

1 Introduction

As the process of global industrialization continues to ad-
vance, the development of manufacturing intelligence and
automation has become a general trend. The manipulator
is the most widely used mechanical device in the field of
robotics and an indispensable tool for human automation by
mimicking the movements of the human arm to complete the
tasks of carrying, grasping, and operating processing tools.

Since the robotic system is a typical nonlinear, strongly
coupled system with model uncertainty, including the sys-
tem’s unmodeled dynamics, parameter uncertainty, joint
friction, measurement errors, and other factors [1], it is diffi-
cult to establish its accurate dynamics model. Furthermore,
because the real working environment of the manipulator
is typically very severe, it is prone to external disturbances
during operation [2]. The complexity of a multi-degree-of-
freedom robot’s kinematic model makes it difficult to stable
and control it with high precision and speed, and if the afore-
said considerations are not taken into account, the system is
likely to be destabilized [3]. As a result, how to develop a ro-
bust, simple, and high-performance controller based on the
robot dynamics model to implement high-precision trajec-
tory tracking of the robotic system remains a difficult topic
in recent control research [4].

To address this problem, many scholars have proposed
some control methods and strategies. Mohammed et.al [5]
considered the modeling and control of a two-link robotic
system, introducing a robust control strategy based on con-
ventional sliding mode control for specific tasks. Zhao et.al
[6] combined adaptive feedback control and PID control to
design a new adaptive PID feedback controller to realize the
precise tracking control of collaborative robots. A back-
stepping sliding mode control method based on a nonlin-

This work was supported in part by the National Natural Science Foun-
dation of China (No. 62173116), in part by the Dreams Foundation of
Jianghuai Advance Technology Center (NO. 2023-ZM01J002), in part by
the Science Center Program of National Natural Science Foundation of
China under Grant 62188101, and in part by the Heilongjiang Touyan Team
Program. (Corresponding author: Yue Zhao)

ear disturbance observer was proposed in [7]. For robotic
systems with external time-varying disturbances, a compos-
ite algorithm combining model predictive control and gen-
eralized proportional-integral observer was designed in [8],
which significantly improves the system disturbance rejec-
tion capability. For the problem of task tracking in the joint
space, Garofalo et.al [9] proposed an adaptive fault-tolerant
method for robot trajectory tracking with fixed-time sliding
mode. Sun et.al [10] investigated the predefined time trajec-
tory tracking control of a robotic system using a radial basis
function neural network to estimate the uncertainty in the
dynamics of the robotic system.

The methods described above are all based on the state-
space model, but many original systems in the physical
world are second- or higher-order. If the state-space method
is used to convert them to first-order systems, the system’s
fully actuated characteristics are destroyed, and the state-
space method may become no longer applicable and pow-
erless for complex nonlinear controlled systems. Based
on the above considerations, Duan proposed a novel high-
order fully actuated (HOFA) system method [11–15] that
can transform the nonlinear system into a closed-loop lin-
ear constant system with desired characteristics through the
elimination of the element ascending order and pole config-
uration. For uncertain high-order strict feedback nonlinear
systems with ”complex explosion”, an event-triggered adap-
tive SMC strategy based on HOFA theory was proposed in
[16]. Moreover, a disturbance observer-based HOFA method
was proposed in [17] for realizing high-precision trajectory
tracking of free-flying robots. Utilizing the full-actuated
property of HOFA to avoid higher-order derivatives of the
signal, Li and Duan [18] proposed a HOFA-singular per-
turbation control scheme for flexible servo systems. Hence,
compared with the traditional control methods, HOFA shows
greater superiority in nonlinear system control.

In this paper, a robotic control scheme based on HOFA
system theory (referred to as the HOFA algorithm) is pro-
posed. The HOFA model of the robotic system is first es-
tablished, and the specific details of the pseudo-parametric
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linearized design process and pole configuration are given.
Then, a robust tracking controller is designed for the lin-
earized closed-loop system, and the system lumped distur-
bance is estimated and compensated by a nonlinear distur-
bance observer (NDO). Finally, the effectiveness and robust-
ness of the proposed HOFA control approach are verified by
comparative simulations.

The rest of this paper is organized as follows. The dy-
namics of the robotic system are modeled and the control
objectives are set in Section 2. The derivation process of the
robust tracking controller based on the HOFA system theory,
the design process of the NDO, and the proof of the stabil-
ity of the system are given in Section 3. In Section 4, the
proposed control approach is validated by simulation cases.
Finally, the Section 5 summarizes the main contributions of
this paper.

2 Problem Formulation

2.1 Dynamic modeling of robotic system
When establishing the dynamic model of the robotic sys-

tem, frictions, model uncertainties, and external disturbances
are considered, and the Lagrange method is utilized to solve
the dynamics equations to obtain the actual model.

M (q) q̈ + C (q, q̇) q̇ +G (q) + F + τd = τ (1)

where q, q̇, q̈ ∈ Rn is the angle, angular velocity, angular
acceleration vector, τ ∈ Rn is the torque vector provided by
the motor to the joint, M (q) ∈ Rn×n is the inertia term,
C (q, q̇) ∈ Rn×n is the Coriolis force and centrifugal force
term, G (q) ∈ Rn is the gravity term, F ∈ Rn is the fric-
tion term, τd ∈ Rn is the external disturbance. Due to the
uncertainty of the system, the modeling error is defined as

M = M0 + ∆M,∆M = kMM

C = C0 + ∆C,∆C = kCC

G = G0 + ∆G,∆G = kGG

(2)

where M0, C0, G0 is the nominal value, ∆M,∆C,∆G is
the modeling error, and kM , kG, kC ∈ R is the modeling
error coefficient. Then

M0 (q) q̈ + C0 (q, q̇) q̇ +G0 (q) = τ + d (3)

d = −
(
∆M

(
q
)
q̈ + ∆C

(
q, q̇
)
q̇ + ∆G

(
q
)

+ F + τd
)

(4)

In the above equation, d ∈ Rn represents the lumped distur-
bance term, which contains all model uncertainties, frictions,
and external disturbances.

2.2 Pseudo-linear parametric design
A typical second-order fully actuated system is as the fol-

lowing form

ẍ = f
(
x, ẋ, t

)
+B

(
x, ẋ, t

)
u (5)

where x, u ∈ Rn are state vectors and control vectors,
f(·) ∈ Rn and B (·) ∈ Rn×n are sufficiently differentiable
vector functions and matrix functions, and B(·) satisfies the
following fully actuated condition

detB
(
x, ẋ, t

)
6= 0,∀x, ẋ ∈ Rn, t>0 (6)

At this stage, for any given matrix A1, A0 ∈ Rn×n, it
is always possible to obtain the following closed-loop linear
constant system by means of a control law.

ẍ+A1ẋ+A0x = ν (7)

where ν is the external input. Therefore, by choosing the
matrix appropriately and configuring the poles, a closed-loop
system with the desired performance can be found.

For Eq.(3), this can be varied into the following form as

q̈ = M−1
0 (q)(−C0(q, q̇)q̇−G0(q)) +M−1

0 (q)
(
τ + d

)
(8)

According to the characteristics of the robot, the inertia ma-
trix M0 (q) is positive-definite and detM

0
(q) 6= 0, so it sat-

isfies the fully actuated condition.
At this phase, a pseudo-linear feedback controller based

on HOFA system theory is constructed to change the second-
order robotic system into a closed-loop linear system with
configurable eigenstructures

τ = τ1 + τ2

τ1 = C0 (q, q̇) q̇ +G0 (q)

τ2 = −M0 (q) (A1q̇ +A0q − ν)

(9)

where τ1 ∈ Rn is the system model compensation term,
τ2 ∈ Rn is the state feedback term, A1, A0 are the control
parameter matrices to be designed, and ν is the input signal.

3 Controller design based on HOFA system theory

3.1 Robust tracking controller design
Considering that the robotic system is susceptible to exter-

nal disturbances under actual working conditions, the fric-
tion, model uncertainty, and external disturbance within the
system are regarded as system uncertainty in Eq.(8), and the
model can be reduced to the following form based on HOFA
system theory as

q̈ +A1q̇ +A0q = ν + ∆f(q, q̇) (10)

In Eq.(10), ∆f(q, q̇) ∈ Rn is the nonlinear uncertainty term
of the system, which satisfies the following relation∥∥∆f(x, ẋ)

∥∥
2
≤ ρ(x, ẋ) (11)

where ρ(x, ẋ) is a nonnegative continuous scalar function
and it is bounded, while || · ||2 represents the Euclidean
paradigm. If the parameter matrix A fulfills the following
condition

Reλi(A)<− δ

2
, i = 1, 2...n (12)

where δ ∈ R > 0, Reλi(A) is denoted as the real part of the
ith eigenvalue of the parameter matrix A, then there exists a
positive definite matrix H ∈ Rn×n satisfying

ATH +HA ≤ −δH (13)

Based on the preceding reasoning, the controller robust
term for Eq.(10) can be designed as

ν = − 1

4ω
ρ2 (q, q̇)H2

T

[
q
q̇

]
(14)
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Fig. 1: Control structure diagram of UR5 Robot

where ω ∈ R > 0, and Eq.(14) is determined by the preced-
ing equations, then

H2 = H

[
0
I

]
= [H1 H2]

[
0
I

]
∈ Rn (15)

Desired tracking trajectory is known to be qd , and the
error variable is defined as

e(i) = q(i) − qd(i), i = 0, 1, 2 (16)

Based on the closed-loop system (10) and Eq.(16), the
transformation below could be realized

ë+A1ė+A0e = ν + ∆f − q̈d −A1q̇d −A0qd

ν = − 1

4ω
ρ2 (q, q̇)H2

T

[
e
ė

]
+ q̈d +A1q̇d +A0qd

(17)

Using the above transformation relation, the robust con-
troller is transformed into a robust tracking controller ac-
cording to Eq.(9) with the following expression as

τ = τ1 + τ2

τ1 = C0 (q, q̇) q̇ +G0 (q)

τ2 = −M0 (q) (A1q̇ +A0q − ν)

ν = − 1
4ωρ

2 (q, q̇)H2
T

[
e

ė

]
+ q̈d +A1q̇d +A0qd

(18)
Fig. 1 shows the block diagram of the control structure of

the UR5 robotic system. At this point, the robust tracking
controller (18) ensures that the state q, q̇ of the robotic sys-
tem converges in an ellipsoidal domain centered on the de-
sired trajectory qd, q̇d. The confirmation of system stability
is given later.

3.2 Nonlinear disturbance observer design
Since ρ(x, ẋ) in the above-mentioned robust tracking con-

troller is bounded, its control may be insufficient when the
robotic system is subjected to substantial disturbances. Un-
certainties such as frictions, model uncertainties, and exter-
nal disturbances are attributed to a lumped disturbance in this
section, and a nonlinear disturbance observer is designed to
estimate and compensate for them in order to reduce the up-
per bounds of the lumped disturbance and achieve a better
control effect.

Based on the real model (3), the design of the NDO has
the following form

˙̂
d = L(d− d̂)

= L (M0(q)q̈ + C0(q, q̇)q̇ +G0(q)− τ)− Ld̂
(19)

where, d̂ ∈ Rn is the estimated value of the lumped dis-
turbance, and L ∈ Rn×n is the gain matrix to be designed.
Define an auxiliary vector z ∈ Rn as

z = d̂− p(q, q̇) (20)

In the above equation, p(q, q̇) ∈ Rn is a function vector and
satisfies the following relation

p(q, q̇) = LM0(q)q̇ (21)

At this point, take the derivative of z, then we have the
following equation

ż = d̂− ṗ(q, q̇)
= L (M0 (q) q̈ + C0 (q, q̇) q̇ +G0 (q)− τ)

− Ld̂− LM0 (q) q̈

= L (C0 (q, q̇) q̇ +G0 (q)− τ)− Ld̂
= L (C0 (q, q̇) q̇ +G0 (q)− τ − p(q, q̇))− Lz

(22)

Thus, the specific form of NDO is derived as{
d̂ = z + p(q, q̇)

ż = L (C0(q, q̇)q̇ +G0(q)− τ − p(q, q̇))− Lz
(23)

As no differential a priori information of the disturbance
can be obtained, so assuming that the disturbance changes
slowly with respect to the dynamic characteristics of the in-
terferer, the disturbance estimation error for the NDO is de-
fined as

d̃ = d− d̂ (24)

˙̃
d = − ˙̂

d = −Ld̃ (25)

Define the Lyapunov function as

V1 =
1

2
d̃T d̃ (26)

Perform a derivative on it

V̇1 = d̃T
˙̃
d = −d̃TLd̃ (27)
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Since the gain matrix L is positive definite, V̇1 ≤ 0 is
taken to be equal if and only if d̃ = 0, when d̃ 6= 0,V̇1 <
0. According to the LaSalle invariance principle, the de-
signed NDO’s disturbance estimate error d̃ asymptotically
converges to the origin.

3.3 Stability analysis of the system
Before proceeding to the stability proof, two lemmas are

introduced.
Lemma 1: If there are two real numbers a ∈ R and b ∈

R, where b > 0 [13], then it is satisfied

a− a2

4b
≤ b (28)

Lemma 2: For the function V (t):[0,∞) ∈ R , if there is
a solution to the inequality equation V ≤ −αV + f, ∀0 ≤
t0 ≤ t [13] as

V (t) ≤ e−α(t−t0)V (t0) +

∫ t

t0

e−α(t−τ)f (τ) dτ (29)

Define the system uncertainty with the addition of the dis-
turbance observer as ∆f(q, q̇), which takes the form as

∆f(q, q̇) = M−1
0

(
d− d̂

)
= ∆f(q, q̇)−M−1

0 d̂ (30)

It is also assumed in this case that the uncertainty satisfies
condition (11), that there exists another nonnegative contin-
uous scalar function ρ̄(x, ẋ) that fulfills the following rela-
tion

‖ ∆f(x, ẋ) ‖2≤ ρ(x, ẋ) (31)

At this point, the closed-loop system after parameter lin-
earization is

q̈ +A1q̇ +A0q = Q(q, q̇)

Q(q, q̇) = − 1

4ω
ρ2 (q, q̇)H2

T

[
q
q̇

]
+ ∆f(q, q̇)

(32)

Transform Eq.(32) into state space form as

Ẋ = AcX +

[
0

Q(X)

]
(33)

among them, X =

[
q
q̇

]
, Ac =

[
0 I
−A0 −A1

]
.

For system (32), the Lyapunov function is chosen as

V2 =
1

2
XTHX (34)

Take the derivative on both sides of V2

V̇2 =
1

2
ẊTHX +

1

2
XTHẊ

=
1

2

(
AcX +

[
0

Q(X)

])T
HX

+
1

2
XTH

(
AcX +

[
0

Q(X)

])

=
1

2
XT

(
Ac

TH +HAc
)
X +XTH

[
0

Q(X)

]
≤ −δ

2
XTHX +XTH2Q (X) = −δV2 +XTH2Q (X)

(35)

Continue the derivation from Lemma 1 as

XTH2Q(X) = XTH2∆f(X)− ρ2 (X)

4ω
XTH2H

T
2 X

≤
∥∥∆f (X)

∥∥
2

∥∥HT
2 X

∥∥
2
− ρ2 (X)

4ω

∥∥HT
2 X

∥∥2
2

≤ ρ (X)
∥∥HT

2 X
∥∥
2
− ρ2 (X)

4ω

∥∥HT
2 X

∥∥2
2

≤ ω
(36)

According to the derivation of Eqs.(35) and (36), there are

V̇2 ≤ −δV2 + ω (37)

According to Lemma 2, solve Eq.(37) as

V2 ≤ V2 (0) e−δt +
ω

δ

(
1− e−δt

)
=
ω

δ
,
(
t→∞

)
(38)

Thus, the stability of the system is proven.
Therefore, the designed tracking controller for the closed-

loop system (10) ensures that the system state q, q̇ converges
to an ellipsoid centered on the desired trajectory qd, q̇d with
the following form as

Θ =

{
X =

[
q
q̇

]
| (X −Xd)

T
H (X −Xd) ≤

2ω

δ

}
(39)

4 Simulation Experiments

In order to verify the effectiveness of the proposed
HOFA control strategy, detailed simulation tests are carried
out in this paper with a 6-degree-of-freedom UR5 robot.
The simulation-oriented UR5 robot model is built in Cop-
peliaSim, and the control algorithm is designed in Matlab
2021b to realize their co-simulation.

The simulations are specified as follows: apply the desired
signals and external disturbances to each joint of UR5 in the
joint space, and select the PD computational torque method
as the control group of the experiments in order to test the
robustness, rapidity, and accuracy of the proposed HOFA al-
gorithm.

In order to better analyze the simulation results, conver-
gence time Ti and integral absolute error IAEi are intro-
duced as two evaluation metrics to measure the rapidity and
accuracy of the control algorithm in trajectory tracking.

Define the convergence time Ti: after a certain moment
Ti, the angular error of the ith joint of the robot arm con-
stantly satisfies the following relation∣∣ei∣∣ =

∣∣qd − q∣∣ ≤ 5× 10−4rad, i = 1, 2...6 (40)

then Ti is said to be the convergence time of the ith joint of
the robotic system.

Simulation parameterization is carried out based on the
above theoretical approach, and the parameters of the con-
troller and observer are chosen as follows.

Controller parameters: ω = 0.2, δ = 36, ρ = 40,
A0 = 600I6, A1 = 50I6, where the matrices A0 and A1

are determined by the configured closed-loop poles a0 and
a1, then a0 = −20, a1 = −30.

Observer parameters: L = 200I6.
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Set the expected signals for each joint in turn to

qd =



−0.15 cos(0.5πt) + 0.148

−0.15 cos(πt) + 0.148

−0.1 cos(1.5πt) + 0.098

−0.1 cos(2πt) + 0.098

−0.1 cos(2.5πt) + 0.098

−0.05 cos(3πt) + 0.048

(41)

Set the external disturbance signal to each joint as

τd =

{
5×

(
0.2 sin

(
πt
)

+ 0.1
)
, 0 < t ≤ 0.5

5×
(
0.2 cos

(
πt
)

+ 0.1
)
, 0.5 < t ≤ 1

(42)

Each joint is set with an initial error of 2 × 10−3rad,
the joint torque limits are listed in order as [80, 80, 80,
35, 35, 35] N×m. The system modeling error factor are
kM = kG = kC = 0.02, the simulation step size is 0.001s,
the total simulation time is 1s.

The goal of the control is to make the robotic joints track
the desired signals quickly and accurately, despite external
disturbances and initial errors. The simulation results verify
the effectiveness of the proposed HOFA strategy.
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Fig. 2: Joint Angle of UR5 Robot

First of all, the joint angle simulation curves of the UR5
robot are shown in Fig. 2, where the black line represents
the desired signal, the blue line indicates the result of the PD
algorithm, and the red line is the result of the HOFA algo-
rithm. Comparison with the desired signal intuitively shows
that both the PD and HOFA algorithms are able to track up
the desired signal from the initial error in the first four joints.
But in joint 5, the PD control has gradually become biased,
while the HOFA control still works well. Due to the sud-
den change of the disturbance at the moment of 0.5s, the
PD control in joint 6 has been completely disabled, while
the HOFA control remains effective and its disturbance re-
sistance is verified.

This paper also conducts the simulation experiments of
tracking error to demonstrate the effectiveness of the pro-
posed HOFA approach, and the results are shown in Fig. 3,
where the blue line denotes the tracking error of the PD con-
trol and the red line denotes the tracking error of the HOFA
control. Since each joint has an initial error 2×10−3 rad, the
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Fig. 3: Tracking error of UR5 Robot

tracking error for the first four joints reaches the 0.0001 rad,
but the HOFA control clearly converges faster. The PD con-
trol failed due to the sudden change of the disturbance in the
simulation results of joint 5 and joint 6, resulting in a sub-
stantial shift in its tracking error at 0.5s. However, the HOFA
control error remains constant and close to zero. Moreover,
it converges instantly at the start of the motion and has a sig-
nificantly higher response speed, proving its resilience and
quickness.

Table 1: Evaluation index of HOFA

Joint
Index Ti(s) IAEi(rad)

PD HOFA PD HOFA
Joint 1 0.119 0.054 0.1931 0.0814
Joint 2 0.119 0.060 0.1999 0.1087
Joint 3 0.117 0.016 0.2159 0.0637
Joint 4 0.130 0.059 0.2972 0.1335
Joint 5 0.061 0.044 10.3615 0.1339
Joint 6 - 0.028 158.682 0.1525

Table 1 shows the simulated values of the evaluation met-
rics for the two algorithms. While the robotic system is af-
fected by external disturbances, for the convergence time Ti,
the HOFA control is much smaller than the PD control at
each joint. Joint 6 is unable to achieve the set tracking accu-
racy with PD control, whereas HOFA control converges eas-
ily. For the integral absolute error IAEi, the integral value
of the error for the HOFA control is much smaller than that
of the PD control at all joints, and it has better tracking ac-
curacy throughout the whole motion process.

Fig. 4 shows the torque curve of the HOFA-controlled
UR5 robot. Due to the initial error set by the system, the
value of the joint torque is large at the initial moment of
startup, but it does not exceed the torque limit and is still
within the acceptable range. Affected by the sudden change
of disturbance, the control torque of UR5 also changes sud-
denly at 0.5s, but due to the torque compensation effect of
the observer, the torque changes are relatively smooth dur-
ing the whole motion process.

5 Conclusion

This paper has proposed a robotic control scheme based
on HOFA system theory for realizing the robotic trajectory
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Fig. 4: Torque of UR5 Robot

tracking task in joint space. The dynamical equations of the
robot have been established and transformed into a second-
order fully actuated closed-loop linear system by pseudo-
linear parametric design. The linearized system has the ex-
pected closed-loop dynamic properties. The proposed track-
ing controller design is based on the HOFA approach and ro-
bust control theory, which can effectively resist external dis-
turbances. The designed HOFA controller was successfully
simulated in CoppeliaSim and MATLAB environments. The
simulation results demonstrated that the proposed control
strategy ensures the UR5 robot can rapidly and accurately
track the desired trajectory even in the presence of model
uncertainty and external disturbance.
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Finite-time stability analysis of switched systems under
time-dependent switchings
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Abstract: This paper investigates the Lyapunov-based finite-time stability problem of switched systems under time-dependent
switching signals, in which stabilizing switch and destabilizing switch occur alternately. By establishing connections on the
persistent period and convergence/divergence intensity between subsystems, some sufficient conditions for finite-time stability
of corresponding system under two groups of switching modes are provided. In simulation, two examples including scalar system
and Lorentz system under switched control are presented to demonstrate the effectiveness of the proposed theoretical results.

Key Words: Finite-time stability, Switched systems, Time-dependent switchings

1 Introduction

Switched systems, served as a special case of hybrid dy-
namic systems, have attracted extensive research interest in
recent years, since it can characterize many complex dy-
namic behaviors in practical applications. For instance, in
consideration of vehicle’s velocity and acceleration, the au-
tonomous/controlled switching is reflected in the gearbox of
automobiles [1]. Featured by multiple channels and trans-
mission delays, the networked control systems are described
in the form of switched linear uncertain systems [2, 3]. Gen-
erally speaking, switched systems are composed of a family
of subsystems and certain rule that governs the switching
among them. According to different switching mechanisms,
the common utilized switching rules/signals can be divided
into time-dependent [4, 5], state-dependent [6], and hybrid
types [7]. Since time-dependent switching signals are easy
to design and avoid the occurrence of sliding motions on the
switching surface, a large amount of research work on Lya-
punov stability theory has been devoted to such switching
signals. On one hand, based on common Lyapunov function,
the asymptotic stability of switched systems with dwell-time
switching and average dwell-time switching were studied in
[8, 9]. On the other hand, considering that switching sig-
nal depends on system mode, the average dwell-time switch-
ing was expanded to the mode-dependent average dwell-time
switching, and multiple Lyapunov function with less conser-
vativeness was constructed [4, 10]. However, one of the typ-
ical properties of these existing Lyapunov theoretical results
about time-dependent switching signals is that the solution
will tend to an equilibrium state as time tends to infinity.
From the perspective of practical applications, the optimal
stability result is achieved when the system solution con-
verges to the equilibrium state within a finite time, such as
robot manipulators [11], intelligent vehicle system [12], and
underactuated surface vessels [13]. This key point stimu-
lates our research interest in the finite-time stability (FTS) of
switched systems.

FTS not only implies the finite-time convergence, but
is a stronger concept than asymptotic/exponential stability.

This work was supported in part by the National Natural Science Foun-
dation of China (62273208), and the Science Center Program of National
Natural Science Foundation of China (62188101).

Thus, it may give rise to fast transient performances and high
robustness against uncertainties [14]. With the Lyapunov
theorem on FTS of continuous autonomous systems firstly
proposed in [15], many technical FTS results have been re-
ported from theoretical and practical points of view, see [16–
19]. For instance, an improved version of fast terminal slid-
ing mode design was proposed in [16], and [18] established
a more accurate settling-time estimation for corresponding
fast FTS criterion. However, one may observe that the above
works have not included switched modes in their investiga-
tion. Recently, [20] studies the finite-time resilient tracking
control problem for nonlinear multi-agent systems under at-
tacks, in which the attack interval and the normal interval are
artificially divided in terms of the time scale. Herein, such
processing technique are applied to switched systems sub-
ject to time-dependent switching signals, in which stabiliz-
ing switch and destabilizing switch occur alternately. More-
over, the following two core questions deserve further explo-
ration:

1). What kind of convergent/divergent subsystem is possi-
ble to implement FTS?

2). On the basis of 1), what type of sufficient conditions
can realize FTS while ensuring small conservatism?

In this paper, we shall address the aforementioned ques-
tions. Firstly, the (locally) FTS mode is essential in order
that the switched system can achieve convergence within a
finite time. Then, two FTS criteria involving dwell-time con-
straints and convergence/divergence intensity between sub-
systems are proposed. Finally, an estimation of the settling
time dependent on the switching signal and the initial state
of corresponding system is given.

In addition, this work is organized as follows. In Section
2, the system description and several basic definitions are
introduced. In Section 3, for the given two groups of switch-
ing modes, the FTS criteria are established respectively. In
Section 4, two simulation examples are given to show the ap-
plications of the obtained FTS criteria, and conclusions shall
be presented in Section 5.
Notations. Let R denote the set of real numbers, R≥0 the
set of nonnegative real numbers, Z≥0 the set of nonnega-
tive integer numbers, and Rn the n-dimensional real spaces
equipped with Euclidean norm | · |.

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
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2 System description

Consider the following nonlinear switched system{
ẋ(t) = fσ(t)(t, x(t)),

x(0) = x0,
(1)

where fi(·, ·) : R≥0 × Rn → Rn is the continuous nonlin-
earity of system (1) that admits f(t, 0) = 0 for all t ≥ 0,
and x(t) ∈ Rn denotes the system state. σ(·) : R≥0 →
N , {1, 2, · · · , N} represents the switching signal that de-
termines the subsystem to be activated at each switching in-
stant t. In particular, a sequence of monotonically increas-
ing time S , {tk}k∈Z≥0

, known as the set of switching in-
stants, is determined when the switching occur and satisfies
0 = t0 < t1 < · · · < tk → +∞ as k →∞.

Firstly, several essential definitions and propositions are
made throughout the paper.

Definition 1. ([15]) Consider the following system

ẋ(t) = g(x(t)), x ∈ D ⊆ Rn, x(0) = x0 (2)

where g(·) : D → Rn is a continuous function with
g(0) = 0, and D is an open neighborhood of the origin.
System (2) is said to be finite-time stable (FTS) if it is Lya-
punov stable and finite-time convergent. Especially, the lat-
ter implies that there exist a function φ(·) : D/{0} → R+

such that for ∀x0 ∈ D, the solution x(t, x0) of system (2)
for t ∈ (0, φ(x0)) satisfies limt→φ(x0) x(t, x0) = 0, and
x(t, x0) = 0 for any t > φ(x0).

Definition 2. For the given function V (·) : Rn → R≥0 that
satisfies locally Lipschitz constraint, the Dini derivative of V
along system (2) is defined as:

D+V (x(t)) = lim sup
h→0+

1

h

{
V (x(t)+hg(x(t)))−V (x(t))

}
.

Proposition 1. The sequence S of switching instants con-
sists of stabilizing switch series S1 , {t2k}k∈Z≥0

and desta-
bilizing switch series S2 , {t2k+1}k∈Z≥0

. The stabilizing
switch, as it implies, refers that the responsive subsystem is
convergent. Conversely, the destabilizing switch causes the
responsive subsystem to be divergent.

Then, the main problem in this paper lies in that for
the given/controlled subsystem evolution trajectories of sys-
tem (1) satisfying Proposition 1, whether the FTS can be
achieved by imposing certain conditions on the switching in-
stants sequence S. This research topic shall be investigated
in subsequent sections.

3 Main results

In this section, two cases of switching modes satisfying
Proposition 1 are considered, and some sufficient FTS con-
ditions are proposed for system (1).

Firstly, in order to facilitate the subsequent analysis pro-
cess, the following technical lemmas are presented.

Lemma 1. [21] Suppose that there exists a constant γ ∈ R,
such that the Dini derivative of V along system (2) satisfies

D+V (x(t)) = γV (x(t)). (3)

Then for any initial state x0 ∈ D, it holds that V (x(t)) =
V (x0)eγt. Moreover, system (2) is said to be{

exponentially stable, if γ < 0,

exponentially divergent, if γ > 0.
(4)

Lemma 2. [18] Suppose that there exist constants λ ∈
R/{0}, µ > 0, and α ∈ (0, 1), such that the Dini deriva-
tive of V along system (2) satisfies

D+V (x(t)) = λV (x(t))− µV α(x(t)). (5)

Then for any initial state x0 ∈ D, the solution of V is

V (x(t)) = [V 1−α(x0)− µ

λ
(1− e−(1−α)λt)]

1
1−α eλt, (6)

and system (2) is said to be
FTS, if λ < 0,

locally FTS, if λ > 0 and x0 ∈ Ω ∩ D,
divergent, if λ > 0 and x0 /∈ Ω ∩ D,

(7)

where Ω , {x ∈ Rn|V 1−α(x) < µ
λ}. Moreover, for

the case of FTS, there exists a function φ(·) satisfying
V (x(t)) = 0, ∀t ≥ φ(x0), where

φ(x0) =
1

−(1− α)λ
ln[1− λ

µ
V 1−α(x0)].

Proof. Define the auxiliary equation ẏ(t) = λy(t)−µyα(t),
y(0) = y0, and y(t) ≥ 0. Based on the parameters variation
method of first-order non-homogeneous equations, it is as-
sumed that y(t) = ω(t)eλt with ω(t) 6≡ 0 to be determined
is the exponential form solution. By taking the derivative of
y, we have ω̇(t) = −µωαeλ(α−1)t. Afterwards, it can be
further deduced that

ω(t) = [ω1−α(0)− µ

λ
(1− e−(1−α)λt)]

1
1−α

= [y1−α
0 − µ

λ
(1− e−(1−α)λt)]

1
1−α ,

which implies that the solution (6) holds.
In addition, when x0 ∈ Ω ∩ D, no matter what the sign

of λ is, one can obtain that D+V (x(t)) < 0, and it is easy
to verify that there exists a φ(x0) such that V (x(t)) ≡ 0
for all t ≥ φ(x0). Thus, the (locally) FTS of system (2) is
achieved. On the contrary, when x0 6∈ Ω ∩ D, the situation
analysis of λ < 0 is the same as above, while for the case of
λ > 0, the resultant D+V (x(t)) > 0 leads to the divergence
of system (2). To sum up, the statement (7) is established,
which completes the proof.

Then, we shall investigate the FTS criteria of system (1)
under the following two groups of switching modes:
I). exponentially divergent (ED) mode & FTS mode;

II). exponentially stable (ES) mode & locally FTS mode.
For simplicity, denote the two types of active intervals of
system (1) as :

Sk , [t2k, t2k+1), Dk , [t2k+1, t2k+2).
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Correspondingly, define the following dwell time notations
of active mode for all k ∈ Z≥0:

Sk , t2k+1 − t2k, Dk , t2k+2 − t2k+1.

Case 1: ED mode & FTS mode
In this case, the following assumption on the minimum

dwell time of stabilizing switch is introduced, and the FTS
criterion is presented in Theorem 1.

Assumption 1. Sk is bounded by an uniform positive con-
stant τ , that is, infk∈Z≥0

Sk ≥ τ .

Theorem 1. Suppose that there exist a locally Lipschitz con-
tinuous function V (·) : Rn → R≥0, and some positive con-
stants α, ρ ∈ (0, 1), γ1, λ1, µ such that

λ1

γ1
≥ ρ

1− ρ
, (8)

sup
k∈Z≥0

{Dk

Sk

}
≤ ρ

1− ρ
, (9)

and for all k ∈ Z≥0, the derivative of V along the solution
x(t) = x(t, x0) of system (1) with x0 ∈ Rn satisfies

D+V (x(t)) ≤

{
−λ1V (x(t))− µV α(x(t)), t ∈ Sk,

γ1V (x(t)), t ∈ Dk.
(10)

Then, system (1) under switching instants sequence S
is FTS. Moreover, there exists a positive integer k∗ =
b 1
−τ(1−α)[ρ(γ1+λ1)−λ1] ln(∆V 1−α(x0) + 1)c such that the

solution x(t) of system (1) satisfies x(t) = 0 for all t ≥
t2k∗+1, where

∆ =
λ1 − λ1e

[ρ(γ1+λ1)−λ1]τ(1−α)

µ(1− e−(1−α)λ1τ )e[ρ(γ1+λ1)−λ1]τ(1−α)
. (11)

Proof. Given the initial state x0 ∈ Rn, the convergence
of system solution x(t) will be investigated. By utilizing
Lemma 2, the first inequality of (10), and comparison prin-
ciple, we have

V (x(t)) ≤[V 1−α(x(t2k))− µ

λ1
(1− e−(1−α)λ1(t−t2k))]

1
1−α

· e−λ1(t−t2k), ∀t ∈ [t2k, t2k+1).

Similarly, using Lemma 1 and the second inequality of (10)
yields that

V (x(t)) ≤ V (x(t2k+1))eγ1(t−t2k+1), ∀t ∈ [t2k+1, t2k+2).

When t = t2k+2, based on the above analysis process, it can
be derived that

V (x(t2k+2))

≤[V 1−α(x(t2k))− µ

λ1
(1− e−(1−α)λ1(t2k+1−t2k))]

1
1−α

· eγ1(t2k+2−t2k+1)e−λ1(t2k+1−t2k).

By combining (8) and (9), we obtain

γ1(t2k+2 − t2k+1)− λ1(t2k+1 − t2k)

= (γ1 + λ1)(t2k+2 − t2k+1)− λ1(t2k+2 − t2k)

≤ ρ̄(t2k+2 − t2k),

(12)

where ρ̄ , ρ(γ1 + λ1) − λ1 ≤ 0. Substituting (12) into
V (x(t2k+2)), yields that

V (x(t2k+2)) ≤ (V 1−α(x(t2k))−Θ)
1

1−α eρ̄τ , (13)

where Θ , µ
λ1

(1−e−(1−α)λ1τ ) > 0. Consider the auxiliary
function W (x(t)) = V (x(t)) + ε(t) with ε(0) = 0 and
ε(t) ≥ 0 for all t ≥ 0, such that the following equation
holds:

W (x(t2k+2)) = (W 1−α(x(t2k))−Θ)
1

1−α eρ̄τ . (14)

By taking “1− α” power at both sides of (14), one has

0 ≤W 1−α(x(t2k+2))

= (W 1−α(x(t2k))−Θ)eρ̄τ(1−α)

= [(W 1−α(x(t2k−2))−Θ)eρ̄τ(1−α) −Θ]eρ̄τ(1−α)

= · · · · · ·
= W 1−α(x0)e(k+1)ρ̄τ(1−α)

−Θeρ̄τ(1−α) 1− e(k+1)ρ̄τ(1−α)

1− eρ̄τ(1−α)
,

which further implies that

(V 1−α(x0) +
1

∆
)e(k+1)ρ̄τ(1−α) ≥ 1

∆
,

where ∆ , 1−eρ̄τ(1−α)

Θeρ̄τ(1−α) . Hence, it can be calculated that
k∗ = b 1

−τ(1−α)ρ̄ ln(∆V 1−α(x0) + 1)c is the last term satis-
fying W 1−α(x(t2k∗)) > 0. Since W (x(t)) ≥ V (x(t)) ≥ 0,
we know that system (1) under switching instants sequence
S is finite-time convergent for t ∈ [0, t2k∗+1).

Thereafter, it follows from Lemma 1 and the first inequal-
ity of (10) that x(t) = 0 holds for all t ≥ t2k∗+1, which
implies that system (1) under switching instants sequence S
is FTS. This completes the proof.

Remark 1. It should be pointed out that conditions (8) and
(9) in Theorem 1 play important roles in realizing the FTS
of system (1). Specifically, the former constrains the inten-
sity of convergence/divergence of subsystem, while the lat-
ter stipulates the dwell time of the convergence/divergence
mode. In particular, only the convergence mode is specified
for a minimum dwell time τ , while the divergence mode is
relatively free. In other words, for any divergent mode, as
long as a convergent mode satisfying conditions (8) and (9)
is established, the FTS of system (1) can be guaranteed.

Remark 2. One may observe that the settling-time estima-
tion of system (1) is expressed as certain point in switching
instants sequence S. Nevertheless, the fact is that the settling
time of system (1) depends not only on the initial state but
also on the switching effect. To be specific, by introducing
a virtual function W and establishing an equality constraint
(14), it is verified that there exists a maximum index k∗ such
thatW > 0, which depends on the initial state of system (1).
Since W ≥ V ≥ 0 , k∗ is reasonably approximated as the
maximum index of V > 0. Afterwards, the first point after
index k∗ in switching instants sequence S can be regarded
as the settling-time estimation.
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Case 2: ES mode & locally FTS mode
In this case, the following assumption on the minimum

dwell time of destabilizing switch is introduced, and the FTS
criterion is presented in Theorem 2.

Assumption 2. Dk is bounded by an uniform positive con-
stant π, that is, infk∈Z≥0

Dk ≥ π.

Theorem 2. Suppose that there exist a locally Lipschitz con-
tinuous function V (·) : Rn → R≥0, and some positive con-
stants α, % ∈ (0, 1), γ2, λ2, µ such that

γ2

λ2
≥ %

1− %
, (15)

sup
k∈Z≥0

{ Dk

Sk+1

}
≤ %

1− %
, (16)

and for all k ∈ Z≥0, the derivative of V along the solution
x(t) = x(t, x0) of system (1) with x0 ∈ Rn satisfies

D+V (x(t)) ≤

{
−γ2V (x(t)), t ∈ Sk,

λ2V (x(t))− µV α(x(t)), t ∈ Dk.
(17)

Then, system (1) under switching instants sequence S
is FTS. Moreover, there exists a positive integer κ̄ =
b 1
−π(1−α)[%(γ2+λ2)−γ2] ln(ΛV 1−α(x0) + 1)c such that the

solution x(t) of system (1) satisfies x(t) = 0 for all t ≥
t2k?+2, where

Λ =
λ2 − λ2e

[%(γ2+λ2)−γ2]π(1−α)

µ(e(1−α)λ2π − 1)e[%(γ2+λ2)−γ2]π(1−α)
. (18)

Proof. Consider the solution x(t) of system (1) with initial
state x0 ∈ Rn. On one hand, it follows from the first in-
equality of (17) and Lemma 1 that

V (x(t2k+3)) ≤ V (x(t2k+2))e−γ2(t2k+3−t2k+2).

On the other hand, by utilizing the second inequality of (17)
and Lemma 2, we have

V (x(t2k+2))

≤[V 1−α(x(t2k+1)) +
µ

λ2
(1− e(1−α)λ2(t2k+2−t2k+1))]

1
1−α

· eλ2(t2k+2−t2k+1).

Combining the two stages, and in terms of (15) and (16), it
can be deduced that

V (x(t2k+3))

≤[V 1−α(x(t2k+1)) +
µ

λ2
(1− e(1−α)λ2(t2k+2−t2k+1))]

1
1−α

· eλ2(t2k+2−t2k+1)e−γ2(t2k+3−t2k+2)

≤(V 1−α(x(t2k+1))− Φ)
1

1−α e%̄π,

where Φ , µ
λ2

(e(1−α)λ2π−1), and %̄ , %(λ2+γ2)−γ2 ≤ 0.
Consider the auxiliary function Z(x(t)) = V (x(t)) + δ(t)
with δ(t1) = 0 and δ(t) ≥ 0 for all t ≥ 0, such that the
following equation holds:

Z(x(t2k+3)) = (Z1−α(x(t2k+1))− Φ)
1

1−α e%̄π. (19)

Similar to the analysis process of Theorem 1, we have

(V 1−α(x0) +
1

Λ
)e(k+1)%̄π(1−α)

≥(V 1−α(x(t1)) +
1

Λ
)e(k+1)%̄π(1−α)

=(Z1−α(x(t1)) +
1

Λ
)e(k+1)%̄π(1−α)

≥ 1

Λ
,

where Λ , 1−e%̄π(1−α)

Φe%̄π(1−α) . Hence, it can be calculated that κ̄ =

b 1
−π(1−α)%̄ ln(ΛV 1−α(x0)+1)c−1 is the last term satisfying
Z1−α(x(t2κ̄+1)) > 0. Since Z(x(t)) ≥ V (x(t)) ≥ 0, we
know that system (1) under switching instants sequence S is
finite-time convergent for t ∈ [0, t2κ̄+2).

Thereafter, it follows from Lemma 2 and the second in-
equality of (17) that x(t) = 0 holds for all t ≥ t2κ̄+2, which
implies that system (1) under switching instants sequence S
is FTS. This completes the proof.

Remark 3. Since the finite-time convergence property of
system (1) is provided by the locally FTS mode, the mini-
mum dwell time π for such mode is needed in Theorem 2.
As a compensation, the constraints on ES mode dwell time
is removed. In addition, when t ≥ t2κ̄+1, although the so-
lution x(t) for system (1) converges in both ES mode and
locally FTS mode, x(t) only has the characteristic of finite-
time convergence on t ∈ Dk. Therefore, the subsequent
switching instant t2κ̄+2 is utilized as the settling-time esti-
mation of system (1).

Remark 4. In particular, it should be noted that the case of
k∗ = κ̄ = 0 is not involved in Theorems 1 and 2. In fact,
both of these represent the special cases that do not reflect the
switching characteristics of system (1). The former means
that the system solution x(t) converges to 0 in the FTS mode,
while the latter implies that x(t) crosses the ES mode and
converges to 0 in the locally FTS mode. Considering that
these two cases are relatively simple and special, the analysis
is not discussed in the main theoretical results of this paper.

4 Simulation Examples

In this section, two numerical examples are presented to
demonstrate the feasibility of the proposed FTS results in
Sections 3. To this end, we firstly consider the switching
instants sequence S = S1 ∪ S2 = {2k}k∈Z≥0

∪ {2k +
1.4}k∈Z≥0

.

Example 1. Consider the following scalar system

ẇ(t) =

{
−0.8w(t)− 2w

1
3 (t), t ∈ Sk,

1.4w(t), t ∈ Dk.
(20)

Based on the criteria proposed in Section 3, we shall inves-
tigate the FTS of system (20). Firstly, choose the candi-
date Lyapunov function V (t) = |w(t)|, and the derivative of
V along system (20) satisfies (10) with λ1 = 0.8, µ = 2,
α = 1

3 , and γ1 = 1.4. It can be verified that λ1

γ1
= 4

7 ≥
0.6
1.4 ,

which implies that conditions (8) and (9) hold. Then ac-
cording to Theorem 1, for the given initial state w(0) = 5,
there exists a positive integer k∗ = b2.3327c = 2 such that
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system (20) is finite-time convergent for t ∈ [0, 5.4). By
simulation, Fig. 1 shows that the settling time can be esti-
mated by T0 ≤ 5.4.
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Fig. 1: Trajectory evolution of system (20).

Example 2. Consider the classical Lorenz system [22]
ẋ = a(y − x),

ẏ = cx− xz − y,
ż = xy − bz,

(21)

which has a chaotic attractor when a = 10, b = 8
3 , and c =

28 as shown in Fig. 2 with with initial state (x0, y0, z0)T =
(3, 4, 5)T .

Fig. 2: Chaotic attractor of system (21).

In what follows, the controller design problem for the FTS
of Lorenz system (21) is investigated. Firstly, consider the
following controlled Lorenz system

ẋ = a(y − x) + u1,

ẏ = cx− xz − y + u2,

ż = xy − bz + u3,

(22)

where U(t) = (u1, u2, u3)T is the controller to be designed.
Next, two controller design schemes are presented:

U1 =

 9x− 10y

−28x
5
3z

 , U2 =

 11x− 13y − 2x
1
3

−25x+ 2y − 2y
1
3

8
3z − 2z

1
3

 ,

in which the former is committed to the ES of system (22),
while the latter aims to achieve the FTS. One may observe

from the simulation results shown in Fig. 3 that U1 succeeds
in achieving the the ES of system (22), but U2 fails to take
effect as anticipated.
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Fig. 3: Trajectories evolution of system (22).

Hence, we study the FTS property of system (22) by using
the switched control strategy proposed herein. On one hand,
the time-dependent switched controller is constructed

U(t) =

{
U1, when t ∈ S1,

U2, when t ∈ S2.
(23)

On the other hand, choose the candidate Lyapunov function
V (t) = 1

2 (x2 + y2 + z2), and it can be derived that

D+V (t) ≤

{
−V (t), t ∈ Sk,

V (t)− 1.5874 V
2
3 (t), t ∈ Dk.

Since conditions (15) and (16) are satisfies with % = 0.3,
it follows from Theorem 2 that system (22) under switching
sequence S and controller (23) can be stabilized in finite
time. In particular, Fig. 4 illustrates that the settling time is
bounded by T0 ≤ 14 with κ̄ = b6.5807c = 6.
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Fig. 4: Trajectories evolution of system (22).

5 Conclusion

In this paper, the Lyapunov-based finite-time stability
problem of switched systems under time-dependent switch-
ing signal has been studied. By requiring that stabilizing
switch and destabilizing switch occur alternately, the FTS
criteria for system with two groups of switching modes: ED
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mode & FTS mode and ES mode & locally FTS mode are
proposed, respectively. Meanwhile, the resultant settling-
time estimation depends not only on the initial state but also
on the switching effect. Furthermore, two examples includ-
ing scalar system and Lorentz system under switched con-
trol are presented to validate the obtained FTS criteria. An
interesting extension in future work is to analyze the FTS
of switched systems with more than two modes under the
circumstances of synchronous and asynchronous switching.
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Preview tracking control of the SIR Model with saturation incidence rate
Chenqi Wang, Yuan Li, Yi Zhang
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Abstract: In this paper, considering the regional population changes, a SIR model with saturation incidence rate was
constructed for cholera, hepatitis B and other infectious diseases with high infectivity but low radical cure rate. The asymptotic
stability of the equilibrium point was analyzed by Jury criterion. On this basis, an augmented error system is constructed for
the model by using the preview control method, and a corresponding state feedback preview controller is designed. By using
the Lyapunov stability theory, sufficient conditions for the asymptotic stability of the closed-loop system are obtained so that
the model can be stabilized in a finite time and the spread of infectious diseases can be controlled. Finally, the effectiveness of
the proposed method is verified by numerical simulation.
Key Words: Saturation Incidence Rate, Vertical Infection Rate, Preview Tracking Control



1 Introduction
Since ancient times, infectious diseases have always had

a profound impact on people's lives. According to income-
plete statistics, at least one new infectious disease has been
found globally every year on average. Due to the extremely
explosive and rapid spread of infectious diseases among
species, infectious diseases have become the most
important deadly diseases endangering human life safety.
After a painful experience, with the improvement of human
cognition, scholars began to try to study infectious diseases.
In 1927, Kermack and Mckendrick established the famous
SIR model [1] when studying the Black Death, which laid
the foundation for the study of mathematical models of
infectious diseases. Many scholars have done related
research on discrete infectious disease models. Literature [2]
for the classic , ,SI SIR SIS model, using Euler forward
difference method discretization, it discusses the possible
problems after its discrete; Literature [3] extended Barrera's
discrete-time SIS model, used Micken's method to
discretize SIRS model, and studied the effects of multiple
factors (including reproduction, competition, etc.) on
infectious disease dynamics. The transmission rate of
infectious diseases does not always show a bilinear trend.
In literature [4], Ca-passo introduced the saturation
incidence rate  g I S into the epidemic model when
studying cholera, which described the saturation
relationship between the transformation of susceptible to
infected ones: As the number of infected people increases,
the susceptible people become more vigilant, leading to a
change in the behavior of the susceptible people, and the
infection rate will be greatly reduced. Some scholars have
also introduced the vertical infection rate into the infectious
disease model. In literature [5], based on the influence of
environmental disturbance, a stochastic infectious disease
model with both horizontal and vertical transmission was
established, and the existence and uniqueness of the
positive solution were proved. The ˆIto formula and
the Chebyshev inequality were applied. The sufficient

*This work is supported by the Young Scientists Fund of the National
Natural Science Foundation (NNSF) of China under Grant 62103289.

conditions for the final boundedness of random are
established, and the permanence of random is proved.
To protect people's lives and property safety so that

fewer people are troubled by infectious diseases, the
prevention and control of infectious diseases are more
important. Preview control theory was first discussed in
1966 by Sheridan T B and proposed in the context of the
Three Models of Preview Control [6]. In 1994, the research
on preview control in China officially began. Aiming at the
design problem of an optimal preview controller for multi-
rate systems based on adaptive dynamic programming,
literature [7] proposes a model-free online preview
controller design method for discrete-time systems based
on Q learning algorithm. Literature [8] studied with
disturbance Roesser model described by the two-
dimensional DT feasibility and stability of the control
system. Literature [9] studies the design of observance-
based feedback preview control and static output feedback
preview control for linear uncertain discrete periodic
systems. In literature [10], for a class of nonlinear
interconnected systems with time delay, based on the
relationship between the system intercom-nection matrix
and input matrix, a distributed controller that utilizes both
local state vector information and interconnect item
information is designed. By integrating the controller of the
error system, a distributed preview tracking controller
composed of state feedback, integrator and preview feed-
forward is obtained. The preview controller is applied to
the chemical reactor recovery system and the double-
parallel inverted pendulum system. Preview control is also
applied to flight control problems of two-degree-of-
freedom helicopters [11], active suspension systems [12],
spherical moving platforms with three-degree-of-freedom
translational motion and three-degree-of-freedom infinite
rotation motion and time delay problem [13], etc.
Based on the above analysis, in this paper, SIR model

with the saturation incidence rate  / 1IS I  is first
considered. Furthermore, considering the characteristics of
mother-to-child transmission of some infectious diseases,
��� model with the saturation incidence rate and vertical
infection rate is established. By introducing the target
signal, the preview controller is designed, and sufficient

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China
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conditions are given to ensure the asymptotic stability of
the closed-loop system. Finally, the infected person can be
controlled in a small range within a limited time to prevent
the outbreak of infectious diseases and reduce the impact of
infectious diseases on people's lives.
The main innovations of this paper are as follows:
(1) In the field of infectious disease research, it is usually

assumed that the birth rate is greater than or equal to the
death rate. However, based on our country's actual situation
in 2022, the birth rate is set to be less than the death rate.
Constant population input is also introduced to keep the
population relatively stable. This consideration is more
realistic and helps to better understand and predict the
spread of infectious diseases.
(2) At present, the application of preview control is

concentrated in the fields of aerospace and robotics, and the
research on infectious diseases is relatively few. In the
current field of infectious disease research, stability
analysis and bifurcation analysis are the focus of research,
and there are relatively few studies on model control.
Therefore, a preview control method is proposed in this
paper. By selecting appropriate target signals, the infection
trend of infectious diseases in the future limited time is
added to the model in advance as feedforward control. This
method helps to better preview and control the spread of
infectious diseases and achieve more effective suppression
of infectious diseases.
The main structure of the remaining part of this paper is

as follows: The second chapter is model building; The third
chapter studies the correlative properties of the equilibrium
point. The fourth chapter is the design of the preview
controller, the fifth chapter is the numerical simulation, and
the sixth chapter is the conclusion.

2 Model Description
Before establishing the model, the following

assumptions are made:
(1) The infectious disease can be transmitted not only

through effective contact but also through mother-
to-child transmission;

(2) Λ is a constant greater than 0, indicating the
constant input of the population, and the inputs are
susceptible;

(3)  is the birth rate, and the newborn individuals of
susceptible individuals and recovered individuals
belong to susceptible individuals and do not have
short-term immunity;

(4)  is the natural mortality rate. According to the
statistical data of 2022, in this paper, it is assumed
that the birth rate � is lower than the natural
mortality rate �;

(5)  is the vertical infection rate. The rate of  is
considered as the infected individuals, and the rate
of 1  is considered as the susceptible individuals.

(6)  was the effective exposure rate,  was the
saturation rate, and     / 1S t I t  was the
saturation incidence rate.

(7)  is the recovery rate of disease,  is the mortality
due to disease;

(8)  N t is the total population, and the initial

conditions        0 0 0 0N S I R   ,  0 0S  ，

 0 0I  ，  0 0R  ；

(9) All the above parameters are normal.
(10)The impact of the infectious disease being studied

on other diseases is not considered in the models.
Based on the above assumptions, the block diagram of

the infectious disease model (Figure 1) is as follows:

Fig.1: Block diagram of the model
According to the block diagram, the following infectious

disease model can be easily obtained:
           

 
     

     

     

Λ              
1

                          
1

                                                            

dS t S t I t
N t I t S t

dt I t

dI t S t I t
I t

dt I t

dR t
I t R t

dt


  




   



 


    



     



  


(1)

By using the Euler forward difference method, system (1)
is discretized to obtain the following discretized SIR Model:

( ) ( )( 1) ( ) ( ) ( ) ( )
1 ( )

( ) ( )( 1) ( ) ( ) ( )
1 ( )

( 1) ( ) ( ) ( )

S k I kS k S k h N k I k S k
I k

S k I kI k I k h I k
I k

R k R k h I k R k

  


    


 

            
            
      

(2)
In the model (2), containing � (�), and � (�) = � (�) + �

(�) + � (�), so the model (2) can be reduced to the
following form:

 

 

( 1) ( ) [ ( ) ( ) ( ) ( )
( ) ( )( ) ]

1 ( )
( ) ( )( 1) ( ) ( ) ( )

1 ( )

( 1) ( ) ( ) ( )

S k S k h S k I k R k I k
S k I kS k

I k
S k I kI k I k h I k

I k

R k R k h I k R k

 







   



 

        

   


           
   

(3)

3 Related properties of equilibrium points
Since the input of the population constant is considered

in this paper, the birth rate is not equal to the death rate,
and the death rate due to disease is also considered. The
total population of the model must be changing, not
constant. According to the biological significance, it is easy
to draw model (3) to satisfy the initial
conditions  0 0S  ,  0 0I  ,  0 0R  restricted domain Ω

for solution

               ΛΩ , , : , , 0,S k I k R k S k I k R k N k
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3.1 Existence of equilibrium point

Let model (3) have an equilibrium point  , ,E S I R ,
which satisfies the following equations:

  ( ) ( )( ) ( ) ( ) ( ) ( ) 0
1 ( )

( ) ( ) ( ) ( ) 0
1 ( )
( ) ( ) 0

S k I kS k I k R k I k S k
I k

S k I k I k
I k

I k R k

  


    


 

        
      

 

(4)

When   0I k  , we can easily get   ΛS k
 




,   0.R k 

Therefore, model (3) always has a unique disease-free

equilibrium point 1
Λ ,0,0E

 
    

.

When 0nI  , we can easily

get  2 3*

1 2 3

Λa a
S

a a a


 
 




, * 1 2

1 2 3

Λ a aI
a a a

 





,

 
 

1 2*

1 2 3

Λ a a
R

a a a
 
  






where,

1a    , 2a        , 3 1a 
   


      
 

Therefore, there is always a unique endemic equilibrium
point for model (3)  * * *

2 , ,E S I R .

This paper uses the method in literature [14] to solve the
basic regeneration number of the model (3). Defined based
on literature, the basic reproductive number is defined as
Q spectral radius, namely     10R Q F E T     .

After calculation,
ΛF h  

 
    

,  1T h      

Then the basic regeneration number corresponding to
model (3)

 
  0

Λ
R

   
    

 


  

So we can get the following theorem.
Theorem 1
For model (3),
(1) When 0 1R  , only the disease-free equilibrium point

1E exists in the model (3),
(2) When 0 1R  , model (3) has both disease-free

equilibrium point 1E and endemic equilibrium point 2E .

3.2 Stability of equilibrium point

In this paper, the linearization model and Jacobian
matrix are used to study the local stability of model (3) at
the equilibrium point by Jury criterion.
The model (3) is linearized to obtain the model.

   1Y t JY t  (5)
where � is the Jacobian matrix of the model (3) at any

equilibrium point (�, �, �).
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2

1
1 1

1 0
1 1
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I k S k
h h h

I k I k

I k S k
J h h

I k I k

h h

 
    

 

 
   

 

 

                  
 

  
             

  

Firstly, the stability of the disease-free equilibrium point
is discussed. The Jacobian matrix of the model (3) at the
disease-free equilibrium point �1 is

 

 
1

Λ1

Λ0 1 0

0 1

E

h h h

J h

h h

     
 

    
 

 

         
           
  

The corresponding eigenvalue

is  1 1 h     ,  2
Λ1 h     

 
        

,

3 1 h   .
There is the following conclusion:

Conclusion 1
For model (3),
(i) when 0 1R  ,

(1) When 2 20 , Λh min
     

 

   
      

， 1E is

locally asymptotically stable;
(2)

When 2 2, Λh max
     

 

  
      

or

2 2
Λh

     
 

 
   



or 2 2
Λ h

    
 

 
   



,

1E is unstable,
(ii) when 0 1R  and 2 1  , the equilibrium point 1E is

unstable.
The stability of the endemic equilibrium point is

discussed below. The Jacobian matrix of the model (3) at
the endemic equilibrium point 2E is

 

 
 

2

* *

* 2*

* *

* 2*

1
1 1

1 0
1 1
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Denote as

2

11 12 13
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E

j j j
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Then, the corresponding characteristic equation is
   

 

3 2
11 22 33 11 22 11 33 22 33

21 12 11 22 33 21 12 33 21 13 32

(

)

D j j j j j j j j j

j j j j j j j j j j j

  



       

    

Denote as
  3 2

1 2 3D a a a      
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Using the coefficients of the characteristic equation, the
following table of the Jury array is constructed, as shown
in Table 1.

Table 1: Jury array
Row 0 1 2 3
1 3a 2a 1a 1
2 1 1a 2a 3a
3 2b 1b 0b

where, 2
2 3 1b a  , 1 3 2 1b a a a  , 0 3 1 2b a a a 

According to the Jury criterion, the following
conclusion can be obtained:
Conclusion 2
For model (3), when 0 1R  , the equilibrium point 2E is

stable if the following conditions are met:
(1)  1 0D  , namely, 1 2 31 0a a a    ,

(2)    31 1 0D   , namely, 1 2 31 0a a a    ,
(3) 3 1a  ,

(4) 2 0b b , namely, 2
3 3 1 21a a a a   .

4 Preview Control
To curb the spread of infectious diseases as much as

possible and reduce the number of infected persons,
appropriate measures can be taken to control infectious
diseases. Therefore, the control variable  u k is added to
the model (3).
Let    1S k x k ,    2I k x k    3R k x k

Rewrite model (3) into the following form
 1 1 1 2 3 2

1 2
1 1

2

1 2
2 2 2

2

3 3 2 3

( 1) ( ) [ ( ) ( ) ( ) ( )

( ) ( )( ) ] ( )
1 ( )

( ) ( )( 1) ( ) ( ) ( )
1 ( )

( 1) ( ) ( ) ( )

x k x k h x k x k x k x k

x k x kx k u k
x k

x k x kx k x k h x k
x k

x k x k h x k x k

 




    


 

        

    


           
      
Set output equation    y k Cx k

Then, the system can be written
        
   

1

                                          

x k Ax k Bu k f x k W

y k Cx k

     



(6)

where        1 2 3x k x k x k x k    

 
1

0 1 0
0 1

h h h h h
A h

h h

    
   

 

   
      
  

,

1
0
0

B
 
   
  

,
Λ
0
0

h
W

 
   
  

,   

   
 

   
 

1 2

2

1 2

2

1

1
0

h x k x k
x k

h x k x k
f x k

x k







 
 

 
 
 
 
 
  

,
0
1
0

C

 
   
  

Assumption 1
Set target signal for  r k , and there is constant vector r ,

 lim
k

r k r


 , further assume that  r k is previewable, and

the preview length is rM , namely, at the current moment
k ,      , 1 , rr k r k r k M  is known, And the target
signal value is unchanged after the rM step.
Namely,     , 1, 2,r r rr k i r k M i M M      

Remark 1 Assumption 1 is the basic assumption in
preview control theory.
Define the error signal as

     e k y k r k  (7)
The objective is to design a preview controller to achieve

the steady-state, unerror-free tracking reference signal
 r k of the output  y k of system (6),
Namely,      lim lim 0

k k
e k y k r k

 
  

4.1 Construct an augmented error system

The difference operator is defined as
     1x k x k x k   

Acting on system (6)
     
   

1
                          

x k A x k B u k f
y k C x k

       
   

(8)

where      1f f x k f x k   

Then  , it is applied to the error signal
     1e k e k e k   

We can get
           1e k e k e k e k C x k r k         (9)

The combination of (8) and (9) is obtained
       1x k Ax k B u k F r k M f         (10)

where

   
 

e k
x k

x k
 

  
  

 ,
0
I C

A
A

 
  
 

 ,
0
I

F
 

  
 

, 0
B

B
 

  
 

 , 0
M

I
 

  
 

To facilitate the introduction of all knowable future
information of the target signal, a vector is defined

 

 
 

 

1
r

r

r k
r k

x k

r k M

 
 
    

 
   



From assumption 1, we know
   1r r rx k A x k  (11)

where
0 0 0
0 0 0

0 0 0 0
0 0 0 0 0

r

I
I

A
I

 
 
 
 
 
 
  




    

Combine (10) and (11)
     1x k Ax k B u k M f      (12)

where

   
 r

x k
x k

x k
 

  
  


,

0 r

A FA
A

 
  
  

 
,

0
BB
 

  
  


,

0
M

M
 

  
 

0 0 0F F    .
Formula (12) is called an augmented error system.
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Thus, the tracking control problem of the system (6) with
preview is transformed into the stabilization problem of the
system (12).

4.2 Preview controller design

We define 1 30 0F I    , which follows from the above
derivation

   1x k F x k  (13)
Design a state feedback controller for the system (12)

   u k Kx k  (14)
where K is the matrix to be determined
Then system

     1x k A BK x k M f     (15)
The stability of system (15) is analyzed below, and the

gain matrix K is solved.
Theorem 2
Assumption 1 was set up, and if there is a matrix 0P  ,

invertible matrix 1G and matrix R , and the constant 0  ,

make 1Z P , making

1 1 1 1 10

* 0 0
* * 0
* * *

T T T T T T T

T

Z G G G A R B G F

I M
Z

I

   
 
   

 
  

(16)

Then, the closed-loop system (15) is asymptotically
stable, and 1

1K RG

Proof:
Select Lyapunov function   TV x x Px ,  V x is positive

definite, we run a difference on it, and we get
       

       

   

       

  

1 1 ( )

2

T T

T

T

TT

TT T T

V x x k Px k x k Px k

A BK x k M f P A BK x k M f

x k Px k

x k A BK P A BK P x k

x k A BK PM f f M PM f

    

            



      

     

(17)
Because the nonlinear term   f x k satisfies the

condition Lipschitz within the research interval: 0  such
that for , Ωa bx x  , there is    a b a bf x f x x x  

Then there is always
   2 0T Tx k x k f f       (18)

By formula (13), there is
   2

1 1 0T T Tx k F F x k f f     (19)
So

         

  
   2

1 1

2

TT

TT T T

T T T

V x x k A BK P A BK P x k

x k A BK PM f f M PM f

x k F F x k f f

       

     

   

       

  
   

2
1 1

2 ( )

Ψ

TT T

TT T T

T T

x k A BK P A BK P F F x k

x k A BK PM f f M PM I f

x k
x k f

f

       

      

        
where

     2
1 1Ψ

*

T TT

T

A BK P A BK P F F A BK PM

M PM I

        
  

Therefore, as if Ψ 0 , and 0V  , according to
the Lyapunov stability theory, the system (15) is
asymptotically stability.
If formula (16) in theorem 2 holds, and further obtain

1
1 1 1 1 10

* 0 0
* * 0
* * *

T T T T T T T

T

G Z G G A R B G F

I M
Z

I

  
 
   

 
  

(20)

To contract transformation type (20), left by invertible
matrix  1 , , ,TBlock diag G I I I , right by the transpose,

make 1R KG , and get it
1

10

* 0 0
* * 0
* * *

T T T T

T

Z A K B F

I M
Z

I

  
 
   

 
  

(21)

By  , 0Block diag Z I    , combining Schur theorem,
and obtain

   11
1

1

00 0
00 00

T T

T

A BK MA BK F ZZ
II FM





                            

If 1Z P  , there is

     2
1 1 0

*

T TT

T

A BK P A BK P F F A BK PM

M PM I

        
  

Namely, Ψ 0
Theorem 2 has been proved.
So, the preview controller of the system is

         
0 0

rMk

e x r
i i

u k K e i K x k k i r k i
 

    
Under this control law, the output  y k of the closed-

loop system of the system (6) can realize the steady-error-
free tracking of the target signal  r k .
Remark 2 In theorem proving, the derivation process of

the (20), with the help of inequality 1T TL G L L L G     ,
among them, the ,L G as a matrix with the proper
dimension and 0G  .

5 Numerical Simulation
This paper takes hepatitis B infectious disease as the

research object. According to the data of the National
Bureau of Statistics in 2022, it is determined that the birth
rate 0.00677  and the death rate 0.00737  .According
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to the relevant values of hepatitis B, the parameters are
described as follows: 0.0005  , 0.3  , 0.2  , 0.8  ,

0.00045A  , 0.0000002  , 1h 
The initial values of the three populations

are  0 0.9S  ,  0 0.1I  ,  0 0R 

The basic regeneration number of the model (3) can be
solved 0 0.4857 1R   , in which the model has only a
disease-free equilibrium point, and the disease-free
equilibrium point has been verified to be stable.
Without any control, the development trend of the

disease is shown in Figure 2, which shows that there are
large-scale outbreak points of the disease.

Fig.2: the development trend of SIR without control
Select the target signal as

  6

0.09 0.01 7
       

0.15 0.95k
k k

r k
else

  


After calculation, Lipschitz constant is 0.3, take 5rM  ,
the result is as follows:

Fig.3: target signal Fig.4: tracking error

Fig.5: the comparison of ‘I’ before and after control
Figure 3 is the target signal, Figure 4 is the tracking error,

and Figure 5 is the comparison of the target signal and the
proportion of infected persons before and after control. As
can be seen from the simulation images, after the addition
of preview control, the time from the beginning to the
outbreak of infectious diseases is greatly shortened, the
outbreak degree is very small, and finally, it decayed to
zero in a very short time, which is very effective in
controlling the spread and outbreak of infectious diseases.

6 Conclusions
In this paper, a SIR model with saturation incidence rate

and vertical infection rate is established, and the existence
and stability of its equilibrium point are analyzed. A state
feedback preview controller for nonlinear discrete systems
satisfying Lipschitz is designed for the model. Through the
controller, the future development trend of infectious
diseases can be used as the target signal to act on the model
in advance so that the outbreak proportion of infectious
diseases can be greatly reduced until the extinction of
infectious diseases to achieve the control of infectious
diseases.
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Abstract: This paper studies the exponential stability and asynchronous stabilization problems for continuous-time impulsive
switched systems with the method of admissible edge-dependent average dwell time. Here, the asynchronous behavior implies
that the switches between the subsystems and controllers are asynchronous. Firstly, the sufficient conditions for the closed-loop
impulsive switched system to be exponentially stable are investigated. Then, on the basis of the stability results, a new type of
state-feedback controllers are designed. Furthermore, the asynchronous behavior is considered for the closed-loop system and
a novel set of admissible edge-dependent controllers are designed. It is shown that the exponential stability and asynchronous
stabilization of the closed-loop impulsive switched system can be achieved under the proposed control protocols. And the
results are formulated in the form of feasible LMIs and the superiority of admissible edge-dependent average dwell time over
traditional dwell time approach is further analyzed. Moreover, the results can be extended to study the asynchronous stabilization
of switched systems. Finally, some illustrative examples are given to demonstrate the effectiveness of the results.

Key Words: Admissible edge-dependent average dwell time, Asynchronous stabilization, Exponential stability, Impulsive
switched system

1 Introduction

Switched systems, an important class of hybrid systems,
are composed of continuous or discrete subsystems and the
switching rules between them. In practice, switched systems
are susceptible to external environment at switching instants,
which inevitably leads to impulsive behaviors. Thus, some-
times using switched systems to model practical systems
may cause large deviations. On the basis of switched sys-
tems, combined with impulsive systems, impulsive switched
systems appear. Impulsive switched systems have higher
theoretical (see [1–3]) and practical (see [4]) value because
they are more in line with actual systems.

When analyzing stability problems of switched or impul-
sive switched systems, a phenomenon that cannot be ignored
is asynchronous behavior. When the system switches from
one subsystem to another, the controller corresponding to
the current subsystem cannot switch immediately. In other
words, the current subsystem is controlled by the controller
of the previous subsystem for some time, which may cause
unsatisfactory results and even instability. Therefore, it is
necessary to consider asynchronous behavior when analyz-
ing the stabilization of switched or impulsive switched sys-
tems. The asynchronous stabilization (see [5,6]) and control
(see [7, 8]) problem has attracted much attention in recent
years. In [8], the authors studied the asynchronous switch-
ing control for discrete-time linear systems via MDADT.

Based on the method of multiple Lyapunov function, a
less restrictive MDADT method was proposed in [9], of
which the parameters are mode-dependent and the mini-
mum of MDADTs is less that of ADTs. The proposition
of this concept has promoted the development of stability
(see [2, 3, 10–12]) and control (see [7, 8]) of switched sys-
tems. And it should be pointed out that the method used

* Corresponding author.

in some existing results to investigate the asynchronous be-
havior is MDADT [3, 8]. Note that switched system may
switch from one subsystem to another, which forms differ-
ent admissible transition edges. But the MDADT parame-
ters are mode-dependent, which means that the MDADT pa-
rameters depend on all the edges ending in the same vertex,
and this will cause an increase in conservatism. In [13], the
concept of AED-ADT was propsed. It was proved that the
parameters are edge-dependent and the method still matters
even if the dwell time is smaller than the minimum of M-
DADTs. And MDADT switching is a special case of AED-
ADT switching. Therefore, the AED-ADT method is more
general and applicable. This method has received exten-
sive attention and has been widely applied in stability and
control of switched systems in recent years. For example,
in [14], based on AED-ADT, the authors designed a new
type of multiple piecewise convex Lyapunov function and
established time-varying H∞ state feedback controllers to
guarantee the exponential stability of the switched system.

Here, a question arises: can we improve stabilization con-
ditions for impulsive switched systems by using the AED-
ADT method? In this paper, we investigate the exponential
stability and asynchronous stabilization problems of impul-
sive switched systems with AED-ADT method. The main
contributions of this paper lie in: i) Based on the method
of AED-ADT, less conservative stability conditions for the
proposed closed-loop impulsive switched systems to achieve
exponential stability are established and a novel type of ad-
missible edge-dependent control protocol is designed; ii)
The asynchronous behavior is considered for the impulsive
switched system and analyzed with the method of AED-
ADT. And a new type of control protocol is obtained to
guarantee the asynchronous stabilization of the impulsive
switched system; iii) Comparing the parameters and results
under AED-ADT with that under MDADT, the superiority
of AED-ADT method over MDADT is further discussed. It
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is shown that under the proposed admissible edge-dependent
control protocols, the closed-loop system can realize expo-
nential stability as well as asynchronous stabilization and
AED-ADT method is more general than MDADT. Two il-
lustrative examples are given to demonstrate the effective-
ness of the proposed control laws.

The remainder of this paper is orgnized as follows. In sec-
tion 2, some system models, necessary definitions, assump-
tions and lemmas are given. The exponential stability and
asynchronous stabilization of impulsive switched systems
are investigated by the method of AED-ADT and solved by
designing state-feedback controllers in section 3. In section
4, some illustrative examples are given. Finally, summaries
and conclusions are given in section 5.

Notations: In this paper, the notations used are fairly stan-
dard. N andN+ represent the set of the natural numbers and
the set of positive integers, respectively. Rn and Rn×m are
the n-dimensional Euclidean space and a set of all (n×m)-
dimensional matrices, respectively. The notations λmax (P )
and λmin (P ) represnt the maximum and minimum eigen-
values of matrix P . The notation P > 0 (≥ 0, < 0,≤ 0) is
used to represent a real positive definite symmetric matrix
(positive semi-definite symmetric matrix, negative definite
symmetric matrix, negative semi-definite symmetric matrix)
P . And || || refers to the Euclidean vector norm. The nota-
tion I denotes the identity matrix. The notation Φ represents
the empty set.

2 Preliminaries and problem formulation

Consider the following class of impulsive switched sys-
tems


ẋ(t) = Aσ(ti)x(t) +Bσ(ti)u(t), t ∈ (ti, ti+1], i ∈ N

∆x(t) = Dσ(ti)x(t) + f(t, x(t)), t = ti, i ∈ N+,

x(t+0 ) = x0,
(1)

where t ∈ R+, x (t) ∈ Rn stands for the system s-
tate, u (t) ∈ Rm is the control input. σ (t): R+ → ϕ
is a piecewise constant function of time, which is defined
as the switching signal and takes its value in a finite set
ϕ = {1, ...,M}, where M is the number of subsystems. For
a switching sequence 0 ≤ t0 < t1 < · · · < ti < ti+1 <
· · · (i ∈ N), the subsystem σ (ti) ∈ ϕ is activated over the
time interval (ti, ti+1], where ti is the ith switching time
instant and t0 stands for the initial time. f (t, x (t)) is the
nonlinear function and satisfies f (t, 0) ≡ 0, ∀t ∈ [t0,∞).
Aσ(ti) ∈ Rn×n, Bσ(ti) ∈ Rn×m, Dσ(ti) ∈ Rn×n are
assumed to be known. ∆x (ti) = x

(
t+i
)
− x

(
t−i
)

=

x
(
t+i
)
− x (ti), where x

(
t+i
)
= limh→0+ x (ti + h) and

x
(
t−i
)
= limh→0− x (ti + h) = x (ti).

We define the unmatched controllers as

û (t) = Kσ(ti−1)x (t) , (2)

where Kσ(ti−1) ∈ Rm×n is a constant matrix. Hence, we

can get the following system
ẋ (t) =

(
Aσ(ti) +Bσ(ti)Kσ(ti−1)

)
x (t) , t ∈

(
ti, ti

]
,

ẋ (t) =
(
Aσ(ti) +Bσ(ti)Kσ(ti)

)
x (t) , t ∈

(
ti, ti+1

]
,

∆x (t) = Dσ(ti)x (t) + f (t, x (t)) , t = ti,

x
(
t+0
)
= x0,

(3)
where i ≥ 1, and ti

(
ti < ti ≤ ti+1

)
is the instant when

the matched controller begin to manipulate. And noting that
there are neither impulsive nor asynchronous effects at the
initial instant t0. Therefore, we obtain that if i = 0, the
system is

ẋ (t) =
(
Aσ(t0) +Bσ(t0)Kσ(t0)

)
x (t) , t ∈ [t0, t1] . (4)

To simplify the expression, now we define the following
notations

Âpq = Aq +BqKp, Aq = Aq +BqKq,

Qq = (I +Dq)
T
Pq (I +Dq)+θ (I +Dq)

T
PqPq (I +Dq)

+
(η
θ
+ ηλmax (Pq)

)
I,

where p, q ∈ ϕ (p ̸= q). And the notation pq implies the dis-
tinct combinations of subsystem q and unmatched controller
p (p ̸= q).

To obtain our results, the following assumption and con-
cepts are given to present the conclusions.

Assumption 1 ∀t ∈ [t0,∞), the nonlinear function satisfies
the following inequality

||f (t, x (t)) || ≤ η||x (t) ||,
where η is a positive constant.

Definition 1 ( [13]) ∀ (p, q) ∈ ϕ × ϕ, ϵ (p, q) ∈ A and
a switching signal σ (t), let Np,q (t, T ) denote the switch-
ing numbers from p to q over the time interval (t, T ], and
Tp,q (t, T ) represent the total running time of subsystem q
over the time interval (t, T ] whenever the switching from
p to q occurs, where T ≥ t ≥ 0. We say that σ (t) has
an Admissible Edge− dependent Average Dwell T ime
(AED −ADT ) τp,q if there exist positive numbers N0

p,q

and τp,q such that

Np,q (t, T ) ≤ N0
p,q +

Tp,q (t, T )

τp,q
, ∀T ≥ t ≥ 0,

where N0
p,q are referred to as the admissible edge-dependent

chatter bounds.

Then, the following lemmas are also given to obtain the
results.

Lemma 1 ( [15]) Let M , F and E with compatible dimen-
sions be given matrices. And F satisfies FTF ≤ I . Then

MFE + ETFTMT ≤ θMMT + θ−1ETE

for any θ > 0.
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3 Main results

In this section, we study asynchronous stabilization of im-
pulsive switched systems and design proper control laws to
guarantee the stability.

We are to study the asynchronous stabilization of impul-
sive switched system (3) and (4).

Theorem 1 ∀ (p, q) ∈ ϕ × ϕ (p ̸= q), consider the closed-
loop impulsive switched system (3) and (4), let αq >
0, βpq, η > 0, θ > 0 be given constants. If there exist sym-
metric positive-definite matrices Pq ∈ Rn×n, such that

Â T
pqPq+PqÂpq+βpqPq ≤ 0, ∀ (p, q) ∈ ϕ×ϕ, p ̸= q, (5)

A
T

q Pq + PqAq + αqPq ≤ 0, ∀q ∈ ϕ, (6)

then the system is exponentially stable for any switching sig-
nal satisfying

τp,q ≥ τ∗p,q =
lnµp,q
αq

, βpq > αq

τp,q ≥ τ∗p,q =
lnµp,q + (αq − βpq)TpqM

αq
, βpq ≤ αq

(7)
where TpqM , maxn {Tp,q↑ (tn, tn+1)}, ∀n ∈ N+, µp,q =
max

{
λmax

(
P−1
p Qq

)
, 1
}

, ∀ (p, q) ∈ ϕ× ϕ (p ̸= q).

Proof: To make the expression simple, now define edge sets
ϕ1 × ϕ1 and ϕ2 × ϕ2, which satisfies ϕ1 × ϕ1 ⊂ ϕ × ϕ,
ϕ2×ϕ2 ⊂ ϕ×ϕ, (ϕ1 × ϕ1)∪(ϕ2 × ϕ2) = ϕ×ϕ, (ϕ1 × ϕ1)∩
(ϕ2 × ϕ2) = Φ. ∀ (p, q) ∈ ϕ× ϕ (p ̸= q), if the unmatched
controller Kpx (t) can make the current subsystem q stable,
that is, βpq > 0, then (p, q) ∈ ϕ1 × ϕ1 (p ̸= q); otherwise,
(p, q) ∈ ϕ2 × ϕ2 (p ̸= q).

Suppose t0 = 0. ∀T > 0, let
t1, t2, · · · , ti, ti+1, · · · , tNp,q(0,T ) denote the switching
instants from subsystem p to subsystem q during [0, T ],
where Np,q (0, T ) is the switching number from subsystem
p to subsystem q during [0, T ].

∀ (p, q) ∈ ϕ × ϕ (p ̸= q), suppose Tp,q↑ (0, T ) represent
the total running time length of subsystem q manipulated by
the unmatched controller Kpx (t) during the time interval
[0, T ] and Tp,q↓ (0, T ) the total running time length of sub-
system q manipulated by the matched controller Kqx (t). It
is evident that we have

Tp,q (0, T ) = Tp,q↑ (0, T ) + Tp,q↓ (0, T ) , (8)

where Tp,q (0, t) represents the total running time length
of subsystem q whenever the switching from subsystem p
to subsystem q occurs during [0, T ]. Because TpqM =
maxn {Tp,q↑ (tn, tn+1)}, ∀n ∈ N+, according to the in-
equalities in Definition 1, we have

Tp,q↑ (0, T ) ≤ TpqM

(
N0
p,q +

Tp,q (0, T )

τp,q

)
. (9)

Next, we are to begin our proof. ∀σ (t) = q ∈
ϕ, define the Lyapunov-like function as Vq (x (t)) =

xT (t)Pqx (t) , Pq > 0. Now, consider system (3), for
t ∈

(
ti, ti

]
, i ∈ N+, according to (5), we have

V̇q (x (t)) ≤ −βpqxT (t)Pqx (t) = −βpqVq (x (t)) . (10)

For system (4), we have Tp,q↑ (t0, t1) = 0. Then, consider
system (3) and (4), for t ∈

(
ti, ti+1

]
, i ∈ N , according to

(6), we obtain

V̇q (x (t)) ≤ −αqxT (t)Pqx (t) = −αqVq (x (t)) . (11)

Then, according to Assumption1 and Lemma 1, we obtain

Vq
(
x
(
t+i
))

≤ xT (ti)Qqx (ti) . (12)

Let µp,q = max
{
λmax

(
P−1
p Qq

)
, 1
}

, ∀ (p, q) ∈ ϕ × ϕ
(p ̸= q), then according to (12), we obtain

Vq
(
x
(
t+i
))

≤ µp,qVp (x (ti)) . (13)

Therefore, by (10), (11) and (13), ∀t ∈ (ti, ti+1], we ob-
tain

Vσ(ti) (x (t)) ≤
i∏

n=1

µσ(tn−1),σ(tn)exp
{
−ασ(ti)Tp,q↓ (ti, t)

−βσ(ti−1),σ(ti)Tp,q↑ (ti, t) −
i∑

n=1

ασ(tn−1)Tp,q↓ (tn−1, tn)

−
i∑

n=2

βσ(tn−2),σ(tn−1)Tp,q↑ (tn−1, tn)

}
Vσ(t0) (x (t0)) ,

(14)

Further, we have

Vσ(ti) (x (t)) ≤ Vσ(t0) (x (t0)) e
∑

q∈ϕ

∑
p∈ϕ,p ̸=q

∗e[Np,q(0,t)lnµp,q−αqTp,q↓(0,t)−βpqTp,q↑(0,t)], (15)

and together with the inequalities, we have

Vσ(ti) (x (t)) ≤ E1E2Vσ(t0) (x (t0)) , (16)

where

E1 = exp

∑
q∈ϕ1

∑
p∈ϕ1,p ̸=q

[(
N0
p,q +

Tp,q (0, t)

τp,q

)
lnµp,q

−αqTp,q↓ (0, t)− βpqTp,q↑ (0, t)]} ,

E2 = exp

∑
q∈ϕ2

∑
p∈ϕ2,p ̸=q

[(
N0
p,q +

Tp,q (0, t)

τp,q

)
lnµp,q

−αqTp,q↓ (0, t)− βpqTp,q↑ (0, t)]} .

For E1, we introduce the following concepts

E11 = exp

∑
q∈ϕ11

∑
p∈ϕ11,p ̸=q

[(
N0
p,q +

Tp,q (0, t)

τp,q

)
lnµp,q

−αqTp,q↓ (0, t)− βpqTp,q↑ (0, t)]} ,
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where 0 < βpq ≤ αq , (p, q) ∈ ϕ11 × ϕ11 (p ̸= q);

E12 = exp

∑
q∈ϕ12

∑
p∈ϕ12,p ̸=q

[(
N0
p,q +

Tp,q (0, t)

τp,q

)
lnµp,q

−αqTp,q↓ (0, t)− βpqTp,q↑ (0, t)]} ,

where αq < βpq, (p, q) ∈ ϕ12 × ϕ12 (p ̸= q). Noting that
ϕ11 × ϕ11 ⊂ ϕ1 × ϕ1, ϕ12 × ϕ12 ⊂ ϕ1 × ϕ1, (ϕ11 × ϕ11)∪
(ϕ12 × ϕ12) = ϕ1 × ϕ1, (ϕ11 × ϕ11) ∩ (ϕ12 × ϕ12) = Φ.
As for E11, by (9), we have

E11 ≤ exp

∑
q∈ϕ11

∑
p∈ϕ11,p ̸=q

[(
N0
p,q +

Tp,q (0, t)

τp,q

)
lnµp,q

−αqTp,q (0, t)

+ (αq − βpq)TpqM

(
N0
p,q +

Tp,q (0, T )

τp,q

)]}
. (17)

Let

Ê11 = e
∑

q∈ϕ11

∑
p∈ϕ11,p ̸=q[N

0
p,q(lnµp,q+(αq−βpq)TpqM)]

· e
∑

q∈ϕ11

∑
p∈ϕ11,p ̸=q

[
Tp,q(0,t)

(
lnµp,q+(αq−βpq)TpqM

τp,q
−αq

)]
,

we obtain
E11 ≤ Ê11. (18)

As for E12, we have

E12 ≤ exp

∑
q∈ϕ12

∑
p∈ϕ12,p ̸=q

[(
N0
p,q +

Tp,q (0, t)

τp,q

)
lnµp,q

−αq (Tp,q↓ (0, t) + Tp,q↑ (0, t))]} . (19)

Let

Ê12 =e
∑

q∈ϕ12

∑
p∈ϕ12,p ̸=q N

0
p,qlnµp,q

× e
∑

q∈ϕ12

∑
p∈ϕ12,p ̸=q Tp,q(0,t)

(
lnµp,q
τp,q

−αq

)
,

we obtain
E12 ≤ Ê12. (20)

Then, according to (18) and (20), we obtain

E1 = E11E12 ≤ Ê11Ê12. (21)

For E2, similar to the calculation of (17) and (18), and let

Ê2 = e
∑

q∈ϕ2

∑
p∈ϕ2,p ̸=q[N

0
p,q(lnµp,q+(αq−βpq)TpqM)]

· e
∑

q∈ϕ2

∑
p∈ϕ2,p ̸=q

[
Tp,q(0,t)

(
lnµp,q+(αq−βpq)TpqM

τp,q
−αq

)]
,

we obtain
E2 ≤ Ê2. (22)

Let

Γ1 = exp

∑
q∈ϕ12

∑
p∈ϕ12,p≠q

N0
p,qlnµp,q

+
∑
q∈ϕ11

∑
p∈ϕ11,p̸=q

[
N0
p,q

(
lnµp,q + (αq − βpq)TpqM

)]

+
∑
q∈ϕ2

∑
p∈ϕ2,p̸=q

[
N0
p,q

(
lnµp,q + (αq − βpq)TpqM

)] ,

(23)

− γ1 = max

{
max

(p,q)∈ϕ12×ϕ12,p̸=q

{
lnµp,q
τp,q

− αq

}
,

max
(p,q)∈ϕ11×ϕ11,p̸=q

{
lnµp,q + (αq − βpq)TpqM

τp,q
− αq

}
,

max
(p,q)∈ϕ2×ϕ2,p̸=q

{
lnµp,q + (αq − βpq)TpqM

τp,q
− αq

}}
.

(24)

Fially, we have

Vσ(ti) (x (t)) ≤ Γ1e
−

∑
q∈ϕ

∑
p∈ϕ,p ̸=q γ1Tp,q(0,t)Vσ(t0) (x (t0)) .

(25)
Then let γ (t) =

γ1
2
Tp,q (0, t) and

Γ = Γ
1/2
1

[
min
j∈ϕ

(λmin (Pj))

]−(1/2) [
max
j∈ϕ

(λmax (Pj))

]1/2
,

one has

||x (t) || ≤ Γe−
∑

q∈ϕ

∑
p∈ϕ,p ̸=q γ(t)||x (t0) ||, (26)

since Tp,q (0, t) is increasing with respect to time t, together
with the condition (7), γ (t) is a increasing function. From
(26), it is easy to obtain that ||x (t) || → 0 (t→ ∞). Thus,
we can conclude that the closed-loop system is exponentially
stable. This completes the proof. �

Now, we are to design a state-feedback controller on the
basis of Theorem 1 for system (3) and (4).

Theorem 2 ∀ (p, q) ∈ ϕ × ϕ (p ̸= q), consider the closed-
loop impulsive switched system (3) and (4), let αq >
0, βpq, η > 0, θ > 0 be given constants. If there exist ma-
trices X ∈ Rn×n, Lq ∈ Rm×n and symmetric positive-
definite matrices P̂q ∈ Rn×n, q ∈ ϕ, such that ∀ (p, q) ∈
ϕ × ϕ, p ̸= q, (30) and (31) hold. Let Pq = X−T P̂qX

−1,
then the system is exponentially stable for any switching
signal satisfying (7) and the controller gain matrices are
Kq = LqX

−1, q ∈ ϕ.

Proof: ∀ (p, q) ∈ ϕ×ϕ (p ̸= q), we introduce a slack matrix
H and consider the following inequalities[

ÂTpqH +HT Âpq + βpqPq Pq −HT + ÂTpqH

Pq −H +HT Âpq −H −HT

]
≤ 0,

(27)[
A
T

q H +HTAq + αqPq Pq −HT +A
T

q H

Pq −H +HTAq −H −HT

]
≤ 0. (28)

Multiplying the matrix inequality (27) on the left and right
by Λ̂pq =

[
I ÂTpq

]
and its transpose, respectively, we can

conclude that (5) holds. Similarly, for (28), the correspond-
ing transformation matrix is Λq =

[
I A

T

q

]
, and we can ob-

tain that (6) holds. That is to say, if (27) and (28) hold, then
conditions (5) and (6) hold. Noting that if (27) and (28) hold,
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[
AqX +XTATq +BqLp + LTpB

T
q + βpqP̂q P̂q −X +XTATq + LTpB

T
q

P̂q −XT +AqX +BqLp −X −XT

]
≤ 0, (30)

[
AqX +XTATq +BqLq + LTq B

T
q + αqP̂q P̂q −X +XTATq + LTq B

T
q

P̂q −XT +AqX +BqLq −X −XT

]
≤ 0, (31)

[
H−T ÂTpq + ÂpqH

−1 + βpqH
−TPqH

−1 H−TPqH
−1 −H−1 +H−T ÂTpq

H−TPqH
−1 −H−T + ÂpqH

−1 −H−1 −H−T

]
≤ 0 (32)[

H−TA
T

q +AqH
−1 + αqH

−TPqH
−1 H−TPqH

−1 −H−1 +H−TA
T

q

H−TPqH
−1 −H−T +AqH

−1 −H−1 −H−T

]
≤ 0 (33)

then H is non-singular. Then, we introduce the following
matrices

X = H−1, Lq = KqX, P̂q = XTPqX. (29)

Multiplying (27) on the left and right by the diagonal matrix
diag

(
H−T ,H−T ) and its transpose, respectively, we have

(32). Similarly, for (28), we obtain (33). Then, according
to (29), we obtain that (30) and (31) hold. Therefore, ac-
cording to Theorem 1, we conclude that for any switching
signal satisfying (7), the system is exponentially stable and
the controller gain matrices are Kq = LqX

−1, q ∈ ϕ, where
Pq = X−T P̂qX

−1. This completes the proof. �

4 Illustrative examples

In this section, one illusrative examples is given to demon-
strate the correctness of the results above.

Example 1 The working process of ideal Buck converter, as
shown in Fig. 1, can be modeled as a impulsive switched sys-
tem, of which the subsystems are divided according to dif-
ferent operation stages of the converter. Due to the different
switching states of the switch S and the diode D, impulsive
jumps in ul (t) and ic (t) occur. In the next analysis, ul (t)
and ic (t) are set as system state variables. For the sake of

Fig. 1: The schematic of Buck converter

generality, the Buck converter system can be written in the
form of system (1).

Now, consider the closed-loop impulsive switched system
composed of 3 subsystems, i.e., ϕ = {1, 2, 3}. And the fol-
lowing matrices and parameters are given

A1 =

[
0.25 0.01
0 −0.12

]
, A2 =

[
−0.16 −0.01

0 −0.23

]
,

A3 =

[
−0.15 0.01

0 −0.14

]
, B1 =

[
0.16 0.01
0 0.22

]
,

B2 =

[
0.2 −0.01
0 −0.3

]
, B3 =

[
0.33 0.01
0 0.12

]
,

D1 = D2 = D3 =

[
0.3 0
0 0.3

]
,

f1 = f2 = f3 =

[
0.01sin (x1)
0.01sin (x2)

]
η = 0.01, θ = 0.01.

In order to compare the results under the two switching sig-
nals mentioned above, we list other parameters and results
in Table 1. Noting that for p, q ∈ {1, 2, 3}, the calculation
of τ∗q is dependent on the maximum of λq and τ∗p,q based on
the maximum of λq , i.e., λ1 = 0.8, λ2 = 1.2 and λ3 = 1.1,
λ1 = 3.5, λ2 = 6.3 and λ3 = 4.6.

Table 1: Results comparison between MDADT switching
and AED-ADT switching for impulsive switched system

Switching MDADT AED-ADT
schemes
Criteria Theorem in this paper

Parameters λ1 ≤ 0.8, λ1 ≤ 3.5,
λ2 ≤ 1.2, λ2 ≤ 6.3,
λ3 ≤ 1.1 λ3 ≤ 4.6

Switching τ∗
1 = 1.3273, τ∗

2,1 = 0.4324,
signals τ∗

2 = 0.8849, τ∗
1,2 = 0.2402,

τ∗
3 = 0.9653 τ∗

3,1 = 0.4324,
τ∗
3,2 = 0.2402,
τ∗
1,3 = 0.3290,
τ∗
2,3 = 0.3290

Controller
[
−26.56 1.09
−0.03 −17.64

] [
−26.56 1.11
−0.05 −17.64

]
gains

[
−21.70 0.70
−0.04 14.23

]
,

[
−21.70 0.71
−0.03 14.23

]
,[

−14.70 1.19
0.02 −40.50

] [
−14.70 1.19
0.01 −40.50

]

Now, assume that both the MDADT and AED-ADT
switching signals are periodical and given as follows

S =

1th period︷ ︸︸ ︷
1 → 3 → 2 →

2th period︷ ︸︸ ︷
1 → 3 → 2 → · · · , (34)

where p → q represents the admissible transition edge
ϵ (p, q) from subsystem p to subsystem q. And we choose
τ1 = 1.33 > τ∗1 , τ3 = 0.97 > τ∗3 and τ2 = 0.89 > τ∗2 ,
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τ2,1 = 0.44 > τ∗2,1, τ1,3 = 0.33 > τ∗1,3 and τ3,2 = 0.25 >
τ∗3,2. In the simulation, we choose the initial system state as

x (0) =
[
−1 1

]T
. The state responses of the closed-loop

impulsive switched system under MDADT and AED-ADT
switching are shown in Fig. 2 and Fig. 3, repectively. In the
case of MDADT switching, if the dwell time is smaller than
the minimum value of MDADT, we cannot guarantee the sta-
bility of the closed-loop system. In spite of dwell time being
smaller than minimum MDADTs, the results under AED-
ADT switching can still achieve stability. Therefore, we can
see that the method of AED-ADT is more general than M-
DADT.

(a) State response of system under MDADT switching signal

Fig. 2: Results under MDADT switching of Example 1

(a) State response of system under AED-ADT switching signal

Fig. 3: Results under AED-ADT switching of Example 1

5 Conclusions

In this paper, we investigate asynchronous stabilization
of impulsive switched systems with the method of AED-
ADT. Considering the asynchronous behavior of the impul-
sive switched system, a new control protocol is proposed.
Furthermore, our results can be applied to investigate the
asynchronous stabilization of switched systems. Finally, one

numerical example is given and the superiority of the AED-
ADT method is further discussed.
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Abstract: The rapid development of computer technology has promoted the research of complex network synchronization in 

network environments, which involves practical fields such as the Internet of Things, transportation networks, social networks, 

and biological systems. In this paper, the latest research and trends in limited bandwidth complex network synchronization 

control are surveyed. The following aspects are discussed regarding control methods for complex network synchronization and 

limited communication bandwidth: Firstly, by analyzing current research on complex network control, the methods of 

discontinuous control and finite-time control are discussed. Secondly, from the perspective of effectively utilizing 

communication bandwidth resources, synchronization control methods for complex networks with limited bandwidth are 

described. On the one hand, the studies on event-triggered synchronization control for complex networks are reviewed to reduce 

the volume of data transmissions. On the other hand, research on synchronization control in complex networks using 

quantification-based coding-decoding methods is explored to reduce the volume of transmitted data. In addition, considering the 

current security issues facing networks and systems, the ongoing research on secure synchronization control of complex 

networks under cyber-attacks is described. Lastly, some future directions for investigating the synchronization of complex 

networks with limited bandwidth are suggested. 

Key Words: Complex networks, synchronization control, quantization, event-triggered mechanism, network attacks 

1 Introduction 

With the proposal of small-world networks[1] and 

scale-free networks[2], the small-world and scale-free nature 

of complex networks were revealed. Since then, the study of 

complex networks has gradually spread across various 

disciplinary fields, such as sociology[3], computer 

science[4], biology[5], engineering[6],etc. Scholars have 

begun to explore the structure, dynamics, and evolution of 

complex networks and apply them to simulate and analyze a 

wide range of real-world issues. In the study of complex 

network dynamics, synchronization has received extensive 

attention as a characteristic behavior of complex network 

clusters. Synchronization refers to the evolution of nodes or 

subsystems in a network that converge or become similar in 

time, even if they operate under different dynamical laws. In 

1975, [7] presented the Kuramoto model, a mathematical 

representation of a network containing phase-coupled 

oscillating elements. The model investigated the 

phenomenon of phase synchronization, which refers to the 

complete consistency of phase among nodes, in oscillating 

elements within the network. As a result, an increasing 

number of academics have started to focus on researching 

synchronization control in complex networks. For different 

synchronization phenomena of complex networks, phase 

synchronization, lag synchronization, complete 

synchronization, and cluster synchronization have been 

proposed. In addition, external force synchronization and 

topological relation correction synchronization are the two 

main types of synchronization methods currently in use. 

Given that topological relationships are difficult to alter or 

*This work supported by National Natural Science Funds for Young 

Scholar of China under Grants 61304046.

prohibitively expensive, this work focuses on investigating 

synchronization through external force control. 

An increasing number of industrial systems have 

transitioned from traditional point-to-point connections to 

wireless communication networks due to advancements in 

computer hardware and software. These systems are not 

limited by physical space, allowing for greater scalability 

and flexibility. The main problem limiting system 

performance in the study of complex networks 

synchronization control based on communication networks 

is the limited communication bandwidth [8]. Since the 

amount of data transmitted at a time is limited, quantization 

control is used to reduce the amount of data transmitted 

simultaneously[9]. The main idea of quantization control 

methods is to develop an appropriate encoding-decoding 

mechanism that guarantees the convergence or boundedness 

of the error between the system state and the decoded state. 

In the last few years, encoding-decoding communication 

schemes have attracted some attention[10, 11]. Furthermore, 

some researchers concentrated on meeting the bit rate 

requirement for system stability, viewing the bit rate as a 

capacity that characterizes the communication bandwidth 

[12]. However, such approaches are difficult to extend to 

nonlinear systems, and thus there have been several studies 

discussing how the system achieves the desired control 

performance when there is a bit rate constraint on the system 

bandwidth[13]. On the other hand, the event-triggered 

mechanism has gained popularity in recent research because 

it is different from the conventional time-triggered method in 

that data is only transmitted when the triggering condition is 

met. This reduces the number of data transmissions and 

preserves bandwidth [14]. 

Although communication networks facilitate system 

deployment, the introduction of communication networks 

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
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breaks the closure of traditional systems, making them 

vulnerable to malicious network attacks, while the diversity 

of nodes and topologies in complex networks increases the 

network's attack surface[11]. Therefore, to ensure the 

reliable operation of complex networks systems in a network 

environment, it is necessary to study the security of complex 

networks synchronization control. For communication 

networks, the current common attacks are mainly 

categorized into denial-of-service attacks[11], false data 

injection attacks[15], deception attacks[16], etc. By 

considering the effect of attacks on the system to establish an 

attack model, academics use switching system theory, 

stochastic system theory, and other methods to design 

resilient controllers that ensure the synchronization 

performance of complex networks. Moreover, an attacker 

may cause the network topology and nodes to fail due to the 

topological features of complex networks. For this reason, 

some studies simultaneously considered altering the network 

topology and the effects of attacks on control signal 

transmission, providing a proactive defense against network 

attacks [17]. 

2 Synchronization Control Methods of Complex 

Networks 

Consider a class of complex networks with N  nodes as 

follows: 

1
( ) ( ) ( ( )) ( )

( ), 1,2, ,

N

i i i ij jj

i

x t Ax t f x t c w x t

u t i N

=
= + + Γ

+ =

&

L

 (1) 

where ( )
n

ix t R∈  denotes the state vector of node i , 

( )
n

iu t R∈  denotes the control input vector of node i , A  is

a real matrix, ( )f ∗  denotes a nonlinear function of the 

dynamics behavior of the node i , 0c ≥  denotes the 

coupling strength of the node i , ( )ij N NW w ×=  is the external 

coupling matrix of the complex networks, which denotes the 

topology of the networks, and the elements of W  satisfy the 

following conditions: if there exists an edge between the 

nodes, then 0ij jiw w= >  , otherwise 0ij jiw w= = , and W

satisfies the dissipative coupling
1,

N

ii ijj j i
w w

= ≠
= − , 

, 1,2, ,i j N= L , and 1 2{ , , ,diag γ γΓ = L }
n

γ  is an internal 

coupling matrix. 

The synchronization target of the complex networks (1) 

can be expressed as ( ) ( ) ( ( ))s t As t f s t= +& , where ( )s t  is an 

isolated node without external forces and 
T T T

1 2
( ) [ ( ), ( ), , ( )] ,

n
s t s t s t s t Τ= L  

T T

1 2
( ( )) [ ( ( )), ( ( ))f s t f s t f s t=  

T, ( ( ))]
n

f s t Τ
L . Let ( ) ( ) ( )

i i
t x t s tξ = −  be the 

synchronization error and 1,2, ,i N= L . From (1) and ( )s t , 

the synchronization error dynamics of the node i can be 

written as: 

1
( ) ( ) ( ( )) ( )

( ), 1, 2, ,

N

i i i i ij jj

i

t A t f t c w t

u t i N

ξ ξ ξ ξ
=

= + + Γ

+ =

&

L

 (2) 

where ( ( )) ( ( )) ( ( ))
i i i

f t f x t f s tξ = − . 

A typical complex networks synchronization error system 

is described in (2). Actually, the stabilization problem of the 

synchronization error system (2) is equal to the 

synchronization issue of the complex networks (1). By 

designing control methods, current approaches aim to 

stabilize the error system (2) of complex networks or achieve 

the desired performance. After that, the complex networks 

system (1) is synchronized with the target ( )s t . As a result, 

the following part concentrates on the stabilization control 

for the synchronization error system under various 

conditions. 

2.1 Time Delay and Variable Coupling 

In the real world, nodes in complex networks transmit data 

at different speeds between them. Therefore, the effect of 

time delay needs to be taken into account when studying 

synchronization control of complex networks [18-20]. In 

[18], a system of synchronization errors in distributed 

switching-coupled time-delayed complex networks is 

considered. Then, a sufficient condition for stabilizing the 

synchronization error system is given, based on the 

Lyapunov stability theory and the average dwell time method. 

[19] researches a complex networks synchronization error

system with external perturbations and coupled time-varying

delays. Then, a lower conservative stabilization condition is

obtained by developing the Lyapunov-Krasovskii (L-K)

functions associated with the time delay. Unlike the above

studies on continuous complex networks, [20] considers a

discrete complex networks synchronization error system. To

obtain sufficient conditions for stabilizing the system with

time delay, the authors of the aforementioned study on time

delay synchronization control primarily construct L-K

functions with time delay and introduce the scaling technique

of integral inequality to deal with the time delay term in the

derivative of L-K functions.

In complex networks, the dynamic characteristics of nodes 

and the coupling relationships between nodes determine the 

actual properties of complex networks. However, the 

coupling relationship of nodes may be affected by a variety 

of factors. Changes in the external environment in which the 

network is located will not only bring disturbances to the 

node system but also affect or even destroy the coupling 

relationships between nodes. In addition, the dynamic 

behaviors of nodes may lead to changes in the strength of 

connections with other nodes, and the coupling relationship 

between nodes may change over time [18, 20]. As a result, 

the study of complex network synchronization pays closer 

attention to coupling structures in various scenarios. [21] 

considers a discrete complex networks synchronization error 

system with random topological coupling. The stochastic 

topological relationship is described by a Hidden Markov 

Model. Meanwhile, considering the unavailability of the 

system state, the authors design an observer-based 

synchronization controller and propose a sufficient condition 

for H∞ synchronization.  

In contrast to the previously discussed linear coupling 

relations for complex networks, [22] examines a 

synchronization problem that includes nonlinear coupling 

relations. It introduces adaptive coupling strength to enhance 

the synchronization of complex networks. By imposing 

upper constraints on the nonlinear coupling relations, a 

sufficient condition for the exponential synchronization of 

complex networks can be achieved. Synchronization control 
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of nonlinearly coupled complex networks with asymmetry is 

achieved by designing Lyapunov-related events combined 

with aperiodic intermittent control in [23]. Considering that 

the coupling relationship between nodes of complex 

networks may involve multiple weights, [24] studies the 

synchronization control of directed complex networks with 

multiple asymmetric coupling matrices. In order to deal with 

multiple coupling matrices, a sufficient condition for the 

synchronization of the system is obtained by finding the 

common vector of multiple coupling matrices used to design 

the Lyapunov function. Aiming at the problem of 

synchronization of discrete multi-powered complex 

networks, [25] achieves the synchronization of complex 

networks by designing aperiodic intermittent controllers. 

Furthermore, [26] considers a multilayer complex networks 

output synchronization error by taking into account that 

complex networks may have connections at multiple scales. 

Compared complex networks in [18-21] with [26], it can be 

seen that multilayer networks contain more information 

about nodes and their coupling relationships. However, this 

also brings new challenges for analyzing the synchronization 

control of multilayer networks. For example, in [18-21], the 

coupling relationship between nodes can be simplified by the 

Kronecker product. However, multilayer networks are 

challenging to represent by the Kronecker product due to the 

complexity of the coupling relationships. It is difficult to 

directly extend the synchronization method for single-layer 

complex networks to multilayer complex networks. 

2.2 Discontinuous Control Methods 

From the above studies, it can be seen that the control 

methods used so far include state feedback control [19], 

intermittent control [23, 25], sampling control [18], and 

event-triggered control [20, 22, 23]. Among them, 

intermittent control, event-triggered control, and impulse 

control are commonly used in the synchronization control of 

discrete complex networks due to the discontinuity of the 

control signals. However, in continuous complex networks, 

the state update and information exchange of nodes may be 

influenced by various time scales due to the complex 

interactions and coupling between nodes. States of nodes can 

change abruptly in a short period, and communication 

between nodes may contain redundancy, making it 

challenging to maintain the continuity of the state. Therefore, 

some scholars have started studying discontinuous control 

for the synchronization issue in continuous complex 

networks. For complex networks with switching coupling, 

[27] considers the switching-induced impulse effect to

establish the synchronization error system and the pinning

controller is designed for the synchronization error system.

Different from the control method in [19], only the first s

nodes are controlled in [27], which reduces the control cost

and complexity. Also considering the problem of

synchronization of complex networks with impulse effects,

[28] proposes a synchronization control method with

finite-time convergence and discusses the impact of various

impulse effects on synchronization. In addition, impulse

control is often utilized to address complex network

synchronization problems with time delay [29, 30]. In [29],

the delay partitioning technique is adopted to describe the

delay of the system in different operation stages. The system

is modeled as a switching system, and impulse control is 

introduced to deal with the rapid jump problem of the 

switching system. [30] studies the global μ-synchronization 

of complex networks with time delay and uncertainty. The 

study also proposes a variable impulse synchronization 

controller considering sampling delay. In [31], a new 

aperiodic intermittent pinning control method is proposed by 

considering the synchronization control of complex 

networks in two scenarios: node heterogeneity or node 

homogeneity. In addition, the above control methods do not 

act independently, [32] researches the exponential 

synchronization problem of stochastic multilayer complex 

networks and designs a aperiodic intermittent controller 

based on impulse feedback. Due to the occurrence of the 

change phenomenon in the continuous system described 

above, the special continuous system is transformed into a 

general discontinuous system in the literature mentioned. 

This transformation is achieved by modeling the jump signal 

using switching systems, stochastic systems, and other 

methods, which allows for the application of the 

discontinuous system method. 

2.3 Finite-Time Control Methods 

Although discontinuous control methods transform 

continuous systems into discrete systems, the 

synchronization methods discussed above primarily focus on 

Lyapunov asymptotic stability. It implies that 

synchronization is achieved over an infinite period of time. 

This overlooks the transient performance of the system on 

one hand and makes it difficult to achieve fast 

synchronization of nodes on the other. With the concept of 

finite time being proposed, more and more scholars pay 

attention to the study of finite-time synchronization of 

complex networks. In the above literature, the [18, 20] study 

finite-time synchronization control methods respectively, 

such finite-time synchronization focuses on the transient 

process of the system, and its method is mainly by defining 

of finite-time synchronization, and from the initial state is 

bounded, the final state can be introduced to be bounded, 

which essentially belongs to the finite-time bound.  

On the other hand, in practical engineering problems with 

high real-time requirements, achieving fast synchronization 

in finite time is very important. In [28] in which the general 

finite-time stabilization theorem is difficult to apply to the 

system because of the presence of impulse effects, the 

authors have defined the finite-time stabilization of the 

system under disturbances by treating the impulse 

phenomenon as a system disturbance and providing a 

definition of finite-time stabilization of the system under 

disturbances. The Lipschitz condition, which has limitations 

in describing actual complex networks, is the basis for all of 

the considered nonlinearities in the complex networks 

mentioned above. [33] investigates a finite-time 

synchronization control for complex networks with strongly 

nonlinear impulses. Nevertheless, the finite-time 

synchronization approaches in [28, 33] provide an upper 

bound on the settling time that depends on the initial state. 

[26] investigates the fixed-time synchronization control for

multilayer complex networks based on the fixed-time control

method proposed in [34], where the upper bound on the

settling time given is not affected by the initial state.
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In particular, [35] investigates a special kind of fixed-time 

synchronization control known as preassigned time 

synchronization for complex networks. This method ensures 

that the estimation of the settling time is independent of any 

initial conditions and system parameters. On this basis, [36] 

studies the fixed-time/preassigned-time synchronization 

control for amnesic neural networks. There is a crucial 

distinction between the above finite-time synchronization, 

which is a synchronization error system finite-time 

convergence, and the finite-time boundedness. These control 

methods mainly require developing a unique type of 

controller in order to satisfy the conditions of finite-time 

synchronization of the system. 

3 Communication and Efficiency 

In [20-22, 26, 27], the connections between nodes in 

complex networks have transitioned from the traditional 

fixed method to a communication network connection. This 

change facilitates system expansion and resource sharing. 

However, the bandwidth resources of communication 

networks are limited, and network-induced problems will 

inevitably occur when multiple nodes share the bandwidth. 

Therefore, designing a synchronization control method that 

can ensure the stable operation of the system and conserve 

bandwidth resources to effectively transmit data has become 

a key issue for scholars. For the synchronization control of 

complex networks, the discontinuous control methods 

discussed in the above study offer ways to save control 

resources. However, this paper mainly focuses on strategies 

to conserve system bandwidth resources in communication 

networks while ensuring the stable operation of the system. 

3.1 Event-Triggered Mechanism 

As early as the 1950s, a control strategy was proposed that 

triggers a sampling or transmission action only when the 

change in the signal of interest exceeds a certain threshold 

value (static or dynamic) [37]. Subsequently, this control 

method, which satisfies specific event triggering, has 

gradually attracted attention. The principle of this 

mechanism is that the sampling or transmission action is 

triggered only when the change of the signal of interest 

exceeds a certain threshold value (static or dynamic). In [22], 

an event-triggered synchronization control in continuous 

complex networks is studied, and the following triggering 

condition is designed as 
1

inf{ ( ) ( ) 0}
i

k i i i
t e t tα ξ+ = − ≤  by 

using the triggering error ( ) ( ) ( )i

i i k i
e t t tξ ξ= −  and the 

current state ( )
i

tξ , where , 0,1, ,i

k
t k = +∞K  represents 

triggering time, and (0,1)
i

α ∈  is the triggering threshold. 

The minimum triggering interval is proven to be strictly 

positive, thus avoiding Zeno behavior. However, the 

event-triggered condition in [22] ignores the dynamic 

changes in the system state and only considers the current 

state and triggering time. This approach could lead to the 

system being triggered either too frequently or too 

infrequently. To further reduce the number of triggers, [38] 

proposes a dynamic event-triggered strategy by introducing 

dynamic parameters to a static event-triggered strategy. On 

this basis, [21] studies observer-based synchronization 

control of discrete complex networks and designs a dynamic 

event-triggered mechanism as 

1
ˆmin{ , ( ( ), ( ), ) 0}

i i

k k i i it k N k t e k kξ+ = ∈ > Θ Ω ≥  where 

`
ˆ ˆ ˆ( ( ), ( ), ) ( ) ( ) ( ) ( ) ( )

i i i i i i i i i i
e k k e k e k k k kξ ξ ξ α ηΤ ΤΘ Ω = − Ω − is

the triggering condition to be designed, ˆ ( )
i

kξ  is the error 

between the observer state and the synchronization target, 

and ˆ ˆ( ) ( ) ( )i

i i i k
e k k tξ ξ= − . ( )

i
kη is a dynamic parameter, 

where 
0

(0) i

i
η η= . Obviously, it can be seen that due to 

( )
i

kη , ˆ ˆ( ) ( ) ( ) ( )
i i i i i

e k e k k kξ ξΤ Τ− Ω  is not necessarily 

non-negative, while the triggering condition in [22] needs to 

be kept ( ) ( ) 0
i i i

e t tα ξ− >  all the time. [26] considers a 

dynamic event-triggered synchronization control in a 

multilayer discrete complex network. To avoid unnecessary 

waste of resources caused by continuous sampling, the study 

considers two synchronization goals under the dynamic 

event-triggered scheme. The purposes aim to prevent the 

threshold function from becoming too small and triggering a 

high frequency. In [27], the study focuses on dynamic 

event-triggered synchronization control of complex 

networks with impulse effect. It is worth noting that in [20, 

21, 26, 31], Zeno behavior is usually not discussed in 

discrete systems because the system only performs state 

updates and triggers at discrete times. In addition, the 

deployment of communication networks in real systems is 

two-sided, from sensors to controllers and from controllers 

to actuators. The above literature only considers a one-sided 

network from sensors to controllers. 

3.2 Quantization and Encoding-Decoding Mechanism 

On the other hand, quantization methods have been 

incorporated into the synchronization control of complex 

networks because of the limited bandwidth word length 

constraints in [9, 10, 39-41]. [39] investigates the adaptive 

synchronization control based on logarithmic quantization 

with output-coupled fractional-order neural networks by 

designing a logarithmic quantizer. [40] researches 

synchronization control for periodic switching complex 

networks under dynamic quantization, and designs a 

dynamic quantization scheme to manage the transmitted 

control signals.  

However, in quantization, data needs to be converted to 

binary by encoding in order to adapt to digital 

communication. Therefore, [10] studies the synchronization 

control of discrete complex networks based on uniformly 

quantized encoding-decoding. In addition, considering the 

bit rate as an essential measure of network bandwidth, [41] 

studies the cluster synchronization problem for complex 

networks with bit-rate constraints to discuss the optimal 

performance conditions of the system under a finite bit rate. 

Considering the advantages of quantization and event 

triggering in saving resources, [42] researches the adaptive 

event- triggered synchronization control for complex 

networks based on quantization. 

4 Network Attacks and System Security 

Preventing malevolent network attacks is a significant 

practical issue in networks. Attacks that disrupt network 

synchronization and stability, such as deception attacks, data 

tampering, and denial-of-service attacks, can impair system 
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performance or lead to system failure. In [43], the method of 

synchronization control of complex network security 

clusters under denial-of-service attacks is considered. Under 

the assumption that the attack energy is limited, the system is 

modeled as a switching system. An adaptive control strategy 

based on local information is designed to ensure the 

stabilization of the system under denial-of-service attacks. 

[16] considers the scenario where the system may be

vulnerable to deception attacks in a multi-weighted complex

networks synchronization. The study outlines potential

deception attacks on the system using random variables

following the Bernoulli distribution. It proposes a controller

that addresses both disturbances and attacks, and provides

adequate conditions to guarantee the asymptotic stability for

the system. This is achieved through the Lyapunov stability

theory and robust analysis methods. In addition, [11] studies

the encoding-decoding synchronization control strategy for

complex networks under denial-of-service attacks. The

attack is modeled by the average dwell time. The impact of

the attack on the encoding-decoding mechanism is analyzed,

and a sufficient condition is provided for the synchronization

error system to be input-to-state stable. In addition, the study

of multi-link attacks in complex networks has attracted the

attention of several scholars [44-45].

5 Conclusion and Future Directions 

This paper has outlined the synchronization control 

methods of complex networks with limited bandwidth in 

recent years, and mainly has focused on the synchronization 

control methods of complex networks, the effectiveness and 

safety of the limited bandwidth control strategy. Firstly, the 

research on the synchronization control of complex networks 

has been illustrated in terms of the features of complex 

networks, the continuity and rapidity of control signals. 

Secondly, recent works on event-triggered complex network 

control and quantization-based complex network control 

have been discussed. Finally, the main current methods for 

possible cyber-attacks on complex networks have been 

described. In the existing literature, scholars have put 

forward various definitions of synchronization for different 

issues, along with methods such as state feedback control, 

pinning control, intermittent control, impulse control, etc. 

However, most complex networks have relatively simple 

structures. Taking into account the challenges encountered 

by real complex systems and the complexities introduced by 

the environment, this paper identifies three issues that still 

require investigation. 

1. At present, there are abundant results on the

synchronization control methods of single-layer complex 

networks, however, most of the research is based on the 

symmetric coupling relationships and single coupling 

structure, and the research on the synchronization of 

heterogeneous and multilayer complex networks remains 

very limited. Due to the complex coupling structure of 

multilayer networks, it is challenging to extend the 

synchronization analysis from single-layer networks to 

multilayer networks. Therefore, proposing a more 

comprehensive synchronization framework for multilayer 

networks represents a meaningful and challenging research 

direction. 

2. Since the theory of the unilateral network cannot be

directly applied to the bilateral network due to the influence 

of communication delay, current complex network 

synchronization control only considers the communication 

network from sensors to controllers, neglecting the impact of 

the communication network from controllers to actuators. 

Further research is needed to determine how to implement 

the complex network synchronization control problem 

considering the bilateral communication network. 

3. The current research on event-triggered control

primarily focuses on analyzing the maximum triggering 

interval to ensure the control performance of the system, but 

lacks quantitative analysis. Furthermore, few studies have 

been researched on the control strategies for complex 

networks operating at finite bit rate. The fundamental effect 

of finite bit rate on networked systems is to determine the 

network bandwidth conditions that contribute to system 

stability. Despite certain advancements, the research 

conducted by [12] is limited to linear systems and cannot be 

easily expanded to nonlinear systems. Thus, the question of 

how to conduct the study of complex networks 

synchronization while combining event triggering and 

limited bit rate still needs to be answered. Based on these 

findings, it is imperative to consider the consequences of 

network attacks and provide comprehensive theoretical 

frameworks for resolving practical issues. 
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Abstract: An event-triggered bounded synchronization of heterogeneous complex networks is studied. Firstly, a distributed 

full-dimensional state observer is designed for each node in the heterogeneous complex network to reconstruct the system 

state. The joint error system of observation and synchronization errors is obtained, and an event-triggered controller based on 

the observer state is designed. Then, by using the Lyapunov stability theory, a sufficient condition is derived to ensure the 

bounded stabilization of the joint error system. After that, the observer gain, controller gain, and event-triggered parameters are 

jointly solved using Linear Matrix Inequalities (LMIs). Finally, a numerical example is provided to verify the effectiveness of 

the proposed synchronization theory. 
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1 Introduction 

In recent years, complex networks have attracted more 

and more attention due to their wide application in various 

fields such as interpersonal interaction networks [1], neural 

networks [2], natural networks constructed by ecosystems 

[3], and disease transmission networks [4]. The 

synchronization is one of the most important research 

topics in the study of complex networks, which involves 

different nodes eventually converging to a common target 

trajectory [5]. Most of the existing synchronization research 

focuses on homogeneous networks. However, almost all 

engineering networks are heterogeneous, composed of 

nodes with different structures [6]. Therefore, the study of 

heterogeneous complex networks has important theoretical 

significance and practical application value. Due to the 

difference of nodes, achieving complete synchronization is 

usually challenging for nodes in heterogeneous networks. 

Heterogeneous complex networks typically maintain the 

node state error within a bounded range, known as bounded 

synchronization [7]. In [8] introduced the global bounded 

synchronization in heterogeneous networks in detail. On 

this basis, [9] studied the bounded synchronization of time-

varying qualitative dynamic complex networks. Based on 

the mean value trajectory, [10] proposed a new definition 

of bounded synchronization of heterogeneous complex 

networks. This new definition is equivalent to the 

traditional concept of bounded synchronization. Extending 

to multi-agent systems, [11] studied the global bounded 

consensus of heterogeneous multi-agent systems and 

designed a distributed consensus protocol. However, these 

studies only focus on global bounded stability and pay little 

attention to local bounded stability. [12] proposed a method 

that covers global bounded synchronization and local 

bounded synchronization for the first time. The research on 

bounded synchronization has matured. In network 

transmission, the conventional data transmission methods 

can result in a significant waste of communication 

resources. Therefore, event-triggered strategy has emerged 

This work supported by National Natural Science Funds for Young 

Scholar of China under Grants 61304046. 

[13]. When the event-triggered condition is satisfied, 

system information will be transmitted to fully utilize the 

limited bandwidth. Based on this, the event-triggered 

strategy is unanimously recognized by the academic 

community because it can reduce the transmission 

frequency. 

In [14], a periodic event-triggered strategies was 

proposed, which aims to strike a balance between 

traditional periodic sampling and event-triggered data 

collection. The results of the existing event-triggered 

strategies were extended to time-delay event-triggered 

control systems in [15]. In reality, the controller was 

typically used to achieve system synchronization. In [16], a 

control strategy was proposed that combines delay pulse 

control and event triggering mechanisms, effectively 

avoiding control redundancy. [17] further extended the 

concept to construct event-triggered strategies by 

integrating of system states. In [18], a model-based static 

event-triggered strategy was used to study time-delay 

network systems with quantization and time-varying 

characteristic. 

The event-triggered strategy has been extensively 

researched in homogeneous complex networks, while 

research on event-triggered strategies in heterogeneous 

complex networks is scarce. In most studies, it is usually 

assumed that the state of all nodes can be obtained directly. 

But in reality, the state of many nodes is hard to get. 

Observer-based event-triggered synchronization control for 

heterogeneous network is investigated.Problem Description 

and Model Building 

1.1 Building System Model 

This section describes the synchronization control of the 

heterogeneous complex network based on an event-

triggered with a state observer. The system structure is 

shown in Fig 1. 

A dynamic model of the i  node of a class of 

heterogeneous complex networks with N nodes is 

considered: 

1

( ) ( ) ( ( ), ) ( ) ( )

( ) ( ),    1, 2,...,

N

i i i i i ij j i

j

i i

x t A x t B f x t t c w x t u t

y t Cx t i N

=


= + + Γ +


 = =

&
(1) 
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Fig.1 Observer-based event-triggered quantized complex network 

where ( ) R n

i
x t ∈ denotes the state vector of node i ; 

( ) R p

i
y t ∈ denotes the measured output; ( ( ), ) R n

i
f x t t ∈ is a 

nonlinear vector function; 
iA  and C are the constant 

matrices; 0c > denotes the coupling strength; ) R( N N

ijW w ×= ∈

represents the coupling matrix of network topology; if node 

i  is connected to node j , then 0ijw > , otherwise 

0 ( )ijw i j= ≠ ; the diagonal elements of matrix W  are defined 

by 
1,

N

ii ijj j i
w w

= ≠
= − ; 

1 2( , ,...,d )iag nr r rΓ =  represents an internal 

coupling matrix; if two nodes can communicate, then 0ir > , 

otherwise 0ir = ; ( )iu t represents control input. 

Assumption 1: For any 
1 2
( ), ( ) R nz t z t ∈ , the continuous 

nonlinear function ( , )f ⋅ ⋅  satisfies the following conditions 

1 2 1 1 2

1 2 2 1 2

( ( ( ), ) ( ( ), ) ( ( ) ( )))

( ( ( ), ) ( ( ), ) ( ( ) ( ))) 0

Tf z t t f z t t G z t z t

f z t t f z t t G z t z t

− − −

− − − ≤  

Assuming that the isolated node is a synchronization 

target, it is described as follows. 

0 0( ) ( ) ( ( ), )s t A s t B f s t t= +& (2) 

Supposing that ( )s t  is bounded, that is, for any initial 

condition (0)s , ( (0))T s and a normal number δ  exist such 

that ( (0))t T s∀ > , ( )s t δ≤ . 

1.2 Designing of Distributed Full-order State 

Observer 

A distributed full-order state observer is designed. 

1

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ( ), ) ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( ), 1, 2,...,

N

i i i i i ij j i i i i

j

i i

x t A x t B f x t t c w x t u t L y t y t

y t Cx t i N

=


= + + Γ + + −


 = =

&

(3) 

where ˆ ( )ix t is an estimate of ( )ix t  , ˆ ( )iy t  is the observer 

output, R n q

i
L ×∈  is observer gain. The observer-based 

controller ( )iu t  can be expressed as

1
( )= ( ), [ , )i i i

i i i k k k
u t K e t t t t +∈ (4) 

where ˆ( )= ( ) ( )i ie t x t s t− , 
iK  is the designed control gain. 

1.3 Dynamic Event-triggered Structure 

In order to effectively reduce the network burden, an 

event-triggered strategy is designed. Define 0h > as the 

sampling period, i

k
t as the most recent release moment for 

the i  node, and ( )i

kt hρ+  as the most recent sampling 

moment. The event-triggered strategy is expressed as 

0( ) ( ) ( )i i i

k k kie t h e t e t hρρ ρ−− + ≥+ (5) 

where ( )0,1iρ ∈ is a given parameter. ( )i

k
e t hρ+  is an error at 

the current sampling moment, ( )i

k
e t is an error at the last 

trigger moment. 

Thus, for (5), the expression for the next release moment 

1

i

k
t +  can be obtained as follows. 

1 inf{ | 0}(( ) ) ( )i i i

k k i

i i

k k ke t ht e t tt t e hρ ρ ρ+ + − += > − ≥ (6) 

For )1,i i

k kt t t +
∈  , the sampling interval is divided into 

) ( ) )1

1

, 1 ,i i i i

k k k k

m

t t t m h t mh
ρ

+

=

 = + − + U (7) 

where { }1inf | i i

k k km N t h mh t hρ += ∈ + > .

According to induced delays in [20], it can be obtained. 

( ) ( ( )) ( )i

k i i
e t e t t tτ δ= − − (8) 

Therefore, (6) can be rewritten as. 

1
inf{ | ( ) 0}( ( ))i i

k k i ii
t t t t e t tδ ρ τ+ −= > − ≥ (9) 

Next, define the synchronization error of the i  node 

as: ( ) ( ) ( )i ie t x t s t= − and the observation error of the i  node is 

ˆ ˆ( ) ( ) ( )i i ie t x t x t= − . So ˆ ˆ( ) ( ) ( ) ( ) ( )i i i ie t x t s t e t e t= − = − . 

Then, substituting (8) into (4), the control input can be 

rewritten as. 

( ) (ˆ( ) ( ) ( ) ( ))i i i ii ii i iu tt K et te KtK tτ δτ−= −− − (10) 

According to (10), the synchronization error system can 

be described as follows. 

1

( ) ( ) ( ( ), ) ( ) (

ˆ  ) ( ) ( ) D ( ( ))( ) ( )

N

i i i ij j i i

j

ii i i i

i

i i

ie t e t f e t t c w e t K

K

A B t

Kt te tt

e

t sτ τ δ

=

−= + + Γ +

− − +−

&

(11) 

where ( ( ), )= ( ( ), ) ( ( ), )i if e t t f x t t f s t t− ,
0( ( )) ( ) ( )i iD s t A A s t= − +

0 ( ( ), )( )i B f s tB t− . 

The observation error system can be described as follows. 

1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ( ), ) ( )
N

i i i i i ij j

j

ie t L C e t B f e t bA t c e t
=

= − + + Γ& (12) 

1.4 Quantitative Processing 

In order to further improve the transmission efficiency of 

the communication channel, this paper designs the 

logarithmic quantizer.  

The quantized error can be expressed as 

( ) ( )j ij ij ijq e I e= + ∆  (13) 

where j jw∆ ≤ , =(1- )/(1+ )j j jw η η  and the quantization density 

is denoted by (0 1)j jη η≤ ≤ .Let 
1 2=diag{ , ,..., }i i i in∆ ∆ ∆ ∆ , then the 

quantized error can be rewritten as follows. 

( ) ( )i i iq e I e= + ∆ (14) 

Therefore, from (10) and (13), the quantized control 

input is 

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )i i i i i i ii i ii iu K t t t tt I e K I e K I tτ τ δ= + ∆ − + ∆ + ∆− − −  (15)

The joint error system can thus be described as follows. 

1

( ) ( ) ( ( ), ) ( )  ( ) ( ( ))

ˆ( ) ( ( )) ( ) ( ) D ( ( ))

N

i i i i i ij j i i i i

j

i i i i i i i i

e t Ae t B f e t t c w e t K I e t t

K I e t t K I t s t

τ

τ δ

=

= + + Γ + + ∆ −

− + ∆ − − + ∆ +

&
(16) 
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1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ( ), ) ( )
N

i i i i i ij j

j

e t A L C e t B f e t t c w e t
=

= − + + Γ&  

By using the method of Kronecker product, the joint 

error system can be expressed as 

( ) ( ( )) ( ) ( ( ), ) D( ( ))

ˆ )( ) (( ) (( ) )

ˆ ˆ ˆ( ) ( ( )) ( ) ( ( ), )

E t A c W E t BF E t t s t

K E K

W

t t t tE K t

E t A LC c E t BF E t t

δτ τ

 = + ⊗ Γ + +


+ ∆ − ∆ − ∆


= − + ⊗ Γ +

− −



&

&

(17) 

where 

Ndiag { }i iA A A= + ∆ , 
Ndiag { }i iB B B= + ∆ , 

N( ) col { ( )}iE t e t=  

N
ˆ ˆ( ) col { ( )}

i
E t e t= , 

N( ) col { ( )}it tδ δ= , 
N( ( )) col { ( ( ))}iD s t D s t=  

N( ( ), ) col { ( ( ), )}iF E t t f e t t= , 
N

ˆ ˆ( ( ), ) col { ( ( ), )}
i

F E t t f e t t=

N( - ( )) col { ( - ( ))}iE t t e t tτ τ= , 
N

ˆ ˆ( - ( )) col { ( - ( ))}
i

E t t e t tτ τ=  

Ndiag { }iK K= ,
Ndiag { }iI∆ = + ∆ ,

Ndiag { },i NL L C I C= = ⊗

1.5 Main Lemmas 

Lemma 1[20]: For any constant matrix Rm mM ×∈ , TM M= > 0

scalar 0γ > and vector :[0, ] Rmω γ → , when the following 

integral definitions exist, the following inequality holds. 

0 0 0
( ) ( ) ( ( ) ) ( )T Ts M s ds s ds M s ds

γ γ γ

γ ω ω ω ω≥  
Lemma 2: Assume that T and S are real matrix with 

appropriate dimension, and F  satisfies TF F I< , for any 

scalar 0>l , the following inequality holds. 
1T T T T TT FS SF T SS T T−+ ≤ +l l

The problem to be solved can be stated as follow, for the 

heterogeneous complex network (1), design an observer-

based state feedback controller (10) such that the system 

achieves bounded synchronization with the target node (2). 

2 Main Conclusions  

2.1 Bounded Synchronization Analysis 

Theorem 1: Assuming the Assumption1 is satisfied. If 

there exist the feedback control gain K  , the observer gain 

L , positive definite symmetric matrices 0P > , 0Q > , 0R > , 

0Z >  , and diagonal matrices 0Φ > , 0Θ > , 0iε > , 1, 2,3, 4i = , 

satisfied the following inequalities 
*

1 2 1 1 1 2

2 2

1

1

2

2

ˆ

0

0

0 0 0

0 0 0

0 0

0

T

T

n

Nn

Nn

Nn

Nn

ZB M ZE ZE

I M

I

I

I

I

ε

ε

ε

ε

ε

ε

Π + Φ ⊗

∗ −Φ ⊗

∗ ∗ −

∗ ∗ ∗ −

 
 
 
 


∗ ∗ ∗ ∗ −

∗ ∗ ∗ ∗ ∗

 <
 
 


 −


 

G

(18) 

11 12

2

22*
0

ψ ψ

ψ

 
Π =  

 
<

)
(19) 

where 
* * * * *

11 12 14 16 17

* * *

22 23 26

*

33

* *

44 46

55

*

66

*

7

1

7

1

0

* 0 0 0

* * 0 0 0 0

= * * * 0 0

* * * * 0 0

* * * * * 0

* * * * * *

P

ψ

 
 
 
 
 
 
 
 
 
 

Π Π Π Π Π

Π Π Π

Π

Π Π

− ∏

Π

Π

* *

18 1(10)

4

3

*

4912

0 0 0 0

0 0 0 0 0

= 0 0 0

0 0 0 0

0 0

0

0 0

0

0

0

0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

T

T

M

PK

G

G

K P

ψ

ε

ε

τ

 
 
 
 
 
 
 
 
 
 

Π



Π

Π



%

%

* * *

88 99 (10)(10) 3 32 42 4 }, , ,d ,= , ,iag{ nN nN nN nNI I I Iψ ε ε ε εΠ Π Π − − − −  

*

1 1
ˆ { ( )} T THe ZA cZ W ZLC C L ZΠ = + ⊗ Γ − − − Φ ⊗ G

2*

11 1
{ ( )} 3  MHe PA Pc W G Q e R P Iατθ α−Π = + ⊗ Γ − ⊗ + − + +

2*

12
MPK e Rατ−Π = + ; *

14 2
PB GθΠ = + ⊗ ; *

17 1 1

TMεΠ = ; *

18 1
PEΠ =

*

16
( ( ))T

M
A c W PτΠ = + ⊗ Γ ; *

1(10) 2PEΠ = ; 2*

22
2 Me Rατ−Π = −

2*

23
Me Rατ−Π = ; *

26

T

M
K PτΠ = ; 2 2*

33
M Me R e Qατ ατ− −Π = − − ; *

44 n
IθΠ = − ⊗

*

46

T

M
B PτΠ = ; *

49 2 2

TMεΠ = ; * 1

66
PR P−Π = − ; *

77 1 Nn
IεΠ = −

*

88 1 Nn
IεΠ = − ; *

99 2 Nn
IεΠ = − ; *

(10)(10) 2 NnIεΠ = − ; 
1 2{ , ,..., }NP diag P P P=  

1 2{ , ,..., }NR diag R R R= ;
1 2{ , ,..., }NZ diag Z Z Z= ;

1 2{ , ,..., }NQ diag Q Q Q=  

the heterogeneous complex network system (1) achieves 

bounded synchronization for isolated nodes (2). 

Proof: Construct an alternative Lyapunov function ( )V t  

1 2( ) ( ) ( )V t V t V t= +  (20) 

where 

1
ˆ ˆ( ) ( ) ( )TV t E t ZE t= , 2 ( )

2 ( ) ( ) ( ) ( ) ( )
M

t
T t s T

t
V t E t PE t e E s QE s dsα

τ

− −

−
= + +

0
2 ( ) ( ) ( )

M

t
t s T

M
t

e E s RE s dsdα

τ θ
τ θ− −

− +  & &  

Taking the derivative of 
1( )V t  along the trajectory of (17): 

1
ˆ ˆ ˆ( ) 2 ( ) {( ( ) ) ( ) ( ( ), )}TV t E t Z A c W LC E t BF E t t= + ⊗ Γ − +& (21) 

From Assumption 1, it can be obtained. 

2

1 1 2

ˆ ˆ ˆ ˆ( ( ), ) ( ( ), ) ( ( ), ) ( )

ˆ ˆ ˆ ˆ( ) ( ( ), ) ( ) ( ) 0

T T

i i i i

T T T T

i i i

f e t t f e t t f e t t G e t

e t G f e t t e t G G e t

−

− + ≤
(22) 

when 0iφ > , (22) is equivalent to 

1 2

1 2

ˆ ˆ ( )  ( )
0

ˆ ˆ( ( ), ) ( ( ), )

T
N

i

i n

e t e t

If e t t f e t t
φ

=

    
≤    

    


G G

G
(23) 

where 
1 1 2 2 1

( ) / 2T TG G G G= +G , 
2 1 2

( ) / 2T TG G= − +G . Thus, (23) 

can be rewritten as 

1 2
ˆ ˆ ˆ ˆ( )( ) ( ) 2 ( )( ) ( ( ), )

ˆ ˆ( ( ), )( ) ( ( ), ) 0

T T

T

n

E t E t E t F E t t

F E t t I F E t t

Φ ⊗ − Φ ⊗

+ Φ ⊗ ≤

G G
(24) 

where 
1 2diag{ , ,..., } 0Nφ φ φΦ = > . 

By combining (21) and (24), it can be obtained. 

1

1 2

ˆ ˆ ˆ( ) 2 ( ) {( ( ) ) ( ) ( ( ), )}

ˆ ˆ ˆ ˆ( )( ) ( ) 2 ( )( ) ( ( ), )

ˆ ˆ( ( ), )( ) ( ( ), )

ˆ ˆ ˆ ˆˆ=[ ( ), ( ( ))] [ ( ), ( ( ))]

T

T T

T

n

T

V t E t Z A c W LC E t BF E t t

E t E t E t F E t t

F E t t I F E t t

E t F E t E t F E t

≤ + ⊗ Γ − +

− Φ ⊗ + Φ ⊗

− Φ ⊗

Π

&

G G

(25) 

Π̂  in (25) can be expressed as 

1 1 1 1 2 2 2 2
ˆ ( ) ( ( ) ) ( ) ( ( ) )T T T T T TPF t K PF t K P F t K P F t KΠ = Ω + + + +

) ) ) ) ) ) ) )
(26) 

where 1 2

* n

ZB

I

Ω + Φ ⊗ 
Ω =  

−Φ ⊗ 

G
;

1 2* diag{ , ,... }NA A A A=

1 1{ * ( ) }He ZA cZ W ZLCΩ = + ⊗ Γ − − Φ ⊗ G ;
1 2* diag{ , ,... }NB B B B=

1 1
[   0]T TP E Z=

)
;

2 2
[   0]T TP E Z=

)
;

1 1
[   0]TK M=

)
;

2 2
[0   ]TK M=

)

1 1NE I E= ⊗ ; 
2 2NE I E= ⊗ ; 

1 1NM I M= ⊗ ; 
2 2NM I M= ⊗

By using Lemma 2 for (26), it can be obtained. 
1 1

1 1 1 1 1 1 2 2 2 2 2 2
ˆ T T T TPP K K P P K Kε ε ε ε− −Π ≤ Ω + + + +

) ) ) ) ) ) ) )
(27) 
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Then, the inequality (18) is obtained by using Schur 

complement lemma for (27). According to Lyapunov 

stability theorem, ˆlim || ( ) || 0
t

E t
→∞

= . 

Taking the derivative of 
2 ( )V t along the trajectory of (17). 

2

2 2

2 ( )

2

( ) 2 ( ) {( ( )) ( ) ( ( ), )

ˆ           ( ) ( ) ( ) D( ( ))}

         ( ) ( ) ( ) ( )+ ( ) ( )

   

( ) (

       ( ) ( ) 2

)

M

M

T

T T T

iM iM M

t
t s T

M
t

V t E t P A c W E t BF E t t

K E K E K t s t

E t QE t e E t QE t E t RE t

e E s R

t

E s ds V

t t t

ατ

α

τ

δ

τ τ τ

τ

τ α

τ
−

− −

−

−

= + ⊗ Γ + +

∆ − ∆ − ∆ +

+ − − −

− −

−



&

& &

& & ( ) 2 ( ) ( )Tt E t PE tα+

 (28) 

By Lemma1, we can obtain 
22 ( )

2

2

( ) ( ) ( ) ( )

{ ( ) ( ( ))} { ( ) ( ( ))}

{ ( ( )) ( )} { ( ( )) ( )}

M

M M

M

M

t t
t s T T

M M
t t

T

T

M M

e E s RE s ds e E s RE s ds

e E t E t t R E t E t t

e E t t E t R E t t E t

ατα

τ τ

ατ

ατ

τ τ

τ τ

τ τ τ τ

−− −

− −

−

−

− ≤ −

≤ − − − − −

− − − − − − −

 & & & &

 (29) 

According to Assumption 1, there exists a diagonal 

matrix 0Θ >  such that the following holds. 

1 2( )( ) ( ) 2 ( )( ) ( ( ), )

                              ( ( ), )( ) ( ( ), ) 0

T T

n

E t E t E t F E t t

F E t t I F E t t

Θ ⊗ − Θ ⊗

+ Θ ⊗ ≤

G G

 (30) 

where 
1 2diag{ , ,..., }Nθ θ θΘ = , 0iθ > . 

By combining (28) and (30), 
2
( )V t& is rewritten as 

following. 
2

2 2 1 1 1 55

1

2 ( ) ( ) ( ) D ( ( )) D( ( ))

ˆ2 ( ) ( ) 2 ( )( () ( ) )

T T

M

N
T T

i i i i i

i

TV t V t s t s t

E t PK E e t PK It t t

Rϑα ξ τ ξ

δ

ϑ

τ
=

+ ≤ Π + + ∏

− ∆ − + ∆− 

&

 (31) 

where *

16
[ ]0 0T

M M
PK PBϑ τ τ∆= Π  

2

11 2

2 2

2 2
1

55

0

2 0 0

0 0

0

M

M M

M M

n

PK e R PB P

e R e R

e R e Q

I

ατ

ατ ατ

ατ ατ

θ

−

− −

− −

 ∏ ∆ + + Θ ⊗
 

∗ − 
 Π = ∗ ∗ − −
 

∗ ∗ ∗ − ⊗ 
 ∗ ∗ ∗ ∗ − ∏ 

G

 

2

11 1
{ ( )} 2  MHe PA Pc W Q e R Pατ α−∏ = + ⊗ Γ − Θ ⊗ + − +G  

( ) ( ( ), ( - ( )), ( - ( )), ( ( ), ), D ( ( )))T T T T T T

M
t E t E t t E t t F E t t s tξ τ τ=  

Treat ˆ2 ( ) ( )( )T tE t E tPK τ∆ −−  in (31) as follows. 
2 2 2ˆ ˆ2 ( ) ( ) || ( ) |( ) ( )| || || || ( )||TE t PK E E t PKt tEt tτ τ−∆ ≤ + ∆−−   (32) 

By combining the event-triggered strategy (6), and 

transform 
1

2 ( ) ( ) ( )
N

T

i i i i i

i

e t PK I tδ
=

− + ∆  in (32) as follows. 

 1

1

2 ( ) ( ) ( )

ˆ2 || ( ) ||  || ( ) || ( ) ( ) |||| ( (i i

N
T

i i i i i

i

N

i i i i i i i

i

e t PK I t

e t I tPK e et t t

δ

ρ τ τ

=

=

−

≤ − − −

+ ∆

+ ∆




 (33) 

Letting 
iρ  as 

1

2 || ( ) ||i i iPK I + ∆
 and substituting it into (33). 

 

1

2

2 ( ) ( ) ( )

ˆ2 ( (( ) ( |) ( )) ( ) ( ) ) | ( ) ||

N
T

i i i i i

i

T T

e t PK I t

E t E t E E Et t t t t tτ

δ

τ τ

=

− + ∆

= + +− − −



 (34) 

By combining (32)-(34), (31) can be rewritten as follows. 

 

2 2

2 2 1 1 1

2

55

2 ( ) ( ) ( ) (|| || 1)

ˆ                        || ( )|| D ( ( )) D( ( ))( )

M

T

TT

s

RV t V t PK

E t tt t s

α ξ τ ϑ ξϑ

τ

+ ≤ Π + + ∆ +

+ ∏−

&

 (35) 

By using Schur complement lemma for (35), the 

expanded linear matrix inequality is  

2* *

11 2 16

2 2

*

33

2

55

1

0

2 0 0

0 0 0

0

0

M

M M T

M

T

n M

PK e R PB G P

I e R e R K P

I B P

PR P

ατ

ατ ατ τ

τ

−

− −

−

 Π ∆ + + Θ ⊗ Π
 

∗ − ∆ 
 ∗ ∗ Π

Π =  
∗ ∗ ∗ −Θ ⊗ 

 ∗ ∗ ∗ ∗ −∏ 
 ∗ ∗ ∗ ∗ ∗ − 

&

(36) 

where 
2*

11 1
{ ( )} 2 3MHe PA Pc W G Q e R P Iατ α−Π = + ⊗ Γ − Θ ⊗ + − + +  

2Π  can be rewritten as  

2 2 1 1 1 1 2 2 2 2
= ( ) ( ( ) ) ( ) ( ( ) )T T T T T TPF t K PF t K P F t K P F t KΠ Ω + + + +% % % % % % % %  (37) 

where 2 2 |
A A∗=

Ω = Π ,
1 1

[  0 0 0 0 0]T TP E P=% ,
1 1

[  0 0 0 0 0]TK M=%  

2 2
[  0 0 0 0 0]T TP E P=% ,

2 4
[0 0 0   0 0]TK M=% . 

According to Lemma 2, (37) is reduced as follows. 

 1 1

2 2 1 1 1 1 1 1 2 2 2 2 2 2

T T T TPP K K P P K Kε ε ε ε− −Π ≤ Π + + + +% % % % % % % %%  (38) 

Define FG∆ = %% % , ( )
N i n

G diag w I=% ,where T TFF F F I= ≤% % % % , ∆ =%

{ }N idiag ∆ , -1F G= ∆ %% % . 

Then, (38) can be rewritten as follows. 

 
1 1 1 1 2 2 2 22 2

| ( ) ( )T T

I
U FV U FV U FV U FV

∆=
Π = Π + + + +% % % %% %  (39) 

where
1

[0  0 0 0 0 0 0 0 0]V G= % , 2 [0  0 0 0 0 0 0 0 0]TU G= %  

2
[0 0 0 0 0 P 0 0 0 0]T

M
V Kτ= 1 [  0 0 0 0 0 0 0 0 0]T TU K P=  

By means of Lemma 2, (39) can be reduced to 

 21 1 23

1 1

3 1 1 4 2 4 22 2 | T T T T

I
U U V V U U V Vε ε ε ε− −

∆=
Π = Π + + + +% %  (40) 

By using Schur complement lemma for (40), inequality 

(19) can be obtained. The maximum value of (|| ||| 1)PK∆ +  
2

55
ˆ|| ( )|| D ( ( )) D( ( ))( ) TE s st t t tτ− + ∏  is set to (0)κ . When the 

system satisfies inequality (19), it follows from (35) that 

 
2 2

2 ( ) ( ) (0)V t V tα κ+ ≤&  (41) 

Left-multiplied and right-multiplied (41) by 2 te α , then 

integrate from 0 to t, the following can be obtained. 

 2 2 2

2 2
0

( ) (0) (0)
t

t t sV t V e e e dsα α ακ− −≤ +   (42) 

therefore: 

  2

min min

(0) (0)
( )

( ) ( )

tV
E t e

P P

α κ

λ αλ
−≤ +  (43) 

The proof of bounded synchronization is completed. 

2.2 The Design of the Controller 

In the inequality of Theorem 1, it can be seen that ZLC  

and PK  are nonlinear terms. Next, they are processed to 

jointly solve the controller gains and the observer gains. 

Theorem 2: If there exist positive definite symmetric 

matrices 0P > ，  0Q > ，  0R > , diagonal matrices 0Φ > , 

0Θ > , positive numbers
1 0ε > ， 

2 0ε > ， 
3 0ε > ， 

4 0ε > , 

and proper matrices W , X , satisfied the following 

inequalities 

11 12

2

22

*

*
0

ψ ψ

ψ

∗ ∗

∗

 
Π =  

  
<

)
                                   (44) 

**

1 2 1 1 1 2

2 2

1

1

2

2

ˆ

0

0

0 0 0

0 0 0

0 0

0

T

T

n

Nn

Nn

Nn

Nn

ZB M ZE ZE

I M

I

I

I

I

ε

ε

ε

ε

ε

ε

Π + Φ ⊗

∗ −Φ ⊗

∗ ∗ −

∗ ∗ ∗ −

 
 
 
 


∗ ∗ ∗ ∗ −

∗ ∗ ∗ ∗ ∗

 <
 
 


 −


 

G

 (45) 
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where 

11

* 2 * * *

11 12 14 16 17

* *

22 23

*

33

* *

44 46

55

*

77

0

* 0 0 0

* * 0 0 0 0

= * * * 0 0

* * * * 0 0

* * * * * 0

* * * * *

2

*

T

M

P

X

P R

τ

ψ ∗

 
 
 
 
 
 
 
 
 
 

Π Π Π Π Π

Π Π

Π

Π Π

− ∏

− +

Π

 

* *

18 1

4

3

*
12 49

0 0 0 0

0 0

0

0 0 0

= 0 0 0

0 0 0

0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0

0 0

0

0 0

0

0

T

T

M

X

G

G

X

ε

ε

ψ

τ

∗

 
 
 
 




Π



Π


 
 
 
 



Π

%

%

（10）

 

22

* * * *

88 99 (10)(10) 3 3 4 4=diag{ , , , , , , }nN nN nN nNdI I I Iψ ε ε ε εΠ Π Π − − − −  

**

1 1
ˆ { ( ) }  He ZA cZ B WCΠ = + ⊗ Γ − − Φ ⊗ G ; 22

12
MX e Rατ−Π = +  

then the system achieves bounded synchronization. When 

the inequality is solvable, the controller and the observer 

forms are 1K P X−=  and 1L Z W−= , respectively. 

Replacing 1PR P−− by 1 2PR P P R−− ≤ − + , let PK X=  and 

ZL W= . Then, the conclusion of Theorem 2 can be 

obtained. Therefore, the detailed procedure is omitted here. 

3 Simulation Analysis 

A system in the form of (1) with the following 

parameters is considered. 

1

10 10 0

1 1 1

0 14.87 0.3

A

− 
 

= − 
 − − 

,
2

10 10 0

1 0.9 1

0 14.87 0.4

A

− 
 

= − 
 − − 

1

1 0 0

0 0 0

0 0 0

B

 
 =  
  

 

3

10 10 0

1 0.8 1

0 14.87 0.5

A

− 
 

= − 
 − − 

,
2

1.1 0 0

0 0 0

0 0 0

B

 
 

=  
  

,
3

1.2 0 0

0 0 0

0 0 0

B

 
 

=  
  

 

0

10 10 0

1 1 1

0 14.87 0

A

− 
 

= − 
 − 

,
0

1 0 0

0 0 0

0 0 0

B

 
 

=  
  

,
110 ( ( ))

( ( )) 0

0

i

i

x t

f x t

ϕ− 
 =  
  

2 1 0

1 0 1
C

 
=  
 

, 30c = , 
1( ) 0.1ix t = , 0.02Mτ = , 0.01α =  

=0.5jη
1 1 1( ) 0.5( 1.27 0.68)(| ( ) 1| | ( ) 1|)i i ix x t x tϕ = − + + − −  

3IΓ = , 1 5

0.1 0.5 0.1

0.5 0.3 0.2

0.1 0.4 0.1

E I

 
 = ⊗ − 
  

, 2 3

0.3 0.2 0.1

0.5 0.2 0.1

0.2 0.4 0.2

E I

− 
 = ⊗ − 
 − 

 

1 3

0.1 0.2 0.1

0.1 0.1 0.2

0.2 0.3 0.1

M I

− 
 

= ⊗ − 
  

, 2 3

0.1 0.2 0.3

0.4 0.2 0.2

0.2 0.3 0.1

M I

− 
 

= ⊗ − 
 − 

 

and connecting topological matrix is 

1 0 1

1 1 0

0 1 1

W

− 
 = − 
 − 

. 

According to the nonlinear function ( ( ))if x t , we can 

calculate. 

1

0 0 0

0 0 0

0 0 0

G

 
 =  
  

, 2

5.9 0 0

0 0 0

0 0 0

G

 
 =  
  

 

By using the Toolbox in MATLAB to solve the linear 

matrix inequalities (44) and (45) of Theorem 2, the 

controller gains and observer gains can be obtained as 

1 1

2

70.1542 35.0451 15.2541 30.2541 1.5241

14.2537 55.2848 10.5426 25.5425 18.8504

50.5541 34.5245 25.2658 45.5115 41.5234

70.3524 35.2515 15.2657

14.8457 55.2541 10.3526

50.4251 34.3985

K L

K

−   
   = − = −   
   − − −   

−

= −

− −

，

2

3 3

30.8547 1.4524

25.2354 18.2648

25.2541 45.6552 41.2524

70.1685 35.1766 15.2342 30.2369 1.3524

14.8845 55.2254 10.3254 25.5297 18.5574

50.5775 34.5462 25.2523 45.5986 41.760

L

K L

   
   

= −   
   −   

− 
 = − = − 
 − − − 

，

，

4

 
 
 
  

 

The initial value is 

1 2 3

1 2

3

(0) [ 10 4 5] , (0) [2 8 5] , (0) [ 8 0 10]

ˆ ˆ(0) [ 5 4 5] ; (0) [30  -2.5  7] , (0) [5   6  1]

ˆ (0) [5 10 3]

T T T

T T T

T

x x x

s x x

x

= − − − = = − −

= − − = = −

=

 

The simulation results are shown in Fig. 2-4. Fig. 2 

shows the state of the system. The left graph of Fig.3 shows 

that the synchronization error of the system is bounded, so 

the complex network achieves bounded synchronization. 

From the right figure of Fig. 3, it can be seen that the 

observation error system tends to zero, indicating that the 

design of the observer is effective. The trigger threshold of 

the left image in Fig. 4 is 0.1, and the number of triggers for 

the different node are 135, 164 and 145 respectively. The 

trigger threshold of the right image in Fig.4 is 0.5, and the 

number of triggers for the different node are 41, 41, and 36 

respectively. The number of triggers in the left picture is 

significantly less than that in the right picture. The 

simulation results show that the smaller the trigger 

threshold, the grater the number of triggers, which is 

consistent with the actual situation. 

 
Fig. 2: The complex networks state 

1 2 3( ), ( ), ( ), 1, 2,3.i i ix t x t x t i =  

 
Fig. 3: The synchronization error 

1 2 3( ), ( ), ( )i i ie t e t e t  and observation 

error 
1 2 3

ˆ ˆ ˆ( ), ( ), ( )i i ie t e t e t , 1,2,3i =  

4 Conclusions 

The heterogeneity of the system matrix and the nonlinear 

function coefficient matrix in the network nodes, along with 
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the uncertainty in the network, are taken into account. 

Based on the Lyapunov function method, Jensen's inequal- 

 
Fig. 4: The event-triggered interval when threshold is 0.1 and 0.5 

ity, Schur complement lemma, and other mathematical tools 

and techniques, a sufficient condition for the observer-

based heterogeneous complex network system with an 

event-triggered strategy to achieve quantized bounded 

synchronization is obtained. In the experimental simulation 

stage, it can be observed from the error result diagram that 

the error tends towards zero, indicating the effectiveness of 

the designed state observer. From the synchronization error 

result diagram, it is evident that the complex network 

achieves bounded synchronization. By setting different 

thresholds, it can be observed that the smaller the threshold, 

the fewer event triggers occur. 
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Reachable set estimation of singular Markovian jump systems via 
state decomposition method 
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Abstract: This paper focuses on estimating the reachable set concerning the singular Markovian jump systems (SMJSs). 
We employ the state decomposition method to solve the reachable set estimation (RSE) of SMJSs without delay. The 
objective is to get a set of ellipsoids under different modes of SMJSs to confine all states originating from the origin. By 
employing decomposition method, the SMJS is decomposed into a differential system and an algebraic system. Then the 
sufficient condition for RSE of SMJS without delay is proposed. Finally, a numerical example is given to demonstrate 
the validity of the adopted methods. 
Key Words: Reachable Set Estimation, Singular Markovian Jump System, Decomposition Method 
 

 
  

1 Introduction 
Reachable set contains all states which will appear during 

the entire operation of the system. Due to the profound con-
tribution to comprehending dynamic systems, refining the 
efficacy of control system design, fortifying system security, 
optimizing overall system performance, and furnishing val-
uable guidance for simulation and experimental endeavors 
in academic research, it is significant to study the reachable 
set estimation (RSE). The problem of RSE has gain attention 
in theory of control. The reachable set control problem based 
on sliding mode control has been studied in [1]. The adaptive 
event-triggered reachable set synthesis of singular systems 
with time-delay is reported in [2]. The RSE is also employed 
in practical engineering such as avoiding unknown obstacles 
[3]. 
Singular systems accurately model practical systems due to 

their inclusion of both differential and algebraic subsystems 
[4,5]. Consequently, they are used extensively in various 
fields such as chemical processes and electrical systems [6]. 
Apart from their practical applications, these systems have 
garnered significant theoretical attention in recent years, par-
ticularly in stability and stabilization [7,8], 𝐻𝐻∞control [9], 
and dissipativity analysis [10,11]. Many methodologies and 
findings have been extended from standard state-space sys-
tems to singular systems. Conditions concerning the RSE is-
sue have been established to ensure that the resulting ellip-
soid encompasses all states of the considered singular sys-
tem [12]. The robust control of uncertain singular systems 
with time-delays are reported in [13]. 

Markovian jump systems (MJSs) have received wide-
spread attention in recent years because they can better de-
scribe the characteristics of systems with abrupt variations. 
Within the domain of discrete-time MJSs, a multitude of 
works have tackled with the problem of estimating reachable 
sets. In [14], conditions bounding the reachable set for delay 
discrete-time MJSs are formulated by employing delay-par-
titioning and reciprocal convex techniques. An improved re-
sult is presented in [15], where three equations are 

 
*This work is supported by National Natural Science Foundation (NNSF) 

of China under Grant 62073094. 

introduced, and reciprocally convex combinations are ap-
plied to double summation terms. MJSs has attracted atten-
tion and gradually achieved application in practical fields 
such as biology and production [16,17]. Addressing Mar-
kovian jump neural networks with time-varying delay, a 
novel summation inequality is employed in [18]. 

Significant progress has been made in the development of 
singular Markovian jump systems (SMJSs) over the past 
years. Details of its application in the actual control system 
can be found in [19]. On this basis, some more comprehen-
sive issues have been studied in more depth. In [20], asyn-
chronous 𝐻𝐻∞ filtering is examined for SMJSs, with the re-
sults applied to a robotic arm. [21] discusses the application 
of the special properties of SMJSs in neural networks. In 
[22], the state decomposition method is employed to estab-
lish an appropriate augmented Lyapunov–Krasovskii func-
tional to obtain improved RSE results of singular system. 

Inspired by the above articles and in order to investigate 
the RSE problem of SMJS more deeply, this paper decom-
poses the system into two subsystems by using decomposi-
tion method. Then the Lyapunov functional is established 
for the decomposed subsystem and a sufficient condition for 
reachable set estimation is obtained. In addition, the inter-
section of ellipsoids under different modes is obtained to 
contain all states starting from the initial condition. Finally, 
an illustrative example is presented to validate the criteria. 

Notation: n
 signifies n-dimensional Euclidean space; 

•  represents the Euclidean vector norm; 0 ( 0)V > ≥  in-
dicates that the matrix V is positive-definite (semi-positive-
definite);   is the weak infinitesimal generator of the sto-
chastic process; ( )ε •  denotes the expectation operator with 
respect to the given probability measure; * denotes the sym-
metric term in a symmetric matrix; min ( )Pλ  denotes the 
minimal eigenvalue of matrix P; sym( ) TA A A= + . I is the 
identity matrix. 

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China
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2 Problem Formulation 
The following SMJS will be studied, which is a delay-free 

system: 
( ) ( ) ( ) ( ) ( )

(0) 0
t tEx t A r x t D r t

x
ω= +

 =



            (1) 

where ( ) nx t ∈ is the state vector of the system; ( ) pu t ∈

is the input of the system; ( ) ltω ∈ is a disturbance satisfy-
ing: 

2( ) ( )Tt tω ω ω≤                             (2) 
where ω  is a real constant.  

The Markov process exhibits a distinctive jumping char-
acteristic between various modes, as depicted by the transi-
tion probability matrix 𝜋𝜋 = [𝜋𝜋𝑖𝑖𝑖𝑖], (𝑖𝑖, 𝑗𝑗𝑗𝑗𝑗𝑗 = [1,2, … , 𝑠𝑠]) , 
given by 

( )          i
Pr{ | }

1 ( )     i
ij

t t
ii

o j
r j r i

o jη

π η η

π η η+

+ ≠= = = 
+ + =

   (3) 

where 0η > and 
( )

( )lim 0o
η

η

η→∞
= . The transition rate from 

mode 𝑖𝑖  to mode 𝑗𝑗  is 𝜋𝜋𝑖𝑖𝑖𝑖 ≥ 0  when 𝑖𝑖 ≠ 𝑗𝑗  and 

1,

s

ii ij
j j i

π π
= ≠

= − ∑ . 

E , ( )tA r , ( )tD r represent constant matrices with proper 
dimensions and the rank( )E n≤ . For instance, in order to 
simplify notation in the following papers, matrix iA will re-
place ( )tA r  for ,  tr i i S= ∈ . 
Lemma 1[23]. Let ( ( ), )tV x t r be a Lyapunov functional 
candidate for system (1) with 0( (0), ) 0V x r = and 

2( ) ( )Tt tω ω ω≤ .If there exist 0γ ≥  such that 

2( ( ), ) ( ( ), ) ( ) ( ) 0T
t tV x t r V x t r t tγγ ω ω

ω
+ − ≤        (4) 

Then *
* *( ( ( ), )) 1 for 0.

t
V x t r tε ≤ ≥  

Remark 1[24]. The system (1) could be decomposed by the 
following method. First, two invertible matrices Mα  and 

Nα  can be found to satisfy that 
0

0 0
rI

MEN  
=  

 
. 

Let 11
1 2

2

ˆ ( )
ˆ ˆ ˆ( ) ( )  , ( ) ,  ( ) . 

ˆ ( )
r n rx t

x t N x t x t x t
x t

− − 
= = ∈ ∈ 

 
   

1 1

2 2

Denote ,  i i
i i

i i

A D
MA N MD

A D
   

= =   
   

, 

where 1 11 12

2 21 22

 i i i

i i i

A A A
A A A

   
=   

   
.  

Then, the system (1) is equivalent to 

1 1 1ˆ ˆ( ) ( ) ( )i ix t A x t D tω= +


                      (5) 

2 2ˆ0 ( ) ( )i iA x t D tω= +                           (6) 

Assumption 1[23]. Assume the singular Markovian jump 
system (5) and (6) are impulse free and regular. 
Assumption 2. Consider matrices to be suitable for alge-
braic operations even when their dimensions are not explic-
itly provided. 

3 Main results 
In this section, we design a Lyapunov-Krasovskii Func-

tion (LKF) to study the RSE issue of SMJS (1) based on state 
decomposition method. Meanwhile, an RSE criterion is ob-
tained as follows. 
Theorem 1. For giving scalar 0γ > , if there exist appropri-
ate dimensions matrices   iP > 0 , [ ]i 1i 2iH = H ,H , such that 
the following LMIs are feasible for i S∈ : 

1 2 1

2

2

2* sym( ) 0

* *

T
i i i i

T
i i ii

H D
H H D

Iγ
ω

 
 Γ Γ
 

Γ = < 
 

− 
 

−               (7) 

where 

1 1 1
1

sym( )
s

T
i ij j i i i

j
P P A Hπ γ

=

Γ = + +∑  

2 1 2 1
T T

i i i i iP A H HΓ = + −  
Then the reachable set of system (1)-(2) is bounded by the 

intersection of ellipsoids: 
( ) { | ( ) ( ) 1,  , 0}T n

i i ix x x t Px t x PΘ = ≤ ∈ > 

           (8) 
where 

11
1

11
2

2

21 1 2
1 2

22min 11

0
,  [ ,0,0] [ ,0,0]10

1 ,  
( )

i
T T

i i r i r

i

i i i
i i

ii

P
P N N P I P I

r

A r D
r r

AP

δ
δ

ω

λ

− −

 
 = =− 
  

+
= =



(9) 

with (0,1)δ ∈ . 
Proof. The following stochastic Lyapunov function candi-
date for system (5) is constructed: 

1 1ˆ ˆ( ( ), ) ( )T
t iV x t r x Px t=                       (10) 

  has been defined in the notation. Then the following 
function is obtained: 

1 1 1 1
1

ˆ ˆ ˆ ˆ( ( ), ) 2 ( ) ( ) ( ) ( )
s

T T
t i ij j

j
V x t r x t P x t x t P x tπ

=

= + ∑


   (11) 

To employ Lemma 1, the following simplification can be 
made for Eq. (11): 

2( ( ), ) ( ( ), ) ( ) ( ) ( ) ( )T T
t t iV x t r V x t r t t t tγγ ω ω ξ ξ

ω
= − + + Ψ

(12) 

where 
1

2

0

* 0 0

0 0

S

ij j i i
j

i

P P P

I

π γ

γ
ω

=

 + 
 
 Ψ =
 
 −  

∑

1 1ˆ ˆ( ) ( ) ( ) ( )
T

T T Tt x t x t tξ ω =   



 

the ( )tξ  is the augmented system variable. 
Introducing the free weighting matrix [ ]i 1i 2iH = H ,H . 
From the differential system (5) through equivalent trans-

formation, we can get
1 1 1 1 0ˆ ˆ( ) ( ) ( )i ix t A x t D tω =− + +


, 
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1 1 1 1 1 1ˆ ˆ ˆ ˆ2 ( ) ( ) ( ) ( ) ( ) 0
2i

T T T T
1i i ix t H x t H x t A x t D tω+ − + + =   

      

 

(13) 

Then, combining (10) -(13) the following equality holds: 

2( ( ), ) ( ( ), ) ( ) ( ) ( ) ( )T T
t t iV x t r V x t r t t t tγγ ω ω ξ ξ

ω
+ − = Γ

(14) 
From inequality (7), we have ( ) ( ) 0T

it tξ ξΓ < , which im-
plies:  

2( ( ), ) ( ( ), ) ( ) ( ) 0T
t tV x t r V x t r t tγγ ω ω

ω
+ − ≤      (15) 

Based on Lemma1, it illustrates that 
1 1ˆ ˆ( ( ) ( )) 1T

ix t Px tε ≤                           (16) 
Therefore, we can get that 1 1ˆ ( ) ix t r≤ , where 1r  has def-

inition in Eq. (9). 
In addition, through the analysis and observation of the 

second algebraic subsystem (6), it is easy to get the follow-
ing derivation: 

22 2 21 1 2ˆ ˆ( ) ( ) ( )i i iA x t A x t D tω= +               (17) 

It is simple to get 2 2ˆ ( ) ix t r≤  , which equals 

2 22
2

1ˆ ˆ( ) ( ) 1T

i

x t x t
r

≤                          (18) 

where 2r  has definition in Eq. (9). 
Through the above derivation and corresponding pro-

cessing of the two subsystems, combined with the two ine-
qualities (16) and (18), the following conclusion can be 
drawn: 

11
1 1

2 22
2

0
ˆ ˆ( ) ( )

110ˆ ˆ( ) ( )

T i

i

P
x t x t
x t x t

r

δ
δ

 
     ≤−         

           (19) 

which shows ( ) ( ) 1T
ix t Px t ≤ . 

The proof is completed. 
Remark 3. Each matrix or element described by mode i  
corresponds to a matrix or element with the same status in 
mode j , such as 1 2,   , and j j jr r P . 
Remark 4. By introducing the free weighting matrix 

[ ]i 1i 2iH = H ,H  and placing it in the matrix iΓ  to relax the 
constraints on the corresponding items, it is used to reduce 
the conservatism of the condition. 
Remark 5. In order to find the smallest reachable set, the 
additional constraint iI Pµ ≤   is proposed with  0µ > , then 
we optimize the problem as follows, 

0
i

I I
I P

µ 
≥ 

 
                          (20) 

where 
1µ
µ

= is minimized. 

Numerical Example 
In this section, an example is provided to demonstrate the 

effectiveness of the method in Theorem 1. 
Example 1. Consider a singular Markovian jump system 

after decomposition with 

1 2

1 0 0.3 0.4 0.4 0.1
,    ,    

0 0 0.1 0.5 0.2 0.1
E A A

− − −     
= = =     − − − −     

1 2

0.1 0.1
,    

0.1 0.1
D D   

= =   −   
,   

3 3
6 6

π
− 

=  − 
,   2 1ω =  

Mode1: [ ]
[ ]

1ˆ ˆ( ) 0.3 0.4 ( ) 0.1 ( )
ˆ     0 0.1 0.5 ( ) 0.1 ( )

x t x t t

x t t

ω

ω

= − +

= − − +



 

Mode2: [ ]
[ ]

1ˆ ˆ( ) 0.4 0.1 ( ) 0.1 ( )
ˆ     0 0.2 0.1 ( ) 0.1 ( )

x t x t t

x t t

ω

ω

= − +

= − − −



 

( ) sin( )t tω =  

By using the method in Theorem 1 and the optimization 
in (20), in the case of 0.5δ = , we can solve the maximum 
value of 60 µ = , and 

1

122.3447 20.6522
20.6522 72.6874

P  
=  

 
， 2

76.5226 20.4055
20.4055 80.8097

P
− 

=  − 
 

Then,

1

156.3282 68.8364 50.6162 58.5985 5.5040

* 42.0108 22.5114 30.0805 2.6799

* * 72.9494 31.7138 1.7838

* * * 69.4356 0.1628

* * * * 0.2000

− −

−

Γ = − −

−

−

 
 
 
 
 
 
  

 

Fig. 1 represents the switching between the two modes of 
the SMJS. Fig. 2 depicts that the reachable set of the system 
is bounded by the theory described in Theorem 1 in both 
states of SMJS, which shows the validity of the criteria. 

 

Fig. 1. The switching between two modes. 

 

Fig. 2. The reachable set and the ellipsoids. 
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4 Conclusion 
In the paper, we have studied the reachable set estimation 

issue of singular Markovian jump system under zero initial 
conditions. The state decomposition method is employed to 
obtain the sufficient conditions such that all states originat-
ing from the origin are confined within intersection of spec-
ified ellipsoids. Ultimately, a numerical example is provided 
to showcase the effectiveness of the employed method. The 
above method will be employed to the SMJS with distrib-
uted delay and extended to nonlinear systems in the future 
work [25,26]. 
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Abstract: This paper investigates the observer-based stabilization for networked discrete interval type-2 fuzzy (IT2F) semi-
Markov jump systems subject to cyber attacks. Nonlinear objects with parameter uncertainty are represented by IT2F model
with more advantages than traditional T-S fuzzy model. Considering that the actual system state is unavailable, the observer-
based method is adopted to deal with the system state. The main purpose is to construct sufficient conditions for the existence of
observer-based controller based on fuzzy model, semi-Markov kernel (SMK) framework and ST-dependent Lyapunov functions
under the case of random denial-of-service attacks, so that the underlying system is σ mean-square stable. Finally, the superiority
of the proposed control method is verified by by the single-link robot arm model.

Key Words: cyber attacks, internal type-2 fuzzy, semi-Markov kernel.

1 Introduction

Due to the powerful modeling capabilities, Markov jump
systems (MJSs) are widely used in real industrial system-
s [1, 2]. However, the sojourn time (ST) of MJSs follows
geometric and exponential distributions, and the transition
probabilities (TPs) are memory-free, which greatly limits the
application scope. In order to overcome this problem, many
researches have studied semi-Markovian jump systems (S-
MJSs) to increase the application range of jump system. D-
ifferent from MJSs, the ST of S-MJSs obeys a more ordi-
nary distribution, has memorizable TPs, and exhibits greater
power in modeling random systems. At present, many stud-
ies on S-MJSs have been reported [3–6]. In recent years,
many studies use SMK method to analyze the system stabil-
ity, which can integrate the related statistics about the mode
jump and the ST.

In real physical systems, nonlinear characteristics are u-
navoidable. T-S fuzzy model can deal with complex non-
linear characteristics effectively and is widely used in vari-
ous fields, which describes nonlinear systems through cer-
tain fuzzy rules and membership functions [7–9]. However,
the value of membership degree may also be uncertain, and
the traditional T-S fuzzy model cannot handle these uncer-
tainties. Unlike the traditional T-S fuzzy model, the type-
2 fuzzy set has been proposed to deal with this problem
[10, 11], while there is a growing computational burden. At
this moment, the proposal of interval type-2 fuzzy (IT2F)
model has solved the problem, reducing the computation
burden. Nowadays, the IT2F model has many application-
s in S-MJSs, such as event-triggered scheme and trajectory
tracking.

Networked control systems (NCSs) are widely used be-
cause of their advantages of flexibility and convenience, but
frequent network attacks pose a great threat to NCSs [12].
Among all the attack types, denial-of-service (DoS) attacks
can block data of actuators and sensors, affecting data trans-
mission in NCSs [13]. Therefore, it is of great significance

This work was supported by National Key R & D Program of China
under Grant 2021YFE0193900.

to study NCSs under DoS attacks for secure and stable da-
ta transmission. Most of the works adopt the traditional T-S
fuzzy method [9, 10], ignoring the uncertainty of the system
parameters. As a commonly used method, state feedback ne-
glects the problem that the system state cannot be measured
in the actual systems [8]. It is worth noting that observer-
based feedback control effectively solve this problem.

Based on the the above information, the observer-based
stabilization problem has been investigated for networked
discrete IT2F S-MJSs with cyber attacks. The main con-
tributions are as: (i) Unlike the discrete S-MJSs realized by
traditional T-S fuzzy method [7–10], the discrete nonlinear
S-MJSs are described by IT2F model, which can deal with
parameter uncertainty. (ii) Compared with the existing IT2F
S-MJSs [11–13], the SMK method is used to overcome the
constraint that each mode of the system is subject to a sin-
gle distribution of ST with some parameters. (iii) Adopting
the ST-dependent Lyapunov functions, we propose sufficient
conditions for the existence of an observed-based controller
for networked S-MJSs with cyber attacks, which can guar-
antees the underlying system σ-error mean-square stable (σ-
MSS).

2 Problem description

Consider the network-based IT2 fuzzy S-MJSs as:
Plant Rule h: IF gσt

1 (s(t)) is Gσt

h1, and gσt
2 (s(t)) is Gσt

h2,
and · · · and, gσt

γ (s(t)) is Gσt

hγ , THEN

s(t+ 1) = Ahσt
s(t) +Bhσt

u(t), y(t) = Chσt
s(t), (1)

where s(t) and u(t) are the system state and control input,
y(t) is the system output. Ahσt , Bhσt and Chσt are with
appropriate dimensions. gσt

1 (s(t)), gσt
2 (s(t)), . . ., gσt

γ (s(t))
are the premise variables, and Gσt

h1, Gσt

h2, . . ., Gσt

hγ , h ∈
R � {1, 2, ..., ϕ} are the IT2 fuzzy sets, where ϕ is the
number of IF-THEN. The firing strength for the hth fuzzy
rule is denoted by fh(s(t)) = [f

h
(s(t)), fh(s(t))], where

f
h
(s(t)) = Πγ

κ=1νGσt
hκ
(gσt

κ (s(t))) � 0 and fh(s(t)) =

Πγ
κ=1νGσt

hκ
(gσt

κ (s(t))) � 0 are the lower and upper grades

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China

753  



of membership. νGσt
hκ
(gσt

κ (s(t))) � νGσt
hκ
(gσt

κ (s(t))) with
νGσt

hκ
(gσt

κ (s(t))) ∈ [0, 1] and νGσt
hκ
(gσt

κ (s(t))) ∈ [0, 1] are
the lower and upper membership functions.
{σt}t∈Z≥0

is a semi-Markov chain in I � {1, 2, ..., O}
governed by the SMK Θ(ς) = [ηab(ς)]a,b∈I = Pr(Rn+1 =
b,Sn+1 = ς | R0, . . . ,Rn = a; t0, . . . , tn) = Pr(Rn+1 =
b,Sn+1 = ς | Rn = a) = θabφab(ς), where the mode index
at the nth switching is represented as Rn, Sn denotes the ST
between the (n−1)th and nth jumps. φab(ς) � [Pr(Rn+1 =
b,Sn+1 = ς,Rn = a)]/[Pr(Rn+1 = b,Rn = a)] with
φab(ς) = 0, ∀a ∈ I, ∀ς ∈ Z≥0 is the probability den-
sity function and θab � Pr(Rn+1 = b | Rn = a),
∀a, b ∈ I with θab = 0 is the TP. Note that the SMK sat-
isfies ηab(ς) � 0, ηab(ς) ∈ R[0,1], ∀a, b ∈ I(a �= b),
∀ς ∈ Z≥0,

∑∞
ς=1

∑
b∈I

ηab(ς) = 1. Moreover, the TP satis-
fies

∑
b∈I,b �=a θab = 1.

Then, one has following overall system

s(t+ 1) =
∑ϕ

h=1
fh(s(t))[Ahσts(t) +Bhσtu(t)],

y(t) =
∑ϕ

h=1
fh(s(t))Chσts(t), (2)

where fh(s(t)) = f
h
(s(t))Fh(s(t)) + fh(s(t))Fh(s(t)),

Fh + Fh(s(t)) = 1, Fh, Fh(s(t)) ∈ [0, 1],∑ϕ
h=1 fh(s(t)) = 1, Fh and Fh(s(t)) are the nonlin-

ear functions that can capture the parameter uncertainty.
The fuzzy observer is considered as follows:
Plant Rule h: IF gσt

1 (s(t)) is Gσt

h1, and gσt
2 (s(t)) is Gσt

h2,
and · · · and, gσt

γ (s(t)) is Gσt

hγ , THEN

ŝ(t+ 1) = Ahσt ŝ(t) +Bhσtμ(	) + Lhσt(y
∗(t)− ŷ(t)),

ŷ(t) = Chσt
ŝ(t), u(t) = Khσt

ŝ(t), (3)

where ŝ(t) is the observer state, y∗(t) is the actual system
measurement output, Lhσt is the observer gain, Khσt is the
controller gain. For σt = a, one has

ŝ(t+ 1) =
∑ϕ

h=1
fh(s(t))[Ahaŝ(t) +Bhau(t)

+ Lha(y
∗(	)− ŷ(t))],

ŷ(t) =
∑ϕ

h=1
fh(s(t))Chaŝ(t),

u(t) =
∑ϕ

h=1
fh(s(t))Khaŝ(t). (4)

In network systems, cyber attacks can affect information
transmission. As one of the most destructive attacks, DoS
attacks are implemented by blocking the transmission chan-
nel between the sensor and the controller, thereby reducing
the actual output. This paper considers the discrete-time net-
worked S-MJSs with DoS attacks. The actual system mea-
surement output y∗(t) transmitted to the controller can be
described as

y∗(t) = ı(t)y(t) + (1− ı(t))δy(t). (5)

One can get further

E{ı(t)− ı̂} = 0, E{|ı(t)− ı̂|2} = ı̂(1− ı̂),

By defining e(t) � s(t) − ŝ(t) and let S(t) �
[sT (t) eT (t)]T , one can get

S(t+ 1) =
∑ϕ

h=1
fh(s(t))ℵhaS(t), (6)

where ℵha � Aha + (ı(t) − ı̂)Bha, Aha �[
Aha +BhaKha −BhaKha

(1− δ)(1− ı̂)LhaCha Aha − LhaCha

]
, Bha �[

0 0
(δ − 1)LhaCha 0

]
.

Definition 1: [6] For the upper bound T
a
max ∈ Z≥1 for

ath system of ST and the initial conditions t0 ∈ RnS , σ0 ∈
I, system (6) is σ-error mean-square stable (σ-MSS),
there holds: limt−→∞ E[‖S(t)‖2]|t0,σ0,Sn+1≤Ta

max|Rn=a =

0, with σ �
∑

a∈I
|ln(Ga(T

a
max))|, where Ga(ς) =

Pr(Sn+1 ≤ ς|Rn = a) =
∑ς

q=0

∑
b∈I

ηab(q). For mode
a, Ga(ς) is called the cumulative density function and it is
assumed that Ga(0) = ηab(0) = 0.

Lemma 1: [8] For any Za, a = 1, 2, ..., ϕ and
P > 0 , there holds

∑ϕ
a=1

∑ϕ
b=1 fafbZ

T
a PZa ≤∑r

α=1 hαZ
T
αPZα, where fa > 0 for a = 1, 2, ..., ϕ and∑ϕ

a=1 fa = 1.
3 Main results

For IT2 fuzzy networked S-MJSs with DoS attacks, the
design method of observer-based controller will be presented
in this section.

Theorem 1: For given ρa > 0 T
a
max ∈ Z>1, a ∈ I, the

system (6) is σ-MSS, if we find Pha(τ) > 0, τ ∈ Z[1,Ta
max]

such that τ ∈ Z[1,Ta
max−1],

AT
aτPha(τ + 1)Aaτ − ρaPma(1) < 0 (7)∑T

a
max

ς=1
AT

aςPha(ς)Aaς − Pma(1) < 0 (8)

where Aaτ � ℵhaℵpaℵqa...ℵma︸ ︷︷ ︸
τ

, ∀h, p, q, . . .m ∈ R,

Pha(ς) =
∑

b∈I
ηab(ς)Phb(1)/πa, ∀h ∈ R, where πa =∑T

a
max

ς=1

∑
b∈I

ηab(ς).
Proof : Choose the ST-dependent Lyapunov functions as

N (St, σtn , τ) � ST (t)P̃a(t)S(t)|Rn=a, (9)

where ∀a ∈ I, τ ∈ [1,Ta
max], t = tn + τ − 1 ∈

(tn, tn+1). Letting fh(s(t)) = fht, we can get P̃a(t) =∑r
h=1 fhtPha(τ). From (10), one has

ζ1‖S(t)‖2 ≤ N (St, σtn , τ) ≤ ζ2‖S(t)‖2, (10)

where ζ1 = infa∈I,h∈R,τ∈Z[1,Tamax]
{λminPha(τ)}, ζ2 =

supa∈I,h∈R,τ∈Z[1,Tamax]
{λmaxPha(τ)}. Thus, the first con-

dition in Lemma 1 of Ref. [6] holds.
If Rn = a, t ∈ {tn+τ , ∀τ ∈ Z[1,Ta

max−1]}, and from (7),
there holds

ST (tn + τ)P̃a(tn + τ)S(tn + τ)

=
∑ϕ

h=1
...

∑ϕ

m=1

∑ϕ

p=1
...

∑ϕ

y=1︸ ︷︷ ︸
2τ

fh(tn+τ−1)...fmtnfp(tn+τ−1)...fqtn︸ ︷︷ ︸
2τ

ST (tn)AT
aτ (

∑ϕ

h=1
fh(tn+τ)Pha(τ + 1))AaτS(tn)

≤
ϕ∑

h=1

...

ϕ∑
m=1

fh(tn+τ−1)...fmtnS
T (tn)

AT
aτ (

∑ϕ

h=1
fh(tn+τ)Pha(τ + 1))AaτS(tn).
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Then, we have

N (S(t), a, τ)− ρaN (S(t), a, 1)

= ST (t)P̃a(t)S(t)− ρaS
T (t)P̃a(tn)S(t)

≤
ϕ∑

h=1

...

ϕ∑
m=1

fh(tn+τ−1)...fmtnS
T (tn)AT

aτ (
∑ϕ

h=1
fh(tn+τ)

Pha(τ + 1))AaτS(tn)− ρaS
T (tn)

∑ϕ

h=1
fhtnPha(1)S(tn)

=

ϕ∑
h=1

...

ϕ∑
p=1

ϕ∑
q=1

ϕ∑
m=1

fh(tn+τ−1)...fptnfq(tn+τ)hmtn

ST (tn)(AT
aτPha(τ + 1)Aaτ − ρaPma(1))S(tn) < 0,

(11)

further getting the second condition in Lemma 1 of Ref.[6].
Letting Rn = a,Rn+1 = b, ∀a �= b, Sn+1 = ς , it yields

E{N (S(t), b, τ)|S0,σ0,Sn+1≤Ta
max,Rn=a −N (S(t), a, τ)}

≤ ST (tn)[

T
a
max∑
ς=1

∑
b∈I

ηab(ς)

ϕ∑
p=1

...

ϕ∑
q=1

fp(tn+ς−1)fqtnAT
aς

(
∑ϕ

h=1
fh(tn+ς)Pha(1))Aaς/πa −

∑ϕ

h=1
fhtnPha(1)]S(tn)

≤ λmax(
∑T

a
max

ς=1
AT

aςPha(ς)Aaς − Pma(1))‖S(tn)‖2

≤ ζ3‖S(tn)‖2, (12)

where ζ3 � infa∈I,h...m∈R{−λmax(
∑T

a
max

ς=1 AT
aςPha(ς)Aaς−

Pma(1))}.
Therefore, the third condition in Lemma 1 of Ref. [6]

ensured by (12), and the system (6) is σ-MSS. �
Theorem 2: For given ρa > 0 T

a
max ∈ Z>1, a ∈ I, the

system (6) is σ-MSS, if we find αha(τ, υ), ∀τ ∈ Z[1,Ta
max]

,
∀υ ∈ Z[1,τ ], α̃ha(τ) = αha(τ, τ) > 0, ∀τ ∈ Z[1,Ta

max]
,

βha(ς, ι), ∀ς ∈ Z[1,Ta
max]

, ∀ι ∈ Z[0,ς−1], such that ∀τ ∈
Z[1,Ta

max−1], ∀υ ∈ Z[0,τ−1], ∀ς ∈ Z[1,Ta
max]

, ∀ι ∈ Z[0,ς−1],

AT
paαha(τ + 1, υ + 2)Apa − αha(τ + 1, υ + 1) < 0,

(13)

αha(τ + 1, 1)− ρaα̃ma(1) < 0,
(14)

AT
paβha(ς, ι+ 1)Apa − βha(ς, ι) < 0,

(15)∑T
a
max

ς=1
βha(ς, 0)− α̃ma(1) < 0,

(16)

where βha(ς, ς) �
∑

b∈I
ηab(ς)α̃hb(1)/πa.

Proof : From (13), we can get

ℵT
ac(AT

paαha(τ + 1, υ + 2)Apa − αha(τ + 1, υ + 1))ℵac < 0,

(17)

which means that

AT
pταha(τ + 1, υ + 1)Apτ − αha(τ + 1, 1) < 0. (18)

Combining (14) and (18), we can find

AT
αταha(τ + 1, τ + 1)Aατ − ρaα̃ma(1) < 0. (19)

Replacing αha(τ, τ) and αma(1, 1) = α̃ma(1), with
Pha(τ) and Pma(1), it yields (7).

From (15), we have

AT
aςβha(ς, ς)Aaς − βha(ς, 0) < 0. (20)

Then, one can get∑T
a
max

ς=1
(AT

aςβha(ς, ς)Aaς − βha(ς, 0)) < 0. (21)

Based on (16) and (21), it yields∑T
a
max

ς=1
AT

aςβha(ς, ς)Aaς − α̃ma(1) < 0. (22)

Letting Pha(ς) = βha(ς, ς) and Pma(1) = α̃ma(1), there
holds ∑T

a
max

ς=1
AT

aςPha(ς)Aaς − Pma(1) < 0.

Then, (8) holds. �
Theorem 3: For given ρa > 0 T

a
max ∈ Z>1, a ∈

I, the system (6) is σ-MSS, if we find �ha(τ, υ), ∀τ ∈
Z[1,Ta

max]
, ∀υ ∈ Z[1,τ ], �̃ha(τ) = �ha(τ, τ) > 0, ∀τ ∈

Z[1,Ta
max]

, ,ha(ςג ι), ∀ς ∈ Z[1,Ta
max]

, ∀ι ∈ Z[0,ς−1], V , Uha

and Nha such that ∀a ∈ Z[1,Tα
max−1], ∀b ∈ Z[0,a−1],

∀ς ∈ Z[1,Ta
max]

, ∀ι ∈ Z[0,ς−2],⎡
⎣−�ha(τ + 1, υ + 1) ∗ ∗

Apa Δha ∗
μBpa ∗ Δha

⎤
⎦ < 0, (23)

�ha(τ + 1, 1)− ρa�̃ma(1) < 0, (24)⎡
,ha(ςג−⎣ ς − 1) ∗ ∗

Ãpala(ς) Ľh ∗
μB̃pala(ς) ∗ Ľh

⎤
⎦ < 0, (25)

⎡
,ha(ςג−⎣ υ) ∗ ∗

Apa Qha ∗
μBpa ∗ Qha

⎤
⎦ < 0, (26)

∑T
a
max

ς=1
,ha(ςג 0)− �̃ma(1) < 0, (27)

where Ãpa � diagM{Apa}, B̃pa � diagM{Bpa},

Apa �
[
ApaV +BpaUpa −BpaUpa

(1− δ)(1− ı̂)Npa ApaV −Npa

]
, Bpa �[

0 0
(δ − 1)Npa 0

]
, Δha � �ha(τ + 1, υ + 2) − ΓT − Γ,

Ľh � Lh − ΓT − Γ, Qha � ,ha(ςג ι + 1) − ΓT − Γ,
Lh � diag{�̃h1(1, 1), �̃h2(1, 1), ..., �̃hO(1, 1)}, la(ς) �
[
√
ηa1(ς)/πaI2nx ,

√
ηa2(ς)/πaI2nx , ...,

√
ηaO(ς)/πaI2nx ]

T ,
μ =

√
ı̂(1− ı̂). Then, the controller gain and the observer

gain are given by Kpa = UpaV and Lpa = NpαV C−1
pa .

Proof : From(13), we can get

AT
paαha(τ + 1, υ + 2)Apa − αha(τ + 1, υ + 1)

=− αha(τ + 1, υ + 1) + A
T
paαha(τ + 1, υ + 2)Apa

+ μ2
B
T
paαha(τ + 1, υ + 2)Bpa.

The following condition can be obtained by schur com-
plement ⎡

⎣ −α̌haτυ ∗ ∗
α̂haτυApa −α̂haτυ ∗
μα̂haτυBpa ∗ −α̂haτυ

⎤
⎦ < 0, (28)
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where α̌haτυ = αha(τ+1, υ+1), α̂haτυ = αha(τ+1, υ+2).
Denote �̃ � diag{�1,�2, ...,�O} and

� � diag{V, V }. Pre- and post-multiplying
(28) by diag{I2nx ,�

T α̂−1
haτυ,�

T α̂−1
haτυ} and

diag{I2nx
, α̂−1

haτυ�, α̂−1
haτυ�}, one has

⎡

⎣
−α̌haτυ ∗ ∗
�

T
Apa −�

T α̂haτυ� ∗
μ�T

Bpa ∗ −�
T α̂haτυ�

⎤

⎦ < 0, (29)

Due to (α̂haτυ −�)T α̂−1
haτυ(α̂haτυ −�) > 0 implying that

α̂haτυ −�−�
T > −�

T α̂−1
haτυ�, we have⎡

⎣−α̌haτυ ∗ ∗
�

T
Apa α̃haτυ ∗

μ�T
Bpa ∗ α̃haτυ

⎤
⎦ < 0, (30)

where α̃haτυ = α̂haτυ − � − �
T . Performing the congru-

ence transformation to (23) by diag{�,�,�,�}, it can be
obtained that

⎡

⎣
−�

T
�ha(τ + 1, υ + 1)� ∗ ∗

�
TApa� �

TΔha� ∗
μ�TBpa� ∗ �

TΔha�

⎤

⎦ < 0.

(31)

Defining Γ � �
−1, V � V −1, Upa � KpaV

−1, Npa �
LpaCpaV

−1, �ha(τ+1, υ+2) � �
−Tαha(τ+1, υ+2)�−1,

�ha(τ + 1, υ + 1) � �
−Tαha(τ + 1, υ + 1)�−1, (30) can

be got by (31), which means that (23) ensures (13). In the
same way, (14) can be ensured by (24), (27) can guarantee
(16). When ι = ς−1, (15) can be ensured by (25), and when
ι ∈ [0, ς − 2], we can get (15) from (26). �

4 Case study

Table 1: PARAMETER
ω(t) The angle position of the arm
M The mass of the paylode
g The acceleration of gravity
J The moment of inertia
L The length of the arm
W The coefficient of viscous friction

Consider the following single-link robot ar-
m (SLRA) model from [14] characterized by
ω̈(t) = −MgL

J sin(ω(t)) − W
J ω̇(t) + 1

Ju(t), in which
the parameters W, L, and g are given as 2 Nms/rad, 0,5m,
and 9.81m/s2, respectively. Assume that M and J have two
modes: Mode1 (M(1) = 1, J(1) = 1); Mode2 (M(2) = 5,
J(2) = 5), and the variations are governed by a semi-
Markov process. Let s(t) = [ωT (t) ω̇T (t)]T denotes the
system state. We have the following SLRA: ṡ1(t) = s2(t),
ṡ2(t) = −MagL

Ja
sin(s1(t)) − W

Ja
s2(t) + 1

Ja
u(t).

Assume that the system y(t) = s1(t), and the

membership functions are f
1
(s1(t)) = e−

s21(t)

0.5 ,

f1(s1(t)) = e−s21(t), f
2
(s1(t)) = 1 − e−s21(t),

f2(s1(t)) = 1 − e−
s21(t)

0.5 . For the sampling time T ,
we have s(t + 1) =

∑2
h=1 fh(s(t))[Ahas(k) + Bhau(k)],

y(k) =
∑2

h=1 fa(s(t))Chas(t), where A1h =

[
1 T0

−MagLT
Ja

1− WT
Ja

]
, A2h =

[
1 T0

− εMagLT
Ja

1− WT
Jα

]
,

B1h = B2h =
[
0 T

Ja

]T
, C1h = C2h =

[
1 0

]
.
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0

1

2

Fig. 1 System state
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-0.5

0

0.5

1

1.5

Fig. 2 Estimation error

Other parameters are given as Fh = 0.5, Fh = 0.5, T =
0.25, ı̂ = 0.25, δ = 0.5, T 1

max = T 2
max = 5, ρ1 = 0.75,

ρ2 = 1.25, [ηab] =
[
0 1
1 0

]
. The ST follows the Bernoulli

distribution φ1(ς) = 0.6ς · 0.45−ς · 5!/((5 − ς)!ς!) and
the Weibull distribution φ2(ς) = 0.4(ς−1)1.3 − 0.4ς

1.3

. By
solving Theorem 3, one has K11 =

[−0.3288 −0.1723
]
,

K12 =
[−0.3248 −0.2156

]
, K21 =[−0.4916 −0.1401

]
, K22 =

[−0.4908 −0.1528
]
,

L11 =
[
0.8604 −0.3562

]T , L12 =
[
0.8684 −0.3652

]T ,

L21 =
[
0.8422 0.1335

]T
, L22 =

[
0.8503 0.1263

]T
.

0 50 100 150
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Fig. 3 Control input
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Fig. 4 Actual output

For given s(0) =
[
0.5 −0.8

]T and ŝ(0) =
[
1.3 0.7

]T ,
over 50 realizations, the system state is depicted in Fig. 1,
indicating that all system states tend to the origin, ensuring
the σ-MSS. Figs. 2-3 plot the estimation errors and con-
trol input, in which the trajectory tends to equilibrium point,
verifying the indicates the applicability of our results. The
actual system output under Dos attacks is shown in Fig. 4.
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5 Conclusion

In this study, the observer-based stabilization issue stud-
ied for networked discrete IT2F S-MJSs with random DoS
attacks. Based on SMK theory, IT2 fuzzy model and the
sojourn-time-dependent Lyapunov functions, the criterion
that the system is σ-MSS is proposed, and the design method
of observer-based controller is established. In future work,
the SMC of networked discrete IT2F S-MJSs with cyber at-
tacks will be studied.
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Coding-Decoding-Based Sliding Mode Control for Discrete
Uncertain T-S Fuzzy Systems with Time-Varying Delays
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Abstract: This paper explores the sliding mode control (SMC) scheme for delayed Takagi-Sugeno (T-S) fuzzy systems under
resource-constrained channels. In response to the issue of limited communication network resources, a two-step encoding scheme
is designed to achieve the adaptive adjustment of encoding errors. Subsequently, a common sliding surface is designed and a new
SMC law including the information of encoding errors is given. Next, sufficient criteria for system stability and reachability of
the sliding surface are provided. Finally, we demonstrate the effectiveness of the proposed SMC algorithm through a simulation
example.
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1 Introduction

The T-S fuzzy method, as a widely utilized fuzzy logic
method in the control domain, possesses the robust approxi-
mation capabilities and can effectively describe a multitude
of complex nonlinear systems. In the typical T-S fuzzy sys-
tem, the approximation of any smooth nonlinear function is
achieved with hope to attain arbitrary precision through the
fuzzy sets and fuzzy inference, which involves a set of linear
functions interconnected by nonlinear membership functions
(MFs) [1]. Accordingly, the existing research results indicate
that the T-S fuzzy systems demonstrate outstanding perfor-
mance in handling complex systems, which adapt to various
nonlinear situations and exhibit robustness [2]. Moreover, it
is well recognized that the fuzzy logic control concept of T-S
fuzzy systems proposes a flexible framework for addressing
the analysis and synthesis of nonlinear systems, which pro-
vides more effective methods for the corresponding research.

The sliding mode control (SMC) is an effective nonlinear
control strategy to deal with the matched uncertainties and
disturbances [3, 4]. In comparison to linear controllers, the
discontinuous term introduced by SMC not only facilitates
rapid convergence of state trajectories, more importantly, but
also suppresses the effects of disturbance signals. As it is
recognized that the combination of T-S fuzzy systems and
the SMC method can provide a powerful and flexible con-
trol strategy [5, 6]. For example, a sliding mode controller
has been designed in [5] to stabilize a class of T-S fuzzy sys-
tems with variable quantization density, and a sliding mode
controller has been designed in [6] for a class of T-S fuzzy
systems with a dynamic event-triggered (DET) strategy. The
above integrated approaches fully utilize the approximation
capabilities of T-S fuzzy systems and the robustness of SMC,
which provide an effective solution for tackling the synthesis
problem of complex nonlinear systems.

Correspondence should be addressed to Jun Hu. Email:
jhu@hrbust.edu.cn.
This work was supported in part by the National Natural Science Founda-
tion of China under Grants 61673141 and 12201157, the National College
Students’ Innovative Entrepreneurial Training Plan Program of China
under Grant 20231021411, and the Alexander von Humboldt Foundation
of Germany.

With the continuous development of computer science,
communication technology and automation, the networked
control systems (NCSs) have attracted widespread attention
in academia. For the NCSs, sensors, control systems and var-
ious devices are interconnected via networks, which makes
that the industrial systems operate more intelligently, flexi-
bly and efficiently. In research related to NCSs, the scarcity
of communication resources is a significant issue. Typi-
cally, the sensor measurement signals undergo the quanti-
zation and encoding processes before being encapsulated for
transmission through digital channels [7]. Existing encoding
schemes often utilize the uniform quantizer [8], logarithmic
quantizer [9], adaptive quantizer [10] and so on. The adap-
tive coding schemes can dynamically adjust encoding preci-
sion based on system states, thereby reducing bandwidth re-
quirements. In [11], a detailed depiction of an adaptive quan-
tizer has been provided, which has simultaneously encoded
the adaptive parameters and the signal obtained after quan-
tization. However, it has overlooked the overlap of quan-
tization ranges under different adaptive parameters, which
results in the waste of some encoding information.

Inspired by the aforementioned discussion, this paper pro-
poses a new SMC law for a class of T-S fuzzy systems with
limited network resources and time-varying delays. By em-
ploying a two-step method, an adaptive quantizer is con-
structed. Based on this quantizer, a bit-rate-constrained en-
coding and decoding scheme is proposed. The primary con-
tributions of the paper can be summarized from the follow-
ing aspects: (i) Design an adaptive encoding and decoding
mechanism by considering bit rate constraints, where the en-
coding errors adaptively adjust with system states. (ii) Con-
sidering the encoding errors, a new SMC law is proposed
for T-S fuzzy systems with time-varying delays to mitigate
the impact of limited network resources on the overall sys-
tem performance. In conclusion, the validity of the proposed
SMC algorithm is illustrated through simulation experiment.

2 Problem Formulation

2.1 System Description
Consider a class of discrete T-S fuzzy systems with time-

varying delays, which can be represented by the following
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fuzzy rules:
Fuzzy Rule i: IF ϑ1,k is W i

1, ϑ2,k is W i
2, . . . , and ϑι ,k is W i

ι ,
THEN{

xk+1 = (Ai +∆Ai)xk +Adixk−dk +Bi(uk +ωk),

xk = ϕk, k =−dM,−dM +1, . . . ,0,
(1)

where xk ∈ Rnx is the system state. uk ∈ Rnu is the control
input. ϑk ≜

[
ϑ1,k,ϑ2,k, . . . ,ϑι ,k

]
is the measurable premise

variable vector. W i
1, W i

2, . . . , W i
ι are the fuzzy sets. ∆Ai is the

parameter uncertainty with ∆Ai ≜ EiFiHi and Fi satisfying
FT

i Fi ≤ I. The external disturbance ωk satisfies ∥ωk∥ ≤ ω

with ω > 0 being a known constant. The time-varying de-
lay dk satisfies dm ≤ dk ≤ dM , where dM and dm are known
upper and lower bounds of the time delay. Ai, Adi and
Bi(i ∈ S≜ {1,2, . . . ,r}) are real constant matrices with suit-
able dimensions, and Bi possesses full column rank. r is the
number of fuzzy rules.

Applying the weighted defuzzification process, the overall
fuzzy system is stated as follows:

xk+1 =
r

∑
i=1

hi(ϑk)[(Ai +∆Ai)xk

+Adixk−dk +Bi(uk +ωk)],

xk =ϕk, k =−dM,−dM +1, . . . ,0.

(2)

The MFs are given as follows:

hi(ϑk)≜
∏

ι
q=1 Γi,q(ϑq,k)

∑
r
i=1 ∏

ι
q=1 Γi,q(ϑq,k)

, (3)

where 0 ≤ Γi,q(ϑq,k) ≤ 1 denotes the membership grade of
ϑq,k in W i

q. For ∀k ∈ N, one has

hi(ϑk)≥ 0 (i ∈ S),
r

∑
i=1

hi(ϑk) = 1. (4)

2.2 Coding Procedure
In this paper, the signal transmission takes place between

the sensor and the controller through a communication net-
work with specified limitations or constraints. Sensors can
measure the state variables of the system. Let the signal de-
tected by the p-th sensor node at time k be denoted as xp

k
and we have xk = [x1

k ,x
2
k , . . . ,x

nx
k ]T . To reduce data transmis-

sion costs, the signal is converted to binary code through an
encoder before transmission. For convenience, we use the
arrays p, Φ1(x

p
k ) and Φ2(x

p
k ) to store the coded information

of the p-th sensor.
Firstly, we compute the required number of bit rates nec-

essary to encode the sensor label p as follows:

R1 =

⌈
log2 nx

⌉
. (5)

Then, we give the quantization procedure for the measure-
ment xp

k of p-th sensor node. Considering the practical sce-
nario, in a closed-loop system, the state vector is not in-
finitely large. Therefore, it can be assumed that the p-th
sensor’s value has an upper bound Mp. In other words, the
following inequality holds:

0 ≤
|xp

k |
Mp

≤ 1. (6)

The following two-step process is used to map xp
k

Mp
to a

pair of numbers (Φ1(x
p
k ),Φ2(x

p
k )). Firstly, we focus on the

number Φ1(x
p
k ) ∈ {0,±1,±2, . . . ,±ρ1} with R2 bits and the

number are determined as follows:

Φ1(x
p
k ) = sign(xp

k )max
{

κ

∣∣∣∣ |xp
k |

λ
κ−1
p Mp

≤ 1,

κ ∈ {1, . . . ,ρ1}
}
, (7)

where sign is the signal function and ρ1 = 2R2−1 −1. λp < 1
is the quantitative indicator of the p-th sensor node. Next,
we focus on the number Φ2(x

p
k ) with R3 bits and the number

are determined as follows:

Φ2(x
p
k ) =


1, Φ1(x

p
k ) = 0,

χ1, 0 < |Φ1(x
p
k )|< ρ1,

χρ1 , |Φ1(x
p
k )|= ρ1,

(8)

with

χ1 =


 |xp

k |

λ
|Φ1(x

p
k )|−1

p Mp

−λp

/(1−λp)2R3

 ,

χρ1 =

⌈
|xp

k |
λ

ρ1−1
p Mp

2R3

⌉
.

It is easy to see that the number Φ2(x
p
k ) ∈ {1,2,3, . . . ,2R3}.

2.3 Decoding Procedure
According to the sensor label α1, the controller can iden-

tify which sensor’s signal has been successfully transmitted.
Referring to data codes α1 and α2, the controller can com-
pute the pair of numbers (Φ1(x

p
k ),Φ2(x

p
k )). Furthermore, the

decoded state xk ≜ [x1
k ,x

2
k , . . . ,x

nx
k ]T is defined with

xp
k =


0, Φ1(x

p
k ) = 0,

χ0, 0 < |Φ1(x
p
k )|< ρ1,

χρ1
, |Φ1(x

p
k )|= ρ1,

(9)

where

χ0 = sign(Φ1(x
p
k ))

(
λp +(1−λp)

×
Φ2(x

p
k )−

1
2

2R3

)
λ
|Φ1(x

p
k )|−1

p Mp,

χρ1
= sign(Φ1(x

p
k ))

Φ2(x
p
k )−

1
2

2R3
λ

ρ1−1
p Mp.

Define the decoding error of the p-th sensor node as x̃p
k =

xp
k − xp

k . It follows from (8)-(9) that the decoding error satis-
fies 

|x̃p
k |= 0, Φ1(x

p
k ) = 0,

|x̃p
k | ≤ χ̃0 0 < |Φ1(x

p
k )|< ρ1,

|x̃p
k | ≤ χ̃ρ1 , |Φ1(x

p
k )|= ρ1,

(10)

with

χ̃1 =
λ
|Φ1(x

p
k )|−1

p Mp

2R3+1 (1−λp)≤
λ−1

p |xp
k |

2R3+1 (1−λp),
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χ̃ρ1 =
λ

ρ1−1
p Mp

2R3+1 .

Furthermore, take the common upper bound for the three
cases as

|x̃p
k |

2 ≤
(
(λ−1

p −1)|xp
k |

2R3+1

)2

+

(
λ

ρ1−1
p Mp

2R3+1

)2

. (11)

3 MAIN RESULTS

In this section, a novel fuzzy SMC law is designed to en-
sure that the closed-loop fuzzy system is exponentially ul-
timately bounded (EUB), and the system state trajectories
are driven into the neighborhood near the sliding surface.
Firstly, the following common sliding surface is constructed:

sk = Gxk, (12)

where G ≜ ΣN
i=1βiBT

i , and scalars βi (i ∈ S1) should be cho-
sen such that GBi is nonsingular.

Based on the non-parallel compensation strategy, the fol-
lowing fuzzy SMC law is designed:

Fuzzy Rule j: IF ϑ̃1,k is W̃ j
1 , ϑ̃2,k is W̃ j

2 , . . . , and ϑ̃ι ,k is
W̃ j

ι , THEN

uk = K jxk − (∥Λ1xk∥+ω)sign(sk), (13)

with

Λ1 = diag
{
(λ−1

1 −1)
2R3+1 , . . . ,

(λ−1
nx −1)
2R3+1

}
. (14)

Through standard fuzzy inference methods, the control input
can be described by

uk =
r

∑
j=1

l j(ϑ̃k)K jxk − (∥Λ1xk∥+ω)sign(sk), (15)

where sk is obtained by replacing xk in (12) with xk. K j is the
control gain to be designed later. Substituting (17) into (2),
the resultant closed-loop system can be obtained as:

xk+1 =
r

∑
i=1

r

∑
j=1

hi(ϑk)l j(ϑ̃k)[(Ai +∆Ai +BiK j)xk

+Adixk−dk +BiK j x̃k −Bi∆k]. (16)

where x̃k = [x̃1
k , x̃

2
k , . . . , x̃

nx
k ]T and ∆k = (∥Λ1xk∥ +

ω)sign(sk) − ωk. For the mismatched MFs hi(ϑk) and
l j(ϑ̃k) in (15), the following relations are easy to establish
in order to simplify the subsequent derivation:

li(ϑ̃k) = ςi,khi(ϑk), (17)
ςi,k

ς j,k
∈ [k1,k2], (18)

where k1 and k2 can be estimated from the overall upper and
lower bounds of hi(ϑk) and l j(ϑ̃k).

Definition 1 The system is said to be EUB if there exists a
constant 0 < ς < 1 satisfying

||ξk||2 ≤ ες
k||ξ0||2 +η

2, (19)

where ξ0 is the initial condition, and η is the upper bound of
the closed-loop system.

3.1 Analysis of Stability
Theorem 1 Consider the fuzzy system (2) under the de-
signed fuzzy SMC law (15). For any i, j ∈ S and given scalars
α1 > 0, 1 > γ > 0, if there exist scalars ε1 > 0, ε2 > 0 and
matrices P1 > 0, P2 > 0 and K j satisfying the following ma-
trix inequalities:

BT
i P1Bi < ε1I, (20)

KT
j BT

i P1BiK j < ε2I, (21)
Θi,i < 0, (22)

Θi, j + k1Θ j,i < 0, i < j, (23)
Θi, j + k2Θ j,i < 0, i < j, (24)

where

Θi, j ≜

[
Θ

1,1
i, j Θ

1,2
i, j

∗ Θ
2,2
i, j

]
,

Θ
1,1
i, j ≜ (1+α1)[(Ai +∆Ai +BiK j)

T P1

×(Ai +∆Ai +BiK j)]+2(1+α
−1
1 )

×(3nuε1 + ε2)Λ
2
1 +(dM −dm +1)P2 − γP1,

Θ
1,2
i, j ≜ (1+α1)(Ai +∆Ai +BiK j)

T P1Adi,

Θ
2,2
i, j ≜ (1+α1)AT

diP1Adi − γ
dM P2,

then the closed-loop system (16) is EUB, and the upper
bound is given as:

η ≜
η√

(1− γ)λmin(P1)
(25)

with

η =

[
2(1+α

−1
1 )

(
3ε1(nu +1)ω2

+ε2

nx

∑
p=1

(
λ

ρ1−1
p Mp

2R3+1

)2)] 1
2
.

Proof: Select the Lyapunov functional for system (16) as:

Vk ≜V1,k +V2,k +V3,k, (26)

where

V1,k = xT
k P1xk,

V2,k =
k−1

∑
s=k−dk

γ
k−s−1xT

s P2xs,

V3,k =
−dm

∑
τ=−dM+1

k−1

∑
s=k+τ

γ
k−s−1xT

s P2xs.

Taking the difference of the Lyapunov functional, one ob-
tains:

∆V1,k ≜ V1,k+1 − γV1,k

≤
r

∑
i=1

r

∑
j=1

hi(ϑk)l j(ϑ̃k)

{
(1+α1)[(Ai +∆Ai

+BiK j)xk +Adixk−dk ]
T P1[(Ai +∆Ai +Bi

×K j)xk +Adixk−dk ]
T +(1+α

−1
1 )(x̃T

k KT
j
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−∆
T
k )B

T
i P1Bi(K j x̃k −∆k)

}
− γxT

k P1xk, (27)

∆V2,k ≜ V2,k+1 − γV2,k

≤ xT
k P2xk − γ

dM xT
k−dk

P2xk−dk

+
k−dm

∑
s=k+1−dM

γ
k−sxT

s P2xs, (28)

∆V3,k ≜ V3,k+1 − γV3,k

=
−dm

∑
τ=−dM+1

(xT
k P2xk − γ

−τ xT
k+τ P2xk+τ). (29)

Then, combining (27)-(29), it can be observed that

∆Vk ≜ Vk+1 − γVk

≤
r

∑
i=1

r

∑
j=1

hi(ϑk)l j(ϑ̃k)

{
(1+α1)[(Ai +∆Ai

+BiK j)xk +Adixk−dk ]
T P1[(Ai +∆Ai +Bi

×K j)xk +Adixk−dk ]
T +2(1+α

−1
1 )(ε2∥x̃k∥2

+ε1∥∆k∥2)

}
+(dM −dm +1)xT

k P2xk

−γxT
k P1xk − γ

dM xT
k−dk

P2xk−dk . (30)

Besides, the boundaries of ∥x̃k∥ and ∥|∆k∥ can be computed
as follows:

∥x̃k∥2 ≤ xT
k Λ

2
1xk +

nx

∑
p=1

(
λ

ρ1−1
p Mp

2R3+1

)2

, (31)

∥∆k∥2 ≤ 3nuxT
k Λ

2
1xk +3(nu +1)ω2. (32)

Therefore, from (20)-(24) and (30)-(32), we have

∆Vk ≤ η
2, (33)

which further leads to

Vk+1 ≤ γ
kV0 +

1− γk−1

1− γ
η

2

≤ γ
kV0 +

1
1− γ

η
2. (34)

Furthermore, in view of (26), one has

Vk ≥ λmin(P1)∥xk∥2, (35)

and

V0 ≤
(

λmax(P1)+
dM −dm +1

1− γ

×λmax(P2)

)
sup

ϕ∈[−dM ,0]
(∥xϕ∥2). (36)

Finally, according to Definition 1, the closed-loop fuzzy sys-
tem (16) is EUB.

3.2 Analysis of Reachability
Theorem 2 Consider the fuzzy system (2) under the de-
signed fuzzy SMC law (15). For any i, j ∈ S and given scalars
α1 > 0, if there exist scalars ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0,

matrices P1 > 0, P2 > 0, W > 0 and K j satisfying (20), (21)
and the following matrix inequalities:

BT
i GTWGBi < ε3I, (37)

KT
j BT

i GTWGBiK j < ε4I, (38)
Ωi,i < 0, (39)

Ωi, j + k1Ω j,i < 0, i < j, (40)
Ωi, j + k2Ω j,i < 0, i < j. (41)

where

Ωi, j ≜

[
Ω

1,1
i, j Ω

1,2
i, j

∗ Ω
2,2
i, j

]
,

Ω
1,1
i, j ≜ (1+α1)[(Ai +∆Ai +BiK j)

T P1

×(Ai +∆Ai +BiK j)+(Ai +∆Ai +BiK j)
T

×GTWG(Ai +∆Ai +BiK j)]+2(1+α
−1
1 )

×(3nuε1 +3nuε3 + ε2 + ε4)Λ
2
1

+(dM −dm +1)P2 −P1,

Ω
1,2
i, j ≜ (1+α1)[(Ai +∆Ai +BiK j)

T P1Adi

+(Ai +∆Ai +BiK j)
T GTWGAdi],

Ω
2,2
i, j ≜ (1+α1)[AT

diP1Adi +AT
diG

TWGAdi]−P2,

then the state trajectories of the closed-loop fuzzy system can
be driven into the designated sliding domain D surrounding
the specified sliding surface:

D≜

{
sk
∣∣∥sk∥ ≤ N

}
, (42)

with

N ≜

√
Ni, j

λmin(W )
,

Ni, j ≜

[
2(1+α

−1
1 )

(
3(ε1 + ε3)(nu +1)ω2

+(ε2 + ε4)
nx

∑
p=1

(
λ

ρ1−1
p Mp

2R3+1

)2)] 1
2
.

Proof: Similar to Theorem 1, the proof of this theorem is
easy to be derived and is omitted for the sake of brevity.

3.3 Solving for Controller Gain
In this subsection, a set of linear matrix inequalities

(LMIs) is obtained by decoupling the nonlinear matrix in-
equalities (20)-(24) and (37)-(41), then the gain matrix K j is
solved.

Theorem 3 Consider the fuzzy system (2) under the de-
signed fuzzy SMC law (15). For any i, j ∈ S and given scalars
α1 > 0, 1> γ > 0, if there exist scalars ε1 > 0, ε2 > 0, ε3 > 0,
ε4 > 0, ε > 0 and matrices P1 > 0, P2 > 0, W > 0 and K j
satisfying the following matrix inequalities:[

−ε1I BT
i

∗ −P1

]
< 0, (43)[

−ε2I KT
j BT

i
∗ −P1

]
< 0, (44)
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[
−ε3I BT

i GT

∗ −W

]
< 0, (45)[

−ε4I KT
j BT

i GT

∗ −W

]
< 0, (46)

Θ̃i < 0, (47)
Θ̃i, j,ζ < 0, i < j, ζ = 1,2, (48)

Ω̃i < 0, (49)
Ω̃i, j,ζ < 0, i < j, ζ = 1,2, (50)

with

Θ̃i ≜

[
Θ̃

1,1
i Θ̃

1,2
i,i

∗ Θ̃
2,2
i

]
,

Θ̃i, j,ζ ≜

 Θ̃
1,1
i + kζ Θ̃

1,1
j Θ̃

1,2
i, j

√
kζ Θ̃

1,2
j,i

∗ Θ̃
2,2
i 0

∗ ∗ Θ̃
2,2
j

 ,

Ω̃i ≜

[
Ω̃

1,1
i Ω̃

1,2
i,i

∗ Ω̃
2,2
i

]
,

Ω̃i, j,ζ ≜

 Ω̃
1,1
i + kζ Ω̃

1,1
j Ω̃

1,2
i, j

√
kζ Ω̃

1,2
j,i

∗ Ω̃
2,2
i 0

∗ ∗ Ω̃
2,2
j

 ,

Θ̃
1,1
i ≜

[
Θ̃

1,1,1
i 0
∗ −γdM P2

]
,

Θ̃
1,2
i, j ≜

[
(Ai +BiK j)

T 0
AT

di 0

]
,

Θ̃
2,2
i ≜

[
− 1

1+α1
P1 Ei

∗ −εI

]
,

Ω̃
1,1
i ≜

[
Ω̃

1,1,1
i 0
∗ −γdM P2

]
,

Ω̃
1,2
i, j ≜

[
(Ai +BiK j)

T (Ai +BiK j)
T GT 0

AT
di AT

diG
T 0

]
,

Ω̃
2,2
i ≜

 − 1
1+α1

P1 0 Ei

∗ − 1
1+α1

W GEi

∗ ∗ −εI

 ,

Θ̃
1,1,1
i ≜ 2(1+α

−1
1 )(3nuε1 + ε2)Λ

2
1 +(dM −dm

+1)P2 − γP1

Ω̃
1,1,1
i ≜ +2(1+α

−1
1 )(3nuε1 +3nuε3 + ε2 + ε4)

×Λ
2
1 +(dM −dm +1)P2 −P1,

then the closed-loop system is EUB, and the sliding domain
can be simultaneously attained.

Proof: Let P1 = P−1 and W = W−1. It is easy to verify
that the conditions (20)-(21) and (37)-(38) can be ensured by
(43)-(46) through the Schur complement lemma. By using
the equation

(I −P1)P−1
1 (I −P1)

T = P1 +P−1
1 −2I, (51)

for any P1 > 0, and then we have −P1 ≤ P−1
1 − 2I. After

that, noting ∆Ai ≜ EiFiHi and applying Schur complement
lemma, it’s easily verified that the inequalities (22)-(24) can

be ensured by the LMIs (47), (48) and the inequalities (39)-
(41) can be ensured by the LMIs (49), (50), which end the
proof of this theorem.

4 An Illustrative Example

In this subsection, the effectiveness and feasibility of the
proposed SMC are verified by an illustrative example.

Consider the following T-S fuzzy delayed system with two
fuzzy rules:

xk+1 =
2

∑
i=1

hi(ϑk)[(Ai +∆Ai)xk +Adixk−dk

+Bi(uk +ωk)],

with

A1 =

 1.2 −0.2 −0.1
−0.1 0.6 0.1
−0.2 0 1.3

 ,

A2 =

 1.1 −0.4 −0.1
−0.2 0.7 0.4
−0.2 0 1.1

 ,

B1 =

 −0.4 −0.2
0.1 0.2
0.2 −0.3

 ,B2 =

 −0.3 −0.3
0.2 0.3
0.3 −0.3

 .

Then, we select the external disturbance ωk = ωsin(k) with
ω = 0.01. Assume that the time delay upper bound is dM = 3
and the lower bound is dm = 1. Meanwhile, the system MFS
and the controller MFs are given as follows:

h1(xk) = 0.35+0.25sin(x1k), h2(xk) = 1−h1(xk).

l1(xk) = 0.5+0.1sin(x1k), l2(xk) = 1− l1(xk).

For simulation purpose, we select the parameters λ1 =
0.5,λ2 = 0.5,λ3 = 0.5,M1 = 10,M2 = 10,M3 = 10 and the
bit rates R1 = 2, R2 = 5 and R3 = 3. The other parameters
are k1 = 0.111 and k2 = 9. Solving the inequalities (43)-(50)
by using the MatLab LMI toolbox, we get

K1 =

[
1.1525 −0.8551 −1.2528
1.1119 −0.7305 1.1226

]
,

K2 =

[
1.0868 −0.7278 −1.4048
0.9980 −0.5761 1.5545

]
,

η = 0.2523, N = 0.1814.

The simulation results with the specified parameters are
presented. Among them, Fig. 1 illustrates that the trajecto-
ries of the system state xk tend to be bounded. The trajec-
tories of control signal uk and sliding variable sk are shown
in Fig. 2 and Fig. 3 respectively. Furthermore, we consider
assigning different bit rates to R2, R3 and the upper bounds
η of the closed-loop system are shown in Table 1. It is clear
that when the bit rates increase, the upper bound η gets better
and the bit rate R2 has a greater impact on it. The simulations
support the conclusion that the proposed control scheme is
effective.

5 Conclusions

In this paper, we have addressed the problem of SMC for
T-S fuzzy systems with limited network resources, where the
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Table 1: The upper bound η under different bit rates R2 and
R3

Bit rates R3=3 R3=4 R3=5 R3=6 R3=7
R2=3 4.426 2.184 1.110 0.596 0.369
R2=4 0.374 0.286 0.261 0.254 0.252
R2=5 0.252 0.252 0.252 0.252 0.252
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Fig. 1: State trajectories xk.

sensors as well as controllers are connected through a net-
work with limited resources and the system state is needed
to be converted into binary code for transmission. In par-
ticular, a novel two-step encoder has been proposed for this
purpose. Subsequently, the effect caused by coding error has
been considered in the design of the SMC law, and sufficient
conditions for the stability of the system and the reachability
of the sliding mode surface have been given. Finally, a nu-
merical example has been presented to further illustrate the
practicality and feasibility of the developed SMC scheme.
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The Reachable Set Estimation for Continuous-time Delayed
Nonlinear Switched Systems with Impulsive Perturbation
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Abstract: In this paper, we mainly study the reachable set estimation problem of the continuous-time delayed nonlinear switched
systems with impulsive perturbation under the condition of zero initial state and bounded peak disturbances. The purpose is to
acquire a set of bounded ellipsoids that can include all the states starting from the origin. By adopting the real bounded lemma,
integral inequality techniques, the free weight matrix method, we get a sufficient condition in the form of linear matrix inequality
(LMI) for the continuous-time delayed nonlinear switched system with impulsive perturbation, so as to insure that all the state
trajectories of the studied system are restricted to a closed bounded set. Eventually, a specific numerical example is given to
illustrate the effectiveness and correctness of the results obtained in this paper.

Key Words: Switched system, The estimation of reachable set, Constant time-delay, Linear matrix inequality (LMI)

1 Introduction

As a kind of special hybrid dynamic systems, the switched
system is comprised of some continuous or discrete subsys-
tems and the corresponding switching rules that coordinate
these subsystems. In the field of control, the switched system
has unique properties, and due to the existence of switching
rules, it is essentially different from the simple superposition
of multiple systems. The research of the switched systems
is much more complicated than the research of the contin-
uous control of the normal systems [1–3]. Considering the
great value of switched systems in the theoretical research,
many scholars have carried out extensive research on the
related problems of switched systems [4–9]. The switched
systems are widely applied in the research of practical sys-
tems, such as communication control systems, power elec-
tronic systems, biological information system and robot sys-
tems [10–13]. In fact, when the system switches from one
subsystem to another subsystem, there will inevitably be im-
pulsive effects or perturbation that will lead to poor perfor-
mance or even instability of the system. Thus, it is essential
to think carefully impulsive perturbation when we investi-
gate switched systems [14–17].

The reachable set of systems denotes the set of all states
that the system will reach from the initial conditions un-
der specific constraints or in the presence of some pertur-
bations, and the reachable set estimation is one of the impor-
tant methods to realize state estimation and parameter esti-
mation. In practical engineering, the security of the system
can be analyzed by estimating the reachable set about sys-
tem state to avoid certain unsafe states in the whole state
space [18, 19]. For example, the reachable set is applied
to the flight anti-collision experiment of the aircraft, pre-
dicting the flight trajectory of one aircraft, and avoiding the
flight range of the first aircraft by planning the flight path
of the other aircraft, so as to prevent the collision between
the two aircraft. If their flight range has an intersection, it
may not be safe. Otherwise, it must be safe. Moreover, the
reachable set estimation problem has always been a kind of

This work is supported by National Natural Science Foundation
(NNSF) of China under Grant 62073094.

significant problem in robust control theory [20]. The re-
searchers have applied extensively the reachable set estima-
tion of dynamic systems in many different fields, such as
safety checks, peak-to-peak minimization, parameters esti-
mation, the control system with actuator saturation [21–24].

Currently, in order to estimate the reachable set of various
dynamic systems, many scholars use the ellipsoid technique
based on Lyapunov function. In the framework of closed
bounded ellipsoids, both Lyapunov function and LMI are
extremely important for solving the reachable set estimation
problems. Now, it not only has been developed to singu-
lar systems, such as singular systems with delay or with-
out delay under zero initial conditions and bounded peak
disturbances, time-varying delayed nonlinear singular sys-
tems with bounded input disturbances, general singular sys-
tems and time-varying delayed uncertain singular systems
from a new perspective [25–28], but also time-delay sys-
tems, such as linear delay control systems with bounded dis-
turbances, nonlinear switched delay systems with stable sub-
systems and unstable subsystems, linear systems with con-
stant coefficients and time-varying delay, delayed linear sys-
tems with bounded peak disturbances [29–32], and Marko-
vian jump systems, such as time-varying delayed Markovian
jump neural networks with bounded peak inputs, singular
Markovian jump systems without delays or with distributed
delays, time-varying delay inertial Markovian jump bilat-
eral associative memory neural networks under inputs with
bounded disturbances and time-varying time-delay Marko-
vian jump neural networks with bounded peak disturbances
[33–36].

Furthermore, by using the new Lyapunov-Krasovskii
functional, [37] studied the relevant reachable set estimation
problem for a kind of multiple constant time-delay discrete
linear systems with the bounded peak inputs. The delay-
dependent conditions are expressed in the form of matrix in-
equalities. The problem about the estimation of reachable set
for discrete singular systems with bounded disturbance input
is solved in [38] with the help of establishing a Lyapunov-
Krasovskii functional. Besides, by constructing the appro-
priate Lyapunov-Krasovskii functionals, [39] estimated the
reachable set about time-delay neural networks that are sub-
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ject to Markov jump parameters and the bounded distur-
bances. In addition to the Lyapunov-Krasovskii functional
approach mentioned above, there are also other approaches
to study the problem of reachable set estimation. Zonotopes
are one of them [40, 41]. Compared with the Lyapunov func-
tion method, it has a relatively large amount of calculation,
and is more difficult to give analytical solutions as well. Af-
ter analyzing some literature on the reachable set estimation,
it has been found that the Lyapunov-Krasovskii functional
method has not been sufficiently applied to the study of the
reachable set estimation problem of continuous-time delayed
nonlinear switched systems with impulse perturbation, and
this is the research motivation of the paper.

Inspired by the above researches, this paper will study the
reachable set estimation problem of the continuous-time de-
layed nonlinear switched system with impulsive perturba-
tion under zero initial conditions and bounded peak distur-
bance. First of all, according to the assumptions and lem-
mas, we will establish the system model and construct a new
Lyapunov function. Afterward, based on adopting the real
bounded lemma, introducing the free weight matrix and ap-
plying the integral inequality, the final sufficient condition
for the reachable set estimation of the system is obtained
in the form of LMIs, and the range of ellipsoid definition
is more accurate with the help of the optimization design.
Finally, by giving a numerical example, we illustrate the ef-
fectiveness and correctness of the obtained results.

Notations: Rm represents the m-dimensional Euclidean
space. The matrix P > 0(≥ 0) repdimensions. ∗ represents
resents that the real number matrix P is symmetric positive
definite (semi-positive definite). I denotes an identity matrix
with compatible dimensions, 0 refers to the zero matrix with
consistent the symmetry term in the symmetry matrices. The
superscript ‘T’ of the matrix (vector) stands for this matrix
(vector) is transposed. Sym(Y ) is defined as Y + Y T. ∥ · ∥
denotes the Euclidean matrix norm. λmax(P ) expressed as
the maximum eigenvalue of the matrix. N and N∗ are respec-
tively defined as natural numbers set and positive integers
set. Ḋ+ refers to the upper-right derivative of Dini. If the
dimensions of the matrix are not clearly stated, it is assumed
that the matrix is compatible about algebraic operations.

2 Preliminaries and Lemma Proposition

In this part of the paper, the following continuous-time de-
layed nonlinear switched system with impulsive perturbation
will be considered:

ẋ(t) = Aφ(t)x(t) +Bφ(t)fφ(t)(t, x(t))

+Cφ(t)
∫ t
t−h x(s)ds+Dφ(t)w(t), t ̸= tj ,

x(t+j ) = Eφ(t)x(tj), t = tj ,

x(t) ≡ 0, ∀t ∈ [−h, 0],

(1)
where x(t) ∈ Rn denotes the state vector. w(t) ∈ Rm
refers to an unknown disturbance input vector of the sys-
tem. fφ(t)(t, x(t)) stands for an unknown nonlinear func-
tion of the system. Scalar h represents the distributed time-
delay. Aφ(t), Bφ(t), Cφ(t), Dφ(t) and Eφ(t) are all be-
long to the real constant matrices with the consistent dimen-

sions. φ(t) = φj ∈ Us = {1, 2, . . . , s} is a sectional left-
continuous function for t ∈ [tj−1, tj) and i ∈ N, then φ(t) is
a impulsive switching signal. And tj is the impulsive switch-
ing point, when it satisfies 0 = t0 < t1 < t2 < · · · <
tj−1 < tj < · · · and tj = inf{t | t > tj−1 and φ(t) ̸=
φ(tj−1)} and lim

i→∞
tj = ∞. x(tj) = x(t−j ) = lim

q→0−
x(t−q)

and x(t+j ) = lim
q→0+

x(t+ q).

Certainly, the main goal of this paper is still want to obtain
a set of ellipsoids as accurate as possible by the LMI method,
which can be expressed as:

R = {x(t) ∈ Rn | xT(t)P̌φj
x(t) ≤ 1}.

Before proceeding to the next calculations, we give sev-
eral relevant assumptions, definitions, and lemmas, which
can be applied to derive the final results.

Assumption 1 The unknown perturbation input w(t) satis-
fies

wT(t)w(t) ≤ ϖ2, (2)

where ϖ is the known real scalar.

Assumption 2 The unknown nonlinear functionfφj (t, x(t))
satisfies

∥fφj
(t, x(t))∥ ≤ υ∥x(t)∥,

where υ > 0 is the known real constant.

Definition 1 [42] For the impulsive sequence Φ = {t1, t2,
t3, . . .}, Φa expresses the average impulsive interval, when
Φa > 0 and N0 ∈ N∗ are satisfied, one has

T − t

Φa
−N0 ≤ NΦ(t, T ) ≤ N0 +

T − t

Φa
, ∀0 ≤ t ≤ T

where NΦ(t, T ) denotes the number of impulse of Φ on in-
terval (t, T ), for each 0 ≤ t ≤ T .

Lemma 1 [43](real bounded lemma) For each T ≥ t ≥
0, φj ∈ Uk, i ∈ N, and given scalar δ > 0, scalar η > 0,
and scalar ν ≥ 1, when Vφj

(x, t) satisfies the definition of
continuous function for t ̸= tj−1 with system (1) and (2) in
Assumption 1, it will have

D+Vφj
(x, t) + δVφj

(x, t)− ηwT(t)w(t) ≤ 0, t ̸= tj−1

(3)
and

Vφj
(x, t+j−1) ≤ νVφj−1

(x, t−j−1), t = tj−1 (4)

where η = (δ − ln ν
Φa

)/ϖ2, tj−1 stands for impulsive switch-
ing point, t−j−1 and t+j−1 are the instantaneous moments be-
fore and after the switching point tj−1 respectively, and

Vφj
(x, t) ≤ νN0

for each 0 ≤ t ≤ T and Vφ0
(x0) ≤ 1 are satisfied for

all initial states with average dwell time Φa >
ln ν
δ of the

system.

Lemma 2 [44] For the given matrix G > 0, the scalar rela-
tionship satisfies k > c, κ > 0, differentiable vector function
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x(z), z ∈ Rn, the following linear matrix inequalities are all
true: ∫ k

c
eκ(z−k)xT(z)Gx(z)dz

≥ ε̂k−c(
∫ k
c
x(z)dz)TG(

∫ k
c
x(z)dz)

(5)

and ∫ k
c

∫ k
u
eκ(z−k)xT(z)Gx(z)dzdu

≥ ε̄k−c(
∫ k
c

∫ k
u
x(z)dzdu)TG(

∫ k
c

∫ k
u
x(z)dzdu)

(6)

where
ε̂k−c =

κ

eκ(k−c) − 1
,

ε̄k−c =
κ2

eκ(k−c) − (k − c)− 1
.

Similarly, our final goal in the paper is just to obtain the set
as accurate as possible, so that it will restrain all reachable
states of system (1), and it can be defined as

R̃x = {x(t) | x(t) satisfies (1) , w(t) satisfies (2), t ≥ 0}.

3 Main Result

In this part of the paper, we derive the sufficient condi-
tion which will constraint the set of all reachable states of
the continuous-time delayed nonlinear switched system with
impulsive perturbation.

Theorem 1 For the given scalar δ > 0, scalar η > 0, and
scalar ν ≥ 1, when it is satisfied that matrices Pφj

, matrices
Rφj

and matrices Sφj
are all positive definite symmetric ma-

trices, and Kφj
=
[
K1φj K2φj K3φj K4φj K5φj

]
such that the following inequalities are feasible:

λ2max(Eφj
)Pφj

≤ νPφj−1
, (7)

Rφj
≤ νRφj−1

, (8)

Sφj
≤ νSφj−1

, (9)

Λφj
=



Λ11φj
Λ12φj

Λ13φj
Λ14φj

Λ15φj

∗ Λ22φj
Λ23φj

Λ24φj
Λ25φj

∗ ∗ Λ33φj
Λ34φj

Λ35φj

∗ ∗ ∗ Λ44φj Λ45φj

∗ ∗ ∗ ∗ Λ55φj


< 0,

(10)
where

Λ11φj
= δPφj

+ hRφj
− δ2h2

eδh−δh−1
Sφj + υ2I

+ Sym{KT
1φj

Aφj},

Λ12φj = KT
1φj

Bφj +AT
φj
K2φj ,

Λ13φj
= δ2h

eδh−δh−1
Sφj

+KT
1φj

Cφj
+AT

φj
K3φj

,

Λ14φj
= −KT

1φj
+AT

φj
K4φj

+ PT
1φj

,

Λ15φj
= KT

1φj
Dφj

+AT
φj
K5φj

,

Λ22φj
= −I + Sym{KT

2φj
Bφj

},

Λ23φj = KT
2φj

Cφj +BT
φj
K3φj ,

Λ24φj = −KT
2φj

+BT
φj
K4φj ,

Λ25φj = KT
2φj

Dφj +BT
φj
K5φj ,

Λ33φj
= Sym{CT

φj
K3φj

} − δ
eδh−1

Rφj
− δ2

eδh−δh−1
Sφj

,

Λ34φj = −KT
3φj

+DT
φj
K4φj ,

Λ35φj = KT
3φj

Dφj + CT
φj
K5φj ,

Λ44φj
= −Sym{K4φj

}+ h2

2 Sφj
,

Λ45φj
= −K5φj

+KT
4φj

Dφj
,

Λ55φj
= −ηI + Sym{KT

5φj
Dφj

}.

And the average dwell time satisfies Φa > ln ν
δ , all the reach-

able states of system (1) are constrained by the common re-
gion of the final acquired ellipsoids:

R = {x(t) ∈ Rn | xT(t)P̌φj
x(t) ≤ 1},

where P̌φj
=

Pφj

νN0
.

Proof: At present, based on Lemma 1, we need to vali-
date the set that is provided by the Theorem 1 can restrict
all reachable states of the system (1). We decide to choose
Vφj

(x, t) as the Lyapunov function in the following calcula-
tions, that is

Vφj
(x, t) = xT(t)Pφj

x(t)

+
∫ 0

−h
∫ t
t+θ

eδ(s−t)xT(s)Rφj
x(s)dsdθ

+
∫ 0

−h
∫ 0

θ

∫ t
t+λ

eδ(s−t)ẋT(s)Sφj ẋ(s)dsdλdθ
(11)

According to the result of solving the upper right Dini
derivative of Vφj

(x, t), we can obtain that

D+Vφj
(x, t) + δVφj

(x, t)

= 2ẋT(t)Pφj
x(t) + h2

2 ẋ
T(t)Sφj

ẋ(t)
+xT(t)(δPφj + hRφj )x(t)

−
∫ t
t−h e

δ(s−t)xT(s)Rφj
x(s)ds

+
∫ 0

−h
∫ t
t+θ

eδ(s−t)ẋT(s)Sφj ẋ(s)dsdθ.

(12)

It is simple for us to obtain from Assumption 2 that

0 ≤ υ2xT(t)x(t)− fTφj
(t, x(t))fφj (t, x(t)) (13)

After the free weight matrix Mφj is introduced, it can de-
duce

0 = 2ζT(t)KT
φj
Mφj

ζ(t), (14)

with

ζ(t) = [xT(t) fφj
(t, x(t))

∫ t

t−h
x(s)ds ẋT(t) wT(t)]T

and
Mφj

=
[
Aφj

Bφj
Cφj

−I Dφj

]
.

By using Lemma 2, it follows from (10) and (12)–(14) that

D+Vφj
(x, t) + δVφj

(x, t)− ηwT(t)w(t)
≤ ζT(t)Λφjζ(t) < 0, t ̸= tj−1.

(15)

Moreover, when w(t) = 0, it will yield that

Vφj (x, t) ≤ νN0e−(δ− ln ν
Φa

)tVφj (x0),
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so it can now be determined that the system (1) is exponen-
tially asymptotically stable with Φa >

ln ν
δ . Following from

x(t+j ) = Eφj
x(tj), t = tj in system (1) and (7)–(9) that

Vφj (x, t
+
j−1) ≤ νVφj−1(x, t

−
j−1) , t = tj−1. (16)

According to Lemma 1, and following from (15) and (16)
that

xT(t)Pφj
x(t) ≤ Vφj

(x, t) ≤ νN0 ,

so finally we will obtain that

xT(t)P̌φj
x(t) ≤ 1 (17)

where P̌φj =
Pφj

νN0
.

So far, the establishment of the above inequality relation-
ship means that all the possible states of the continuous-time
delayed nonlinear switched system with impulse perturba-
tion will be included in the common region of the final inter-
secting ellipsoids, and the reachable set of the studied sys-
tems is successfully estimated by utilizing LMI.

Remark 1 In order to insure that we obtain an ellipsoid
with the shortest principal axis, and make all the state
response curve of the continuous-time delayed nonlinear
switched system with impulsive perturbation can be wrapped
and constrained inside the derived ellipsoids, this paper in-
troduces an optimized LMI, that is ϑI ≤ P̌φj

, and maxi-
mizing P̌φj by seeking the maximum value of ϑ, the final
obtained ellipsoid can be minimized as much as possible,
which means that[

ϑ̄I I
I P̌φj

]
=

[
ϑ̄I I

I
Pφj

νN0

]
≥ 0,

where ϑ̄ = ϑ−1 will be minimized.

4 Numerical and Simulation

Now, a specific numerical example is given in this chapter
to verify the correctness and the effectiveness of the method
described above, that is, all the reachable states of system (1)
can be constrained in the bounded set obtained by accurate
calculation.

Example 1 For φ(t) = φj ∈ {1, 2}, both the relevant
switching signal and the impulsive signal of the studied
switched system are shown in the Fig. 1. Considering that
the following parameters will be applied to the system (1) :

For φj = 1,

A1 =

[
−5 −2
−3 −4

]
, B1 =

[
−0.5 −0.3
−0.5 1

]
,

C1 =

[
1 0.2
0.3 −0.4

]
, D1 =

[
0.5
−0.4

]
,

E1 = 0.58I2×2.

For φj = 2,

A2 =

[
−4 −1.5
−1 −3.5

]
, B2 =

[
−0.5 −0.5
−0.5 0.75

]
,

Fig. 1: Switching signal and impulse signal of the switched
system.

C2 =

[
0.3 0.1
0.2 −0.5

]
, D2 =

[
0.3
−0.5

]
,

E2 = 0.65I2×2.

Taking x0 ≡ 0, δ = 1.5, ν = 1.55 and N0 = ϖ = 1, then
Φa >

ln ν
δ ≈ 0.2922. If we assume that Φa = 0.5s, it can be

deduced that η ≈ 0.6235.
According to the optimization design steps described

above, and based on solving the LMIs, we can obtain that
the corresponding final minimum value of ϑ̄, the specific pa-
rameters of the matrix P̌φ1

and the matrix P̌φ2
, one has

ϑ̄ = 0.9141,

P̌φ1 =

[
2.5077 1.1205
1.1205 1.9821

]
and

P̌φ2
=

[
3.4689 1.0524
1.0524 1.8299

]
.

Let f1φj
(t,Nx̃(t)) = x1(t) sinh(x1(t))andf2φj

(t,Nx̃(t))
= x2(t) tan(x2(t)), additionally, the trajectory curve of
x1(t) and the trajectory curve of x2(t) are described as
boundary ellipsoids with w(t) = sin(t) in the Fig. 2.

In the Fig. 3, the trajectory curves of the researched sys-
tem state have been contained within the bounded ellipsoids
all the time, which implies that previously mentioned ap-
proach is indeed useful for reasonably estimating the set of
reachable states of the researched system.

5 Conclusions

By adopting the real bounded lemma, introducing inte-
gral inequality technique and applying the free weight matrix
method, in the paper, we study the reachable set estimation
problem of the continuous-time delayed nonlinear switched
system with impulsive perturbation under the premise of
zero initial conditions and bounded peak disturbance con-
ditions. Based on Lyapunov method, the sufficient condition
is expressed in the form of the strict LMIs, and all reachable
states of the studied system are bounded by the intersection
of ellipsoids. Then, through a certain optimization design,

767  



Fig. 2: The trajectory curves situation of x1(t) and x2(t).

Fig. 3: Bounded ellipsoids estimation result of the reachable
states.

the ellipsoid as small as possible is obtained to tightly en-
circle the state response curve of the studied system, which
decreases conservatism of the reachable set estimated results
to a certain extent. Ultimately, the effectiveness and correct-
ness of adopted calculation method are verified by using a
specific numerical example. In the subsequent related work,
we can further study the problem of reachable set estimation
by further considering other applications, such as the appli-
cation in [45], so as to expand the application scope of our
theoretical results. In addition, we can also expand the re-
search direction of nonlinear systems on the basis of this pa-
per, such as [46] solves the event-based asymptotic tracking
control problem for nonlinear systems and the issue of adap-
tive decentralized tracking control for nonlinear systems is
studied in [47] and so on.
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Abstract: This paper introduces a real-time event-based learning approach for input-output sensitivity analysis. Based on
the rank order clustering method, this proposed approach is capable of continuously monitoring real-time variations in input
variables and automatically quantifying each input’s contribution to the target output. Moreover, the method facilitates ranking
and grouping based on the significance and correlation of input-output event data. The application to hydraulic systems shows
that the developed method not only produces effective evaluation of each input variable’s influence on the target output, but also
opens a new avenue for comprehending the performance of hydraulic systems.
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1 Introduction

With the continual advancement of technology and the in-
creasing complexity of systems, obtaining precise informa-
tion about materials and machinery has become a significant
challenge in augmenting industrial efficiency and productiv-
ity [1]. When external or internal disturbances affect sys-
tem implementation, parameter changes can be identified in
a pivotal system function. To more effectively enhance the
monitoring, control, or optimization of complex systems, it
is imperative to pursuit a methodology capable of accumu-
lating precise information. Analyzing this information, we
can discern the interrelationships among input variables, en-
vironmental factors, time, and target output variables. Sub-
sequently, we can eliminate factors with negligible impact on
target output variables or selectively analyze parameters that
exert substantial influence on target output variables, thereby
optimizing system structure. This kind of method is com-
monly referred to as input variable selection (IVS)[2–4] in
the engineering field or sensitivity analysis (SA)[5–7] in the
mathematical domain.

SA seeks to direct practitioners towards prioritizing the
most critical variables that influence the output behavior of
a system. These influential variables provide the most in-
formation about system output behaviors [8]. The method
embraces a ”factor sparsity” heuristic approach [9], indicat-
ing that only a small subset of components in the system
is able to significantly impact system outputs. Traditional
sensitivity analysis methods encompass derivatives, regres-
sion, distribution, and heuristics, which often rely on histor-
ical data or expert knowledge. Regression-based methods
[10] derive sensitivity information by fitting linear regres-
sion models and necessitating numerous predefined rules for
global sensitivity analysis [11]. Derivative-based methods
[10] evaluate global sensitivity by calculating and averaging
derivatives at various points, but their applicability to non-
linear systems may be limited [8, 12]. Distribution-based
methods [10] center on output distribution characteristics,
but require predefined rules [13] . Heuristic methods [14–16]
gauge the actual impact of each system input on the output
through data filtering, depending on expert knowledge. In
contrast, the discrete event-based sensitivity analysis method

employed in this paper is not contingent on historical data or
predefined rules, enabling the swift identification of relation-
ships between multiple input variables and output variables
[8].

This paper represents the inaugural integration of the
event-based sensitivity analysis method with ZeMA hy-
draulic system data [17], enabling the dynamic evaluation
of the relationship between input and output variables in hy-
draulic systems. Temperature, pressure, and flow sensors are
regarded as input variables, whereas motor power, cooling
efficiency, vibration, cooling power, and efficiency are desig-
nated as target output variables. The interconnections among
these variables are thoroughly examined. Significantly, our
experiments demonstrate that the proposed method can ac-
curately determine the relationship between input and target
output variables without necessitating a complete sampling
cycle.

2 Event Clustering

Event clustering technology disintegrates the system’s
state into a sequence of continuous discrete events triggered
by changes in the states of a specific set of input variables.
The necessity for preconceived assumptions regarding the
system state is circumvented by this method, and it remains
impervious to the influence of historical events. Conse-
quently, quasi real-time examination of the correlation be-
tween the relevant system state and input variables is enabled
by this approach.

”Events” are defined as significant transitions in system
states, which can manifest as abrupt changes in sensor read-
ings, adjustments in operating conditions, or notable fluc-
tuations in system performance. Techniques such as detec-
tion and the formation of an Incidence Matrix are employed
to analyze the relationship between system states and in-
puts, based on the identification and understanding of these
”events”. The following are some fundamental concepts and
parameters.

• Discrete Event System
Describing events occurring at discrete time points and
their interactions is a common practice. Such systems
are typically comprised of a series of discrete events
that result in changes to the system’s state.
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• Triggered and Event Data
In the realm of discrete event systems (DES), trigger
data (TD) is characterized as any input variable whose
value transition initiates an event. The sequence of data
portraying the system’s state at a particular time is de-
noted as event data (ED).

• Triggered and Event Thresholds
Triggered thresholds (TT) and event thresholds (ET)
serve as indicators for evaluating alterations in TD and
ED. These values are usually determined by domain ex-
perts within the system.

Fig 1 depicts the procedural framework of comprehensive
event clustering technology. Sensor values are categorized
as inputs and outputs, and an incidence matrix is constructed
using logic akin to XNOR. Correlations between TDs and
EDs are revealed through the application of the rank order
clustering (ROC) method, to facilitate accuracy assessment.
Standardization of the matrix enables sensitivity index com-
putation, thereby quantifying input-output impact relation-
ships.

ED1 ED2 ED3 ED4
TD1 0.86813 0.96703 0.46154 0.8022
TD2 0.06593 0.03297 0.03297 0.02198
TD3 0.40659 0.43956 0.13187 0.36264
TD4 0.53846 0.54945 0.46154 0.47253
TD5 0.31868 0.30769 0.26374 0.25275
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Fig. 1: The schematic diagram illustrates the overall method

2.1 Detection and Formation of the Incidence Matrix
As demonstrated in Fig 1, input data and output data com-

prise the records of multiple parameters acquired after sev-
eral sampling instances. Formula (1) elucidates the corre-
lation between each pair of input events, wherein an input
event is classified as TD solely if the alteration between con-
secutive sampling results exceeds the triggered threshold.
Similarly, an output event is identified as ED only when the
alteration between consecutive sampling results surpasses
the event threshold.

if |Inputt − Inputt−1| ≥ TT → Inputt = Trigger

if |Outputt −Outputt−1| ≥ ET → Outputt = Event
(1)

When both ED and TD simultaneously occur as 0 or 1 at
the conclusion of the same sampling instance, a 1 is logged
at the corresponding position in the Incidence Matrix. If ED
and TD exhibit differences, 0 is recorded to emulate a log-
ical XNOR relationship. Essentially, a connection between
ED and TD is established exclusively when they undergo
changes simultaneously at the end of the same sampling in-
stance; otherwise, they are regarded as unrelated.

2.2 Rank Order Clustering
The data clustering process demands a significant alloca-

tion of both memory and time, with the implementation of
these algorithms being inherently complex. The ROC [18],
introduced by King [19] employs matrix operations to itera-

tively reorganize the rows and columns of the matrix. Impor-
tantly, it has been empirically proven to adaptively manage
extensive datasets in real-time [8]. The ROC algorithm is as
follows:

Algorithm 1 Rank Order Clustering
Input: The Incidence Matrixi×j .
Output: The Matrixm×n after clustering.

1: Calculate the weight for each row.
2: for i ∈ [1,m] do
3: for j ∈ [1, n] do
4: weight + = 2n−j× Incidence Matrixi×j

5: end for
6: Rowweight[i] = weight
7: end for
8: The Incidence Matrix is reordered based on rowweight, priori-

tizing rows with higher rank when two rows have equal decimal
values. This yields a new matrix called Matrix Row

9: Calculate the weight each column.
10: for j ∈ [1, n] do
11: for i ∈ [1,m] do
12: weight + = 2n−j× Matrix Rowi×j

13: end for
14: Columnweight[i] = weight
15: end for
16: Matrix Row is reordered based on columnweight. If two

columns share identical decimal values, the column on the left
receives a higher rank. This process produces the final Matrix.

17: return Matrix

Fig 2 provides a clear depiction of a basic ROC algorithm.
It is evident that inputs 2, 4, and 5 are influenced substan-
tially by outputs 1, 4, and 5.

1 2 3 4 5 6 7 8 9

1 0 0 1 0 0 0 1 0 1

2 1 0 0 1 1 0 0 0 0

3 0 0 1 0 0 0 1 0 1

4 1 0 0 1 1 0 0 0 0

5 1 0 0 1 1 0 0 0 0

6 0 1 0 0 0 1 0 1 0

7 0 0 1 0 0 0 1 0 1

8 0 1 0 0 0 1 0 1 0

1 4 5 2 6 8 3 7 9

2 1 1 1 0 0 0 0 0 0

4 1 1 1 0 0 0 0 0 0

5 1 1 1 0 0 0 0 0 0

6 0 0 0 1 1 1 0 0 0

8 0 0 0 1 1 1 0 0 0

1 0 0 0 0 0 0 1 1 1

3 0 0 0 0 0 0 1 1 1

7 0 0 0 0 0 0 1 1 1

Rank 
Order

binary weight

weight rank order

1 2 3 4 5 6 7 8 9

1 0 0 1 0 0 0 1 0 1 69 6

2 1 0 0 1 1 0 0 0 0 304 1

3 0 0 1 0 0 0 1 0 1 69 7

4 1 0 0 1 1 0 0 0 0 304 2

5 1 0 0 1 1 0 0 0 0 304 3

6 0 1 0 0 0 1 0 1 0 138 4

7 0 0 1 0 0 0 1 0 1 69 8

8 0 1 0 0 0 1 0 1 0 138 5

                  

binary weight
1 2 3 4 5 6 7 8 9

2 1 0 0 1 1 0 0 0 0
4 1 0 0 1 1 0 0 0 0
5 1 0 0 1 1 0 0 0 0
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7 0 0 1 0 0 0 1 0 1

weight 224 24 7 224 224 24 7 24 7
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Fig. 2: Illustration of the ROC Method

2.3 Normalized Sensitivity Index Calculation
For each sampling, an Incidence Matrix is generated. The

values of the Incidence Matrix are adjusted to -1 where they
are originally 0, with the objective of achieving more pro-
nounced variations in upper and lower bounds when sensi-
tivity is calculated. This replacement strategy amplifies the
model’s sensitivity to changes in input variables, facilitating
better elucidation of each variable’s impact during sensitivity
analysis. The formula for computing the normalized sensi-
tivity index is provided by formula (2) and formula (3). In
formula (2), SS represents the cumulative sum of the inci-
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dence matrix formed at each sampling instance with preced-
ing incidence matrices. Formula (3) is employed to calculate
the normalized sensitivity index.

SIt =
t∑
1

IncidenceMatrix Scores (2)

t represents the current sampling instance.

NSI =
SIn −minn

maxn −minn
(3)

n represents the total number of sampling instances, minn

and maxn represent the minimum and maximum values of
SI at the last sampling instance.

3 Case Study

The hydraulic system functions as a transmission system
to harness fluid to generate power for machinery. Typically,
fluid motion is induced by pressure differentials within in-
ternal components, regulating force intensity and direction
while serving compressors or pumps. The hydraulic sys-
tem dataset is sourced from the UC Irvine Machine Learn-
ing Repository. The test bench comprises a primary work-
ing circuit and a secondary cooling filter circuit connected
through a reservoir. Various sensors, including pressure, vol-
umetric flow, and temperature sensors, are incorporated into
the drilling rig to monitor motor power, cooling efficiency,
vibration, cooling power, and efficiency. Predefined oper-
ational cycles are iterated to measure process values such
as pressure, temperature, and volumetric flow. In this ex-
periment, 12 sensors are configured as inputs (six pressure
sensors, two volumetric flow sensors, and four temperature
sensors), and outputs are designated as motor power, cooling
efficiency, vibration, cooling power, and efficiency.

3.1 Data Processing
Health status data from this dataset is utilized, and sam-

ples are collected over a cumulative duration of ten minutes.
The dataset exhibits varying sampling frequencies, as out-
lined in Tab 1. Specifically, the pressure sensor and motor
power maintain a sampling frequency of 100Hz, whereas
the volume flow sensor operates at 10Hz, with the remain-
ing sensors adhering to a 1Hz sampling frequency. In pur-
suit of a consistent sampling rate, a data augmentation tech-
nique has been employed to standardize the sampling rate to
100Hz. This method enhances the absolute volume of data
within a confined dataset. The approach employed in this
study involves the application of time warping [20] for data
augmentation. The principal objective of Time Warping is
to introduce temporal variations by manipulating positions
along the temporal axis, thereby generating a more diverse
array of samples.

3.2 Threshold Impact on Sensitivity
In this experiment, the variance is selected as the thresh-

old, as it quantifies the extent of data deviation. The nor-
malized sensitivity indices at different thresholds in Fig 3.

From Figure 3, it is evident that, during this experimental
process, TDs with both significant and minimal impacts on
ED sensitivity can be clearly discerned, irrespective of the

Table 1: Sensors and collected data
Sensor Physical Quantity Unit Sampling Rate

PS1-PS6 Pressure bar 100 Hz
EPS1 Motor power W 100 Hz

FS1,FS2 Volume flow I/min 10 Hz
TS1-TS4 Temperature ◦C 1 Hz

VS1 Vibration mm/s 1 Hz
CE Cooling efficiency % 1 Hz
CP Cooling power kW 1 Hz
SE Efficiency factor % 1 Hz

(c) (d)

(a) (b)

Fig. 3: Normalized Sensitivity Indices at Different Thresh-
olds

threshold value. However, with an increase in the thresh-
old, the alterations in the normalized sensitivity indices for
the five EDs become progressively more gradual. This trend
is attributed to 1) consistency in the TDs significantly influ-
encing these EDs, 2) and excessively large thresholds atten-
uating the influence of each TD on the ED, thus obscuring
distinctions between these distinct EDs in sensitivity anal-
ysis. On the contrary, excessively small thresholds may in-
duce sensitivity impacts for each input and target output even
with minimal changes, potentially magnifying the sensitivity
influence of each sensor on the ED. Therefore, the selection
of an appropriate threshold is paramount.

In this experiment, a threshold set at 0.3 times the variance
is opted for. Although selecting 0.3 times the variance as
the threshold may not be the optimal choice, it showcases
a strong capability to reflect the relationship between input
variables and output results. By comparing sensitivity index
curves under various multiples of the variance, it is observed
that 0.3 times the variance accurately discloses the impact of
input variables on the system output.

3.3 TD Impact on ED.
Fig 4 illustrates the histogram of normalized sensitivity

indices. It is notable that pressure sensors PS1 and PS2 are
identified as the most significant influencing factors in motor
power, cooling efficiency, vibration, cooling power, and ef-
ficiency. Conversely, temperature sensor TS1 is observed to
have the least impact on these parameters. This suggests that
in the occurrence of abnormalities in motor power and other
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parameters, priority should be given to investigate whether
pressure sensors PS1 and PS2 are abnormal or not. Further-
more, as depicted in Figure 4, the normalized sensitivity in-
dices for cooling efficiency exhibit a relatively uniform dis-
tribution. This implies that compared to other target outputs,
the twelve sensors contribute evenly to the impact on cooling
efficiency.

Fig. 4: The normalized sensitivity indices

3.4 Normalized Sensitivity Index
Fig 5 illustrates the values of the normalized sensitivity

index at different sampling instances, using a threshold of
0.3 times the variance, specifically at the 1000th, 5000th,
30000th, and final sampling points. Clearly, by the 5000th
sampling instance, the impact of TDs on EDs becomes dis-
cernible, and by the 30000th sampling instance, the results
closely approximate the final outcomes, exhibiting only sub-
tle changes. This suggests that the methodology does not
require the completion of the final sampling, and the corre-
lation between EDs and TDs can be observed within a brief
timeframe.

(a) (b)

(c) (d)

Fig. 5: Normalized Sensitivity Indices at Different Sampling
Instances

3.5 Role of ROC
Tab 2 and Tab 3 depict the results obtained following ROC

processing at two selected sampling instances (the 2000th
and 25000th) post ROC processing. TD1 to TD12 corre-
spond to ’FS1’, ’FS2’, ’PS1’, ’PS2’, ’PS3’, ’PS4’, ’PS5’,
’PS6’, ’TS1’, ’TS2’, ’TS3’, ’TS4’, and ED1 to ED5 cor-
respond to ’CE’, ’CP’, ’EPS1’, ’SE’, ’VS1’. These tables
clearly demonstrate that ROC effectively represents many-
to-many relationships. In Tab 2, we observe associations,
where ED2, ED3, ED4, and ED5 are correlated with TD1,
TD2, TD3, TD4, TD5, TD6, TD7, TD8, TD10, TD11, and
TD12. However, in Tab 3, the relationships between all EDs
and TD9 and TD11 are not statistically significant. Integrat-
ing information from both tables, we infer that ED2, ED3,
ED4, and ED5 consistently exhibit similar patterns in these
two sampling instances, suggesting comparable normalized
sensitivity indices to the 12 sensors. Such analysis corre-
sponds to the results presented in Fig 3(b).

Table 2: ROC at the 2000th Sampling Instance
ED1 ED2 ED3 ED4 ED5

TD5 1 0 0 0 0
TD9 1 0 0 0 0
TD1 0 1 1 1 1
TD2 0 1 1 1 1
TD3 0 1 1 1 1
TD4 0 1 1 1 1
TD6 0 1 1 1 1
TD7 0 1 1 1 1
TD8 0 1 1 1 1

TD10 0 1 1 1 1
TD11 0 1 1 1 1
TD12 0 1 1 1 1

Table 3: ROC at the 25000th Sampling Instance
ED1 ED2 ED3 ED4 ED5

TD1 1 1 1 1 1
TD2 1 1 1 1 1
TD3 1 1 1 1 1
TD4 1 1 1 1 1
TD5 1 1 1 1 1
TD6 1 1 1 1 1
TD7 1 1 1 1 1
TD8 1 1 1 1 1

TD10 1 1 1 1 1
TD12 1 1 1 1 1
TD9 0 0 0 0 0

TD11 0 0 0 0 0

4 Conclusion

This paper effectively integrates real-time sensitivity anal-
ysis methodologies into hydraulic systems, facilitating the
automated grouping of input variables and the quantification
of their significance and correlation with target output vari-
ables. Through continual monitoring and assessment of in-
put variable fluctuations, the impact weights on target output
are rapidly and accurately determined by this method. Anal-
ysis of hydraulic systems reveals significant impacts on sys-
tem efficiency from the pressure sensors PS1, PS2, and flow
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sensor FS2, whereas the pressure sensor PS3 and tempera-
ture sensor TS1 exhibit the minimal effects. This approach
not only diminishes reliance on complete sampling process
data but also exhibits remarkable real-time responsiveness
and precision. Validation substantiates that the proposed
method furnishes robust technical support for real-time sys-
tem monitoring and adjustment, thereby unveiling novel per-
spectives for enhancing control system performance. These
findings offer new way to refine real-time data analysis for
industrial systems across various domains.
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[15] Jérôme Mendes, Ricardo Maia, Rui Araújo, and Francisco
A. A. Souza. Self-evolving fuzzy controller composed of uni-
variate fuzzy control rules. Applied Sciences, 10(17):5836,
August 2020.
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Abstract: This paper studies a set-membership filter-based inertial integrated localization problem, where the inertial navigation
system (INS) error and Global Navigation Satellite System (GNSS) measurement error are unknown-but-bounded (UBB) noises.
To solve this problem, we establish a strapdown INS error model and a GNSS measurement model with UBB noises. Based
on the optimal set-membership filtering framework, we propose a constrained zonotopic fast resurisive localization method.
Compared with the existing probabilistic integrated navigation methods, the proposed method does not need to know the specific
noise distribution and has better versatility and robustness. Finally, the numerical simulation results of the INS/GNSS navigation
corroborate the effectiveness of this method.

Key Words: INS/GNSS, Constrained Zonotope, Set-Membership Filter

1 Introduction

Nowadays, unmanned aerial vehicles (UAVs) have been
widely used in various aspects of real life. However, the task
of determining the position of a UAV poses many challenges.
To localize themselves under unknown environments, UAVs
extensively utilize the Global Navigation Satellite System
(GNSS) and inertial navigation system (INS) integrated nav-
igation to obtain high-precision navigation position informa-
tion.

GNSS can provide high-precision three-dimensional po-
sitioning information, with accuracy reaching the centimeter
level [1]. However, its performance is influenced by exter-
nal environmental factors and satellite visibility, leading to
situations where update frequency is low and signal inter-
ruptions occur in certain cases [2]. On the contrary, INS is
an autonomous system that continuously integrates real an-
gular rates and specific forces measured by gyroscopes and
accelerometers to obtain position, velocity, and attitude in-
formation. However, gyro drift and accelerometer errors of
the INS tend to increase over time [3].

Combining INS and GNSS can compensate for the indi-
vidual shortcomings of each system, ultimately enhancing
the precision of the navigation system. Traditionally, proba-
bilistic approaches are employed for data fusion of these two
sensors such as UKF [4] or EKF [5].

However, when GNSS measurement information deterio-
rates due to interference, and environmental vibrations affect
the inertial navigation devices in complex high-dynamic en-
vironments, accurately representing their noise probability
distribution becomes challenging. In such scenarios, these
probabilistic methods have limitations [6]. Therefore, ad-
dressing combined navigation in the presence of unknown
noise distributions of INS/GNSS sensors is crucial for en-
hancing the adaptability and robustness of integrated navi-
gation systems.

Set-Membership Filter [7] as a set-based filtering theory,
treats noise as unknown-but-bounded noise, and can effec-
tively address situations where the noise distribution of INS

This work was supported by the National Natural Science Foundation
of China under Grant 62001494 and U23B2032 and U2241214.

and GNSS is unknown. In [8], a comprehensive set-based
GNSS positioning method is proposed. This method named
Lane Boundary Cooperative Augmented Set-membership
GNSS Positioning. In [8], an approach to three-dimensional
map-aided GNSS positioning method based on set-valued
estimation is presented. The authors propose zonotope
shadow matching (ZSM) as a set-valued three-dimensional
map-aided GNSS positioning method. The strapdown INS
error model is provided in [9], depicting how errors in the
INS accumulate over time.

Building on existing work, we aim to develop a
set-membership filter combined navigation method for
INS/GNSS based on unknown-but-bounded noise descrip-
tion, with the purpose of estimating the UAV position. Our
primary contributions are as follows:

• We first present the strapdown INS error model based
on unknown-but-bounded errors. The errors in the in-
ertial navigation accumulate over time in the form of
unknown-but-bounded noise.

• Most importantly, within the set-membership filter
framework, we propose an INS/GNSS integrated nav-
igation method based on unknown-but-bounded noise.
This approach allows for obtaining the UAV position,
which is represented in a set-valued form.

The remainder of this paper is structured as follows.
Section II introduces tools for describing set, Section III
describes the notation and the system model, Section IV
presents the method, Section V describes the experiment and
results, Section VI is the conclusion.

2 Preliminaries

In this paper, constrained zonotopes are adopted to accu-
rately describe a set’s convex inclusion. They are used to
describe the uncertainty range of the INS error. Constrained
zonotopes are an extension of zonotopes, more specifically
proposed in [10].

Definition 1 (Constrained Zonotope): A set Z ⊂ Rn

is a constrained zonotope if there exists (Gz, cz, Az, bz) ∈
Rn×ng × Rn × Rnc×ng × Rnc such that

Z = {Gzξ + cz : ∥ξ∥∞ ≤ 1, Azξ = bz} , (1)

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China

775  



written as Z(Gz, cz, Az, bz).
Apart from being able to describe sets exactly, constrained

zonotope is also closed with respect to basic operations
on sets. More specifically, the operations are indicated in
Proposition 1.

Proposition 1 (The basic set operations [10]): The con-
strained zonotope Z = Z(Gz, cz, Az, bz) ∈ Rn, W =
Z(Gw, cw, Aw, bw) ∈ Rn , Y = Z(Gy, cy, Ay, by) ∈ Rk

and R ∈ Rk×n.

RZ = Z(RGz, Rcz, Az, bz)

Z ⊕W = Z([Gz Gw] , cz + cw,

[
Az 0
0 Aw

]
,

[
bz
bw

]
)

Z ∩R Y = Z([Gz 0] , cz,

 Az 0
0 Ay

RGz −Gy

 ,

 bz
by

cy −Rcz

)
(2)

In this work, the interval hull □Z of a constrained zono-
tope is computed using linear programming (LP).

Proposition 2 (Interval Hull): A constrained zonotope can
be bounded by a interval hull as follow:

Z(G, c,A, b) ⊆ □Z(p,H)
p =

∏n
i=1 mid([ρi−, ρi+])

H =
∏n

i=1 diag(rad([ρ
i−, ρi+]))

ρi− = min{Giξ + ci : Aξ = b, ∥ξ∥∞ ⩽ 1}
ρi+ = max{Giξ + ci : Aξ = b, ∥ξ∥∞ ⩽ 1}

(3)

where mid(s, t) := 1
2 (s+ t), rad(s, t) := 1

2 |s− t|.
In this work, we use uncertain variables to describe the

variables:
Definition 2 (Uncertain Variables [7]): Unlike random

variables, which can be described by probability distribu-
tions, uncertain variables lack any information about prob-
ability but can be described by their range of values.

JxK := {x(ω) : ω ∈ Ω}, (4)

where x is referred to as an uncertain variable, and JxK is
referred to as the range of the uncertain variable.

3 System Model

In practical unmanned aerial systems, inertial navigation
estimation is commonly employed to estimate the position,
velocity, and attitude of the unmanned aerial vehicle. How-
ever, the errors in navigation estimation tend to increase over
time. This paper proposes an analysis of the uncertain range
of navigation estimation errors using uncertainty variables.
The UAV state and inertial measurements [11] can be ex-
pressed by:  ϕ̃

ν̃n

p̃

 =

 ϕ
νn

p

+

 δϕ
δνn

δp

 , (5)

[
ω̃b
ib

f̃ b

]
=

[
ωb
ib

f b

]
+

[
δωb

ib

δf b

]
, (6)

where ϕ̃, ν̃n and p̃ are output state of attitude and speed and
position, ϕ, νn and p are the ground-truth state, δϕ, δνn and
δp are state errors. ω̃b

ib and f̃ b are measurements of angular
velocity and specific force, ωb

ib and f b are truth-value, δωb
ib

and δf b are errors. More specifically, the errors are indicated
in Lemma 1.

Lemma 1 (unknown-but-bounded errors): The UAV state
and IMU errors can be approximated by uncertain variable
in Definition 2 as

δϕ = [δθ, δγ, δφ] ∈ JδϕK,
δνn = [δνE , δνN , δνU ] ∈ JδνnK,
δp = [δL, δλ, δh] ∈ JδpK,
δωb

ib = [δωb
ibx, δω

b
iby, δω

b
ibz] ∈ Jδωb

ibK,
δf b = [δf b

x, δf
b
y , δf

b
z ] ∈ Jδf bK.

(7)

Remark 1: It is usually assumed that the noise belongs to
a Gaussian distribution in previous methods [11]. In fact, the
error distribution of the UAV state and IMU is difficult to be
described by a deterministic distribution. However, based on
UAV parameters and IMU sensor information and statistics,
the magnitude of the error regions can be obtained.

To establish the INS/GNSS integrated navigation model,
we choose the strapdown INS error model [12]. The func-
tional relation is given in Lemma 2.

Lemma 2 (Strapdown INS error model): The strapdown
INS error model for x = [δϕ, δνn, δp] and w = [δωb

ib, δf
b]

are as follows:
ẋ = Fx+Gw, (8)

where

F =

Maa Maν Map

Mνa Mνν Mνp

Mpa Mpν Mpp

 , G =

−Cn
b 03×3

03×3 Cn
b

03×3 03×3

 ,

and the details can be found in Appendix A.
By discretizing the strapdown INS error model (8), one

can obtain the discrete-time model

xk+1 = Akxk +Bkwk, (9)

where Ak = eF∆t and Bk =
∫ F∆t

0
eFτdτG; ∆t denotes

the time duration from tk−1 to tk.
Equation (9) represents the uncertainty error range of the

inertial navigation estimation results. In order to correct
this accumulating error, unmanned aerial vehicles require
additional measurement information. This paper considers
GNSS measurement information. However, measurement
information also entails an error range, which we describe
and analyze in the form of uncertainty variables. The GNSS
measurement error is given by:

zk = p̃nINS − p̃nGNSS = Hkxk + vk, (10)

where

Hk =
[
03×3 03×3 I3×3

]
.

Hk represents the measurement matrix, zk represents the
measurement output, p̃nINS denotes the estimation results of
the inertial navigation system, p̃nGNSS denotes the estimation
results of the Global Navigation Satellite System, and vk

represents the uncertainty of measurement errors.
To achieve more accurate estimation of UAV states, it is

necessary to fuse the system error uncertainty and measure-
ment error uncertainty in Equation (9) and Equation (10)
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through filtering, in order to eliminate the cumulative errors
of the Inertial Navigation System. For the uncertainty vari-
able description of error uncertainty filtering, this paper de-
signs a combined navigation method based on the optimal
set membership filtering framework.

For any k ⩾ 0, let X̂k denote the set of all states JxkK ∈
X̂k that are consistent with (9) the discrete time model, the
measured output sequence up to time k, (z0, z1, . . . , zk),
and the unknownbut-bounded uncertain state Jx0K ⊆ X̂0,
JwkK ⊆ W k and JvkK ⊆ V k. X̂k is given recursively by
the SMFing is indicated in Lemma 2.

Lemma 3 (SMFing framework): Based on the optimal
SMFing framework [7], the general scheme is given by the
following recursion:

• Initialization. Set the initial prior set Jx0K ⊆ X̂0.
• Prediction. For k ⩾ 0, given X̂k, the prior set X̄k+1

is predicted by the equation (9) is

X̄k+1 ⊇ {Akxk +Bkwk : xk ∈ JxkK, wk ∈ JwkK}.
(11)

• Update. For k ⩾ 0, given the measured output zk+1,
the posterior set X̂k+1 is

X̂k+1 ⊇ {xk+1 ∈ X̄k+1 :
Hk+1xk+1 + vk+1 = zk+1, vk+1 ∈ JvkK}.

(12)
The new estimated state Jxk+1K ⊆ X̂k+1.

To ensure the optimality of the filtering, this paper makes
the following assumptions:

Assumption 1 (Unrelated Noises and Initial State): ∀k ∈
N0, wk,vk,x0 are unrelated.

In the remainder of the paper, our goal is to compute these
two steps (11)-(12) using SMFing.

4 Method

The combined INS/GNSS navigation method with the set-
membership filter of IMU data is derived in this section, and
the process is shown in Fig. 1.

Fig. 1: Procedure of SMF Method.

JwkK ⊆ W k and JvkK ⊆ V k are respectively the state
and measurement error which satisfy the following equa-
tions:

JwkK ⊆ W k = Z(Ĝw
k , ĉ

w
k , Â

w
k , b̂

w
k ), (13)

JvkK ⊆ V k = Z(Ĝv
k, ĉ

v
k, Â

v
k, b̂

v
k). (14)

The initial state of system satisfies the equation (9) and
Lemma 3:

Jx0K ⊆ X̂0 = Z(Ĝx
0 , ĉ

x
0 , Â

x
0 , b̂

x
0). (15)

On the basis of the INS error discrete time model, the pre-
diction system’s state satisfy the following equations:

X̄k+1 = AkX̂k ⊕BkW k. (16)

Equation (16) demonstrates that prediction state set, Ak ∈
R and Bk ∈ R are approximation matrices.

The specific calculation of Ak and Bk are as follows:

Ak = eF∆t =

∞∑
i=0

(F∆t)
i

i!
≈ I + F∆t+

1

2
(F∆t)

2
,

(17)

Bk =

∫ F∆t

0

eFτdτG =

∞∑
i=0

(
F i∆ti+1

)
(i+ 1)!

G (18)

≈ (∆t+
1

2
F∆t2 +

1

6
∆t3F 2)G.

Finally, the prediction system’s state as following equa-
tion:

X̄k+1 = (1 + F∆t+ 1
2 (F∆t)

2
)Z(Ĝx

k, ĉ
x
k, Â

x
k, b̂

x
k)

⊕((∆t+ 1
2F∆t2 + 1

6∆t3F 2)G)Z(Ĝw
k , ĉ

w
k , Â

w
k , b̂

w
k ).

(19)
The function of update step is to revise the prediction

set X̄k+1 by measured output (10). Measurement set Y
is also represented by constrained zonotope like the predic-
tion set, the measurement uncertain set is represented by
Z(Ĝy, ĉy, Ây, b̂y).

Then the estimated state set X̂k+1 given by the following
equation:

{xk+1 ∈ X̄k+1 : Hk+1xk+1 + vk+1 = zk+1, vk+1 ∈ V k+1}
⊆ X̂k+1 = X̄k+1 ∩R Y k+1,

(20)

where R = Hk+1, and Y k+1 = zk ⊕ V k+1.
Through Equation (20), we can obtain the estimation re-

sult of one iteration. However, as the number of iterations
increases, the dimension of constrained zonotope will con-
tinuously increase, leading to a decrease in computational
efficiency.

To handle this problem, we propose a fast iteration method
(see Algorithm 1) based on OIT heuristic in [13], and we
provide a line by line explanation as follows:

Algorithm 1 Fast Recursive Method
1: Initialization:Bounded Jx0K ⊆ X̂0 = Z(Ĝx

0 , ĉ
x
0 , Â

x
0 , b̂

x
0 ), select

slide window size δ.
2: loop
3: □Z(p̂k, Ĥk)← Z(Ĝx

k , ĉ
x
k , Â

x
k , b̂

x
k) by (3);

4: if k ⩽ δ then
5: Z(Ĝx

k , ĉ
x
k , Â

x
k , b̂

x
k)← X̂k−1 by (19) and (20);

6: else if k > δ then
7: Z(Ĝx

k , ĉ
x
k , Â

x
k , b̂

x
k) ← □Z(p̂k−δ−1, Ĥk−δ−1) by (19)

and (20);
8: end if
9: X̂k = Z(Ĝx

k , ĉ
x
k , Â

x
k , b̂

x
k);

10: k ++
11: end loop

• Line 1 is the initialization of Algorithm 1, where δ rep-
resents the chosen window size of Algorithm 1. The
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dimension of X̂k will be constrained based on the size
of δ, with a larger δ resulting in more accurate results
and a smaller δ leading to faster algorithm execution.

• Line 3 involves storing the estimation results of each
iteration in Interval Hull.

• Line 5 is for k ⩽ δ, which is the same as the classical
constrained zonotope SMF algorithm.

• Line 7 is for k > δ, which involves obtaining the es-
timation result for Z(Ĝx

k, ĉ
x
k, Â

x
k, b̂

x
k) after k iterations

using □Z(p̂k−δ−1, Ĥk−δ−1) as the initial state over the
time window [k − δ, k]. It is a simplified version of the
OIT inspired constrained zonotopic SMF in [13].

5 Simulation and Result

In the experimental study, we respectively use the position
and velocity and attitude errors of UAV as the state and the
angular velocity and acceleration errors were simulated in
the time scale model of the inertial measuring unit, using the
equations

xk ∈ X̂k =
[
δϕ̂k, δν̂

n
k , δp̂k

]
= Z(Ĝx

k, ĉ
x
k, Â

x
k, b̂

x
k),

(21)
wk ∈ W k = [δωb

ib,k, δf
b
k] = Z(Gw

k , c
w
k , A

w
k , b

w
k ). (22)

IMU and their characteristics for clarity are given in the
Table 1 below.

Table 1: Sensor Parameters of The Simulation
Specification Value

Gyroscope constant bias (deg/h) 0.03
Accelerometer constant bias (ug) 100

Angular random walk 0.001
Velocity random walk 5

GNSS error(m) 10
IMU rate (Hz) 10
GNSS rate(Hz) 10

Simulation step size 540

From Fig. 2 which displays the interval estimation results
for the unmanned aerial vehicle’s position. The interval esti-
mation represents the range of estimates for each component
derived from the ensemble filtering estimation. Fig. 3 shows
the position estimation results of the UAV in the simulation.
The point estimation result is obtained as the median of the
interval estimation result derived from the ensemble filtering
position estimation.

6 Conclusion

In this paper, combining with the INS and GNSS by Set-
Membership Filter. Aiming at the situation that the error dis-
tribution of INS and GNSS is unknown in the actual system,
the bound of unknown-but-bounded noise inclusion estima-
tion is used, which is a powerful supplement to the INS inte-
grated navigation method based on probability. Apart from
inertial integrated navigation with GNSS as measurement,
there are other more practical integrated navigation meth-
ods, such as visual-inertial odometry (VIO). Therefore, we
will carry out in-depth research on SMF-based, more reli-
able and more general integrated navigation methods in the
future. In future work, we will address the role of the INS
linearization error in the SMF prediction equation.

Fig. 2: The interval estimation results of state.The results
indicate that the proposed Algorithm 1 is able to enclose the
true position state of the unmanned aerial vehicle.

Fig. 3: The point estimation results of state.The red line is
the true state and the green line is the estimated state.

A INS Error propagation formula

The following content demonstrates the specific form of
F in the strapdown INS error model. i represents the iner-
tial coordinate system; e represents the earth coordinate sys-
tem; n represents the navigation coordinate system; b rep-
resents the body coordinate system. RM and RM represent
the Earth’s radii parameters.

Maa ≜ −
(
ωn

in×
)
:

Maa (1, 1) = Maa (2, 2) = Maa (3, 3) = 0

Maa (1, 2) = ωie sinL+
νE

RN + h
tanL

Maa (1, 3) = −ωie cosL− νE
RN + h

Maa (2, 1) = −ωie sinL− νE
RN + h

tanL

Maa (2, 3) = − νN
RM + h

Maa (3, 1) = ωie cosL+
νE

RN + h

Maa (3, 2) =
νN

RM + h
.
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Maν =



0 − 1

RM + h
0

1

RN + h
0 0

tanL

RN + h
0 0


,

Map =


0 0 νN

(RM+h)2

−ωie sinL 0 − νE

(RN+h)2

ωie cosL+ νE sec2 L
RN+h 0 − νE tanL

(RN+h)2

 ,

Mνa ≜ (fn×) =

 0 −fn
U fn

N

fn
U 0 −fn

E

−fn
N fn

E 0

 ,

Mνν :

Mνν (1, 1) =
νN tanL− νU

RN + h

Mνν (1, 2) = 2ωie sinL+
νE tanL

RN + h

Mνν (1, 3) = −2ωie cosL− νE
RN + h

Mνν (2, 1) = −2ωie sinL− 2νE tanL

RN + h

Mνν

(
2, 2

)
= − νU

RM + h

Mνν (2, 3) = − νN
RM + h

Mνν (3, 1) = 2ωie cosL+
2νE

RN + h

Mνν (3, 2) =
2νN

RM + h
Mνν (3, 3) = 0

Mνp :

Mνp (1, 1) =
νEνN sec2 L

RN + h
+ 2νNωie cosL+ 2νUωie sinL

Mνp (1, 2) = 0

Mνp (1, 3) =
νEνU − νEνN tanL

(RN + h)
2

Mνp (2, 1) = −2νEωie cosL− ν2E sec2 L

RN + h
Mνp

(
2, 2

)
= 0

Mνp (2, 3) =
ν2E tanL

(RN + h)
2 +

νNνU

(RM + h)
2

Mνp (3, 1) = −2νEωie sinL
Mνp (3, 2) = 0

Mνp (3, 3) = − ν2E
(RN + h)

2 − ν2N
(RM + h)

2

Mpa =

0 0 0
0 0 0
0 0 0

 ,

M
pν

=


0 1

RM+h 0

secL
RN+h 0 0

0 0 1

 ,

Mpp =


0 0 − νN

(RM+h)2

νE tanL secL
RN+h 0 − νE secL

(RN+h)2

0 0 0
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Abstract: The paper solves the robust Kalman prediction problem for systems with linearly correlated noise and mixed 
uncertainties of noise variances, multiplicative noises and multiple networked-inducements including missing measurements, 
packets dropouts and two-step random measurement delays. The original system with mixed uncertainties is transformed into 
one with only uncertain fictitious noise variance by the proposed model-transformation method. Then the robust steady-state 
Kalman predictor is presented by minimax robust estimation principle. The robustness of robust Kalman predictor is proved by 
the extended Lyapunov equation approach and matrix factorization. Finally, a simulation study applied to tracking system is 
provided to examine effectiveness and applicability of the proposed algorithm. 

Key Words: Two-Step Random Measurement Delays, Model-Transformation, Extended Lyapunov Equation, Minimax Robust 
Prediction, Uncertain Noise Variance 
 

 
 

1 Introduction 

Kalman filtering method assumes that the system model 
is exactly known. However, this assumption can hardly hold 
due to linearization, model reduction and some 
networked-induced uncertainties. Hence, many studies have 
been done on robust Kalman estimator that is robust against 
these mentioned uncertainties. To make an estimator robust 
against multiplicative noises, linear matrix inequation, 
Riccati difference equation, innovation analysis and 
fictitious noises method are used to address the robust 
estimation problem [1-4]. For system with multiplicative 
noise, the optimal weighted fusion filter is presented based 
on an innovation analysis approach and the fictitious noises 
method [3, 4]. But the original fictitious noises method 
cannot be directly used for model-transformation for system 
with multiple networked-inducements. 

The system noise variance is usually uncertain in many 
applications. For systems with uncertain noise variance, the 
polynomial approach, game theory and Lyapunov equation 
method have been investigated [5-7]. In [6], the definitions 
of conservative and actual system are proposed, and 
weighted fusion robust Kalman predictor (RKP) is presented 
according to minimax robust estimation principle (MREP). 
Based on this, the guaranteed cost weighted measurement 
fusion RKP is addressed by the Lyapunov equation 
approach for system with uncertain but bounded above 
(UBBA) noise variance in [7].  

In networked system, there exist networked-induced 
uncertainties such as packet outputs, random measurement 
delay (RMD) and missing measurements, etc. Hence, some 
robust filters have been presented for systems with different 
kinds of networked-induced uncertainties in [8-12], where a 
single networked-induced uncertainty, such as packet 
dropouts [8] and missing measurements [9] are considered 

                                                           
*This work is supported by the Natural Science Foundation of China 

(NSFC-61966010, NSFC-62263009) and by the Guangxi Natural Science 
Foundation (2020GXNSFAA297032). (Corresponding author: Chunshan 
Yang) 

respectively. Further, the distributed recursive filtering for 
multisensor networked system with multi-step sensor delays, 
missing measurement is addressed in [10]. The time-varying 
and steady-state filters weighted by matrix are proposed for 
multisensor systems with random measurement time-delay, 
missing measurements and packet dropouts in [11]. The 
adaptive Kalman filter for system with packet outputs, 
random delay and missing measurements is proposed by 
Riccati equations in [12].  

Considering the system with multiplicative noises and 
correlated random delays in transmission, the authors 
addressed the optimal weighted fusion filter by an 
innovation approach in [13]. The optimal filtering problem 
is addressed for systems with multiplicative noises, packet 
dropouts, input delays and measurement delays in [14]. On 
the other hand, the robust Kalman estimation problem is 
addressed for system with UBBA noise variance, 
multiplicative noise and packet dropouts [15]. The problem 
of weighted fusion RKP is solved in [16, 17], where RMD 
and missing measurements [16], missing measurements and 
packets dropouts [17] are considered.  

In this paper, the RKP problem for system under linearly 
correlated noise and mixed uncertainties of UBBA noise 
variance, missing measurements, packets dropouts and 
two-step RMD is presented. 

Notations: The following notations are adopted. 
n , n n : n-dimensional Euclidean space and set of n n  

real matrix; diag  : diagonal matrix;  tr M : trace of 

matrix M; A B : 0A B   is positive semi-definite 
(PSD); nI : identity matrix with dimension of n n ; Οn , 

Οn m : zero matrix with dimensions of n n  and n m ;  : 

Kronecker product; , 1|La i jY Y     : aY matrix with L L  

block and its i-th row and j-th column block matrix being Y . 

2 System Modeling and Problem Formulation 

Consider the following discrete-time linear system 
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1

1
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r
r

x t F t F x t Bw t


     
 

        (1) 

       1z t t Dx t v t                    (2) 

     v t Gw t g t                       (3) 

where   nx t   and   rw t   are state and process noise, 

 r t  is parametric random perturbation to system state. 

  mz t   and   mv t   are sensor measurement outputs 

and measurement noise.  w t  and  v t  are linearly 

correlated as shown in (3), and  g t  is white noises. 

n nF  , 
r

n nF
 , n rB  , m nD   and m rG   

are known matrices. 

The measurement  y t  received by the predictor is 

subject to packet dropouts and two-step RMD. 

            
         

          

2 2 3

1 2 3

1 2 3

1 1

          1 1 2

         1 1 1 1

y t t z t t t z t

t t t z t

t t t y t

  

  

  

    

   

   

     (4) 

The following assumptions are considered: 

Assumption 1.  w t ,  g t  and  r t  are mutually 

uncorrelated white noises with zero-means and uncertain 

actual variances Q , R  and 
r

R , respectively. 

Assumption 2. The initial state  0x  is uncorrelated 

with  w t ,  g t  and  r t , and has known mean 0 , and 

unknown uncertain actual variance 0P . 

Assumption 3. Q , R , 
r

R  and 0P  are UBBA, and their 

known conservative upper bounds (CUBs) are Q , R , 
r

R  

and 0P , i.e., 

Q Q , R R , 
r r

R R  , 0 0P P             (5) 

Assumption 4.   , 1,2,3i t i   are mutually uncorrelated 

Bernoulli distributed random sequence with probabilities  

  Prob 1i it   ,   Prob 0 1i it       (6) 

where 0 1i   are known constants.  
Models (2) and (4) show the following five cases:  

(1)    y t z t  if  1 1t   and  2 1t  , i.e., the 

predictor will receive the measurements correctly and 
promptly.  

(2)    1y t z t   if  2 0t   and  3 1t  , i.e., the 

predictor use  1z t   to estimate (one-step RMD).  

(3)    2y t z t   if  1 1t  ,  2 0t   and 

 3 0t  , i.e., the predictor use  2z t   to estimate 

(two-step RMD).  

(4)    y t v t  if  1 0t  ,  2 1t  , i.e., the predictor 

use  v t  to estimate (missing measurements).  

(5)    1y t y t   if   0, 1,2,3i t i   , i.e., the 

predictor use  1y t   to estimate (packets dropouts). 

From Assumption 4, we have the statistical information 

   2E Ei i it t         , 

       2 2E E ,i j i j i jt t t t i j              , 

   
3 3 3

2

1 1 1

E Ei i i
i i i

t t  
  

   
    

   
                (7) 

3 Model-transformation  

To enable the original systems (1)-(4) to design RKP, a 
novel model-transformation method is used to transform the 
original system to one with fictitious white noises. 

3.1 Augmented State Space Model 

Defining        
1

r

N

n r
r

w t t F x t Bw t


  , then we have 

     1 nx t Fx t w t   . By introducing the augmented 

state  ax t  and noise  aw t  for systems (1)-(4),  

          TT T T+1 +1 1ax t x t t z t yz t    ,

      TT T
a nw t w t v t    , 

we have 

         1a a a a ax t F t x t B t w t   , 

         a ay t D t x t t v t                     (8) 

           

         

3

0 1 2 4 2 3 5
1

1 3 6 1 2 3 7
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F t F t F t t F t t F
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   0 2 1=aB t B t B , 
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 0 2= Ο mm n mD I 
 
  ,  1 = Ο m mm n mD I I 

   , 

 2 2= Ο mm n mD I 
   ,  3 = Ο Οm n m m mD I I  , 

 4 = Οm m mD H I I ,  5 = Ο Οm n m m mD I I  , 

 6 = Ο m mm n mD I I 
   ,  7 = Ο m mm n mD I I 

   (10) 
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3.2 Extended Fictitious Noise Method 

From (9) we have mathematical expectation 

 
3
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1

1 3 6 1 2 3 7
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  0 2 1=E =a aB B t B B   , 
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1 3 6 1 2 3 7
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a a i i
i

D D t D D D D

D D

    

    


     




 (11) 

Define    e a aF t F t F  ,    =e a aDt tD D , and the 

noises 

   = , 1, 2,3i i it t i    , 

     4 1 2=t t t   ,      5 2 3=t t t   , 

     6 1 3=t t t   ,        7 1 2 3=t t t t          (12) 

it easy to prove that  i t  are uncorrelated white noises 

with zero-means and statistical information 

   2E 1 , 1, 2,3i i i it i         , 

 2
4 4 1 2E t       ,  2

5 5 2 3E t       , 

 2
6 6 1 3E t       ,  2

7 7 1 2 3E t           (13) 

Furthermore,  eF t  and  eD t  can be reorganized as 

[18] 

   
7

1

=e i ai
i

F t t F

 ,    

7

1

=e i ai
i

D t t D

         (14) 

1 1 2 4 3 6 2 3 7aF F F F F       , 

2 2 1 4 3 5 1 3 7aF F F F F       , 

3 3 2 5 1 6 1 2 7aF F F F F       , 4 4 3 7aF F F  , 

5 5 1 7aF F F  , 6 6 2 7aF F F  , 7 7aF F , 

1 1 2 4 3 6 2 3 7aD D D D D       , 

2 2 1 4 3 5 1 3 7aD D D D D       , 

3 3 2 5 1 6 1 2 7aD D D D D       , 4 4 3 7aD D D  , 

5 5 1 7aD D D  , 6 6 2 7aD D D  , 7 7aD D   (15) 
Thus (8) can be transformed as 

     1a a a fx t F x t w t   , 

     a a fy t D x t v t                         (16) 

where the fictitious white noises  fw t  and  fv t  are 

         f a aaew t F t x t B tt w  , 

         f e av t D xt t t v t                  (17) 

3.3 The Statistical Characteristics of Fictitious Noises 

The actual fictitious noises variances of  fw t  and 

 fv t  are UBBA, but their CUBs and property of PSD can 

be obtained based on Assumptions 1-4.  
Lemma 1. Under Assumptions 1-4, we have 
(i) The actual and conservative non-central second-order 

moments  X t  and  X t  of original system state  x t  

satisfy generalized Lyapunov equations (GLEs) 
     T T1 nX t FX t F Q t BQB    , 

     T T1 nX t FX t F Q t BQB    , 

    T

1
r r r

N

n
r

Q t R F X t F  


 , 

    T

1
r r r

N

n
r

Q t R F X t F  


                    (18) 

with actual and conservative initial values 

  T
0 0 00X P    ,   T

0 0 00X P    . Also,  X t ,  X t  

and      X t X t X t    are PSD, i.e., 

     0, 0, 0X t X t X t                      (19) 

(ii)  aw t  has conservative and actual covariance  aQ t  

and  aQ t  

     1 T T=a aQ t Q t HQH ARA  , 

     1 T T=a aQ t Q t HQH ARA                 (20) 

where 
TT TH B G    ,  TΟm n mA I , and 

      1 diag ,Οa n mQ t Q t ,       1 diag ,Οa n mQ t Q t . 

Furthermore,  aw t  and  v t  are correlated with 

conservative and actual cross-covariance 
T

aS HQG AR  , T
aS HQG AR            (21) 

Also,      a a aQ t Q t Q t    are PSD, i.e., 

  0aQ t                                  (22) 

(iii) The actual and conservative non-central second-order 

moments  aX t  and  aX t  of augmented system state 

 ax t  satisfy GLEs 

     

     

7
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    (23) 

with actual and conservative initial values  0aX  and 

 0aX   

    30 diag 0 , Οa mX X ,     30 diag 0 , Οa mX X (24) 

Also,      a a aX t X t X t    are PSD, i.e., 

  0aX t                               (25) 

Proof. For (i), from Assumption 2 it follows that 

  T
0 0 00 0X P      and   T

0 0 00 0X P     . Thus 

  0X t   and   0X t   can be obtained by iteration.  

Defining  

Q Q Q   , 
r r r

R R R     ,      n n nQ t Q t Q t   , 

then       0X t X t X t     can be obtained by iteration 

that is similar to [18]. 

For (ii),  aw t  can be written as 

         1

Ο

Ο

r

n

N

r
r

m
a

n m

m

t
t F x t B

w g
IG

t w t 





 
               


. 
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Substituting  aw t  and  v t  from actual or conservative 

system into    TE a aw t w t    and    TE aw t v t   , we have 

(20). Defining            1 1 1
a a aQ t Q t Q t   , it follows that 
      1 diag ,Οa n mQ t Q t  . 

Hence, it is straightforward to verify that  

     1 T T 0a aQ t Q t H QH A RA       . 

For (iii), from the relation of  x t  and  ax t  and 

Assumption 2, we have (24). Using the fact that 

 E 0eF t     and uncorrelation of  ax t  and  aw t , 

similar to (18), we have (23).  

Define      1 1 1a a aX t X t X t      , it follows that 

     

     

7
T T

1

T T
2 2 1 1

1 =

                  1

a a a a i ai a ai
k

a a a a

X t F X t F F X t F

B Q t B B Q t B

   

   


  

 


. 

 0 0aX   and   0aQ t   lead to  1 0aX t   . The 

proof is completed.□ 
Defining matrices A  and U  as 

T

1

=
r r r

N

r

A F F R F F  


   , 
7

T T

1

= a a i ai ai
k

U F F F F


   . 

Suppose that the spectral radii of matrices A  and U  are 

less than one, that is   1A   and   1U  , which leads 

that the time-varying GLEs (18) and (23) with their 

respective arbitrary initial values  0 0X   and  0 0X  , 

 0 0aX   and  0 0aX   converge to the unique PSD 

solution to steady-state GLEs 

T T T

1
r r r

N

r

X FXF R F XF BQB  


   ,  lim
t

X t X


 , 

T T T

1
r r r

N

r

X FXF R F XF BQB  


   ,  lim
t

X t X


 , 
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2 2 1 1
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= 1a a a a i ai a ai a a a a
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X F X F F X F B Q B B Q B  


    , 
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2 2 1 1

1

= 1a a a a i ai a ai a a a a
i

X F X F F X F B Q B B Q B  


    , 

 lim a at
X t X


 ,  lim a at

X t X


 . 

Then, we have steady-state matrix X , X , aQ , aQ  aX  

and aX , and the matrix inequality relation 0aQ  , 

0aX  . Further, the actual and conservative steady-state 

variances of  fw t  and  fv t  can be given in Lemma 2. 

Lemma 2. The fictitious white noises  fw t  and  fv t  

are zero-means with conservative variances fQ , fR , and 

actual variances fQ , fR  

 
7
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2 2 1 1
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      (26) 
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              (27) 

Further,  fw t  and  fv t  are correlated with actual and 

conservative matrices fS  and fS  
7

T
2

1

+ af i ai a ai a
i

S F X D B S 


 , 

7
T

2
1

+ af i ai a ai a
i

S F X D B S 


                   (28) 

Also, f f fQ Q Q    and f f fR R R    are PSD, i.e., 

0fQ  , 0fR                          (29) 

Proof. Using the fact that 0aQ  , 0aX  , 0Q   

and 0R  , we have (29). The proof is completed. □ 

4 Steady-state RKP 

4.1 Steady-state RKP of Augmented Systems 

Under the Assumptions 1-4 and MREP, for the 
augmented worst-case system (16) with the conservative 

upper bounds fQ , fR  and fS , the conservative optimal 

Kalman predictors are given as 

     ˆ ˆ1| | 1a p a px t t x t t K y t              (30) 

p a p aF K D   ,   -1T T
p a a a f a a a fK F P D S D P D R     . 

The conservative prediction error variances aP  satisfy the 
Riccati equations 

1T T T

TT      

a a a a a a a f a a a f

a a a f f

P F P F F P D S D P D R

F P D S Q


         

    
. 

Remark 1. In the conservative Kalman predictors (30), 

replacing conservative measurement  y t  by known actual 

measurement  y t  generated from systems (1)-(4) with 

actual noise variances, we call (30) as actual Kalman 
predictors.  

Defining the prediction error as  

     ˆ1| 1 1|a a ax t t x t x t t     , 

it follows that 

     31| 1 ,|a a n mp px t t x t t K tI           (31) 

where the augmented noises       TT T,f fvt w t t      have 

the actual and conservative variances and cross-variances 

T
f f

f f

S

S

Q

R


 
  
  

, T
f f

f f

Q S

S R


 
  
 

                (32) 

So the actual and conservative prediction error variances 
can also be given as 

TT
3 3, ,n m pp pa n mp aP KP I IK                  (33) 

TT
3 3, ,n m pp pa n mp aP KP I IK                  (34) 

4.2 Steady-state RKP of Original System 

From the relation of  ax t  and  x t , the RKP of the 

original systems (1)-(4) are  

     3ˆ ˆ1| Ο 1|n n m ax t t I x t t                (35) 
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and actual and conservative prediction error covariance is  

   T3 3Ο Οn n m a n n mP I P I  , 

   T3 3Ο Οn n m a n n mP I P I                (36) 

Theorem 1. Consider the systems (1)-(4) under 
Assumptions 1-4, the actual Kalman predictor (35) is robust 
if there exists matrix inequality 

P P                                     (37) 

for all admissible actual variances Q , R , 
r

R  and 0P  

satisfying (5). Further, P  is minimal upper bound of P , 
and we have the accuracy relation with matrix trace 
inequality tr trP P . 

Proof. To obtain 0P P P    , it just needs to prove 

0a a aP P P    . From (33) and (34), we have 
TT

3 3, ,n m p ma p pa p nP P I IK K             (38) 

where     . Hence, to prove 0aP  , we need 

only to prove that 0  . Substituting fQ , fR  and fS  

into   in (32), it can be decomposed as [18, 19] 
7

1
i

i

 


                                  (39) 

   
7

T

1
1

= diag , diag ,i ai ai u ai ai
i

F D X F D 


 
  , 

    1 T
2 2 2 1 1=diag 1 ,Οa mB Q B   , 

   T

3 2 2diag , diag ,m u a maB A R B AI I   , 2
, 1|u i jR R     , 

     T

4 2 2 1 2 1 21 diag , diag ,uB H G Q B H G      , 

     T

5 2 2 1 2 1 21 diag , diag ,m muB A R AI B I      , 

   T

6 2 2diag , diag ,a u aB H G Q B H G   , 2
, 1|u i jQ Q     , 

  1 T
7 =diag ,Οa a a mB Q B , 2

1u a i , jX X |             (40) 

Similarly, we have 
7

1
i

i

 


 , where the conservative 

variances aX , Q , R , uX , uR , uQ   and  1
aQ  in (40) are 

replaced by actual variances aX , Q , R , uX ,  uQ , uR  and 
 1
aQ , respectively. Define      t t t    , it now 

follows from Lemmas 1 and 2 that 0  . Thus we have 
0aP   and 0P  . Similar to [15], it can be proved that 

P  is minimal upper bound of P . Taking the trace operation 
for (37) yields that tr trP P . The proof is completed. □ 

The actual Kalman predictor (35) are said to be RKP. The 
inequalities (37) are said to be robustness of RKP. 

5 Simulation Example 

We consider a tracking system with 

00.90

0 0.90

T
F

 
  
 

,
2

0

0

2T
B

T

 
  
 

, 0 0.2T  , 2D I . 

In the simulation, other parameters are given as: 1.8Q  , 

1.2Q  , 21.5R I , 21.25R I , 
1

0.25R  , 
1

0.2R  , 

1 0.95  , 2 0.93  , 3 0.94  ,
1

0.01 0.01

0 0.04
F

  
   

. 

The robust and actual accuracies of steady-state Kalman 
predictor are shown in Table 1, which verify the accuracy 
relation of trP  and trP . 

Table 1: The Accuracy Comparison of RKP 

trP  trP  

0.3182 0.2564 

The covariance ellipse of prediction error variances are 
given in Fig. 1, which verify the matrix accuracy relation of 
(37). 

 

Fig.1: The covariance ellipse of RKP. 
The tracking results of RKP are shown in Fig. 2. 

 

Fig.2: The state and its RKP. 

Taking 2 groups of actual admissible noise variances as 

(a) 0.4Q  , 20.25R I ,
1

0.04R   

(b) 1.2Q  , 21.25R I ,
1

0.2R             (41) 

then we can obtain the 2 corresponding actual prediction 
error curves of first components of RKP, and their robust 
and actual 3-standard deviation bounds 13 and 

 13 l l = a,b as defined in Remark 6 in [15].  

 

(a) 

 

(b) 

Fig.3: The curves of actual prediction errors, 13  and 

13 ,l l = a,b  bounds 

0 100 200 300 400 500 600 700 800 900 1000 -1.5
-1

-0.5
0

0.5
1 

1.5
13 b  

13 b  
3  

13  

0 100 200 300 400 500 600 700 800 900 1000 -1.5
-1

-0.5
0 

0.5 
1 

1.5 13

13  

13 a  

13 a

0 100 200 300 400 500 600 700 800 900 1000 
-4

-2

0 

2 

4 

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0 

1 

2 

x 1
(t

) 
an

d 
its

 p
re

di
ct

or
 

x 1
(t

) 
an

d 
its

 p
re

di
ct

or
 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-0.4

-0.3

-0.2

-0.1
0 

0.1
0.2

0.3
0.4

784  



  

In equation (6), the higher i , the lower probability of 
multiple networked-induced uncertainties, and the smaller 
actual prediction error variances. To verify this case, we 
define 

1i i   ,    1 2 3 1 1 1              (42) 

then 0 1   represent the probability of simultaneous 
occurrence of multiple networked-induced uncertainties. 
Uncertain noise variances go considerably further, we 

define Q Q , R R ,
1 1

R R  , 0 1  . Fig. 4 

shows how trP  vary versus 0 0.8   and 0.1 0.9  . 

From this subplot, it can be seen that trP  is increased with 

increase of   and  , namely, trP  is increased with the 
probability of multiple networked-inducements and 
uncertain noise variances. 

 

Fig. 4: The changes of trP  versus 0 0.8   and 0.1 0.9   

6 Conclusions 

In this paper, we present solution to RKP problem for 
system with UBBA noise variance, multiplicative noises 
and multiple networked-induced uncertainties including 
missing measurements, packet dropouts and two-step RMD. 
The novel model-transformation method is presented to 
transform the original system into multi-model system with 
correlated fictitious noise. The steady-state RKP is 
presented by MREP. The proposed model-transformation 
method and robustness proof method can be used to solve 
robust fusion Kalman estimation problem for more complex 
system with mixed uncertainties of UBBA noise variances 
and multiple networked-inducements including multi-step 
RMD. The further works are currently in progress. 
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Distributed fusion estimator for networked multi-rate multi-sensor 
systems with unknown inputs 
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Abstract: This paper concerns the state estimation problem for multi-rate multi-sensor systems with unknown inputs, time 
delays, fading measurements, and multiplicative noise in the state equation. Firstly, the measurement delay models are converted 
into measurement delay free models. Subsequently, Lagrange multiplier method is used to compute the gain of the optimal local 
unbiased minimum variance filter which is independent of unknown input information. Based on the local filter, the estimation 
error cross-covariance matrices between any two estimators are derived. A distributed optimal fusion estimator is obtained by 
using the matrix-weighted fusion estimation algorithm. Finally, a numerical example is provided to demonstrate the 
effectiveness of the proposed estimation algorithms. 
Key Words: Distributed fusion estimator, multi-rate multi-sensor system, unknown input, time delay, fading measurement 
 

 
 

1 Introduction 
In networked systems, the internal component aging or 

changes in external environments may introduce unknown 
inputs. The state estimation problem with unknown inputs 
has received widespread attention due to its applications in 
demographic studies [1] and average precipitation problem 
in a storm [2]. Studies on linear systems with unknown 
inputs have been conducted in [3-6]. Ref. [3] proposes a 
recursive three-step filter for states with unknown inputs. 
Ref. [4] considers two types of unknown input problems and 
the distributed filters are developed in the sense of unbiased 
minimum variance. The occurrence of unknown inputs 
follows an independent random Bernoulli process, a joint 
state and unknown input estimation filter approach is 
proposed in [5]. In [6], an unbiased minimum variance filter 
is designed which is independent of a priori initial condition 
information. Nonlinear systems also encounter issues with 
unknown inputs, as discusses in [7-9]. In [7], a filter that 
estimation errors are Practically Exponentially Stable in 
probability is proposed. Ref. [8] proposes an unknown input 
extended Kalman filter for stochastic nonlinear systems with 
unknown inputs. Considering the field voltage and the 
mechanical torque of the generator as unknown inputs, Ref. 
[9] investigates the problem of state and unknown input 
estimation for multi-machine power grids. Random 
uncertainties occur during signal transmission processes. 
The state estimation for Markov jump systems with 
multiplicative noises is investigated in [10]. Distributed 
fusion estimator is developed in [11] for multi-sensor 
systems with various fading measurement rates and 
multiplicative noises. The conception of period steady-state 
is proposed. Ref. [12] proposes the sequential covariance 
intersection fusion estimator. It solves the fusion estimation 

 
*This work is supported by National Natural Science Foundation (NNSF) 

of China under Grant 61903128, Natural Science Foundation of 
Heilongjiang Province under Grant YQ2022F016, Young Innovative 
Talents Training Program of Universities in Heilongjiang Province under 
Grant UNPYSCT-2020001, and Heilongjiang University Outstanding 
Youth Fund under Grant JCL202101. (Corresponding author: Honglei 
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problem of stochastic uncertain systems with fading 
measurements under Denial-of-Service attacks and 
deception attacks. 

The expansion of sensor scales can not only enhance the 
accuracy of estimation but also increase the likelihood of 
network-induced phenomena. Consequently, there are 
extensive research on the state estimation problem that 
considers both the impact of network-induced phenomena 
and unknown inputs. For systems with unknown inputs, 
multiple missing measurements and average dwell time, the 
estimation problem is proposed in [13]. Ref. [14] 
investigates the estimation problem for linear systems with 
unknown inputs and measurement delays. Addressing the 
issues in [14], Ref. [15] proposes a distributed ellipsoidal 
intersection fusion estimator. Ref. [16] extends the unknown 
input and delayed measurement problem to nonlinear 
systems and proposes a filter based on linear matrix 
inequality. Ref. [17] designs a robust filtering for nonlinear 
systems with multiplicative noises, unknown inputs and 
correlated noises. Unknown inputs may also occur in sensor 
networks. By using a recursive distributed filter, Ref. [18] 
investigates the state and unknown input estimation problem. 
Ref. [19] proposes an unknown input filter using its own 
information and a state filter using in-neighbors’ 
information. Ref. [20] considers random link failures and 
derives a minimum mean square error estimator. Under false 
data injection attack, Ref. [21] proposes an event-based 
distributed state estimator. Ref. [22] investigates the 
estimation problem for nonlinear systems under 
Denial-of-Service attacks and proposed an estimator that 
incorporates a dynamic event-triggering mechanism. 

Although the state estimation for the above-mentioned 
systems have been conducted extensive and in-depth 
research, there still limit investigation on state estimation 
problems in multi-rate multi-sensor systems with 
multiplicative noise in the state, time delays, fading 
measurements, and unknown inputs. Therefore, we focus on 
the state estimations problem for such systems. For the 
problem of multiplicative noise in the state equation, we 
treat multiplicative noise as additive noise to solve it. An 
iteration state equation approach is employed to handle the 
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measurement delay. The Lagrange multiplier method 
exhibits the advantages of simplicity in algorithm, ease of 
implementation, and excellent performance in optimization 
problems. Therefore, it is employed to determine the gain 
matrix of the filter. Then, the estimation error covariance 
matrix is derived. Finally, the distributed fusion filter is 
designed by using matrix-weighted fusion estimation 
criterion. 

2 Problem statement and Model transformation 

The following multi-rate multi-sensor linear system is 
considered, the state equation is described by 

 ( 1) ( ( ) ) ( ) ( )x t t A x t w t       (1) 
where ( ) nx t R  represents the systems state at moment 
t , ( )t  is multiplicative noise. The process noise is 
described by ( ) ww t R . The measurement equation is 
described by 

 ( ) ( ) ( ) ( )i i i i i i i i i iy n t n t H x n t d D n t     

 ( ), 1,2, ,i iv n t i L    (2) 

where ( ) iq
i iy n t R  represents the measurement of the 

i th sensor at the moment in t , with L being the total 
number of sensors. ( ) ip

i in t R  is the unknown sensor 
input. ( ) iq

iv t R  denotes the measurement noise. The 
state update rate is in  multiples of the measurement 
sampling rates. in  is a positive integer. id  is the time 
delay of sensor i, and it is a positive integer.  , A ,  , 

iH  and iD  are appropriate dimension constant matrices.  
The phenomenon of fading measurement is described by 

the ( )i in t . The value range of ( )i in t  is [ ( ), ( )]i i i in t n t   
(0 ( ) ( ) 1)i i i in t n t    . ( )ip s  represents the probability 
density function of the fading measurement ( )i in t .  

The following assumptions are given. 
Assumption 1. ( )t , ( )w t  and ( )iv t  are uncorrelated 

white noise with zero mean and variance matrices Q , wQ  
and 

ivQ . 

Assumption 2. ( ), 1,2,...,i in t i L   are independent of 
each other, and are independent of other random variables. 
Moreover, ( )i in t  satisfies that 
 2 2 2 2E[ ( )] ,  [ ( )] ,  E[ ( ) ] ,i i i i i i i i i in t Cov n t n t           

 2E[ ( ) ] 0,  E[( ( ) ) ( )] ,i i i i i i i i in t n t n t          
 E[( ( ) )( ( ) )] ( ),i i i j j jn t n t i j     =0，  

 E[( ( ) ) ( )] 0, ( ).i i i j in t n t i j      

Assumption 3. The (0)x  is uncorrelated with other noise 
signals and has the mean 0E[ (0)]x   and the covariance 

T
0 0 0E[( (0) )( (0) ) ]x x P    . 

Assumption 4.   is invertible.  
In order to design local filter for systems (1) and (2), we 

give the following Theorem 1 based on the above four 
assumptions. 

Theorem 1: The measurement equation at the 
measurement sampling points is given as 

 ( ) ( ) ( ) ( ) ( )i i i i i i i i i i iy n t n t H x n t n t H n t     

 ( ) ( )i i i i iD n t V n t   (3) 
where 

 id
i iH H    

 
1

0
( ) ( 1) ( 1)

id
m

i i i i
m

n t n t m Ax n t m  




      

 
1

0
( ) ( ) ( ) ( 1)

id
m

i i i i i i i i
m

V n t v n t n t H w n t m  




     

From ( )i in t  and ( )i iV n t , they hold that 
 T( ) E[ ( ) ( )]

i i i i i iQ n t n t n t    

 
1

T T

0
( 1) ( )

id
m m

i
m

Q AX n t m A 




    (4) 

 TE[ ( ) ( )]
iV i i i iQ V n t V n t  

 
1

2 2 T T T

0
( ) ( )

i

i

d
m m

v i i i w i
m

Q H Q H     




     (5) 

Proof. According to the state equation (1), we have 
( ) ( 1) ( 1) ( 1) ( 1)i i i i ix n t x n t n t Ax n t w n t         (6) 

Through the iteration of the above equation, it can be 
derived that 

 
1

0
( ) ( ) ( 1)

i
i

d
d m

i i i i
m

x n t x n t d w n t m  




      

 
1

0
( 1) ( 1)

id
m

i i
m

n t m Ax n t m 




      (7) 

i.e. 

 
1

0
( ) ( ) ( 1)

i
i i

d
d d m

i i i i
m

x n t d x n t w n t m   


 



      

 
1

0
( 1) ( 1)

i
i

d
d m

i i
m

n t m Ax n t m  






      (8) 

Substituting (8) into (2) yields a new measurement 
equation (3). □ 

The transformed measurement equation and the following 
lemmas can be used to derive filter more easily. 

Lemma 1[23]. According to (1), the second order moment 
of state T( ) E[ ( ) ( )]X t x t x t  is given as 

 T T T( ) ( 1) ( 1) wX t X t Q AX t A Q         (9) 
where T

0 0 0(0)X P   . 

Lemma 2[24]. Let 11 12

21 22

B B
B

B B
 

  
 

, 11B is invertible, the 

inverse of a block matrix is given as 

 
1 1 1 1 1

11 12 11 11 12 21 11 11 12
1

21 22 21 11

B B B B B MB B B B M
B B MB B M

    



   
       

 

where 1 1
22 21 11 12( )M B B B B   . 

Define the recursive local filter form at the state update 
points as 

 ˆ ˆ( ) ( ) ( 1) ( ) ( )i i i i ix k F k x k L k y k    (10) 
Next, we will calculate the gain ( )iF k  and ( )iL k  to 

obtain the state estimator for systems (1) and (3) base on 
Lemmas 1-2. 
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3 State estimation  
We propose the following local filters based on (10) for 

estimating the states of system (1) and (3). 
Theorem 2: a) At state update points where there are 

measurements, i.e.  , 0,1,2...ik n t t  , the local filter is 
given as 

 ˆ ˆ( ) ( ) ( 1) ( ) ( )i i i i ix k F k x k L k y k    (11) 
where the gain matrices ( )iF k  and ( )iL k  of the local filter 
are calculated as 

 ( ) ( ( ) )i n i i iF k I L k H    (12) 
 T T 1( ) ( ( ) ( ) ) ( )i i i i iL k G k k D C k    (13) 

where 
 T 1 T 1 1 T( ) ( ) ( ) (( ( ) ) )i i i i i i ik G k C k D D C k D     (14) 
 T T T T( ) ( 1)

ii i i i i i w wVG k H P k H Q Q           

 T T T T( 1, ) ( 1, )
i i i ix V i i xQ k k H Q k k        (15) 

 2 T T( ) ( ( ) ( ) ( ))
i ii i i x x iC k H X k Q k Q k H     

 2 T T( / )( ( ) ( ) )
i ii i i xV xV iH Q k Q k H    

 2 T T( ( 1) ( 1, )
i ii i w i xH Q P k Q k k           

 T T T T( 1, ) ( 1) )
i ix iQ k k Q AX k A H      

2 2 T( ( 1, )) ( ) ( )
i i i ii i wV x V i i i a iH Q Q k k H Q k H          

 T T T T T( ( 1, ) )
i x V ii ii wV i VQ Q k k H Q     


 (16) 

 T T T( ) ( 1) ( 1)i i wP k P k Q AX k A Q         (17) 
The estimation error covariance matrix ( )iP k  of ( )ix k  is 

given by 
 T( ) ( ) ( ) ( ) ( )i i i i iP k P k L k C k L k   

 T T( ) ( ) ( ) ( )ii i iL k G k G k L k   (18) 

Define T( ) E[ ( ) ( )]
ixV iQ k x k V k , T( ) E[ ( ) ( )]

ix iQ k x k k  ,
TE[ ( 1) ( )]

iwV iQ w k V k  , T( 1, ) E[ ( 1) ( )]
i ix V i iQ k k x k V k    , 

T( 1, ) E[ ( 1) ( )]
ix iQ k k x k k     , we have 

 
1

T T T

0
( ) ( )

i

i

d
m m

xV i w i
m

Q k Q H    




    (19) 

 T T
iwV i w iQ Q H    (20) 

 
2

T 1 T T

0
( 1, ) ( )

i

i i

d
m m

x V i w i
m

Q k k Q H    






     (21) 

 
2

T 1 T

0
( 1, ) ( 2) ( )

i

i i

d
m m

x
m

Q k k Q AX k m A  






     (22) 

 ( ) ( )
i ixQ k Q k    (23) 

 ( 1, ) ( 1, )
i i ix V xVQ k k Q k k    (24) 

 ( 1, ) ( 1, )
i i ixa xQ k k Q k k    (25) 

b) At state update points where there are not measurements, 
i.e. , 1, 2,..., 1i ik n t p p n    , the local filter is given as 

 ˆ ˆ( ) ( 1)i ix k x k   (26) 
The estimator error covariance matrix ( )iP k  is computed by 

 T T T( ) ( 1) ( 1)i w iP k Q P k Q AX k A         (27) 
Proof. For  , 0,1,2...ik n t t  , from (6) and (11), the 

filtering error equation ( )ix k  is obtained by  

 ˆ( ) ( ) ( )i ix k x k x k   

 [ ( ) ( ) ( ) ] ( 1)i i i iF k L k k H x k       

 [ ( 1) ( ) ( ) ( 1) ] ( 1)i i ik A L k k H k A x k        

 [ ( ) ( ) ] ( 1)i i iL k k H w k      

 ( ) ( 1) ( ) ( ) ( )i i i i i iF k x k L k k H k     

 ( ) ( ) ( ) ( )i i i i iL k D k L k V k   (28) 
For any ( )iF k  and ( )iL k , (11) is an unbiased estimator 

of ( )x t . Then the following equations are calculated. 
 ( ) ( )i i i iF k L k H     (29) 
 ( ) 0i iL k D   (30) 
By substituting (29) and (30) into (28), we can derive a 

new form of ( )ix k  as  

( ) ( ( )) ( ) ( ) ( ( ) ) ( 1)i i i i i n i i ix k k L k H x k I L k H w k          

 ( ( ) ) ( 1) ( ) ( ) ( )n i i i i i i i iI L k H x k L k k H k        

 ( ) ( ) ( ( ) ) ( 1) ( 1)i i n i i iL k V k I L k H k Ax k       (31) 
Substituting (31) into T( ) E[ ( ) ( )]i i iP k x k x k   , we have  

2 T T T( ) ( ) ( ( ) ( ) ( )) ( )
i ii i i i x x i iP k L k H X k Q k Q k H L k     

 2 T T T( / ) ( )( ( ) ( ) ) ( )
i ii i i i xV xV i iL k H Q k Q k H L k    

 ( ( ) )( ( 1, )
i i in i i i wV x VI L k H Q Q k k        

T T T T T( 1, ) ( ( 1) ) ) ( )
i ix i i i i iQ k k H Q AX k A H L k        

 T T T( )( ( 1)
ii wV i iL k Q H Q AX k A      

T T T T T( 1, ) ( 1, ) )( ( ) )
i i i ii i x x V n i i iH Q k k Q k k I L k H        

 T T( ( ) )( ( 1) )n i i i w iI L k H Q P k         

 T T( 1) )( ( ) )n i i iQ AX k A I L k H     

 2 2 T T( )( ( ) ( ) ) ( )
i ii V i i i i iL k Q H Q k H L k     

 T T T( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ii i i i i i iP k L k C k L k L k G k G k L k    (32) 

where ( )iP k , ( )iL k , ( )iC k  and ( )iG k  are given by (17), 
(13), (16) and (15), respectively. The covariance matrix (19)
-(25) are used in (32). 

Next, we use Lagrange Multipliers Method to solve 
constrained problem (30)， Lagrange function is given as 

 T( ) { ( )} 2 { ( ) ( ) }i i i i iJ k tr P k tr k L k D    (33) 
Take the derivation of (33) with respect to ( )iL k  and make 
the derivative resulting be zero, we get 
 T T( ) ( ) ( ) ( )i i i i iL k C k k D G k    (34) 

Form a system of equations with constraint condition (30), 
the equations (30) and (34) can be written as follows 

 
T T

T T

( )( ) ( )
00 ( )

ii i i

i i

G kC k D L k
D k

     
          

 (35) 

Applying Lemma 2, we obtain (13) and (14). 
For , 1, 2,..., 1i ik n t p p n    , let ( )iF k  , ( ) 0iL k  , 
then we get (26). From (1) and (26), we get the estimation 
error equation of the i th sensor as 

 ( ) ( 1) ( 1) ( 1)ix k x k k Ax k       

 ˆ( 1) ( 1)iw k x k      

 ( 1) ( 1) ( 1) ( 1)ix k k Ax k w k          (36) 
Further from (36), we obtain 
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 T T T( ) ( 1) ( 1)i w iP k Q P k Q AX k A         (37) 
□ 

4 Optimal distributed fusion estimation 

4.1 Estimation error Cross-covariance matrix 

Theorem 3: The estimation error cross-covariance matrix 
between any two sensors has the following four cases. 

Case 1: Both i th and j th sensors sample measurements at 
the state update time k, we have 

 ( ) ( ( ) )( ( 1, )
j jij n i i i wV xVP k I L k H Q Q k k        

 T T T T( 1, ) ( 1) ) ( )
jx j j j j jQ k k H Q AX k A H L k        

 T T T( )( ( 1) ( 1, )
ii i i i i xL k H Q AX k A H Q k k        

 T T T T T( 1, ) )( ( ) )
i ixV wV n j j jQ k k Q I L k H       

 T T( ( ) )( ( 1)n i i i w ijI L k H Q P k         

 T T( 1) )( ( ) )n j j jQ AX k A I L k H     

 T T( )( ( ) ) ( )
i j iji V V i i j j jL k Q H Q k H L k    (38) 

where TE[ ( ) ( )]
i jV V i jQ V k V k , T( ) E[ ( ) ( )]

ij i jQ k k k    

 
min( , ) 1

T T T

0
( )

i j

i j

d d
m m

V V i j i w j
m

Q H Q H     




   (39) 

 
min( , ) 1

T T

0
( ) ( 1) ( )

i j

ij

d d
m m

m
Q k Q AX k m A  





    (40) 

Case 2: The i th sensor samples measurements while j th 
sensor does not sample measurements at moment k, we have  

 T( ) ( ( ) )ij n i i i wP k I L k H Q     
T T( ( ) ) ( 1) ( ) ( , 1)

i jn i i i ij i V xI L k H P k L k Q k k         

 T T( ) ( ) ( , 1)
i i ji V w i i i xL k Q L k H Q k k      

 T( ( ) ) ( 1)n i i iI L k H Q AX k A    

 T( ) ( 1)i i iL k H Q AX k A   (41) 
Case 3: The j th sensor samples measurements while i th 

sensor does not sample measurements at moment k, we have 
 T( ) ( ( ) )ij n j j j wP k I L k H Q     

T T( ( ) ) ( 1) ( ) ( , 1)
j in j j j ij j V xI L k H P k L k Q k k         

 T T( ) ( ) ( , 1)
j j ij V w j j j xL k Q L k H Q k k      

 T( ( ) ) ( 1)n j j jI L k H Q AX k A    

 T( ) ( 1)j j jL k H Q AX k A   (42) 
Case 4: Neither i th nor j th sensor samples measurements 

at moment k, we have 
 T T T( ) ( 1) ( 1)ij ij wP k P k Q AX k A Q         (43) 

Proof. Define T( ) E[ ( ) ( )]ij i jP k x k x k   . For case 1, we 
obtain the error cross-covariance matrix (38) according to 
equation (31). 

For case 2, substituting (36) and (31) into ( )ijP k  yields 
(41). Similarly, we have (42) in case 3. In case 4, 
substituting (36) into the ( )ijP k , we have (43). □ 

4.2 Distributed fusion filter 

The matrix-weighted fusion algorithm [25] is applied to 
obtain the distributed optimal fusion estimator as 

 0
1

ˆ ˆ( ) ( )
l

i i
i

x t x t


   (44) 

 T 1 1 T 1( ) ( ( ) ) ( )t e t e e t      (45) 
 T 1 1

0 ( ) ( ( ) )P t e t e    (46) 
where T[ , , , ]n n n n nLe I I I   , 1 2( ) [ ( ), ( ), , ( )]Lk k k k     , 

( ) ( ( ))ij nL nLk P k   , ( ) ( )ii iP k P k , , 1, 2, ,i j L  . ˆ ( )ix k is 
the local estimator of the i th sensor. 

5 Simulation Research 

Consider a numerical example to demonstrate the 
effectiveness of the proposed method, the coefficient matrix 
shown as below 

0.95 0
0.8 0.2


 

  
 

, 
0.1 0.05

0.05 0.1
A  
  
 

, 
0.8
0.6


 

  
 

, 

1

1 2
0 1

H  
  
 

, 2

1 0
0 1

H  
  
 

, 3

2 1
1 1

H  
  
 

, 1

1
1

D  
  
 

, 

2

1
2

D  
  
 

, 3

1
3

D  
  
 

, 
1

0.3 0
0 0.3vQ  

  
 

, 

2

0.15 0
0 0.15vQ  

  
 

, 
3

0.1 0
0 0.1vQ  

  
 

, 1 1( ) 3n t  , 

2 2( ) 0.1n t t  , 3 3( ) sin( )n t t  , 1 3d  , 2 1d  , 3 2d  . 

1 2n  , 2 3n  , 3 4n  , 1wQ  , 0.04Q  . 

The probability function of ( )i in t  is 1( ), 1,2,3p s i  . 

1 2 3

0.1, 0.1 0.1, 0
0.1, 0

0.1, 0.4 0.2, 0.2
( ) 0.2, 0.5, ( ) , ( )

0.3, 0.6 0.3, 0.6
0.7, 0.9

0.5, 0.8 0.4, 1

s s
s

s s
p s s p s p s

s s
s

s s

  
                 

We can calculate that 1 0.73  , 2 0.63  , 3 0.62  , 
2
1 0.0841  , 2

2 0.0481  , 2
3 0.1316  . The initial value 

is  T(0) 0 0x  , 0 20.1P I . Take 300 sampling data. 
The accuracy of the local estimator and the distributed 

fusion estimator is compared using the root mean square 
error (RMSE). The formula for calculating RMSEs are 
computed as 

 2

1

1 ˆRMSE ( ( ) ( )) , 1,2,3,0
N

j j
i i

j
x t x t i

N 

    

where 1,2,3i  represents the local estimator, while 0i   
represent the distributed fusion estimator, N=600 is the 
number of Monte Carlo runs. 

Fig. 1 compares the estimated values and the true values 
of the fusion estimator. It illustrates that our algorithm can 
effectively mitigate the impact of various disturbances on 
the performance of the fusion estimator. 
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Fig. 1: The state and estimate of the fusion estimator 
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Fig. 2: Comparison of RMSE of local filters and distributed fusion 

filter 

Fig. 2 compares the RMSEs of the three local filters and 
the fusion estimator. In Fig. 2, the RMSE of the distributed 
fusion estimator is lower than that of the three local filters., 
which indicates that the fusion estimator performs better 
than local filters, has the best estimation accuracy. 

6 Conclusion 
This paper considers the state estimation problem for 

linear discrete system with multiplicative noise in the state, 
fading measurements, time delays, and unknown inputs and 
multi-rate sampling. The local filter is performed using a 
filter that does not rely on information about the unknown 
inputs. Then, the estimation error cross-covariance matrices 
between any two estimators are derived. Finaly, the optimal 
matrix-weighted distributed fusion estimator is proposed. 
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A Novel Particle Filter Based on One-Step Smoothing for
Nonlinear System with Missing Measurements
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Abstract: This paper proposes a novel particle filter based on one-step smoothing for nonlinear systems with missing measure-
ments. This filter iteratively employs a one-step smoother to improve the efficiency of importance sampling in bootstrap particle
filtering through incorporating current measurement information into the apriori distribution. A simulation example of a target
tracking model is given to illustrate that the proposed algorithm improves the sampling efficiency and estimation accuracy, which
effectively limits the particle degradation phenomenon.

Key Words: Particle Filter, Nonlinear Filter, One-Step Particle Smoother, Sequential Importance Sampling, Missing Measure-
ment

1 Introduction

Nonlinear filtering based on Bayesian framework has been
intensively studied due to its wide application in a variety of
directions [1, 2]. Generally, most traditional nonlinear filter-
ing is based on the assumption that the measurements always
contain consecutive useful signals. However, in practical ap-
plications such as target tracking, the measurements cannot
always contain consecutive useful signals. There may be a
nonzero probability that any observation consists of noise
alone if the target is absent. In the existing literature such as
Wang et al. [3], the situation where observation only con-
sists of noise is termed the phenomenon of missing mea-
surements. The phenomena of missing measurements are
inevitable in many practical situations because of certain fac-
tors of unreliable observations. For instance, the situations
contain intermittent failures in the observation mechanism,
fading phenomena in the propagation channels, accidental
loss of some measurements, and inaccessibility of the data
at some times [4–12]. Generally speaking, the phenomenon
of missing measurements is characterized by the Markov
chain or by the Bernoulli distributed random variable, and
the latter is common [13–16]. In this paper, we study a class
of nonlinear systems with missing measurement phenome-
na characterized by random variables obeying the Bernoulli
distribution.

Over the past few years, many efforts have been made
to solve the nonlinear filtering problem with missing mea-
surements. In Hermoso-Carazo and Linares-Perez [13], an
extended Kalman filter (EKF) and an unscented Kalman fil-
ter (UKF) were addressed for a class of nonlinear discrete-
time stochastic systems with missing measurements. In Xu
et al. [14], UKF was investigated for the nonlinear systems
with correlated noises and missing measurements. In Chen
Yang and Huajing Fang [16], UKF for a class of nonlinear
discrete stochastic systems with random packet loss is stud-
ied and gives an example to solve the problem of tracking
systems and random packet loss. In Xing Zhang [17], a
high-degree cubature Kalman filter (HCKF) was proposed
for the nonlinear system with missing measurements, and a
six-dimensional numerical example was utilized to demon-
strate that HCKF was more accurate and stable than EKF and
UKF. All the above filtering methods for nonlinear system-

s with missing measurements are Kalman-like filters, which
rely on the Gaussian assumption that introduces a large error
in the estimation results of the non-Gaussian filter.

Particle filter (PF) does not assume linear and/or Gaussian
property, in which the filtering density function is approxi-
mated by a set of random weighted samples. In the view-
point of sequential importance sampling, the random sam-
ples are generated sequentially from an importance function
and the importance weight is the ratio of the filtering func-
tion and the importance function [18]. PF has many appli-
cations [19–22] and it performs relatively better in many as-
pects than other nonlinear filtering methods [23].

Currently, PFs have been used for nonlinear systems with
missing measurements. In the literature [24], the bootstrap
particle filter (BPF) is applied to nonlinear systems with one-
step sensor delay and observation missing. BPF is the stan-
dard and classical particle filter proposed in [25]. However,
the importance function of BPF may not be close to the fil-
tering distribution because the importance function depends
solely on the state equation and it does not have any infor-
mation from the current measurement, which appears in the
filtering distribution. This will lead to a large variance of
the importance weight, which brings low sampling efficiency
and unreliable estimation. It is well known that the efficiency
of PF heavily depends on the choice of the importance func-
tion. Many efforts have been devoted to designing an appro-
priate importance function to improve the performance of
PF, such as the intelligent particle filter [26], the augmented
particle filter [27], and the robust particle filter [28]. How-
ever, these efforts mentioned above are used for nonlinear
systems based on the assumption that the measurements al-
ways contain consecutive useful signals. Although Gaussian
particle filters are applied to nonlinear systems with miss-
ing measurements in [29] to improve sampling efficiency,
the study of selecting appropriate importance functions for
nonlinear systems with missing measurements is still open.

In this paper, we propose a novel particle filter based on
one-step smoothing for nonlinear systems with missing mea-
surements. Different from the importance function of stan-
dard BPF does not have any information from the current
measurement, this filter iteratively employs a new one-step
particle smoother to incorporate current measurement infor-
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mation into the importance function in some manner. This
suggested iteration scheme to the one-step particle smooth-
ing is to further utilize the current measurement in hope of
obtaining a better importance function. The effectiveness of
the proposed particle filter is shown in the simulation study
on the target tracking model with missing measurements.

The main contributions of this paper are as follows: (1)
Providing a method of constructing new importance func-
tions for nonlinear systems with missing measurements by
adding the current measurement information to the impor-
tance function; (2) Designing a novel particle filtering al-
gorithm for nonlinear systems with missing measurements,
which effectively limit particle degradation phenomena and
improve estimation accuracy.

The paper is organized as follows. In Section 2, the non-
linear system with missing measurements is introduced. In
Section 3, after reviewing the bootstrap particle filter for the
nonlinear system with measurements, a novel particle filter
based on one-step smoothing is proposed through iteration
to incorporate the current measurement into the importance
function for particle filtering. In Section 4, a simulation ex-
ample of the target tracking model is studied using our pro-
posed particle filtering method. Finally, the conclusion is
drawn in Section 5.

2 Nonlinear System with Missing Measurements

In this paper, we consider the following nonlinear sys-
tem with missing measurements in which the phenomenon
of missing measurements is characterized by the Bernoulli
distributed random variable:

xk = fk(xk−1) + ωk−1, (1)
zk = λkhk(xk) + vk, (2)

where xk ∈ Rn and zk ∈ Rm are the state vector and ob-
servation at discrete time k, respectively. The two functions
f(·) and h(·) are known nonlinear functions. The system
noise ωk ∈ Rn and observation noise vk ∈ Rm are mutually
independent Gaussian white noises. Let ωk ∼ N(0, Qk) and
vk ∼ N(0, Rk).

Here, the multiplicative noise λk, which describes the
phenomenon of missing measurements, obeys the Bernoulli
distribution and has the following statistical properties,

P (λk = 1) = E(λk) = α,

P (λk = 0) = 1− E(λk) = 1− α,
(3)

where α ∈ [0, 1] is a known scalar. The multiplicative noise
λk and other noise signals are mutually independent. More-
over, we assume the initial state x0 is drawn from p(x0).
The initial state and all the noise signals are mutually inde-
pendent.

Remark 1 In the measurement model (2) at time k, if the
sensor receives the data successfully, i.e., λk = 1, then zk =
hk(xk) + vk. In this case, zk|xk ∼ N(hk(xk), Rk) because
of vk ∼ N(0, Rk). If the measurement is missing and the
sensor only receives the noise, i.e. λk = 0, then zk = vk. In
this case, zk|xk ∼ N(0, Rk).

For convenience we denote x0:k , {x0, · · · , xk} and
z0:k , {z0, · · · , zk}. For system (1)-(2), we shall quote a
property in Bayesian filtering framework:

Property 1 The state vector xk obeys the first-order Marko-
vian process: p(xk|x0:k−1, z0:k) = p(xk|xk−1). The mea-
sured output of the sensor zk is only dependent on state xk,
i.e. p(zk|x0:k, z0:k−1) = p(zk|xk).

Based on this property, the bootstrap particle filter is de-
veloped in the Bayesian filtering framework for the nonlin-
ear system with missing measurement (1)-(2). The follow-
ing section will firstly review the bootstrap particle filter via
reference [25], and then give a novel particle filter based on
one-step smoothing through iteration to incorporate the cur-
rent measurement into the importance function for the non-
linear system with missing measurements.

3 A Novel Bootstrap Particle Filter Base on One-
Step Smoother for Nonlinear System with Miss-
ing Measurements

3.1 Bootstrap particle filter
In the framework of Bayesian, the posterior distribution of

the hidden state xk can be written as

p(xk|z0:k) =
p(zk|xk)p(xk|z0:k−1)

p(zk|z0:k−1)
(4)

Since p(zk|z0:k−1) is a constant, (4) can be simplified as

p(xk|z0:k) ∝ p(zk|xk)p(xk|z0:k−1) (5)

where ∝ means to be proportional to. For the nonlinear
systems, the analytic solution of the posterior distribution
p(xk|z0:k) is often difficult to obtain. Particle filter ap-
proximates it using a set of random samples {x(i)k : i =
1, . . . , N}.

To deal with the difficulty in sampling from the posteri-
or distribution, the importance sampling technique is intro-
duced. Samples are drawn from an importance function that
can be easily sampled. Suppose the importance function is
termed as q(xk|z0:k). Combined with (5), the importance
weight for each particle can be formulated, i.e.,

w
(i)
k =

p(x
(i)
k |z0:k)

q(x
(i)
k |z0:k)

∝
p(zk|x(i)k )p(x

(i)
k |z0:k−1)

q(x
(i)
k |z0:k)

(6)

where w(i)
k is the importance weight. Denote the normalized

w
(i)
k as w(i)

k . Thus, the posterior distribution p(xk|z0:k) can
be approximated by particles as

p(xk|z0:k) ≈
N∑
i=1

w
(i)
k δ(xk − x(i)k )

where δ(.) is the Dirac delta measure. Then the posterior dis-
tribution p(xk|z0:k) can be obtained recursively by reference
[30] as follows.

1) Prediction. Suppose a set of random samples
x
(i)
k−1 has been sampled from the density function

p(xk−1|z0:k−1), and each sample x
(i)
k−1 is passed

through the dynamic model (1) to get a new sample x(i)k ,
i.e.,

x
(i)
k = f(x

(i)
k−1) + ω

(i)
k−1
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where ω
(i)
k−1 is a sample drawn from the probability

density function of the system noise p(ωk−1). Then
x
(i)
k can be regard as the samples of p(xk|z0:k−1).

2) Update. In the view of the bootstrap particle filter,
the importance function is p(xk|z0:k−1), then we have
the weight w(i)

k =p(zk|x(i)k ) from equation (6), i.e., the
weights are equal to the likelihood value. When receiv-
ing the measurements zk, the likelihood value of each
sample x(i)k is calculated, thus obtaining the normalized
weight of each sample x(i)k :

w
(i)
k =

p(zk|x(i)k )∑N
i=1 p(zk|x

(i)
k )

(7)

3) Resampling the updated particle set {x(i)k , w
(i)
k }.

By using BPF for nonlinear systems with missing mea-
surements (1)-(2), the formula for calculating the importance
weight w(i)

k is the core. It can be obtained through the fol-
lowing Theorem 1.

Theorem 1 The importance weight w(i)
k for system (1)-(2)

can be computed recursively as

w
(i)
k = (αpvk

(zk − hk(x(i)k )) + (1− α)pvk(zk)) (8)

where pvk stands for the probability density functions of ob-
servation noise vk.

Proof: Since the output of the sensor zk may be vk or hk(xk)
if occurs missing measurements or not. In addition, the mea-
surement zk depends on the value of the Bernoulli random
variable λk. Since λk is independent with other signals, we
can evaluate the likelihood density p(zk|xk) as follows:

• If λk = 1, we can obtain the equation zk = hk(xk)+vk
by (2). Hence, it is easy to see that zk − hk(xk) and vk
have the same distribution functions if xk is known, i.e.,

p(zk|xk, λk = 1) = pvk
(zk − hk(xk)) (9)

• If λk = 0, we can obtain the equation zk = vk by (2).
Then, similar to (9), we have

p(zk|xk, λk = 0) = pvk(zk). (10)

Based on the similar derivation in [24], the likelihood density
function p(zk|xk) can be calculated by using equations (9)
and (10) as follows:

p(zk|xk) =

∫
p(zk, λk|xk)dλk

=

∫
p(zk|xk, λk)p(λk|xk)dλk

=

∫
p(zk|xk, λk)p(λk)dλk (11)

= αp(zk|xk, λk = 1)

+(1− α)p(zk|xk, λk = 0)

= αpvk(zk − hk(xk)) + (1− α)pvk(zk).

From equation (11), we have the importance weight w(i)
k .

This proof is complete. �

As mentioned in [25], in the sequential importance resam-
pling framework, BPF is equivalent to choosing the prior
p(xk|z0:k−1) as the importance function, and the likelihood
function p(zk|xk) is the corresponding importance weight.
It can be seen that the importance function of BPF may not
be close to the filtering distribution because the importance
function p(xk|z0:k−1) does not have any information from
the current measurement zk, which appears in the filtering
distribution p(xk|z0:k). This could lead to a large variance
of the importance weight, and bring low sampling efficiency
and unreliable estimation. It is very natural that if we incor-
porate the newly received measurement information zk into
the importance function in some manner, then the efficiency
of the particle filter may be significantly improved.

3.2 A novel bootstrap particle filter based on one-step
smoothing by iteration

In this subsection, we proposed a novel bootstrap particle
filter based on one-step smoothing by iteration. This
suggested iteration scheme is to further utilize the newly
received measurement information zk in hope of obtaining
a better importance function and improving the accuracy
of the state estimation. Suppose that we are in time step k
and a set of random samples x(i)k−1 has been sampled from

p(xk−1|z0:k−1), then sample x
(i)
k through the prediction

phase of BPF and calculate its corresponding weight w(i)
k

through the update phase of BPF and Theorem 1 for
i = 1, . . . , N . The weighted samples {x(i)k−1, w

(i)
k }Ni=1 is

proper with respect to p(xk−1|z0:k) which can be called the
one-step particle smoother via reference [31]. The one-step
smoothing scheme with iteration is shown as follows.

• Iteration initialisation. Denote the one-step particle s-
moother {x(i)k−1, w

(i)
k } by {x(i)k−1,0, w

(i)
k,0} as the initial

values of the iteration, where i = 1, . . . , N .
• Get sample x

(i)
k,j = f(x

(i)
k−1,j−1) + ω

(i)
k−1,j−1 with

ω
(i)
k−1,j−1 drawing from p(ωk−1).

• Compute w(i)
k,j = p(zk|x(i)k,j) through Theorem 1.

• Denote {x(i)k−1,j , w
(i)
k,j} = {x

(i)
k−1,j−1, w

(i)
k,j}.

• Stop the iteration if a prescribed stopping condition is
satisfied.

It can be seen that the bigger p(zk|x(i)k,j), the bigger w(i)
k,j .

Denote the distribution obtained after the jth iteration as
pj(xk−1|z0:k) which can be seen as the importance function
of the proposed particle filter. Going along with iterations,
the significant region of pj(xk−1|z0:k) is gradually modified
so that for any sample from it, the state xk propagated by this
sample will fall into the high likelihood region of p(zk|xk)
with more odds. Thus the current measurement zk can be
used to judge the distance between the filtering distribution
and the importance function determined by the iterations. In
other words, when the distance between the filtering distri-
bution and the importance function determined by the itera-
tions is sufficiently small, we can stop the iterations.

The stopping rule is adopted as follows. Firstly, select a
small positive number ρ as the threshold. Then, calculat-
ing the observed predicted value zpr of particle x(i)k by the
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known nonlinear observation functions h(·) through

zpr = λkh(x
(i)
k ).

Secondly, calculate the distance between the observed pre-
dicted value zpr and the newly received measurement zk
through

dzk = ||zk − zpr||.
Finally, stop the iterations if dzk < ρ. This stopping rule
stems from the recognition that if the obtained importance
function is near to the filtering function, then the predicted
measurement based on it will be near to the real measure-
ment.

The particle filter based on one-step smoothing with it-
eration uses the current measurement zk to judge the dis-
tance between the filtering distribution and the importance
function determined by the iterations. If the value of the
observation residual does not exceed a set threshold ρ, then
we receive sample x(i)k , else reject sample x(i)k , continue to
draw a sample x(i)k instead and repeat the above operation
until we get N samples x(i)k . The theory stems from the re-
alization that if the prediction of the sample observation is
close to the true measurement, the obtained trial distribution
is close to the filtered distribution. Then the weights and nor-
malization for each sample x(i)k are obtained by equation (8)
and equation (7), respectively. Resampling the particle set
{x(i)k , w

(i)
k }.

For the nonlinear system with missing measurement (1)-
(2), the novel bootstrap particle is based on one-step smooth-
ing through iteration to incorporate the current measurement
into the importance function for particle filtering. It is fur-
ther utilize the newly received measurement information zk
to obtain a better importance function and improve the accu-
racy of the state estimation.

3.3 The novel bootstrap particle based on one-step s-
moothing algorithm

According to Theorem 1 and the one-step smoothing tech-
nique by iteration, an algorithm can be established to obtain
a novel bootstrap particle filter for the nonlinear system with
missing measurement (1)-(2). We design this new filter as
Algorithm 1.

4 Simulation

This section will show a numerical example to compare
the performance of the proposed novel bootstrap particle
based on one-step smoothing (NPF) with the standard boot-
strap particle filter (BPF). A MATLAB program simulates
the signal and observation values and provides the different
filtering estimates.

Consider the following nonlinear discrete stochastic sys-
tems:

xk =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

xk−1 + wk−1

zk = λk
√
(x1,k − xs)2 + (x3,k − ys)2 + vk

where xk = [x1,k, x2,k, x3,k, x4,k]
T, x1,k and x3,k are

the positions of the target at moment k, x2,k and x4,k

Algorithm 1. a novel bootstrap particle filter with
missing measurements

Step I. Initialisation:
Draw state particles {x(i)0 }Ni=1 from prior p(x0).
For k = 1, 2, . . .
Step II. Sequential Importance sampling and resampling:
1. Get new sample x(i)k by dynamic model (1).
x
(i)
k =f(x(i)k−1)+w

(i)
k−1 .

2. Get new sample x(i)k+1 by dynamic model (1).
x
(i)
k+1=f(x(i)k )+w(i)

k .
3. Calculating predictions of observations .
zpr = λk+1hk(x

(i)
k+1).

4. Calculating the observed residuals of the particles.
d
(i)
zk+1 = ||zk+1 − zpr||.

5. Judging whether the residuals of observation are larger
than the threshold value.
For j=1:N
If d(i)zk+1 < ρ

x
(j)
k =x(i)k

else
Return to the Step 1-5.
6. Evaluate importance weights, x(j)k is denoted as x(i)k .
For i = 1, . . . , N ,
w

(i)
k = (αpvk (zk − hk(x

(i)
k )) + (1− α)pvk (zk)).

end
7. Normalise importance weights:

w
(i)
k =

w
(i)
k∑N

i=1 w
(i)
k

.

8. Resample by using the sequential importance sampling,
and all particle weights are set as 1

N
, i.e.,

{x̃(i)k , w̃
(i)
k = 1

N
}Ni=1 = Resample{x(i)k , w

(i)
k }

N
i=1.

9. Compute the state estimation
x̂k =

∑N
i=1 x̃

(i)
k w̃

(i)
k .

Step III. Return to the Step II.
The end.

are the velocities of the target at moment k; wk and vk
are Gaussian white noises with covariance matrices Qk =
diag([2.5, 5, 2.5, 5]) andRk = 2, respectively; xs and ys are
the locations of randomly deployed observatories; T = 1.
Let w0 = [2, 2, 2, 2]T,P0 = 2I , where I is identity matrix,
and α = 0.7.

We set 100 time steps and N = 100 particles. The true
target tracks of x1,k and x3,k with their estimated tracks by
NPF and BPF are shown in Fig.1. The figures show that NPF
algorithm has superior performance than BPF algorithm.

For this example, the estimation accuracy of several algo-
rithms is also compared by root mean square error (RMSE).

RMSE(k) =

√√√√ 1

M

M∑
n=1

(x̂k,n − xk,n)2 (12)

where x̂k is the estimate of xk. The RMSEs of the estimation
results for x1,k and x3,k by NPF and BPF are given by Fig.2
and Fig.4, respectively. It can be seen from the Fig.2 that the
error of BPF is relatively large , especially after 30 steps. In
Fig.4, It can be shown that NPF are more accurate than BPF.
Both of them have very close estimation accuracy in the be-
ginning, but after 35 steps, the error of NPF is almost stable
in a range whereas that of BPF increases quickly. The RM-
SEs of the estimation results for x2,k and x4,k by NPF and
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Fig. 1: The figure captionTrue and estimated target tracks of
x1,k and x3,k.

BPF are given by Fig.3 and Fig.5, respectively. It can be seen
from the figure that the RMSEs of BPF is larger than RMSEs
of NPF. Thus we can conclude that the estimation accuracy
of NPF is higher than that of BPF and the estimation error of
NPF is minimized.
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Fig. 2: RMSEs of x1,k.

In addition, we compare the computation time of NPF and
BPF in each sampling period in Tables 1. The computational
efficiency of NPF is generally lower because a large amount
of computing resources are used to select the sample x(i)k .
Although NPF takes more computation time than BPF, NPF
will have higher accuracy in distance tracking.

Table 1: ARMSEs, Computation Time
Filters BPF NPF

ARMSEs of x1 5.9447 1.9526
ARMSEs of x2 0.1577 0.0836
ARMSEs of x3 6.1785 3.1924
ARMSEs of x4 0.1728 0.0767

Time 6.3918e-04 0.0058
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Fig. 3: RMSEs of x2,k .
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Fig. 4: RMSEs of x3,k .
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Fig. 5: RMSEs of x4,k .

5 Conclusion

This paper proposes a novel particle filter based on one-
step smoothing by iteration for nonlinear systems with miss-
ing measurements. This filter is based on one-step smooth-
ing through iteration to incorporate the current measurement
into the importance function for particle filtering. Through
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the simulation example of the target tracking model, it can
be illustrated that the proposed novel particle filter has much
higher estimate accuracy than bootstrap particle filter, which
verify the proposed filter can help to improve the efficien-
cy of importance sampling and limit particle degradation for
nonlinear systems with missing measurements. For future
work, other method can be considered for constructing the
importance function of particle filters to improve the sam-
pling efficiency, estimate accuracy and computational effi-
ciency.
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Abstract: Space target sequential-image relative navigation system is an important part of the rendezvous and docking mission. 
Due to the poor observability of the system, the control input is necessary to obtain the target motion state. The rendezvous and 
docking mission also requires the control input to make the spacecraft approach the target. The fully-actuated system theory is 
an effective way to obtain the optimal control. To obtain better relative navigation accuracy and provide more accurate target 
state to the control system, the relative navigation system observability is analyzed based on the optimal control. Besides, the 
linear quadratic indicator for the control is also improved combined with the observability criteria. The optimal control input is 
also solved through the new performance indicator. The simulation results show that the new indicator can improve the relative 
navigation accuracy to some degree, which will provide a new though to improve the navigation and guidance scheme of the 
rendezvous and docking mission. 
Key Words: Observability Analysis, Sequential-Image Relative Navigation System, Fully-Actuated System Control; 
Observability Indicator 
 

 
  

1 Introduction 
Space target relative navigation is popular for space debris 

removal, on-orbit services, deep-space object exploration 
and so on[1-3]. Due to the long distance of the target, many 
sensors are unable to acquire the measurements. Therefore, 
the optical sensor which can measure distances from 
thousands of kilometers to a few meters is the most suitable 
measurement information source.  

However, the image cannot provide the scale information 
of the target, which brings the poor observability for the 
navigation system. In response to this issue, the sequence-
image relative navigation is proposed to produce the scale 
information through the known orbital perturbation forces, 
of which the orbit maneuver is the most commonly used. 
This is because the ultimate goal of relative navigation is 
rendezvous and docking with the target, and the rendezvous 
and docking process also requires orbital maneuver. At the 
same time, the positional relationship between image 
information at different moments can be obtained based on 
the orbit maneuver and the orbit dynamics, which in turn 
enables target state estimation. The images obtained at 
different moments through the orbit maneuver are called 
sequential images. They are related in space and time. They 
all contain image information about the same target spatially. 
And they are linked in time by orbit maneuver. The orbit 
maneuver provide a geometric position relation between two 
images and this relation is a time-dependent expression. 
Therefore, a suitable orbit maneuver is very important for 
the relative navigation system. 

The orbit maneuver is usually done by providing a control 
input to the sequence-image relative navigation system. And 
it is also important for the rendezvous and docking with the 
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target. To design the proper control, the related researches 
are widespread and the adaptive controller is a popular 
method to realize target rendezvous and docking based on 
the time-varying sliding mode surface[4] and the fault 
tolerant constraint[5]. The shrinking horizon model 
predictive control (MPC)[6] is approximated to the optimal 
finite horizon control and the control accuracy is analyzed. 
The method is applied for the space target rendezvous and 
docking mission. The fast model predictive control is 
proposed based on the LQ-MPC framework to avoid the 
obstacle during the rendezvous and docking process[7]. The 
H ∞  controller is obtained in terms of the Riccati algebraic 
matrix equations to tackle the relative orbital control 
problem[8]. 

Due to the influence of factors such as the spacecraft sail 
or large antenna flexures and the coupling characteristics 
between the dynamics, the spacecraft navigation system is 
usually a highly complex non-linear dynamic system with 
higher-order states [9]. Aiming at the characteristic, the full-
actuated system model is proposed to obtained the optimal 
control. And the higher-order fully-actuated system method 
has been applied to space target rendezvous and docking 
[10]. Since the navigation system is the information source 
for the control system, which in turn influences the 
observability of the navigation system to acquire state 
information during the relative navigation system. Therefore, 
it is necessary to analyzed the sequence-image relative 
navigation system observability based on the fully-actuated 
system control. 

In this paper, the orbit control for the spacecraft 
rendezvous is considered based on the fully-actuated system. 
Combined with the related results in [11], the observability 
of the sequence-image relative navigation is analyzed with 
the optimal control. The analysis results of the system 
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observability are not only useful for the relative navigation 
system, but also provide a new reference for the design of 
orbital control for future rendezvous and docking processes.  

In Section 2, the fully-actuated system is constructed 
based on the space target relative orbit dynamics. In Section 
3, the optimal control is introduced based on the previous 
research and the observability is analyzed. The numerical 
simulation is conducted in Section 4 and the conclusion is 
drawn in Section 5. 

2 Fully-Actuated System Model of Space Target 
Sequence-image Relative Navigation 

2.1 Sequence-image Relative Navigation System 
Model 

The main coordinate systems are given as follows in order 
to better describe the relative navigation system. 

 
Fig. 1 Definition of the spacecraft orbital coordinate 

 
Fig. 2 Definition of the measurement coordinate 

The definition of the spacecraft orbital coordinate is 
shown in Fig. 1. The origin of the coordinate is at the center 
of the mass of the spacecraft. xyzlO  denotes the orbit 

coordinate, where the xlO  is the radial direction of the 

spacecraft, the ylO is along the direction normal to the 

spacecraft's orbital plane, and the zlO  is determined by the 
right-hand rule. The measurement coordinate system is 
defined as shown in Fig. 2. The coordinate origin is the center 
of the imaging plane of the optical sensor. c cO x y−
denotes the imaging plane, cz  is perpendicular to the 
imaging plane upwards and f  denotes the focal length of 
the camera.  

The relative orbital dynamics model will be constructed 
based on the orbital coordinate system of the service 
spacecraft as shown in [12]: 
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 (1) 

where , ,x y z  denote the target position in the orbit 
coordinate system, ω  denotes the orbit rate of the 
spacecraft orbit, iu , , ,i x y z=  denotes the control input 

of three directions, k  denotes the time epoch. 
It is assumed that the target's coordinate in the service 

spacecraft orbital coordinate system is ( , , )x y z  . Then the 
measurement model is shown as Eq. (2): 
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where kθ  and kφ  denote the azimuth angle and the 

elevation angle, ( )T

k kk v vθ φ=v  denote the measurement 

noises. Then the relative navigation system consists of Eqs. 
(1) and (2).  

In general, the image measurement at one epoch cannot 
provide enough information for state estimation. Therefore, 
the control input can be used to provide extra information 
for the navigation system. After conducting the control, the 
service spacecraft changes the position and obtains a new 
image which can be used for obtain the target position 
combined with the image at the prior image. The process of 
obtaining information about the target's motion state using 
such images that are temporally correlated before and after 
is sequence-image relative navigation. On the one hand, the 
control input can be determined through analyzing the target 
state estimation performance which is called observability. 
On the other hand, the control input needs to be used for 
target rendezvous and docking. Therefore, it is necessary to 
determine the control input combined with the rendezvous 
and docking task requirement.  

2.2 Fully-Actuated System Model  

The fully-actuated system is used to obtained the optimal 
control reach the target. Combined with the Eq. (1)and the 
fully-actuated system theory [13], the fully-actuated system 
model is constructed as follows: 

 ( , ) ( , ) ( , )ξ+ + =M x x x D x x x x x u      (3) 
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where ( )Tx y z=x ,

1 0 0
( , ) 0 1 0

0 0 1

 
 =  
 
 

M x x ,

0 2 0
2 0 0
0 0 0

n
n
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 =  
 
 

D ,

2

2

3
( , ) 0

n x

n z
ξ

 −
 

=  
 
 

x x ,

( )T

x y zu u u=u , n  denotes the orbit rate of the 

service spacecraft.  
Eq. (3) can be transformed to the standard fully-actuated 

system model as follows: 

 ( , ) ( , )= +x f x x B x x u    (4) 

where  

 1( , ) ( , )−=B x x M x x   (5) 

 [ ]1( , ) ( , ) ( , ) + ( , )f ξ−= −x x M x x D x x x x x      (6) 

For the rendezvous and docking mission, the ultimate 
goal is to obtain a control that allows the relative distance 
to reach a steady state 0→x . The literature [11] has 
given the control expression through the full-actuated 
system method as follows: 

 

( , )( ( , ) )f= − −


  =  
 

u M x x x x v
x

v K
x

 



 (7) 

K is the optimal control gain of the linear quadratic optimal 
controller. According to Eqs. (4), (5), (6) and (7), Eq. can be 
easily derived: 

 =v x (8) 

Then the extended variable state space expression is as: 
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and 3 3×O  denotes the zero matrix, 3 3×I  denotes the unit 
matrix, y  denotes the measurements of the variable 
extension model, C  denotes the corresponding 

measurement matrix. Then the optimal control can be 
calculated through the linear quadratic optimal controller. 

3 Observability Analysis for the Navigation 
System with Fully-Actuated System Control 

The observability condition for the fully-actuated system 
control has been described in detail in Ref. [14]. It is noted 
that the observability analysis mentioned in the literature are 
used for designing the observer. For the sequential-image 
relative navigation system, the observer has been determined 
and the control input based on the fully-actuated system 
method is a key factor affecting the navigation system 
observability. The previous researches have given some 
important conclusions[3, 12, 15, 16] for the sequential-
image relative navigation system. The control of the 
spacecraft needs satisfying the following condition to realize 
relative navigation. 
Lemma 1: The sufficient and necessary condition for the 
sequential-image relative navigation to satisfy the 
observability condition is: 

 1 1 , ( 1)kγ γ≠ > −G u Φ x  (12) 

where  γ  denotes the constant and  
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T  denotes the navigation system sampling period. 
Combined with Eqs. (7) and (12), to verify the sequential-

image relative navigation system observability with the 
fully-actuated system control, the related analysis is shown 
as follows. 

Firstly, the left-hand side of Eq. (12) is calculated as Eq. 
(15). 

 
1

1 2

3

g
g
g

 
 =  
 
 

G u  (15) 

800  



  

where  

 

2 2

1

2

4( )sin
2

4sin( )( 2 3 )( 3 )

Tz z
g

Tx y x T

ωω

ω
ωω ω

ω

 +  
 =

+ − − − +



 

 (16) 

 2
( 2 )sin( )y x Tg ω ω

ω
+

=
 

 (17) 

 

2 2

3

2

4( 2 3 )sin
2

( )sin( )

Tx y x
g

z z T

ωω ω

ω
ω ω

ω

 − −  
 = −

+
+

 



 (18) 

Then the right-hand side of Eq. (12) is calculated as Eq. 
(19). 
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Based on the value of γ ,  
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(24) 

According to the relative navigation scenario, Tω  cannot 
be zero or 2π . Also, sin( )Tω  and cos( )Tω  cannot be 

zero at the same time. Therefore, it is evident that 

3 3 0f g− ≠  when 0≠u  combined with Eq. (1). 

Therefore, as long as 0≠u , the optimal control based on 
the fully-actuated system satisfies the sequential-image 
relative navigation system observability condition. 
   Based on the observability condition, it is necessary to 
obtain better observability. Therefore, the optimal control 
quadratic performance indicator is expressed as follows: 
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where Q  and R  are semi-positive   definite   matrix   and   
positive definite matrix, respectively. In Eq.(25), the last 
term denotes the observability performance indicator.  
When it reaches a minimum value, the observability is 
optimal.  

Lemma 2[11]. For system (9), assume that 
T 0= ≥Q C C , 0>R  are constant matrices, ( , )A B  is 

controllable and ( , )A C  is observable. Then S is the 
unique symmetric positive define solution to the following 
Riccati equation: 

 T 1 T 0−+ − + =A S SA SBR B S Q   (26) 

Then the linear quadratic optimal controller of the system 
(9) under the performance indicator (25) is: 

 
 

=  
 

x
v K
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 (27) 

where 1 T T
1 1

1( )
2

−= − +K R B S Φ G  and S  is the unique 

symmetric positive definite solution to Eq. (26). 
Although the optimal control is calculated through the 

fully-actuated system method, the relative motion state 
needs to be known in advance. Therefore, the control in the 
previous epochs needs to be determined according to the 
observability indicator described in Ref. [17]. Therefore, the 
optimal control determination process for the sequential-
image relative navigation system is shown as Fig. 3: 

 
Fig. 3 Relative Navigation System Optimal Control Process 
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4 Simulation 

4.1 Simulation Condition 

The ultimate goal of spacecraft rendezvous is to adjust the 
distance between the target and the service spacecraft to 0m. 
During the process, it is also necessary to improve the 
system observability as much as possible to realize high-
accuracy relative navigation. The relevant simulation 
condition settings are shown in Table 1. 

Table 1: Simulation Parameters 

Item Value 

Initial State [ ]T8000  4000  10000  5 /  8 /  5 /m m m m s m s m s− −  

Orbit Rate 1.2e-3 rad/s 
Q  diag(1e-5,1e-5,1e-5,1e-5,1e-5,1e-5)  

R  diag(1e4,1e4,1e4)  

Measurement Noises diag(2.4e-05 2.4e-05 2.4e-05)rad 

Simulation Time 4320s 

Sampling Period 2s 

The control input is calculated through the process in Fig. 3 and 
the results are shown as Fig. 4.  As a contrast, the control input 
results based on the indicator without observability performance 
(referred to Eq. (15) in Ref. [11])are shown as Fig. 5. 

 
Fig. 4 The Control Input Result Based on the Indicator (16) 

 
Fig. 5 The Control Input Result Based on the Indicator without 

Observability Performance 
The relative motion between the target and the spacecraft based 

on Fig. 4 is shown as Fig. 6. The control results reflected in three 
directions are shown as Fig. 7. 

 
Fig. 6 The Control Input Result Based on the Indicator without 

Observability Performance 

 
Fig. 7 The Control Input Results in Three Directions 

 
In order to better compare the navigation accuracy under 

different control inputs, the relative position state of the target is 
estimated according to different control inputs, and the comparison 
results are shown in Fig. 8 and Table 2. 

 
Fig. 8 Relative Navigation Accuracy with Different Control Input 

Table 2: Relative Navigation Accuracy RMSE with Different 
Control Input 

Item x (m) y (m) z (m) 
Control Input with 

New Indicator 
0.6710 0.1676 0.4564 

Control Input with 
Traditional Indicator 2.2124 0.2603 0.4866 

According to the results above, it can be seen that the control 
input calculated based on the new linear quadratic indicator provide 
better navigation accuracy for the sequential-image relative 

802  



  

navigation system. This is because the indicator considers the 
navigation system observability which is a very important 
influence factor for the navigation system. The smaller 

T T
1 1x Φ G u  is, the more observable the system is and the better 

the navigation accuracy is. As the spacecraft gets closer to the 
target, the navigation accuracy of the two methods gets closer.    

5 Conclusion 
The sequential-image relative navigation system needs 

the control input to improve the observability to realize 
system state estimation. The fully-actuated system method 
provides a new thought to obtain the control input. The 
control input satisfies the sequential-image relative 
navigation observability requirements. Based on the 
observability indicator, the linear quadratic indicator is 
improved to obtain the better navigation performance with the 
calculated optimal control. The relevant results can provide certain 
reference for the navigation and control scheme of the future 
rendezvous and docking mission, and thus achieve the common 
improvement of navigation accuracy and control accuracy.  

It is important to note that the weight matrices of the 
above methods have a large impact on the results of the 
control inputs and more research is needed in the future. In 
addition to this, the size of the control inputs is also one of 
the constraints in solving the optimal control, and more 
detailed studies are needed to address this issue in the future. 
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Abstract: Unmanned Aerial Vehicle enabled (UAV-enabled) wireless powered Wireless Sensor Networks (WSN) provide an
effective way to deploy massive and passive sensors for environmental monitoring in harsh environments. This study focuses
on maximizing the total energy received by all Sensor Nodes (SNs) through the optimization of the UAV trajectory. An energy-
aware smoothing trajectory method is proposed by considering the dynamic energy requirements of SNs. First, the optimization
problem (P1) is formulated according to the mathematical model. Second, the B-spline method is introduced to turn the smooth-
ing problem into a solvable problem (P2). Finally, problem (P2) is solved under the constraints to obtain the trajectory solution.
Simulation results indicate the proposed method can adjust the overall trajectory according to the SNs demands. Meanwhile,
according to the wake-up distance and energy-aware, the trajectory of some nodes can be locally adjusted without affecting other
trajectory segments.

Key Words: B-spline, UAV-enabled, Wireless powered, WSN

1 Introduction

Unmanned aerial vehicles (UAV) have been widely intro-
duced into Wireless Sensor Network (WSN) and are mainly
used to provide charging for renewable energy sensor nodes
(SN), such as solar sensors [1, 2]. Due to variations in en-
vironmental factors, there are fluctuations in the energy har-
vested by these SNs, which leads to the problem of instabil-
ity in the energy of the SNs [3]. To alleviate the problem,
the UAV have been introduced as a supplementary source of
SN energy. In UAV-enabled WSN, the SNs are normally in a
sleep state. When the UAV approaches, the SN is woken up
by the integrated wake-up radio module and then energy is
transmitted [4]. How to adjust the UAV trajectory according
to the energy variation of SN has become a popular research.

1.1 Related work
The UAV cannot be recharged in the air, and the range of

the UAV is highly correlated with energy consumption. In
[5], UAV energy consumption is minimized by planning the
UAV trajectory as well as optimizing the node transfer time
to meet the UAV energy budget. In [6], minimizing UAV
energy consumption is achieved by jointly optimizing UAV
trajectories and transfer time allocation.

In some real-time demanding application scenarios, the
mission completion time of the UAV is also an important
area of research. In [7], the task completion time is opti-
mized in terms of both the data transfer rate of the SNs and
the service time of the UAV. In [8], the trajectory of the UAV
and the communication transfer of the nodes are jointly op-
timized.

In order to ensure the correct uploading of data, the energy
harvested by the node must be above the working threshold.
In [9], UAV trajectories were designed to increase the effi-
ciency of transferring energy. In [10], the trajectory of the
UAV is planned and a balanced energy of node method is

used to maximize the average energy of the SNs. In UAV
trajectory planning, most research focuses on solving point-
to-point linear flights. In fact, planning the smooth trajectory
of the UAV can improve the system’s efficiency. In [11], the
hover point is solved by clustering and the UAV trajectory is
determined based on the hover point. In [12], a joint opti-
mization of trajectory and velocity is performed while solv-
ing for hover point to hover point linear flight.

Adding a wake-up receiver to SN can effectively reduce
the energy wastage caused by idle listening [13]. Mean-
while, the energy required for the Wake-up Receiver is far
less than the charging energy [14, 15]. Many researches have
investigated the problem of UAV planning based on Energy-
Aware. In [16], Energy-aware UAV-assisted WSN networks
are studied. The task area of the sensor network was delin-
eated to optimize the path and hovering time of the UAV.
In [17], a deep reinforcement learning method was used to
plan an Energy-aware UAV trajectory. In [18], the energy-
aware UAV dynamic trajectory planning problem is studied
to obtain the trajectory of the UAV based on the solved hover
point.

1.2 Motivation and contributions
Due to the UAV energy loss and trajectory are highly

correlated, meanwhile, SN energy demand is uncertain.
Smoothing and dynamic adjustment should be considered
and analyzed in the Energy-aware Trajectory. This paper fo-
cuses on maximizing harvested energy by planning a smooth
dynamic path. The main contributions of this paper are as
follows:

• B-spline method is utilized to smooth trajectory by
transforming the problem into a solvable and finite-
variable problem.

• A method for dynamic adjustment of UAV trajectory
based on wake-up power activation is proposed. The
trajectory of some nodes can be locally adjusted with-
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out affecting other trajectory segments.

2 System model

A UAV-enabled wireless powered WSN is considered
and shown in Fig.1. The WSN comprises N ground sen-
sor nodes (SN), which are distributed in a two-dimensional
plane On = [O1, O2, . . . , ON ]T , n ∈ N . The horizontal co-
ordinates of device n is represented by wn = {xn, yn} , n ∈
N . The UAV flies at a fixed altitude of H , transfers RF en-
ergy to SNs in the downlink and collects data information
from SNs in the uplink. The red dashed circle denotes the
maximum activation range of the SN. The time t ∈ [0, T ]
can be cut into time slots of equal length T = [0, 1, ..., T ].
The position of the UAV at time t is represented as qm (t) =
[xm (t) , ym (t)] , qm (T ) = qm (0) , 0 ≤ t ≤ T . The key
notions are listed in Tabel 1.

Fig. 1: System Model

Table 1: Key Simulation Parameters

Notation Description

N The number of nodes SNs

O The set of nodes SN

wn The (2D) coordinates of SN

m The number of UAV waypoints

qm The (2D) coordinates of the UAV at moment

H The altitude of the UAV

Pk The transmit power of the SN

Pact The activation power threshold

hn,m The channel power gain between the SN and the UAV

φn The energy harvesting correlation of the SN and UAV

En Energy collected by n-th SN

B The channel bandwidth

The wireless channel between the SN and the UAV is
dominated by the LoS link. At each moment t, the chan-
nel power gain between the SN and the UAV hn,m(t) can be

modeled as follow:

hn,m(t) =
β0

D2
n,m(t)

=
β0

H2 + ∥qm(t)− wn∥2

(1)

where β0 represents the channel power gain at a distance of
1 meter. In [19], the path loss exhibits a regular circle in
the transmission threshold range. When the received signal
strength indicator (RSSI) of the SN is above the activation
power threshold Pact, the SNs can be activated and commu-
nication:

Pthn,m ≥ P act (2)

When the UAV completes the task, the end point of the UAV
is the starting point, denoted as:

qm(T ) = qm(0) (3)

During transmission, the distance between UAV waypoint
qtr
m and node wn is less than the maximum transmission dis-

tance, denoted as:

∥qtr
m(t)− wn∥ ≤ Dtr,

qtr
m(t) ∈ qm(t), φn = 1

(4)

After the energy transmission of the UAV, the energy col-
lected by the n–th SN En can be expressed as:

En =

∫ T

0

φn (t)hn,mPtdt , φn = {0, 1} (5)

where φn (t) represents the energy harvesting correlation
function of the n-th SN with the UAV at moment t. At time
t, φn = 0 means that the n-th SN is harvesting energy from
the UAV, while φn = 1 indicates no harvesting happens.

The goal of this paper is to maximize the total energy re-
ceived of all SNs. Therefore, the problem is mathematically
expressed as follows:

(P1):max

N∑
n=1

En

s.t. (2), (3), (4)

3 Proposed smoothing trajectory method

The original problem (P1) is complex and difficult to
solve because it is continuous time and contains infinite cou-
pled optimization variables. To solve this problem, B-spline
method is introduced to transform (P1) into (P2) solvable
smooth trajectory planning problem.
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3.1 Trajectory smoothing optimization (P2)
With B-spline method [20], the trajectory of UAV qm[k]

is represented as below.

qm[k] =
[
Bi−pd+1,pd(u) Bi−pd+2,pd(u) · · · Bi,pd(u)

]
×


Pi−pd+1

Pi−pd+2

...
Pi



=
[
1 u u2 · · · upd−1

]
Mpd(i)


Pi−pd+1

Pi−pd+2

...
Pi


u =

(t− τi)

(τi+1 − τi)
, u ∈ [0, 1]

(6)

where Mk (i) is the i -th basis matrix of the pd − 1 order
B-spline basis function. The trajectory is deformed using an
Affine Transformation Matrix GT = [g0, g1, . . . , gn] opti-
mized as follows:

P j+1 = GT j

⊕ P j

=
{
gj1 ⊕ pj+1

0 , gj1 ⊕ pj+1
1 . . . , gjn ⊕ pj+1

n

}
, j > 0

(7)

where P j represents the B-spline control point under the i
-th iteration iteration. Then the coordinates of the B-spline
of the corresponding curve can be written as:

qjm[n] =

[
1 u u2 · · · uk−1

]
Mk(i)


gj1 ⊕ P j

i−pd+1

gj2 ⊕ P j
i−pd+2
...

gji ⊕ P j
i


(8)

In order to ensure that the UAV can successfully return to
the departure point, the first and last control points must be
identical.

gji ⊕ P j
i = gj1 ⊕ P

j

i−pd+1
(9)

The subproblem (P2) can be written as follows:

(P2) : max
{G}{pd}

N∑
n=1

En

s.t.(2), (3), (4), (8), (9)

The variable {G∗} and {pd∗} can be obtained by Genetic
Algorithm and the optimal trajectory {qm∗} can be obtained
in (6).

4 simulations and results

A WSN with 15 SNs is considered, the SNs are distributed
randomly within 1 km × 1 km two-dimensional plane. The

Table 2: Key Simulation Parameters

The Notation Physical Meaning Value

H UAV height 5 m

B Total channel bandwidth 1 MHZ

σ2 Noise power spectral density -100 dbm

Pt UAV transmission power 1 W

task starts at point O1 and eventually return to the starting
point. The parameters of simulation are shown in Table 2.

The trajectories and energies at higher and lower orders
are shown in Fig.2. Both UAV flight trajectories are trans-
mitted with the SN Within the energy transmission distance,
and both them are continuous and smooth. When the SNs
energy demands are high, the UAV chooses to fly above the
SN. When the energy demand is low, the UAV chooses a tra-
jectory further away from the SN. The harvested energy is
shown in Fig.3.

Fig. 2: Trajectory of the proposed methodology at higher
and lower orders

Fig. 3: Comparison of received energy at higher and lower
energy demand
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The trajectories before and after the change of node en-
ergy demand are shown in Fig.4 and Fig.5. The UAV detects
that the demand of O3, O10 and O12 is reduced at wake-up
distance, and the UAV trajectory is adjusted according to the
initial trajectory. The nodes that do not change still maintain
the initial trajectory. In Fig.5, except for the harvested en-
ergy changes of O3, O10 and O12, the others are not change.
The adaptability of the algorithm is verified.

Fig. 4: The trajectories before and after adjusted according
to the energy-aware

Fig. 5: The harvested energy after adjusting the trajectory

5 Conclusion

This paper maximizes the total energy received by all SNs
by optimizing the UAV trajectory. An energy-aware method
for smooth and adjustable trajectory is proposed. Firstly,
the optimization problem (P1) is formulated according to the
mathematical model. Second, the B-spline method is intro-
duced to turn the smoothing problem into a solvable problem
(P2). Finally, under the constraints, problem (P2) is solved to
obtain the trajectory solution. Simulation results indicate the
proposed method can adjust the overall trajectory according
to the SNs demands. Meanwhile, according to the wake-up
distance and energy-aware strategy, the trajectory of some

nodes can be locally adjusted without affecting other trajec-
tory segments.
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Abstract: For the CPSs with multiplicative noises against deception attacks, the sequential fusion filters under the innovation-
triggered mechanism are presented. The random deception attacks occur in the transmitted measurements, the innovation-
triggered mechanism is introduced to ease off the network transmission pressure, the fusion center makes two-sensor fusion
estimation under three different fusion algorithms according to the arriving order of the local estimators. The results indicate that
three sequential fusion algorithms can effectively ease off random attack effection and computational pressure, and the accuracy
of sequential state fusion filter is higher than those of SCI fusion filter and SICI fusion filter. A simulation example verifies the
effectiveness of above sequential fusion algorithms.

Key Words: Sequential fusion, CPSs, Innovation-triggered mechanism, Multiplicative noises, Deception attacks

1 Introduction

With the rapid development of modern control technology

and communication technology, the cyber-physical systems

(CPSs) solve the requirements of information and network-

ing in the new era that the traditional single-point technology

can not meet[1]. However, in many practical applications, the

system model is uncertain due to modeling errors, random

disturbances and other reasons. Commonly, the uncertainties

include those formed by uncertain noise variance and ran-

dom disturbance (such as multiplicative noise). These sys-

tem uncertainties will cause the filtering performance deteri-

orate, and ever lead to divergence[2]. On the other side, dur-

ing the communication process, the communication channel

often suffers from the network attacks. The common net-

work attacks include DoS attacks, deception attacks and so

on, among which the deception attacks are the most com-

mon, since the deception attacks have strong concealment

and are not easy to be found during transmission. In [3], the

state estimator for CPSs with deception attacks is discussed,

and the deception attacks are brought by a set of random

variables to model measurements of attacks, that is, when

the probability of the Bernoulli variable is 1, the system is

attacked and the measurement is converted into an attack se-

quence, otherwise equal to the original measurement.

In order to ease off the transmission pressure of the CPSs

and the pressure of network transmission, the event-triggered

mechanisms can be introduced in the CPSs. Commonly, the

event-triggered mechanisms include Send-on Delta and the

innovation-triggered mechanisms. The triggered mechanism

is considered in the CPSs in [4], where if the current mea-

surements and the previous measurements exceed the thresh-

old, the measurements at this moment will be transmitted.

This work is supported by the National Natural Science Foundation

of China (NSFC-61503125), Natural Science Foundation of Heilongjiang

Province (QC2013C062), Fundamental Research Support Program for Out-

standing Young Teachers of Heilongjiang Province(YQJH2023139), and

Science Foundation of Distinguished Young Scholars of Heilongjiang Uni-

versity(JCL201104).

In recent years, with the rapid development of navigation,

target tracking and signal processing, the multi-sensor infor-

mation fusion estimation method has been widely concerned

and used. Commonly the state fusion methods include the

centralized fusion and the distributed fusion methods. The

centralized fusion method is performed by senting the mea-

surement data of all sensors to the fusion center to form the

centralized state space model, without any data loss, so it has

the optimality. In the distributed fusion process, the local

state estimation of each sensor is send to the fusion center

for fusion according to certain fusion rule, which ease off

the computational pressure of the fusion center. The Com-

mon distributed fusion mathods include ones weighted by

matrices[5], diagonal matrices[6], scalars[7] and covariance

intersection (CI) fusion[8] method. CI fusion do not need

to know cross-covariance matrices between these local esti-

mations, which ease off the computational pressure.

Since the sensor information is transmitted to the fusion

center at different times, the fusion center is always idle and

waiting for all sensors’ information, so the concept of the se-

quential fusion is presented. The more commonly sequential

fusion method includes the sequential state fusion(SSF), se-

quential covariance intersection(SCI) fusion[9] and sequen-

tial inverse covariance intersection(SICI) fusion[10]. SCI

fusion algorithm is a recursive CI fusion of two sensors,

which is fused according to the arrival sequence of the sen-

sors, obviously reducing the computational burden of the fu-

sion center. Similarly, both SICI fusion and SSF algorithms

adopt multiplestage two-sensor fusion strategy respectively.

In [11], the SSF estimation of sensor networks is presented,

where the local estimates are weighted fused by matrices one

by one according to the order of the data arriving at the fu-

sion center, and the SSF has better estimation accuracy and

lower computational complexity.

At present, the sequential fusion estimation for CPSs is

rarely studied. For CPSs, a sequential fusion estimation with

multiplicative noises against deception attacks is presented

under the innovation-triggered mechanism, where the ran-
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dom deception attacks attack the transmitted measurements,

the innovation-triggered mechanism launches the observed

data transmission after the attacks, and the measurement

datas are sequentially fused by SSF, SCI and SICI fusion

algorithms, according to the arrival order in the fusion cen-

ter. These sequential fusion estimators have good tracking

performance and estimation accuracy.

The structure of the paper is summarized as follows: in

Section 2, by the fictitious noise technology, the CPSs model

is transform to a new model. In Section 3, the local opti-

mal filter with multiplicative noises against deception attacks

under the innovation-triggered mechanism is designed. The

SSF filter weighted by matrices is presented in Section 4, and

then the SCI and SICI fusion filters are presented in Section

5. In Section 6, the accuracy relationship between the three

sequential fusion algorithms are shown. The effectiveness of

the three sequential fusion algorithms is verified by a typical

CPSs simulation examples in Section 7. Finally, the conclu-

sion is drawn in Section 8.

2 Problem Formulation

2.1 System Model

Consider the linear discrete CPSs with multiplicative

noises:

x (l + 1) =

(

Φ+

q
∑

s=1

ξs (l) Φs

)

x (l) + Γw (l) , (1)

yi (l) = Hix (l) + vi (l) , i = 1, · · · , N, (2)

where l is the discrete time, x(l) ∈ Rn is the state, w (l) ∈
Rr is the process noise, ξs (l) ∈ R1 is the multiplicative

noises, yi (l) ∈ Rmi (i = 1, 2, · · · , N) is the measurement

of sensor i, vi (l) ∈ Rmi is the measurement noise, Φ,Φs,Γ
and Hi are known constant matrices, and N is the number

of sensors.

Assumption 1. w (l), vi (l) and ξs (l) are uncorrelated

Gaussian white noises with zero means and variences as Qw,

Ri and σ2
ξs

respectively

E











w (l)
vi (l)
ξs (l)





[

wT (j) vTl (j) ξTk (j)
]}

=





Qw 0 0
0 Riδil 0
0 0 σ2

ξs
δsk



 δlj (3)

where δll = 1, δlj = 0 (l ̸= j).
Assumption 2. x (0) is independent of w (l), vi (l) and

ξs (l), i.e.,

E
[

x (0)wT (l)
]

= 0,E
[

x (0) vTi (l)
]

= 0,

E
[

x (0) ξTs (l)
]

= 0, ∀l (4)

with

E [x (0)] = x0,E
[

(x (0)− x0) (x (0)− x0)
T
]

= P0 (5)

When the measurement yi (l) is transmitted to the fusion

center, the new measurement suffering the deception attacks

can be expressed by

yai (l) = −yi (l) + ζi (l) , (6)

where ζi (l) ∈ Rmi is the attack signal injected by the at-

tacker, which is a zero mean, Gaussian white noise with vari-

ance Ξi > 0.

Usually a set of Gaussian random variables {αi (l)} are

generated to represent the attack phenomenon, which by-

passes the χ2 detector with

Pr {αi (l) = 1} = σi,Pr {αi (l) = 0} = 1− σi, (7)

Then, denote the final measurement zi (l) as

zi (l) = yi (l) + αi (l) y
a
i (l)

= (1− αi (l)) yi (l) + αi (l) ζi (l) . (8)

From (8), it can be seen that the measurement is attacked

when αi (l) = 1, and when αi (l) = 0, the attacks is unsuc-

cessful.

Our aim is to design the sequential state fusion filter, SCI

and SICI fusion filters for CPSs with multiplicative noises

against deception attacks under the innovation-triggered

mechanism, respectively.

2.2 System Model Transformation

Applying the fictitious noises technique, the CPSs system

(1) and (2) are transformed into

x (l + 1) = Φx (l) + wa (l) , (9)

where the fictitious process noise is

wa (l) =

q
∑

s=1

ξs (l) Φsx (l) + Γw (l) , (10)

Its variance is

Qa (l) =

q
∑

s=1

σ2
ξs
(l) ΦsX (l) ΦT

s + ΓQw (l) ΓT, (11)

where X (l) = E
[

x (l)xT (l)
]

is the second moment of the

state. From the CPSs model (1) and (2), it yields

X (l) = ΦX (l − 1)ΦT+

q
∑

s=1

σ2
ξs
(l) ΦsX (l) ΦT

s +ΓQw (l) ΓT,

(12)

whose initial value is X (0) = x0x
T
0 + P0.

Substituting (2) into (8) yields the actual sensor output

zi (l) = (1− σi)Hix (l) + (1− αi (l)) vi (l)

+ αi (l) ζi (l)− (αi (l)− σi)Hix (l) . (13)

By using the fictitious noise technique, the observed equa-

tion can be transformed as

zi (l) = Πix (l) + Vi (l) , (14)

where the new observation matrices are defined as

Πi = (1− σi)Hi, (15)

and the fictitious measurement noises are defined as

Vi (l) = (1− αi (l)) vi (l) + αi (l) ζi (l)

− (αi (l)− σi)Hix (l) . (16)
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It can be easily verified that the fictitious measurement

noise is a whise noise with

E [Vi (l)] = 0, (17)

and the variance matrice

RVi
(l) = E

[

Vi (l)V
T
i (l)

]

= (1− σi)Ri (l) + σiΞi + σi (1− σi)HiX (l)HT
i .

(18)

Remark 1. Since ΓQΓT ⩾ 0, a sufficient condition for

the existence of a unique semidefinite solution to the gen-

eralized Lyapunov equation (12) is that the spectral radius

ρ (Φδ) < 1 of the matrix Φδ = Φ⊗Φ+
∑q

s=1 σ
2
ξs
Φs ⊗Φs,

where the symbol ⊗ represents Kronecker product, so Φδ is

a stable matrix.

2.3 The Innovation-triggered Mechanism

Since the energy constraints are prevalent in CPSs,

the innovation-triggered mechanism is used to design the

estimator[12], the innovation can be denoted as a one-step

prediction error of the measurement, i.e.

ei (l) = y (l)− ŷi (l|l − 1) , (19)

and its covariance is denoted as Qei (l) = E
{

ei (l) e
T
i (l)

}

.

Standardizing the innovation, it yields

ēi (l) =
ei (l)

√

Qei (l)
(20)

The innovation-triggered threshold value is θi > 0, and

the Bernoulli variable γi (l) is usually introduced to describe

the sensor transmission states. Then, γi (l) = 1 represents

ēi (l) falls outside the threshold value θi, and the measure-

ment contains a lot of new information, so data transmission

is required. On the contrary, γi (l) = 0 represents the mea-

suremants should be sent, i.e.

γi (l) =

{

1, ||ēi (l) ||2 ⩾ θi

0, other
(21)

Remark 2. The innovation ei (l) and its covariance

Qei (l) defined here, are given later in the calculation of the

local optimal filter in Theorem 1.

3 Local Optimal Filter

Theorem 1. The innovation-trigger-based local Kalman

filters for the CPSs with multiplicative noises against decep-

tion attacks (1) and (13) are obtained under Assumption 1

and 2

x̂i (l|l) = x̂i (l|l − 1) + γi (l)Ki (l) ei (l) , (22)

ei (l) = zi (l)− (1− σi)Hix̂i (l|l − 1) , (23)

Qei (l) = (1− σi)
2
HiPi (l|l − 1)HT

i + (1− σi)Ri (l)

+ σiΞi + σi (1− σi)HiX (l)HT
i , (24)

Ki (l) =
[

(1− σi)Pi (l|l − 1)HT
i

]

Q−1
ei

(l) , (25)

Pi (l|l) = Pi (l|l − 1)− γi (l)Ki (l)Qei (l)K
T
i (l) , (26)

Pi (l + 1|l) = ΦPi (l|l) Φ
T +

q
∑

s=1

σ2
ξs
(l) ΦsX (l) ΦT

s

+ ΓQw (l) ΓT, (27)

Proof. When γi (l) = 1, denote the measurement Zi (l)
received by estimator at all instants as

Zi (l) = {γi (1) zi (1) , γi (2) zi (2) , · · · , γi (l) zi (l)} ,
(28)

Applying to Projective Theorem, the local filters can be

calculated as

x̂i (l|l) = E [x (l) |Zi (l)]

= x̂i (l|l − 1) + γi (l)Ki (l) ei (l) , (29)

where Ki (l) = E
[

x (l) eTi (l)
] {

E
[

ei (l) e
T
i (l)

]}−1
. By

using (19), the innovation ei (l) can be written as

ei (l) = (1− σi)Hix̃i (l|l − 1) + Vi (l) , (30)

From (30), the innovation covariance can be calculated as

Qei (l) = (1− σi)
2
HiPi (l|l − 1)HT

i + (1− σi)Ri (l)

+ σiΞi + σi (1− σi)HiX (l)HT
i , (31)

Since x (l) = x̂i (l|l − 1) + x̃i (l|l − 1) and the orthog-

onality between x̂i (l|l − 1) and x̃i (l|l − 1), from (1) and

(30), the filter gain matrices Ki (l) can be obtained as

Ki (l) =
(

(1− σi)P
T
i (l|l − 1)HT

i

)

Q−1
ei

(l) , (32)

Using (1) and (29) yields the filtering error x̃i (k|k) as

x̃i (l|l) = x̃i (l|l − 1)− γi (l)Ki (l) ei (l) , (33)

Because of the orthogonality between x̃i (l|l − 1) and

w (l) and the orthogonality between x̃i (l|l − 1) and vi (l),
from (33), the filter error variance Pi (l|l) is derived as fol-

lows

Pi (l|l) = Pi (l|l − 1)− γi (l)Ki (l)Qei (l)K
T
i (l) , (34)

From (33), it yields the prediction error variance

Pi (l + 1|l)

Pi (l + 1|l) = ΦPi (l|l) Φ
T +

q
∑

s=1

σ2
ξs
(l) ΦsX (l) ΦT

s

+ ΓQw (l) ΓT, (35)

When γi (l) = 0, the local filter values are same as the

local predictor values of the last instant, i.e.

x̂i (l|l) = x̂i (l|l − 1) , Pi (l|l) = Pi (l|l − 1) , (36)

The proof of theorem 1 is completed.
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4 SSF Filter

Theorem 2. The innovation-trigger-based SSF algorithm

is obtained for CPSs with multiplicative noises against de-

ception attacks (1) and (13) under Assumption 1 and 2

x̂SSF
i (l|l) = (1− γi (l)) x̂

SSF
i−1 (l|l) + γi (l)

(

Ω
(i)
1 x̂SSF

i−1 (l|l)

+Ω
(i)
2 x̂i+1 (l|l)

)

, (37)

PSSF
i (l|l) =

(

eT (Σi (l|l))
−1

e
)−1

, (38)

x̂SSF (l|l) = x̂SSF
N (l|l) , (39)

PSSF (l|l) = PSSF
N (l|l) , (40)

and it yields the SSF predictor

x̂SSF (l + 1|l) = Φx̂SSF (l|l) , (41)

PSSF (l + 1|l) = ΦPSSF (l|l) ΦT +

q
∑

s=1

σ2
ξs
(l) ΦsX (l) ΦT

s

+ ΓQw (l) ΓT, (42)

where the weights are given as

[

Ω
(i)
1

Ω
(i)
2

]

= (Σi (l|l))
−1

e
[

eT (Σi (l|l))
−1

e
]−1

, (43)

Σi (l|l) =

[

PSSF
i−1 P(SSF

i−1 ),i+1

P
i+1,(SSF

i−1 )
Pi+1

]

, (44)

and where P
i+1,(SSF

i−1 )
= PT

(SSF
i−1 ),i+1

, and the cross covari-

ance between the fusion filter error and the (i+1)-th sensor

filter error is computed as

P(SSF
i−1 ),i+1 (l|l) = (1− γi (l))P(SSF

i−2 ),i+1 (l|l) + γi (l)
(

Ω
(i−1)
1

×P(SSF
i−2 ),i+1 (l|l) +Ω

(i−1)
2 Pi,i+1 (l|l)

)

,

(45)

where the cross covariance between the (i)-th filter error and

the (i+1)-th sensor filter error is computed as

Pi,i+1 (l|l) = Pi,i+1 (l|l − 1) + γi (l) γi+1 (l)Ki (l)Qe
i,i+1

(l)

×KT
i+1 (l)− (1− σi+1) γi+1 (l)Pi,i+1 (l|l − 1)

×HT
i+1K

T
i+1 (l)− (1− σi) γi (l)Ki (l)Hi

× Pi,i+1 (l|l − 1) , (46)

and the local prediction error cross covariance matrices and

the innovation error cross covariance matrices are given as

Pi,i+1 (l + 1|l) = ΦPi,i+1 (l|l) Φ
T +

q
∑

s=1

σ2
ξs
(l) ΦsX (l) ΦT

s

+ ΓQw (l) ΓT, (47)

Qei,i+1
(l) = (1− σi) (1− σi+1)HiPi,i+1 (l|l − 1)HT

i+1,
(48)

Proof. When γi (l) = 1, applying the fusion rule with

matrix weights is presented in [5], the optimal fusion filter

and variance is given by the sequential approach as

x̂SSF
i (l|l) = Ω

(i)
1 x̂SSF

i−1 (l|l) +Ω
(i)
2 x̂i+1 (l|l) , (49)

PSSF
i (l|l) =

(

eT (Σi (l|l))
−1

e
)−1

, (50)

where Ω
(i)
1 + Ω

(i)
2 = I, and using (1) and (49) yield the

fusion filter error as

x̃SSF
i (l|l) = Ω

(i)
1 x̃SSF

i−1 (l|l) +Ω
(i)
2 x̃i+1 (l|l) , (51)

By (30), the innovation covariance Qei,i+1
(l) =

E
[

ei (l|l) e
T
i+1 (l|l)

]

is given as

Qei,i+1
(l) = (1− σi) (1− σi+1)HiPi,i+1 (l|l − 1)HT

i+1,
(52)

Using (30) and (33) yield the filter error cross covariance

Pi,i+1 (l|l) = E
[

x̃i (l|l) x̃
T
i+1 (l|l)

]

between i-th sensor and

(i+1)-th sensor is given as

Pi,i+1 (l|l) = Pi,i+1 (l|l − 1) +Ki (l)Qe
i,i+1

(l)KT
i+1 (l)

− (1− σi+1)Pi,i+1 (l|l − 1)HT
i+1K

T
i+1 (l)

− (1− σi)Ki (l)HiPi,i+1 (l|l − 1) , (53)

From (33) and (51), the cross covariance

P(SSF
i−1 ),i+1 (l|l) = E

[

x̃SSF
i−1 (l|l) x̃T

i+1 (l|l)
]

between

the fusion filter error and the (i+1)-th sensor filter error is

obtained as

P(SSF
i−1 ),i+1 (l|l) = Ω

(i−1)
1 P(SSF

i−2 ),i+1 (l|l) +Ω
(i−1)
2 Pi,i+1 (l|l) ,

(54)

When γi (l) = 0, the fusion cross covoriance are same as

the local predictor values of the last instant, i.e.

Pi,i+1 (l|l) = Pi,i+1 (l|l − 1) , (55)

P(SSF
i−1 ),i+1 (l|l) = P(SSF

i−2 ),i+1 (l|l) , (56)

x̂SSF
i (l|l) = x̂SSF

i−1 (l|l) , (57)

The proof of theorem 2 is completed.

5 SCI and SICI Fusion Filter

Lamma 1[13] The innovation-trigger-based SCI fusion

algorithm is obtained for CPSs with multiplicative noises

against deception attacks (1) and (13) under Assumptions 1

and 2

x̂CI
i (l|l) = (1− γi (l)) x̂

CI
i−1 (l|l) + γi (l)P

CI
i−1 (l|l)

[

w
(i−1)
CI

×
(

PCI
i−1 (l|l)

)−1
x̂CI
i−1 (l|l) +

(

1− w
(i−1)
CI

)

×P−1
i (l|l) x̂i (l|l)

]

, (58)

PCI
i (l|l) = (1− γi (l))P

CI
i−1 (l|l) + γi (l)

[

w
(i−1)
CI

×
(

PCI
i−1 (l|l)

)−1
+
(

1− w
(i−1)
CI

)

P−1
i (l|l)

]−1

,

(59)
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x̂SCI (l|l) = x̂CI
N−1 (l|l) , (60)

PSCI (l|l) = PCI
N−1 (l|l) , (61)

where the initial values are PCI
i (0|0) = P0, x̂

CI
i (0|0) =

x0, and the minimization performance index with the opti-

mal weighting coefficient w
(i−1)
CI is as follows

min
w

(i−1)
CI

∈[0,1]

trPCI
i (l|l) = min

w
(i−1)
CI

∈[0,1]

tr
{

(1− γi (l))P
CI
i−1 (l|l)

+γi (l)
[

w
(i−1)
CI

(

PCI
i−1 (l|l)

)−1

+
(

1− w
(i−1)
CI

)

P−1
i (l|l)

]−1
}

,

(62)

Lamma 2[13] The innovation-trigger-based SICI fusion

algorithm is obtained for CPSs with multiplicative noises

against deception attacks (1) and (13) under Assumptions 1

and 2

x̂ICI
i (l|l) = (1− γi (l)) x̂

ICI
i−1 (l|l) + γi (l)

[

KICI (l)

×x̂ICI
i−1 (l|l) + LICI (l) x̂i (l|l)

]

, (63)

P ICI
i (l|l) = (1− γi (l))P

ICI
i−1 (l|l) + γi (l)

{

(

P ICI
i−1 (l|l)

)−1

+(Pi (l|l))
−1

+
[

w
(i−1)
ICI P ICI

i−1 (l|l)

+
(

1− w
(i−1)
ICI

)

P−1
i (l|l)

]−1
}

, (64)

KICI (l) = P ICI
i (l|l)

{

(

P ICI
i−1 (l|l)

)−1
− w

(i−1)
ICI

[

w
(i−1)
ICI P ICI

i−2 (l|l) +
(

1− w
(i−1)
ICI

)

Pi (l|l)
]−1
}

,

(65)

LICI (l) = P ICI
i (l|l)

{

(Pi (l|l))
−1

−
(

1− w
(i−1)
ICI

)

[

w
(i−1)
ICI P ICI

i−2 (l|l) +
(

1− w
(i−1)
ICI

)

Pi (l|l)
]−1
}

,

(66)

x̂SICI (l|l) = x̂ICI
N−1 (l|l) , (67)

PSICI (l|l) = P ICI
N−1 (l|l) , (68)

where the initial values are P ICI
i (0|0) = P0, x̂

ICI
i (0|0) =

x0, and the minimization performance index with the opti-

mal weighting coefficient w
(i−1)
ICI is as follows

min
w

(i−1)
ICI

∈[0,1]

trP ICI
i (l|l) = min

w
(i−1)
ICI

∈[0,1]

tr
{

(

P ICI
i−1 (l|l)

)−1

+(Pi (l|l))
−1

+
[

w
(i−1)
ICI P ICI

i−1 (l|l)

+
(

1− w
(i−1)
ICI

)

P−1
i (l|l)

]−1
}−1

,

(69)

6 Accuracy Analysis

Theorem 3. The accuracy relationship between three se-

quential fusion filter algorithms and the local filters is as fol-

lows

trPSSF
⩽ trPSICI

⩽ trPSCI
⩽ trPi, i = 1, 2, · · · , N,

(70)

Proof. Under the condition of the same deception attacks,

the same threshold values, and the same arriving order of

local estimators, the two-sensor state fusion algorithm is op-

timal in the sence of LUMV criterion, so it has the highest

accurcies among three fusion algorithms. It is proved in [14]

that the estimation accurcy of ICI fusion algorithm is higher

than that of CI fusion algorithm. All of the fused algorithms

are more accurate than local filters. Therefore, under the se-

quential fusion form, the accury relations will still be kept,

that is, (70) holds.

7 Simulation Example

Consider a three-sensor cycle-physical system

x (l + 1) =

([

0.9 T0

0 0.9

]

+ ξ (l)

[

0.2 0
0 0.1

])

x (l)

+

[

T2
0/2
T0

]

w (l) , (71)

yi (l) = Hix (l) + vi (l) , (72)

zi (l) = (1− αi (l)) yi (l) + αi (l) ζi (l) , i = 1, 2, 3. (73)

where T0 = 0.5, H1 =
[

0 1
]

, H2 =
[

1 0
]

, H3 =
[

1 1
]

, w (l), ξ (l) and vi (l) are zero mean white noises,

their variances are Qw = 0.21, σ2
ξ = 0.02,Σ1 = 0.04,Σ2 =

0.3 and Σ3 = 0.5, respectively. The innovation-triggered

threshold θi = 0.3. These attacked probabilities αi are se-

lected as α1 = 0.1, α2 = 0.2 and α3 = 0.4. ζi (l) are ran-

dom zero-mean Gaussian white noises, and their variances

are Ξ1 = 0.16,Ξ2 = 0.12 and Ξ3 = 0.04 respectively.

The simulation results are shown in Fig.1, where the

solid curves represent the real state values x1 (l) and

x2 (l), the dashed curves represent the SCI fusion Kalman

filter estimation x̂SCI
1 (l|l) and x̂SCI

2 (l|l) against decep-

tion attacks under the innovation-triggered mechanism, the

doted curves represent the SICI fusion Kalman filter es-

timation x̂SICI
1 (l|l) and x̂SICI

2 (l|l) against deception at-

tacks under the innovation-triggered mechanism, the dou-

ble doted curves represent the SSF Kalman filter estima-

tion x̂SSF
1 (l|l) and x̂SSF

2 (l|l) against deception attacks un-

der the innovation-triggered mechanism. It can be seen that

these algorithms have good tracking results.

In order to verify the effectiveness of the presented

sequential fusion Kalman filters, 100 Monte-Carlo

simulations are performed and the mean square rel-

ative error (MSRE) curves of the fusion filter are

drawn, as shown in Fig.2, where MSRE(n) (l) =

1
100

∑100
p=1

{[

x̂
(n)
(p) (l|l)− x

(n)
(p) (l)

]

/x
(n)
(p) (l)

}2

(n = SCI,

SICI, SSF ), the subscript p represents the p-th experi-

ment. The doted curves represent the MSRE value of SCI
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Fig. 1: Fusion filter tracking curves

fusion filter, the solid curves represent the MSRE value of

the SICI fusion filter, and the dashed curves represent the

MSRE value of the SSF filter. The comparison of MSRE

values of different fusion algorithms for each 100 steps

from l = 0 to l = 600 is shown in Table 1. It can be seen

that when the running steps are sufficient long, under the

innovation-triggered mechanism the accuracy of the SCI

fusion filter is the lowest, the accuracy of the SICI fusion

filter is the second, and both of their accuracies are lower

than that of the SSF filter.

Table 1: The comparison of MSRE values of different se-

quential fusion algorithms for each 100 steps from l = 0 to

l = 600.
l 100 200 300 400 500 600

MSRE
SCI(l) 0.0794 0.0695 0.0942 0.0310 0.1464 0.0825

MSRE
SICI(l) 0.0546 0.0560 0.0674 0.0275 0.1356 0.0718

MSRE
SSF (l) 0.0191 0.0124 0.0498 0.0100 0.0493 0.0491

8 Conclusion

Three sequential fusion filters for CPSs with multiplica-

tive noises against deception attacks have been presented un-

der the innovation-triggered mechanism. The uncertainties

caused by the deception attacks and multiplicative noises

have been transformed into white fictitious noises by the

model transformation, and the new measurements are send

to the fusion center. The simulation results show that the es-

timation accuracy of the SICI fusion filter is higher than that

of the SCI fusion filter, and lower than that of the SSF filter,
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Fig. 2: The MSRE curves of different fusion algorithms

which verifies the effectiveness of these above sequential fu-

sion approaches. In addition, the accuracy analysis verified

in this paper also greatly explains the accuracy relationship

among the three fusion algorithms.
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带确定性观测和随机观测系统的最优降阶滤波器 
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摘   要: 对带确定性观测和随机观测的线性离散定常系统, 研究了最优降阶滤波问题. 部分状态分量可通过确定性观测

直接获得, 其它状态分量通过设计降阶的状态滤波器获得.与将观测增广的方法相比, 不仅减小了计算负担, 而且避免了

由于奇异观测噪声方差矩阵可能引起的数值计算不稳定的问题. 本文方法可以解决带有状态等式约束和带有奇异观测

噪声方差矩阵系统的估计问题. 仿真例子验证了算法的有效性. 

关键词: 确定性观测, 随机观测, 状态等式约束, 降阶滤波器, 线性离散定常系统 

 

Optimal Reduced-order Filter for Systems with Deterministic 

Observations and Stochastic Observations 
 

Yuan Gao, Shuli Sun, Yuan Gao 
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Abstract: For linear discrete time-invariant systems with deterministic observations and random observations, the optimal 

reduced-order filtering problem is studied. Some of the state components can be obtained directly by deterministic observation, 

while others can be obtained by designing a reduced-order state filter. Compared with the method of augmenting the observation, 

it not only reduces the calculation burden, but also avoids the problem of numerical instability caused by the singular observation 

noise variance matrix. The method presented in this paper can solve the estimation problem of systems with state equality 
constraint and singular observation noise variance matrix. A simulation example verifies the effectiveness of algorithm. 

Key Words: Deterministic Observation, Random Observation; State Equality Constraint; Reduced-order Filter; Linear 

Discrete Time-invariant System 

 

 
  

 

1 引言 

在实际系统中,传感器的观测可能遭受来自系统

或外界的噪声干扰.随着环境和制造技术的改善,传

感器的测量精度也在不断提高.在某些情况下,传感

器的观测可以认为没有噪声干扰.此外,系统运行过

程中,系统状态可能受到条件或工况的限制或约束.

这些状态约束在某些情况下可以认为是没有观测噪

声的测量,在系统分析或状态估计中应考虑这些约束

以提高系统估计精度[1-3]. 

文献[4]-[7]中将等式约束视为没有观测噪声的观

测值,通过增广观测方程,将约束估计问题转化为非

约束的估计问题,也叫伪观测方法.文献[8]-[12]针对

带约束系统的状态估计问题还提出了其它的处理方

法,例如投影法.虽然伪观测法实现简单,但是也存在

一定的问题.首先,扩维后的观测方程一定程度上增

加了计算负担.其次,由于等式约束被视作观测值时

的观测噪声为零,这导致观测噪声具有奇异的协方差. 

                                                           
*此项工作得到国家自然科学基金资助, 项目批准号：61573132. 

因此,该方法可能会导致滤波结果不稳定.文献[13]提

出了采用广义逆矩阵避免由于奇异观测噪声方差阵

引起的数值问题.文献[14]-[15]研究了具有状态等式

约束的多传感器系统的分布式最优融合估计问题. 

本文对带确定性观测和随机观测的线性离散定

常系统,通过确定性观测获得一部分状态分量,而其

它状态分量通过设计一个降阶的状态滤波器获得.与

增广观测的伪观测法相比,减小了计算负担,同时避

免了伪观测法奇异观测噪声方差阵可能带来的数值

计算不稳定问题. 

2 问题阐述 

( 1) ( ) ( )x t x t w t+ = Φ + Γ                  (1) 

1 1 1( ) ( ) ( )y t C x t v t= +  
                 (2) 

2 2( ) ( )t Cy x t=                            (3) 

其中 , ( ) nx t R∈ 为系统状态 , 1( )
m

y t R∈ 是随机观测 , 

2 ( )
p

y t R∈ 是确定性观测 . ( ) rw t R∈ 和 1( )
m

v t R∈ 分别
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是过程噪声和观测噪声. Φ , Γ , 1C 和 2C 是适当维数

的常矩阵. 

假设1： ( )w t 和 1( )v t 为零均值、方差阵分别为 wQ

和
1v

Q 的不相关白噪声. 

假设2：初始状态 (0)x 的均值为 0µ 、方差为 0P , 且

与噪声 ( )w t 和 1( )v t 不相关. 

不失一般性, 为简单起见, 不妨设 2
[ ,0]

p
C I= . 

本文研究的问题是对带随机观测(2)和确定性观

测(3)的线性离散系统(1), 设计线性最小方差最优降阶

状态滤波器, 并与增广观测(2)和(3)的方法进行比较. 

3 降阶状态滤波器 

设 T T T

1 2( ) [ ( ), ( )]x t x t x t= , 1( )
p

x t R∈ , 2 ( )
n p

x t R
−∈ , 

11 12

21 22

 
Φ =  

 

Φ Φ

Φ Φ
, 11

p p
R

×∈Φ , ( )

12
p n p

R
× −∈Φ , 

( )

21
n p p

R
− ×∈Φ , ( ) ( )

22
n p n p

R
− × −∈Φ , 1 11 12[ , ]C C C= , 

11

m p
C R

×∈ , ( )

12

m n p
C R

× −∈ . 由 约 束 方 程 (3) 可 得

1 2 ( )( )= tx t y .系统的观测方程(2)可写为： 

1 11 2 12 2 1( ) ( ) ( ) ( )y t C y t C x t v t= + +              (4) 

由状态方程(1)可得 

2 12 2 11 2 1( 1) ( ) ( ) ( )y t x t y t w t+ = Φ + Φ + Γ         (5) 

2 22 2 21 2 2( 1) ( ) ( ) ( )x t x t y t w t+ = Φ + Φ + Γ         (6) 

假设 22Φ 可逆, 则(6)可化为 

1 1

22 222 2 21 2( 1) ( ) ( 1)x t x t y t− −− = Φ − Φ Φ − 1

22 2 ( 1)w t−−Φ Γ −  

(7) 

代(7)进入(5)可得 

( )1

222 11 12 21 2( ) ( 1)y t y t−−− Φ Φ Φ Φ − =  

( )1 1

22 2212 2 1 12 2( ) ( 1)x t w t− −Φ Φ + Γ − Φ Φ Γ −         (8) 

(4)经过变形可得 

1 11 2 12 2 1( ) ( ) ( ) ( )y t C y t C x t v t− = +              (9) 

令 ( )
1 11 2

1

2 2211 12 21 2

( ) ( )

( )
( )

( 1)

y t C y t

y t
z t

y t−

− 
 
 − − 

=
Φ Φ Φ Φ −

, 则有

新的观测方程为 

12

21
12 22

( ) ( )
C

z t x t−

 
 
 

=
Φ Φ ( )1

1 12 22 2

0
( )

0

I
v t−

 
 
 
 

+
Γ − Φ Φ Γ

 

(10) 

其 中
1

( 1)

( )
( )

w t

v t
v t

− 
 
 

= , 方 差 阵 ( )TE ( ) ( )v v t v tQ =  

1

0

0

w

v

Q

Q

 
 
 

= , 互 协 方 差 阵 ( )TE ( 1) ( )wvS w t v t= −

( )0
w

Q= .

 

由(6)和(10)构成了新的降阶状态空间表达式.那

么, 应用射影理论可获得降阶状态估计. 

定理1：对于系统(6)和(10), 降阶Kalman滤波递推

公式如下： 

状态预报估值计算如下： 

2 22 2 21 2
ˆ ˆ( 1 | ) ( | ) ( )x t t x t t y t+ = Φ + Φ               (11) 

状态滤波估值计算如下： 

2 2
ˆ ˆ( 1 | 1) ( 1 | ) ( 1) ( 1)x t t x t t K t tε+ + = + + + +       (12) 

新息计算为： 

2

12

1
12 22

ˆ( 1) ( 1) ( 1| )t z t x t t
C

ε −

 
+ = + − + 

 Φ Φ
        (13) 

新息方差阵计算为： 

T

12 12

1 1
12 22 12 22

( 1)= ( 1| )Q t P t t
C C

− −

   
+ +   

   Φ Φ Φ Φε  

( )

T

2

12

1 1
12 22 1 12 22 2

+
0

0wv
S

IC
− −

  
 Γ 
    

Φ Φ Γ − Φ Φ Γ

 

( )

T

T T

2

12

11
12 221 12 22 2

+
0

0 wvS
I C

−−

   
  Γ  
    

Φ ΦΓ − Φ Φ Γ
 

( ) ( )

T

1 1
1 12 22 2 1 12 22 2

0 0

0 0vQ
I I

− −

   
   +
   
   

Γ − Φ Φ Γ Γ − Φ Φ Γ
  (14) 

滤波增益阵计算为： 

T

12

1
12 22

) ( 1( |1 )K P tt t
C

−

  
 +  
  

+ =


Φ Φ

 

( )

T

1

2 1
1 12 22 2

( 1)
0

0wvS Q t
I

ε
−

−

 
 +Γ
 

  

+
Γ − Φ Φ Γ

    (15) 

滤波误差方差阵计算为： 

T( 1| 1) ( 1| ) ( 1) ( 1) ( 1)P t t P t t K t Q t K tε+ + = + − + + +   (16) 

预报误差方差阵计算为： 
T T

22 22 2 2
( 1 | ) ( | )P t t P t t Q+ = Φ Φ + Γ Γ                (17) 

初值为 2 0
ˆ (0 | 0) [0 ]

n p
x I µ−= 和 (0 | 0) [0 ]

n p
P I −= ×  

T

0[0 ]n pP I − . 

证明：由射影定理易得式(11)和(12), 其中滤波增

益矩阵 ( 1)K t + 和新息 ( 1)tε + 定义如下： 

T 1

2( 1) E ( 1| ) ( 1) ( 1)K t x t t t Q tεε − + = + + + %       (18) 

ˆ( 1) ( 1) ( 1| )t z t z t tε + = + − +                     (19) 

其 中 2 2 2
ˆ( | 1) ( ) ( | 1)x t t x t x t t− = − −% 为 预 报 误 差 , 

ˆ( 1| )z t t+ 为观测一步预报估值. 

对式(10)取射影： 
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2

12

1
12 22

ˆˆ( 1| ) ( 1| )z t t x t t
C

−

 
+ = + 

 Φ Φ
              (20) 

将式(20)代入式(19)可引出式(13). 

将式(10)代入式(13)可得： 

2

12

1
12 22

( 1) ( 1| )t x t t
C

−

 
+ = + 

 Φ Φ
%ε

 

( )1
1 12 22 2
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由式(21)得新息方差阵： 
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由式(6)和式(11)可得预报误差方程： 

2 22 2 2( 1| ) ( | ) ( )x t t x t t w t+ = Φ + Γ% %          (23) 

于是, 我们有 
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将 上 式 代 入 (22) 可 得 式 (14). 将 式 (23) 代 入
T

2 2
( 1| ) E[ ( 1| ) ( 1| )]P t t x t t x t t+ = + +% % 可得式(17). 

记滤波误差 2 2 2
ˆ( | ) ( ) ( | )x t t x t x t t= −% , 则由(12)可得

滤波误差方程： 

2 2( 1 | 1) ( 1 | ) ( 1) ( 1)x t t x t t K t tε+ + = + − + +% %        (25) 

上式变形可得 2 ( 1| 1) ( 1) ( 1)x t t K t tε+ + + + + =%  

2 ( 1| )x t t+% , 利用 2 ( 1 | 1) ( 1)x t t tε+ + ⊥ +% 可得 

T( 1| 1) ( 1) ( 1) ( 1) ( 1| )P t t K t Q t K t P t tε+ + + + + + = +   (26) 

这可引出滤波误差方差矩阵式(16). 

由式(23)、(24)和(21)可得
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将式(27)代入式(18)可得式(15). 证毕. 

注：易知将状态约束增广为观测的伪观测方法的

计算量级为 ( )3 3( )n m pΟ + + , 本文的降阶方法的计算

量级为 ( )3( )m n pΟ + − , 通常本文的降阶滤波器具有

更小的计算负担.而且, 避免了伪观测方法由于奇异的

观测噪声方差矩阵可能带来的数值计算不稳定问题. 

4 仿真例子 

考虑二维跟踪系统(1)和(2), 其中
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求最优Kalman滤波器 ˆ( | )x t t . 
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图1 最优降阶递推滤波器 
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(b) 速度 

图2 伪观测和降阶滤波器的均方误差比较 

表 1. 速度的伪观测法和降阶法滤波误差方差比较 

滤波方法 在300步滤波误差方差(10-6) 

伪观测法 8.3611 

降阶法 8.3611 

 

取初值 ( ) [ ]
T

ˆ 0 | 0 0 0x = , ( ) 20 | 0 0.1P I= .仿真图1

中实线为真实值, 虚线为估值.图2给出了本文的降阶

方法与增广方法的均方误差比较.表1给出了在第300

步速度的滤波误差方差的数值比较. 可以看出, 降阶

法和伪观测法滤波估计精度一致, 而且降阶方法可减

小计算负担且避免了奇异观测噪声方差阵可能引起

的数值计算不稳定问题. 

5 结论 

研究了带确定性观测和随机观测的线性离散定

常系统的最优降阶滤波问题, 设计了基于线性最小方

差准则的降阶滤波估计算法, 其中一部分状态分量由

确定性观测直接获得, 其它状态分量通过设计降维状

态滤波器获得.与观测增广的方法相比, 降阶法减小了

计算量负担, 并且在一定程度上避免了奇异的观测噪

声方差矩阵可能带来的数值计算不稳定的问题. 
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Prompt Engineering Approach Study for Supervised Fine-Tuned
(SFT) Large Language Models (LLMs) in Spacecraft Fault

Diagnosis
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Abstract: Traditional correlation and causality analyses based on telemetry data often lack depth in analyzing the multi-level
coupling of faults and their emergent effects in spacecraft. Large Language Models (LLMs) offer a viable solution to this issue,
necessitating meticulous research and design in prompt engineering. Against this backdrop, we have conducted a series of studies
on using LLMs for diagnosing coupled faults in spacecraft. Initially, we systematically integrated a comprehensive fine-tuning
dataset that includes prior expert knowledge, historical fault records, maintenance reports, and operation logs, to fine-tune the
ERNIE-Bot-turbo model on the Baidu AI Cloud Qianfan platform. Subsequently, in the context of practical spacecraft fault
diagnosis, we quantitatively explored the impact of different prompt engineering approaches on the fine-tuned LLMs using a
specially designed multi-label spacecraft fault diagnosis test dataset. Finally, we proposed an Advanced Min Max Ant System
(AMMAS) algorithm for autonomously iterating to explore the optimal prompts. AMMAS leverages the strong language gen-
eration capability of LLMs to optimize prompt text generation, using F1-score as the fitness function, aiming to autonomously
iterate and optimize the prompt generation process, uncovering the most effective prompts for spacecraft fault diagnosis.

Key Words: LLMs, Prompt Engineering, Advanced Min Max Ant System Algorithm, Spacecraft Dault Diagnosis

1 Introduction

With the rapid increase in the number and functionali-
ties of spacecraft, ensuring their operational reliability in
the harsh space environment has become crucial. The faults
in orbiting spacecraft often reflect the interactions and cou-
plings between multiple subsystems. Traditional case-based
expert knowledge databases and telemetry data-driven cor-
relation and causality analyses have limitations in fully ad-
dressing this issue, especially lacking in depth when ana-
lyzing complex multi-level coupled faults and their emer-
gence effects [1–3]. Furthermore, the continuous upgrades
in spacecraft structures and components, along with the
emergence of a large number of novel faults, present great
challenges to traditional expert knowledge bases. This re-
sults in escalating costs for updating expert databases and
the fault diagnosis process [4, 5].

In the traditional framework for spacecraft fault associ-
ation analysis, correlation and causality analyses based on
telemetry data serve as two fundamental pillars. Typically,
correlation analysis is dedicated to the quantitative evalua-
tion of fault associations, while causality analysis focuses on
the qualitative exploration of fault origins. The overreliance
on correlation analysis, despite being effective in certain sce-
narios, can lead to a range of issues including but not limited
to fairness, interpretability, robustness, bias, and controlla-
bility.

Furthermore, traditional fault association analyses lack
flexibility and are limited in applicability, struggling to meet
the complex analytical needs arising from the exponential

This work is supported by the Science Center Program of National
Natural Science Foundation of China (Grant No.62188101), the grant of
SIYUAN collaborative innovation alliance of artificial intelligence science
and technology (HTKJ2023SY502003), the Heilongjiang Touyan Team,
and the Guangdong Major Project of Basic and Applied Basic Research
(Grant No. 2019B030302001). Additional support was provided by the
C4-AI: Chinese Collegiate Computer Competition in Artificial Intelligence
Creativity.

growth in the number and types of spacecraft, as well as
mission types. Traditional correlation metrics (such as Pear-
son, Spearman, and Kendall correlation coefficients) have
limited applicability in quantifying linear or nonlinear rela-
tionships in telemetry data. Similarly, traditional causality
testing methods (such as Granger causality testing for sta-
tionary time series) also exhibit significant limitations and
operational complexities. Additionally, not all subsystem
components can obtain relevant telemetry data due to dif-
ferences in sensor configuration and functionality.

In this context, the emergence of Large Language Models
(LLMs) has offered an innovative solution to the aforemen-
tioned challenges. They break the inherent limitations of re-
lying solely on telemetry data for fault diagnosis and demon-
strate satisfactory analytical outcomes [6, 7]. Due to their
excellent capability in data representation and abstraction,
LLMs can perform in-depth, multi-dimensional, and multi-
level analysis of spacecraft telemetry data, thereby uncover-
ing potential fault associations and causal relationships.

To achieve precise, efficient, and intelligent spacecraft
fault diagnosis, this study conducted the following research:
Initially, we systematically integrated a comprehensive fine-
tuning dataset containing historical fault records, mainte-
nance reports, and operation logs. This dataset was uti-
lized for the detailed fine-tuning of the ERNIE-Bot-turbo-
0704 model on the Baidu AI Cloud Qianfan platform. Sub-
sequently, we explored various advanced prompt engineer-
ing techniques, including linguistic tone adjustment, role-
playing, thought chain guidance, and few-shot learning
strategies. For spacecraft fault diagnosis, we quantitatively
analyzed the impact of these prompt engineering strategies
on the performance of the large model. Building on this,
by transforming the spacecraft coupled fault diagnosis issue
into a multi-label classification problem based on spacecraft
subsystems, we comprehensively evaluated the advantages
and limitations of various prompt engineering techniques in
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Fig. 1: The structural schematic of the entire methods.

the application of spacecraft fault diagnosis on a self-built
test dataset using multiple quantifiable indicators. Finally,
we employed an autonomous iterative exploration method
for optimal prompt text based on the Advanced Min Max Ant
System (AMMAS) algorithm. AMMAS optimizes prompt
text generation by leveraging the inherent powerful language
generation capability of LLMs and uses the F1-score as a fit-
ness function to autonomously iterate and discover the most
effective fault diagnosis prompts. The structural schematic
of the entire methods is illustrated in Fig. 1.

2 Exploring Prompt Engineering Approaches for
Supervised Fine-Tuned (SFT) LLMs in Space-
craft Fault Diagnosis

2.1 SFT LLMs for Spacecraft Fault Diagnosis
The Advantages of SFT LLMs. In the field of spacecraft
fault diagnosis, pretrained language models have demon-
strated the ability to capture statistical patterns of language
and accurate semantic representations through extensive un-
supervised training. However, the performance of these
models on specific tasks may not directly match their effi-
ciency demonstrated on broad unsupervised datasets. Super-
vised Fine-Tuning (SFT) of these models on task-specific la-
beled data enables them to further learn features and patterns
closely related to the task, more precisely adapt to the unique
terminology, structure, and semantics of the field, thereby
significantly improving task performance within the domain.

Moreover, for tasks where acquiring a large labeled
dataset is challenging, SFT supports model training with
limited labeled data, maintaining commendable performance
even in scenarios of data scarcity. During the SFT process,
supervised training can effectively reduce the risk of overfit-
ting on specific tasks. This is because the labeled data pro-
vides more specific task guidance, helping to constrain the
learning process of the model and preventing overfitting to
the unsupervised signals encountered during the pretraining
phase.

Considering these advantages, we conducted a meticu-
lous SFT of the ERNIE-Bot-turbo-0704 model on the Baidu

Fig. 2: The format of the data in the SFT dataset

AI Cloud Qianfan platform. This fine-tuning process was
specifically designed to enhance the model’s performance in
the domain of spacecraft fault diagnosis, fully leveraging the
inherent benefits of SFT to address key challenges in this
field.
Fine-Tuning Dataset. We systematically integrated prior
expert knowledge, including historical fault records, mainte-
nance reports, and operation logs, to construct a fine-tuning
dataset specifically designed for spacecraft multi-level cou-
pling fault diagnosis tasks. The dataset consists of 2000
Question-and-Answer (QA) entries about single-level and
multi-level coupling faults in satellites, where Q represents
the fault description, and A provides an in-depth analysis by
experts of the fault system.

By selecting and categorizing the entries in the dataset,
we ensured that the included fault information is not only
highly relevant to the actual operations and maintenance sce-
narios of spacecraft but also reflects the complexity and spe-
cialized knowledge required for diagnosing multi-level cou-
pled faults. Moreover, to enhance the dataset’s universality
and practicality, each set of QA entries was described in de-
tail, covering aspects such as fault type, impact level, resolu-
tion strategy, and its effectiveness, thereby supporting high-
quality model training. The format of the dataset is shown in
Fig. 2.
Fine-Tuning Parameters. Using the prepared dataset, we
fine-tuned the base ERNIE-Bot-turbo model. Employing
Prompt Tuning as the training method and based on the scale
of the fine-tuning dataset, we set the training epochs to 5 and
the learning rate to 0.01. The dataset was allocated at an 80%
training and 20% testing ratio.

2.2 Prompt Engineering for LLMs in Spacecraft Fault
Diagnosis

Test Dataset. To precisely evaluate the model’s perfor-
mance in spacecraft fault diagnosis scenarios, we have de-
veloped a test dataset containing 100 samples. Each input
sample in this dataset maintains a consistent format with the
fine-tuning dataset, including specific fault description texts,
while the output is encoded as a sequence of numbers. The
spacecraft’s system structure is typically subdivided into 8
key subsystems, namely: telemetry and command subsys-
tem (0), attitude and orbit control subsystem (1), data trans-
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Fig. 3: The format of the data in the test dataset

mission subsystem (2), power subsystem (3), structural sub-
system (4), thermal control subsystem (5), propulsion sub-
system (6), and payload subsystem (7). Considering the
complex coupling phenomena that may occur among subsys-
tems during spacecraft operation, the fault diagnosis task ex-
hibits a pronounced multi-label classification feature. Multi-
label classification based on LLM responses can not only
accurately identify the fault involving one or more subsys-
tems but also reveal to some extent the interactions and cou-
pling relationships between different subsystems, providing
important reference information for subsequent fault trou-
bleshooting and repair. For example, the format of the data
in the test dataset is illustrated in Fig. 3, the numeric se-
quence [3,4,5,6] (converted into encoding [0,0,0,1,1,1,1,0]
in programming, with this encoding determined by domain
experts based on system label scoring) indicates that in a spe-
cific fault scenario, the attitude and orbit control subsystem,
data transmission subsystem, and power subsystem are all
faulty, suggesting possible interactions and couplings among
these subsystems.
Prompt Engineering Approaches. Prompt engineering is
the process of optimizing input statements or phrases to ob-
tain the best possible response from LLMs. Although these
models were initially designed for conversational interac-
tions, researchers have found that adopting specific commu-
nication strategies can lead to more effective feedback. Pre-
cisely identifying which words, sentences, and phrases are
most suitable for different contexts is at the heart of prompt
engineering. By constructing a database of expert knowl-
edge and applying prompt engineering techniques, LLMs
can be utilized more efficiently to solve problems and pro-
vide advice.

This paper investigates six different prompt strategies for
large models in the context of spacecraft fault diagnosis,
which include:

1) Baseline Prompt: A foundational prompt text was
constructed that outlines the basic background and re-
quirements, and specifies the eight core subsystems
of the spacecraft: The construction of the spacecraft
can be subdivided into eight core subsystems, namely:
telemetry and command subsystem, attitude and or-
bit control subsystem, data transmission subsystem,
power subsystem, structural subsystem, thermal con-
trol subsystem, propulsion subsystem, and payload
subsystem. In the framework of the problem we are
discussing, these subsystems are assigned numerical
labels from 0 to 7. Based on the provided fault descrip-

tion, please infer and output the one-hot encoding of
the corresponding faulty subsystem(s).

2) Linguistic Tone Adjustment: Appropriately adjust-
ing the tone of language in interactions with LLMs can
guide the model to generate responses of different qual-
ity and style. For example, using more formal and tech-
nical vocabulary can lead to more professional and ac-
curate feedback. In the field of spacecraft fault diagno-
sis, a clear, professional, and directive tone of language
helps to promote the model to generate more precise
and practical diagnostic suggestions.

3) Role-Playing: Asking LLMs to assume the role of a
fault diagnosis expert can help guide the model’s re-
sponses to align more closely with actual engineering
needs. Once a specific role and context are set, the
model will focus more on professional knowledge and
solutions related to spacecraft fault diagnosis [8].

4) Thought Chain Guidance: In prompt engineering,
providing clear thought guidance can steer the model to
follow a specific reasoning logic, thus leading to more
rigorous and comprehensive conclusions. For example,
in the process of spacecraft fault diagnosis, specifying
the symptoms of system faults, possible causes, and
verification steps can guide the model to produce an-
alytical results and solutions in a certain logical order
[9, 10].

5) Few-shot Learning: Few-shot learning is a machine
learning method that can adapt to new tasks with a very
small number of training examples [11]. In the appli-
cation of prompt engineering for spacecraft fault diag-
nosis, providing a few high-quality examples can ef-
fectively adjust the behavior of LLMs, making them
more accurately understand and process queries related
to fault diagnosis, thereby providing valuable insights
and solutions for engineers and experts.

6) Composite Strategy: This approach involves integrat-
ing linguistic tone adjustment, role-playing, thought
chain guidance, and few-shot learning strategies with
baseline prompt.

By comparing the impact of different prompt strategies on
the capabilities of large models, this study aims to identify
which of these six prompt schemes is most effective in the
context of spacecraft fault diagnosis.

2.3 Experimental Evaluation on the SFT LLMs in
Spacecraft Fault Diagnosis

Experiments were conducted on the fine-tuned space-
craft fault diagnosis LLM, evaluating six different prompts
against seven metrics.

2.3.1 Metrics Definition

The definitions of the seven metrics, along with their re-
spective variables, are as follows:

1) Subset Accuracy (SA): Defined as the proportion of
perfectly matched sets of predicted and true labels.

SA =
1

N

N∑
i=1

δ(yi,true, yi,pred) (1)

where N is the number of samples, yi,true is the true
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label set, and yi,pred is the predicted label set for the ith
sample.

2) Hamming Loss (HL): Measures the fraction of the
wrong labels to the total number of labels.

HL =
1

N · L

N∑
i=1

L∑
j=1

δ(yi,j,true, yi,j,pred) (2)

where L is the number of labels, and yi,j,true and yi,j,pred
are the true and predicted values of the jth label for the
ith sample, respectively.

3) Label-based Accuracy (LBA): Represents the accu-
racy of predictions for each label.

LBA =
1

N · L

N∑
i=1

L∑
j=1

δ(yi,j,true, yi,j,pred) (3)

similar to Hamming Loss but focuses on the proportion
of correct predictions.

4) Precision (Psamples): Defined as the proportion of true
positive predictions in all positive predictions.

Psamples =
1

N

N∑
i=1

TPi

TPi + FPi
(4)

where TPi and FPi are the numbers of true positives
and false positives, respectively, for the ith sample.

5) Recall (Rsamples): Measures the proportion of true pos-
itives identified among all actual positives.

Rsamples =
1

N

N∑
i=1

TPi

TPi + FNi
(5)

where FNi is the number of false negatives for the ith
sample.

6) F1 Score (F1samples): The harmonic mean of precision
and recall.

F1samples =
1

N

N∑
i=1

2 · Pi ·Ri

Pi +Ri
(6)

combines the precision Pi and recall Ri for the i-th
sample.

7) Jaccard Similarity (Jsamples): Measures the similarity
and diversity of sample sets.

Jsamples =
1

N

N∑
i=1

|yi,true ∩ yi,pred|
|yi,true ∪ yi,pred|

(7)

based on the intersection over the union of true and pre-
dicted label sets.

2.3.2 Experimental Results and Analysis

The results of seven metrics are shown in Fig. 4, and the
following conclusions can be drawn:

Prompt I: Baseline Prompt
The baseline prompt aims to provide a basic introduction

to the role background and requirements. In the analysis

Fig. 4: Comparison of seven metrics generated by six differ-
ent prompts

of model responses, the baseline prompt demonstrated bal-
anced performance, specifically reflected in a Subset Accu-
racy of 0.55, a Hamming Loss of 0.12750, and a Label-based
Accuracy of 0.87250. These results indicate the effective-
ness of the baseline prompt in handling multi-label classifi-
cation problems, especially in scenarios involving the identi-
fication of multiple concurrent faults. The Jaccard Similarity
index of 0.758810 further validates its efficacy in reducing
misclassification.

Prompt II: Linguistic Tone Adjustment
Prompt II, building on the baseline prompt with a more

pronounced imperative tone, achieved a higher Recall of
0.952500. However, its Subset Accuracy dropped to 0.27,
with a Hamming Loss increasing to 0.41625. This contradic-
tory performance may suggest that while Prompt II is more
sensitive in fault identification, it comes with a higher risk of
false positives, particularly in predicting positive classes.

Prompt III: Role-Playing
Prompt III, requiring the large model to play the role of

a fault diagnosis expert, performed exceptionally across al-
most all metrics, notably achieving a Subset Accuracy of
0.62, a Hamming Loss of 0.08250, and a Jaccard Similarity
of 0.816905. This outcome demonstrates the effectiveness
of the role-playing strategy in enhancing diagnostic accu-
racy and reducing misclassification, especially in complex
fault scenarios.

Prompt IV: Thought Chain Guidance
Prompt IV, guiding the large model through a step-by-

step thought process in spacecraft fault diagnosis, showed
remarkable performance in Recall at 0.918000 but was aver-
age in other metrics. This suggests that although the strategy
is effective in capturing faults, it may fall short in accuracy
and reducing false positives.

Prompt V: Few-shot Learning
Prompt V, adopting a few-shot learning strategy by pro-

viding examples to the LLM, excelled in Precision with a
score of 0.854524 but had a slightly insufficient Recall of
0.721333. This may indicate that the strategy performs well
in avoiding incorrect fault classification but might slightly
lack in capturing all potential faults.

Prompt VI: Composite Strategy
Prompt VI achieved a Subset Accuracy of 0.39, a Ham-

ming Loss of 0.12750, a Label-based Accuracy of 0.87250,
and a Jaccard Similarity of 0.643524. Although Prompt VI
showed stability in certain aspects, its overall performance
was not outstanding. This could be due to conflicts between
the various strategies used, limiting the model’s judgment
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capabilities with specific types of faults.
Through a detailed analysis of six different prompting

strategies, we conclude that these strategies exhibit signifi-
cant differences in their responses to large models for space-
craft fault diagnosis. Among them, the Role-Playing strategy
generally outperforms other strategies across various met-
rics. When facing specific spacecraft fault diagnosis sce-
narios, these differences should be comprehensively consid-
ered, and the most suitable strategy should be selected based
on specific needs and contextual backgrounds to achieve the
best diagnostic outcomes. The significant differences among
these strategies reveal their unique advantages and limita-
tions in handling complex multi-label classification prob-
lems, underscoring the importance of accuracy and effi-
ciency in spacecraft fault diagnosis. Therefore, selecting and
fine-tuning the most appropriate prompting strategy in prac-
tice can significantly improve the accuracy and efficiency of
fault diagnosis, which is crucial for the safe operation and
maintenance of spacecraft.

3 Autonomous Prompt Iteration Algorithm

3.1 Prompt Iteration based on Advanced Min Max Ant
System (AMMAS) Algorithm

The Advanced Min Max Ant System (AMMAS), as an en-
hanced version of the original MMAS [12], is a heuristic op-
timization method derived from the behavior of ant colonies
in searching for paths from their nests to food sources. In this
study, the method is utilized for the iterative optimization of
combinations of prompting strategies, with the goal of find-
ing the most effective sequence of prompts under given eval-
uation criteria. The algorithmic process is described as in
Algorithm 1.

The core of the AMMAS algorithm is grounded in the
probabilistic formulation for the selection of paths and the
pheromone update rules. Let P k

ij(t) denote the probability
of ant k choosing to move from state i to state j at iteration
t, given by:

P k
ij(t) =

[τij(t)]
α · [ηij ]β∑

l∈allowedk [τil(t)]
α · [ηil]β

(8)

where τij(t) is the pheromone concentration on path (i, j)
at iteration t, ηij is the heuristic desirability of path (i, j), α
and β are parameters that control the influence of τij(t) and
ηij , respectively, allowedk is the set of states that ant k can
choose from its current state i.

The pheromone update rule is a crucial aspect, represented
as:

τij(t+ 1) = (1− ρ) · τij(t) + ∆τij (9)

∆τij =

m∑
k=1

∆τkij (10)

where ρ is the pheromone evaporation coefficient, m is the
number of ants, ∆τkij is the amount of pheromone ant k de-
posits on path (i, j), often related to the inverse of the path
length or cost.

In our study, four prompt engineering approaches in-
cluding Linguistic Tone Adjustment, Role-Playing, Thought
Chain Guidance, and Few-shot Learning are encoded as dis-
crete states (0, 1, 2, 3), each representing the corresponding
strategy. Using ants in AMMAS, these states are sequen-
tially combined to generate a series of potential optimiza-
tion solutions. Each iteration of the optimization process is
achieved by leveraging the capabilities of the large model.
Considering the time and space complexity of the experi-
ment, strict experimental rules are set, such that each of the
four strategies appears only once in each iteration, avoid-
ing the repetition of any single strategy, thereby reducing
the possibility of experimental bias. As an improved version
of MMAS, AMMAS traverses the solution space through
heuristic search techniques.

The effectiveness of each candidate solution is evaluated
by its F1-score generated for multi-label classification prob-
lems on a specific test dataset based on the corresponding
prompt text. The evaluation results directly determine the
adjustment of pheromone levels and guide ants to priori-
tize exploring more promising areas in the solution space in
subsequent iterations. Thus, the method transforms the au-
tonomous iterative generation process of prompt texts into a
combinatorial optimization problem, ensuring the algorithm
can efficiently search and exploit the solution space to iden-
tify the optimal sequence of prompt optimization strategies.

Algorithm 1: Advanced Min Max Ant System (AM-
MAS) for Prompt Evolution Optimization

Result: Best solution for prompt evolution
1 Initialize:
2 Set parameters: number of ants, max iterations,

pheromone evaporation coefficient, pheromone intensity;
3 Initialize pheromone trails: pheromone levels[0-3]←

initial pheromone level;
4 Define prompt evolution directions[4]← {direction 0,

direction 1, direction 2, direction 3};
5 for each iteration in max iterations do
6 for each ant in number of ants do
7 Initialize an empty solution: current solution← [];
8 for each position in 4-digit code do
9 Choose next digit based on probability

proportional to pheromone levels;
10 Add chosen digit to current solution;
11 Update pheromones locally (optional);
12 end
13 Evaluate fitness of current solution using SFT

LLM for F1-score on test dataset;
14 Update best solution if current solution has better

fitness;
15 end
16 Update pheromones globally:
17 Reduce pheromone levels on all paths by

pheromone evaporation coefficient;
18 Increase pheromone levels on the path used by the

best solution proportionally to its fitness;
19 end
20 return best solution
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3.2 Experimental Results and Analysis
In order to balance efficiency and effectiveness in the op-

timization of prompt evolution using AMMAS, the hyperpa-
rameters were set as follows: The number of ants was set
to 6 to allow for controlled and diversified exploration of
the solution space; the number of iterations was set to 15;
the pheromone evaporation coefficient was set to 0.5, aimed
at maintaining valuable path information while preventing
premature convergence; the pheromone intensity was set to
1.0; the initial pheromone level was set to 0.1, establishing a
baseline for exploration and avoiding any initial preference
for certain paths in the solution space.

The experimental results indicate that the F1-score in-
creases continuously and robustly over 15 iterations, fi-
nally reaching 92% at the 15th generation, demonstrating
the significant superiority of the AMMAS algorithm in the
autonomous iterative optimization of prompts. The cor-
responding optimal prompt evolution sequence is succes-
sively: Thought Chain Guidance, Role-Playing, Few-shot
Learning and Linguistic Tone Adjustment. It is noteworthy
that, compared to the composite strategy we initially set, the
optimal prompt evolution strategy identified through explo-
ration shows higher efficacy in improving the F1-score.

4 Conclusion and Summary

In response to the complex coupled fault issues encoun-
tered by modern spacecraft, this study explored a wide range
of prompt engineering methods for spacecraft fault diagnosis
using Supervised Fine-Tuned Large Language Models (SFT
LLMs). The following conclusions have been drawn from
our research:

1) SFT LLMs exhibit outstanding performance in the do-
main of coupled fault diagnosis for spacecraft. To max-
imize the potential of the fine-tuned models, careful de-
sign of prompts is essential. Experimental results indi-
cate that, in the field of spacecraft coupled fault diagno-
sis, the Role-Playing strategy surpasses other strategies
such as Linguistic Tone Adjustment, Thought Chain
Guidance, and Few-shot Learning.

2) Compared to optimizing prompt individually, sequen-
tial optimization of prompts leads to more accurate di-
agnosis of coupled faults by large models. This me-
thodical approach derived from exploration surpasses
the results achieved by simply amalgamating multiple
prompt engineering methods. In certain cases, em-
ploying a single prompt engineering method may be
more beneficial than a simplistic fusion of several ap-
proaches.

3) The Advanced Min Max Ant System (AMMAS) opti-
mization algorithm has proven to significantly aid large
models in handling more complex and diversified fault
diagnosis tasks. This algorithm allows users to en-
gage in prompt engineering in a systematic and targeted
manner, significantly enhancing diagnostic accuracy.
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Abstract: Addressing the orbital interception problem, various perturbations are considered initially, and the impact of 

perturbations on solutions in the two-body problem is analyzed. Numerical analysis is then introduced to successfully mitigate 

the effects of perturbations. Finally, inspired by the concept of BP neural networks, an original training set is constructed based 

on the numerical correction of perturbed Lambert problem solutions. This training set is used to train a neural network to 

approximate solutions to the perturbed Lambert problem. The resulting neural network exhibits performance similar to the 
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1 Introduction 

The commonly employed approach for calculating orbital 

interception maneuver strategies is the Lambert method. The 

Lambert problem is a type of two-point boundary value 

problem subject to fixed time constraints. In orbital 

interception computations, we typically formulate the 

Lambert problem as determining the initial and final 

velocities given the initial and final positions along with the 

orbital transfer time. For the perturbed Lambert problem 

associated with the departure and target points, there exists 

a fuel-optimal solution for the departure velocity. Acquiring 

the aforementioned solution involves initially calculating the 

velocity increments corresponding to different transfer times 

in the two-body problem. Subsequently, these increments 

are individually adjusted to accommodate various 

perturbations. 

Orbital interception maneuver control plays a crucial role 

in various studies. Shiyu Chen [1] investigated the large-scale 

capture problem of spacecraft formations for space debris 

clusters. The study focused on constructing rendezvous 

sequences under the influence of perturbations, aiming for 

each spacecraft to intercept more debris with minimal fuel 

usage, achieving a distributed optimal control. Cristian [2,3] 

presented a fuel-optimal robust control approach under 

cognitive uncertainty, using a Markov trust decision-making 

method to transform the control problem into an uncertainty 

distribution problem and introducing the concept of trust. 

The entire problem was then formulated as a trust-optimal 

control problem. Kai [4] proposed a discrete-time linear 

dynamic model for robust control when the elliptical orbital 

rendezvous is subject to uncertain perturbations. The study 

used a genetic algorithm to solve the optimization problem 

of random trajectories. Li [5] proposed a rapid solver for the 

Lambert problem based on a deep neural network. The study 

discussed the impact of input-output dimensions and 

parameter selection on the training effectiveness of the 

neural network, selecting the most optimal training set. Ahn 
[6-8] introduced a new solution for the two-point Lambert 

problem, using the initial spacecraft trajectory angle as an 

                                                           
 

initial value. The study derived the gradient of transfer time 

with respect to the trajectory angle and updated the 

trajectory angle iteratively. Jay [9] argued that numerical 

iteration demands excessive computational power for 

onboard computers. The study linearized the Lambert 

problem solution using Lagrange parameters to reduce 

computational complexity. Roberto [10] proposed a quasi-

analytical solution for the multi-revolution Lambert problem 

based on a high-order Taylor expansion, optimizing for the 

impact of perturbations. Zhang [11] presented a Lambert 

solution based on the terminal velocity vector, selecting the 

velocity components at the end of the orbit as independent 

variables and deriving the reachable domain for elliptical 

and hyperbolic orbits. 

Traditional exhaustive search methods prove excessively 

time-consuming and computationally intensive, rendering 

them impractical for on-board solutions. This paper 

introduces an approach to solve the perturbed Lambert 

problem using neural networks, aiming to ensure solution 

accuracy while significantly reducing computation time. 

When considering various perturbations, such as higher-

order spherical harmonic terms, advanced gravity field 

models like the EGM96, or factors like atmospheric drag and 

solar radiation pressure, the orbital dynamics model 

becomes excessively complex or non-analytic. This 

complexity makes the derivation of formulas extremely 

challenging. In the field of orbital control, the application of 

neural networks is still in its early stages. Current research 

mainly focuses on using neural networks to compensate for 

parameters with significant uncertainties rather than directly 

integrating them into control rates. Li's approach, using 

Deep Neural Networks (DNN) for the rapid solution of 

perturbed Lambert problems, is limited to constructing a set 

of Lambert solutions in a two-body scenario. The DNN is 

then employed to approximate these solutions, creating a 

network for solving Lambert problems in a two-body 

context. When addressing practical problems, this network 

is used to compute solutions for two-body cases, and 

numerical correction methods are applied afterward. 
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In the case of fuel-optimal maneuvering problems, 

obtaining the optimal solution in a two-body scenario and 

correcting it does not necessarily yield the optimal fuel 

solution considering perturbations. It is challenging to prove 

that the optimal solution in a two-body context corresponds 

to the optimal correction impulse. Therefore, training a 

neural network that directly approximates perturbed 

Lambert problems holds research value, as it can provide 

solutions directly considering perturbations. 

2 Fuel-optimal maneuver control strategy based 

on the Lambert algorithm 

2.1 High-precision Orbital Dynamics Model 

This paper adopts a high-precision orbital dynamics 

model considering the perturbations from nutation, 

precession, and various disturbing forces.  

For the high-precision orbital dynamics model of the 

spacecraft used in this paper, providing a simulation 

example as below. The verification approach in this paper 

involves orbit prediction based on given initial values. The 

comparison between the orbital dynamics model described 

in this paper and the orbit prediction model provided by 

aerospace simulation software is used to quantify the 

prediction error for the same model. 

The initial state can be seen as below: 

Table 1: Initial state of test above 

Name Value 

Time(UTC) 27 Apr 2022 23:39:14 

Semimajor Axis(km) 6819.247 

Eccentricity 0.0016578 

Inclination(°) 97.3383 

RAAN(°) 133.6469 

Argument of 

Perigee(°) 
166.5756 

Mean Anomaly(°) 193.5935 

The simulation results are depicted in the following 

images: 

 

Fig. 1: Position Prediction Error(km) 

 

Fig. 2: Velocity Prediction Error(m/s) 

For a spacecraft at an orbital altitude of approximately 

500 km, a one-day orbit prediction was conducted. The 

orbital dynamics model described in this paper closely aligns 

with the model in aerospace simulation software. The 

position prediction error over one day is approximately 0.1 

km, and the velocity prediction error is around 0.1 m/s. This 

demonstrates that the model presented in this paper meets 

the precision requirements for maneuvers such as orbital 

interception. 

2.2 Solution to the Lambert Problem under Complex 

Perturbations 

For the Lambert problem in the complex perturbation 

orbital environment described above, this section provides a 

conventional solution considering numerical corrections. 

This serves as the computational basis for the training 

dataset in the neural network presented in this paper. 

When a spacecraft receives interception or observation 

commands, it often does not maneuver immediately. This is 

because, based on the current relative position between the 

spacecraft and the target, an immediate orbital maneuver 

may not be suitable and could result in a significant fuel 

waste. The time node at which a spacecraft is allowed to 

perform a maneuver is referred to as a "maneuver window" 

in this paper. The time elapsed from receiving the command 

to reaching the maneuver window and initiating the 

maneuver is termed the "waiting time." The time elapsed 

from initiating the maneuver to reaching the target point is 

referred to as the "transfer time." 

For a space interception task with an infinitely permissible 

waiting time, its fuel-optimal maneuver window must be a 

semi-Hohmann transition. However, this might require a 

long waiting time, which may not meet mission 

requirements. Within a given waiting time interval, all 

possible Lambert solutions are calculated, and the maneuver 

with the minimum norm of the maneuver impulse is 

identified as the fuel-optimal maneuver control strategy for 

this interval. 

Specific strategy: 
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1. Divide the given waiting time interval and transfer time 

interval into a grid with a certain time density, where each 

point in the grid represents a combination of waiting time 

and transfer time. 

2. Use orbit propagation to obtain the position and 

velocity information of the spacecraft after the waiting time 

and the position and velocity information of the target after 

the waiting time + transfer time. 

3. For each combination of waiting time, transfer time, 

spacecraft position, and target position, solve the Lambert 

problem considering various perturbations to obtain the 

maneuver control impulse under this scenario. 

4. Repeat steps 2-3 until each point in the grid has been 

calculated. 

5. Calculate the norm of the impulse for each point in the 

grid, find the minimum norm impulse, and the 

corresponding combination of waiting time and transfer time 

represents the fuel-optimal maneuver window in this time 

interval. This impulse is the fuel-optimal maneuver control 

within this time interval. 

Table 2: Page Margins 

Satellite Chief Sat Target Sat 

Time(UTC) 
2022/07/01 

21:00:00 

2022/07/01 

21:00:00 

Semimajor 

Axis(km) 
6685.94 6927 

Eccentricity 3e-7 2e-4 

Inclination(°) 51.9741 53.0506 

RAAN(°) 317.5974 319.7051 

Argument of 

Perigee(°) 
115.6798 144.919 

Mean 

Anomaly(°) 
5.946 215.1931 

     

The simulation results are illustrated in the following 

figure: 

 

Fig. 3: Range Between Chief Sat and Target Sat(km) 

The precision of the interception maneuver is 

significantly improved through numerical corrections, 

ensuring a final interception error within 1 km. Additionally, 

the calculated interception impulse is close to the Hohmann 

transfer impulse. The main propulsion thruster operates for 

a duration of 746 seconds in this maneuver, and according 

to the search, this impulse is the smallest in the entire region. 

This confirms that within the given maneuver time window, 

this maneuver control strategy is the optimal fuel control 

strategy. 

3 Fuel-Optimal Maneuvering Strategy for Space 

Target Observation Based on BP Neural 

Network Considering Perturbation Effects 

3.1 Backpropagation Neural Network (BPNN) 

The Backpropagation Neural Network (BPNN) was 

initially proposed in 1986 and consists of an input layer, 

hidden layer(s), and an output layer. Training data is fed 

from the input layer through the hidden layer and eventually 

reaches the output layer. The network's output is then 

compared to the actual output to compute the error, which is 

backpropagated layer by layer to adjust the weights of each 

neuron in the hidden layer. This process is repeated until the 

output satisfies the validation requirements. 

It is important to note that the adjustment of weights in the 

hidden layer neurons is a result of the network's adaptive 

feedback. The final neural network fitting function directly 

reflects the mapping relationship demonstrated by the given 

training set, without the need to reveal a mathematical 

equation for the relationship throughout the process. 

For a BP neural network, Levenberg and Marquardt 

proposed an acceleration method for convergence known as 

the "Levenberg-Marquardt" method. The BP neural 

networks used in this paper employ the "Levenberg-

Marquardt" learning rule. 

The learning algorithm of the BP network is called the δ
algorithm. Assuming a BP network with input, hidden, and 

output layers, each having a size of 1, when providing a 

training dataset to this BP network, if the actual output of the 

network differs from the expected output (the desired output 

within the training set), the difference between them, defined 

as the output error E, can be expressed as: 

 ( )
22

1

1 1
( )

2 2
k kE d O d o

κ =

= − = −
l

 (1) 

Where d represents the expected output, and O represents 

the actual output. 

In (12), This is evidently an equation based on the output 

layer. Given the nature of the BP network as a feedforward 

network, we can extend this input error to the hidden layer, 

shown as below: 
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Further expanding to the input layer: 
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Our ultimate goal is to minimize E by adjusting the 

weights jk
ω : 
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3.2 BP Neural Network Training and Results Analysis 

The optimal orbit maneuver strategy for intercepting 

spacecraft, based on numerical correction as described in the 

previous section, involves iteratively integrating correction 

impulses into the orbital dynamics model. Given the high-

precision orbital dynamics model employed in this study, 

extensive orbit integrations lead to significant time 

consumption. When applying the mentioned approach for 

orbital strategy calculations with a large initial search grid 

area and a considerable number of grid points, the 

computational cost becomes prohibitively high. 

To address this challenge, a BP neural network is 

introduced to optimize the process. By establishing a well-

structured training set, the neural network is trained to 

approximate the orbital dynamics, providing a rapid 

estimation of the output values given specific inputs. 

A BP neural network with two hidden layers is designed, 

each containing 9 neurons. Mean Squared Error (MSE) is 

adopted as the performance metric for this network. 

 

Fig. 4: Design of BP Neural Network 

This paper designs a neural network to compute the 

control impulse for the modified departure point. Essentially, 

it replaces the numerical correction used to solve the 

Lambert problem. The data related to the network input 

consists of five parameters: waiting time, transfer time, 

departure point position, departure point velocity, and target 

point position. 

For an effective training set, the input parameters should 

ideally be independent of each other. However, the five 

parameters mentioned are not mutually independent.  

Specifically: 

Departure point position and departure point velocity are 

determined jointly by the initial orbital information of the 

mission spacecraft and waiting time. 

Target point position is determined jointly by the initial 

orbital information of the target spacecraft, waiting time, and 

transfer time. 

The original training set is designed with inputs of 

departure point position, departure point velocity, and target 

point position, with a dimension of 9. The outputs are the 

orbital interception fuel-optimal maneuver control impulses, 

with a dimension of 3. 

Traversing through the given transfer time and waiting 

time table, corresponding results for each calculation are 

stored to obtain the original training set. Under this original 

training set, the relationship between spacecraft control 

impulses and transfer time, waiting time can be illustrated as 

shown in the figure. 

 

Fig. 5: Dataset for Neural Network 

Train the neural network with the initial parameters 

corresponding to Table 2 in this paper, and the training 

results of the neural network are shown in the following 

figure. 
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Fig. 6: Network Training Mean Square Error Epochs Changing 

Curve 

 

Fig. 7: Training Gradient Curve for the Training Set over Epochs 

The gradient is a crucial indicator in the learning process 

of neural networks. Maintaining a stable gradient during 

training is essential for achieving an ideal neural network. In 

the context of gradient descent, if the gradient is too large, it 

may lead to overfitting. On the other hand, if the gradient is 

too small, although overfitting is less likely, the convergence 

speed of the network may become slow. 

As shown in Figure 7, it can be observed that, upon 

completing the training, the gradient values have become 

very small. This indicates that the gradient has largely 

descended, reaching optimal training performance. It also 

implies the reliability of the training set. 

 

Fig. 8: Histogram of Errors with 20 Bins 

 

Fig. 9: Training set network training fitting effect schematic 

diagram 

In Figure 9, each black circle represents a "data point". In 

this training, to avoid overfitting of the neural network, 70% 

of the training set is divided into training data, 15% into 

validation data, and 15% into test data. Only the training data 

is used for neural network training. The horizontal axis 

represents "target values," and the vertical axis represents 

"network outputs." The top-left subplot shows the fitting of 

the training data. 

The "data" points are densely distributed near the fitting 

line, and the fitting line is very close to the diagonal, 

indicating that the training effect of the neural network is 

quite satisfactory. 

3.3 Simulation and Analysis of Lambert Problem 

Solution under Complex Perturbations Based on 

BP Neural Network 

To ensure the objectivity and comparability of the 

simulation, the initial values in this section are set to be 

consistent with those in Table 2. The obtained simulation 

results are shown in the following figures: 

 

Fig. 10: Distance variation over time between the interception 

spacecraft and the target based on the neural network. 
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From the figure, it can be observed that the interception 

maneuver control accuracy is maintained within 1 km, 

comparing with Figure 3, the interception maneuver control 

accuracy in this case achieves a correction accuracy close to 

that of numerical correction. This confirms that the neural 

network trained in this study has achieved the expected 

results. The maneuver control maintains a very low pulse 

width, with the main propulsion thruster working for a 

duration of 746 seconds, which is consistent with the time in 

Figure 3. This evidence further indicates that the neural 

network designed in this study has obtained performance 

consistent with numerical methods. 

In terms of actual simulation time, using numerical 

algorithms with grid search took approximately 1800 

seconds. In comparison, utilizing the neural network trained 

in this study for calculations required within only 3 seconds, 

resulting in significant time savings. 

4 Conclusion  

This study analyzed the impact of disturbances on the 

orbital interception accuracy of spacecraft during in-orbit 

operations. It proposed a control strategy based on numerical 

correction methods, involving the refinement and 

optimization of solutions obtained through the Lambert 

method for the two-body problem. The approach 

successfully obtained the required maneuver control strategy 

by correcting the Lambert solutions and searching for fuel-

optimal scenarios. Through simulation verification, the 

precision of the orbital interception maneuver control was 

maintained within 1 km, demonstrating the correctness and 

control accuracy of the proposed method. 

To address the computational resource waste associated 

with numerical algorithms, a fuel-optimal orbital control 

strategy based on a BP neural network was introduced. The 

neural network was trained using a modified dataset, 

resulting in a high-performance neural network 

approximation function. Simulation results indicated that the 

orbital interception controller based on this neural network 

achieved the required orbital interception control, saving 

computational resources and achieving accuracy 

comparable to numerical correction methods. 
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Abstract: This article studies the master-slave synchronization for singular neural networks with finite time characteristic under
event-triggered scheme. By developing novel Lyapunov-Krasovskii (L-K) functional, the master-slave synchronization of singu-
lar neural networks with finite time characteristic is achieved. The desired gains of state feedback synchronization controller and
event-triggered weight matrices are co-designed under the framework of linear matrix inequalities. The usability of the presented
approach is proved by a simulation example.

Key Words: Finite-time synchronization, Singular systems, Neural networks, Event-triggered scheme, Mode-dependent L-K
functional

1 Introduction

Singular systems, consist of a set of coupled differential-
algebraic equations, have been extensively researched in re-
cent decades because they provide a clearer description of
many actual systems [1]. However, due to the existence of
static constraints, the analysis of singular systems is con-
siderably more complex. In addition to stability, singular
systems are always required to satisfy regularity and non-
impulsiveness/causality [2].

Lately, neural networks (NNs) have been successfully em-
ployed in pattern recognition, associative storage and large
amount of high-speed data processing [3]. The researches
on neural networks have yielded fruitful results e.g. stabil-
ity analysis, synchronization, state estimation problem, etc.,
where synchronization indicates that neurons through inter-
action reach a same activity state. Recently, with the preva-
lence of networked environments and the rapid development
of artificial intelligence, singular neural networks (SNNs)
have received a lot of attention.

It is worth noting that the data transmission of SNNs takes
place through commom networks, the networked-induced
delay, packet loss, waste of network resources are inevitable.
To solve these problems, event-triggered scheme (ETS) has
been developed and broadly applied for SNNs, where data
packets are transmitted only if the specific event-triggered
conditions are satisfied [4]. Under ETS, transmitted data
volume will be effectively decreased while the stability and
expected performance of the system are maintained.

Moreover, the aforesaid results have focused on admis-
sibility and performance analysis for SNNs over an infinite
time interval. However, under realistic circumstances, what
needs to be focused on is just the stability and performance
of the system over a finite time period, like aerospace sys-
tems [5]. Therefore, the finite-time control has become a
significant research direction. In the existing literature, the
issue of synchronization for SNNs within a finite time inter-

Corresponding author: Guangming Zhuang.
This work was supported by National Natural Science Foundation of
China under Grants 62173174, 61773191; Shandong Provincial Natural
Science Foundation under Grant ZR2021JQ23; Graduate education high-
quality curriculum construction project for Shandong Province under Grant
SDYKC20185.

val has not been extensively studied, not to mention under
ETS, it deserves to be researched, which inspired our paper.

This article will study the master-slave synchronization
for SNNs with finite time characteristic under ETS. By de-
veloping mode-dependent L-K functional, the master-slave
synchronization of SNNs with finite time characteristic will
be achieved. The desired gains of state feedback synchro-
nization controller and event-triggered weight matrices will
be co-designed under the framework of linear matrix in-
equalities (LMIs). The usability of the presented approach
will be proved by a simulation example.

Notation. sym(A) meansA+AT and L2[0,∞) implies
the space of square-integrable vector functions over [0,∞).

2 Preliminaries

2.1 Synchronization error singular neural network
Think about the master singular neural network (SNN):{

Sẋm (t) = Axm (t) +BN (xm (t)) ,

xm(0) = xm0,
(1)

and the slave SNN:
Sẋs (t) = Axs (t) +BN (xs (t))

+ Cu (t) +Dω (t) ,

xs(0) = xs0,

(2)

where singular matrix S ∈ Rn×n satisfies

rank(S) = s < n,

control input u(·) ∈ Ru, external disturbance ω (t) ∈ Rω
belongs to L2[0,∞), xm(t) ∈ Rn, xs(t) ∈ Rn represent the
neuron states of master SNN and slave SNN, respectively.
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N (x (·)) = [N1 (x1 (·)) , N2 (x2 (·)) , ..., Nn (xn (·))]T

represents neuron activation function, which meets the con-
ditions as below:

N (0) = 0,

0 ≤Nm (x1 (·))−Nm (x2 (·))
x1 − x2

≤ Pp,

x1 ̸= x2, p = 1, 2, ..., n.

(3)

Let x (t) = xs (t) − xm (t). Combining (1) with (2), the
synchronization error singular neural network (SESNN) is
written as: 

Sẋ (t) = Ax (t) +BN (x (t))

+ Cu (t) +Dω (t) ,

x(0) = x0,

(4)

2.2 Event-triggered shceme
We use an ETS to avoid the transfer of redundant data.

The sampling period is denoted by h. Then the sampling
moments are recorded as

kh, k = 1, 2, 3, ...

The trigger condition of the ETS is formulated as follow:

µxT (tkh)Θx (tkh)− eT (t)Θe (t) ≤ 0, (5)

where
e (t) = x (kh)− x (tkh) ,

{tkh} is the teiggered instant sequence, Θ > 0 is weight
matrix to be determined, µ is given constant satisfying

0 < µ < 1.

Due to the network-caused delay τk, the time sequence of
ZOH receiving the signals is expressed as follows:

{t0h+ τ0, t1h+ τ1, t2h+ τ2...},

where
τk ∈ [τm, τM ],

τM = max{τk, k ∈ N}, τm = min{τk, k ∈ N}.

Define the function

τ(t) = t− kh, t ∈ [tkh+ τk, tk+1h+ τk+1).

Then, one has

x(tkh) = x(t− τ(t))− e(t). (6)

Then, the trigger condition (5) is equivalent to

µxT (t− τ(t))Θx (t− τ(t))− µeT (t)Θx (t− τ(t))

− µxT (t− τ(t))Θx (t− τ(t)) + µeT (t)Θe (t)

− eT (t)Θe (t) ≤ 0,
(7)

2.3 State feedback synchronization controller
Consider the state feedback synchronization controller

(SFSC) with the following form:

u(t) = Kx(tkh). (8)

2.4 Synchronization error closed-loop system
Combining the SESNN (4) with SFSC (8), the following

synchronization error closed-loop system (SECLS) is ob-
tained:

Sẋ (t) = Ax (t) +BN (x (t)) + CKx(t− τ(t))

− CKe(t) +Dω (t) ,

x(0) = x0, t ∈ [−τ2, 0].
(9)

Next, the definitions and lemmas used in this paper will
be introduced.

Definition 1. ([1]). (1.1) The SECLS (9) is regular if
det(aS −A) is not identically zero.

(1.2) The SECLS (9) is impulse-free, if deg(det(aS −
A)) = rank(S).

Definition 2. ([3]). The SECLS (9) is finite-time bounded
w.r.t. (α1, α2, R, Tf , c), (α1 < α2) andR > 0, if for ∀ω(t) :∫ Tf

0
ωT(t)ω(t)dt ≤ c, the following conclusion is met

sup
−τ2≤v≤0

{xT(v)Rx(v), ẋT(v)STRSẋ(v)} ≤ α1

⇒ xT(t)STRSx(t) < α2, ∀t ∈ [0, Tf ].
(10)

Lemma 1. ([2]). For any matrices F, M satisfying[
F M
∗ F

]
≥ 0,

if there exist scalars σ1, σ2, σ(t) satisfied

σ1 ≤ σ(t) ≤ σ2,

and the integrations∫ t−σ1

t−σ2

ẋT (α)Fẋ(α)dα,

∫ t−σ1

t−σ(t)
ẋ(α)dα,

∫ t−σ(t)

t−σ2

ẋ(α)dα

are well defined, we can get

− (σ2 − σ1)

∫ t−σ1

t−σ2

ẋT (α)Fẋ(α)dα ≤ ϖT (t)ℵϖ(t),

where

ϖ(t) =
[
xT (t− c1) xT (t− c(t)) xT (t− c2)

]T
,

ℵ =

 −F F −M M
∗ −2F +M +MT F −M
∗ ∗ −F

 .
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3 Main results

Theorem 1. The SECLS (9) is finite-time bounded w.r.t.
(α1, α2, R, Tf , c), if given positive constants Tf , α1, α2,
β, 0 < µ < 1 and matrix R > 0, there are matrices M ,
Q1 > 0, Ĝ > 0, Q2 > 0, F > 0, Θ > 0, diagonal matrix
L > 0 make the following matrix inequalities (11)-(15) hold.

STĜ = ĜTS ≥ 0, (11)

[
STFS M

∗ STFS

]
≥ 0, (12)

L =

[
L1 L2

∗ L3

]
< 0, (13)

STRS ≤ βĜTS, (14)

βeηTf (Λα1 + rc) < α2, (15)

where

L1 =

[
L11 L12

∗ L13

]
,

L11 =


Ω11 ĜTB U1 Ω14

∗ −I 0 0
∗ ∗ Ω33 Ω34

∗ ∗ ∗ Ω44

 ,

L12 =


0 ĜTD Ω17

0 0 0
U2 0 0
Ω45 0 Ω47

 ,

L13 =

 Ω55 0 0
∗ −rI 0
∗ ∗ Ω77

 ,
L2 = [A B 0 CK 0 D − CK]T,

Ω11 = sym(AT Ĝ) +Q1 + L, Ω14 = ĜTCK − U1,
Ω33 = Q2 −Q1 − STFS, Ω34 = STFS −M,
Ω44 = µΘ− 2STFS +MT +M, Ω45 = STFS −M ,
Ω47 = −µΘ, Ω77 = −Θ+ µΘ,
Ω55 = −Q2 − STFS, Ω17 = −ĜTCK,
L3 = − 1

(τ2−τ1)2F
−1.

Proof. There exist non-singular Π, Ψ such that

Ψ−TĜΠ =

[
G1 G2

G3 G4

]
,

ΨAΠ =

[
A1 A2

A3 A4

]
,

ΨSΠ =

[
I 0
0 0

]
.

It follows from (11), we can get that

ΠTSTĜΠ = ΠTĜTSΠ ≥ 0,

by further calculations it is obtained that

ΠTSTĜΠ = ΠTSTΨTΨ−TĜΠ

=

[
Ir 0
0 0

] [
G1 G2

G3 G4

]
=

[
G1 G2

0 0

]
≥ 0,

ΠTĜTSΠ = ΠTĜTΨ−1ΨSΠ

=

[
G1T G3T

G2T G4T

] [
Ir 0
0 0

]

=

[
G1T 0

G2T 0

]
≥ 0.

Then, we can get

G2 = 0, G1 = G1T ≥ 0.

Applying Schur complement formula to (13), the follow-
ing inequality can be drawn:

sym(AT Ĝ) < 0. (16)

Then, the following inequality is obtained:[
♢ ♢
♢ G4TA4 +A4TG4

]
< 0, (17)

where ♢ denotes the unutilized term in the follow-up.
Hence, one has

G4TA4 +A4TG4 < 0,

by [1, 2], A4 is non-singular.
Then, the regularity and non-impulsiveness of SECLS (9)

is proved.
We establish the L-K functional candidate for SECLS (9)

as

V (t, xt) =

4∑
r=1

Vr(t, xt), (18)

where

V1(t, xt) = eψtxT(t)STĜx(t),

V2(t, xt) = eψt
∫ t

t−τ1
xT(v)Q1x(v)dv,

V3(t, xt) = eψt
∫ t−τ1

t−τ2
xT(v)Q2x(v)dv,

V4(t, xt) = (τ2 − τ1)e
ψt

∫ t−τ1

t−τ2

∫ t

s

ẋT(v)STFSẋ(v)dvds.

Let LV be the weak infinitesimal generator for stochastic
process {xt, γt} effecting on V (·),
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LV1(t, xt) = ψV1(t, xt) + eψt[xT(t)STĜẋ(t)

+ ẋT(t)STĜx(t)],

LV2(t, xt) = ψV2(t, xt) + eψt[xT(t)Q1x(t)−
xT(t− τ1)Q1x(t− τ1)],

LV3(t, xt) = eψt[xT(t− τ1)Q2x(t− τ1)

− xT(t− τ2)Q2x(t− τ2)] + ψV3(t, xt),

LV4(t, xt) = ψV4(t, xt)

+ eψt[(τ2 − τ1)
2ẋT(t)STFSẋ(t)

− (τ2 − τ1)

∫ t−τ1

t−τ2
ẋT(s)STFSẋ(s)ds].

Then, one obtains that

−(τ2 − τ1)

∫ t−τ1

t−τ2
ẋT(s)STFSẋ(s)ds ≤ −ϕT(t)Λϕ(t),

(19)
where

ϕ(t) = [xT(t− τ1) xT(t− τ(t)) xT(t− τ2)]
T,

Λ =

 STFS M − STFS −M
∗ 2STFS −M −MT M − STFS
∗ ∗ STFS

 ,
Recalling the neuron activation function (3), one can ob-

tain that

NT(x(t))N(x(t))− xT(t)Lx(t) ≤ 0, (20)

where
L = diag{p21, p22, · · · , p2n}.

Then, one has

LV (t, xt)

≤ ψV (t, xt)− eψtrωT(t)ω(t)

+ eψtΓT(t)(L1 −LT
2 L−1

3 L2)Γ(t),

(21)

where
Γ(t) = [xT(t)NT(x(t)) xT(t− τ1) x

T(t− τ(t)) xT(t−
τ2) ω

T(t) eT(t)]T.
Recalling (13), we have

L1 −LT
2 L−1

3 L2 < 0. (22)

According to (21) and (22), one has

LV (t, xt)− ψV (t, xt) ≤ eψtrωT(t)ω(t). (23)

By further calculations it can be obtained that

e−ψtV (t, xt)− V (0, x0)

≤
∫ t

0

rωT(s)ω(s)ds = rc.
(24)

Let

Ĝi = R− 1
2 ĜT

i SR
− 1

2 , Q1 = R− 1
2Q1R

− 1
2 ,

Q2 = R− 1
2Q2R

− 1
2 , F = R− 1

2FR− 1
2 .

One obtains that

V (0, x0) = xT(0)ĜTSx(0)

+

∫ 0

−τ1
xT(v)Q1x(v)dv

+ (τ2 − τ1)

∫ −τ1

−τ2

∫ 0

s

ẋT(v)SFSẋ(v)dvds

+

∫ −τ1

−τ2
xT(v)Q2x(v)dv

< Λα1,

(25)

where

Λ = λmax(Ĝ) + (τ2 − τ1)λmax(Q2)

+
(τ2 − τ1)

2(τ2 + τ1)

2
λmax(F )

+ τ1λmax(Q1),

sup
−τ2≤v≤0

xT(v)Rx(v), ẋT(v)STRSẋ(v) ≤ α1.

On the other hand, based on (14), we can get

1

β
xT(t)STRSx(t)

≤ xT(t)ĜTSx(t)

≤ V (t, xt).

(26)

Substituting (25) into (24) and (26) yields

xT(t)STRSx(t)

≤ βV (t, xt)

≤ βeψTf (Λα1 + rc)

≤ α2.

(27)

Based on Definition 2, the SECLS (9) meets FTB, which
means that the master SNN (1) and slave SNN (2) satisfy
finite-time synchronization.

Then, Theorem 2 will be presented to obtain the gains
of state feedback synchronization controller and the event-
triggered weight matrices.

Theorem 2. The SECLS (9) is finite-time bounded w.r.t.
(α1, α2, Tf , R, c), if given positive constants Tf , α1, α2,
0 < µ < 1, R > 0, there exist M̃ , W , K̃, M , Θ > 0,
Θ̃ > 0, F > 0, F̃ > 0, Q̃1 > 0, Q1 > 0, Q̃2 > 0, Q2 > 0,
R̃ > 0 and diagonal matrix L̃ > 0 such that (15), (28)-(31)
are met.
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WTET = EW ≥ 0, (28)

[
STF̃S M̃

∗ STF̃S

]
≥ 0, (29)

L⋆
a =

[
L⋆

1 L⋆
2

∗ L⋆
3

]
< 0, (30)

STR̃S ≤ βSW, (31)

where

L⋆
1 =


L⋆

11 B 0 L⋆
14

∗ −I 0 0
∗ ∗ L⋆

33 L⋆
34

∗ ∗ ∗ L⋆
44

 ,

L⋆
2 =


0 D −CK̃ WTAT

0 0 0 BT

Ũ2 0 0 0

L⋆
45 0 −µΘ̃ K̃TCT

 ,

L⋆
3 =


L⋆

55 0 0 0
∗ −γI 0 DT

∗ ∗ L⋆
77 −K̃TCT

∗ ∗ ∗ L⋆
88

 ,
L⋆

11 = sym(AW ) + Q̃1 + L̃,L⋆
33 = Q̃2 − Q̃1 − STF̃S,

L⋆
34 = −M̃ + STF̃S,L⋆

14 = CK̃,

L⋆
44 = µΘ̃− 2STF̃S + M̃T + M̃ , L⋆

45 = −M̃ + STF̃S,

L⋆
55 = −Q̃2 − STF̃S,L⋆

77 = (µ− 1)Θ̃,
L⋆

88 = 1
(τ2−τ1)2 (F − 2I).

Then, the state feedback synchronization controller gains
are shown as follows:

K = K̃W−1. (32)

Proof. Let W = S−1, it can be obtained that the condition
(11) is ensured by condition (28), (31) means that (14) holds
up and condition (29) guarantees that condition (12) is ful-
filled.

For Φ > 0, we have

(Y − Φ)Φ−1(Y − Φ) ≥ 0,

then we can get that

− 1

(τ2 − τ1)2
F−1 ≤ 1

(τ2 − τ1)2
(F − 2I).

To simplify the notation, WTLW can be abbreviated as
L̃, etc.

Then left- and right-multiplying

diag{WT I WT WT WT I WT I}

and its transposition to (13) yields (30). Therefore, (30) can
ensure (13). Then, Theorem 2 is proved based on Theorem
1. The SFSC gains can be written as (32).

4 Simulation examples

Example 1. Consider the master SNN (1) and slave SNN
(2) with the following parameters:

A =

 −0.5 0 0
0 −0.4 0
0 0 −0.3

 ,
B =

 0.1 0.27 0.2
0.15 −0.25 0.13
0.28 −0.09 0.18

 ,
C =

 −0.17 0.14 0.11
0.18 −0.19 0.15
0.17 0.18 −0.13

 ,
D =

 −0.09 0.19 0.11
0.18 0.27 0.21
−0.19 0.28 −0.13

 ,
R =

 0.1 0 0
0 0.1 0
0 0 0.2

 ,
E =

 1 0 0
0 1 0
0 0 0

 ,
µ1 = 0.14,
τ2 = 0.08,

τ1 = 0.02,
α2 = 2,

α1 = 0.5,
β = 2,

h = 0.1,
Tf = 20.

By solving LMIs (28)-(31), the desired state feedback syn-
chronization controller gain is obtained as below:

K =

 0.6295 0.1438 0.0267
0.1438 0.6816 0.1274
0.0258 0.1258 0.7747

 .
Relatively, weight matrix of the ETS is obtained in the fol-

lowing:

Θ =

 0.3812 0.0003 −0.0002
0.0003 0.2442 −0.0003
−0.0002 −0.0003 0.0565

 ,
Considers the case with

ω(t) = 4e−0.25t sin(4t).

Choosing

xm(0) = [0.6 0.1 − 0.5]T,

xs(0) = [2.1 − 0.6 − 1.7]T,

then the initial state of the SECLS (9) is

x(0) = [1.5 − 0.7 − 1.2]T.

The state trajectories of master SNN (1) and slave SNN
(2) are demonstrated in Fig.1-Fig3. The error trajectories
without ETS are depicted in Fig.4, Fig.5 denotes the error
trajectories under ETS. The event-triggered release instants
and intervals are illustrated in Fig.6.
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Fig. 1: Trajectories of xm1(tkh) and xs1(tkh).
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Fig. 2: Trajectories of xm2(tkh) and xs2(tkh).
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Fig. 3: Trajectories of xm3(tkh) and xs3(tkh).
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Fig. 5: Error trajectories under ETS.
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State-of-Health Estimation of Lithium-ion Batteries Based on
CNN-LSTM-Attention
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Abstract: In this paper, eight health features were extracted from battery charging and discharging data. An SE attention mech-
anism was incorporated into the neural network to compare the prediction of the battery’s health state between a Convolutional
Long Short-Term Memory (CNN-LSTM) neural network and a CNN-LSTM neural network with an attention mechanism. The
experimental results reveal that the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Per-
centage Error (MAPE) of the attention mechanism neural network are 0.0038611, 0.0047139, and 0.0048182, respectively. This
represents an improvement in the model’s performance over the CNN-LSTM neural network by 11.8%, 18.9%, and 11.1%,
respectively.

Key Words: SOH, CNN-LSTM, SE-attention, CNN-LSTM-attention

1 Introduction

Nowdays, Lithium-ion batteries are extensively employed

as a power source in various applications, including elec-

tric vehicles, portable devices, and spacecraft [1]. Their

widespread use is attributed, in part, to notable advantages

such as high energy density, long cycle life, and low en-

vironmental pollution [2]. The complexity and sensitivity

of lithium-ion batteries to environmental changes can affect

battery performance, shorten service life, and pose safety

risks like fire and explosions. Consequently, monitoring the

health of lithium-ion batteries is a crucial indicator. The

discharge cycles, for instance, can induce damage to elec-

trode materials, involving processes such as the dissolution

of electrode material and the fragmentation of electrode par-

ticles. External factors and working conditions, including

overcharge/discharge, high voltage, extreme ambient tem-

peratures, and load fluctuations, exert an impact on battery

ageing, introducing significant uncertainty to the ageing pro-

cess [3–6]. Continuous charge and discharge cycles con-

tribute to the shortening of battery life and the degradation

of battery performance. For many devices, the recommen-

dation is to replace the battery promptly when its capacity

drops below 70% to 80% of the initial capacity, mitigating

the risk of severe safety accidents [7]. A robust correlation

exists between changes in battery capacity and the State of

Health (SOH). Therefore, accurate estimation of the SOH is

essential. The primary methods for estimating the SOH of

lithium-ion batteries include the method based on a model

and a data-driven approach [8]. The equivalent circuit model

consists of a finite number of series resistor-capacitor (RC)

networks [9]. Specifically, as RC networks increase, the cell

modelling accuracy is improved, but the computational com-

plexity increases. The battery modelling is frequently com-

bined with Kalman filtering or extended Kalman filtering to

improve the limitations caused by disturbances such as tem-

perature drift [10].

Due to the rapid advancements in the field of machine

learning in recent years, several neural network methods

This work was supported by the National Natural Science Foundation

of China (61973002), and the Anhui Provincial Natural Science Foundation

(2008085J32).

have gained widespread use in estimating the SOH of bat-

teries. These methods leverage the combination of neural

networks with the indirect health characteristics of batteries.

Hong and Lee et al. employed a one-dimensional convo-

lutional neural network to predict the remaining useful life

of a battery. However, it’s important to note that convo-

lutional neural networks (CNNs) share weights, which can

potentially result in the leakage of useful information in

SOH estimates [11].Eddahech and Briat et al. introduced

the use of recurrent neural networks (RNNs) in conjunc-

tion with equivalent circuit models to predict battery ageing

trends [12]. Tian et al. estimated the battery SOH based on

the particle filter algorithm and the established model [13].

Li and Sengupta et al. utilized extended short-term mem-

ory networks (LSTM) to estimate the capacity of a battery

without suffering from gradient disappearance. However,

the aforementioned LSTM-based prediction method may not

account for differences in the importance of sequence fea-

tures. This oversight can result in the neglect of crucial fea-

tures, potentially leading to a degradation in prediction per-

formance [14].

Building upon the aforementioned research methods, this

paper introduces a novel SOH estimation approach for

lithium-ion batteries utilizing a LSTM network. Initially, an

Incremental Capacity (IC) gain curve is constructed based

on the voltage and current during charge and discharge in

the NASA battery dataset. The peak voltage is then ex-

tracted from the IC curve as a feature for SOH estimation.

Additionally, voltage, current, and time during the battery’s

charge and discharge process are extracted and processed as

characteristics for SOH estimation. The proposed method-

ology employs an enhanced CNN-LSTM network structure

incorporating an attention mechanism for improved SOH es-

timation. Experimental results demonstrate the model’s high

accuracy in estimating the State of Health of lithium-ion bat-

teries.

2 Extraction of Indirect Health Features

2.1 The Dataset Used
The battery degradation dataset used in this study is pro-

vided by NASA and is widely used to estimate the State of

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
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Health (SOH) and State of Charge (SOC) of various lithium-

ion battery applications. The experimental procedure in-

volved using 18650 commercial lithium-ion batteries with an

initial capacity of around 2Ah. The batteries were charged

using Constant Current (CC) mode at a rate of 1.5A until

the battery voltage reached 4.2V. After that, charging con-

tinued using Constant Voltage (CV) mode until the charg-

ing current dropped to 20mA. Discharge was carried out at a

constant current of 2A CC until the battery voltage reached

predefined cutoff voltages. These cutoff voltages were 2.7V,

2.5V, 2.2V, and 2.5V for batteries B0005, B0006, B0007,

and B0018, respectively.

The cut-off voltages indicate the decline in the capacity of

these batteries over time. Let us consider the battery men-

tioned in document number one as an example. After ana-

lyzing its charge and discharge cycle, we found that specific

changes, such as the increase of the initial charge voltage, the

reduction of the time required for constant discharge, and the

change in the time required for constant current charge stage,

can represent the ageing process of the battery. Therefore,

the duration of the constant current charge and discharge

phase, as well as the initial charge voltage, are chosen as

indirect health indicators of these batteries. This experimen-

tal setup and the associated data analysis provide valuable

insights into the degradation patterns and performance char-

acteristics of these lithium-ion batteries. These insights are

critical for assessing their health and charging status in vari-

ous applications.
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Fig. 1: Capacity decay curve

2.2 State of Health (SOH) Definition
As shown in Fig.1, each battery has a unique initial capac-

ity. The State of Health (SOH) is used as a metric to assess

the health of the batteries. There are various methods for

calculating SOH, but two primary approaches are based on

battery impedance and available capacity . The impedance-

based method is not suitable for online measurements as it

requires instruments like electrochemical impedance spec-

troscopy. Thus, in this study, we determine SOH based on

the battery’s available capacity. This method can be repre-

sented as follows:

SOH =
Cm

Cn
× 100% (1)

where Cm is the available capacity, representing the maxi-

mum discharge capacity when fully discharged, and Cn is

the rated capacity provided by the manufacturer. Available

capacity decreases over time; the curve of SOH is shown in

the Fig.2.
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2.3 ICA(Incremental Capacity Analysis)
Lithium-ion batteries can be analyzed using the dQ/dV-V

curve, also known as the IC curve, to evaluate the condition

of the internal positive and negative electrode materials. Ad-

ditionally, there are dV/dQ-Q curves, also called Differen-

tial Voltage (DV) curves, which are utilized for studying the

degradation mechanism of batteries. The Incremental Ca-

pacity Analysis (ICA) approach is commonly used for ana-

lyzing IC curves. In this paper, we apply ICA to investigate

the degradation mechanism of batteries. Our focus is on the

analysis of IC curves to gain insights into the battery’s inter-

nal state and performance.

Q =

∫ T

0

I (t) dt (2)

dQ

dV
=

ΔQ

ΔV
=

QK −QK−1

VK − VK−1
(3)

where Q represents the charging capacity, I(t) is the charging

current, C and V represent the charging capacity and voltage

at the time step k, and T is the charging time at the current

state of the battery.
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Fig. 3: The ic curve of Kalman filter is compared with the

initial IC curve

According to equations (2) to (3), we can obtain the IC

curve. It is observed that with an increase in the number of

cycles, the peak value of the IC curve gradually decreases.

Therefore, the peak value can be used as a health indicator.

To reduce noise interference, Kalman filtering is employed

to filter the IC curve since the IC gain curve is susceptible to
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disturbances [15]. The comparison between the filtered IC

curve after Kalman filtering and the initial IC curve is shown

in Fig.3. In previous studies, researchers typically extracted

peak intensity, position, or slope of the IC curve as health

feature variables. However, as shown in Fig.4, some peaks

gradually disappear with battery ageing, making it challeng-

ing to estimate the State of Health in the later stages of a

battery’s life. To address this issue, we select incremental

capacity values within the voltage range of 3.8 to 4.1V as

feature variables and evenly divide the voltage range with

30mV voltage intervals.
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To summarize, this paper focuses on specific indirect

health characteristics of batteries, such as constant current

charging time, initial voltage during constant current charg-

ing, constant current discharge time, constant voltage dis-

charge time, constant voltage rise time, maximum IC value,

and the voltage value at which the IC reaches its maximum.

These features will be used as inputs for a neural network

with the goal of estimating the health status of the batteries.

3 Convolutional Long Short-term Memory Neu-
ral Network Based on The Attention Mechanism

3.1 Convolutional Neural Network (CNN)
CNN constitutes a type of feedforward neural network pri-

marily comprising convolutional layers, pooling layers, and

fully connected layers. Its foundational concept revolves

around feature extraction and dimension reduction from in-

put data. This process involves convolutional and pooling

layers, with subsequent tasks such as classification or re-

gression facilitated by fully connected layers. CNN is dis-

tinguished by structural features like local correlations and

weight sharing, which enable feature extraction and data di-

mensionality reduction for each input factor. This proves

advantageous in reducing the number of feature parameters

and overall model complexity. CNN operates by extracting

features through convolutional layers, diminishing feature

size via pooling layers, introducing nonlinearity through ac-

tivation functions, transforming features into classification

outcomes using fully connected layers, and finally convert-

ing these outcomes into a probability distribution through

the Softmax function. This intricate process allows CNN to

effectively extract critical features from data and provide a

probability distribution for classification results; the struc-

ture of CNN is shown in Fig.5.

Fig. 5: CNN structure

3.2 Long Short-Term Memory (LSTM) Network
LSTM represents a specialized form of recurrent neural

network designed for processing sequence data. LSTM tack-

les the challenges of vanishing and exploding gradients often

encountered in traditional RNNs by incorporating gate struc-

tures to regulate information flow. The fundamental concept

of LSTM involves introducing a memory cell to the network

and employing input gates, output gates, and forget gates

to govern the information flow within the memory cell. This

approach facilitates the effective modelling and prediction of

sequence data. The internal structure diagram of the LSTM

is depicted in Fig.6, and its calculation formula is as follows:

Ct-1

ht-1 Liner

σ σ tanh σ 

Ct

tanh

ht

ft it gt ot

Fig. 6: LSTM structure

ft = σ (Wf · [ht−1, Xt]) + bf (4)

it = σ (Wi · [ht−1, Xt]) + bi (5)

c
′
t = tan h (Wc · [ht−1, Xt]) + bc (6)

ct = ft · Ct−1 + it · C ′
t (7)

ot = σ (Wo · [ht−1, Xt]) + bo (8)

ht = ot · tan h (Ct) (9)

where h and c are the hidden state and cellular state of the

LSTM neural unit structure, respectively, which are mathe-

matically represented in the form of matrix vectors, and ft, it
and ot which are the forgetting gate, input gate, and output

gate, respectively, Wf , Wi, Wc and Wo are the coefficient

matrices, and bf , bi, bc and bo are biases.

3.3 Attention Mechanism
The attention mechanism, whether exhibited by humans

or machines during information processing, facilitates the

automatic or conscious selection and concentration of atten-

tion. Within the human brain, attention mechanisms enable

the rapid identification and concentration of significant infor-

mation within complex environments, effectively disregard-

ing irrelevant or unimportant data. In the context of a neural

network, the attention mechanism can be conceptualized as

a weighting mechanism that assesses the importance of each

element in the input data. It then aggregates these crucial

elements to generate the final output. This mechanism aids

the model in directing its focus toward essential information
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in the input data, effectively filtering out less crucial details.

This article predominantly leverages the channel attention

mechanism.SE attention mechanism [16]. SE concentration

can be divided into three parts, respectively: Squeeze, Ex-

citation and Scale. The structure is shown in the Fig.7 and

Fig.8.

Fig. 7: Squeeze-and-Excitation block

Squeeze-and-Excitation block is a computational unit

which can be built upon a transformation Ftr mapping an

input X ∈ R
H′×W ′×C to feature maps U ∈ R

H×W×C′
.

In the notation that follows, Ftr is the convolution operator,

where vc is the parameter of the c-th filter, and the output is

as follows:

uc = vc ∗X =

c′∑
s=1

vsc ∗ xs (10)

Squeezes block compresses global spatial information

into a single channel descriptor and generate channel-wise

statistics by using global average pooling. The statistical

quantity U ∈ R
C is contracted and generated by U through

its spatial dimensions H ×W , so the calculation method for

the c-th element of z is calculated by:

zc = Fsq (uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc (i, j) (11)

Fig. 8: The schema of the original Inception module and the

SE- Inception module

The Excitation module operates by aggregating informa-

tion from the Squeeze block to capture channel-related de-

pendencies comprehensively. In pursuit of this objective, the

gate mechanism relies on a two-layer, fully connected struc-

ture. The initial fully connected layer compresses C chan-

nels into C/r channels, effectively mitigating the computa-

tional load. Subsequently, the second fully connected layer

restores the channel count to C channels, followed by obtain-

ing weights (denoted as s) through Sigmoid activation. The

resulting s has dimensions of 1×1×C, serving to characterize

the weights of C feature maps within the feature graph U.

The calculation is outlined as follows:

s = Fex (z,W ) = σ (g (z,W )) = σ (W2δ (W1z)) (12)

where δ is the ReLU function,W1 ∈ R
C
r ×C W2 ∈ R

C×C
r

r represents the compression ratio. Finally, the Scale op-

eration, which involves weighting the attention weights ob-

tained earlier with the features of each channel, multiplies

each feature map in the feature graph U by the correspond-

ing weight. The final output x of the SE module is obtained

as follows:

x̃c = Fscale (uc, sc) = scuc (13)

where X̃ = [x̃1, x̃2, ..., x̃C ] and Fscale (uc, sc) refers to

channel-wise multiplication between the scalar sc and the

feature map uC ∈ R
H×W .

4 Experiments and Analysis

4.1 Evaluation Metrics
During the model training stage, the feature dataset un-

dergoes further partitioning into training and test datasets,

following a 7:3 ratio. Subsequently, 70% of the dataset is

randomly selected as the training set to facilitate the train-

ing of the entire neural network model. The remaining 30%
is designated as the test set, utilized to assess the model’s

estimation accuracy. To gauge this accuracy, the paper em-

ploys the following evaluation indices: mean absolute error

(MAE), root mean square error (RMSE), determination co-

efficient R2, and mean absolute percentage error (MAPE).

The calculation formulas for these indices are as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi| (14)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2

(15)

R2 = 1−
∑n

i=1 (ŷi − yi)
2∑n

i=1 (yi − ȳi)
2 (16)

MAPE =
1

n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (17)

where ŷi is the estimated values, yi is the measured values,

ȳi is mean of the measured values, n is the number of sam-

ples. MAE represents the absolute value of the error be-

tween the predicted and true values, allowing for the can-

cellation of errors with opposing directions, focusing solely

on their magnitudes. On the other hand, RMSE provides

insights into error dispersion and convergence performance.

MAE, by emphasizing error magnitude, offers a measure of

the model’s stability to some extent; R2 is employed as a

metric to quantify the proportion of the variation in the de-

pendent variable that the independent variable can explain.

Synthesizing these four evaluation indices enables a more

comprehensive and accurate understanding of the forecast

results. The higher the estimation accuracy, the smaller the

values of MAE, MAPE, and RMSE; conversely, the lower

the estimation accuracy, the smaller the value of R2.
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4.2 CNN-LSTM-Attention Network Model Parameter
Optimization Results

In order to confirm the accuracy of the proposed model

in this paper, we conducted comparative experiments with

the CNN-LSTM model and the CNN-LSTM model that in-

cludes an attention mechanism. The study utilized data from

a NASA lithium battery labelled B0005 to train and evalu-

ate the performance of the two SOH estimation models. The

estimated results are presented in the accompanying Fig.9,

Fig.10, Fig.11.
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Table 1: Evaluating Indicator.

Evaluation
indicators

CNN-LSTM CNN-LSTM-
Attention

MAE 0.00438 0.0038611

RMSE 0.0058168 0.0047139

MAPE 0.0054207 0.0048182

R2 0.99611 0.99746

The results obtained demonstrate the efficacy of the pro-

posed method in accurately estimating the state of health of

lithium batteries. The proposed approach outperforms the

CNN-LSTM model, showcasing improved accuracy and en-

hanced model performance. Specifically, the majority of er-

rors are confined within a range of 1.0%, indicating minimal

variations in error. The CNN-LSTM-Attention model ex-

cels in all four indicators—MAE, MAPE, RMSE, and R2;

the results are shown in table.1. Notably, MAE, RMSE, and

MAPE exhibit respective improvements of 11.8%, 18.9%,

and 11.1% compared to the CNN-LSTM model. This sug-

gests that the incorporation of the attention mechanism con-

tributes significantly to a more precise estimation of battery

health.

5 Conclusion

This paper centres on the SOH estimation of lithium-ion

batteries, proposing a CNN-LSTM model integrated with an

attention mechanism to enhance the accuracy of SOH es-

timation. Indirect health characteristics of the battery, in-

cluding the initial voltage of constant current charge, con-

stant voltage rise charge time, constant voltage drop dis-

charge time, IC maximum value, and voltage at IC max-

imum value, are extracted from the charge and discharge

data of the NASA battery dataset. To mitigate the impact

of noise on the IC maximum value, a Kalman filter is em-

ployed to filter the IC curve. To validate the effectiveness

of the proposed method, the eight health features are input

into two models, CNN-LSTM and CNN-LSTM-attention,

and their performances are compared. Experimental re-

sults indicate that the addition of the attention mechanism

enhances the estimation performance of the CNN-LSTM

model. The MAE, RMSE, and MAPE for the CNN-LSTM-

attention model are 0.0038611, 0.0047139, and 0.0048182,

respectively. Compared with the CNN-LSTM model, the

CNN-LSTM-attention model demonstrates improvements of

11.8%, 18.9%, and 11.1%, respectively.
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Abstract: This paper investigates the problem of Traffic Signal Control (TSC) in large-scale road networks. In extensive road net-
works, it is customary to define each intersection as an agent, however, the issue of partial observability is particularly prominent.
In this paper, Predictive State Representation (PSR) is employed to address the challenge of partial observability in large-scale
multi-agent systems. A Multi-agent Deep Reinforcement Learning (DRL) model based on PSR called PSR-XLight is proposed
in Large-Scale TSC Systems. Multi-agent PSR is conducted with centralized training and independent filtering which over-
come the challenge of prohibitive computations when the number of agents is large. Parameters sharing is adopted between
each agent’s PSR model to enhance learning efficiency and facilitate utilization in large-scale multi-agent environments. Each
agent undergoes independent DRL training and execution while parameters sharing is adopted. Experiments are conducted on
real-world road networks and a large-scale road network comprising 1000 intersections.

Key Words: Deep reinforcement learning, Traffic signal control, Multi-agent systems, Predictive State Representation.

1 Introduction

Traffic congestion poses a grave concern as it not only

exacerbates environmental pollution but also hampers logis-

tics and freight transportation efficiency, thereby impeding

urban economic development [1, 2]. Traffic Signal Control

(TSC) holds great promise in addressing the issue of traffic

congestion. Traditional TSC systems such as SCATS and

SCOOT[3] which heavily rely on expert knowledge exhibit

inefficiencies.

With the development of Artificial Intelligence (AI) tech-

nology, an increasing number of studies in the field of TSC

are focusing on Deep Reinforcement Learning (DRL) tech-

niques to control the traffic more precisely [4]. In the initial

investigation of TSC using DRL, researchers primarily fo-

cused on single intersection[5, 6].

Numerous Multi-agent Reinforcement Learning (MARL)

models have been extensively investigated in multi-

intersection TSC. In the majority of these works, each

agent is trained and executed independently [7–9] and

they primarily focus on scenarios involving fewer than 100

agents [10–14]. Limited research has been conducted on

large-scale road networks particularly comprising more than

1000 intersections which is crucial for the practical imple-

mentation of DRL in TSC. However, the issue of partial

observability becomes increasingly critical as the number

of agents grows due to the relatively more limited local

observations compared to the comprehensive state. Zhu et

al. [11] attempted to mitigate the impacts arising from the

partial observability of cooperative agents. However, the

issue of partial observability in large-scale road networks

remains unexplored.

In this paper, a MARL model based on PSR in Large-

scale TSC called PSR-XLight is proposed to tackle the chal-

lenge of partial observability. Instead of constructing the be-

lief state [15] to reduce the problem of partial observability,

This work is supported by National Key R&D Program of China under

Grant 2021ZD0112700, National Natural Science Foundation (NNSF) of

China under Grant 62373100 and 62233003.

PSR offers predictive state. In PSR-XLight, RFF-PSR [16]

is employed as the PSR model and integrated with DRL. In-

stead of mapping an agent’s observation to action, a map-

ping between the predictive state and actions is established

after the integration. Minimal prior information is required

to train PSR, the PSR model is derived and refined using

the data acquired from the interactions between agents and

the environment. A recursive filter is employed to main-

tain the predictive state. To enhance predictive performance,

the PSR model is refined by employing back propagation

through time. In PSR-XLight, single-agent PSR is extended

to multi-agent PSR with centralized training and indepen-

dent filtering which overcomes the challenge of prohibitive

computations when the number of agents is large. The pa-

rameters of PSR models are shared among agents to enhance

learning efficiency and enable employment in large-scale en-

vironments.

In summary, the contribution of this work are as follows:

(1) A MARL model based on PSR in large-scale TSC called

PSR-XLight is proposed to tackle the challenge of partial

observability. Experiments are conducted on real-world road

networks and a large-scale road network comprising 1000 in-

tersections. (2) Single-agent PSR is extended to multi-agent

PSR where filtering in PSR for each agent is operated inde-

pendently and centralized training of PSR is conducted, and

the proposed model overcomes the challenge of prohibitive

computations when the number of agents is large.

The remainder of the paper is organized as follows. Sec-

tion 2 presents the literature review. Section 3 presents

the problem formulation and backgrounds about PSR. PSR-

XLight model is presented in detail in section 4. In section

5, evaluations on small-scale and large-scale road networks

are conducted. The paper is ultimately concluded in Section

6.

2 Related Work

About the researches of the application of DRL in the

context of multi-intersection TSC, Graph Neural Network

(GNN) is commonly employed to represent road networks as
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graphs, and it facilitates enhanced communication between

agents through information aggregation from adjacent nodes

[13, 17]. In formulating the MARL model for TSC, it is

valid to introduce intuitive principles such as queue length

(QL) [18] and the phase demand [19]. The consideration of

impact and coordination between different agents such as the

correlation degree [7] is crucial. Moreover, some works uti-

lized attention mechanism to introduce spatial-temporal ef-

fect between agents [10, 20]. Multi-agent Coordinated Pol-

icy Optimization (MACoPO) [21] introduced a combination

of local cooperation and global coordination to coordinate

traffic signals at multi-intersections TSC.

The majority of the aforementioned studies primarily fo-

cus on TSC scenarios involving fewer than 100 intersec-

tions. Several studies have investigated large-scale road net-

works consisting of over 100 intersections. MPLight [22]

which encompasses FRAP and pressure conducted experi-

ments in a Manhattan road network comprising 2510 traf-

fic lights. However, the traffic volume utilized was rela-

tively low, and there was a lack of consideration for coop-

eration among neighboring intersections. Wang et al.[23]

proposed an explicit multi-agent coordination (EMC)-based

online planning approach. However, the computation time

of EMC increases with the size of the road network and sur-

passes that of other RL methods particularly in large-scale

road networks. Liu et al.[24] introduced the teacher-student

framework to TSC, where the student agent’s synthetic re-

ward is composed of an importance function of a teacher

agent and the environment reward. NewYork road network

comprising 196 intersections is used, nevertheless, coordina-

tion of multi-agents in the teacher-student framework is not

considered. Hu et al. [25] proposed the integration of mean

field theory into multi-agent RL to effectively reduce the di-

mension of joint actions in large-scale scenarios, whereas,

this approach incurs significant computational costs as the

number of agents increases. The research on large-scale

TSC, particularly involving more than 1000 intersections, re-

mains limited, and the issue of partial observability in exten-

sive road networks remains largely unexplored.

3 Problem Formulation and Backgrounds of PSR

3.1 Traffic Signal Control

(a) multi-intersection
road network

North

West

South

East

An outgoing 
approach

A lane

An incoming 
approach

(b) one intersection road network

Fig. 1: The illustration of road networks

A traffic network can be defined as a graph G(V, E) where

V and E represent the sets of nodes and edges, respectively.

In this context, intersections are considered as nodes, while

connections between intersections serve as edges. Fig. 1(a)

depicts a multi-intersection road network. A roadway meet-

ing at an intersection is referred to as an approach [4]. The

intersection depicted in Fig. 1(b) illustrates a typical con-

figuration with eight approaches, comprising four incoming

and four outgoing approaches. The purple shaded area indi-

cates four incoming approaches.

The travel time of a vehicle is determined by the duration

between its entry and exit from the road network. One of the

primary objectives in TSC is to minimize the mean travel

time of vehicles within the network. The queue length of a

lane is determined by the number of vehicles waiting in the

corresponding lane.

A vehicle traverses an intersection from an incoming ap-

proach to an outgoing approach, is referred to as a traffic

movement. A traffic signal phase p refers to a composite of

multiple movement signals. The utilization of four phases

and eight phases is common. In this study, we adopt a four-

phase configuration.

3.2 Markov Game
The TSC problem is formulated as an MDP with

〈G(V, E),S,O,A,P,R, π, γ〉. Let N represent the total

number of intersections within the road network, with each

intersection being under the control of an agent. S is the

state space, O is the observation space. The observation of

agent i is denoted as oi ∈ O. Ai represents the action space

of agent i and A is the joint action space of all agents where

A =
〈A1,A2, · · · ,Ai, · · · ,AN

〉
. P denotes the transition

probability where P (s′|s, a) represents the probability of

the transition to state s′ when taking action a at state s with

s, s′ ∈ S and a ∈ A. R : S × A → R represents the reward

function. Agent i takes action a ∈ Ai based on observation

oi, following the policy πi(a|oi), π is the joint policy where

π = 〈π1, π2, · · · , πi, · · · , πN 〉. γ is the discount factor.

We employ the state, action, and reward configurations

in [19]. The observation of an agent comprises three parts:

efficient pressure, phase demand and phase. Action ai of

agent i is choosing phase p from phase sequence. The reward

is determined by the negative sum of queue lengths of all

incoming lanes of intersections.

3.3 Backgrounds of PSR
Table 1 presents some symbols along with their cor-

responding meanings. Predictive state Qt is defined as

the conditional probability of observing observations of a

test’s sequence, given that the test’s actions are taken in se-

quence and given a history. For each time t, Qt satisfies

E[ψo
t |do(at:t+k−1), h

∞
t ] = Qtψ

a
t . Define the probability of

x given that Y is set to y as Pr[x|do(Y = y)], where do indi-

cates a forced intervention on variable Y , ensuring it remains

unaffected by other variables. VA|B;c is the linear operator

that satisfies

E[A|B = b, C = c] = VA|B;cb ∀b, c (1)

where A,B,C represent random variables. For each h∞
t , ψo

t

can be achieved based on ψa
t using Qt as a conditional ex-

pectation operator. For each time t, extended state Pt satis-

fies E[ξot |do(at:t+k), h
∞
t ] = Ptξ

a
t . There exists a linear map

Wsys satisfies Pt = Wsys(Qt).

849  



Table 1: Symbols Table (”obs” is an acronym for the term

”observations”)

Symbol Meaning

ot Observation at time t

at Action at time t

ot:t+k−1 Future obs: {ot, · · · , ot+k−1}
at:t+k−1 Future actions: {at, · · · , at+k−1}
ot:t+k Extended future obs: {ot, · · · , ot+k}
at:t+k Extended future actions: {at, · · · , at+k}
testkt A test: {ot, at, · · · , ot+k−1, at+k−1}
h∞
t The history at time t: {o1, a1, · · · , ot−1, at−1}

φO Feature mapping function for future obs

φA Feature mapping function for future actions

φo Feature mapping function for immediate obs

φa Feature mapping function for immediate actions

ψo
t Features of future obs: φO(ot:t+k−1)

ψa
t Features of future actions: φA(at:t+k−1)

φo
t Features of immediate obs: φo(ot)

φa
t Features of immediate actions: φa(at)

ξot Features of extended future obs: φO(ot:t+k)

ξat Features of extended future actions: φA(at:t+k)

4 PSR-XLight

In PSR-XLight, PSR is used to tackle the challenge of

partial observability in large-scale road networks. RFF-PSR

[16] is employed as the PSR model. Each intersection is

modeled as an agent with individual training and executing.

Predictive states are mapped to actions directly. The PSR

model is trained centrally with filtering operating individu-

ally for each agent. Parameters sharing of the PSR and DRL

model between agents is adopted to enhance learning effi-

ciency and facilitate model’s employment in large-scale en-

vironment. The model is illustrated in Fig. 2.

4.1 Mapping Predictive State to Action
qit is defined as the predictive state of agent i at time t.

πi(a
i
t|qit) is defined as the possibility of action ait taken by

agent i at time t based on predictive state qit. In PSR-XLight,

predictive state qit is considered as the direct input of Deep

Neural Networks (DNNs) with Q-values Q
′i
t = φDNN (qit)

in value-based methods and action ait = φDNN (qit) in

policy-based methods where Q
′i
t represents Q-values of

agent i at time t and φDNN denotes DNNs.

4.2 Individual Filtering of Each Agent
At time t, the set of predictive states is denoted as qallt ={
q1t , · · · , qNt

}
. Agent i chooses action as ait ∼ πi(a|qit)

as illustrated in Fig. 2. The set of actions is denotes as

aallt =
{
a1t , · · · , aNt

}
. Then the environment transfers to

a new state st after taking actions aallt . The set of new obser-

vations set oallt =
{
o1t , · · · , oit, · · · , oNt

}
is obtained where

oit represents the observation of agent i at time t. Filtering is

then conducted for each agent with shared filtering parame-

ters as illustrated in Fig. 2, which is as follows:

qit+1 = ffilter(Wsysq
i
t, o

i
t, a

i
t) (2)

where ffilter is known in advance [16].

PSR Model

filterf

Predictive 
states

Agent

1policy 1
tq

1

Environment

1
ta

1
1 1 1, , ,i N

t t tq q q 1
i Nq q111111111111

1, , ,i N
t t tq q qi N

t tq q, ,tt, ,

Agent

ipolicy i
tq

i

i
ta

Agent

Npolicy N
tq

N

N
ta

all
ta

,all all
t to a

Multi-agent RL
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D
Experience Pool
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Add

Training

Draw 
Samples
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RL

Draw 
Samples 
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Fig. 2: The illustration of the MARL model based on PSR

4.3 Central Training
4.3.1 Two-stage Regression

A trajectory for agent i is denoted as τi ={
oi1, a

i
1, o

i
2, a

i
2, · · ·

}
. After several episodes, training

data τtrain =
{
τki

}k=1,···K
i=1,···N is obtained where N is the total

number of agents and K is the total number of trajectories.

Two-stage regression is conducted as in RFF-PSR [16]

using τtrain. Wsys and initial predictive state q0 are then

obtained. For each agent i, initial predictive state qi0 = q0.

4.3.2 Refinement

The following formula is used to estimate oit.

E[oit|qit, ait] = Wpred(q
i
t ⊗ φa(a

i
t)) (3)

Training examples of Wpred consist of{
(qit ⊗ φa(a

i
t), o

i
t)
}i=1,··· ,N
t=1,··· ,T where T denotes the total

number of time steps in the training examples. Wpred

is obtained using these examples by computing the least

squares. φO, φA, φo, φa are shared across different agents.

Refinement of Wsys and Wpred is conducted using back

propagation through time (BPTT) with minimizing the

objective function as follows:

�(θPSR) =
T∑

t=1

N∑
i=1

∥∥Wpred(q
i
t ⊗ φa(a

i
t))− oit

∥∥2 (4)

where θPSR = (q0,Wsys,Wpred) and qit is updated through

formula (2). When the number of agents grows larger, the

number of PSR parameters which are shared among agents

remains constant. Computation for individual filtering scales

linearly with the number of agents and computation for cen-

tral training of PSR scales with the number of training exam-

ples which is adjustable although when the number of agents

is large. Therefore, multi-agent PSR in PSR-XLight over-

comes the challenge of prohibitive computations when the

number of agents is large.
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4.4 DRL Training
The parameters of DNNs in DRL model are denoted as

θRL. θtargetRL denotes parameters of the target network in

Deep Q Network (DQN). DRL training is presented as fol-

lows:

yit =
rit
β

+ γmaxai′Q
(
qit+1, a

i′; θtargetRL

)
(5)

�r(θRL) =
1

T

T∑
t=1

N∑
i=1

∥∥yit −Q
(
qit, a

i
t; θRL

)∥∥2 (6)

θRL = θRL − α∇θ�r(θRL) (7)

where T denotes the total number of time steps in the updat-

ing, yit represents the target value, rit denotes the reward of

node i at time step t, β represents standardized coefficient,

�r represents the loss function, α is the learning rate.

The complete algorithm is presented as Algorithm 1

where DRL model called X-DRL model is assumed to be

adopted. PSR-XLight can incorporate any DRL approaches.

Algorithm 1 The complete algorithm

Input: α, soft update β, initial greedy factor ε, minimum

value of greedy factor εmin, the number of trajectories M
in an iteration, empty experience pool D, minimum and

maximum amount of stored samples for D: Bmin, Bmax,

the amount of training examples for RL model and PSR

model: Bbatch, Bpsr, initial θRL.

Output: Optimized parameters (θRL, θPSR).
for iteration = 1, · · · do

if iteration = 1 then
Generate M episodes using X-DRL model with

initial θRL employing ε-greedy exploration.

Get τinitial =
{
τki

}k=1,···M
i=1,···N and use two-stage

regression to get Wsys, q0, φO, φA, φo, φa.

Get Wpred using τinitial as in 4.3.2.

Conduct refinement of θPSR as in 4.3.2.

Let qi0 = q0, ∀i ∈ N .

end if
for number = 1, · · · ,M do

Reset ai0, ∀i ∈ N .

for time step t = 0, · · · do
Get observations {oit, rit, ∀i ∈ N}.

for i ∈ N do
Filtering qit+1 = ffilter(Wsysq

i
t, o

i
t, a

i
t).

Choose action ait+1 ∼ πi(a|qit+1) with

ε−greedy.

end for
Execute ait+1, ∀i ∈ N .

Add {〈oit, qit, ait, rit, qit+1

〉
, ∀i ∈ N} into D.

if |D| > Bmax then

Remove oldest experience in D.

end if
end for

end for
Draw Bbatch samples randomly from D and use

it to train θRL with formula (7).

if iteration 
= 1 then
Draw Bpsr samples randomly from D and

compute to get Wsys,Wpred.

Soft update of Wsys,Wpred with W = βW+(1−
β)W ′ where W ′ represents last parameters.

Conduct refinement of θPSR as in 4.3.2.

end if
Reduce ε but make sure ε ≥ εmin.

end for

5 Experiments

The experiments on CityFlow[26] are conducted in the

study. Both small-scale road networks and a large-scale road

network consisting of 1000 traffic lights are utilized.

5.1 Settings of the Traffic Simulator
The CityFlow platform is a MARL environment designed

for large-scale urban traffic scenarios. The vehicles enter-

ing the road network adhere to predetermined speeds and

routes until they exit the road network. The movements of

proceeding straight and making a left turn are regulated by

traffic signals, whereas the act of making a right turn is un-

restricted.

5.2 Datasets
5.2.1 Synthetic Datasets

The study employs a synthetic large-scale road network

measuring 25 × 40. The predefined vehicle routes encom-

pass a diverse range of orientations, including northbound,

southbound, westbound, and eastbound, as well as combina-

tions of alternating right and left turns and alternating left

and right turns. The traffic flow of vehicles traveling in

the northbound, southbound, westbound, and eastbound di-

rections is set at a rate of 19500 vehicles per 300 seconds,

while the flow of vehicles taking combinations of directions

amounts to 1200 vehicles per 300 seconds.

5.2.2 Real-world Datasets

The real-world datasets, including the 4 × 4 Hangzhou

road network and the 28 × 7 New York road network, are

utilized in this study1. Each real-world road network is uti-

lized with two different traffic flow data.

In the experimental settings, each episode is defined as a

time span of 3600 seconds. The updated parameters will be

utilized to conduct a test episode after each iteration.

5.3 Compared Methods
Under the PSR-XLight model, two RL algorithms PSR-

Advanced-CoLight and PSR-Advanced-DQNLight are de-

signed.

• Fixedtime [27]: The execution of phases is based on a

pre-determined plan that encompasses a fixed sequence

of phases and their corresponding durations.

• Advanced-CoLight [19]: CoLight algorithm [17]

serves as the based algorithm, where efficient pressure,

phase demand, and phase are considered as states.

• PSR-Advanced-CoLight: Advanced-CoLight is em-

ployed as the DRL model within the PSR-XLight.

• Advanced-DQNLight: The configuration of states, ac-

tions, and rewards remains consistent with that of

Advanced-CoLight. DQN [28] serves as the based DRL

1https://traffic-signal-control.github.io
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model.

• PSR-Advanced-DQNLight: Advanced-DQNLightis

employed as the DRL model within the PSR-XLight.

For intelligent control methods, each intersection is con-

trolled by an individual agent, and parameters between

agents are shared.

5.4 Evaluation Metrics
The evaluation of various models is conducted using two

metrics. Firstly, the utilization of the road network re-

ward is justified as it represents the optimization objective

of agents. The reward curve explicitly illustrates the learn-

ing performance of agents. This metric is exclusively em-

ployed in 4×4 road networks due to its inadequacy for eval-

uations within large-scale road networks. Furthermore, the

assessment of models is based on the average travel time.

This metric has been extensively utilized in a multitude of

studies[7, 17, 22].

Table 2: Performance Comparison (the optimal value is

highlighted in bold)

Dataset Hangzhou A Hangzhou B

Metrics Reward Reward

Fixedtime -12.051 -18.186

Advanced-CoLight -1.114 -8.911

PSR-Advanced-CoLight -1.106 -8.803
Advanced-DQNLight -1.442 -11.225

PSR-Advanced-DQNLight -1.162 -11.088

Dataset New York A New York B

Metrics Travel time Travel time

Fixedtime 1471.24 1581.39

Advanced-CoLight 1059.99 1291.82

PSR-Advanced-CoLight 1012.73 1258.28
Advanced-DQNLight 1215.67 1397.91

PSR-Advanced-DQNLight 1120.84 1340.72

Dataset One thousand

Metrics Travel time

Fixedtime 1752.03

Advanced-CoLight 1341.72

PSR-Advanced-CoLight 1317.07
Advanced-DQNLight 1698.61

PSR-Advanced-DQNLight 1640.42

5.5 Performance Comparison
5.5.1 Performance in small-scale road network

In this section, we compare these models in 4 × 4 road

networks. PSR-XLight is convergent to a enhanced value

compared with its corresponding XLight as listed in Table

2. The outcomes are illustrated in Fig. 3, 4. In small-scale

road network, PSR-XLight achieves higher reward and less

travel time compared with corresponding methods without

PSR. In the early period of the training, PSR-Advanced-

CoLight demonstrates the faster learning than Advanced-

CoLight. Fig. 4 shows that PSR-Advanced-DQNLight ex-

hibits a significant improvement in reward and reduced travel

time than Advanced-DQNLight during the final iterations.

(a) Reward (b) Travel time
Fig. 3: Comprehensive comparative analysis of Hangzhou A

(a) Reward (b) Travel time
Fig. 4: Comprehensive comparative analysis of Hangzhou B

(a) New York A (b) New York B
Fig. 5: Comprehensive comparative analysis of New York

Fig. 6: Comprehensive comparative analysis of the 25 × 40
road network

5.5.2 Performance in large-scale road networks

In this section, all methods are evaluated in 28 × 7 and

25 × 40 road network. PSR-XLight exhibits a more op-

timal value compared to its corresponding XLight, as pre-

sented in Table 2. As shown in Fig. 5, 6, the performance

of PSR-XLight is evidently superior to that of its corre-

sponding XLight model. The performance of PSR-XLight

in large-scale road networks can be attributed to the integra-

tion of DRL and PSR, which effectively contributes to ad-
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dressing the challenge of partial observability by represent-

ing the latent state which is unobserved. Parameters sharing

between each agent’s DRL and PSR model make it easily

trainable in large-scale road networks. Figures show that

PSR-XLight exhibits good adaptability with different DRL

model. Curves in large-scale road networks are more unsta-

ble than that in Hangzhou due to the increasing complexity

of traffic flow and road networks.

6 Conclusion

In this paper, a TSC model called PSR-XLight is pro-

posed to improve the traffic efficiency of large-scale road

networks. PSR-XLight contributes to mitigating the adverse

effects arising from partial observability in large-scale road

networks by introducing PSR. Experiments in small-scale

and large-scale road networks show that PSR-XLight ex-

hibits a more optimal performance compared to its corre-

sponding XLight. In the future, two-stage regression and

refinements of PSR can be optimized to reduce the compu-

tation time.
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Abstract: Brake disc is a key workpiece of the automobile braking system, and its surface defects directly affects the safety
performance of the car. To ensure the product quality of the brake disc, it is necessary to detect these surface defects. In the
field of the workpiece surface defect detection, manual detection methods and conventional computer vision-based methods
could only identify defects under specific conditions. In this paper, we propose a multi-scale adaptive label assignment neural
network architecture to detect surface defects, which includes a Multi-scale Dilated Semantic Module (MDSM) and a Quality
Adaptive Head (QAH). Firstly, the MDSM is a multi-scale feature extraction module, which can expand receptive field range in
a serial manner by Dilated Sample Module (DSM), and integrate the different level information by semantic supplement wihout
significantly increasing the computational cost. Secondly, the QAH is an anchor-free detection head, and it requires neither
professional tuning experience nor hand-crafted rules to adaptively determine positive/negative samples by generating positive
and negative weight maps, which is called label assignment. Finally, to better supervise network training, the Quality Focal Loss
(QFL) is adopted to merge the quality estimation into QAH, making the network prediction output more accurate. Our method
is trained and tested on a self-established brake disc surface defect dataset, and extensive experiments show that our method
steadily achieves the best detection performance compared to state-of-the-art methods.

Key Words: Defect detection, Deep Learning, Convolutional neural network, Label assignment

1 Introduction

The surface defects of the workpiece can shorten the workpiece
lifetime, reduce the strength of the material, and increase safety-
related risks. Hence, it is very important to detect the surface de-
fects of the workpiece [1]. In the actual production line, these sur-
face defects are manually reviewed by quality inspectors, which
have the disadvantages of low accuracy, high labor intensity. There-
fore, there is an urgent demand for a detection system that can au-
tomatically detect surface defects of the workpieces, and determine
whether they are qualified or not [2].

To satisfy the urgent demand for quality monitoring, many tradi-
tional computer vision-based methods have been proposed to iden-
tify these defects. Zou et al. proposed a Kalman filtering welding
surface defects detection method [3]. A laser stripe pattern image
processing method is proposed to detect weld bead surface defects
[4]. However, these traditional image processing methods, which
are only suitable for situations with apparent features and a simple
background, have poor generalization ability and robustness [5].

Recently, deep learning methods have presented wide versatil-
ity, strong plasticity, and high accuracy in medical and industrial
applications [6–8].

He et al. detect steel surface defects by adding multi-level fea-
ture fusion to improve network performance [9]. Zheng et al. pro-
posed a fast defect detection convolutional neural network for cop-
per clad laminate surface defect detection [10]. Zhang et al. pro-
posed a novel detection framework to detect the tiny defects in train
components [11]. Although the performance of object detectors
has been dramatically improved due to the deep convolutional neu-
ral networks [12], there are still two major problems, namely scale
variation [13] and label assignment [14], which restrict the detec-
tion accuracy. For scale variation problem, the receptive field of
each convolution layer is fixed, which exists inconsistency between
the objects at different scales and the fixed receptive field. The net-
work should reasonably consider the use of shallow and deep infor-
mation to solve scale variation problem [15]. For label assignment
problem, which needs to clarify positive and negative samples in

This work is supported by National Natural Science Foundation
(NNSF) of China under Grant 62073237.

spatial position, is another common and difficult problem of object
detection. Existing detectors mainly rely on human prior knowl-
edge and expertise [16], when encountering some eccentric object,
are hard to assemble enough high-quality samples and obtain the
optimal label assignment, which increases the difficulty of apply-
ing the algorithm in an actual factory.

To tackle these problems, a multi-scale adaptive label assign-
ment neural network architecture is proposed, which includes
Multi-scale Dilated Semantic Module (MDSM) and Quality Adap-
tive Head (QAH). MDSM can detect different scale objects by mak-
ing full use of the multi-scale context information from different
receptive fields, and enhance receptive field range by using Dilated
Sample Module (DSM) without significantly increasing the compu-
tational overhead. QAH does not require any prior knowledge and
additional branches, which adaptively achieve label assignment by
generating positive and negative weight maps. Besides, as an ad-
ditional auxiliary quality loss function, Quality Focal Loss (QFL)
[17] is introduced to merge quality estimation in QAH, making the
training process more robust. The main contributions of this paper
are listed as follows.

1) A multi-scale feature extraction module called MDSM is pro-
posed, it utilizes semantic supplement and DSM to solve the
scale variation problem while significantly reducing memory
consumption and parameters.

2) An adaptive label assignment detection head called QAH is
proposed, without prior knowledge or introducing extra qual-
ity estimation branches, it can adaptively sum up the label
allocation strategy and merge quality estimation.

3) A workpiece surface defects dataset collected from the actual
production workshops is established to assess the proposed
method.

4) Extensive experiments are conducted based on the workpiece
surface defects dataset, which shows that our method achieves
the best detection performance compared to state-of-the-art
methods.

2 Methods
In this section, we will briefly introduce the Multi-scale adap-

tive label assignment neural network architecture, which includes
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Fig. 1: The defect detection neural network architecture

MDSM and QAH. The whole architecture is shown in Fig. 1. The
backbone and MDSM are firstly used to extract multi-scale fea-
ture information of the original images, and then, QAH uses the
obtained feature information to sum up the corresponding label as-
signment strategy and get the final detection results. The specific
details are shown in the following sections.

2.1 Multi-scale Dilated Semantic Module
We design a multi-scale feature extraction module named

MDSM, which can enhance the receptive field in a serial manner
and reduce space complexity. Its detailed structure is shown in Fig.
2.

MDSM firstly uses a 1×1 convolution layer to reduce the channel
number from {256, 512, 1024, 2048} to {256, 256, 256, 256}, and
maintain the reduced channel number in the whole module, which
is a foundation of the lightweight design, and the processed result
is marked as {R2, R3, R4, O1}. After reducing the network chan-
nel number, DSM can help MDSM gradually increase the receptive
field and restore feature map resolution, which alleviates the con-
tradiction between the size of the fixed receptive field and feature
map resolution. For further acquiring more semantic information,
MDSM uses semantic supplement to combine highly abstracted in-
formation with fine-grained details via element-wise addition with
a low computational cost.

2.1.1 Dilated Sample Module

The details of the DSM are shown in Fig. 3, each DSM consists
of a Residual Blocks [18] and an up-sample operation. The former
uses a stack of three convolutional layers, which includes two 1×1
convolution layers and a 3×3 convolution layer with dilation [19],

Fig. 2: The structure of the MDSM

Fig. 3: The structure of the DSM

the dilation rate will increase steadily with the expansion of the res-
olution of the feature maps. In order to improve the computational
efficiency, the channels of all convolutions in the entire network
framework are only 256.

The Dilated Residual Blocks can use the dilated convolution to
expand the receptive field, while retaining the original scale feature
information by shortcut connection. By bilinear interpolation to
fuse expand and original features, the fused feature covers a larger
receptive field.

Furthermore, the up-sampling operation is used to expand fea-
ture map size and lay the foundation of the next concatenation op-
eration. Besides, due to more training samples on the larger feature
map, subsequent point-based regression prediction head can make
good use of the feature information to complete more accurate box
prediction.

2.1.2 Semantic supplement

Learning from the multi-scale fusion idea of FPN network [20],
and for the consideration of the lightweight design idea, we pro-
pose two simple and effective semantic supplement strategies,
which include semantic supplement and upper semantic supple-
ment. Among them, the upper semantic supplement first uses the
global average pooling to extract global information of C5 on each
channel, which is not only consistent with lightweight design due
to no parameters in the global average pooling, but also obtaining
global context information. In order to use the semantic informa-
tion and further reduce the parameters of the model, we only use
the repeat operation to expand the feature map for next semantic
information concatenation.
2.2 General Adaptive Head

The GAH is an anchor-free adaptive detection network based
on point prediction, and GAH uses an implicit allocation princi-
ple which unexplicitly delegates each sample position to positive
or negative samples. We follow the allocation manner like AutoAs-
sign [14], every location on the feature map has both positive sam-
ple attribute and negative sample attribute at the same time. The
attribute mechanism is controlled by weight maps and confidence
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scores, and it can be optimized by the corresponding positive and
negative losses. In addition, the classification branch integrates the
quality estimation through QFL, making the training process more
robust and stable.

The second half of Fig. 1 shows the above head’s structure, the
localization branch output will go through a convert module and
enter the Positive Confidence Weighting Module (PCWM) to pro-
duce the positive loss. The Negative Confidence Weighting Module
(NCWM) will accept the classification score to produce the nega-
tive loss. The Center Weighting Module can assist the PCWM to
adaptively generate respective center prior distributions for differ-
ent targets. These will be explained in detail in the following sub-
sections.

2.2.1 Center Weighting Module

GAH uses Center Weighting Module to generate a Gaussian-
shape center weighing as a prior distribution, which guarantees that
the locations which are closer to the bounding box center have
higher weights than locations which are far from the box center.
It can automatically adjust the center prior according to the data
distribution, and lay the foundation for subsequent positive sample
weight calculations.

2.2.2 Negative Confidence Weighting Module

In the architecture of GAH, Negative Confidence Weighting
Module (NCWM) is adopted to complete the weight and confidence
calculation related to the allocation of negative samples, and these
calculation results can participate in the subsequent corresponding
negative sample loss calculation. In principle of the allocation of
negative samples, NCWM thinks that all locations from the feature
map have negative sample attribute which suppress the impact of
the false positives on the network performance. For negative con-
fidence score which is denoted by P−

i , considering that only the
classification task will be performed on the negative locations, thus
all locations use the classification score as the negative confidence
score P−

i = Pi(cls), and to restrict the confidence score, NCWM
assigns negative weights W−

i to negative confidence score. For all
positions outside the bounding boxes, since these samples must be-
long to the background, the W−

i is set to 1, for the locations inside
the boxes, we use the IOU to generate negative weight W−

i as:

W−
i = 1− f (ioui) (1)

where f(ioui) will perform two operations, which is f(ioui) =
1/(1 − ioui), ioui refers to the maximum IOU threshold of each
prediction proposal and all the ground truth boxes. Then uses

f (ioui)−min (f (ioui))

f (ioui) + max (f (ioui))
(2)

to normalize f(ioui) into range [0, 1], which ensures that locations
with high IOU thresholds have relatively low negative weights.

2.2.3 Positive Confidence Weighting Module

Similar to NCWM, Positive Confidence Weighting Module
(PCWM) completes the weight and confidence calculation related
to the allocation of positive samples. Different from the form of
the negative sample allocation, only the locations inside the ground
truth participate in the calculation process, and take into account
of the localization outputs to generate unbiased estimation on the
basis of classification output. To make localization outputs merge
with classification scores, PCWM adopts the Binary Cross-Entropy
to convert the localization prediction into localization loss Lloc

i as

Pi(loc) = e−λLloc
i (3)

λ is a hyper-parameter to balance the weight between localization
estimation and classification score. For localization loss Lloc

i , we
use GIOU [21] to complete the loss calculation. The positive con-
fidence score is defined as P+

i = Pi(cls) · Pi(loc). In order to
emphasize the locations with high confidence score, PCWM uses
an exponential form to increase the response value by

C
(
P+
i

)
= eP

+
i /τ (4)

where τ is a hyper-parameter to control the magnification of
weights. In order to guide the information to spread in the correct
direction, it is necessary to take account in center prior distribution.
Thus, our positive weights combine the exponential form of the
positive confidence score and center prior distribution, the whole
form is as:

w+
i =

C
(
P+
i

)
G(d)∑

j∈Sn
C
(
P+
j

)
G(d)

(5)

Here, the Sn denotes all locations inside the bounding box of object
n, and each w+

i is normalized by the sum of the positive locations
candidates to limit the numerical range to [0, 1].

2.2.4 Quality Focal Loss

The previous detectors prefer to add an additional localization
quality (centerness score [16] or IOU score [22]) to improve the
detection accuracy. Without increasing extra quality branch, we
use Quality Focal Loss (QFL) [17] to combine the quality estima-
tion with classification confidence score into a single and unified
representation form as final score, and replace the ground truth cat-
egory with its corresponding quality estimation information, which
increases the robustness of the training process. Besides, the joint
representation form soften the standard one-hot category label, and
it has a float target y ∈ [0, 1] on the corresponding category.

To match with our label assignment principle, we implement our
QFL calculation in two parts. Firstly, 0 < y < 1 denotes the
positive samples with target IOU score. Secondly, y = 0 stands for
the negative samples with a 0 quality score.

Due to all samples have negative sample attribute, we first cal-
culate the QFL−neg loss according to the 0 quality score for all
samples, the formula is as follows:

QFL−neg = −|σ|β
[
log1−σ] (6)

σ is the classification score with sigmoid operations and β controls
the down-weighting rate smoothly.

Then perform the QFL−pos loss calculation according to the
positive samples which are inside the bounding box, the calculation
form is as follows:

QFL−pos = −|y − σ|β
[
(1− y) log(1−σ) +y logσ

]
(7)

After complete these calculations, add the two loss functions and
perform the scaling operation as

QFL =
QFL−neg +QFL−pos

Num
(8)

Num denotes the total number of sample locations inside all
bounding boxes. By this loss function, we can facilitate the de-
tectors to have a simpler, effective and joint representation of both
localization quality and classification score.

3 Experiments

3.1 Dataset
The original workpiece images are collected by a manipulator

with a high-resolution camera. In actual production process, the
length of the collected images is in the range of 12000 to 25000
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resolution, and the width is in the range of 2200 to 4096 resolu-
tion. The inspection task is heavy if the unprocessed images are
sent directly to the detection network. Hence, we crop the images
according to the way of traversing each pixel of the images, and
keeping a certain common part between the images, so that the size
of the final image is approximately 600 × 500 pixel resolutions.

After cropping the images, we select cropped images with de-
fects, and invite senior engineer to help us annotate the defects by
drawing ground truth bounding box, and then randomly divide the
training set and validation set by a ratio 4:1, which includes 276 and
68 images respectively. Finally, the data set is enhanced to improve
the generalization ability of the model.

3.2 Implementation details
In the experimental setting and implementation details, the ex-

periments are conducted on a NVIDIA GeForce RTX 1080Ti, and
we use ResNet-50 with MDSM as a feature extraction network
if not specifically pointed out. The backbone is initialized with
pre-trained weight on ImageNet. Following common practice, the
shorter side of the cropped images scales randomly from [640,800]
pixels, the longer side is set to 1333 pixels. In the inference stage,
the long side and short side are fixed to 1333 and 800 pixels, respec-
tively. The initial learning rate is set to 0.001. During the parameter
fine-tuning stage, the learning rate will decrease 10 times at 16th
and 22th epoch respectively, weight decay is 0.0001 and momen-
tum is 0.9. The batch size is set to 2. For evaluation metrics, we
use the AP (average precision) and AP50 (AP for IoU threshold
0.5) to measure the quality of the model.

3.3 Results and comparison
In the section, we show the experimental results which will be

elaborated from the MDSM and GAH respectively to prove the ef-
fectiveness of our method.

3.3.1 The model complexity comparison of the MDSM

In order to examine the complexity of the MDSM and test its
performance compared with other FPN-based approaches, we use
FLOPs, Params, and AP to measure our algorithm. For the fairness
of experiment, we set the learning rate, batch size and other initial
conditions to be the same, and we use FCOS instead of the GAH
as the final detection head to simply verify the performance of the
MDSM if there are no special instructions. For FPN, PAFPN and
our method both adopt Resnet50 as backbone, for HRFPN, using
HRnet as backbone. It is noted that the model complexity involves
the related calculation of the backbone as the final result. Fig. 4
shows the model complexity between some FPN-based methods
and MDSM. It is obvious that our algorithm has less computational

Fig. 4: Comparison chart of the model complexity

complexity compared to other methods and proves its lightweight

characteristics. The detection result is in Table 1 which shows that
our method can extract feature information in a more effective way
than other methods.

Table 1: Detection result comparison between FPN-based
method and ours

Methods AP50:95 AP50 AP75

FPN [20] 0.409 0.840 0.342
PAFPN [23] 0.427 0.838 0.424
HRFPN [24] 0.404 0.841 0.376

Ours 0.436 0.846 0.455

3.3.2 The ablation experiments of the semantic supple-
ment

We also conduct a series of ablation experiments to explore the
effectiveness of the semantic supplement in MDSM. The details
result is obtained in Table 2, we use U-sup to denote upper semantic
supplement, and use sup to denote semantic supplement.

It is obvious to find that if the network only uses upper seman-
tic supplement, the detection performance will decrease. However,
if the network only uses semantic supplement, the detection per-
formance will increase. We infer the reason for this phenomenon
may be that for the network, having sufficient texture information
is a prerequisite for good detection performance. If the network
uses both upper semantic supplement and semantic supplement, it
can further enhance the performance of the network. We think that
based on enough shallow-level information, the deep-level infor-
mation can better guide the training process.

3.3.3 Weighting mechanism of GAH

To demonstrate the effectiveness of the weighting mechanism,
we also did a series of ablation experiments on the GAH. Table
3 shows the detailed results based on the GAH, which indicates
that Confidence Weighting Module (Positive Confidence Weighting
Module and Negative Confidence Weighting Module) brings a rela-
tively significant improvement in network performance, and Center
Weighting Module could further improve the detection accuracy.
In addition, due to the poor network performance of removing both
weighting modules, its performance is not shown here.

3.3.4 The ablation experiments of the Quality Focal
Loss

We compare the network performance with or without the joint
representations optimized by QFL. It is obvious to observe that
QFL boosts the performance more than the counterpart in Table
4. It demonstrates that due to more reliable quality estimation,
GAH can benefit from the joint representations by QFL, which en-
hances the coupling relationship between classification and local-
ization branches.

Table 2: The ablation experiments about the semantic sup-
plement

U-sup sup AP50:95 AP50 AP75

× × 0.345 0.797 0.287
✓ × 0.273 0.701 0.130
× ✓ 0.418 0.842 0.342
✓ ✓ 0.436 0.846 0.455
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Table 3: The ablation experiments about the weighting
mechanism

Confidence Center AP50:95 AP50 AP75

✓ × 0.205 0.581 0.096
× ✓ 0.424 0.832 0.382
✓ ✓ 0.452 0.852 0.454

Table 4: Add QFL or not
AP50:95 AP50 AP75

Without QFL 0.431 0.837 0.406
With QFL 0.452 0.852 0.454

Table 5: Performance comparison with state-of-the-art de-
tectors

Methods AP50:95 AP50 AP75

SSD [25] 0.417 0.841 0.336
Faster Rcnn [26] 0.433 0.836 0.420

Yolov3 [27] 0.348 0.746 0.242
FASF [28] 0.317 0.735 0.235
GFL [21] 0.402 0.798 0.328
ATSS [29] 0.382 0.798 0.360
FCOS [16] 0.420 0.813 0.339
Detr [30] 0.349 0.787 0.245

Ours 0.452 0.852 0.454

3.3.5 Comparisons with the state-of -the-art methods

We compare our method with state-of-the-art methods on the
workpiece surface defects dataset, for a fair comparison, we use
ResNet50 as the backbone, 2x learning schedule (24 epochs) and
multi-scale training strategy are adopted during the training pro-
cess. Under the same training setting, our method can consistently
outperform other counterparts. The experimental results are shown
in Table 5 and corresponding PR curves of different methods are
shown Fig. 5.

4 Conclusions

In this paper, a novelty multi-scale adaptive label assign-
ment neural network architecture which includes MDSM
and GAH is proposed, the former component can signifi-
cantly reduce model complexity and increase the range of
receptive fields to achieve scale invariance, the later compo-
nent can tackle label assignment in a differentiable assign-

Fig. 5: P-R curves of different detection methods

ment strategy, and it does not depend on human knowledge
which reduces the difficulty of network tuning. In addition,
with the help of the QFL, the head can provide more accurate
bounding box estimations without introducing extra quality
estimation branches. Extensive experiments show that our
method steadily obtain promising performance compared to
state-of-the-art methods, and demonstrate that proposed net-
work architecture has certain advantages in surface defects
inspection which provides an ideal solution for research and
applications in the workpiece defects detection.
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Abstract: Existing methods of neural radiance fields allow high-quality rendering of images from novel viewpoints in an implicit
manner. However, their need for individual training on specific scenes and relatively slow rendering speeds significantly limit
their application in real-time communication. To explore and expand their applicability in the realm of real-time holographic
communication, we introduce a novel high-speed rendering framework. This framework requires only sparse multi-view image
inputs (e.g., four viewpoints), leveraging depth information obtained from the front end as a prior, and integrating point cloud
features.It effectively reduces the voxel rendering sampling space and improves the quality of sampling points. Moreover, it
decouples the dependency between neural radiance fields and scenes, shifting this dependency onto the transformation matrix
between external parameters. This shift endows our model with generalizability, eliminating the need for retraining on new
scenes. Experimental evidence demonstrates that our model substantially accelerates the rendering speed of novel viewpoint
images on the basis of its generalizability, without compromising the quality of the rendered results even with sparse viewpoint
inputs.

Key Words: novel view synthesis, volume rendering, neural radiance fields

1 Introduction

Compared to traditional geometric texture-based 3D re-
construction, the task of novel view synthesis can obtain im-
ages of the reconstructed object from various viewpoints,
implicitly fulfilling the task of 3D reconstruction. In to-
day’s era, where fields such as sports gaming, virtual live
broadcasting, and holographic communication increasingly
demand faster algorithmic performance, this has gradually
garnered attention.

Novel view synthesis refers to rendering or generating
images of a scene from a new camera pose, based on a
set of scene images. Initially, research in this area was
conducted through traditional interpolation among multi-
ple viewpoints[1, 2], as well as light field rendering based
on densely arranged capture devices for intensive scene
sampling[3–5]. In recent years, researchers have also started
to apply deep neural networks to the task of novel view syn-
thesis, particularly exemplified by Neural Radiance Fields
(NeRF)[6], which are capable of producing highly realistic
rendering effects. This has subsequently led to a consider-
able amount of work in the field.

Neural Radiance Fields (NeRF)[6] is a technique for ren-
dering 3D scenes. It optimizes a continuous representation
of density and color in 3D space, enabling the generation
of high-quality images from arbitrary viewpoints. Gener-
ally, NeRF learns the depth and color information of a scene
by training on hundreds of 2D images taken from differ-
ent viewpoints, achieving highly realistic scene reproduc-
tion. However, this method has practical limitations in ap-
plications such as holographic communication. Firstly, high-
quality rendering requires a substantial number of input im-
ages, which is often impractical as users may not have the
means to acquire many images from different viewpoints.
Secondly, NeRF requires querying a large number of 3D
points distributed across the entire space, leading to time-
consuming training and rendering that is unacceptable in
many scenarios. Lastly, NeRF requires retraining for differ-

ent scenes, greatly limiting its generalizability and practical
application.

Our work aims to address the aforementioned issues by
introducing a Depth-Prior Guided Fasting Rendering Neural
Radiance Field, a novel view synthesis framework capable
of rapid, versatile, and high-quality rendering with sparse
viewpoint inputs. Firstly, we employ a multi-scale feature-
guided depth probability prediction module, utilizing ac-
quired depth priors to restrict the rendering sample points
within a certain range. Uniform sampling within this range,
combined with the multi-scale features extracted from the in-
put images, progressively confines the sample points near the
actual rendering scene’s surface. This means that these sam-
ple points are of higher quality and fewer in number, speed-
ing up the rendering process. Secondly, to tackle the issue of
model generalizability, we utilize the input extrinsic matrices
to estimate the mapping relationship between features across
multiple viewpoints. We use the relationships between the
extrinsics to estimate the weights in voxel rendering, decou-
pling the dependency of the Neural Radiance Fields on the
scene and shifting the dependency to the transformation ma-
trices between the extrinsics, thereby enhancing the model’s
generalizability. Lastly, while maintaining the quality of the
rendered images, we first conduct preliminary quantization
and pruning of the model. Then, using the original model
as a teacher, we distill and train a lightweight student model,
further accelerating the model’s inference speed.

In conclude, our model, while maintaining the quality of
synthesized novel viewpoint images, is capable of univer-
sally generating new viewpoint images for various scenes at
a rate of 7-8 frames per second. This offers promising direc-
tions and potential for the application of this technology in
fields such as holographic communication in the future.

2 Related Work

The task of generating new viewpoints of scenes has long
been a focal research issue in the field of computer vision.
From the perspective of current 3D reconstruction, the gen-
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eration of new viewpoint images of scenes essentially in-
volves replacing the representation of 3D scenes with pose
images. Hence, the crux of the issue lies in how to model 3D
information from 2D captured images. Some studies[1, 8, 9],
utilizing pixel correspondence and projection mapping, cir-
cumvent the need for modeling scene geometry and achieve
new viewpoint image synthesis through perspective transfor-
mation, while others use light field rendering[10–19]. How-
ever, these methods either fail to guarantee the quality of
generated images or impose stringent requirements on cap-
ture devices. Therefore, our discussion here primarily cen-
ters on the use of deep neural networks for synthesizing
new viewpoint images. The following discussion will cat-
egorize these works into two main types: one involves ex-
plicit reconstruction of geometry, and the other focuses on
implicit reconstruction methods, exemplified by Neural Ra-
diance Fields.

2.1 Explicit Reconstruction for Novel View Synthesis
Explicit reconstruction algorithms, particularly Multi-

View Stereo (MVS), are primarily used to reconstruct the
three-dimensional structure of a scene from images captured
from multiple viewpoints, thereby generating new viewpoint
images of the scene. MVS involves constructing a cost vol-
ume for depth estimation. MVSNet[20] builds a 3D cost
volume from 2D image features and regularizes it using a
3D convolutional neural network. This design enables end-
to-end training of the network and has yielded impressive re-
sults. However, MVSNet[20] consumes a significant amount
of memory. To address this issue, subsequent works im-
proved upon it by employing techniques such as recurrent
plane sweeping[21] or coarse-to-fine architectures[22–25].

Other approaches[26, 27] have utilized parametric mod-
els of the human body, fitting parameters and reconstructing
based on multi-view geometry and the tracking of human
motion, driven by constraints from multi-view contours and
temporal features. Some studies[28] have focused on inte-
grating correlational information between frames in dynamic
scenes, gradually refining and detailing the reconstructed
models by inputting newly captured data into keyframe mod-
els. However, these methods may not perform well when
there are rapid changes between frames.

Function4D[29] uses a sliding window over video frame
sequences to produce TSDF voxel fusion results that elim-
inate noise and maintain topological consistency within the
temporal window. It then fuses features from multiple view-
points and uses deep implicit functions to reconstruct surface
details. However, it still falls short in recovering complex
textured surfaces in practical applications.

2.2 Implicit Reconstruction for Novel View Synthesis
This category is predominantly represented by Neural Ra-

diance Fields (NeRF)[6] and its related works, which repre-
sent scenes as continuous fields of color and density, produc-
ing high-quality results for novel view rendering. However,
NeRF’s rendering is tied to specific scenes, requiring retrain-
ing of the entire network model for new scenes. Moreover,
it generally requires dense viewpoint inputs to achieve sat-
isfactory reconstruction results. Furthermore, the training
process is exceedingly slow, and rendering efficiency is low,
with training for a single scene often taking a day or even

several days. Hence, there has been a plethora of follow-up
works aimed at improving the NeRF algorithm from multi-
ple perspectives.

NeuS[30] and UNISURF[31] have substituted the field
function representation in NeRF with signed distance func-
tions and occupancy fields[32], respectively, to extract object
surfaces that are more geometrically sound and complete.
Works[33–38] have attempted to increase the training speed
of NeRF. They use 2D convolutional neural networks to pro-
cess input images and decode multi-view features to gener-
ate the target radiance fields. With pretrained networks, they
can be quickly fine-tuned to generate high-quality renderings
for new scenes.

Another series of works[39–43] aimed at accelerating the
rendering speed of NeRF. By caching neural radiance fields,
[39] managed to synthesize realistic images in real-time.
Nvidia’s work, InstantNGP[44], uses multi-resolution hash
table spatial indexing, significantly reducing the time for
fitting and rendering of a single scene to the level of sec-
onds. Methods like PixelNeRF[38] and IBRNet[37] have
achieved scene generalization and a reduction in input view-
points by extracting features on input views and aggregat-
ing them at the sampling points of the rendering frame-
work. Furthermore, some works have utilized the concept
of MVSNet[20] to estimate depth maps of input views first,
reducing ineffective sampling in sparse space and signifi-
cantly enhancing the efficiency of rendering novel viewpoint
images. For instance, Point-nerf[45] can take prior spa-
tial point clouds (e.g., preliminary point cloud results gen-
erated by COLMAP[46]) as input information and incorpo-
rates pruning and growing strategies in the algorithm, gen-
erating dense point clouds that suppress noise while synthe-
sizing new views.

Although these methods have optimized Neural Radi-
ance Fields in various aspects, these known methods still
cannot balance generalizability and rendering speed. The
method proposed in this paper, with its multi-scale feature-
guided depth probability prediction module, confines sam-
pling points within a certain spatial range while ensuring the
high quality of the sampling points. This accelerates the gen-
eration speed of novel viewpoint images without compro-
mising their quality. Moreover, by decoupling the model’s
dependency on the scene and shifting it to the mapping re-
lationship between the target and source extrinsic matrices,
the model’s generalizability is ensured.
3 Method

To align with practical application scenarios, our objective
is to synthesize high-quality novel viewpoint images at an
extremely fast pace from a set of real-scene images captured
from sparse viewpoints (such as four), without the need for
retraining specific to each scene or reconstructing detailed
geometric texture structures. Our designed method consists
of several steps: 1.Multi-scale Feature-guided Depth Prob-
ability Sampling: This step involves restricting the range
of the sampling space. It leverages multi-scale features to
guide the depth probability of sampling points, ensuring that
the sampling is focused on the most relevant areas of the
scene. 2.Learning Rendering Weights through Source and
Target View Relationships: In this step, the relationship be-
tween source views and target views is utilized to learn the
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rendering weights of the sampling points. This process helps
in accurately determining the color field and density field
of the sampling points, which are crucial for synthesizing
the new viewpoints. After obtaining the color and density
fields, voxel rendering is performed to generate the final im-
age from the new viewpoint. This step synthesizes the 3D in-
formation captured and processed in the previous steps into
a 2D image from the desired viewpoint. 3.Model Distilla-
tion for Speed Enhancement: Once the initial training of the
model is complete, we use it as a teacher model to distill
and train a lightweight student model. This student model
retains the essential features of the teacher model but with
significantly reduced computational complexity, which fur-
ther accelerates the model’s inference and the synthesis of
new viewpoint images.The workflow diagram of our method
is illustrated in Figure 1. By focusing on these steps, our
approach aims to provide a practical and efficient solution
for novel viewpoint image synthesis, addressing the need for
fast processing and high-quality output in real-world appli-
cations.

Fig. 1: Illustration of the Proposed Approach

3.1 Multi-scale Feature Extraction and Depth Predic-
tion

In this part, the sampling space is initially restricted within
a certain range defined by predefined depth priors dmax and
dmin .Subsequently, multi-scale feature extraction is em-
ployed to iteratively refine the extraction of sampling points
in the sampling space, from coarse to fine. This process also
involves obtaining the corresponding depth probability dis-
tribution of the sampling points, guiding the final sampling
and rendering process. This module’s inputs are the pose
of the target camera ϕtar images {Ii}Ni=1 from the nearest
N source views and their corresponding camera poses. And
then output points Xr ∈ RD·H·W for sampling and render-
ing. The approximate flowchart is presented as follows:

Fig. 2: Multiscale Feature-Guided Depth Probability Predic-
tion Module Flowchart

3.1.1 Multi-scale Feature Extraction

We use 2D U-Net to build a multi-scale feature extrac-
tor, to get the target cost volume. This extractor is de-
signed to derive multi-scale image features from the selected
input views {Ii}Ni=1. Specifically, it extracts features at
three different scales, denoted as F1, F2, F3, These feature
maps are characterized by their respective spatial resolutions
H
4 × W

4 , H
2 × W

2 , H ×W and channel numbers C1, C2, C3.

3.1.2 Preliminary Depth Probability Estimation

To learn the three-dimensional structure of the target scene
and guide sampling, a cost volume is constructed on the
target viewing frustum. This involves differentiable re-
projection of the extracted features onto the target center,
with the cost volume being established on the target view-
ing frustum. This approach is different from the common
learning-based Multi-View Stereo (MVS) methods, which
construct a plane sweep cost volume on the known views
of the image. Specifically, given the pose of the target cam-
era ϕtar = {Ktar,Rtar, ttar}, the pose of the source views
ϕi = {Ki,Ri, ti}, and the sampling points on the target
viewing frustum at depth d, we consider the transformation
matrix Hi(d) that maps features from the coordinate system
of the source view to that of the target view:

Hi(d) = K̂iTiTtar
−1 ˆKtar

−1

xi = Hi(d)xtar

(1)

where:
xi = (diui, divi, di, 1)

T

xtar = (dutar, dvtar, d, 1)
T

(2)

Then we need to determine the variance of inter-view fea-
ture deformation to constructed the target-centered cost vol-
ume. A 3D CNN is then used to regularize the cost volume.
By performing a softmax operation along the depth direction
on the normalized cost volume, we obtain a response prob-
ability distribution P ∈ RD×H×W of the points. The depth
probability obtained provides a compact sampling space. So
this process is crucial for ensuring that the rendering focuses
on the most relevant parts of the scene and is informed by an
accurate understanding of the scene’s depth structure, lead-
ing to high-quality novel viewpoint synthesis.

3.1.3 Multi-Scale Depth Probability Prediction

The ultimate goal is to accelerate rendering speed with
less sampling points while compromising the ability to pro-
duce realistic renderings. This is achieved by leveraging
the previously mentioned multi-scale features extracted and
combining them with the initial depth probability estimates
to progressively learn a more refined depth probability pre-
diction at finer scales. This refined prediction guides the final
sampling, ensuring that points contributing significantly to
rendering are gradually sampled. Unlike a unimodal hypoth-
esis, a sampling strategy from the distribution is adopted,
considering the sampling probability along the entire ray.

In detail, the initially constructed cost volume and depth
probability distribution are combined with features extracted
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at three scales. At each scale, a target-centered cost vol-
ume and its depth probability prediction distribution are
constructed. Higher pixel resolution and more refined
probability-guided sampling are used to refine previous sam-
pling. On the coarsest scale, within a predefined depth
range (dmin, dmax), the uniform sampling points of the
camera rays on the frustum denoted as X1 ∈ RD1×H

4 ×W
4 .

Then, the image features F1 extracted from the first scale
are used to construct a target-centered cost volume. Af-
ter regularization and normalization by a 3D convolutional
neural network, the coarsest sample space depth probabil-
ity P1 inRD1×H

4 ×W
4 can be learned. Next, a smaller set of

points X ′
2 ∈ RD2×H

4 ×W
4 is sampled from P1, with these

points being more likely to represent the scene’s structure
compared to X1. These points are then interpolated in the
sample space to obtain the distribution of points at the next
scale, X ′

2. Similarly, at the second scale, the same process
of cost volume construction, regularization, and normaliza-
tion is followed to obtain the depth probability distribution
P2 for that scale. Then, based on P2, a more refined set of
samples is taken as the final set of points for rendering X3,
along with their corresponding depth probability distribution
P3

In summary, this process involves obtaining the depth
probability distribution of corresponding point sets during
the construction of the target cost volume. The depth proba-
bility distribution is then used to guide the sampling of ren-
dering points. This approach allows for more compact and
efficient sampling, speeding up rendering while still main-
taining the rendering quality of the image. The practical ef-
fect is that the sampling point space is confined to a very
compact range, while ensuring high quality of the sampling
points, resulting in efficient sampling.

3.2 Viewpoint Feature Mapping for Voxel Rendering
Building upon the previous module, the output points and

their depth probability estimations are used as references.
The scene observed from the target viewpoint is represented
as a density field and a color field. To decouple the depen-
dency of Neural Radiance Fields on the specific scene, we
fully utilize the feature mapping relationship between the
source and target views. This approach shifts the aforemen-
tioned dependency to the transformation of the extrinsic ma-
trices, effectively aggregating information from the source
views and enhancing the generalizability of the algorithm,
eliminating the need for retraining for each new scene.

3.2.1 Density Field Estimation

In Neural Radiance Fields (NeRF)[6], the density en-
codes the transmittance of points in the target scene. In
most scenes, there is a lot of invalid sample space, result-
ing in considerable redundancy in the uniform sampling of
rays in the original NeRF algorithm. To address this, we
leverage the previously obtained sampling points. Moreover,
the depth probability distribution already estimated implies
the 3D structure of the target scene. Therefore, we utilize
the depth probability distribution obtained from the previous
module and use a multi-layer perceptron (MLP) for density
estimation to predict the density of the points.

d(r) = fd(P3(l)) (3)

P3(l) ∈ RD3 represents the target viewpoint’s depth prob-
ability estimation , and (.l) ∈ RD3 is the density of sampled
points on the target viewpoint line-of-sight l. Additionally,
integrating the density d(l) of rendering points yields the
density field ζ ∈ RD3xHxW .

3.2.2 Color Field Estimation

After completing the density estimation, we need to esti-
mate the color of the sampled points. This is done by pre-
dicting the surface color using the color information of the
source view at the most refined rendering points obtained in
section 3.1, and by mixing colors to achieve more reliable
results. Specifically, the network, a multi-layer perceptron
(MLP), learns the weights for color mixing based on the fea-
ture mapping relationships between viewpoints and the dif-
ferences in relative viewing directions. The feature mapping
between multiple perspectives as shown in the figure3:

Fig. 3: Multi-view Feature Mapping

The learned weights are then applied to the final render-
ing points’ colors. The processing steps are below: Firstly,
feature extraction for color mixing: Use a 2D U-Net to ex-
tract a set of image features F c

i for generating color mixing
weights. These features have a spatial resolution of HxW
and a number of channels C3. Then use the transformation
relationships described in equation 1 to map the extracted
multi-view features to the target view, denote as F̂ c

i . Cal-
culate the difference in viewing direction d:∆di = d − di,
where d and di is the target viewing ray and source viewing
ray respectively.

We use them to generate the mixing weights:

ωi = g(F̂ c
i ,∆di) (4)

Then aggregate these rendered points to form the color
field, C ∈ R3×D3×H×W :

c =
M∑
i=1

(
Ĉiexp(ωi)∑M
j=1 exp(ωj)

) (5)

This field represents the spatial distribution of colors across
the 3D space and is critical for rendering the scene realisti-
cally from the new viewpoint.By incorporating the color in-
formation from multiple source views and intelligently mix-
ing colors based on feature mapping and viewing direction
differences, the model can render the new viewpoint with
rich and accurate color representation.
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3.2.3 Rendering

We use traditional voxel rendering methods to obtain the
final synthesized image from the target viewpoint:

Ĉr =

D3∑
k=1

Tk(1− exp(−δk))ck

where Tk = exp(−
k−1∑
m=1

.m)

(6)

Here Ĉr is cumulative pixel color corresponding to ray r in
the predicted target new viewpoint image, D3 is the number
of points, dm, ĉm is density and color that we get before.

Through this voxel rendering process, the density and
color fields are effectively combined to produce a visually
coherent and realistic image from the new viewpoint, provid-
ing a reliable synthesis of the scene based on the estimated
3D structure and appearance information.

3.3 Model Distillation and Optimization for Efficient
Inference

The final section delves into the model distillation process,
a technique designed to transfer knowledge from a complex,
computationally heavy teacher model to a more lightweight
and efficient student model. This process is crucial for de-
ploying the novel viewpoint synthesis model in resource-
constrained environments, where rendering speed and model
compactness are paramount. The student model, in this case,
not only reduces the depth of its MLP network by two layers
compared to the teacher model but also undergoes pruning
post-distillation to enhance inference speed further.

The original model, known for its accuracy in estimating
density and color fields, serves as the teacher. The student
model, designed to be lightweight, adopts a shallower archi-
tecture with two fewer MLP layers, ensuring a significant
reduction in computational load while striving to maintain
the rendering quality. At the training steps, we aligning the
student’s outputs (density and color fields) with those of the
teacher model. The student model is trained to mimic the
teacher’s predictions, focusing on preserving the critical fea-
tures that contribute to the final rendering quality.

Through model distillation and subsequent optimization
via pruning, the final student model achieves a significant
reduction in computational requirements, making it well-
suited for real-time novel viewpoint synthesis in resource-
constrained environments. This process ensures that the
model retains its ability to render high-quality images from
new viewpoints, making the technology more accessible and
practical for a wide range of applications.

4 Experiments

To validate the effectiveness of the proposed method, we
conducted experiments focusing on three primary aspects:
the quality of rendered images, the rendering speed of the
algorithm, and the practical applicability and effectiveness of
the algorithm in real-world scenarios. Each of these aspects
is crucial for demonstrating the superiority and practicality
of our novel view synthesis approach.

4.1 Comparison of Rendered Image Quality
To rigorously evaluate the performance of our proposed

method, we conducted a comparative study against three
methods: PixelNeRF[38], IBRNet[37], and MVSNeRF[33].
The evaluation was structured across three datasets:
DTU[47], the realistic synthetic data from NeRF[6] and
forward-facing real data from LLFF[48], providing a
diverse range of scenes and complexities. The comparison
primarily focused on three standard image quality metrics:
PSNR(Peak Signal-to-Noise Ratio), SSIM(Structural Sim-
ilarity Index), and LPIPS(Learned Perceptual Image Patch
Similarity), with the results presented in Tables 1, 2, and 3
respectively.

Table 1: Quantitative results on DTU
Methods PSNR↑ SSIM↑ LPIPS↓
PixelNeRF 19.895 0.653 0.467
IBRNet 23.684 0.822 0.305
MVSNeRF 24.332 0.845 0.284
Ours 24.721 0.832 0.253

Table 2: Quantitative results on NeRF Synthetic
Methods PSNR↑ SSIM↑ LPIPS↓
PixelNeRF 6.342 0.534 0.467
IBRNet 22.483 0.899 0.182
MVSNeRF 23.782 0.912 0.176
Ours 25.094 0.922 0.075

Table 3: Quantitative results on Real Forward-facing
Methods PSNR↑ SSIM↑ LPIPS↓
PixelNeRF 10.236 0.437 0.683
IBRNet 21.732 0.781 0.269
MVSNeRF 21.925 0.765 0.257
Ours 21.933 0.772 0.231

We compare the new perspectives rendering results
on DTU datasets of our method with PixelNeRF[38],
IBRNet[37], and MVS-NeRF[33] as follows:

Fig. 4: Rendering Results on DTU Datasets

As shown in Figure 4, the new view images synthesized by
pixelNeRF in the three scenes have obvious blur, IBRNet has
errors at the edges and joints, and MVSNet has motion blur-
like phenomena. Of course, the method proposed was also
not very successful in rendering the small gift box behind the
third row of dolls, but it can be seen from the experimental
results that the actual rendering effect is still good.

Our experimental results demonstrate that our method
achieves comparable or even superior performance in
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terms of rendering image quality when measured against
other prominent novel view synthesis methods like
PixelNeRF[38], IBRNet[37], and MVSNeRF[33]. How-
ever, a key distinguishing factor that sets our method apart
is the rendering speed, which is orders of magnitude faster
than the competing methods.

4.2 Comparison of Rendering Speed
To highlight the efficiency of our method, we conducted

a rigorous comparison of rendering speeds between our ap-
proach and the other established methods. The results of this
comparison are detailed in Table 4. All experiments were
conducted on an RTX 3090 GPU, ensuring a standardized
and high-performance computing environment. The ren-
dered images for this comparison were all of the resolution
512x512 pixels. The experiments conclusively demonstrate
that our method not only matches but in some cases sur-
passes the image quality of other methods while providing
rendering speeds that are significantly faster, by orders of
magnitude.

Table 4: Rendering Speed Results
Methods fps↑
PixelNeRF 0.020
IBRNet 0.219
MVSNeRF 0.413
Ours 6.213

4.3 Practical Applicability and Effectiveness
To further substantiate the generalizability and practicality

of our model, we conducted training and evaluation on the
THUman2.0 dataset. This dataset, known for its high-quality
3D human models, provides a challenging testbed for assess-
ing the model’s ability to handle complex, real-world data.
We measured the performance of our model using PSNR,
SSIM, and FID (Frechet Inception Distance) scores. The
FID score, in particular, measures the distance between fea-
ture vectors of real and generated images, providing a metric
of their similarity. Lower FID scores indicate higher simi-
larity and, hence, better model performance. The statistical
results are presented in Table 5.

Table 5: Quantitative results on THUman2.0
Metrics PSNR SSIM FID
Ours 28.3655 0.93954 9.68

Additionally, we applied the trained model to a set of por-
trait photos captured simultaneously by four cameras in a
laboratory setting, achieving realistic rendering effects from
new viewpoints, Then, we present the rendering results on
a 3D display monitor Looking Glass to demonstrate the va-
lidity of our methods. We show the three perspectives of a
rendering as follows. This is the author’s own picture, obvi-
ously we do not have rich training data for this scene. And
the realistic results prove the practicality and generalization
of our method.

5 Conclusions

This paper presented a comprehensive approach to novel
view synthesis, introducing a method that significantly en-

Fig. 5: Holograms Display Results

hances rendering speed without compromising image qual-
ity. By employing multi-scale feature extraction and depth
prediction, we constrained the sampling range of the neu-
ral radiance field algorithm, simultaneously improving the
quality of the sampled points. Subsequently, we fully ex-
ploited the feature mapping relationship between source and
target views, decoupling the algorithm’s dependency on the
scene. This endowed our model with generalization capa-
bilities. Finally, we further accelerated the model through
distillation and pruning. Through a series of rigorous exper-
iments and comparative analyses, we demonstrated the su-
periority of our method over existing techniques in terms of
rendering quality and speed. Although our method does not
meet the real-time requirements of holographic communica-
tion, it provides a valuable exploration and inspiration for the
development in this field, enhancing user experiences in VR,
AR, and beyond. In conclusion, our novel view synthesis
method marks a significant advancement in the field, bridg-
ing the gap between high-quality rendering and high-speed
processing. The research opens new pathways for real-time
and interactive applications, setting the stage for future inno-
vations in novel view synthesis and related domains.
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Abstract: Accurate load forecasting facilitates the system operators to manage the power grid effectively. However, including
noise to safeguard user privacy can adversely affect forecast precision. This study investigates applying differential privacy (DP)
mechanisms to balance data privacy with forecasting utility. We introduce a quantitative method to evaluate the impact of DP-
induced noise at varying privacy levels on load forecasts. Through simulations using linear regression, support vector regression,
and artificial neural network models, we showcase the effectiveness of our approach across diverse forecasting methodologies.
Our results offer valuable insights into achieving an optimal equilibrium between privacy preservation and forecasting accu-
racy, enabling various stakeholders in the electricity sector to navigate the accuracy-privacy dilemma when making data-driven
decisions.
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1 Introduction

In an era where data privacy is paramount, differential pri-
vacy (DP) mechanisms [1] have emerged as a robust safe-
guard, subtly introducing controlled random noise into sen-
sitive datasets. While this approach maintains privacy, it
inherently exacts a toll on data utility, particularly in load
forecasting, where accuracy is crucial. Even the most so-
phisticated machine learning models, such as artificial neu-
ral networks, are not immune to the impact of DP noise, as
evidenced by the fluctuations in forecasting precision [2].

To delve into the intricacies of DP’s influence on forecast-
ing accuracy, this paper takes a microscope to several ma-
chine learning models, scrutinizing their responses to DP-
induced noise. The choice of models is not trivial; each may
react differently, revealing a spectrum of vulnerabilities. To
ensure our idea resonates broadly, we adopt an incremental
model selection strategy, systematically expanding our scope
from the foundational linear regression model to more intri-
cate and contemporary algorithms.

Our journey into the heart of the accuracy-privacy
dilemma begins with a meticulous analysis of the linear re-
gression model, providing a baseline for gauging the ef-
fects of DP on forecasting accuracy. This serves as a step-
ping stone to explore the applicability of our findings within
the complex tapestry of advanced machine learning models.
Join us as we unravel the nuanced relationship between DP,
data utility, and the quest for precise load forecasting.

1.1 Related Works
The smart grid community has embraced the concept of

DP for various applications, including power line obfus-
cation [3], non-intrusive load monitoring [4], safeguarding
time series data [5], synthesizing load profiles [6], elec-
tric vehicle charging station coordination [7], user profil-
ing [8] and electricity procurement [9]. Our work builds on
the extensive literature investigating the potential impact of
privacy-preserving mechanisms on data-driven tasks within
the electricity sector. Comas et al. [10] have previously
explored individual differential privacy as an alternative to
conventional DP, aiming to protect individual privacy while

ensuring more precise data. In this vein, our paper delves
deeper into the quantifiable effects of DP mechanisms on
load forecasting accuracy, further advancing the understand-
ing of privacy-utility trade-offs in the smart grid context.

Recently, there has been a surge in literature aimed at
enhancing load forecasting accuracy while maintaining pri-
vacy. Certain studies have delved into minimizing the intro-
duction of noise to meet a specified level of privacy preserva-
tion, e.g., [11] [12]. Conversely, others have concentrated on
refining existing forecasting models to mitigate the impact
of DP on accuracy, e.g., [13] [14]. However, there is a lack
of quantitative research that examines the specific influence
of DP on the performance of these models. Our paper aims
to fill this void by providing insights into how DP affects the
investigated models and offering guidance to various stake-
holders in the electricity sector on integrating DP for load
forecasting purposes.

1.2 Our Contributions
The primary contributions of this paper can be outlined as

follows:

• This study furnishes essential evidence to understand
the trade-offs between privacy preservation and fore-
casting performance, thus addressing a gap in the exist-
ing literature.

• Recognizing the complexity of load forecasting mod-
els, this paper proposes an approach to streamline the
analytical process. Initially, our method focuses on the-
oretical analysis for the linear regression model. Subse-
quently, its findings are extended to Support Vector Re-
gression (SVR) and Artificial Neural Networks (ANNs)
models through numerical study.

The remainder of this paper unfolds as follows: Section
2 revisits the concept of differential privacy and the mech-
anisms of support vector regression (SVR) and ANNs. In
Section 3, we derive theoretical bounds to estimate impacts
of DP on the linear regression model. Subsequently, Section
4 validates theoretical bounds in Section 3 and demonstrates
their applicability to SVR and ANNs. Finally, Section 5 de-
livers the concluding remark.
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2 Preliminaries

This section offers an introductory overview of fundamen-
tal concepts in DP and machine learning models. Initially,
we introduce the notion of (ϵ, δ)-DP and the Gaussian noise
injection mechanism. Subsequently, within the domain of
machine learning, we briefly outline SVR and ANNs mod-
els, and elucidate their alignment with our paper.

2.1 Differential Privacy (DP)
The concept (ϵ, δ)-DP provides a rigorous foundation for

assessing and comparing privacy-preserving mechanisms. A
privacy-preserving mechanism following (ϵ, δ)-DP satisfies
the following definition:

Definition 1 ((ϵ, δ)-DP in [15]) A randomized mechanism
M : D → R with domain D and range R satisfies (ϵ, δ)-DP
if for every pair of neighboring datasets D,D′ ∈ D and for
every point R ⊂ R:

P(M(D) ∈ R) ≤ P(M (D′) ∈ R) exp(ϵ) + δ. (1)

Here, the datasets D and D′ are considered neighboring if
the minimal number of sample changes required to make D
identical to D′ is one.

Remark 1 Within the framework of (ϵ, δ)-DP mechanisms,
as the magnitude of ϵ increases, the level of protection af-
forded to the data tends to diminish.

To satisfy the condition of (ϵ, δ)-DP, this paper employs
the Gaussian mechanism for the addition of noises. In the
lemma below, we illustrate how Gaussian noise is randomly
generated to fit the requirement of DP.

Lemma 1 (Gaussian Mechanism in [15]) Assume M to
be a mapping: D → Rn with domain D. The Gaussian
mechanism M(D) + ζ achieves (ϵ, δ)-DP, if ζ is drawn
from an n-dimensional Gaussian distribution. The mean
of the distribution is zero and the variance is equal to
2 ln(1.25/δ) · (∆/ϵ)2. Here, ∆ is the worst-case sensitiv-
ity defined for neighboring datasets D and D′, i.e., ∆ =
maxD,D′ ||M(D)−M(D′)||2.

2.2 SVR and ANNs
While DP is crucial for privacy concerns, it prioritizes the

protection of individual privacy at the expense of potential
accuracy degradation in predictions. This poses a signifi-
cant challenge in the context of load forecasting, where pre-
cise predictions are important. To mitigate the impact of DP
noises, we introduce two complex load forecasting models,
SVR and ANNs.

SVR is a robust machine learning algorithm that ex-
tends support vector machines (SVM) principles to regres-
sion problems. SVR accomplishes this by mapping input
data into a higher-dimensional space and identifying a hy-
perplane that captures the relationship between input vari-
ables and target values. While SVR emphasizes hyperplane
identification, ANNs excel at extracting intricate nonlinear
patterns from historical load data. Inspired by the structure
of human brains, ANNs are constructed with layers of inter-
connected nodes. This architecture equips ANNs with the in-
herent adaptability to intricate load profiles even in dynamic
environments. Thereby, ANNs are positioned as valuable
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Fig. 1: Illustration of Our Proposed Methodology

tools for load forecasting applications.

3 Methodology

As mentioned above, our paper adopts an incremental
model selection, processing from the fundamental linear
regression model to more intricate algorithms, SVR and
ANNs. Following this strategy, this section focuses on the
linear regression model, intending to quantify the impacts
of DP-induced noises on its prediction accuracy. The quan-
titative methodology will adhere to the logical framework
delineated in Fig. 1.

As an introduction, the linear regression model is a fun-
damental tool in predictive analysis, capable of returning
optimal linear parameters when provided with training data
and corresponding labels. Denote training data as Xtrain ∈
Rn×(m+1) and corresponding training label as Ytrain ∈ Rn,
where n and m denote the number of rows and columns se-
lected from the dataset, respectively. Utilizing the training
data Xtrain and Ytrain, we calculate the optimal linear pa-
rameter through linear regression, denoted as θ∗. Specifi-
cally, θ∗ is obtained by the minimum square error principle
and is expressed as θ∗ = argminθ ∥Ytrain − Xtrainθ∥2.
In the testing period, the linear model generates predictions
Ŷ as estimations for Ytest, where

Ŷ = Xtest · θ∗. (2)

3.1 The Impacts of Noises on Model Parameters
As the above illustration of linear regression is formu-

lated without considering the existence of noise, now we
discuss the case with noise disturbance. Adopting the Gaus-
sian mechanism, we augment each element in Xtrain and
Ytrain with Gaussian noise. Mathematically, the noisy data,
denoted as X̃train and Ỹtrain, is obtained as follows:

X̃train = Xtrain +EX, (3)

Ỹtrain = Ytrain +EY, (4)

where EX and EY are Gaussian random variables. With
noise incorporated into the training data, the parameters of
the linear model change accordingly. This variation is ana-
lyzed by customizing a theorem outlined in [16]. Still, θ∗

denotes the linear parameter trained on original data Xtrain

and Ytrain, while θ̃ is trained on noisy data X̃train and
Ỹtrain. We can derive the upper bound for the relative error
of θ∗ and θ̃ by the following theorem.

Theorem 1 Assume that Xtrain has rank m + 1 and
∥EX∥2 < σ, where σ represents the (m+ 1)-th largest sin-
gular value of Xtrain. Denote RE as the relative error of
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θ∗ and θ̃, then we have the upper bound for RE as follows:

RE =
∥θ̃ − θ∗∥2
∥θ∗∥2

≤ M · κ2

(
1 +

∥Ytrain∥2 + κ2∥rLS∥2
∥Xtrain∥2∥θ∗∥2

)
, (5)

where parameters including rLS, κ2 and M are defined as
below:

rLS = Xtrainθ
∗ −Ytrain, (6)

κ2 = ∥Xtrain∥2∥(XT
trainXtrain)

−1XT
train∥2, (7)

M = max

(
∥EX∥2

∥Xtrain∥2
,

∥EY∥2
∥Ytrain∥2

)
. (8)

As demonstrated by this theorem, the upper bound for RE
is contingent on M once Xtrain and Ytrain are specified.
Additionally, the definition of M implies that it is influenced
by Gaussian noises EX and EY, which introduces a depen-
dency of RE on randomness. To mitigate this dependency,
an estimation method is proposed. Initially, we adjust the
privacy levels by manipulating the parameter ϵ in DP mech-
anisms, and the resulting values of M are systematically
recorded. Subsequently, a fitting function is established to
model the relationship between M and ϵ. Utilizing the the-
orem, this function can then facilitate an estimation of RE
that is independent of randomness.

3.2 The Impacts of Noises on Prediction Errors
The findings elucidated in Section 3.1 highlight the varia-

tion of linear parameters, which leads to fluctuations in lin-
ear models. We denote the linear model with parameter θ∗

as Model1, and the model with parameter θ̃ as Model2. It
is anticipated that the difference between θ∗ and θ̃ will man-
ifest disparities in the respective prediction ability of the two
models. In this section, we seek to quantify the difference in
prediction errors of Model1 and Model2, aiming to assess
the impact of parameter variation on linear models’ predic-
tion ability.

Let Error1 and Error2 represent the relative prediction
errors of Model1 and Model2, defined as follows:

Error1 =
∥Ŷ −Ytest∥2

∥Ytest∥2
, (9)

Error2 =
∥Ỹ −Ytest∥2

∥Ytest∥2
, (10)

where Ŷ and Ỹ are the predictions made by Model1 and
Model2, respectively. Denoting D as the difference between
Error2 and Error1, we have

D = |Error2− Error1|

=

∣∣∣∣∣∥Ŷ −Ytest∥2
∥Ytest∥2

− ∥Ỹ −Ytest∥2
∥Ytest∥2

∣∣∣∣∣
=

∣∣∣∥Ŷ −Ytest∥2 − ∥Ỹ −Ytest∥2
∣∣∣

∥Ytest∥2
. (11)

Then, fundamental inequalities of matrix norms yield that

D ≤ ∥Ỹ − Ŷ∥2
∥Ytest∥2

=
∥Xtestθ̃ −Xtestθ

∗∥2
∥Ytest∥2

≤ ∥Xtest∥2∥θ̃ − θ∗∥2
∥Ytest∥2

=
∥θ̃ − θ∗∥2
∥θ∗∥2

· ∥Xtest∥2∥θ∗∥2
∥Ytest∥2

= RE · ∥Xtest∥2∥θ∗∥2
∥Ytest∥2

. (12)

In the bound expression, Xtest and Ytest are given testing
data, and θ∗ depends on the training data Xtrain and Ytrain.
The randomness introduced by random noise is encapsulated
within the term RE. Adopting the method outlined in Sec-
tion 3.1, we can further establish an upper bound for D,
which is independent of the inherent randomness. Following
that, this randomness-free bound serves as a robust quantita-
tive measure of DP’s impacts on the prediction accuracy of
linear regression.

4 Numerical Study

This section encompasses two parts of numerical studies.
Firstly, we elucidate the simulation process of the bound for
RE in linear regression and verify its accuracy through com-
parison with empirical RE values. Subsequently, the simu-
lated bound for RE yields the upper bound for D, which is
experimentally verified as applicable for SVR and ANNs.

4.1 Data Description
In the experiment, we employ the dataset Load History as

mentioned in [17]. The dataset contains hourly load data for
20 zones, spanning from the 1st hour of January 1, 2004,
to the 6th hour of June 30, 2008. Since the dataset con-
tains missing values, we have to remove the rows with these
gaps. Afterward, we apply the dataset in the model of linear
regression directly. For SVR and ANNs, the dataset needs
additional standardization to prevent training divergence.

4.2 Analysis for Linear Regression
Conditions Verification The bound simulation in this

study is based on Theorem 1. Therefore, it is imperative
to commence with a thorough verification of the conditions
requisite for this theorem. The first condition necessitates
that the rank of matrix Xtrain equals its column number. To
ensure compliance with this condition, we fix its row num-
ber at 1500, while allowing its column number to range from
2 to 16.

Concerning the second condition, denoted as ∥EX∥2 <
σ, we generate 1000 random independent samples of EX

for each ϵ. Subsequently, we compare the mean values of
∥EX∥2 with σ, as illustrated in Fig. 2. The graph indicates
that ∥EX∥2 > σ when ϵ is excessively small. Consequently,
to fulfill the second condition, ϵ is constrained to the range
(0.1, 1).

Parameter Estimation With verified conditions, the sim-
ulation process commences by estimating the parameter M
in relation to ϵ, as explicated in Section 3.1. Again, a set of
1000 samples is generated to determine the mean value of M
for each ϵ, as illustrated in Fig. 3. The graph reveals a clear
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Fig. 2: Values of ∥EX∥2 and σ for Different ϵ

linear correlation between 1/M and ϵ. Note that smaller val-
ues of ϵ correspond to higher levels of DP. This indicates
an augmented magnitude of introduced noise, the value of
M would exhibit a corresponding increase. Such analysis
aligns with the observed linear relationship between 1/M
and ϵ. Consequently, M can be effectively estimated using
the following expression:

M ≈ 1

L (ϵ)
, (13)

where L is the linear function obtained through training.
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Bound Derivation Following the estimation of M based
on ϵ, we can construct a bound for RE with less sensitivity
to random noise than the bound presented in Eq. 5. By sub-
stituting Eq. 13 into Eq. 5, the randomness-free bound for
RE is approximated as follows:

RE ≤ 1

L (ϵ)
· κ2

(
1 +

∥Ytrain∥2 + κ2∥rLS∥2
∥Xtrain∥2∥θ∗∥2

)
. (14)

We denote B1 as the upper bound for RE in Eq. 14. By
examining all items in B1, we can suggest that this bound is
independent of random noise. Subsequently, we assess the
validity of the bound B1 by comparing it with empirical val-
ues of RE, as shown in Fig. 4 (Here, for each given ϵ, the
empirical values of RE are taken as the mean of 1000 sam-
ples). The results demonstrate that even across varying levels
of ϵ, our simulated bound aligns closely with the empirical
observations of RE. Hence, for various practical demands
of privacy protection, B1 can perform as the bound of RE
effectively.

Shifting to the analysis of D, which represents the dispar-
ity in prediction errors induced by noises, we substitute Eq.
14 into Eq. 12 to derive the upper bound for D in the linear
regression model. The expression is formulated as follows:

D ≤ B2 =
κ2∥Xtest∥2∥θ∗∥2
L (ϵ) ∥Ytest∥2

·B1. (15)
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Here B2 represents the final version of the upper bound for
D in linear regression. Notably, all parameters are deter-
mined by the training data, testing data, and the specified ϵ,
rending B2 independent of the randomness in noises. This
characteristic enhances the reliability of this upper bound.

4.3 Simulation Results for SVR and ANNs
In this section, we extend our investigation to the applica-

bility of B2 in constraining the variable D for more advanced
models, namely SVR and ANNs. Fig. 5 presents the values
of D in linear regression, SVR, and ANNs, plotted against
the upper bound B2. By observation, B2 consistently bounds
D across SVR and ANNs, even for varying ϵ. Furthermore,
the stable gaps between curves representing B2 and D sug-
gest that our theoretical bound remains consistently accurate
for different ϵ. Mathematically, for any given ϵ, the logarith-
mic value of D is approximated to the logarithmic value of
B2 plus a constant value, indicating their original values are
proportionate with a constant ratio C: D ≈ C ·B2.

In summary, if adopting the Gaussian mechanism, B2 can
serve as a reliable upper bound for D in linear regression,
SVR, and ANNs. This establishes B2 as a dependable esti-
mate for evaluating the impacts of DP on forecasting accu-
racy, as it limits the disparity in prediction errors resulting
from the noise introduced by DP.
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Fig. 5: Relationship Between D and B2 in SVR and ANNs

5 Conclusion

This paper addresses the issue of how differential pri-
vacy mechanisms affect the accuracy of load forecasting.
When introducing DP noises into the training data, the re-
sulting model may exhibit higher prediction errors than be-
fore. Thus, the difference in prediction errors can serve as
an indicator of DP’s impact. Commencing with the analysis
of linear regression, we determine an upper bound for this
difference in prediction errors. Through numerical studies,
this paper demonstrates that this bound is also effective in
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the context of SVR and ANNs. In this manner, we establish
an upper bound to estimate the impact of DP mechanisms on
complex load forecasting models.
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7 Appendix

This section provides a mathematical proof for Theorem
1 (Details are proposed in [16]). Firstly, we mention two
lemmas that support our proof. Here, Lemma 2 helps us
demonstrate the condition of matrix ranks. Lemma 3 serves
as a substitute in our deduction.

Lemma 2 The matrix 2-norm is invariant with respect to
orthogonal transformations. It is easy to show that for all
orthogonal Q and Z of appropriate dimensions we have

∥QXtrainZ∥2 = ∥Xtrain∥2. (16)

Lemma 3 The second power of condition number κ2 has an
established result:

κ2
2 = ∥Xtrain∥22∥(Xtrain

TXtrain)
−1∥2. (17)

Proof 1 Let E and f be defined as E = EX/M,f =
EY /M . By hypothesis ∥EX∥2 ≤ σ, rank (Xtrain) = m+
1 and so by Lemma 3, we have rank (Xtrain + tE) = m+1
for all t ∈ [0,M ]. Let Xt denotes Xtrain + tE, thereafter,
the solution θ(t) to the following equation is continuously
differentiable:

Xt
TXtθ(t) = Xt

T (Ytrain + tf) . (18)

To be precise, θ(t) is a function of variable t. Since θ∗ =
θ(0) and θ̃ = θ(M), we have

θ̃ − θ∗ = M θ̇(0) +O(M2), (19)

where θ̇(t) is the derivative of θ(t). In Eq. 19, by dividing
θ∗ on both sides and taking norms, we obtain the expression
of RE:

RE =
∥θ∗ − θ̃∥2
∥θ∗∥2

= M
∥θ̇(0)∥2
∥θ∗∥2

+O(M2). (20)

In order to bound ∥θ̇(0)∥2, we differentiate Eq. 18 on both
sides and set t = 0 in the result, which gives

θ̇(0) = (Xtrain
TXtrain)

−1Xtrain
T (f −Eθ∗)

+ (Xtrain
TXtrain)

−1ET (Ytrain −Xtrainθ
∗) .

(21)

By substituting Eq.21 and Lemma 3 into Eq. 20, taking
norms, we obtain the bound for RE as follows:

RE ≤M · κ2

(
1 +

∥Ytrain∥2 + κ2∥rLS∥2
∥Xtrain∥2∥θ∗∥2

)
. (22)

To be accurate, the term O(M2) in the bound’s expression
is eliminated due to its negligible scale.
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A Parameter correction method of motor system based on particle 

swarm and convolutional neural network 
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Abstract: In order to generate accurate predictions in the vibration characteristics analysis of the motor structure, a motor system 

parameter correction method based on particle swarm optimization is proposed in this paper. Initially, focusing on the motor 

itself and utilizing modal analysis theory, finite element analysis software is employed for modal simulation analysis of the motor 

model. Subsequently, parameters such as shell stiffness, shell density, and spring stiffness between end caps and the shell are 

adjusted to better match the actual motor model. The particle swarm optimization algorithm is then used to optimize the structural 

parameters of the motor, obtaining a non-inferior optimal solution between the vibration performance and operational 

performance of the driving motor. At the same time, in order to reduce the manual workload, the image recognition model is 

established according to convolutional neural network to find out the target output image. Finally, the proposed method is 

subjected to simulation analysis. The results indicate that this strategy can to some extent achieve identification and optimization 

of motor system parameters. Additionally, the algorithm can reduce the complexity of modal calculations for motor systems and 
the image recognition model can find the target pattern accurately, demonstrating practical value. 

Key Words: particle swarm optimization, convolutional neural network, modal analysis 

 
  

1 Introduction 

With the growing concern over noise pollution and 

increasing demand for noise reduction in ship electric 

propulsion, the vibration and noise of motor systems have 

become crucial indicators for measuring overall 

performance. Accurately calculating parameters such as 

modal shape and natural frequency is essential to reducing 

motor noise and vibration. Therefore, analyzing the 

structural modal of motors has become a research hotspot. 

In [1], the substructural modal synthesis method was used to 

carry out computational modal analysis of permanent 

magnet synchronous motor and optimize its structure. In [2], 

it analyzed the motor modes based on the thin-shell theory, 

and verified the correctness of the calculated results by finite 

element method. In [3], it analyzed the equivalent model of 

the stator core and winding of permanent magnet motor, 

summarized the effect of the material parameters of the 

equivalent model on the natural frequency of the stator core, 

and proposed a method to quickly determine the material 

parameters of the equivalent model. In [4], it uses the finite 

element analysis method to analyze the influence of different 

types of windings on the modal parameters of the built-in 

permanent magnet synchronous motor. In [5], it has done a 

detailed study on the modal of switched reluctance motor. In 

[6], it studies the natural frequency variation of the stator 

system of induction motor, and uses two-dimensional finite 

element and experimental modal analysis to test the six 

states of the stator from the steel ring to the finished product, 

and obtains the sources of all levels of natural frequency.  

It is necessary to build a finite element model of the motor 

system to analyze the modal shape and natural frequency of 

the system, and extract the modal shape and natural 

frequency by solving the eigenvalue problem. The results of 

finite element modal analysis depend on the accuracy of the 

established finite element model and material parameters as 

well as the correctness of the input boundary conditions. Due 

 
* This work was supported by the National Natural Science Foundation 
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to the difference between the finite element model and the 

actual motor structure, the calculation results will be biased. 

In the actual analysis, material parameters are often 

modified to achieve the purpose of calibrating the model. In 

[7], it compared four finite element models of stator core and 

winding system of permanent magnet motor, and obtained a 

new finite element equivalent model of stator system. In [8], 

finite element modal analysis was carried out on a three-

phase induction motor, reliable parameters were obtained, 

and the theoretical model was verified by hammer 

experiment. In [9], it uses three-dimensional finite element 

modal analysis method to analyze the modal problems of 

switched reluctance motor under different conditions. 

In the process of finite element analysis and calculation, 

the traditional modal analysis method often needs to rely on 

manual calculation and screening. However, in the case of 

many parameter dimensions, many model grids, and long 

simulation time, manual parameter adjustment and 

screening may be somewhat inefficient. For the whole 

process, manual calculation and screening is actually to find 

a set of optimal parameters, which is a kind of optimization 

problem. Therefore, for such big data search, we can use a 

variety of optimization algorithms to help us better solve. 

However, in the modal analysis and parameter correction of 

the motor system, optimization algorithm is rarely used, and 

when the motor is carried out finite element analysis, the 

output modal result image needs to rely on human eyes for 

screening, which brings a lot of inconvenience to the use of 

optimization algorithm. 
Optimization algorithms can be divided into two main 

categories: exact algorithms and heuristic algorithms. 

Particle Swarm Optimization (PSO), as a heuristic algorithm, 

is simple, versatile, computationally efficient, and exhibits 

strong global search capabilities, enabling it to find global 

optimal solutions. In [10], a particle swarm optimization 

algorithm that can intelligently control the number of 

particles was proposed, and the method was applied to the 

optimization design of built-in permanent magnet 
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synchronous motor with the goal of minimizing the total 

harmonic distortion of the back electromotive force, and the 

effectiveness of the algorithm in the optimization design of 

the motor was verified through experiments. In [11], a 

sliding mode controller of self-triggered permanent magnet 

synchronous motor speed regulation system based on super-

torsion algorithm was studied, and a nonlinear optimization 

problem considering the tradeoff between species domain 

and communication burden was proposed. Particle swarm 

optimization algorithm was applied to solve the above 

optimization problem. 

With the rapid development of deep learning, many 

scholars have begun to use mature Convolutional Neural 

Network (CNN) technology to extract features from images 

and achieve recognition of research targets. In [12], a 

method for recognizing complex background plant images 

using CNN was studied, and a CNN algorithm with higher 

recognition accuracy was proposed, which was proven to be 

effective through experiments. In [13], a CNN algorithm 

based on LeNet-5 was studied to enable vehicles to 

recognize traffic signs in low visibility weather conditions, 

thereby assisting people's driving behavior. 

In this paper, the convolutional neural network is used to 

identify the results of the modal calculation output image, 

find out the mode diagram of the corresponding order, and 

then the particle swarm optimization algorithm is used to 

optimize and correct the parameters of the motor system 

model according to the modal data obtained by the hammer 

method experiment, and the optimal parameter combination 

is obtained to achieve the effect of the motor system 

parameter correction. 

2 Theory of algorithms 

2.1 Particle swarm optimization 

Particle swarm optimization (PSO) is a random search 

algorithm based on group cooperation, which simulates the 

foraging behavior of birds to solve optimization problems. 

By randomly generating a group of massless particles and 

giving each particle two properties of speed and position, the 

position vector of the i -th particle in the particle swarm is 

represented by 1 2( , , , )i i i inx x x x= , the velocity vector is 

represented by 1 2( , , , )i i i inv v v v= , where the position 

information of the particle is regarded as the potential 

optimal solution, and the quality of each potential solution is 

judged according to the set objective function as the standard. 

Thus, the individual extreme value (represented by Pbest) is 

determined, and the individual extreme value is shared with 

other particles in the entire particle swarm, and the optimal 

individual extreme value is found as the global optimal 

solution, that is, the global extreme value (represented by 

Gbest). 

Through "iteration", particle swarm continuously updates 

the individual extremum and global extremum until the 

optimal solution satisfying the objective function is found. 

According to the basic principle of particle swarm algorithm, 

the updating speed and position of particles in the search 

space are determined according to the following formula[14]:   
1

1 1 2 2( ) ( )t t t t

im im im im im imv v c r Pb x c r Gb x+ = + − + −  (1) 

 1 1t t t

im im imx x v+ += +  (2) 

where t ,  represents the current updating algebra of the 

particle and the inertia factor, which determines the velocity 

inertia of the particle; where 1c , 2c  is the acceleration 

constant, generally about 2.05[15], and 1r , 2r  is a random 

number in the range [0,1]. 

In the standard PSO algorithm, linear attenuation is 

introduced to the inertia factor, so that the weight is linearly 

attenuated from the maximum value to the minimum value 

in the iterative process. The specific formula is as follows: 

 
max max min( )d

d

K
   = − −  (3) 

where K  is the total number of iterations; d  is the number 

of current iterations, and the value of max , min  is 0.9 and 

0.4, which can enhance the global search ability of the 

algorithm in the initial iteration, traverse the overall space in 

a larger scope, and avoid falling into the local optimal 

solution. In the later stage, the local search ability is 

enhanced to find the exact solution in a smaller range.  

2.2 Simulated annealing algorithm 

The Simulated Annealing algorithm (SA) is a probability-

based global optimization algorithm inspired by the metal 

annealing process. The algorithm mainly introduces the 

concept of randomness. When the particle calculation 

solution is updated constantly, the inferior solution will be 

accepted under certain probability, thus increasing the 

probability of obtaining the global optimal solution. So the 

algorithm is widely used in the fields of combinatorial 

optimization, function optimization and combinatorial 

problems. 
The probability formula of the simulated annealing 

algorithm receiving the dominant solution under the 

Metropolis criterion is: 

 1

1

( )

1

1 ,

,

t t

t

t t

E E

T

t t

E E

P

e E E

+

+

− −

+




= 
 

   

  
 (4) 

where t  is the number of iterations, tE  expressed as the 

corresponding objective function value, tT is the 

temperature of the t -th iteration. 
The calculation formula of temperature attenuation during 

iteration is: 

 

1

, 1

, 1

p

t

t

T t
T

T t −

=
= 



  

  
 (5) 

where 
pT ,  is the set initial temperature and the attenuation 

coefficient of temperature. 

2.3 Fusion algorithm strategy 

First, the PSO algorithm and SA algorithm independently 

generate the initial population randomly according to the 

demand. When the PSO algorithm and the SA algorithm are 

iterated once at the same time, the solution information 

recorded by the SA algorithm is compared with the global 

optimal solution of the PSO algorithm. If the point recorded 

by the SA algorithm is better than the global optimal solution 

of the PSO algorithm, it is replaced. If the solution recorded 

by SA algorithm is not as good as the global optimal solution, 
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it will be compared with the local optimal solution of the 

particle nearest to the PSO algorithm. If it is better than the 

local optimal solution at that point, it will be replaced, 

otherwise it will be directly entered into the next iteration 

calculation. 
The core of the fusion strategy is to share information 

between the simulated annealing algorithm and the particle 

swarm optimization algorithm to promote group cooperation, 

so as to make full use of the global search of the particle 

swarm optimization algorithm and the local search of the 

simulated annealing algorithm. 

2.4 Convolutional Neural Networks 

In order to accurately identify the mode diagram 

generated in the calculation process, so as to reduce the 

manual workload, the convolutional neural network can be 

used to establish an image recognition model to complete 

this task. 

Convolutional Neural Networks (CNNs) are specifically 

designed multi-layer perceptions tailored for the recognition 

of two-dimensional shapes. Each layer comprises multiple 

two-dimensional planes, with each plane consisting of 

independent neurons. The network architecture includes an 

input layer, convolutional layers, pooling layers, and fully 

connected layers. Convolutional layers perform local 

perception on the input image by sliding convolutional 

kernels, extracting features, and generating corresponding 

feature maps. Subsequently, these feature maps undergo 

nonlinear activation and pooling operations, extracting the 

most salient features and reducing data dimensions. The role 

of the fully connected layer is to globally integrate and 

classify these processed features.  

One of the key advantages of CNNs lies in their utilization 

of local connectivity and weight sharing. Local connectivity 

enables the network to capture spatial correlations between 

pixels, while weight sharing enhances the generalization 

capability of the entire network, effectively reducing the 

overall number of parameters. Furthermore, CNNs exhibit a 

certain degree of translation invariance, allowing them to 

detect the same features at different positions. This property 

provides a significant advantage in handling image 

recognition tasks. The combination of these advantages has 

led to the widespread application of Convolutional Neural 

Networks in various domains, including image processing, 

object detection, and language recognition. 

In the field of image classification, the AlexNet network 

model stands out as a widely employed deep convolutional 

neural network architecture. This network structure consists 

of a total of 8 layers, comprising 5 convolutional layers 

(Conv1Conv5) and 3 fully connected layers(FC6~FC8). 

Following Conv1, Conv2, and Conv5, ReLU activation 

functions are employed, accompanied by max-pooling 

(MaxPooling) and local response normalization (LRN) 

modules. The fully connected layers, FC6 and FC7, are 

followed by a randomly sparse module, Dropout. The final 

fully connected layer, FC8, utilizes a softmax classifier for 

image classification. 

The advantages of the AlexNet network lie in several key 

aspects. Firstly, the utilization of the Rectified Linear Unit 

(ReLU) function instead of sigmoid and tanh functions 

addresses the issue of vanishing gradients, enhancing the 

network's training stability. Secondly, the incorporation of 

Dropout and max-pooling layers with overlap contributes to 

increased accuracy and helps prevent overfitting of the 

model. Lastly, the introduction of Local Response 

Normalization (LRN) technology enhances feature contrast 

and robustness, ultimately improving the network's 

generalization capability.  

3 Simulation Validation 

3.1 Modal Analysis Procedure 

The main process of modal analysis for electric motor 

systems includes: modeling of the motor system, mesh 

generation, definition of material parameters, computational 

solving, and post-processing.  

Typically, PTC/Creo is used to create three-dimensional 

models of various components of the motor system and 

assemble them. After completing the model assembly, the 

next step involves importing it into the finite element 

preprocessing software HyperMesh for mesh partitioning 

and defining material parameters. Then, the electric motor 

model with complete mesh generation and material 

parameters is imported into Ansys software for modal 

analysis. By applying boundary conditions and loads, the 

study investigates the free vibration modes and natural 

frequencies of the motor model at different frequencies. 

Modal analysis results are crucial for detecting the dynamic 

response of the motor structure and optimizing the design. 

In this paper, a small permanent magnet synchronous 

motor is chosen as the subject for modal analysis. Various 

structures, including end covers, casing, base, stator, and 

windings, are assigned parameters, and simulation 

parameter calibration is conducted. The material parameters 

of the motor components are shown in Table 1, and the finite 

element model of the motor is shown in Fig. 1. 
Table 1: The Material Parameters of the Motor Components 

                  Materials 
Parameter 

Stator and rotor 

silicon steel sheet 

Equivalent 

winding 

Density (kg/m³) 7678 9045 

Young's 

modulus (MPa) 

x 0.443e11 6.28e10 

y 
1.912e11 1.63e9 

z 

Poisson ratio 

xy 0.07 0.07 

yz 0.27 0.27 

xz 0.07 0.07 

Shear modulus 

(MPa) 

xy 0.175e11 2.415e10 

yz 0.767e11 0.81e9 

xz 0.175e11 2.415e10 

 

 
Fig. 1: Finite element model of motor 

The second and third-order modal shapes of the motor 

during the simulation process, along with the experimental 
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second and third-order modal shapes, are depicted in Fig. 2 

and Fig. 3, respectively. 

 

 
(a) second-order                    (b) third-order 

Fig. 2: Simulation mode pattern diagram 

 
(a) second-order                    (b) third-order 

Fig. 3: Experimental mode pattern diagram 

3.2 Batch mode 

When dealing with a limited number of models in the 

computational solving phase, traditional interactive 

workflows in ANSYS can effectively address specific real-

world problems. However, when dealing with a larger 

number of models, the chained sequence of interactive 

operations can lead to repetitive tasks in computational 

solving, load application, result path saving, and other 

operations, resulting in reduced efficiency. In ANSYS 

analysis, the Batch mode offers a solution by providing a 

means to execute a series of analyses automatically, without 

manual intervention. This involves automating a sequence 

of analysis operations by writing scripts or command files, 

thereby enhancing efficiency and proving beneficial for 

tasks that require numerous similar simulation analyses. 
Table 2: Housing material parameters 

Materials Parameters 

Density (kg/m³) 7400 

Poisson ratio 0.3 

Young modulus (MPa) 1.1e11 

Shear modulus (MPa) 1e8 

Table 2 presents the material parameters for the motor 

casing, with variations in the Young's modulus and elastic 

modulus observed to observe changes in modal frequencies 

while keeping density and Poisson's ratio constant. The 

Young's modulus and elastic modulus of the motor casing 

were altered by 0.1 times, 0.5 time, 1.5 times, and 2 times 

their predefined values. A total of 256 parameter sets were 

created by simultaneously changing the Young's modulus 

and elastic modulus. For these 256 sets, models requiring 

solving by changing individual parameters can be efficiently 

managed using the Batch mode, automating the process and 

storing the resulting modal shapes in specified files. 

3.3 Image recognition 

Assuming that each set of parameters yields a modal 

shape diagram up to the 65th order, a total of 16,640 images 

would be generated for the 256 parameter sets. Using 

Convolutional Neural Networks (CNN) as an image 

recognition model proves to be an effective solution. By 

constructing a suitable CNN model and conducting training, 

we can automate the image selection task. 

Given that the dataset used by the AlexNet network is a 

subset of ImageNet, comprising millions of images, with 

approximately 60 million self-learned parameters enabling 

classification of 1000 data points, the scale of the dataset and 

the number of classes in this study are significantly smaller. 

Therefore, modifications were made to the AlexNet network 

model for this paper, reducing the network depth to 6 layers, 

consisting of 3 convolutional layers and 3 fully connected 

layers, which is shown in Fig. 4. The modified structure is 

as follows: 

(1) Input Layer: Accepts images with pixel dimensions of 

227x227. 

 (2) Convolutional Layers (Conv1, Conv2, Conv3): 

Composed of 32, 5x5 filter for Conv1, 64, 5x5 filter for 

Conv2, and 128, 3x3 filter for Conv3. Each layer has a stride 

of 1 and is followed by a ReLU activation function.  

(3) Pooling Layers (Pool1, Pool2, Pool3): Employs 3x3 

maximum overlap pooling with a stride of 2, following the 

convolutional layers.  

(4) Fully Connected Layers (FC1, FC2, FC3): FC1 and 

FC2 output 120 and 64 one-dimensional features, 

respectively, and incorporate DropOut to randomly reduce 

the impact of certain neurons. FC3 uses a softmax classifier 

for image classification. 

 

DropOut

DropOut

Pool1
3*3

Pool2

Pool3

227*227*3
Filter

110*110*32

Filter

52*52*64

24*24*128

120

64

2

Filter

5*5*32

5*5*64

3*3*128

3*3

3*3

conv1

conv2

Conv3

Flatten

FC1

FC2

FC3

 
Fig. 4: Convolutional neural network simplified structure diagram 

Constructing a convolutional neural network model based 

on the aforementioned structure, existing data, including 140 

images each for the second and third-order modal shapes, 

was utilized as the training set. The model underwent 15 

iterations with a learning rate set to 0.001. The training and 

validation results are depicted in Fig. 5, showcasing a 

training set accuracy of 96.83% and a validation set accuracy 

of 96.78%. These results indicate the effectiveness of the 

model and its strong generalization capability. 
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Fig. 5: Model training results  

3.4 Improved particle swarm optimization 

Through image recognition, we can obtain the desired 

modal shapes and modal frequencies of various orders from 

the images output by ANSYS analysis. Subsequently, we 

can utilize an improved particle swarm optimization 

algorithm for optimization calculations. The main steps of 

the improved particle swarm optimization algorithm involve, 

within the set parameter range of the motor system model, 

such as end cover spring stiffness and casing stiffness, 

generating a certain number of parameter points uniformly. 

During each iteration, the modal frequencies for the second 

and third orders obtained from the calculations of these 

parameter points are compared with the experimental values. 

The absolute errors for corresponding modal frequencies are 

then calculated. The algorithm decides whether to replace 

the global and local optimal points of the parameter set based 

on the sum of absolute errors for each parameter point. The 

algorithm then generates another set of parameter points for 

calculation until a set of parameters satisfying the predefined 

conditions is found or the preset number of iterations is 

reached. 

The software flowchart is illustrated in Fig. 6. 

Establishing the 3D 
model of the motor

Defining material 
parameters

By Hypermesh

Writing the Ansys Batch 
command

Model was solved 
in Ansys Batch 

By Ansys Batch
Image 

recognition

By CNN

Calculation 
error

Experimental 
result

Whether the 
error is satisfied

Output

Y

N
Updating 

parameter

By PSO - SA

meshing

By Creo

 

Fig. 6: Overall flow chart 

3.5 Analysis of simulation result 

To illustrate the convenience and efficiency of the fusion 

algorithm in modal calculation analysis, a comparative 

analysis is conducted between manual operation calculations 

and operations using the PSO algorithm and the fusion 

algorithm. In the simulation calculations, various initial 

points were uniformly selected. Specifically, casing stiffness 

was set to 1.1e11, end cover spring stiffness to 0.1e8, 0.5e8, 

1.5e8, 2e8, and end cover spring stiffness to 1e8, casing 

stiffness to 0.5e11, 1e11, 1.5e11, 2e11, with an additional 

random point as the initial point (chosen here as end cover 

spring stiffness 0.7e11 and casing stiffness 1.1e11). To 

prevent parameter points from exceeding the defined 

domain or changing too rapidly during computation, 

truncation was applied to handle boundary issues. This 

involved setting upper and lower limits to ensure that 

parameter points are calculated within the specified 

operating range. 

In terms of result processing, we obtained the modal 

frequencies of the motor under various parameters through 

simulation calculations, and then compared and analyzed 

them with the actual modal frequencies obtained from 

experiments to obtain the corresponding error data, as shown 

in Table 3. We then evaluate the quality of the parameters 

obtained from each calculation and determine whether the 

parameter points derived from the algorithm converge by 

calculating the error expectation and variance. 

Table 3: Calculation frequency of each order optimal 

parameter point (Hz) 
            Algorithm 

Iteration Count 

PSO PSO-SA 

First 

iteration 

Second-order 1550 1550 

Third-order 3363 3341 

Second 

iteration 

Second-order 1505 1550 

Third-order 3248 3341 

Third 

iteration 

Second-order 1505 1529 

Third-order 3216 3279 

Forth 

iteration 

Second-order 1459 1505 

Third-order 3092 3171 

Experiment 
Second-order 1538 

Third-order 2946 

 

From the simulation results, it is evident that both manual 

operation calculations and the fusion algorithm, along with 

the PSO algorithm, can identify motor parameters that meet 

the requirements. However, manual calculations require 

continuous data sorting and organization, especially when 

dealing with high-dimensional parameters and large datasets. 

In such instances, the efficiency of manual calculations may 

be surpassed by the computational efficiency of algorithmic 

calculations. 

 
Fig. 7: Comparison of Optimal Parameter Points between PSO 

Algorithm and Fusion Algorithm 
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From Fig. 7, it can be observed that with an increase in 

the number of algorithm iterations, the absolute values of 

errors for the second and third-order modalities of the motor 

system continuously decrease until they reach below 10%. 

In contrast, the optimal computational result from manual 

operation calculations hovers around 13%. Moreover, the 

fusion algorithm has a lower probability of falling into local 

optima compared to the PSO algorithm. This is attributed to 

the information exchange between the fusion algorithm and 

the simulated annealing algorithm during particle swarm 

updates, aiding the fusion algorithm in escaping local optima. 

From Fig. 8, it is evident that the optimal parameter 

solution found by the fusion algorithm at the 4th iteration, 

compared to the PSO algorithm, results in an overall 

reduction in expected error of 2.1%, and the fusion 

algorithm begins to converge towards the global optimum, 

while the PSO algorithm still exhibits relatively small 

oscillations. However, the advantages of fusion algorithm 

over PSO algorithm are not very obvious. 

 
Fig. 8: PSO algorithm and fusion algorithm parameter point data 

calculation 

4 Conclusion 

Based on modal analysis theory, a control strategy for 

calibrating the modal characteristics of an electric motor 

system is proposed in this paper. The strategy utilizes an 

improved particle swarm optimization algorithm and a 

convolutional neural network for parameter calibration. By 

optimizing the fitness function, the strategy identifies the 

optimal particle position and completes the identification of 

parameters such as the motor casing stiffness, casing density, 

and spring stiffness between the end cover and casing in a 

single model. Simulation results demonstrate that this 

control strategy can effectively identify and optimize 

parameters of the motor system to a certain extent. The 

algorithm also reduces the manual effort required for modal 

calculations of the motor system, making it practically 

valuable. 
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Abstract: Promoting the electric-thermal decoupling in combined heat and power (CHP) units is an effective way to enhance 

their peak-regulation capability and facilitate the integration of renewable energy. In order to address the problems of flexibility 

and source-load uncertainty in the operation of the CHP unit, this paper studies the deep reinforcement learning (DRL)-based 

efficient scheduling problem of a wind-solar coupled CHP unit system. The problem is optimized under the objective of 

comprehensive income for energy supply and the constraints of safe operation and supply-demand balance. Based on system 

operation characteristics in uncertain environments, a Markov decision process (MDP) model is designed so as to transform the 

scheduling optimization into a sequential decision problem. To achieve efficient and intelligent scheduling of the CHP unit, the 

co-optimization of electricity and heat decisions is achieved by a continuous DRL algorithm, twin delayed deep deterministic 

policy gradient (TD3). Simulation results under a typical day scenario in the heating season show that TD3 algorithm can promote 

the consumption of renewable energy and ensure the sustainable scheduling capability of the thermal storage device while 

satisfying power balances. Furthermore, based on the well-trained neural network, the system exhibits near-theoretically optimal 
results with rapid single-step scheduling duration, effectively enhancing the system’s adaptability to uncertainty. 

Key Words: CHP unit, deep reinforcement learning, renewable energy, scheduling optimization 

 
  

1 Introduction 

Recently, the problems of environmental pollution and 

energy shortage have become prominent, while renewable 

energy has received widespread attention [1]. However, with 

the increasing proportion of renewable energy in the power 

system, its volatility and intermittency increase the demand 

for grid flexibility, which makes the problem of new energy 

consumption more and more prominent [2]. In many 

countries and regions, combined heat and power (CHP) units 

are widely used for large-scale central heating due to their 

high efficiency. In general, in order to ensure the quality of 

heat supply, the units are usually operated in a "heat for 

electricity" mode, which limits the efficiency of renewable 

energy utilization and decreases the flexibility of electricity-

heat co-scheduling [3]. Therefore, the implementation of 

efficient electricity-heat decoupling of the CHP unit, such as 

the deployment of energy storage devices and the 

introduction of intelligent scheduling algorithms, is an 

effective measure to enhance the unit's peaking capacity, 

promote new energy consumption, and improve the 

flexibility of the power grid [4]. 

A large number of studies have shown that the 

configuration of electric boilers and electric heat pumps and 

other devices can achieve electric heat conversion, changing 

the unit thermoelectric ratio to achieve the unit's 

thermoelectric decoupling [5][6]. Studies have proposed the 

                                                           
*This work is supported by Open Project Program of State Key Lab of 

Low-carbon Smart Coal-fired Power Generation and Ultra-clean Emission. 

use of existing heating network storage capacity to enhance 

unit flexibility to solve the problem of high investment 

brought about by the addition of new energy storage devices 

[7]. In addition, the coupling of the solar thermal storage 

system not only improves the unit's peaking capacity, but 

also decreases the coal consumption, improving the thermal 

economy of the unit [8]. However, the above studies for 

CHP units mainly focus on the performance analysis under 

typical fixed scenarios, and less on the optimization of 

energy supply scheduling under source-load uncertainty 

scenarios, especially the study of efficient and intelligent 

scheduling for the energy supply system of the wind-solar 

coupled CHP unit. Without relying on complex predictive 

models, reinforcement learning (RL) techniques focus on 

system-level mapping of state information to aggregated 

decision models, fully exploiting historical data properties in 

the form of exploratory and exploitative learning [9][10]. 

Moreover, due to the strong fitting ability of neural networks, 

deep reinforcement learning (DRL) techniques can network 

the state and action spaces to overcome the "dimensionality 

disaster" problem, achieving more accurate and flexible 

decision making and learning [11]. Therefore, the 

scheduling flexibility of cogeneration units can be 

effectively ensured by applying intelligent scheduling 

algorithms based on RL. 

In addressing the efficient electricity-heat decoupling 

scheduling problem of CHP units in uncertain environments, 

this study focuses on a wind-solar coupled CHP unit energy 

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
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supply system with the objective of maximizing the 

comprehensive energy supply income and enhancing the 

utilization of renewable energy. A Markov decision process 

(MDP) model considering source-load uncertainty during 

system operation is established, and then the scheduling 

optimization problem is transformed into a sequential 

decision-making problem. Based on a continuous DRL 

algorithm, twin delayed deep deterministic policy gradient 

(TD3) algorithm, the sequential decision-making problem is 

solved to achieve efficient scheduling of the CHP unit, 

thereby enhancing the system flexibility. 

2 System modeling and optimization problem 

The wind-solar coupled CHP unit system investigated in 

this paper contains the CHP unit, wind turbine, solar 

collector, the thermal energy storage (TES), and electric and 

thermal loads.  

 

Fig. 1: Schematic diagram of the wind-solar coupled CHP unit 
system 

2.1 Solar collector 

The trough solar collector collects solar radiation through 

a concentrating device and converts it into heat of the heat 

transfer fluid in the collector tube. This paper adopts LS-2 

type trough collector with heat transfer oil as the heat 

transfer fluid. The physical properties are modelled as 

follows [12]: 
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where the actual heat absorbed by the collector,  pvH  , is the 

difference between the solar heat absorbed by the collector 

tube, 
in

H  , and the heat lost, 
out

H . 
loss

H  represents heat loss 

of the collector tubes, pipe
H  represents heat loss of the pipes, 

while pvA  represents the area of the collector. For the 

absorbed solar heat 
in

H , 
r
I  represents the solar irradiance, 

cosα  represents the angle of incidence, 
I
K  represents the 

angle of incidence correction factor, 
sh
R  represents the 

shadow loss coefficient, 
end
R  represents the end loss 

correction factor, pv
η  represents the collector optical 

efficiency, and pipe
η  represents the collector tube optical 

efficiency. For heat loss 
loss

H , 
h
T  is the overall fluid 

temperature. Moreover, for pipeline heat loss pipe
H , 

in
T  and 

out
T  are the inlet and outlet temperatures of the thermal oil 

in the pipeline respectively. In addition, 
am
T  denotes the 

room temperature, and T∆  represents the difference 

between the average value of the inlet and outlet 

temperatures of the thermal oil and the room temperature. 

2.2 CHP unit 

Based on the results of the paper [13], the coal 

consumption of the unit under different thermal and 

electrical load conditions is derived. Specifically, the 

physical characteristic model of the studied CHP unit can be 

simplified as a convex polygonal region: 
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， ，              (2) 

where 
s
C , 

s
P  and 

s
H  represent the coal consumption, 

power generation and heating power under the current 

operating conditions. 
k
c , 

k
P  and 

k
H  respectively represent 

the coal consumption, power generation and heating power 

at the operating conditions of point k, which is the apex of 

the electric-thermal load characteristic interval. 
k
x  is a 

constant. 

2.3 Wind turbine 

The physical characteristics of the wind turbine studied in 

this paper are as follows [14]:    
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where 
wt

tP  represent the wind power generated by the wind 

turbine and 
wt

Cap  is the installed capacity of wind turbine. 

Moreover,  
t
v , 

in
v , 

out
v  and 

r
v  represent the actual wind 

speed, cut-in wind speed, cut-out wind speed and rated wind 

speed, respectively.  
,

wt

t a
P  and 

,out

wt

t
P  represent the actual wind 

power and abandoned wind power, respectively. 

2.4 Thermal energy storage 

TES offers the advantage that the system fully consumes 

the heat generated by solar energy. The relationship between 

the state of the TES and the power of the TES can be 

expressed as follows: 

 
1
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HS HS
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t t
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H H H
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= − ∆


 = −
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where HS
t
is the heat storage state of TES. 

HS
Cap  is the 

maximum heat storage capacity of TES, while 
HS

t
H  is the 

actual thermal power of the thermal storage tank, including 

the thermal power of the solar collector stored in the TES, 

,

pv

t in
H , and the thermal power of the TES used for thermal 

supply 
,

pv

t out
H , respectively. The positive value indicates 

exothermic and negative value indicates heat charging. 

2.5 Optimization problem formulation 

(a) Objective function 

Considering the complete utilization of solar energy for 

heat supply and the maximization of wind power absorption 

capacity in the wind-solar coupled CHP unit system, the 

objective of this study is to maximize the operation income. 

The objective function can be formulated as follows: 

(
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where the objective function J includes the CHP unit's 

electricity supply income 
P CHP

t tc P , heat supply income 

H CHP

t tc H , wind power income ,

wt wt

t t ac P , solar heating income 

,

pv pv

t t outc H , and coal purchase cost 
co CHP

t tc C  . Moreover, 
P

tc  

and 
wt

tc  are the feed-in tariffs for the CHP unit and wind 

power, respectively, 
H

tc  and 
pv

tc  are the heat supply prices 

for the CHP unit and solar heating, respectively, and 
co

tc  is 

the coal price, while T is the total optimal scheduling time. 

(b) Safe operation constraints 

In order to ensure safe operation of the system, it should 

be ensured that the power of the equipment is within feasible 

limits. Equations (7) and (8) represent the safe operating 

constraints for the CHP unit and TES, respectively, which 

can be expressed as follows: 
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where 
CHP

tC , 
CHP

tP and  
CHP

tH  are the coal consumption, 

power generation and heating power under the working 

condition at time t, respectively, and 
t

kx  is constant. In 

addition, max

HSH   denotes the maximum thermal power of the 

TES in a single step. 

(c) Power balance constraint 

Equations (9) and (10) represent the power and thermal 

balances of the system, respectively. 

 ,

CHP wt L

t t a tP P P+ =  (9) 

 ,

CHP pv L

t t out tH H H+ =  (10) 

where 
CHP

tP  ,  ,

wt

t aP  and 
L

tP  are the electric power supplied 

by the CHP unit, the actual power of wind power generation 

and the electric load, while 
CHP

tH  , ,

pv

t outH  and 
L

tH  are the 

heat power supplied by CHP unit, the actual heat supplied 

by the solar energy and the thermal load, respectively. 

During the scheduling process, adherence to equations (7) 

to (10) is necessary to ensure safe and stable operation of the 

system. Traditional algorithms are difficult to achieve the 

desired results in the face of multiple uncertainties due to 

their reliance on model prediction. RL algorithms need to 

discretize the required state and action space and are unable 

to deal with continuous problems. As one of the DRL 

algorithms, deep deterministic policy gradient (DDPG) is 

able to deal with continuous state and action space in a 

prediction-free model situation, but they are extremely 

sensitive to hyperparameters and are difficult to converge. 

Based on this, a continuous DRL algorithm, TD3, which is 

free of predictive models and overcomes the problem of 

DDPG's sensitivity to hyperparameters, will be introduced 

in the subsequent sections to solve the scheduling problem 

of the CHP unit. 

3 Twin Delayed Deep Deterministic Policy 

Gradient Algorithm 

3.1 Markov Decision Process 

RL is applied for engaging intelligences to learn how to 

make decisions to maximize cumulative rewards by 

interacting with the environment. MDP, as its core 

framework, provides a mathematical framework for 

describing sequential decision-making problems. Since this 

paper focuses on prediction-free algorithms, the transfer 

matrix is ignored. 
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(a) state space 

The state space 
t
s  includes time t , electric load 

L

t
P , 

thermal load 
L

t
H , wind power 

wt

t
P , solar power 

pv

t
H , and 

heat storage state in thermal storage tanks HS
t
, which is 

shown below: 

 ,  ,  ,  ,  , HS
T

L L wt pv

t t t t t ts t P H P H =    (11) 

(b) action space 

The action space includes the electric power supply  
CHP

t
P

and heating power  
CHP

t
H of the CHP unit, which is shown 

below: 

 ,  
T

CHP CHP

t t ta P H =    (12) 

(c) reward function 

Achieving power balance is very difficult in the early 

stages of training. Therefore, in order to speed up the 

convergence of the algorithm, some extra rewards or 

penalties need to be defined for power imbalance. 

Meanwhile, in order to improve the ability of continuous 

scheduling, the end-moment state of TES also needs to be 

given some penalties. Taking the above considerations into 

account, the reward function is defined as follows: 

1 2 out , 3 , 4 out , 5

, ,

, , ,

0

,  0

HS HS

J wt HS

t t t loss t t T

J P CHP H CHP wt wt pv pv co CHP

t t t t t t t a t t out t t

L CHP wt

loss t t t t a loss t

HS

T T HS

r C P P H C

C c P c H c P c H c C

P P P P P

C Cap

λ λ λ λ λ= − − − −

 = + + + −


= − − >


= −

 (13) 

where the reward function 
t
r  contains the scheduling cost of 

the system 
J

t
C  , excess wind power 

out,

wt

t
P , insufficient 

electric power supply ,loss t
P , heat imbalance out,t

H and the 

difference between the initial and final state of TES 
HS

T
C . 

Furthermore, 
0

HS  is the initial state of TES, and HS
T

 is the 

final state of TES at the end of the scheduling process. In 

addition, ( )1...5
i
iλ =   are the parameters to be adjusted. 

3.2 Training process of TD3 

In TD3 algorithm, the actor network outputs the 

corresponding action ( | )p
t

P s θ  based on the state of the 

input
t
s  and increases the exploration rate by adding OU 

noise
t
N  to the output action to obtain the actual action

t
a . 

The balance between exploration and exploitation is 

achieved by considering noise attenuation. The agent utilizes 

the actual action to interact with the environment to get the 

reward r  as well as the state of the next moment 's  and puts 

( ), , , 's a r s  as an experience in the experience replay buffer. 

When the number of experiences in the experience replay 

buffer reaches the sampling number, the experiences in the 

experience replay area are extracted to update the actor 

network and critic network using gradient descent method.  

Before each training episode, a new set of training 

scenario can be generated by adding random source-load 

fluctuations of no more than 30% of the difference between 

their maximum and minimum values to each of the items in 

the typical day scenario in the heating season. The training 

process of TD3 algorithm is shown in Fig. 2. 

 

Fig. 2: The training process of TD3 algorithm 

4 Results and Discussions 

4.1 Simulation scenario 

The introduction of solar collectors can improve the 

peaking capacity of the CHP unit in the heating season. In 

the non-heating season, there is no thermal demand from 

users, thus the solar heat is mainly used to maintain the 

reaction temperature of the CHP unit so as to improve the 

operating efficiency of the unit to reduce the coal 

consumption, while the excess heat will be used in the TES 

to store heat. Therefore, this paper focuses on the problem 

of scheduling optimization for the typical day in the heating 

season [15]. The maximum charging and discharging power 

of the TES is set to 60 MW, with a full-load stored heat 
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capacity of 480 MWh. The prices for coal, electricity, and 

heat are provided in Table 1. 

 The main training parameters of the TD3 algorithm are 

given in Table 2. Since the training data needs to be 

normalized, the order of magnitude of the reward term needs 

to be reduced appropriately to ensure its correct convergence. 

Besides, the actor network comprises 6 input nodes and 2 

output nodes utilizing the Sigmoid activation function, while 

the critic network consists of 8 input nodes and 1 output node. 

Table 1: Typical-day prices of coal, electricity, and heat [16] 

Item Price 

Coal (yuan/t) 711.000 

Electricity price for CHP unit (yuan/kWh) 0.300 

Heating price for CHP unit (yuan/kWh) 0.087 

Solar heating price (yuan/kWh) 0.280 

Wind electricity price (yuan/kWh) 0.390 

Table 2: Main training parameters of TD3 algorithm [17] 

Parameter Number 

Learning rates 0.001 

Max training episode 200 

OU noise variance 18 

Energy supply reward (
1

λ ) 0.001 

Wind power surplus (
2

λ ) 0.350 

Power supply inadequacy (
3

λ ) 0.450 

Heating power imbalance (
4

λ ) 0.500 

Energy storage of TES (
5

λ ) 0.150 

4.2 Scheduling results 

Based on the training process in Section 3.2, the training 

curves of the TD3 algorithm are given in Fig. 3, where the 

curve labelled "mean" is the value of reward smoothing for 

every 5 training episodes. The simulated operational 

scheduling for a typical day scenario of the heating season is 

performed based on the trained neural network, and the 24-

hour scheduling state of the TES is given in Fig. 4. 

Additionally, the system's comprehensive income (including 

electricity income, heat income, and coal consumption 

costs), heat and wind losses, and the end state of the TES 

over a 24-hour period are given in Table 3, respectively. 

The results in Fig. 3 show that the TD3 algorithm 

converged near 160 rounds through the process of 

continuous exploration and learning, with a cumulative 

reward of 871.12 at convergence. The results in Fig. 4 show 

that the TES can effectively provide heat supply and storage 

capacity, improving the utilization of solar heat. What's 

more, the reasonable reward function design makes the 

energy storage state recover to the vicinity of the initial 

moment after the end of the scheduling, ensuring the 

continuous scheduling capability. The results in Table 3 

show that in terms of energy supply income, TD3 reaches 

91.01% of the theoretical optimal solution, while TD3-based 

abandoned wind power is only 7.81 kW (0.87%). Moreover, 

the single-step scheduling time based on TD3 is as low as 

0.013 seconds, which enables the system to quickly respond 

to current state. Therefore, the results demonstrate that TD3 

holds the ability to achieve the approximate theoretical 

optimal solution in real-time scheduling considering source-

load uncertainty, effectively enhancing the adaptability and 

sustainability of the system to uncertainty. 

 

Fig. 3: Training curves of TD3 algorithm ("TD3mean" is the 
value of reward smoothing for every 5 training episodes) 

 

Fig. 4: The scheduling results of HS 

Table 3: Scheduling results comparison under the typical day 

in the heating season 

Target TD3 Optimization 

Energy supply income 89.12 97.92 

1 Heating supply income 52.83 53.42 

2 Electricity supply income 164.21 166.94 

3 Coal purchasing cost 127.92 122.44 

Abandoned wind power (MW) 7.81 0 

Abandoned heating power (MW) 0 0 

Terminal TES storage (HST) 0.51 0.50 

Single-step scheduling time (s) 0.013 \ 

5 Conclusion 

This paper focuses on the scheduling optimization 

problem of wind-solar coupled CHP unit system under 

source-load uncertainty, particularly utilizing the TD3 

algorithm for efficient and intelligent coordination of 

electricity and heat scheduling. The operation optimization 

problem of the system is established, with the constraints of 

ensuring safe operation and supply-demand balance, and the 
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objective of maximizing the comprehensive income. The 

operation characteristics of the system under uncertain 

environments are modeled using the framework of MDP, 

and the TD3 algorithm is utilized to solve the optimization 

problem. The main conclusions of this paper are as follows: 

1） The state space in the MDP model of this study includes 

the renewable energy output and the state of the energy 

storage device. The reward function comprises both 

reward and penalty terms, enabling TD3 to quickly 

achieve supply-demand balance and enhance the 

utilization of renewable energy during the decision 

optimization process. 

2） The simulation results demonstrate that the TD3 

algorithm-based optimization of electricity and heat 

coordination scheduling leads to a wind curtailment rate 

of only 0.87% over a 24-hour period. Additionally, the 

energy storage state of the TES can restore to a level 

close to its initial state after the scheduling process, 

ensuring continuous scheduling capability. 

3） The time for single-step decision-making based on the 

trained policy network is only 0.013 seconds, while the 

scheduling results are achieved near the theoretical 

optimum, improving the adaptability of the system to 

uncertainty. 
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Interpretable Fourier Neural Ordinary Differential Equations
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Abstract: Numerous interacting elements can form complex systems. However, describing complex systems is extremely
challenging and lacks interpretability. The construction of models still heavily relies on scientists’ understanding of complex
systems. This paper explores the use of neural ordinary differential equations in the field of complex system modeling. The
proposed Fourier neural ordinary differential equations offer interpretability and a relatively simple structure. By building upon
interpretable modeling, the scale is significantly reduced. It is possible to deduce the system’s expression from the model’s
parameters. Finally, a real-world system is provided to illustrate the effectiveness of the proposed model, demonstrating its
commendable robustness.

Key Words: FNODEs, Neural ODEs, Robustness, Interpretable model, Data-driven

1 Introduction

The Industrial Internet of Things (IIoT) has experienced
significant development and growth. In various fields, a wide
array of sensors have gathered an unprecedented amount of
data. According to Moore’s Law, the advancement of inte-
grated circuits has led to the growth in computer processing
power, but it also poses a significant constraint on scientific
research. As a result, the availability of large-scale data has
made it a focal point for many scholars to extract patterns
from known time series data and construct complex system
models that reflect reality. These studies have numerous po-
tential applications in dynamic system control, financial data
analysis, and national population forecasting, providing cru-
cial guidance for production and daily life.

Behavioral data from complex systems is mainly repre-
sented as time series. In recent years, the data-driven ap-
proach for constructing complex system models from time
series data has emerged as a new research direction. Based
on machine learning and deep learning theories, a variety of
innovative algorithms, such as Recurrent Neural Networks
(RNNs) [1, 2], Temporal Convolutional Networks (TCNs)
[3], and Neural Ordinary Differential Equations (Neural
ODEs), have been rapidly advancing. RNNs introduce a re-
current structure, providing the network with memory ca-
pacity to capture dependencies in time series. TCNs, based
on Convolutional Neural Networks (CNNs) [4], introduced
causal convolution to preserve the network’s temporal nature
and enhance its parallelism. Neural ODEs combine numer-
ical algorithms to provide a new perspective on neural net-
works. They are a type of neural networks that parameterize
derivatives of hidden states, enabling automatic modeling of
continuous time and achieving favorable results. Addition-
ally, there have been a series of models that apply physics-
related theories to neural networks in order to develop dy-
namic models for systems, such as Hamiltonian Neural Net-
works and Lagrangian Neural Networks [5, 6].

Despite the abundance of algorithms available for creat-
ing new models, there are still some challenges. Most neural
network models are large in scale and have a black-box in-

This work is jointly sponsored by National Natural Science Founda-
tion of China under Grant 62373071 and Natural Science Foundation of
Chongqing, China, under Grant CSTB2023NS CQ-LZX0075.

ternal structure, which makes them lack interpretability. The
limited number of interpretable models, such as Polynomial
Neural ODEs and ODENet [7, 8], perform well only for spe-
cific data structures and are not suitable for more general
dynamic systems, especially non-autonomous nonlinear sys-
tems.

Based on the above discussion, Fourier neural ordinary
differential equations (FNODEs) are introduced in this pa-
per, which are inspired by Fourier Neural Networks [9–11].
The main contributions are summarized as follows:
(I) The framework of FNODEs are developed and are ap-
plied to model complex systems, which enables to obtain
explicit expressions for the corresponding systems.
(II) The theoretical framework of deep learning is used to
optimize loss function, which can enhance the accuracy of
model building.
(III) Compared to traditional neural network models, FN-
ODEs utilize Fourier basis functions to describe complex
systems and avoid black boxes in the models.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces neural differential equations, the structure
of FNODEs, and related training algorithms. Section 3 uses
FNODEs to model the daily average atmospheric pressure
data for Delhi, India, with the aim of uncovering its dy-
namic patterns. Finally, Section 4 evaluates and summa-
rizes the model based on Fourier neural ordinary differential
equations in accordance with the results, and proposes future
work.

2 Method Description

2.1 Neural ODEs
Neural ordinary differential equations are a type of neu-

ral network that parameterizes the derivative of hidden states
[14, 15]. Using existing neural network training algorithms,
it is possible to accurately model certain dynamical systems.
When given the numerical solution Y (t) of a dynamical sys-
tem, the dynamical system that needs to be fitted can be rep-
resented as:

dY

dt
= f(Y, t), (1)

where Y = [y1, y2, ..., yd]
T , and d represents the dimension

of the system. For many scientific problems involving dif-
ferential equations, traditional methods often require a sig-
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nificant amount of time to search for the dynamical system
described by f . In the case of Neural ODEs, it differs from
traditional methods in that it does not require obtaining an
explicit dynamical system equation. Instead, it learns an im-
plicit representation through a data-driven approach. If we
represent Neural ODEs as NN , the process of fitting the dy-
namical system f can be described as follows:

dY

dt
≈ NN(Y, t, θ), (2)

where θ represents the parameters of the neural network. The
dynamical system being sought can be viewed as the model
used when designing and training the network structure to
achieve the desired outcome.

Remark 1 In reality, a neural network model is a complex
nonlinear transformation function. If initial values are pro-
vided, the dynamical system can be solved using numerical
methods, such as the Runge-Kutta method.

Despite the excellent nonlinear fitting capability of Neu-
ral ODEs, they lack interpretability and cannot effectively
provide explanations based on the specific parameters of the
model’s neurons. In other words, Neural ODEs are still con-
sidered as black-box models. This continues to be a signif-
icant challenge for further analyzing the internal structure
and properties of dynamical systems.

2.2 FNODEs
To enhance the interpretability of the neural network em-

ployed for fitting dynamical systems, inspiration is drawn
from Fourier Neural Networks, which has led to the devel-
opment of FNODEs.

Since ordinary differential equations are used to study
the relationship between a single-variable function and its
derivatives with respect to the independent variable t, there
exists a functional relationship between the dependent vari-
able Y and the independent variable t. Define Y = Y (t) and
then express Y as a function of t. The structure of FNODEs
can be described as follows:

dY (t)

dt
≈ NN(t, θ). (3)

The basis functions for the system’s derivatives consist
exclusively of sine and cosine functions, both of which are
solely dependent on the independent variable t. These func-
tions are employed to model the dynamical system. Once
satisfactory results within an acceptable range have been
achieved, an approximate symbolic expression of the sys-
tem can be derived using the parameters of the neurons in
the neural network model. The expression is formulated as
follows:

dY (t)

dt
≈ A cos (λT ) +B sin (µT ), (4)

where A and B are the amplitudes of the basic functions, and
λ and µ are the angular frequencies of the basic functions. A
and B are d × n-dimensional matrices, λ and µ are n × d-
dimensional matrices, and T is a d × 1-dimensional matrix
with each element equal to t.

Remark 2 The above function operations are pointwise op-
erations on vectors, which means that the same operation is
performed for each element of the vector.

In contrast to the original Neural ODEs, which utilize
non-interpretable feedforward neural networks for nonlin-
ear transformations, FNODEs not only enhance the inter-
pretability of the network but also lead to a significantly re-
duced size of network parameters.

Remark 3 The main difference between FNODEs and other
Fourier neural networks lies in the way that data is prop-
agated. The former solves an initial value problem (IVP)
while the latter uses traditional forward propagation.

2.3 The process of training
Parameter Initialization: Before training the network, it

is necessary to initialize all the parameters of FNODEs. In
all parameter initialization processes, a standard Gaussian
distribution with a mean of 0 and a variance of 1 is utilized
in the process.

Remark 4 Gaussian distribution initialization ensures that
the initial values of the parameters have some randomness,
which helps with convergence and diversity during training.

Objective Function: A significant difference between the
predicted values of the network and the true values can
result in gradient explosion during training. To prevent
this situation and improve the robustness of the network,
SmoothL1Loss [12] is chosen as the objective function.
Clearly, when |yi − prei| < β, the objective function uses
the square error function; otherwise, the linear error function
is used. This loss function can reduce the impact of outliers
and is, therefore, more suitable for training. The hyperpa-
rameter β should be set. The objective function is expressed
as follows:

li =

{ 1
2β (yi − prei)

2, |yi − prei| < β,

|yi − prei| − 1
2β, otherwise.

(5)

Parameter Optimization: When training a neural network,
an algorithm called Adam is used to adaptively optimize the
network’s parameters. Using the Adam optimization algo-
rithm [13] for parameter updates is not affected by the scal-
ing of gradients, and it can automatically adjust the learning
rate. The process for optimizing network parameters using
the Adam algorithm for the kth iteration is as follows:

gk = ∇L̂(θt),

mk = β1mk−1 + (1− β1)gk,

vk = β2vk−1 + (1− β2)g
2
k,

m̂k =
mk

1− βk
1

,

v̂k =
vk

1− βk
2

,

θk+1 = θk − η√
v̂k + ϵ

m̂k.

(6)

where β1 and β2 are hyperparameters for optimization, g, m
and v represent the gradients, first-order moment estimates,
and second-order moment estimates of the objective function
with respect to the parameters, respectively. m̂ and v̂ are the
corrected values of m and v, respectively.

After successfully initializing the model, the FNODEs be-
gin training. During the training process, the neural differ-
ential equation solver is utilized to produce the network’s
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Algorithm 1 Training process of FNODEs (using PyTorch).
Input:

Dynamical system numerical solution true y;
Initial value true y0;
Time domain t;

Output:
Approximate ODEs dY

dt
= f(t)

1: Initialize the number of model nodes;
2: Initialize network parameters;
3: Selected objective function SmoothL1Loss;
4: Set up the optimizer Adam;
5: while L is not stable do
6: pre←odeint(fnodenet, true y0,t);
7: loss←SmoothL1Loss(true y,pre);
8: gradθ ←loss.backward();
9: Update θ by Adam optimizer;

10: end while
11: return f(t);

predictions and calculate the value of the objective function.
Afterward, the stability of the objective function should be
considered. If the objective function continues to exhibit a
decreasing trend, the parameters θ are updated using the neu-
ral network backpropagation algorithm. The entire process
is described as algorithm 1. And Figure 1 is a flowchart de-
picting the entire process.

3 Application in Atmospheric Pressure System
Modeling

Atmospheric pressure is the force exerted by the weight of
the air above a unit area. Numerically, it is equivalent to the
weight of the vertical column of air extending upward to the
upper limit of the atmosphere on a unit area. The fluctuation
of atmospheric pressure is closely linked to factors such as
wind and weather, making it a significant meteorological el-
ement. When using FNODEs to represent atmospheric pres-
sure systems, it is possible to derive corresponding dynamic
equations, which reveal the dynamic patterns of atmospheric
pressure changes. This is of great importance for dynamic
analysis in meteorology.

The daily average atmospheric pressure time series for
Delhi, India, from 2013 to 2017 is chosen from Kaggle’s
public datasets1. The dataset includes outliers and zero val-
ues. Initially, zero values need to be eliminated. Subse-
quently, outliers are identified using the Z-score method, as
outlined below.

Z =
(X − µ)

σ
, (7)

where Z represents the Z-score, X is the atmospheric pres-
sure value, µ is the mean, and σ is the standard deviation,
respectively. Setting the threshold parameter to 1.66, the
identified outliers are shown in Figure 2.

Due to the relatively gradual changes in atmospheric data
over short periods, outlier removal is performed by utilizing
the mean of the adjacent 5 data points. The cleaned atmo-
spheric pressure data is depicted in Figure 3.

Before utilizing FNODEs for modeling, the time domain
is set to [0, 14.4] with a step size of 0.01. In this setup, the

1https://www.kaggle.com/datasets/sumanthvrao/
daily-climate-time-series-data/data

Table 1: Symbolic expression for the atmospheric pressure
system.

Equation Expression
dx

dt
=2.218 sin (1.2505t)− 3.3842 sin (4.854t)

− 9.802 sin (6.7194t)− 7.6537 sin (7.0177t)

− 5.3573 sin (12.68t) + 1.5594 sin (13.92t)

− 20.483 sin (18.745t)− 165.505 sin (24.842t)

+ 48.761 sin (39.211t) + 39.597 sin (44.261t)

+ 40.461 sin (49.965t) + 15.143 sin (56.584t)

+ 13.722 sin (56.602t) + 17.136 sin (62.411t)

+ 27.825 sin (75.843t) + 57.658 sin (81.819t)

− 17.926 sin (96.861t)− 19.348 cos (9.767t)

− 11.185 cos (9.787t)− 9.644 cos (16.069t)

− 20.454 cos (16.086t)− 13.4278 cos (21.949t)

− 70.227 cos (21.951t)− 3.2986 cos (43.417t)

+ 33.74 cos (43.689t) + 27.387 cos (48.477t)

+ 15.006 cos (57.81t) + 35.3 cos (61.045t)

+ 11.262 cos (65.523t) + 16.981 cos (65.524t)

+ 30.782 cos (84.907t) + 22.998 cos (84.908t)

+ 35.23 cos (90.521t)

total number of time series used for training is 1440. The
FNODEs model is specified with 20 basis functions, and
the training iteration is set to 2000. The resulting FNODEs
model is summarized in Table 1.

To illustrate the advantages of FNODEs, a comparison
experiment is conducted using NODEs with a feedforward
neural network as the vector field function. The feedforward
neural network is a three-layer network structure with one
neuron in both the input layer and output layer, and 50 neu-
rons in the hidden layer. The activation function uses the
hyperbolic tangent function. Other parameters are consis-
tent with FNODEs. The data modeling results are shown in
Figure 4. It is easy to find that NODEs cannot model at-
mospheric pressure data with significant noise, nor can they
obtain the hidden state derivative of this time series.

Visualizations of the correlation between atmospheric
pressure and time, the relationship between atmospheric
pressure derivatives and time, and the loss function during
training are presented in Table 2. It is evident that model-
ing atmospheric pressure data through FNODEs is funda-
mentally consistent with reality. It allows for visualizing the
trend of atmospheric pressure data over time, which aligns
with actual observations. It is not difficult to find out that
training FNODEs can achieve the stabilization of the objec-
tive function in a shorter number of iterations through the
loss values recorded during training. From these visualiza-
tions, we observe that FNODEs can not only accurately rep-
resent the original data but also reveal the dynamic patterns
in the data’s variations.

4 Conclusion

In this study, FNODEs can reveal hidden dynamic systems
from time series data and can produce accurate fitting results
for dynamic systems even with fewer parameters. Further-
more, the network structure of FNODEs is based on trigono-
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Table 2: The results of the fitting for the atmospheric pressure system.
Description Plot
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Loss Function
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Fig. 1: FNODEs Training Process.

Fig. 2: Original Atmospheric Pressure Data.

Fig. 3: Cleaned Atmospheric Pressure Data.

metric functions, and the parameters of network nodes only
represent the amplitude and frequency of these functions.
Therefore, each parameter of a node in FNODEs is inter-
pretable. FNODEs can extract all model parameters to pro-
duce an explicit expression for the system. Moreover, FN-
ODEs are a type of robust networks with high noise toler-
ance.

FNODEs demonstrate impressive capabilities in dynamic
system modeling. In future, we plan to explore the predictive
capabilities of FNODEs and aim to apply them in practical
applications across various domains.

Fig. 4: Atmospheric Pressure Data modeling using NODEs.
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Trajectory tracking control of CNC system based on RBF neural
network composite learning control
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Abstract: This paper addresses the high-precision control issues in CNC machine tool servo systems by proposing a feedforward
compensation algorithm based on Radial Basis Function Neural Network (RBFNN) composite learning control. Unlike previous
studies that updated neural networks solely based on tracking errors, this research prioritizes the accuracy of neural network
learning. The paper employs the Selective Memory Recursive Least Squares (SMRLS) method to construct system information
prediction errors, which, combined with tracking errors, update the neural network. This enables the neural network to learn
the model of the CNC machine tool servo system more accurately, thereby achieving more precise feedforward compensation.
Consequently, this method achieves exceptional tracking control performance. The stability of the closed-loop system and
the boundedness of the errors are proven using the Lyapunov method. Experimental results on a three-axis CNC machine
tool demonstrate that the proposed control algorithm effectively estimates system nonlinearity, thus enhancing tracking control
precision.

Key Words: Composite Learning, Radial Basis Function Neural Network, Selective Memory Recursive Least Squares

1 Introduction

Industrial production automation is an indispensable com-
ponent of modern manufacturing. As fields such as metal
processing, semiconductor manufacturing, electronics, med-
ical devices, and aerospace rapidly advance toward high pre-
cision and sophistication, the complexity of manufacturing
systems continues to escalate. Industrial production automa-
tion faces numerous challenges as a result. Consequently,
there is a growing demand for higher precision in the pro-
cessing progress of numerical control machine tools [1, 2].

Currently, there are two main approaches to achieving
high-precision processing: contour error control and track-
ing error control. Contour error control aims to reduce con-
tour errors during the processing of each axis while track-
ing error control aims to enhance the tracking control per-
formance of each axis. Tracking control is favored for its
advantages, such as simple structure, good robustness, and
convenient design, making it a hotspot in current research.

Nonlinearities, unmodeled dynamics, external distur-
bances, parameter perturbations, and other uncertainties neg-
atively impact the performance of tracking control in CNC
machine tools. Traditional control methods, such as PID
control, struggle to improve control precision further under
the influence of nonlinear factors. To address nonlinearity,
there is a pressing need in the field of modern industrial au-
tomation to introduce more advanced control methods, lead-
ing to the rise of nonlinear control theory and intelligent con-
trol. Fu et al. [3] integrated heuristic reasoning rules of artifi-
cial intelligence with modern control techniques, proposing
an intelligent control framework, indicating that intelligent
control is a cross-disciplinary endeavor. The use of artificial
intelligence to solve control problems in nonlinear systems
has become a popular research direction.

Neural networks, originating in the 1950s, were initially
inspired by biological neurons. Researchers attempted to

This work was supported by Shenzhen Science and Technology Pro-
gram under Grant GXWD20231130150241001and in part by National Nat-
ural Science Foundation of China under Grant 52275481.

simulate the computational processes of the human brain by
constructing neural network models. However, at that time,
these models were only suitable for linearly separable prob-
lems. In the 1980s, the introduction of algorithms such as the
backpropagation algorithm injected new vitality into the de-
velopment of neural networks [4]. These algorithms enabled
neural networks to automatically adjust and adapt to com-
plex systems, and neural networks have been widely used
as a model-free feedforward control element to approximate
and compensate for nonlinearity and uncertainty [5, 6]. The
ability of neural networks to compensate for nonlinearity and
uncertainty stems from their universal approximation prop-
erty [7–9], which implies that neural networks can approxi-
mate any continuous function with arbitrary precision.

As a significant branch of intelligent control, neural net-
works have achieved meaningful research results in the con-
trol of nonlinear systems, leveraging their ability to ap-
proximate highly uncertain systems and their powerful self-
learning capability. However, in traditional applications of
neural networks, despite achieving real-time learning for
tracking control performance and system stability, these net-
works do not truly possess the ability to learn continuously.
Even in repetitive tasks, neural networks need to relearn rel-
evant knowledge and recalculate parameters.

Wang et al.[5] introduced a new mechanism determinis-
tic learning theory for machine learning in dynamic environ-
ments, addressing the aforementioned issues and endowing
neural networks with human-like knowledge acquisition ca-
pabilities. When the system satisfies the Persistence Exci-
tation (PE) condition [10], neural network weights can con-
verge to an optimal solution within a certain range. Dur-
ing online learning, the neural network adapts its parameters
based on the transformation of features, autonomously ad-
justing to the uncertainty of an unknown system in a closed-
loop system. The acquired knowledge is stored as a set of
constant neural network weights. After completing the on-
line learning task, these constant weights are recorded. In
the knowledge reuse stage, neural network learning is halted,
and the obtained constant neural network weights are di-
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rectly utilized to design a controller for controlling uncertain
nonlinear systems. This way, past experience is leveraged
to achieve better control performance, endowing neural net-
works with true learning capabilities.

Deterministic learning theory mandates that the system
satisfies the Persistence Excitation (PE) condition to ensure
the convergence of neural network weights. However, this
requirement is overly stringent and challenging to meet in
practical scenarios. Additionally, in neural network learning
control based on deterministic learning, current research pre-
dominantly focuses on designing neural network parameter
update laws using tracking errors. While this approach guar-
antees controller stability, it neglects the primary objective of
employing neural networks: to approximate unknown non-
linear systems. In such controller designs, neural networks
do not genuinely acquire knowledge of the unknown non-
linear systems, which limits further enhancements in control
precision. To improve the capability of neural networks to
approximate unknown nonlinear systems, Xu et al. [11] im-
plemented the Serial-Parallel Estimation Method (SPEM) to
devise a composite learning design, which, combined with
tracking errors, updates neural network parameters. Simi-
larly, Pan et al. [12] developed new prediction errors by uti-
lizing online historical data and instantaneous data, propos-
ing a novel control scheme for strict feedback systems. This
paper introduces a high-precision trajectory tracking con-
troller for NC machine tools, employing the SMRLS algo-
rithm to construct more accurate prediction errors, alongside
a composite learning algorithm that updates the neural net-
work. This approach allows the network to fully assimilate
the knowledge of the unknown nonlinear system inherent in
CNC machine tools, enhancing the precision of the track-
ing control. Furthermore, when combined with determin-
istic learning theory, a constant neural network controller,
designed based on deterministic learning theory, can achieve
high-precision tracking control for NC machine tools in sim-
ilar or identical control tasks.

2 Problem formulation and preliminaries

2.1 Modeling of servo control system
The CNC machine tool studied in this paper is composed

of multiple servo processing axes. Each servo processing
axis consists of a permanent magnet synchronous motor
(PMSM), a servo drive, and a ball screw guide rail. Due
to the typical movement of ball screw guide rails along with
processing loads, and the fact that their movement faces se-
vere non-linear characteristics when subjected to large loads,
they cannot be simply considered as a load torque on the
servo motor. When establishing the model for each axis, it is
essential to model the servo motor and the ball screw guide
rail separately.

The mathematical model of a PMSM can be represented
in the d-q framework through the Park transformation. In nu-
merical control machine tools, the id of a PMSM is typically
set to 0. Therefore, its mathematical model is represented as
follows

artPransmission TMechanical Partotor MServo 

Coupling

Controller
Current 

Controller
Velocity 

Controller
Position 

Servo Motor

Platform

PartServo Drive 

Fig. 1: Single-axis servo systems

θ̇1(t) = ω(t)

ω̇(t) =
3PnΦ

2JL1
iq(t)−

BL1

JL1
ω(t)− 1

JL1
TL(t)

i̇q(t) = −Rs

Lq
iq(t)−

PnΦ

Lq
ω(t) +

1

Lq
uq(t)

(1)

and the torque balance equation of the mechanical drive
structure is below

JL2
d2θ2(t)

dt2
+BL2

dθ2(t)

dt
+TS(t)=TL(t)=KL[θ1(t)−θ2(t)]

(2)
where JL1, JL2 are the equivalent moment of inertia,
BL1, BL2 are the equivalent damping factor,Pn is the pole
pair, Rs is the stator resistance, ϕ is the flux linkage, KL

is the total rigidity, θ1 is the motor output angle, θ2 is the
output angle, Ts is the disturbance and TL is the total torque.

In the actual servo system, a three-loop controller is often
used, in which the current loop and the speed loop generally
use the PI controller, and the position loop uses the P con-
troller. The servo drive includes an inverter, low-pass filter,
current loop controller, speed loop controller, and position
loop controller. After three-loop rectification, the models of
the current-loop controller, the speed loop controller, and the
position-loop controller can be derived.

Based on the comprehensive analysis of the above mod-
els, the control block diagram of the entire single-axis servo
system is shown in Fig. 2.

2.2 Radial Basis Function Neural Network
The RBFNN is employed to approximate the uncertain

nonlinear function f(x̄) : Rn → R, as follows

f̂(x̄) = ω̂T θ(x̄) (3)

where x̄ = [x1, . . . , xn]
T ∈ Rn is the input vector of

the RBFNN, f̂(x̄) ∈ R is the output of RBFNN, ω =
[ω1, · · · , ωl]

T ∈ Rl with l > 1 denotes weight vector,
and θ(x̄) = [θ1(x̄), · · · , θl(x̄)]T means basis function vector
with θi(x̄) being the Gaussian function in the form

θi(x̄) = exp[− (x̄− ci)
T
(x̄− ci)

b2
] (4)

where ci = [ci1, · · · , ciq]T , i = 1, · · · , n is the center of the
receptive field and b is the width of the Gaussian function.

There exists the optimal weight ω∗ for the nonlinear func-
tion f with the following expression:

f(x̄) = ω∗T θ(x̄) + ε

ω∗ = arg min
ω̂∈Ωf

[ sup
x̄∈Ωx̄

|f̂(x̄|ω̂)− f(x̄)|] (5)
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Fig. 2: Composite control of the machine servo system

where supx̄∈Ωx̄
|ε| < εM , εM > 0 is the supreme of ε, Ωf =

{ω̂ : ∥ω̂∥ ≤ fM} is a set of the parameter, and fM is a
designed parameter. flushed left.

2.3 Selective Memory Recursive Least Squares
SMRLS is a real-time training method for RBFNNs, ad-

dressing online supervised learning challenges. In traditional
RBFNNs, Lyapunov stability theory often leads to weight
update rules via stochastic gradient descent (SGD), a popu-
lar method. However, SGD’s forgetting mechanism, main-
taining responsiveness to new data, causes a loss of valu-
able long-term knowledge. In contrast, SMRLS reconstructs
the forgetting mechanism by evaluating sample importance
based on spatial and temporal distribution, mitigating this is-
sue. Further analysis can be found in [13].

The primary idea of the SMRLS algorithm is to normal-
ize the input space of the RBFNN when approximating the
unknown function f(x). The space is partitioned, and as in-
puts traverse different partitions, the algorithm synthesizes
the samples within each partition into composite samples
(γj(k), φj(k)), where γj(k) represents the synthesized in-
put, and φj(k) represents the synthesized output. Partitions
that are sampled at least once during real-time learning are
combined into composite samples, resulting in the following
neural network weight update rules

ω(k + 1) =

ω(k)+P (k+1)θ(k+1)[y(k+1)−ωT (k)θ(k+1)]−ϵa(k+1)

P−1(k+1)=P−1(k)+θ(k+1)θ(k + 1)T − θa(k)θ
T
a (k)

(6)
where ϵa(k + 1) = P (k + 1)θa(k)[ya(k) − ωT (k)θa(k)],
P (k + 1) ∈ RN×N is a positive definite matrix, θa(k)

and ya(k) are the recorded regressor vector and desired neu-
ral network output of partition before sampling time k, re-
spectively. Since ya(k) − ωT (k)θa(k) represents the net-
work approximation error to a sample that has been learned,
it becomes a small value if the approximation capability of
the neural network is sufficient. Therefore, |ϵa(k + 1)| will
also be small if the neural network is set properly.

The initial values are set as P (0) = p0I , where p0 > 0 is
a large constant and I ∈ R is an identity matrix. Consider
the discrete update law of P−1(k) in Equation (8). Assum-
ing that there are Nk partitions that have been sampled at
least once before sampling time k, and the recorded regres-
sor subvectors of the partitions are θ(i), i = 1, · · · , Nk, then
P−1(k) can be calculated by

P−1(k) = P−1(0) +

Nk∑
j=1

θ(i)θT (i). (7)

where P−1(0) = 1
p0
I , so P (k) and P−1(k) are always pos-

itive definite in the learning process.
Due to the SMRLS algorithm’s effectiveness in approx-

imating unknown functions, it is well-suited for construct-
ing prediction errors in composite learning algorithms. Its
characteristics, including accelerated neural network conver-
gence and selective forgetting, address issues such as error
accumulation in traditional composite learning control.

3 Composite learning control design

By choosing a reasonable state x, the nonlinear system
can be transformed into the following state space expression{

ẋ1 = x2

ẋ2 = f(x) + g(x)u
y = x1.

(8)

The trajectory tracking problem of the motor can be given
by the following reference model{

ẋd1 = xd2

ẋd2 = fd (xd)
(9)

where fd(xd) is a known smooth function.
Define composite tracking errors as follows{

z1 = xd1 − x1

z2 = ż1 +K1z1
(10)

where K1 is the gain that can be artificially designed.
It can be known from formula (9) and (10) that{

ż1 = −K1z1 + z2
ż2 = −K2

1z1 +K1z2 + fd(xd)− f(x)− g(x)u
(11)

In order to achieve the goal of trajectory tracking control,
consider the following feedback linearization control law de-
sign

u = K2z2 +
1

g(x)
(fd(xd)− f(x))

= K2z2 + p(x)

(12)

where K2 > 0 is the gain that can be artificially designed,
p(x) = 1

g(x) (fd(xd) − f(x) is an unknown smooth non-
linear function, which can be approximated by RBF neural
network.

Applying the RBFNN to approximate p(x), the following
control law design is obtained

u = K2z2 + ω̂T θ(xd) (13)

where ω represents the estimated value of the optimal weight
vector ω∗, and ω∗ is defined according to (5) as follows

ω∗ = arg min
ω̂∈ωp

[ sup
x∈ωx

|p̂(x|ω̂)− p(x)|] (14)
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Based on the optimal weight vector (13), make the follow-
ing estimation for the unknown nonlinear function p(x)

p(x) = ω∗T θ(x) + εp(x) (15)

According to (3), employing the SMRLS algorithm, mul-
tiplying both sides of (15) by Pθ(xd), under the assumption
of a sufficiently small sampling period, the following contin-
uous equation can be derived

Pθ(xd)u = Pθ(xd)ω
∗T θ(xd)

Ṗ−1 = θ(xd)θ(xd)
T − θa(xd)θ

T
a (xd)

(16)

Then, define a modified prediction error

ϵ = Pθ(x)[u− ωT θ(x)]− ϵa,

Ṗ−1 = θ(x)θ(x)T − θa(x)θ
T
a (x).

(17)

The composite learning law of ω̂ is designed as

˙̂ω = Γ(θ(xd)z2 + kωϵ− δω̂) (18)

where Γ ∈ RN×N , kω ∈ RN×N are positive-definite diago-
nal matrices and δ > 0 are the designed parameters.

Note that Γ and kω in (18) can be chosen freely. Compos-
ite learning means that the NN weights ω̂ are updated by a
composite feedback composed of the tracking errors z2 and
the prediction errors ϵ to learn optimal ω∗. The structure of
the control system is shown in Fig. 3.

Fig. 3: Control system

4 Stability and convergence analysis

The Lyapunov function is chosen as

V =
1

2g(x)
(K2

1z
2
1 + z22) +

1

2
ω̃TΓ−1ω̃. (19)

According to the function (11), the control law (12),(13),
the approximation method (3),(5), the prediction error func-
tion (17) and the composite learning law (18), we can obtain
the derivative of V̇ is

V̇ = − ġ(x)

2g2(x)
(K2

1z
2
1 + z22)−

K3
1

g(x)
z21 − (K2 −

K1

g(x)
)z22

+ z2εp(x) + σω̃T ω̂ − ω̃T kωiPṖ−1ω̃
(20)

Since |ϵ(x)| < ϵM , we obtain the following inequations

ω̃T
i ω̂ = ω̃T (−ω̃ + ω∗

i )

≤ −1

2
ω̃T ω̃ +

1

2
||ω∗||2

z2ϵp(x) ⩽
1

2

(
z22 + ϵ2p(x)

)
⩽

1

2
z22 +

1

2
ϵMp

(21)

And since kω = kωI , kω > 0, I ∈ R is an identity
matrix. According to [14], and according to the Courant-
Fischer min-max theorem, we have

λmin(P
−1(k)) = min

X∈RN ,∥X∦=0

XTP−1(k)X

XTX

= λmin(P
−1(0)) + λmin

(
Nk∑
i=1

θ(i)θT (i)

)
⩾ λmin(P

−1(0))
(22)

where λmin(·), λmax(·) represent the minimum and max-
imum eigenvalues. Since λmax(P (k)) = 1/λmin(P

−1(k)),
we obtain λmax(P (k)) ≤ λmax(P (0)) holds for any k > 0,
and the following inequation

λmax(P (k)) ⩽ p0 (23)

holds for any k > 0. Similarly, we can obtain that there ex-
ists a positive constant q0 > 0 such that q0 ≤ λmin(P (k)) ⩽
holds for any k > 0. So Pi is bounded and we can obtain the
inequality λmax(Pi) ≤ p0.

λmax(PṖ−1) = λmax

(
PθθT − Pθaθ

T
a

)
= max

X∈RN ,∥X∦=0

XT
(
PθθT − Pθaθ

T
a

)
X

XTX

= λmax

(
PθθT

)
− λmax

(
Pθaθ

T
a

)
⩽ tr

(
θθT

)
p0 − tr

(
θaθ

T
a

)
p0

⩽ Np0.
(24)

Substitute (21), (24) into (20), and we have

V̇ ⩽ −
(
K2

1 ġ(x)

2g2(x)
+

K3
1

g(x)

)
z21 −

(
K2 −

K1

g(x)
− 1

2

)
z22

− (
1

2
δi +

1

2
kωNp0)ω̃

T
i ω̃i +

1

2
δi ∥ ω∗

i ∥2 +
1

2
ϵMp.

(25)
From (25), the parameters are rendered by selecting

c1=min

{
K2

1 ġ(x)

2g2(x)
+

K3
1

g(x)
,K2−

K1

g(x)
− 1

2
,
1

2
δi+

1

2
kωNp0

}
c2 =

1

2
δi ∥ ω∗

i ∥2 +
1

2
ϵMp,

(26)
and we obtain the following inequations

V̇ ⩽ −c1V + c2 (27)

By analyzing (27), it is inferred that V → (c1/ϱ) as
t → ∞. Additionally, it can be demonstrated that all signals
within the Lyapunov function (19) exhibit uniformly ulti-
mately bounded (UUB) behavior. This completes the proof.

5 Experiment

5.1 Experimental Setup
The platform used in this experiment is depicted in Fig. 4,

consisting of a three-axis CNC machine tool. It is primar-
ily composed of a machine body, three GTHD servo drives,
a digital signal processor (DSP), and a computer. The op-
erational principle of the experimental platform is outlined
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as follows: initially, the control algorithm is implemented
on the computer using Simulink. Subsequently, the mod-
ules in the RTI library are employed to replace the portion
in Simulink connected to the physical platform. After com-
pilation, the graphical language is translated into a language
understandable by external hardware. Simultaneously, real-
time code is downloaded to the DSP controller. The DSP
controller is connected to the servo motors through GTHD
servo drives, driving the three-axis tool movement. The
servo drives operate in analog speed mode, with the cur-
rent loop and speed loop on the servo drive side, while the
position loop is on the DSP controller side. The GTHD-
006AAP1-00 servo drive is utilized, and the servo motor
employed in the experiment is the TS4607N2190E200. The
DSP controller is based on the DS1103 PPC control board.
The internal motion control system of the machine tool

Fig. 4: Experimental platform

adopts a cascaded structure with a current loop, speed loop,
position loop, and velocity feedforward controller. However,
beneath these controllers, CNC machines still exhibit inter-
nal nonlinear factors and external random disturbances. The
proposed feedforward tracking controller, based on RBFNN
composite learning, aims to compensate for feedforward in
CNC machines. By learning the model of the CNC machine
system, the neural network ensures a comprehensive under-
standing of the system’s knowledge, thereby enhancing the
tracking control precision of the controller.

5.2 Experimental Results
The position loop in the servo drive section employs PD

control, and the designed controller determines its control
parameters (12). For the PD part of the controller, the gain
matrices K1 = [5, 0; 0, 5] and K2 = [20, 0; 0, 20], which are
equivalent to a proportional gain KP = [100, 0; 0, 100] and
a derivative gain KD = [20, 0; 0, 20] in the PD control. For
the adaptive RBFNN part, the input of the RBFNNs is set to
xd = [xd1, ẋd1, ẍd1]

T and the following RBFNN structures
are adopted and compared.

1. RBFNN-SGD: To improve the convergence speed and
accuracy of ω̂ in the learning process, instead of the lat-
tice distribution, we can use methods such as K-means
clustering to obtain an optimized center distribution on
the reference trajectories [15]. In this case, only 50
neurons are distributed evenly along the reference tra-
jectory xd, and the weight update law is adopted with
the parameter Γ = diag(0.2, 0.2, . . . , 0.2) ∈ R20×20,
σ = 1× 10−4.

2. RBFNN-CLC: To demonstrate the effectiveness of the
compensated RBFNN-based learning control, 50 neu-

(a) Tracking of x1

(b) Tracking error e1

(c) Neural weights w under RBFNN-CLC

(d) Neural weights w under RBFNN-SGD

Fig. 5: Comparison of the performance of the two methods
during the learning phase

rons along xd with the adaptive phase compensation are
adopted. In this case, the weight update law (18) with
Γ = diag(0.2, 0.2, . . . , 0.2) ∈ R20×20,kω = 0.5 and
σ = 1× 10−4. It should be noted that the hyperparam-
eters of the RBFNN-CLC are the same as the original
RBFNN-O mentioned above to show the effect of the
composite learning control.

The reference trajectory is selected as yd = sin(t). Fig.
5 shows the tracking performance of the RBFNN-SGD and
RBFNN-CLC based feedforward feedback control schemes
and shows the convergence of the weight vector in these two
control schemes. Figs. 6(a) and Figs. 6(b) shows the track-
ing accuracy of the three controllers during the neural net-
work learning phase, and it is clear that RBFNN-CLC pos-
sesses higher tracking control accuracy. It is shown that the
composite learning control improves the learning accuracy
of the original RBFNN and thus improves the control per-
formance of the feedforward controller.

Figs. 5(c) and Figs. 5(d) illustrates the convergence of
weights for both neural network learning algorithms. Ob-
viously, the convergence of the neural network using the
RBFNN-CLC algorithm is very fast, and the convergence
occurs in about 10s of online learning, while the RBFNN-
SGD algorithm needs 50s to make the neural network con-
verge, and the results show that the composite learning can
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(a) Tracking of x1 (b) Tracking error e1

Fig. 6: Comparison of the performance of the two methods during the knowledge reuse phase

greatly improve the learning speed of the neural network,
confirming our expectations.

After the learning phase over the time interval [0, 80s],
the average values of ω and θ over [75s, 80s] are taken as the
learned knowledge. Figs. 6 shows that the neural network
using both algorithms successfully learned the knowledge,
and the RBFNN-CLC possesses higher tracking control ac-
curacy.

6 Conclusion

This paper introduces a novel method of composite learn-
ing feedforward control based on RBFNN and applies it
to a three-axis CNC machine tool model. The composite
learning method primarily relies on the SMRLS algorithm
to construct prediction errors, incorporating them into an
adaptive update law. Due to the system information con-
tained in the new prediction errors, this approach exhibits
a faster learning speed and more precise learning accuracy
compared to neural networks updated solely based on track-
ing errors. The stability of the controller is verified using
the Lyapunov method, and experiments on a three-axis CNC
machine tool validate the effectiveness of the algorithm. The
results demonstrate that the composite learning feedforward
control based on RBFNN enhances the learning speed of the
neural network and improves the tracking control accuracy
of CNC machines.
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Dynamic Region Detection and Removal Based on Deep
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Abstract: Simultaneous Localization And Mapping (SLAM) refers to the process in which a robot interacts with its surround-
ing environment to achieve self-positioning and construct an environmental map simultaneously. However, traditional SLAM
algorithms assume scene rigidity, often leading to inaccurate positioning and mapping in dynamic environments. To address this
limitation, we propose a visual RGB-D SLAM system that integrates ORB features, YOLOv5, Lucas-Kanade (LK) optical flow,
and geometric information. During the ORB feature extraction stage, dynamic points are identified by utilizing LK optical flow
to assess whether the Region of Interest (ROI) generated by the neural network is a dynamic area. Subsequently, dynamic feature
points within the dynamic ROI are removed using a combination of optical flow and depth information. For dynamic points
that are either missed or unrecognized by the neural network, we employ multi-view geometry for their removal. We tested
the system’s performance on the public TUM dataset, demonstrating its capability to achieve SLAM functionality in dynamic
environments.

Key Words: Neural Network, Geometry, ORB, LK Optical Flow

1 Introduction

In the rapidly advancing field of technology, autonomous
localization and environmental perception of machines are
crucial elements driving automation, robotics, and aug-
mented reality. Visual SLAM technology, as a revolutionary
achievement, empowers machines to dynamically position
themselves and construct maps in unknown environments,
laying a robust foundation for the movement of robots and
autonomous systems. However, with the introduction of dy-
namic elements, traditional SLAM methods face new chal-
lenges in addressing issues related to the autonomous local-
ization of robots and map construction.

There are currently several methodologies employed in
dynamic visual SLAM. One approach utilizes geometric
methods, disregarding mobile components and constructing
a structural graph based on static regions [1, 2]. Another
solution leverages deep neural networks to identify specific
moving objects, excluding them from post-processing algo-
rithms [3, 4]. In order to prevent the inadvertent removal of
stable features through object detection [5], Semantic seg-
mentation demands extensive computational resources, pos-
ing a challenge to the real-time requirements of SLAM sys-
tems. Consequently, certain research approaches strive to
address this by exclusively segmenting dynamic objects in
keyframes and employing motion probability propagation
for each frame [6, 7]. With the evolution of deep learning,
specialized networks can significantly enhance dynamic seg-
mentation. The integration of these networks with SLAM
enables dynamic object detection, eliminating these dynamic
points in subsequent processing to enhance the robot’s per-
ceptual capabilities. The third method involves using depth
information to distinguish between the background and dy-
namic objects [8, 9]. These strategies have their respective
advantages and disadvantages, and their integration can yield
a novel algorithm suitable for various scenarios. In this pa-

This work was supported by the National Natural Science Foundation
of China (61973002), and the Anhui Provincial Natural Science Foundation
(2008085J32).

per,The following contributions have been made :
• The LK optical flow into the frame is calculated, and

the prior dynamic object is judged to be a dynamic
object by analyzing the optical flow results, and the
depth threshold is set to realize the removal of dynamic
points.

• A lightweight tracking mode was introduced to reduce
the computational burden. Additionally, a multi-view
geometry-based method was proposed to remove dy-
namic points not detected by object detection and lack-
ing depth information.

• Through experimental validation, our method has
demonstrated superior performance in dynamic envi-
ronments.

2 Related Work

Most current SLAM systems classify dynamic points as
outliers, disregarding them in subsequent tracking and map-
ping stages. A prevalent technique involves the use of
RANSAC (e.g., ORB-SLAM) to mitigate the impact of these
outliers. In feature-based SLAM systems, various tech-
niques are employed to address dynamic environments,some
of the most relevant are:

• DynaSLAM [3] employs Mask RCNN for generating
semantic masks for the most common dynamic objects.
It also utilizes a multi-view geometric approach to ad-
dress dynamic objects that Mask RCNN cannot recog-
nize. Concurrently, depth images of these objects are
employed to rectify the corresponding areas, facilitat-
ing the construction of a static map.

• YOLO-SLAM [10] extends ORB-SLAM2 with seman-
tic segmentation and dynamic feature filtering. In
the segmentation thread, Darknet19-YOLOv3 is em-
ployed to identify known dynamic objects, while the
dynamic feature filtering thread uses geometric depth
RANSAC to categorize feature points into dynamic and
static subsets. The method distinguishes static and dy-
namic points by computing the depth variance of fea-
ture points within each bounding box.

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
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Fig. 1: For incoming RGB images, dynamic ROI is obtained through a neural network. ROI is then subjected to optical flow
analysis to determine their dynamism. A combination of depth thresholding and LK optical flow is employed to eliminate
dynamic points. For regions where detection is unsuccessful or for dynamic points with invalid depth information, a multi-
view geometry approach is applied to remove such dynamic elements.

• Dynamic-VINS [9] integrates target detection and
depth information for dynamic feature recognition, ex-
hibiting performance comparable to semantic segmen-
tation. The system employs grid-based feature detec-
tion, introducing a rapid and efficient methodology to
extract high-quality FAST feature points. The Inertial
Measurement Unit (IMU) is utilized for predicting fea-
ture tracking and ensuring motion consistency.

3 System Overview

Our system extends ORB-SLAM3 [11], introducing a
lightweight tracking mode to mitigate computational over-
head. This extension seamlessly integrates YOLOv5 object
detection with depth information, effectively achieving ap-
proximate semantic segmentation of RGB-D images. Fur-
thermore, a multi-view geometry approach is employed to
address static objects eluding object detection and to man-
age dynamic points with missing depth information.

In the feature extraction phase, we initially employ LK
optical flow to assess the dynamism of the ROI [12]. For dy-
namic regions, a combination of depth thresholding and the
optical flow method is applied to eliminate dynamic points.
Subsequently, the optimization of dynamic point removal
is achieved using a multi-view geometry approach. This
method not only aids in eliminating dynamic points that may
be overlooked by object detection but also rectifies instances
where dynamic points are inaccurately retained due to in-
complete depth information. Ultimately, stable static fea-
ture points are leveraged to underpin the implementation of
SLAM functionality, The relationship between variables is
illustrated in Fig1 .

3.1 Prior Dynamic Object Detection Using YOLO
In the field of computer vision, dynamic object detection

plays a pivotal role, particularly in real-time object track-
ing [13], autonomous driving, and intelligent security sys-
tems. To achieve efficient and accurate dynamic object de-
tection, we’ve introduced YOLOv5, a popular object detec-
tion framework known for its outstanding performance in
rapidly and precisely identifying various objects within im-

ages.
In our system, we prioritize prior dynamic object detec-

tion. By leveraging YOLOv5, we can efficiently detect dy-
namic objects, such as pedestrians, vehicles, and animals, in
RGB-D images. The key to this step is accurately distin-
guishing dynamic objects from static backgrounds, provid-
ing precise target regions for subsequent processing steps.

Once we successfully detect dynamic objects, we combine
depth information with the results from YOLOv5 to achieve
an approximate semantic segmentation. This means that we
can precisely determine which object each pixel belongs to,
enabling advanced understanding and inference [14]. This
approximate semantic segmentation not only enhances the
accuracy of target detection but also provides more informa-
tion for subsequent processing steps.

Finally, we employ a multi-view geometry method to fur-
ther enhance the accuracy of prior dynamic object detection.
This method helps remove mobile static objects that can-
not be detected by the target detection system, as well as
dynamic points with missing depth information. Through
multi-view geometry, we can confirm dynamic objects from
multiple angles, further boosting system performance.

3.2 Depth Threshold and LK Optical Flow
Initially, LK optical flow computation is applied to the

ROI supplied to the YOLO neural network. As an object
moves within an image, its position changes across different
frames. Optical flow calculates these positional variations,
creating a representation of motion known as the optical flow
field. In this field, each pixel is assigned a motion vector in-
dicating its direction and speed of movement in the image
plane [15]. If a pixel corresponds to a dynamic object, its
optical flow vector tends to differ from the vectors associ-
ated with the background or stationary objects.

First, we calculate the mean of the optical flow differ-
ences:

e =
1

n

n∑
i=1

(I(xi, yi)−I ′(xi+dxi, yi+dyi)) for(xi, yi) ∈ B

(1)
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where B refers to the bounding box region used to identify
moving objects. n represents the number of feature points
with positive optical flow differences.

Using the calculated mean of the optical flow interpola-
tion, we can establish an appropriate threshold to ascertain
whether the Region of Interest (ROI) corresponds to a gen-
uine dynamic area. If the mean of the optical flow differ-
ences within the ROI exceeds the predefined threshold (in
this paper, set at 6.5 based on multiple experimental results),
we classify the region as dynamic and proceed to eliminate
the dynamic feature points within that area using the opti-
cal flow differences and the subsequently mentioned depth
threshold. Conversely, if the mean error falls below the es-
tablished threshold, we categorize the ROI as a static region,
and no further action is taken in that area.

For regions identified as dynamic, we continue to compute
the average depth value dMean , standard deviation dSd , and
maximum value dMax within the region. We set the depth
threshold :

ddt =


dMean + dSd, dMax > 3 ∗ dMean, dMean > 0

dMean + 0.8 ∗ dSd, dMean > 0

0, others
(2)

Within the ROI, our objective is to eliminate as many dy-
namic points as possible. To achieve this, we exclude feature
points with optical flow differences greater than zero, recog-
nizing that this approach may result in the unintentional re-
moval of some static points. Additionally, for feature points
with valid depth values, we apply a depth threshold to filter
out points that do not satisfy the specified depth criteria. In
cases where both depth values and optical flow are consid-
ered invalid, or for dynamic objects that went undetected, we
employ multi-view geometry to eliminate these points.

3.3 Light Tracking
In RGB-D mode, accurate estimation of the camera’s pose

becomes essential post the elimination of dynamic points. To
tackle this, we have devised a cost-effective tracking module
for camera localization within the mapped area. This track-
ing mode is a streamlined version of the tracking component
found in ORB-SLAM3, leading to decreased computational
demands. It entails the projection of map features onto im-
age frames, the search for correspondences within static im-
age regions, and the utilization of reprojection error mini-
mization to enhance the precision of the camera’s pose.

3.4 Geometry-Based Dynamic Point Removal
We have utilized depth thresholding and object detection

methods to effectively filter out the majority of dynamic
points from the images, ensuring their exclusion from subse-
quent mapping and tracking modules. Nonetheless, certain
scenarios require special consideration, such as frames with
invalid depth information and dynamic objects that managed
to evade detection by the object detection module. In this
section, we will present a detailed explanation of how to ad-
dress these dynamic points.

To do so, we compute the Euclidean distances between
the rotation and translation of the current frame and the ten
nearest keyframes in the system. Throughout this process,
we adopt a weighted approach to amalgamate the rotation

and translation distances, assigning a higher weight to the
translation distance.

rd =

√√√√ 3∑
i=1

3∑
j=1

(Rij − rij)2

td =
√
(Tx− tx)2 + (Ty − ty)2 + (Tz − tz)2

wd = 0.7 ∗ Td + 0.3 ∗Rd

(3)

where rd represents the L2 norm of the rotation matrices
between two frames, while td corresponds to the L2 norm
of the translation vectors.Ultimately, we select the top five
image frames with the highest weights as reference frames.
Subsequently, dynamic keypoints are extracted from the im-

CF

3D point

Zp
Z'

ZtX

X'

KF

Fig. 2: Compute the world coordinates of key points, de-
noted as X, in the key frame (KF), and project them onto cor-
responding points, denoted as X, in the current frame (CF).
Calculate the projection depth Zp and compare it with the
depth Zt directly obtained from the RGB-D camera.

age sequence. Initially, we traverse the keypoints of each
frame in the reference frames, calculating the projection of
the keypoints from the reference keyframe to the current
frame, as illustrated in Fig 2.

Z ′ = ZP − Zt (4)

Where ZP represents the projected depth, Zt represents the
actual depth. The keypoints X are obtained through the fea-
ture extraction algorithm of ORB-SLAM3. For each key-
point X and its corresponding 3D point, the projection angle
between keypoint X ′ and is calculated. In the TUM dataset,
static objects with a parallax angle greater than 30◦ are con-
sidered dynamic due to differences in their viewpoints. For
keypoints with a parallax angle less than 30◦, we compute
the difference Z ′ between their projected depth and the true
depth. If Z ′ exceeds a predetermined threshold, it is deemed
dynamic.After obtaining information about dynamic points,
to classify all pixels belonging to dynamic objects, we em-
ploy a region-growing technique around dynamic pixels in
the depth image.

4 Experiments and Results

We tested our system on the public TUM RGB-D dataset,
and as our system is built on ORB-SLAM3, they were used
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to demonstrate our improved baseline. We compared it with
other slam systems of the same type. The provided results
represent the median values derived from five experiments.
The TUM RGB-D dataset is composed of 39 sequences
recorded with a Microsoft Kinect sensor in different indoor
scenes at full frame rate (30Hz). Both the RGB and the depth
images are available, together with the ground-truth trajec-
tory, the latest recorded by a high-accuracy motion-capture
system. In the sequences named sitting (s) there are two peo-
ple sitting in front of a desk while speaking and gesticulat-
ing, i.e., there is a low degree of motion. In the sequences
named walking (w), two people walk both in the background
and the foreground and sit down in front of the desk. This
dataset is highly dynamic. The sequences named f1 and f2
represent static environments and therefore challenging for
standard SLAM systems. A portion of the dataset related to
the f3 sequence is extracted from the referenced academic
paper, and the remaining data is obtained through our exper-
imental endeavors [3, 4, 16] . Our evaluation metrics for the
system include ATE and RPE. ATE is employed to quantify
the absolute error between the estimated camera trajectory
and the ground truth trajectory in SLAM systems. It com-
putes the Euclidean distance between the estimated position
at each frame and the corresponding actual position on the
ground. ATE serves as a holistic measure of trajectory error,
offering a global perspective on system performance. RPE
serves as a metric to gauge the accuracy of relative pose es-
timation between adjacent frames in SLAM systems. Unlike
ATE, which focuses on overall trajectory discrepancies, RPE
concentrates on the relative pose changes between neighbor-
ing frames. This perspective offers a more detailed insight
into the system’s positional accuracy over short durations.
RPE calculates the error between the estimated relative pose
and the actual ground truth relative pose. By comparing the
estimated pose at each timestamp with the corresponding
ground truth pose, the system’s accuracy in local trajectory
is quantified. Specific Calculation Formula is as Follows:


ATE =

√√√√ 1

N

N∑
i=1

∥Pest,i − Pgt,i∥2

RPE =

√√√√ 1

N

N∑
i=1

∥Test,i − Tgt,i∥2

(5)

where N represents the number of frames, Pest,i denotes the
estimated camera position, Pgt,i corresponds to the ground
truth camera position,Test,isignifies the estimated relative
pose, and Tgt,i stands for the corresponding ground truth rel-
ative pose.

Table 1 presents the Absolute Trajectory Error Metrics for
our system and comparable systems. We conducted a com-
parison across five sequences, each representing static, dy-
namic indoor environments.

• f1/xyz: An individual calmly seated behind a computer,
representing a static environment with detected prior
dynamic objects.

• f2/xyz: A small bear also seated behind a computer in
a chair, representing a static environment without prior
dynamic objects.

Table 1: Results of Absolute Trajectory Error Metrics

Sequence f1/xyz f2/xyz f3/s/s f3/w/half f3/w/xyz

O
R

B
-S

L
A

M
3 RMSE 0.0150 0.0151 0.0093 0.1974 0.2774

Mean 0.0131 0.0119 0.0080 0.1850 0.2159

Median 0.0115 0.0082 0.0071 0.1753 0.2065

S.D. 0.0073 0.0094 0.0048 0.0688 0.1743

O
ur

s

RMSE 0.0148 0.0144 0.0064 0.0245 0.0151

Mean 0.0130 0.0112 0.0057 0.0211 0.0131

Median 0.0114 0.0076 0.0053 0.0187 0.0117

S.D. 0.0070 0.0090 0.0030 0.0124 0.0075

D
yn

aS
L

A
M

RMSE 0.0154 0.0137 0.0063 0.0301 0.0156

Mean 0.0133 0.0113 0.0055 0.0258 0.0134

Median 0.0116 0.0086 0.0049 0.0218 0.0118

S.D. 0.0074 0.0077 0.0031 0.0155 0.0079

D
P-

SL
A

M

RMSE - - 0.0059 0.0254 0.0141

Mean - - 0.0051 0.0219 0.0120

Median - - 0.0047 0.0183 0.0106

S.D. - - 0.0029 0.0129 0.0073
D

S-
SL

A
M

RMSE - - 0.0065 0.0303 0.0247

Mean - - 0.0055 0.0258 0.0186

Median - - 0.0049 0.0222 0.0151

S.D. - - 0.0033 0.0159 0.0161

Table 2: Comparison of the RMSE of RPE [m] of DySLAM
against ORB-SLAM3 for RGB-D cameras.

Sequence
ORB-SLAM3 Ours

R.RMSE T.RMSE R.RMSE T.RMSE

f1/xyz 1.0902 0.2332 1.0774 0.2052
f2/xyz 0.3058 0.0042 0.3083 0.0041
f3/s/s 0.3009 0.0101 0.2676 0.0081

f3/w/half 2.3166 0.1236 0.7409 0.0258
f3/w/xyz 3.0745 0.1733 0.5990 0.0188

• f3/s/xyz: Two people engaged in a conversation while
seated, representing a low dynamic environment.

• f3/w/half and f3/w/xyz: Two individuals walking
around a computer desk, representing a high dynamic
environment.

Based on the results in Table 1 , our system exhibits superior
adaptability to dynamic environments compared to ORB-
SLAM3. Furthermore, it demonstrates comparable perfor-
mance with ORB-SLAM3 even in static environments.

Table 2 presents the RMSE of RPE [m] of our system
compared to ORB-SLAM3 for RGB-D cameras.The rotation
and translation errors of our system in static environments
are comparable to those of ORB-SLAM3, as indicated in the
table. Moreover, our system demonstrates enhanced suitabil-
ity for dynamic environments.

In Fig 3 and 4, the left images depict the trajectory of
ORB-SLAM3, while the right images show the trajectory
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Fig. 3: The four sets of images demonstrate the trajectory
comparison between our method and ORB-SLAM3 in a
static environment. Specifically, Fig 3a and 3b depict two
trajectories under dataset fr1/xyz. In this dataset, a person is
seated in a chair, creating a static environment with a priori
dynamic objects. On the other hand, Fig 3c and 3d corre-
spond to trajectories under dataset fr2/xyz, where no prior
information about dynamic objects is available, representing
a purely static environment.
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Fig. 4: The four sets of images illustrate the trajectory com-
parison between our method and ORB-SLAM3 in a dynamic
environment. Specifically, Fig 4a and 4b depict two tra-
jectories under dataset f3/s/s. In this dataset, two people
are seated, engaging in conversation, representing a low-
dynamic environment. On the other hand, Fig 4c and 4d
correspond to trajectories under dataset f3/w/half, where
two people are moving around a table, constituting a high-
dynamic environment.

of our system. Fig 3 illustrates the trajectory comparison
between our proposed method and ORB-SLAM3 in a static
environment. In Fig 3a and 3b, it is shown that in the pres-
ence of a Prior dynamic object, our method exhibits com-
parable accuracy to ORB-SLAM3. In Fig 3c and 3d, the
trajectories are compared in a static environment without a
Prior dynamic object, demonstrating that our method closely
aligns with the trajectory of ORB-SLAM3. Fig 4 illustrates
the trajectory comparison between our proposed method and
ORB-SLAM3 in dynamic a dynamic environment. In Fig
4a and 4b, In low dynamic environments, our trajectory is
slightly superior to the trajectory of ORB-SLAM3. In Fig
4c and 4d, In high dynamic environments, our trajectory is
significantly superior to that of ORB-SLAM3. In conclu-
sion, whether in static or dynamic environments, our system
demonstrates remarkably outstanding performance.
5 Conclusions

The proposed SLAM system, which integrates ORB fea-
tures, YOLOv5, Lucas-Kanade optical flow, and geometric
information, presents a robust solution to address the lim-
itations of traditional SLAM algorithms in dynamic envi-
ronments. By dynamically identifying and removing points
during the ORB feature extraction stage, the system demon-
strates improved accuracy in self-positioning and environ-
mental mapping. The incorporation of multi-view geome-
try to handle points missed or unrecognized by the neural
network further enhances the system’s adaptability. Our ex-
perimentation with the TUM dataset validates the system’s
proficiency in achieving reliable SLAM functionality in dy-
namic real-world scenarios. This innovative approach opens
up opportunities for more effective and accurate robotic lo-
calization and mapping, paving the way for advancements in
various robotic applications. However, our method fails to
effectively utilize information from dynamic targets, while
traditional dynamic object tracking methods lack real-time
capabilities. In the future, efforts can be made to leverage
dynamic target information for more accurate localization
and mapping without compromising real-time performance.
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Abstract: Continuum robots have the characteristics of degrees of freedom and flexible shapes, and can complete space 
operation tasks by avoiding obstacles in narrow space. The closed-loop control and accurate arrival of continuum robot are 
depended on highly accurate form perception. Firstly, the rope-driven continuum robot is designed and its kinematics model is 
established. Then, a shape reconstruction method based on BP neural network is proposed, and an evaluation index of shape 
fitting accuracy considering global information is designed. Finally, a space simulation experiment is carried out in 
two-dimensional ground microgravity environment, the error between the shape reconstructed by the neural network and the 
model is compared and analyzed. The average relative distance error of the reconstructed shape of the BP neural network is 
0.69%, and the maximum relative distance error is 2.17%. This proves the effectiveness of the proposed shape reconstruction 
method and its potential application in real space tasks. 
Key Words: Space continuum robot, neural network, shape reconstruction, accuracy evaluation 

 
  

1 Introduction 
With the rapid development of space technology, the 

tasks of typical in-orbit service objects such as space station, 
faulty spacecraft, and space garbage have become more 
complicated [1], such as solar panel assisted deployment, 
space debris removal, spacecraft internal detection, and 
in-orbit assembly of key components [2]. As shown in Fig. 1, 
the environments of these tasks are often narrow, 
unstructured, changeable and so on, and the rigid arm is 
difficult to work in a narrow space because of its limited 
freedom and poor flexibility. Compare with it, the 
continuum robot can achieve terminal arrival flexibly by 
avoiding obstacles in narrow space, and complete the 
operation task easily [3,4]. 

 
Fig. 1: Tasks of space continuum robot system 

For space continuum robots that perform in unstructured 
and narrow environment, obtaining morphological 
information is a premise for closed-loop control and 
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high-precision operations. However, the way of obtaining 
morphological information through external devices is 
limited by application scenarios, and it is difficult to meet 
the requirements of space tasks. Therefore, the active 
acquisition of robot dynamic morphological parameters is 
an effective method to achieve accurate arrival and real-time 
control [5]. The shape reconstruction method of continuum 
robot means that the shape of continuum robot can be 
reconstructed into a simplified curve by using the position 
and direction data of several key nodes in the curve [6]. 

In general, the key node information can be obtained by 
kinematic and statical models of continuum robots. Roy j. et 
al. [7] proposed a continuum robot modeling method based 
on Rayleigh-Ritz mechanical model, which can explain the 
deflection problem when the radius of curvature is not 
constant. However, the application of model-based shape 
reconstruction methods in reality is limited due to friction 
and unknown external forces. 

At present, one of the most mature schemes is to process 
the continuous robot image captured by the camera and then 
obtain the robot shape [8]. Monocular cameras [9] and 
binocular cameras [10] are used to obtain robot shape 
information in 2D and 3D space. Although this method is 
intuitive and clear, it is easy to be affected by obstacles. 

To solve this problem, sensors are placed on the robot to 
obtain curvature information of several nodes on the robot, 
and the shape of the robot is obtained by fitting the curvature 
of the nodes [11]. The most commonly used sensors include 
electromagnets [12], Fiber Bragg Grating (FBG) sensors, 
and Inertial Measurement Unit (IMU) sensors. Yash 
Chitalia et al. [13] proposed an analytical model of joint 
curvature of FBG and robot and a static model of correlation 
between curvature and driving force to realize reliable 
estimation of joint Angle of medium-scale robot. Ciprian 
Lapusan et al. [14] proposed a shape reconstruction method 
based on IMU sensor network, which used IMU data to 
directly calculate the kinematics parameters of the robot and 
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solve the shape of the robot in real time. However, such 
methods must meet the assumption of constant curvature 
between nodes. When the curvature changes greatly, 
additional nodes need to be added to meet the requirements 
of constant curvature, which further increases the cost of the 
robot and the structural bloated problem brought about by 
additional sensors. 

To solve the above problems, this paper adopts the 
multi-key point shape reconstruction method based on 
neural network, and the method flow is shown in Fig. 2. 
Firstly, a large amount of information of motor Angle and 
key point coordinates is collected, and the model of both is 
obtained by neural network training. Then, any joint Angle 
can be input into the model to obtain the corresponding key 
point set. Then, the discrete reconstructed point set is 
obtained by fitting the Bezier curve. Finally, the shape curve 
of the robot is obtained according to the reconstructed point 
set. 

 
Fig. 2: Flow chart of multi-key point shape reconstruction method based on 

neural network 
The rest of this article is organized as follows. In Section 

2, the structure and kinematics model of the space 
continuum robot are introduced. In Section 3, the method of 
robot shape reconstruction based on BP neural network is 
introduced, and the evaluation index of shape fitting 
accuracy considering global information is designed. In 
Section 4, the ground simulation experiment is presented in 
detail and the results are analyzed. Finally, conclusions are 
presented in Section 5. 

2 Space continuum robot 

2.1 Structural design 

Space continuum robots have various structural forms. In 
this paper, a typical rope-driven continuum robot supported 
by a flexible skeleton is studied. The structure is shown in 
Fig. 3. The robot is mainly composed of a drive control box 
(drive motor, winding reel, drive rope), two degrees of 
freedom module (flexible skeleton, 7 spacer disks, 1 fixed 
disk). The total length of the robot is 1200mm, of which 
each module is 400mm, the spacing between two adjacent 
disks is 50mm, and the outer diameter of the disk is 60mm. 
The modules are driven by three motors, three drive lines are 
evenly distributed, and the distance between the two is 120°. 
One end of the drive line is fixed on the fixed disc, and the 
other end is fixed on the winding disk. 

 
Fig. 3: Structure and composition of space continuum robot 

2.2 Kinematics Model 

The motion process of the continuum robot is to control 
the bending and deflection of the robot arm in the joint space 
through the drive line of the drive space to realize the pose 
change of the end of the robot arm in the operation space. As 
shown in Fig. 4, the kinematics analysis of a continuum 
robot includes not only the analysis of the mapping 
relationship between the joint space and the operation space, 
but also the analysis of the mapping relationship between 
the drive space and the joint space. 

 
Fig. 4: Forward and inverse kinematics description space of continuum 

robot 
For the kinematics model of the robot in the process of 

bending motion, the following assumptions are put forward 
based on the piecewise constant curvature method: (1) It is 
supposed that the bending curve of each section of the robot 
module is a smooth continuous curve with equal curvature; 
(2) It is assumed that the robot does not have axial expansion 
deformation and circumferential torsion deformation along 
the central rod skeleton. Fig. 5. shows the bending diagram 
of the i module of the continuum manipulator arm. The base 
coordinate system Oi-XiYiZi is established at the center point 
Oi of the base disk of the i module. The direction pointing to 
the drive line li1 through the center point of the hole is the 
direction of the Xi axis; the direction of the Zi axis is taken as 
the direction perpendicular to the direction of the base 
extending to the module; the direction of the Yi axis is 
determined according to the right-hand rule. The center of 
the circle Ci is the center corresponding to the arc generated 
by the bending of the central rod skeleton, the bending 
Angle θi is the center corresponding to the arc, the deflection 
Angle φi is the Angle between the circular plane where the 
arc is located and the Xi axis, and ri is the curvature radius of 
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the arc, = /
i i

r l  , l represents the length of a single flexible 
skeleton. 

 
Fig. 5: Kinematics model 

From the geometric relationship, it can be concluded that 
the relationship between the position coordinates 
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Since the value range of bending Angle θi is [0, π/2], the 
value range of deflection Angle φ1 is [0, 2π], and the value 
range of arctangent function is [-π/2, π/2], the solution of φi 
obtained is not unique, and it is necessary to determine the 
quadrant where it is located according to the positive and 
negative information of coordinate values, specifically as 
follows: 
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Next, the forward and inverse kinematics of the drive 
space and joint space are solved. Fig. 6 is the distribution 
diagram of the drive line of the i module, where k represents 
the number of sections of the module divided by the spacer 
disk, and ra represents the radius of the indexing circle where 
the drive rope hole is located. It can be obtained from the 
geometric relation that the mutual relation between the 
bending deflection Angle [θi, φi] and the drive line length 
change [∆li1, ∆li2, ∆li3] is as follows: 
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Similarly, the solution of φi is not unique, and the 
quadrant where it is located needs to be judged according to 
the situation of the drive line, which is as follows: 
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Fig. 6: Schematic diagram of drive line distribution 

3 Robot shape reconstruction method based on 
BP neural network 

On account of that the kinematics model of the space 
flexible robot adopts the piecewise and equal arc hypothesis, 
and does not consider the influence of friction force, there 
are certain errors in the calculated key point coordinates, and 
the robot shape errors based on this reconstruction are 
further increased. In order to reduce the impact of errors, BP 
neural network algorithm is adopted in this paper. Firstly, 
the robot is controlled to reach the specified bending angle 
and deflection angle, and then the motor rotation angle is 
obtained. Secondly, a dynamic capture camera is installed 
outside the space flexible arm to collect a large number of 
actual position information of key points obtained by the 
camera, with the motor angle as input and the actual position 
information of key points as output. Through the training in 
the neural network, the corresponding relationship between 
the motor angle and the key point coordinates is obtained. 
The pose information of key points obtained by the moving 
capture camera is specifically: the visual camera recognizes 
the rigid body constructed by the target ball mounted on the 
robot, and the distribution of key points at the installation 
position of the robot is [0, 50, 150, 250, 350, 450, 550, 650, 
750, 850, 950, 1050, 1150] mm. 

3.1 Design of BP neural network 

The BP neural network proposed by David Rumelhart, 
Geoffrey Hinton and Ronald Williams in 1986, which is a 
multi-layer feedforward neural network trained according to 
the error backward propagation algorithm [15]. The network 
structure design of this paper is shown in the Fig.7, 
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including input layer (motor angle), hidden layer and output 
layer (key point coordinates). Where 

in
N  is the number of 

nodes in the input layer, 
out

N  is the number of nodes in the 

output layer, and 
h

N  is the number of nodes in the hidden 

layer, which is 9, 24, 14. And 
h

N  is calculated according to 

the empirical formula ( ) 14
in out

fix N N  . 

 
Fig 7: BP neural network structure 

The relationship between the input layer and the 
hidden layer can be expressed as: 

1 1 1
( )H f WQ B          (7) 

where f1 represents the hidden layer activation function, 


1 9
[ , , ]TQ q q  is the input matrix for input layer, 



1 14
[ , , ]TH H H is the output matrix for hidden layer. W1 

and B1 represent the weight and threshold matrices from the 
input layer to the hidden layer respectively. The size of the 
matrix W1 is 14×9, the size of matrix B1 is 14 ×24, the size 
of matrix Q is 9×m, and the size of matrix H is 14×m, where 
m is the number of training samples. 

The relationship between the hidden layer and the output 
layer [16] is expressed as: 

2 2 2
( )P f W H B          (8) 

where 
1 1 12 12

[ , , , , ]TP x z x z   represents the output matrix, 
W2 and B2 represent the weight and threshold matrix from 
the hidden layer to the output layer, and f2 represents the 
output layer activation function. The size of the matrix W2 is 
24×14, the size of matrix B2 is 24×24, and the size of the 
matrix K is 24×m. 

In BP neural network, the mean square error is used as the 
error function: 
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where 
îj

o  is the predicted value of the output and 
ij

o  is the 
corresponding true value. 

3.2 Shape Reconstruction Method 

Common curve fitting methods include least square 
method, Bezier spline curve method, maximum likelihood 
estimation method, etc. In this paper, Bezier spline curve 
method, which is most used in the shape reconstruction of 
flexible robots, is used to fit the coordinates of multi-key 
points to obtain the robot shape [17]. P1 is the starting point, 
P4 is the end point; P2 and P3 are the control points. The 

curve starts at P1, goes to P2 and P3, and reaches P4. The 
explicit form of the curve is: 

3 2 2 3
1 2 3 4( ) (1 ) 3 (1 ) 3 (1 )r u u P u u P u u P u P= − + − + − +  (10) 

where u is the variable of the parametric curve equation, and 
its value range is [0,1]. 

3.3 Evaluation method of curve fitting accuracy 

Aiming at the problems of insufficient combination and 
utilization of spatial integrity and local reconstruction 
accuracy information, as well as mismatch between local 
error and actual error distribution in traditional evaluation 
methods [18], this paper proposes an accuracy evaluation 
method based on relative position average error, which takes 
global information into account. The principle of this 
method is to calculate the Euclidean distance between each 
point of the reconstructed curve and the ground truth value 
divided by the arc length from the starting point to the point, 
and average all the relative errors to obtain the relative 
average error 

_rel avg
e  . Then, the point with the largest 

relative error is found in the entire reconstructed curve, and 
its maximum relative deviation value 

_maxrel
e  is obtained as 

a reference. The reconstructed shape is represented by the 
point set as  

0
, ,

N
r r r . The formula is as follows: 
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where , ,re gt
i i i

r r l  represent the coordinates, reference 
coordinates and corresponding arc length of the i th 
reconstruction point relative to the starting point 
respectively, and N  represents the total number of 
reconstruction points. 

4 Experiment Testing and Analysis of Results 

4.1 Experimental System 

In order to verify the effectiveness of the shape 
reconstruction method of the space continuous robot based 
on neural network, as shown in Fig. 8, a two-dimensional 
ground microgravity simulation system was constructed. 
The system includes a 6-DOF linear drive continuum robot. 
The robot drive box receives the motor control instructions 
sent by the lower machine and controls the motor rotation. 
The robot lower machine control box receives the robot 
motion instructions sent by the upper computer, and solves 
the motor control instructions. The measurement computer 
reads the pose data of each key point of the robot and sends 
it to the host computer. The integrated control computer is 
used to generate the robot motion instructions according to 
the robot operation task, and accepts the numbers sent by the 
lower computer and the measuring computer. The follow-up 
gravity compensation device is used to make the end disk of 
each module perform follow-up gravity compensation when 
the flexible arm moves in a two-dimensional plane, so as to 
simulate the flexible arm to perform relevant operations in 
the microgravity space environment. The measuring system 
is OptiTrack Motive system, which is used for absolute 
measurement and can solve the position and attitude of the 
center of mass of each key point of the robot. 
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Fig. 8: Schematic diagram of two-dimensional ground microgravity test and control system of space continuum robot 

 
Fig. 9: Loss function curve of neural network 

4.2 Shape Reconstruction in a Two-Dimensional 
Ground Microgravity Simulation System 

In order to construct the neural network data set, the space 
continuum robot was placed in the OptiTrack Motive system, 
and the robot shape randomly generated 2000 groups of 
arrays according to the bending Angle [-60°, -90°, -90°] ~ 
[60°, 90°, 90°]. Then the upper computer controls the robot 
to move to the specified shape according to the instructions 
in the array, and records the motor Angle and robot key 
point coordinate data after the robot is stabilized. In order to 
train the neural network, 1600 groups of neural network 
training data, 200 groups of validation data and 200 groups 
of test data were randomly selected from the experimental 
data at the ratio of 8:1:1. The activation functions of the 
hidden layer and output layer were set as tansig function and 
purelin function, respectively. The training algorithm was 
trainlm function, and the learning rate was 1×10−3. Fig. 9 
shows the loss function curve of post-training and test data 
of BP neural network. Fig. 9 shows that the loss function 
converges after 789 iterations. After 1000 iterations, the 
mean square error of the training dataset is 0.0017m, the 
validation dataset is 0.0009m, and the test dataset is 
0.0019m. 

In order to verify the effectiveness of the trained neural 
network model, 24 groups of data were randomly selected 
from the test data set, and the relative average distance error 
was used to measure the prediction accuracy of the neural 
network, as shown in Fig. 10. As can be seen from Fig. 10, 
the relative average error of the robot is less than 1.01%. 

 
Fig. 10: Relative average error curves of robots with different shapes 
In order to verify the reliability of the shape 

reconstruction of the robot based on BP neural network, the 
robot is controlled to reach the arm shape of [20°, 30°, 40°], 
the motor angle and key point coordinates are collected, and 
the shape of the robot is reconstructed through the kinematic 
model and BP neural network respectively. The results are 
shown in Fig. 11. 

The Model in Fig. 11 is the result of curve reconstruction 
of the robot kinematics model in Section 2.2, and 
BP_network represents the result of curve reconstruction by 
BP neural network. The average relative distance error and 
the maximum relative distance error obtained by the model 
curve reconstruction algorithm are 3.13% and 6.39% 
respectively. The average relative distance error of BP 
neural network reconstruction robot shape is 0.69%, and the 
maximum relative distance error is 2.17%. 
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Fig. 11: Results and errors of shape reconstruction of space continuum 

robot. (a) Shape reconstruction results; (b) Relative distance error 

5 Conclusions 
In this paper, a new space continuum robot shape 

reconstruction method based on neural network model is 
proposed for the small-space in-orbit service task, which has 
important application value in the future space missions. 
With this method, there is no need to arrange other 
additional sensors on the robot, which can reduce the cost of 
the whole robot on the one hand, and avoid the failure of the 
shape reconstruction of the robot using vision sensing when 
there is occlusion. Firstly, the structure of the space 
continuum robot is designed and its kinematics model is 
analyzed. Secondly, a multi-key point generation method of 
the robot based on BP neural network model is proposed. 
Through training the data set, the model from the motor joint 
angle to the robot key point coordinates is obtained. Then, 
the shape reconstruction method based on spline curve is 
introduced, and the evaluation index of shape fitting 
accuracy considering global information is designed. Finally, 
in order to verify the effectiveness of the continuous robot 
shape reconstruction method based on BP neural network, 
the shape reconstruction experiment was carried out in 
two-dimensional ground microgravity environment, and the 
shape reconstruction errors of the neural network and the 
model were compared and analyzed. The experimental 
results show that the average relative distance error of BP 
neural network is 0.69% and the maximum relative distance 
error is 2.17% in two-dimensional ground microgravity 
environment. 
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Abstract: With the rapid development of information technology, digital simulation technology plays a key role in improving 

training effects, providing accurate decision support, and promoting innovation and research and development. How to provide 

a more realistic training experience in simulation is particularly important. Guided by practical applications and based on cross-

domain perception representation, this paper proposes a cross-domain perception fidelity evaluation algorithm oriented to 

application requirements. This method uses traditional methods to extract statistical features from the data and calculate feature 

similarity. Then, machine learning methods are used to extract structural, content and semantic features, effectively complete 

appearance and texture and calculate similarity. Finally, in order to ensure the effect in the actual application domain, the fidelity 

evaluation algorithm is designed based on the domain adaptation algorithm. Experimental results show that this method can well 

complete the cross-domain perceptual fidelity evaluation of simulation domain data and source domain data.  

Key Words: Domain adaptation, Image evaluation, Feature fidelity 

 

 
  

1 Introduction 

Simulation data fidelity evaluation algorithm is an 

important prerequisite for conducting research on high-

fidelity simulation technology. High-fidelity simulation 

technology can enable most tests of actual systems to be 

completed in the laboratory, greatly shortening the 

development cycle while saving development costs[1]. 

However, during the simulation process of infrared feature 

sensors, there is a problem that the imaging and generation 

mechanisms of simulation data (source domain) and real 

data (target domain) are quite different. Therefore, under the 

condition that there are large differences in cross-domain 

data for application requirements, how to evaluate cross-

domain perceptual fidelity is a great challenge. 

The concept of simulation data fidelity was first proposed 

in 1990. The Fidelity Experimentation Implementation 

Study Group (ISG-FEX) collected and summarized previous 

work and research on fidelity, and elaborated on this basis, 

thereby introducing the concept of fidelity[2][3]. For the 

problem of evaluating the fidelity of simulation data, 

researchers have developed many evaluation methods. 

Traditional evaluation methods include comprehensive 

evaluation of the simulation system and evaluation of 

simulation image quality and image similarity, such as 

Verification, Validation and Accreditation (VV&A) 

theory[4][5] and evaluation methods based on hypothesis 

testing[6][7], structural similarity evaluation method[8] and 

texture similarity evaluation method[9][10], etc. In addition, 

fidelity evaluation based on the idea of deep learning is a 

 
*This work is supported by National Natural Science Foundation (NNSF) 

of China under Grant 62106193. 

new research direction, such as using convolutional neural 

networks[11], adversarial neural networks[12], deep belief 

networks[13] and other methods for fidelity evaluation. 

However, there are currently few studies on the evaluation 

of simulation images. In recent years, some researchers have 

proposed a similarity assessment method for simulation 

images based on twin neural networks, and evaluated the 

fidelity of simulation images based on a generative 

adversarial network. This evaluation method has cross-

domain data awareness capabilities[14]. Currently, various 

fidelity assessment methods are relatively isolated. These 

methods mainly focus on a certain data or feature in the 

simulation system, and it is difficult to comprehensively 

achieve cross-domain perceptual fidelity assessment. 

In order to meet the high demand for cross-domain 

perception fidelity in practical applications, this paper uses 

traditional methods to extract statistical features in the data 

for real infrared data and infrared simulation data. Then, 

machine learning methods are combined to extract semantic 

features such as texture and structure in the data. Finally, 

based on the domain adversarial neural network, an infrared 

simulation data fidelity evaluation network with cross-

domain data perception capabilities is proposed to 

accurately measure the cross-domain data fidelity. 

Compared with other proposed methods, we propose a 

method that organically integrates multiple efficient fidelity 

assessment methods, which greatly improves the robustness 

and feasibility of the method. To the best of our knowledge, 

this may be the first attempt to integrate a fidelity evaluation 

system across domains in this field. 
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The content of the article is arranged as follows. Section 

2 describes the cross-domain perceptual fidelity evaluation 

algorithm framework oriented to application requirements. 

Section 3 uses simulation domain data and source domain 

data to test the proposed algorithm, and gives experimental 

results and analysis. Section 4 summarizes the content of this 

article. 

2 Proposed Method 

The cross-domain perceptual fidelity rapid evaluation 

method proposed in this article mainly includes three parts, 

as shown in Fig. 1. The first part is the traditional fidelity 

evaluation module, which uses traditional statistical features 

to build a fidelity model between simulation images and real 

images, including HOG features, Harris features and LBP 

features. The second part is the fidelity evaluation module 

based on the deep model, which uses deep convolutional 

network features to calculate the fidelity between simulation 

images and real images, including structural fidelity, content 

fidelity and semantic fidelity. The third part is the cross-

domain perceptual fidelity evaluation module, which uses a 

deep neural network to calculate the domain adaptation 

similarity between the simulation image domain and the real 

image domain at the pixel level, and then obtains the cross-

domain perceptual fidelity. Finally, these three parts are 

integrated to obtain a cross-domain perceptual fidelity rapid 

assessment method. 

 

Figure 1 Schematic diagram of fast evaluation algorithm for 

cross-domain perceptual fidelity 

2.1 Traditional fidelity evaluation 

The traditional fidelity evaluation module uses 

mathematical statistical features such as HOG (Histogram of 

Oriented Gradients), Harris, and LBP (Local Binary Patterns) 

features corresponding to simulation images and real images 

to calculate the similarity of features. The above features are 

weighted and synthesized to obtain the traditional feature 

fidelity evaluation results. 
HOG constructs features by calculating and counting 

gradient direction histograms in local areas of the image. 

Firstly, for the input image ( , )I x y , the entire image needs 

to be normalized to reduce the influence of lighting factors. 

The normalized compression process can effectively reduce 

the local shadow and lighting changes of the image. The 

Gamma compression formula is as follows: 

 ( , ) ( , )I x y I x y =  (1) 
Then, calculate the gradient in the abscissa and ordinate 

directions of the image, and calculate the gradient direction 

value of each pixel position accordingly. Capture contours 

and texture information through derivation operations, and 

further weaken the impact of lighting. The gradient of the 

pixel point ( , )x y  in the image is as follows: 

 
( , ) ( 1, ) ( 1, )

( , ) ( , 1) ( , 1)

x

y

G x y H x y H x y

G x y H x y H x y

= + − −


= + − −
 (2) 

where ( , )xG x y , ( , )yG x y , and ( , )H x y  respectively 

represent the horizontal gradient, vertical gradient and pixel 

value of the input image pixel point ( , )x y . The gradient 

value and gradient direction at the pixel point ( , )x y  are as 

follows: 
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Finally, the image is divided into several "cells", and the 

gradient information of each cell is calculated to obtain the 

HOG feature of the image. 

The HOG feature counts the gradient direction histogram 

of the local area of the image as a criterion for judging 

fidelity. In addition, Harris features and LBP features 

respectively count image corner information and texture 

information, and are also used as standards for judging 

fidelity. The specific calculation process can be referred to 

references [15] and [16], which will not be described in 

detail here. Calculate the cross-correlation of HOG features, 

Harris features and LBP features, and then obtain the 

traditional feature fidelity evaluation results after weighted 

synthesis, as shown in the following formula: 

 1 2 3Traditional Hog Harris LbpFid w Fid w Fid w Fid= + +  (4) 

where 
1 2 3 1 3w w w= = = . 

2.2 Depth-based fidelity evaluation 

The fidelity evaluation module based on the deep model 

uses the corresponding structural features, content features 

and semantic features of the simulation image and the real 

image to calculate the similarity of the features. The above 

features are weighted and synthesized to obtain the fidelity 

evaluation results based on the deep model. 

（1） Structural fidelity 

Structural fidelity evaluation focuses on whether the 

shape and outline of the target are consistent with the actual 

target, that is, whether the simulation image is consistent 

with the corresponding object outline in the corresponding 

real image. This article uses HEDNet to calculate the 

structural fidelity of images. 

HEDNet is a deep neural network architecture specifically 

designed to extract edge information from images. 

Compared with traditional edge detection algorithms, 

HEDNet has the advantages of being insensitive to noise, 

having strong adaptability to discrete pixel positions, and 

being able to effectively handle complex textures. HEDNet 

uses a feature pyramid network to comprehensively capture 

edge features at different levels, and uses a hierarchical 

structure to enable the network to understand the edge 

information of images at multiple levels. HEDNet improves 

detection accuracy by using multiple loss functions in 

training[17]. 
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（2） Content fidelity 

Content fidelity evaluation focuses on whether the details 

and texture performance of the target in the infrared image 

are consistent with the actual target, which means whether 

the details of the corresponding object in the simulation 

image are consistent with the corresponding real image. 

When evaluating, the texture characteristics, detailed 

information, and light and dark changes of the target in the 

infrared image can be considered. This article uses ResNet-

18 to compare the content consistency between simulation 

images and real images. 

ResNet-18 is a lightweight model in the residual network, 

which has low complexity and can efficiently and accurately 

represent the deep features of image targets. ResNet-18 is a 

relatively deep convolutional neural network with 18 

convolutional layers and introduces the concept of residual 

connections. This design can simplify the learning process 

and enable deeper training to better extract deep features. 

ResNet-18 has multiple residual blocks, and each residual 

block contains multiple convolutional layers inside. 

Through the stacking of multiple levels, the extraction from 

shallow low-level features to deep high-level features is 

achieved. In addition, ResNet-18 adopts a global average 

pooling layer to convert the feature map into a vector to 

extract the semantic information of the image[18]. The 

above characteristics enable ResNet-18 to extract deep 

features accurately and efficiently, which is very suitable for 

extracting content information in images. 

（3） Semantic fidelity 

The semantic fidelity evaluation focuses on the 

recognition and understanding ability of the target in the 

infrared image, which means whether the semantic features 

of the corresponding object in the simulation image are 

consistent with those in the corresponding real image. When 

evaluating, the texture, edges and spatial position 

relationships in the infrared image can be considered. This 

article uses RefineNet to compare the semantic feature 

consistency between simulation images and real images. 

RefineNet is a deep learning model that can efficiently 

extract semantic information from images. It classifies each 

pixel into different semantic categories by segmenting the 

image, thereby achieving semantic understanding of the 

image. RefineNet uses bottom-up and top-down structures 

to integrate details and global information in the image 

through multi-scale fusion to better understand the semantic 

structure of the image. RefineNet also uses technologies 

such as global pooling and atrous convolution to capture 

global context, and accurately recognize objects and 

segment their boundaries by understanding the overall 

semantic structure of the image. In addition, RefineNet uses 

the skip connection mechanism to better retain and utilize 

different levels of semantic information, allowing the 

network to better perceive the details and structure of the 

image[19]. The above technical means enable RefineNet to 

accurately extract the semantic information of the image, 

and then accurately obtain the semantic fidelity of the image. 

The fidelity evaluation module based on the deep model 

performs cross-correlation calculations on structural 

features, content features and semantic features. The 

weighted synthesis-based fidelity evaluation results are as 

follows: 

 4 5 6Deep HEDNet R RefineNesNe ettFid w Fid w Fid w Fid= + +  (5) 

where 
4 5 6 1 3w w w= = = . 

2.3 Cross-domain perceptual fidelity evaluation 

The cross-domain perceptual fidelity evaluation module 

is composed of a cross-data target detection method using 

domain adaptation technology. It better solves the cross-

domain problem of target detection by discovering the 

differences in target parts at the pixel level. First, the model 

is trained on the simulation image domain. Then the object 

is detected on the corresponding real image to obtain the 

detection accuracy, which means that the cross-domain 

perceptual fidelity is obtained (see Fig. 2). 

 
Figure 2 Domain adaptation data detection framework 

 

In order to accurately evaluate cross-domain perceptual 

fidelity, we employ deep domain adaptation techniques. 

Specifically, two alignment methods that merge with each 

other are used, namely global alignment at the image level 

and center alignment that pays more attention to target pixels. 

We divide the entire network into four modules: feature 

extraction module, global alignment module, center 

alignment module, and full convolution module. The first is 

the feature extractor module. The backbone network extracts 

features from the source domain and target domain. Then 

there is the global alignment module, where the features 

perform global alignment by using a global discriminator 

and domain prediction loss. Next is a fully convolutional 

module that predicts pixel-wise object and centrality maps. 

Finally, there is the center alignment module, which 

combines the extracted features for center alignment[20]. 

The goal of global feature alignment is to align feature 

maps at the image level to reduce domain gaps. Aiming to 

identify whether the pixels on each feature map are from the 

source or target domain, the domain labels of the source and 

target domains are set to 1 and 0 respectively. Therefore, the 

discriminator can be optimized by minimizing the binary 

cross-entropy loss. The purpose of global alignment is to 

align features at the image level to reduce domain gaps. The 

loss function of global alignment is as follows: 
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where ,s tI I  are the source image and the target image 

respectively, ,s tF F  are extracted features, 
GAD  is the global 

discriminator. 

Center feature alignment is used to align features in high-

confidence regions at the pixel level. By obtaining the 

classification and centrality outputs, each position on the 

Source domain:

Simulation data

目标域：真实数据

Global alignment DGA

Feature extractor G Fully conv P

Bbox prediction

Image 

feature

Image 

feature

Bbox prediction

Domain class 

prediction

Domain class 

prediction

Center aware alignment DCA

Target domain:

Real data

Classification Map

Centerness Map

Classification Map

Centerness Map

911  



  

classification and centrality maps represents the 

corresponding target and centrality scores respectively. The 

central feature alignment method allows focusing on the 

identification target area. To achieve this, a center-aware 

discriminator is employed for feature alignment on high-

confidence regions at the pixel level. The loss function for 

center alignment is as follows: 
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where 
CAM  is the center-aware map, 

CAD  is the center-

aware discriminator. 

The cross-domain perceptual fidelity evaluation module 

defines detection confidence as cross-domain perceptual 

fidelity value and uses a variety of technical means, 

including global feature alignment, central feature alignment, 

and multiple convolutions. These technical means allow it to 

effectively respond to cross-domain changes in images, 

thereby enhancing the cross-domain detection capabilities of 

images and improving cross-domain fidelity evaluation 

indicators. 

For each pair of real and simulated images, the fidelity is 

calculated using traditional fidelity metrics, deep model-

based fidelity metrics, and cross-domain perceptual fidelity 

metrics. Subsequently, these metrics are weighted and 

combined to obtain the comprehensive fidelity between the 

real and simulated image pairs. By integrating fidelity values 

from different methods, the performance degradation caused 

by a single fidelity evaluation method is mitigated, thus 

enhancing the overall robustness of the algorithm. The 

formula is as follows: 

 ( )
1

3
All Traditional Deep DomainFid Fid Fid Fid= + +  (8) 

3 Experimental Results  

3.1 Experimental environment and data 

In order to verify the effectiveness and practicality of the 

proposed fidelity evaluation method in this paper, 

experiments are conducted using a set of simulated infrared 

images and a corresponding set of real infrared images for 

training and testing. The simulated data consists of a 

sequence of computer-generated infrared images with a gray 

background and no additional interference. The real data 

comprises sequences of infrared images captured by infrared 

devices, featuring complex background interference such as 

intricate ground clutter and lighting shadows. Some of the 

data is shown in Fig. 3. 

Simulation Image Real Image  
Figure 3 Partial dataset 

 

Experimental operating system: Ubuntu 20.04. Software 

environment: Python 3.6, PyTorch 1.7.0. Hardware 

environment: NVIDIA GeForce RTX 4090. 

3.2 Branch-wise fidelity evaluation value 

（1） Traditional fidelity evaluation value 

Traditional feature extraction methods are applied to 

extract features from paired images, including HOG features, 

LBP features, Harris corner features. Then, the L2 loss 

function is used to calculate the similarity of various features 

respectively. Finally, the similarity is calculated through 

Equation 4 to obtain the traditional fidelity value. The 

visualization results of traditional feature extraction are 

shown in Fig. 4, where the first row represents traditional 

features of simulated images and the second row represents 

traditional features of real images. The fidelity evaluation 

values are presented in Table 2. As shown in Table 1, 

although the similarity of Harris corner detection features is 

less than 50%, the HOG features and LBP features 

demonstrate good similarity, both exceeding 80%. The 

combination of these three features results in a traditional 

fidelity evaluation metric close to 80%, indicating a 

satisfactory evaluation performance. 

 

Table 1:Traditional fidelity evaluation value 

Feature HOG LBP Harris Complex 

Fidelity 89.45% 84.38% 48.26% 74.03% 

 

HOG LBP Harris  
Figure 4 HOG features, LBP features and Harris features of 

simulated and real data 

 

（2） Depth-based fidelity evaluation value 

Using deep neural network models to extract features 

from paired images, including structural features, content 

features, and semantic features. Then, the L2 loss function is 

used to calculate the structural similarity, the L1 loss 

function is used to calculate the content similarity, and the 

IOU loss function is used to calculate the semantic similarity. 

Finally, Equation 5 is used to calculate the similarity and 

obtain fidelity evaluation value based on the deep network 

model. As shown in Fig. 5, the visualization results of 

structural features extracted by HEDNet and semantic 

features extracted by RefineNet are presented, where the 

first row represents depth features of simulated images and 

the second row represents depth features of real images. As 
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shown in Table 2, the similarity of the three features is all 

above 80%, with both content features and semantic features 

exceeding 90%. The combination of these three features 

results in a fidelity evaluation metric based on the deep 

model reaching 90.11%. 

Table 2:Depth-based fidelity evaluation value 

Feature Structure Content Semantics Complex 

Fidelity 82.65% 92.24% 95.45% 90.11% 

 

Structural 

Feature

Semantic 

Feature

The

Original  
Figure 5 Deep features of simulated and real data 

 

（3） Cross-domain perceptual fidelity evaluation 

value 

Applying a cross-domain detection algorithm trained on 

simulated data to perform object detection on real data. The 

confidence obtained by the model in detecting objects serves 

as the fidelity evaluation value for cross-domain perception. 

Fig. 6 shows the detection results on real data. It can be 

observed that the fidelity evaluation metric for cross-domain 

perception reaches 93%. 

 

 
Figure 6 Cross-domain perceptual fidelity result 

3.3 Overall perceived fidelity evaluation value 

Taking the average of the fidelity evaluation values 

obtained from traditional methods, deep model-based 

methods, and cross-domain perception methods. By 

integrating the advantages of various evaluation metrics, a 

cross-domain perceptual fidelity rapid assessment system 

with strong robustness and practicality is ultimately obtained. 

As shown in Table 3, the final fidelity evaluation value is 

85.71%, meeting the requirements for practical engineering 

applications. While the composite fidelity evaluation metric 

may yield lower values compared to individual fidelity 

evaluation metrics, it avoids the stability issues caused by 

the drastic oscillation of a single fidelity evaluation metric 

when testing different images. This greatly enhances 

robustness and increases the likelihood of practical 

engineering implementation. 

Table 3:Cross-domain comprehensive perceptual fidelity 

evaluation value 

Feature Traditional Depth-based Cross-domain Final 

Fidelity 74.03% 90.11% 93% 85.71% 

 

4 Conclusion 

This paper proposes a cross-domain comprehensive 

perceptual fidelity evaluation system. It addresses the issue 

of weak robustness in traditional single-domain fidelity 

evaluation methods, which renders them impractical for 

engineering applications. This method innovatively 

combines traditional feature fidelity, deep model-based 

fidelity, and cross-domain perceptual fidelity to create a 

novel cross-domain comprehensive perceptual fidelity 

evaluation system. Experimental results demonstrate that 

this method effectively suppresses complex backgrounds 

and interferences, highlighting relevant features of real 

targets. It provides a new approach for fidelity assessment 

methods, greatly enhancing the reliability and effectiveness 

of engineering practical applications. 

In the future, we will further research a multi-object cross-

domain comprehensive perceptual fidelity evaluation 

system with stronger robustness, which is applicable to 

different objects in various complex backgrounds.  
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Adaptive neural network control for uncertain strict-feedback
nonlinear systems with unknown control coefficients: A fully
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Abstract: In this paper, an adaptive control scheme is designed for a class of strict-feedback nonlinear systems with unknown
control coefficients. Unlike the existing iterative design approaches, we apply a fully actuated system approach to reduce the
algorithmic complexity. First, the considered strict-feedback nonlinear systems are transformed into fully actuated systems by
state transformations. After that, we compensate for the uncertainties arising from the unknown control coefficients and unknown
nonlinear functions by the neural network approximation technique. Then, an adaptive neural network controller based on a fully
actuated system approach is designed. According to Lyapunov stability analysis, it is shown that all the signals of the closed-
loop system are bounded and the system states converge to a small neighborhood of the origin under the designed controller.
Moreover, by further enhancing the adaptive neural network mechanism, this paper extends the relevant results to more general
uncertain strict-feedback nonlinear systems with unknown coefficients. Finally, the effectiveness of the proposed control scheme
is demonstrated by a practical application example.

Key Words: Strict-Feedback Nonlinear Systems, Unknown Control Coefficients, The Fully Actuated System Approach, Adap-
tive Neural Network

1 Introduction

With the development of technology, many practical engi-
neering systems can be transfomed into strict-feedback sys-
tems, such as battery energy storage systems[1] and wind
turbine systems[2]. Therefore, the control design of strict-
feedback systems has been a hot research direction[3–5].
However, the uncertainties arising from the unknown control
coefficients make the control design of strict feedback sys-
tems extremely difficult. Thus, the study of strict-feedback
systems with unknown control coefficients is both challeng-
ing and meaningful. For the unknown control coefficients,
the reference [6] overcame the lack of information about
the virtual control coefficients by utilizing the observation
gain matrix determined by the convex combination tech-
nique. The reference [7] constructed an adaptive backstep-
ping procedure based on the fuzzy approximation capability
and variable partition technique to compensate for uncertain-
ties. The reference [8] approximated an unknown nonlinear
function of a system using fuzzy-logic systems and designed
a novel Lyapunov function to eliminate the requirement of
lower bounds of the unknown virtual control coefficients in
control laws. However, most of the current studies of strict-
feedback systems with unknown control coefficients are lim-
ited to a backstepping design approach, which makes the de-
sign process more complex when the model order is large. In
the existing studies, the fully actuated system approach has
not been utilized. To further simplify the controller design
process, the fully actuated system approach will be applied
in this paper.

The fully actuated system approach has attracted much at-
tention from scholars in recent years because it can directly
design the control variables, which is simpler than the state-

This work was supported in part by the Science Center Program of
National Natural Science Foundation of China under Grant 62188101, and
in part by the Autonomous Innovation Team Foundation for ”20 Items of
the New University” of Jinan City under Grant 202228087.

space approach. The work [9] provided the first systematic
introduction to the fully actuated system theory and illus-
trated the limitations of the state-space approach as well as
the advantages of the fully actuated system approach. Then,
it is pointed out that almost nonlinear systems can be trans-
formed into fully actuated systems after variable transfor-
mation, and the corresponding transformation method was
given in [10]. In [11], after deriving the fully actuated sys-
tem model, it is straightforward to design the controller so
that the closed-loop system becomes a constant linear sys-
tem with the desired eigenstructure. In addition, based on
the Lyapunov stability theory, the adaptive stabilization con-
trol scheme and the adaptive tracking control scheme for the
fully actuated system model were proposed in [12]. In [13],
based on the fully actuated system approach, an adaptive
controller is designed for a class of nonlinear time-delay sys-
tems with strict-feedback forms. The work [14] obtained the
global stability of linear uncertain systems with the intermit-
tent faults using the fully actuated system model. However,
so far, no works have investigated strict-feedback systems
with unknown control coefficients using the fully actuated
system approach.

Adaptive neural networks have great potential in dealing
with highly nonlinear and severely uncertain systems. When
using adaptive neural networks to deal with approximated
nonlinear functions, it is only necessary to require that the
nonlinear function is continuous, which allows for severe
structural uncertainty in the nonlinear function of the sys-
tem. Thus adaptive neural networks have a wider range of
applications, see [15–17]. In recent years, adaptive neural
networks have attracted much attention in the control field,
and a number of valuable results have been obtained. The
work [18] utilized the approximation ability of neural net-
works to design an adaptive controller for a class of uncer-
tain systems with unknown actuator faults, such that the out-
put signal converges to a small neighborhood of the refer-

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China

915  



ence signal. The work [19] approximated the unknown input
deadzone and unknown disturbances using adaptive neural
networks, and ensured that all the state signals are bounded.
However, all of the above works are based on the backstep-
ping design approach, which requires the construction of a
virtual controller for each step. Therefore, the complexity of
the designed algorithm is high. In order to optimize the de-
sign process, we apply the fully actuated system approach to
deal with strict-feedback systems with unknown control co-
efficients. Inspired by the above, the objective of this paper is
to design an adaptive control scheme for strict-feedback sys-
tems with unknown control coefficients based on an adaptive
neural network technology and the fully actuated system ap-
proach.

The contributions of this paper are summarised as follows:
• In this paper, we use adaptive neural network to approx-

imate the unknown nonlinear terms, which only require
the nonlinear terms to be arbitrary smooth functions.
Compared with the works [13], [20] and [21], the sys-
tem nonlinear terms considered in this paper are less
conservative, which makes our study more practical.

• Based on the fully actuated system approach, this pa-
per designs a novel low-complexity adaptive neural net-
work controller. Compared with the backstepping de-
sign approach [6–8], the complex iterative processes are
avoided, which makes the design processes concise.

• By constructing new coordinate transformations, we
extend the relevant results to more generalized strict-
feedback systems with unknown coefficients. Accord-
ingly, the fully actuated system approach provides a
new design perspective for more generalized strict-
feedback systems, which is different from [22, 23].

The rest of this paper is organized as follows. The pre-
liminaries and problem statement are given in Section 2. An
adaptive neural network control scheme is designed in Sec-
tion 3 to more general systems. Section 4 extends the result
of Section 3. The effectiveness of proposed control scheme
is further verified through a practical example in Section 5.
Finally, Section 6 concludes this paper.

Notation: In this paper, let x(0∼m−1) denote
[x, ẋ, . . . , x(m−1)]T , where xi is the ith derivative of
x. The Euclidean norm of vector or the induced Euclidean
norm of matrix is represented by ∥·∥ . I denotes identity
matrix with proper dimension.

2 Preliminaries and Problem Statement

2.1 Preliminaries
Consider a nonlinear system in the following form

x(m) = f(x(0∼m−1)) +B(x(0∼m−1))u, (1)

where m ≥ 1 is an integer, x ∈ Rn is the state vector,
u ∈ Rr is the control input vector, f(x(0∼m−1)) ∈ Rn is
a smooth function, and B(x(0∼m−1)) ∈ Rn×r is a matrix
function.

Definition 2.1 [9] Given system (1) and a series of open
sets Ωi ⊂ Rn, i = 0, 1, . . . ,m− 1, if for all x(i) ∈ Ωi, i =
0, 1, . . . ,m− 1, the following equation holds

rankB(x(0∼m−1)) = r = n, ∀t ≥ 0, (2)

then system (1) is called a fully actuated system on Ω =
Ω0 × Ω1 × · · · × Ωm−1. In particular, system (1) is called a
standard fully actuated system when B(x(0∼m−1)) ≡ Ir.

Lemma 2.2 [28] There exist positive numbers ε, ki, i =
0, 1, . . . , n − 1, and a positive definite matrix P satisfying
the following inequality:

ĀTP + PĀ ≤ −εP, (3)

where

Ā =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−k0 −k1 −k2 · · · −kn−1

 (4)

is a Hurwitz matrix.

2.2 Problem statement
Consider the following strict-feedback nonlinear system

with unknown control factor
ẋ1 = x2 + f1(x̄1),
ẋ2 = x3 + f2(x̄2),

...
ẋn = gu+ fn(x̄n),

(5)

where xi ∈ R, i = 1, 2, . . . , n, are the system states,
x̄i = [x1, x2, . . . , xi]

T , the unknown nonlinear functions
fi(·) ∈ Ri → R are smooth, u ∈ R is the control input,
g is an unknown control coefficient. Next, an assumption is
proposed on the system (5).

Assumption 1 sign(g) is known and g ̸= 0. Without loss
of generality, let sign(g) > 0.

Remark 1 According to [24, 25], Assumption 1 is rea-
sonable. Many practical systems can be modeled as strict-
feedback systems with unknown control coefficients, such as
automotive cruise control systems [26] and electrical power
systems [27]. The unknown control coefficient g makes the
control design and stability analysis in this paper extremely
difficult. In addition, the nonlinear term considered in this
paper is only smooth, which is less conservative than the lin-
ear growth condition in [13].

In this paper, we will design the adaptive neural network
controller for the system (5) using the fully actuated system
approach. First, the system (5) is transformed into the form
of a fully actuated system using the following state transfor-
mation 

x1 = z,
x2 = ż − h1(z),
...
xn = z(n−1) − hn−1(z

(0∼n−2)),

(6)

where

h1(·) = f1(z),

hi(·) = ḣi−1(·) + fi(z
(0∼i−1)), i = 2, 3, . . . , n− 1.

Then, it’s easy to get that

z(n) = gu+ h(z(0∼n−1)), (7)

916  



where
h(·) = ḣn−1(·) + fn(z

(0∼n−1)).

According to Definition 2.1, we can get the system (7) is
a fully actuated system.

2.3 Radial Basis Function Neural Network(RBF NN)

In this paper, RBF NN of the following form will be used
to approximate unknown nonlinear functions in the system:

h(Z) =WTS(Z),

where Z ∈ ΩZ ⊂ Rq is the input vector, W =
[w1, w2, . . . , wl]

T ∈ Rl denotes the weight vector, l > 1
denotes the number of nodes of the neural network, and
S(Z) = [s1(Z), s2(Z), . . . , sl(Z)]

T denotes the basis func-
tion vector, and si(Z) is denoted by the following form:

si(Z) = exp

[
− (Z − ci)

T (Z − ci)

σ2
i

]
, 1 ≤ i ≤ l,

with ci = [ci1, ci2, . . . , ciq]
T being the center of the recep-

tive field, σi being the width of the basis function.
Lemma 2.3 [29] For any positive constant ϵ > 0, there

always exists an RBF NN such that the unknown nonlinear
function h(Z) can be approximated in the following form:

h(Z) =W ∗TS(Z) + δ(Z), ∀Z ∈ Ωz,

where δ(Z) denotes the approximation error and satisfies
∥δ(Z)∥ ≤ ϵ, W ∗ is the optimal weight vector, which be
defined as follows

W ∗ = arg min
W∈Rl

{
sup

Z∈ΩZ

∣∣h(Z)−WTS(Z)
∣∣} .

In the following, we define a constant η = ∥W ∗∥2 .

3 Main Results

In this section, an adaptive neural network controller will
be designed for system (5). Firstly, by (5)-(7), we get the
matrix form of the transformed system as follow

Ż = AZ + L(h(Z) + gu)

= (A− LK)Z + LKZ + gLu+ Lh(Z)

= ĀZ + gLu+ L(h(Z) +KZ), (8)

where Z = [z, ż, . . . , z(n−1)]T , L = [0, 0, . . . , 0, 1]T ∈ Rn,
K = [k0, k1, . . . , kn−1], Ā and ki, i = 0, 1, . . . , n− 1, are
given by Lemma 2.2, where

A =


0 1 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

 .

Next, the main results for adaptive neural network control
of strict-feedback systems is summarized in the following
theorem.

Theorem 3.1 Consider system (5) satisfying Assumption
1. Under the adaptive neural network controller

u = −r1η̂LTPZST (Z)S(Z)− r2L
TPZ, (9)

and the adaptive law

˙̂η = 2r1(Z
TPL)(LTPZ)ST (Z)S(Z)− r3η̂, (10)

where η̂ is the estimate of η, η̃ = η−η̂ is the estimation error,
and ri, i = 1, 2, 3, are arbitrary positive constants, P is a
positive definite matrix given by Lemma 2.2, all the signals
of the closed-loop system are bounded and the system states
converge to a small neighborhood of the origin.

Proof Let φ(Z) = h(Z)+KZ. Then, we have that φ(Z)
is a continuous function. The system (8) ia rewritten as

Ż = ĀZ + gLu+ Lφ(Z). (11)

Considering the following Lyapunov function

V =
1

g
ZTPZ +

1

2
η̃2. (12)

Along the trajectory of the system (11), the derivative of
V can be expressed as follow

V̇ =
1

g
[ZT (ĀTP + PĀ)Z + 2ZTPLφ(Z)

+ 2gZTPLu]− η̃ ˙̂η.

(13)

By Lemma 2.2, we have

V̇ ≤ −1

g
εZTPZ + 2ZTPLψ(Z) + 2ZTPLu− η̃ ˙̂η, (14)

where ψ(Z) = φ(Z)
g .

From (14), we can obtain ψ(Z) is a smooth function.
Thus, according to Lemma 2.3, for any positive constant
ϵ > 0, there exists an RBF NN such that

ψ(Z) =W ∗TS(Z) + δ(Z), ∥δ(Z)∥ ≤ ϵ, (15)

where Z = [z, ż, . . . , z(n−1)]T .
Applying Young’s inequality and (15), we have

2ZTPLψ(Z) = 2ZTPL(W ∗TS(Z) + δ(Z))

≤ 2r1Z
TPLLTPZηST (Z)S(Z) (16)

+ 2r2Z
TPLLTPZ +

1

2r1
+

1

2r2
δ(Z)2.

Substituting (4), (10) and (16) into (14) yields

V̇ ≤ −1

g
εZTPZ + 2r1Z

TPLLTPZηST (Z)S(Z)

+ 2r2Z
TPLLTPZ +

1

2r1
+

1

2r2
δ(Z)2

+ 2ZTPLu− η̃ ˙̂η

≤ −1

g
εZTPZ − r3

2
η̃2 +

1

2r1
+

1

2r2
ϵ2 +

r3
2
η2. (17)

Noting r = min {ε, r3} and a = 1
2r1

+ 1
2r2
ϵ2+ r3

2 η
2, one

has

V̇ ≤ −r(1
g
ZTPZ +

1

2
η̃2) + a

= −rV + a. (18)

917  



It follows from (18) that

V ≤ a

r
+ (V (0)− a

r
)e−rt. (19)

According to (19), we can obtain that V is bounded. By
the construction of V , i.e., (12), it follows that all the signals
of the closed-loop system are bounded. By (6), we have the
system states xi, i = 1, 2, . . . , n converge to a small neigh-
borhood of the origin.

4 Extension

In this section, we extend the relevant results of the previ-
ous section to strict-feedback nonlinear systems with multi-
ple unknown coefficients.

Consider the following systems
ẋ1 = g1x2 + f1(x̄1),
ẋ2 = g2x3 + f2(x̄2),

...
ẋn = gnu+ fn(x̄n),

(20)

where gi ∈ R, i = 1, 2, . . . , n, are unknown coefficients.
Next, a assumption is proposed on the system (20).

Assumption 2 sign(gi), i = 1, 2, . . . , n is known and
gi ̸= 0. Without loss of generality, let sign(gi) > 0.

Remark 2 System (20) is a extension form of system (5).
When gi = 1, i = 1, 2, . . . , n, system (20) can be equiva-
lent to system (5). For system (20), some results have been
obtained in [30, 31]. However, all of the above studies are
based on the backstepping design approach, and the design
process is complex. In this paper, the fully actuated system
approach is applied to system (20) to further simplify the
control design.

In this section, we construct a novel state transformation

x1 = ξ,

x2 = 1
g1
ξ̇ − f̄1(ξ),

x3 = 1
g1g2

ξ(2) − f̄2(ξ, ξ̇),
...
xn = 1

g1g2···gn−1
ξ(n−1) − f̄n−1(ξ

(0∼n−2)),

(21)

where

f̄1(·) =
1

g1
f̄1(ξ),

f̄i(·) =
1

gi
˙̄fi−1(·) +

1

gi
fi(x̄i), i = 2, 3, . . . , n− 1.

From (20) and (21), we get

ξ(n) = g1g2 · · · gn−1ẋn + g1g2 · · · gn−1
˙̄fn−1(ξ

(0∼n−2))

= g1g2 · · · gn−1gnu+ g1g2 · · · gn−1fn(x̄n)

+ g1g2 · · · gn−1
˙̄fn−1(ξ

(0∼n−2))

= g1g2 · · · gnu+ f̄n(ξ
(0∼n−1)). (22)

Noting that g = g1g2 · · · gn, then

ξ(n) = gu+ f̄n(ξ
(0∼n−1)). (23)

Theorem 4.1 Consider system (20) satisfying Assump-
tion 2. Under the adaptive neural network controller

u = −r1η̂LTPZST (Z)S(Z)− r2L
TPZ, (24)

and the adaptive law

˙̂η = 2r1(Z
TPL)(LTPZ)ST (Z)S(Z)− r3η̂, (25)

all the signals of the closed-loop system are bounded and the
system states converge to a small neighborhood of the origin.

Proof The proof of Theorem 4.1 is the same as that of
Theorem 3.1, and will not be presented in this paper.

5 A Practical Simulation Example

Consider the following chemical reaction system with un-
known control coefficients in [32]

ẋ1 = − 1
C1
x1 −K1x1 +

1−R
V1

x2 + f1,

ẋ2 = − 1
C2
x2 −K2x2 +

F
V 2u+ f2,

y = x1,

(26)

where R,F,Ci,Ki, Vi, i = 1, 2 are the recycle flow rate,
the feed rate, the reactor residence times, reaction constants,
and reactor volumes, respectively; fi, i = 1, 2 are unknown
nonlinear functions. In this simulation, the parameters are
chosen as R = 0.5, F = 0.2, C1 = C2 = 2,K1 = K2 =
0.3, V1 = V2 = 0.5, and

f1 = 0.2x1,

f2 = 5x21 + x1x2.

Let z = x1, the state transformation of the system is given
by

z̈ =
F (1−R)

V1V2
u+ h(z, ż),

where

h(z, ż) =− (
1

C1
+K1 − 0.2)(

1

C2
+K2)z

− (
1

C1
+

1

C2
+K1 +K2 − 0.2)ż

+ (
5(1−R)

V1
+

1

C1
+K1 − 0.2)z2 + zż.

Taking K = [3, 2], r1 = 0.4, r2 = 2.7, r3 = 10, and
according to Theorem 3.1, the state-feedback controller of
the system (26) is obtained as

u = −0.4η̂(1.45z + 1.67ż)ST (Z)S(Z)− 2.7(1.45z + 1.67ż),

˙̂η = 0.8(1.45z + 1.67ż)2ST (Z)S(Z)− 10η̂,

where Z = [z, ż], S(Z) is the basis function of the neural
network, which form is given in Section 2.3.

From Figs. 1-4 show the signal track of the system(26)
when the initial values are taken as x1(0) = −2, x2(0) =
15, η̂(0) = 1. From Figs. 1-2, it can be obtained that the
trajectories of the system states x1 and x2 can be converged
to a small neighborhood at the origin, which in turn achieves
the desired control objective. Therefore the designed control
scheme is effective.

6 Conclusion

In this paper, the problem of adaptive neural network con-
trol of strict-feedback nonlinear systems with unknown con-
trol coefficients is solved. Uncertain nonlinear terms and
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Fig. 1: The trajectory of x1(t)
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Fig. 3: The trajectory of η̂(t)

unknown control coefficients were approximated with neu-
ral networks. Using the fully actuated system approach, an
adaptive control scheme is designed to ensure that all the sig-
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Fig. 4: The trajectory of u(t)

nals of the closed-loop system are bounded and the system
states converge to a small neighborhood of the origin under
the designed controller. In particular, the results presented
in this paper can also be extended to systems with unknown
coefficients. In future research, an attempt will be made to
apply the fully actuated system approach to nonlinear multi-
agent systems and multi-dimensional dynamics.
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Abstract: This article investigates the stabilization and H∞ control problems of nonlinear descriptor systems with actuator
saturation. Firstly, the sufficient conditions of the impulse controllability are given. A static output feedback control strategy is
designed by static output feedback to study the stabilization of system. Then H∞ control by static output feedback is considered
for nonlinear descriptor systems with external disturbances. Finally, the effectiveness of the designed controller is verified
through the simulation results of a circuit example.
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1 Introduction

Descriptor systems can also be known as differential alge-
bra or singular systems. Compared with normal state system
models, the structural characteristics of descriptor system are
more specific. Descriptor systems inevitably have pulses in
the study of related control, which often have adverse effects
when the controller is designed. The concepts of stability
and non-impulse are introduced to address these characteris-
tics of descriptor systems [1]. Additionally, non-impulse is a
crucial consideration in the descriptor system. Over the past
four decades, the descriptor system has captivated numer-
ous researchers and the study of Lyapunov stabilization or
simultaneous stabilization of descriptor systems have been
reported in a large number of literatures [2],[3],[4],[6].

Because linear descriptor systems are relatively easy to
handle, sometimes nonlinear descriptor systems will be ide-
alized as linear descriptor systems. After years of research,
the theoretical application of linear descriptor systems has
been very mature [2],[3]. However, compared to linear de-
scriptor systems, nonlinear descriptor systems (NDS) can
better reflect practical problems in system. In recent years,
there have been some research on nonlinear descriptor sys-
tems [4],[5],[6].

For almost all practical systems, actuator saturation is in-
evitable. When system controller is designed, actuator sat-
uration will destroy the structural stability of system; In in-
dustrial applications, if actuator saturation is not considered,
equipment failure may occur once the actuator is oversatu-
rated. Therefore, it is worth studying the stability of system
with actuator saturation [4],[6],[8]. For actuator-saturate de-
scriptor systems with full rank matrix in [4], a control allo-
cation strategy is proposed. In [8], based on the period in-
variance of ellipsoid, the local and global stability of linear
systems with actuator saturation are studied by solving linear
matrix inequalities (LMI). Sun transforms NDS with actua-
tor saturation into a strictly dissipative form through state
feedback in [6]. According to the method of state decom-
position, Sun designs H∞ controller and adaptive H∞ con-

This work is supported by National Natural Science Foundation
(NNSF) of China under Grant 61877028.

troller under the condition of considering the external dis-
turbance and parameter disturbance of NDS. However, it is
worth mentioning that there are not many studies on nonlin-
ear descriptor systems similar to literature [6].

In addition, it is impossible to find all the state variables
when the stability of system is studied in practical problems,
and the calculation cost is high. However, the information
of output feedback is easy to obtain, so the application of
output feedback has been popularized. Feedback control is
to suppress the initial disturbance of system, mainly includ-
ing output feedback and state feedback. Because the state
feedback can not be measured directly sometimes, the appli-
cation of output feedback should be considered. The com-
plexity of closed-loop systems by dynamic output feedback
poses a major challenge to practical applications. Hence, it
is beneficial to consider the utilization of static output feed-
back (SOF) as an alternative approach. For linear discrete-
time systems [7], a new SOF control method based on the
K q-flat algorithm is proposed to solve the mp-LP problems.
In [5], He gives two assumptions and proves that these as-
sumptions are a sufficient condition for impulsive control-
lability of NDS and designs a SOF controller to make the
closed-loop system asymptotically stable. On the basis of
He’s research, this paper cites the conditions for pulse con-
trollability of system.

This paper delves into the investigation of the stabilization
problem pertaining to NDS with actuator saturation. First,
the issue regarding SOF control has been resolved, and the
sufficient conditions for impulsive controllability of system
have been provided. An admissible controller is established
under the static output feedback, and the state nondecompo-
sition method of NDS is employed to formulate the design
of the SOF controller. Then H∞ controller by static output
feedback is designed under the given disturbance attenuation
level. Finally, the effectiveness of the designed controller is
verified through the simulation results of a circuit example.

2 Stabilization of Nonlinear Descriptor Systems
with Actuator Saturation

This section investigates the stabilization of nonlinear de-
scriptor systems with actuator saturation. It is given the suffi-
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cient condition of pulse controllability and designed the SOF
controller.

We consider given nonlinear descriptor systems with ac-
tuator saturation: Eẋ = f(x) +N(x)sat(u) +B(z)w,Ex(0) = Ex0,

f(0) = 0,
y = C(x)x,

(1)
where y ∈ Rn denotes the output; x ∈ Rn denotes the state;
F (x) ∈ Rk×n. E ∈ Rn×n, suppose there is a nonsingular
matrix Q ∈ Rn, which satisfies QTE = ETQ ≥ 0, where
0 < rank(E) = r < n. f(x) denotes a smooth vector
field with appropriate dimensions. sat (u) ∈ Rm denotes
the input, N(x) ∈ Rn×m. The following is the saturation
function representation:

sat(ui) =

 εi, ui > εi,
ui, −εi ≤ ui ≤ εi,
−εi, ui < εi,

i = 1, 2, · · · ,m.

(2)
To facilitate the analysis of system stabilization problem,

we propose the following results.
Definition 1:([6]) If there is a closed-loop descriptor sys-

tem composed of a control law u(x) and the original system
which is impulse free under any given initial condition Ex0,
then the original system is considered to be impulse con-
trollable and the control law u(x) is also considered to be
admissible control law.

Lemma 1:([6]) If there is a vector function g(x) satis-
fies the condition g(0) = 0 and possesses continuous partial
derivatives up to order n, then it is possible to represent g(x)
as

g(x) = m1(x)x1 · · ·+mn(x)xn = M(x)x, (3)

where mi(x) represent vector functions, i = 1, 2, · · · , n.
Bringing Equation (3) into system (1) can be expressed as{

Eẋ = M(x)x+N(x)sat(u),
y = F (x)x,

(4)

where M(x) = [m1(x), · · · ,mn(x)] ∈ Rn×n represents
the structural matrix.

In order to facilitate the research and design of a suitable
controller for system stabilization, we introduce the follow-
ing lemma.

Lemma 2:([6]) Suppose there is a real number β ∈ (0, 1)
satisfying

αTα ≤ βuTu, (5)

where
α = u− sat(u), (6)

where α = [α1, · · · , αm]T ∈ Rm and sat(u) defined by
Equation (2).

The following assumptions are proposed to judge the
pulse controllability of system (4).

Al)rank

([
0 E 0
E M(x) N(x)

])
= rank(E)

+ n,∀x ∈ Rn.

A2)rank

[
E

F (x)

]
= n, ∀x ∈ Rn.

Remark 1: The above two assumptions are sufficient con-
ditions for pulse controllability of NDS with actuator satura-
tion.

To ensure the authenticity of the above assumptions, we
provide a lemma as follows.

Lemma 3:([5]) Assuming that A1 and A2 are true, it can
be concluded that system (4) exhibits pulse controllability.

Next, the following theorem is given to design a SOF con-
trol law u to meet the requirements of system stabilization.

Theorem 1: Assuming that A1 and A2 are true, If the
admissible control law is designed as follows,

u = −K(y)y, (7)

such that

(M −NKF )TQ+QT (M −NKF ) +QTNNTQ

+ βFTKTKF < 0
(8)

holds, then the closed-loop NDS with actuator saturation
composed of controller Equation (7) and system (4) is
asymptotically stable, where k(y) ∈ Rm×k.

proof : Substituting Equation (7) and Equation (6) into
system (4), it has{

Eẋ = (M(x)−N(x)K(y)F (x))x−N(x)α,
y = F (x)x.

(9)

According to Lemma 1, system (9) is impulse-free. Defin-
ing a Lyapunov function V (x) = xTETQx. Based on
system (9), Inequality (8) and Inequality (5),we obtain
V̇ (x) =xTQTEẋ+ (Eẋ)TQx

= [(M −NKF )x−Nα]
T
Qx

+ xTQT [(M −NKF )x−Nα]

=xT [M −NKF ]TQx− xTQTNα− αTNTQx

+ xTQT (M −NKF )x

≤xT (M −NKF )TQx+ αTα

+ xTQTNNTQx+ xTQT (M −NKF )x

≤xT (M −NKF )TQx+ xTQT (M −NKF )x

+ xTQTNNTQx+ βxTFTKTKFx

=xT [(M −NKF )TQ+QT (M −NKF )

+QTNNTQ+ βFTKTKF ]x < 0,∀x ̸= 0.
This implies that system(1) is stable under the combined

action of the SOF controller (7) and the conditions of In-
equality (8).

3 Robust H∞ Stabilization

This section considers a SOF controller u such that the L2

gain of the closed-loop system from w to z does not exceed
γ. Additionally, the closed-loop system achieves asymptotic
stability when w is equal to zero. Here, γ denotes a given
level of disturbance attenuation and satisfies the condition
γ > 0.

We consider given NDS with actuator saturation:
Eẋ = f(x) +N(x)sat(u) + Ed(x)w,Ex(0) = Ex0,
f(0) = 0,
y = F (x)x,
z = L(x)x,

(10)

922  



where w ∈ Rh denotes external disturbance; z ∈ Rs denotes
penalty signal; d(x) ∈ Rn×h, L(x) ∈ Rs×n. F (x), f(x), x,
sat(u), E, N(x) and y are the same as system(1).

We use the SOF controller u = −k(y)y in the second
section of the article as robust H∞ controller and give the
following theorem.

Theorem 2: Assuming that A1 and A2 are true, if

(M −NKF )TQ+QT (M −NKF ) +QTNNTQ
+βFTKTKF + 2

γ2Q
TEddTETQ+ 1

2L
TL < 0

(11)
holds, then the closed-loop NDS with actuator saturation
composed of controller Equation (7) and system (10) is
asymptotically stable.

proof :Based on Equation (6) and (7), system (10) can be
converted into

Eẋ = (M(x)−N(x)K(y)F (x))x−N(x)α
+Ed (x)w,
y = F (x)x,
z = L(x)x.

(12)

Defining V (x) = xTETQx. Based on Inequality (11),
we have

V̇ (x)− ∂TV

∂x
dw +

1

2γ2

∂TV

∂x
ddT

∂V

∂x
+

1

2
zT z

=(Eẋ)TQx+ xTQT (Eẋ)− 2xTQTEdw

+
2

γ2
xTQTEddTETQx+

1

2
xTLTLx

=xT (M −NKF )TQx+ xTQT (M −NKF )x

+ wT dTETQx+ xTQTEdw − 2xTQTEdw

− αTNTQx− xTQTNα+
2

γ2
xTQTEddTETQx

+
1

2
xTLTLx

≤xT (M −NKF )TQx+ xTQT (M −NKF )x

+ xTQTNNTQx++βxTFTKTKFx

+
1

2
xTLTLx+

2

γ2
xTQTEddTETQx

=xT
[
(M −NKF )

T
Q+QT (M −NKF )

+QTNNTQ+ βFTKTKF +
2

γ2
QTEddTETQ

+
1

2
LTL]x ≤ 0.

(13)
Thus

V̇ (x) ≤∂TV

∂x
dw − 1

2γ2

∂TV

∂x
ddT

∂V

∂x
− 1

2
zT z

+
1

2
γ2wTw − 1

2
γ2wTw

=
1

2
(γ2||w||2 − ||z||2)− 1

2

∥∥∥∥w − 1

γ2
dT

∂V

∂x

∥∥∥∥2
≤1

2
(γ2||w||2 − ||z||2),

(14)

that is

V̇ ≤ 1

2
(γ2∥w∥2 − ∥z∥2),∀w ∈ L2[0, T ] (15)

is true along the trajectory of system (12). Accordingly, the
L2 gain of system (12) from w to z does not exceed γ.

It is proved that system (12) is asymptotically stable when
w is equal to zero:

V̇ (x) ≤xT (M −NKF )Qx+ xTQT (M −NKF )x

+ xTQTNNTQx+ βxTFTKTKFx

<xT (M −NKF )Qx+ xTQT (M −NKF )x

+ xTQTNNTQx+ βxTFTKTKFx

+
2

γ2
xTQTEddTETQx+

1

2
xTLTLx

=xT [(M −NKF )TQ+QT (M −NKF )

+QTNNTQ+ βFTKTKF

+
2

γ2
QTEddTETQ+

1

2
LTL]x < 0,∀x ̸= 0.

(16)
This result indicates that when w is equal to zero, system

(12) is asymptotically stable. Therefore, the application of
the designed SOF controller in disturbance systems is effec-
tive.

4 Illustrative Example

In this section, we give a practical circuit model [6] to de-
pict the effectiveness of the designed robust H∞ controller.
As it is shown in Fig.1, which capacitance is regulated by
chage q, and u1 = f1(q1), u2 = f2(q2).

Fig. 1: Nonlinear circuit system.

The following is the mathematical expression of the above
model based on Kirchhoff current and Kirchhoff voltage
laws, {

q̇1 + q̇2 = sat(Is)− f1(q1)
R3

− iw,

0 = f1(q1) + sat(Us)− f2(q2).
(17)

We choose y = [0, q2]
T , z = (1/

√
3)[q1, q1 + q2]

T , w =

iw. Let f1(q1) = q1, f2(q2) = 2q32 , R3 = (1/2)Ω, |Is| ≤

0.5A, |Us| ≤ 2V . Indicate x =

[
q1
q2

]
, x =

[
Us

Is

]
.

Then, system (17) can be rewritten as

[
1 1
0 0

]
ẋ =

[
−2x1

x1 − 2x3
2

]
+

[
0 1
1 0

]
sat(u)

+

[
−1
0

]
w,

y =

[
0 0
0 x2

]
,

z = 1√
3

[
x1

x1 + x2

]
.

(18)
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We can obtain

M(x) =

[
−2 0
1 −2x2

2

]
, F (x) =

[
0 0
0 1

]
,

L(x) = 1√
3

[
1 0
1 1

]
. Let Q =

[
1 1
0 1

]
,

then ETQ = QTE ≥ 0. For γ = 1, defin-

ing K(y) =

[
0 0
0 3

]
, β = 0.05, we obtain

(M −NKF )TQ+QT (M −NKF ) +QTNNTQ+

βFTKTK(y)F +
2

γ2
QTEddTETQ+

1

2
LTL

= −
[

0.667 0.833
0.833 1.383 + 4x2

2

]
< 0.

Thus, the conditions of Theorem 2 are all satisfied. The
SOF robust H∞ controller of system (14) is represented as

u = −
[

0 0
0 3

]
x. (19)

To validate the effectiveness of the H∞ controller (Equa-
tion (19)), numerical simulations are performed with the
specified settings: the initial condition Ex(0) is set to
[1, 0]T .From the simulation results, it can be concluded that
the state x reflected in Fig.2 cannot converge to the origin,
but after adding the admissible control law, the state x re-
flected in Fig.3 converges to the origin rapidly within 0 to 4
seconds. The following conclusions can be drawn from the
above results.

The admissible control law Equation (19) can make sys-
tem (18) asymptotically stable.

Fig. 2: Reaction of the state x in open-loop system.

5 Conclusion

This article studies the application of SOF control in a
class of actuator-saturated NDS systems. Firstly, according
to the saturation condition, a admissible controller is pro-
posed to stabilize the system, and two sufficient conditions
are given to prove that system is impulsively controllable.
Second, the asymptotic stability of system is studied, and a
SOF controller is designed. A Lyapunov function is defined
according to the theorems mentioned in this paper and the
result proves that the SOF controller can stabilize system.
Then Robust H∞ control by static output feedback is con-
sidered for NDS with external disturbances. Finally, through

Fig. 3: Reaction of the state x in closed-loop system.

Fig. 4: Reaction of saturated control sat(u) in closed-loop
system.

numerical simulation of a nonlinear singular circuit, the ef-
fectiveness of the SOF controller is verified.
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Abstract: In this paper, a disturbance observer-based nonlinear control method is proposed for a class of underactuated bridge
crane systems. Specifically, the underactuated bridge crane system is transformed into a high-order fully actuated (HOFA) system
through a diffeomorphism transformation. The proposed approach utilizes a predetermined-time disturbance observer based on
the HOFA system, eliminating the need for any prior knowledge of disturbance upper bounds and ensuring independence from
controller design. This designed scheme effectively achieves both anti-swing and positioning control objectives in underactuated
bridge crane systems. Rigorous demonstrations are provided to ensure the stability of positioning error and load swing angle.
Simulation experiments conclusively demonstrate the effectiveness and robustness of the designed control scheme. This paper
represents the first application of HOFA system theory to underactuated bridge crane systems, thereby expanding the scope of its
applicability.

Key Words: Underactuated bridge crane systems, High-order fully actuated system, Disturbance observer, Diffeomorphism
transformation

1 Introduction

Bridge crane systems are widely used in various indus-
tries for lifting and handling heavy materials, improving pro-
duction efficiency [1, 2]. The absence of actuators results in
a high degree of coupling among system states and intro-
duces significant nonlinearity. The control of bridge crane
systems faces numerous challenges [3]. Researchers have
extensively investigated the automatic control of underac-
tuated bridge crane systems and have successfully devised
a plethora of sophisticated control strategies, including in-
put shaping control [4, 5], trajectory planning control [6, 7],
energy-based control [8, 9], sliding mode control [10–12],
and intelligent control [13–15].

Most of the existing control algorithms are based on a
first-order state-space approach, which involves converting
the original Lagrange model of the underactuated system
into a cascaded first-order state-space expression [16, 17].
The converted bridge crane systems, however, do not strictly
adhere to the feedback control framework; therefore, the
converted models incorporate certain simplifications for the
nonlinear component [10, 18]. Significant challenges persist
in addressing the issue of underactuated systems using first-
order state-space methodologies, which are in trouble for
handling nonlinear problems. A novel control theory HOFA
system approach is proposed by Duan [19], which can solve
the global stabilization problem of nonlinear systems that is
currently difficult to be solved by the first-order state space
method. The pseudo strict-feedback system [19] and gen-
eralized strict-feedback system [20] can be easily converted
to HOFA system models by diffeomorphism transformations
under certain conditions. However, the canonical transfor-
mation is only provided in [19] for the case of a constant
unimodular matrix, and no comprehensive results have been
obtained for more general scenarios. The identification of
diffeomorphism transformations that can transform under-
actuated systems into HOFA models remains a significant

This work is supported by National Natural Science Foundation
(NNSF) of China under Grant 62373319, 61933009, 62103355.

challenge in extending the HOFA theory.
Moreover, due to the inherent underactuation of bridge

crane systems, they exhibit increased sensitivity to variations
in external disturbances. Consequently, it becomes impera-
tive to devise control strategies capable of effectively man-
aging these disturbances. The control algorithms, such as ro-
bust PID control [21, 22], adaptive control [23, 24], and H∞
control [25], have been employed to mitigate disturbances in
underactuated crane systems. The sensitivities of the control
systems are optimized by these control methods, thereby re-
ducing the impact of disturbances on the systems. However,
it should be noted that there exists an inevitable trade-off

between system performance and disturbances suppression
due to the constraint of having only one degree of freedom.
A disturbance observer is proposed in [26] for underactu-
ated bridge crane systems, which can effectively compen-
sate for disturbances and mitigate the chattering issue asso-
ciated with the designed sliding mode controller. However,
it is challenging to satisfy the known upper bound on distur-
bances in practical systems. The double pendulum effect is
effectively suppressed in [27] using an enhanced active dis-
turbance rejection controller, which treats the disturbances
as an extended state and employs an extended state observer
to estimate the unknown disturbances, yet this approach is
primarily suitable for estimating slow time-varying distur-
bances. Inspired by the literature [28, 29], we propose a
predetermined-time disturbance observer designed to accu-
rately track disturbances signal for a predefined period of
time. Furthermore, unlike [10, 26], the disturbance observer
introduced in this paper does not require any prior knowl-
edge of the upper bound of external disturbances.

Through the aforementioned analyses, this study intro-
duces a novel approach of diffeomorphism transformation
that has been successfully implemented in underactuated
bridge crane systems. Additionally, a predetermined-time
disturbance observer is utilized to address external distur-
bances in the system. The transformation is specifically de-
rived based on the generalized position coordinates of the
load within the bridge crane system, and its validity is rig-
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orously demonstrated. Finally, the effectiveness and robust-
ness of the HOFA control scheme proposed in this paper are
verified through numerical simulation.

2 Problem statement and mathematical prelimi-
naries

2.1 Mathematical preparation
This subsection presents essential definitions and lemmas,

which serve to facilitate subsequent analyses and proofs in a
scholarly manner.

Definition 1 (Diffeomorphism): A smooth vector field func-
tion Φ (x) : Rn → Rn defined in region Ω is said to be a dif-
feomorphism if its inverse Φ−1 (x) ∈ Rn exists and is smooth.
If the domain Ω is entire, then Φ (x) ∈ Rn is global diffeo-
morphism.

Definition 2 (HOFA [19]): Consider a nonlinear system as
follows:

x(m) = h
(
x(0∼m−1)

)
+ B

(
x(0∼m−1)

)
τ (1)

where m is a positive integer representing the system order,
x ∈ Ω is the system state vector, τ ∈ Rr is the system input
vector, h

(
x(0∼m−1)

)
∈ Rn is a sufficiently differentiable vector

function, and B
(
x(0∼m−1)

)
∈ Rn×r is a matrix function. If

rank
(
B

(
x(0∼m−1)

))
= r = n for any t ≥ 0 holds, for all x(i) ∈

Ω, i = 1, · · · ,m, then the system (1) is called fully actuated
on Ω.

Lemma 1 (Complete parametric approach [19]): Consider
the closed-loop system as following form:

x(m) + A0∼m−1x(0∼m−1) = 0 (2)

where x ∈ Rn, for an arbitrarily chosen F ∈ Rmn×nm, all
the matrix A0∼m−1 and the nonsingular matrix V ∈ Rmn×nm

satisfying

Φ (A0∼m−1) = VFV−1

are given by

A0∼m−1 = −ZFnV−1 (Z, F) ,

V = V (Z, F) =


Z

ZF
...

ZFn−1


where

Φ (A0∼m−1) =


0 I

. . .

I
−A0 −A1 · · · −An



2.2 Problem formulation

Fig. 1: Structure of the crane system

The schematic diagram of underactuated bridge crane sys-
tem is shown in Fig. 1, and its dynamic equation can be
expressed as:(M + m) ẍ + mL cos θθ̈ − mL sin θθ̇ 2 = u (t) + d (t)

mL cos θẍ + mL2θ̈ + mgL sin θ = 0
(3)

where x (t) and θ (t) denote the position of the trolley and the
angle of the payload with respect to the vertical axis, respec-
tively. The trolley mass and the payload mass are denoted
by M and m, respectively. The cable length is L, the gravity
acceleration is g, the control input is u (t), and d (t) encom-
passes the unmodelled dynamics of the system, friction, and
external disturbances, etc.

Assumption 1 The load will not exceed an angle of π due to
the inherent limitations of the physical system [30–32], i.e.

|θ| <
π

2
, ∀t > 0

Assumption 2 The disturbances in system (3) have an un-
known upper bound d.

With some mathematical calculations, (3) can be rewritten
as:

ẍ = − g tan θ − Lθ̈ sec θ

θ̈ = −
cos θ

(
u (t) + d (t) + mL sin θθ̇2 + (M + m) g tan θ

)(
M + m sin2 θ

)
L

(4)

For the state variable q = [x, θ]T of the system, consider
the transformation as follows:

z = φ (x, θ) =

[
x − xd + α sin θ

θ

]
(5)

where α is a positive parameter, xd is the desired position of
the trolley. The Jacobian matrix of φ (x, θ) is

∂φ

∂q
=

[
1 α cos θ
0 1

]
∈ R2×2
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which is full rank in the area Ω = {(x, θ) , |θ| < π}. Therefore
φ−1 (x, θ) exists, and z is a diffeomorphism transformation of
the state variable q. It implies that the control objective of
the underactuated bridge crane system x → xd, θ → 0 is
equivalently converted to z→ 0.

Remark 1 The diffeomorphism transformation φ (x, θ) is
chosen based on the generalised load position coordinates,
where the actual position coordinates of the load is x−L sin θ
during the motion of the trolley and the desired position of
the trolley is the same as that of the load.

The differentiation of the first element of (5) leads to:

ż1 = ẋ + α cos θθ̇ (6a)

z̈1 = ẍ + α cos θθ̈ − α sin θθ̇2 (6b)

The substitution of (4) into (6b) yields:

z̈1 = f (z, ż) + g (z) (u (t) + d (t)) (7)

where

g (z) =
L − α cos2 θ(

M + m sin2 θ
)

L

f (z, ż) =g (z)
(
mL sin θθ̇2 + mg sin θ cos θ

)
− αg sin θ cos θ/L − α sin θθ̇2

where α satisfy L − α cos2 θ , 0 such that g (z) is non-
singular. This means that system (3) can be transformed to a
HOFA system (7) by diffeomorphism transformation.

3 Main result

3.1 Controller design
This subsection designs the HOFA controller based on the

transformed model (7).
First, given the parameters a1, a0, the following controller

u (t) = −g (z)−1 (a1ż1 + a0z1 + u∗)

u∗ = f (z, ż) − ν
(8)

for the HOFA system (7) produces the following closed-loop
system

z̈1 + a1ż1 + a0z1 = ν + g (z) d (t) (9)

Further rewritten in the form of a first order linear system:

η̇1 = η2

η̇2 = −a0η1 − a1η2 + v + dz (t)
(10)

where dz (t) = g (z) d (t) stands for generalised disturbances.
Next we design predetermined-time disturbance observer to
estimate the generalised disturbances.

Define auxiliary variable e:

e = η − η2 (11)

where the variable η has the following dynamic:

η̇ = −a0η1−a1η2+v−c1sgn (e) |e|α1d−c2sgn (e) |e|α2d+vz (12)

Consider the following sliding mould surface sd:

sd = ė + c1sgn (e) |e|α1d + c2sgn (e) |e|α2d (13)

where c1,C2, α1d < 1 and α2d > 1 are positive parameters,
and vz is designed by the following dynamic equation:

v̇z = − (kd + κ) sgn (sd) , vz (0) = 0 (14)

where κ is a positive parameter, kd is set to

kd =

 |sd |

α(Tc−t) , t < Tc

µ tan2
(
π|sd |

2ε

)
, t ≥ Tc

(15)

to meet the kd > d, where µ and ε are positive parameters,
Tc is a predefined-time.

The control input v is designed as

v = −vz (16)

Then the auxiliary variable e in (11) as well as estimation
error of disturbance dz converges to zero in predetermined-
time.

3.2 Stability analysis
Theorem 1 The underactuated bridge crane system (3) can
be equivalently transformed to a HOFA system (7) by dif-
feomorphism transformation, through the designed HOFA
controller (8) and (16) , which makes the transformed state
asymptotically stable. Thus reaching the control objectives
of the underactuated bridge crane system, i.e. x → xd, θ →
0.

proof: It is first shown that the controller-independent dis-
turbance observer can fully estimate the generalised distur-
bances in a predefined time Tc.

Consider the the derivative of e as follows:

ė = η̇ − η̇2 = −c1sgn (e) |e|α1d − c2sgn (e) |e|α2d + vz − dz (17)

Bringing (17) into (13) yields:

sd = vz − dz (18)

The derivative of (18), when combined with the inclusion of
(12), results in

ṡd = v̇z − ḋz = − (kd + κ) sgn (sd) − ḋz (19)

Now, let’s consider the Lyapunov function candidate V

V =
1
2

s2
d (20)

By performing differentiation on (20) and substituting equa-
tion (19), we obtain:

V̇ = sd ṡd = −kd |sd | − κ|sd | − ḋzsd

≤
(
|ḋz| − kd

)
− κ|sd |

(21)

Since κ > 0, and kd > L, which can be proof in [25], V̇ ≤
−κ|sd |, which yields the convergence of sliding mode surface
sd to zero in predefined time Tc.

Secondly, consider after a period of time Tc

z1 = x − xd + α sin θ = 0 (22)

ż1 = ẋ + α cos θθ̇ = 0 (23)
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z̈1 = ẍ + α cos θθ̈ − α sin θθ̇2 = 0 (24)

u (t) = −g (z)−1 (a1ż1 + a0z1 + u∗) = 0 (25)

Combined with (4), yields(
M + m −

mL
α

)
ẍ = u

Since α < 0, ẍ = 0, implies that

ẋ = β

If β , 0, then x → ∞ as t → ∞, which is opposite to fact
(22). Therefore β = 0, e = x − xd = ϑ. In case of ϑ = 0,
from (22), sin θ = 0. Based on Assumption 1, the pendulum
angle does not extend beyond

(
− π2 ,

π
2

)
, thus θ = 0. In case of

ϑ , 0, from (22),

sin θ = −
1
α
ϑ , 0

According to (4),

θ̈ = −
g
L

sin θ , 0

Taking this into (24), gives

g
L

cos θ sin θ + sin θθ̇2 = 0

Combined with (23),cos θθ̇ = 0
g
L cos θ + θ̇2 = 0

The derivation of the unique outcome cos θ = 0, θ̇ = 0 im-
plies that sin θ = 0, which contradicts the case when ϑ , 0.
Therefore, it can be concluded that ϑ = 0, and subsequently
x = xd and θ = 0. The control objectives of the under-
actuated bridge crane system are achieved and the proof is
completed.

4 Numerical Simulation

The effectiveness and robustness of the proposed control
algorithm are assessed through numerical simulation tests.
Specifically, two groups of simulation experiments are con-
ducted. In the first group, the proposed HOFA control algo-
rithm is compared with PD-like control [8] and sliding mode
control [10] to validate the superiority of the control scheme
proposed in this paper. In the second group, the robustness of
the proposed control scheme is verified by varying internal
system parameters and introducing external disturbances.

Simulation tests are performed in MATLAB/Simulink en-
vironment and the parameters of the underactuated bridge
crane system are designed as M = 6kg, m = 0.5kg, L =

0.5m, g = 9.8m/s2. The friction correlation coefficient is set
to kr0 = 5, kr1 = −1, ζ = 0.1.

The parameters of HOFA controller are selected as

a0∼1 = −ZF2V =
[
4 5

]
where

Z =
[
1 0

]
, F =

[
−2 −1
1 −2

]
,V =

[
Z

ZF

]

Fig. 2: First group of simulation results: HOFA control
scheme (red solid line), PD-like control scheme (blue dot-
ted line), sliding mode control scheme (black dashed line)

Fig. 3: Second group of simulation results Case 1: Nor-
mal situation (red solid line), Change load mass (blue dotted
line), Change the length of the rope (black dashed line)
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Fig. 4: Second group of simulation results Case 2: Normal
situation (red solid line), sinusoidal disturbances (blue dotted
line), step disturbances (black dashed line), random noise
disturbances (purple dotted line)

The PD-like control algorithm designed in [8] is as fol-
lows:

F = −kp (e − ka sin θ) − kd

(
ė − ka cos θθ̇

)
where e = x − xd, the parameters to be selected askp = 25,
kd = 30 and ka = 0.3.

The sliding mode control algorithm designed in [10] is as
follows:

F =

(
M + m sin2 θ

)
l

cos θ

[
φ̂d + 2θ̇2 tan θ −

κ cos2 θ

g
ψ +

cos2 θ

g
µ

]
− mlθ̇2 sin θ − (M + m) g tan θ

Group 1: Performance verification: As shown in Fig. 2,
compared with the PD-like control and the sliding mode con-
trol, the HOFA control scheme has a simple structure, the pa-
rameters selection are convenient and quick, the complicated
process of adjusting the parameters is omitted, and good con-
trol results are achieved. The trolley is driven to the desired
position in about 5 s, without the overshooting phenomenon
of the sliding mode control scheme, and similar to the arrival
time of the PD-like control. In addition, the swing angle of
the load does not exceed 5◦ during operation and the resid-
ual swing is suppressed at the fastest time, which is signifi-
cantly better than the other two control schemes, proving the
effectiveness and superiority of the HOFA control scheme
proposed in this paper.

Group 2: Robustness verification: Two different scenarios
are designed to verify the robustness of the system.

Case 1 (Internal parameter changes): In order to assess
the robustness of the proposed control scheme against vari-
ations in internal system parameters, we investigate the im-
pact of load mass m and rope length L on the efficacy of the
control effect. The simulation results are shown in Fig. 3.
It is observed that changing the load mass has a negligible
effect on the system, and changing the rope length makes the
load swing longer, but still suppresses the load swing, prov-
ing the robustness of the control scheme proposed in this
paper to internal parameter variations.

Case 2 (External additional disturbances): In the un-
matched channel, the sinusoidal disturbance, the step dis-
turbance, and the random noise disturbance are imposed in
8 − 10s, 12 − 14s, and 16 − 18s, respectively, with an am-
plitude of 0.5, and the results are shown in Fig. 4. The re-
sults show that the control scheme proposed in this paper can
quickly suppress the three different disturbances and ensure
satisfactory control performance with good robustness.

5 Conclusion

In this paper, a disturbance observer based HOFA control
scheme is proposed for underactuated bridge crane system.
A physically meaningful diffeomorphism transformation is
used to convert the underactuated bridge crane system into a
HOFA system. Theoretical analysis rigorously demonstrates
that the control scheme is capable of achieving the control
objectives of suppressing load swing and trolley position-
ing of the underactuated bridge crane system, and numerical
simulations illustrate the superiority and robustness of the
control scheme. In future work, we hope to find a general
differential homogeneous embryonic transformation for un-
deractuated Lagrange system, further extending the applica-
tions of the HOFA theory.
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Formation control of under-actuated multi-robot vehicle systems
based on high-order fully actuated systems approach
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Abstract: In this paper, a formation control problem of three-dimensional (3D) under-actuated multi-robot vehicle systems with
nonholonomic constraint is investigated. First, the nonlinear dynamic model is transformed into an Euler-Lagrangian-like system
that satisfies the full-actuation condition. Then, by using the high-order fully actuated systems (HOFAs) approach, the general
control law of the under-actuated multi-robot vehicle systems is designed and the linear closed-loop system is obtained. The non-
linear system formation control problem is converted into a formation control problem of linear closed-loop system. According
to the formation control requirements and objectives, designing the final formation controller using a rigid graph theory approach
allows the under-actuated multi-robot vehicle systems to accurately converge to the desired formation. Lyapunov-based stability
analysis shows the error function theoretically converges to zero eventually. Simulation results confirm the effectiveness of the
formation control law.

Key Words: Multi-robot vehicle systems, formation control, high-order fully actuated systems, rigid graph theory.

1 Introduction

Multi-agent system (MAS) formation refers to the collec-
tive behavior of multiple agents working in a coordinated
manner to achieve a specific geometric shape or configura-
tion. The multi-agent formation provides critical means to
enhance task efficiency, reduce risks, and improve system
adaptability, and it finds applications in various fields, in-
cluding multi-robots [1],[2], autonomous underwater vehi-
cles [3],[4], and unmanned aerial vehicles [5],[6], etc.

The traditional method bassed on distributed formation
control generally regulates the inter-agent distances and has
high system reliability. But this method is prone to the prob-
lem of multiple equilibrium points, which makes the stability
analysis and calculation be complex and difficult. The for-
mation control method based on rigid graph theory can ef-
fectively reduce the appearance of non-desired equilibrium
points [7]. It describes the relative position and angle re-
lationships among the agents by establishing rigid connec-
tion relationships among them to achieve formation con-
trol. Meanwhile, collision avoidance between vehicles can
be achieved because the rigid graph theory naturally ensures
the distance constraint.

Recently, P Zhang et al. [8] presented a new formation
control protocol based on rigid graph, where the team of
agents can translate and rotate as a virtual rigid body in 3D.
In [9], a rigid formation control problem of the system de-
scribed by double-integrator was proposed, where the nons-
mooth analysis, the backstepping technique and the adaptive
perturbation method were employed to design the globally
stable rigid formation control strategy. Tairan Liu et al. [10]
studied distance + angle-based control of 2D rigid forma-
tions using single-integrator model. In [11], distance + area
(or angle) schemes for 2D formations of single-integrator

This work was supported by Hebei Natural Science Foundation un-
der F2022203040; Natural Science Foundation of China under 62073277,
62188101, U22A2050; Central Government Guided Local Science and
Technology Development Fund Project under 226Z0301G; Hebei Innova-
tion Capability Improvement Plan Project under 22567619H; and Basic In-
novation Research Project under 2022LGZD008.

agents were considered to ensure the asymptotic stability of
the desired formation for almost all initial agent positions.

However, a shortcoming in the abovementioned is that
most of them still use single integrator dynamics or dou-
ble integrators dynamics to describe the dynamical model of
MAS, which were mostly turned into first-order systems. In
model reduction and the first-order system framework, the
physical meanings of original systems are lost. Actually,
second- and high-order systems are natural representation
of physical systems, because their dynamical models, de-
scribed by Newton’s laws, Euler and Lagrangian equations,
and so on. In recent years, the high-order fully actuated sys-
tems (HOFAs) approach has garnered considerable attention
in the scientific community due to its demonstrated efficacy
and simplicity in addressing analysis and control challenges
associated with second-order or higher-order nonlinear sys-
tems [12–17]. Duan proposed the formal definition of HO-
FAs in [12]. Then, Duan [13] clarified the relationship be-
tween full-actuation property and controllability, as well as
a related parameter design method. In addition, Duan de-
scribed the specific protocols of the HOFAs approach, in-
cluding how to convert nonlinear systems [14, 15] and dis-
crete systems [16, 17] into HOFA models. Obviously, the
HOFAs approach may lead a novel and interesting topic on
the control of MAS.

In [18], constrained cooperative control of high-order
fully actuated multi-agent systems subject to input satura-
tion and prescribed performance was concerned. Yunsi Yang
et al. [19] studied the controllability of multi-agent sys-
tems over finite fields based on the high-order fully actuated
(HOFA) system approaches. In [20] and [21], the distributed
containment control of nonlinear high-order fully actuated-
MAS was developed. Based on the nonlinear HOFA model
of the system, the closed-loop system can always be con-
verted to a constant linear one with a desired eigenstructure
by simply designing a controller. In [22], an attitude-orbit
integrated control law based on the fully-actuated system
approach was proposed for spacecraft formation flying sys-
tem. However, the existing literatures have less discussion
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on multi-agent systems formation control based on the high-
order fully actuated (HOFA) system approaches.

In this paper, the formation control of 3D under-actuated
multi-robot vehicle systems with nonholonomic constraint
is investigated. By using coordinate transformation, the
nonlinear dynamic model is transformed into the Euler-
Lagrangian-like system that satisfies the full-actuation con-
dition. Then, by using the HOFAs approach, the general con-
trol law of the under-actuated multi-robot vehicle systems is
designed and the linear constant closed-loop system is ob-
tained. The nonlinear system formation control problem is
converted into a formation control problem of linear con-
stant closed-loop system. According to the formation con-
trol requirements and objectives, designing the final forma-
tion controller using a rigid graph theory approach allows
the under-actuated multi-robot vehicle systems to accurately
converge to the desired formation.

2 Problem formulation

2.1 Preliminaries
This section introduces some basic concepts with respect

to rigid graph theory, that are useful for deriving our main
results.

An undirected graph consisting of n vertices and L undi-
rected edges is denoted as G = (V, E ,A), where the set
of vertices and undirected edges are V = {1, 2, . . . , n} and
E ⊂ V × V , respectively. A = [aij ] ∈ Rn is the adjacency
matrix, where aij = 1 if (i, j) ∈ E and aij = 0 otherwise,
aij = aji. All vertices connected to vertex i constitute the
set of neighbors of i, denoted by Ni(E).

Ni(E) = {j ∈ V | (i, j) ∈ E}, (1)

vertex j is a neighbor of vertex i means that vertex i and j
are connected by a path and they can communicate with each
other.

A framework is defined as F = (G, ζ), where ζi ∈ R3

is the coordinate of vertex i and ζ = [ζ1, . . . , ζn] ∈ R3n.
The edge function φG(ζ) : R3n → RL for a framework
F = (G, ζ) is defined as

φG(ζ) =
[
. . . , ‖ζi − ζj‖2 , . . .

]
, (i, j) ∈ E (2)

where L is the number of edges, ‖ · ‖ denotes the Euclidean
norm, ‖ζi−ζj‖2 corresponds to the edge connecting vertices
i and j in E .

The rigidity matrix R : R3n −→ RL×3n of F = (G, ζ) is
defined as

R(ζ) =
1

2

∂φG(ζ)

∂ζ
, (3)

Note that the rigidity matrix has a row for each edge and
3 columns for each vertex. That is, for the kth edge of E
connecting vertices i and j, the kth row of R(ζ) is:

[0 . . . (ζi − ζj)T . . . (ζj − ζi)T . . . 0],

where (ζi− ζj)T is in the columns for vertex i, (ζj − ζi)T is
in the columns for vertex j, and all other elements are zero.

Lemma 1. [23] A framework (G, ζ) in R3 is rigid if and
only if rank[R(ζ)] = 3n− 6 and L = 3n− 6.

Fig. 1: Illustration of coordinate transformation of the i-th
robot vehicle.

Based on Lemma 1, the communication relationship be-
tween multi-robot vehicles must satisfy rank[R(ζ)] = 3n−6
and L = 3n − 6 ensuring that the formation framework is
minimally and infinitesimally rigid.

2.2 Model transformation
We consider the system consisting of following 3D under-

actuated robot vehicles (see Fig.1). The dynamics of robot
vehicle is described by

ṗi = S (αi, βi) ηi, (4a)
M̄iη̇i + D̄iηi = τ̄i, (4b)

for i = 1, . . . , n. In (4a), pi = [xQi, yQi, zQi, αi, βi] is
the position and orientation, ηi = [vi, ωαi, ωβi], vi is the
i-th robot vehicle’s translational speed, and ωi is the i-th
robot vehicle’s angular speed about the vertical axis passing
through Qi, where

S (αi, βi) =


cosαi cosβi 0 0
sinαi cosβi 0 0

sinβi 0 0
0 1 0
0 0 1

 . (5)

In (4b), M̄i = diag{mi, Īi1, Ii2}, mi and Ii1, Ii2 are the
i-th robot vehicle’s mass and moment of inertia, respectively.
D̄i ∈ R3×3 represents the constant damping matrix, and
τ̄i ∈ R3 is control input of the system. From (4a), the di-
mension of the system state space (pi ∈ R5) is higher than
the dimension of the motion constraint space (ηi ∈ R3).
Therefore, dealing with this nonholonomic constraint in (4)
is the main challenge.

In this paper, we transform robot vehicle system into
the Euler-Lagrangian-like system, thus cleverly avoiding the
nonholonomic constraint in (4). Fig.1 shows the illustration
of coordinate transformation of the i-th robot vehicle, we de-
fine the point Hi on the Xi axis at a distance Li from point
Qi. Inspired by [24], the point Hi position qi is given by

qi =

 xi
yi
zi

 =

 xQi
yQi
zQi

+ Li

 cosβi cosαi
cosβi sinαi

sinβi

 . (6)

In practice, the point Hi position represents an end-
effector or a sensor on the robot vehicle. For any Li 6= 0,
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kinematics of (6) are holonomic. Specifically, from (4)- (6),
we have

ηi = J (αi, βi) q̇i, (7)

where

J (αi, βi) =

 cosβi cosαi cosβi sinαi sinβi
− sinαi

Li cos βi

cosαi

Li cos βi
0

− sin βi cosαi

Li

− sin βi sinαi

Li

cos βi

Li

 .
(8)

After obtaining the time derivative of (7), we multiply
both sides of the resulting equation by M̄i at the same time
and substitute (4b) to obtain

τ̄i − D̄iJ (αi, βi) q̇i = M̄iJ̇ (αi, βi) q̇i + M̄iJ (αi, βi) q̈i.
(9)

Next, pre-multiply (9) by J> (αi, βi), we obtain the fol-
lowing Euler-Lagrange-like dynamic model

q̇i = vi, (10a)
Mi (qi) v̇i = τi − Ci (qi, vi) vi −Di (qi) vi, (10b)

where vi ∈ R3 denotes the velocity of the i-th robot vehicle’s
Hi point relative to Earth-fixed frame, and

Mi(qi) = J>M̄iJ, Ci(qi, q̇i) = J>M̄iJ̇ ,

Di(qi) = J>D̄iJ, τi = J>τ̄i. (11)

the Mi(qi) and Ci(qi, q̇i) denote the mass matrix and the
Coriolis/centripetal matrix respectively.

Let q = [q1, . . . , qn] ∈ R3n, v = [v1, . . . , vn] ∈ R3n, τ =
[τ1, . . . , τn] ∈ R3n, M = diag{M1(q1), . . . ,Mn(qn)} ∈
R3n×3n, C = diag{C1(q1, v1), . . . , Cn(qi, vi)} ∈ R3n×3n,
D = diag{D1 (q1) , . . . , Dn (qn)} ∈ R3n×3n. The multi-
robot vehicle systems (10) can be written in a compact form
as follows:

q̇ = v, (12a)
Mv̇ = τ − Cv −Dv, (12b)

Then, the system can be rewritten in the following system
form:

q̈ = f(q(0∼1), t) +B(q(0∼1), t)τ, (13)

where

f(q(0∼1), t) = −M−1(C +D)q̇, (14)

B(q(0∼1), t) = M−1. (15)

Note that, the mass matrix M is symmetric and positive def-
inite, so:

detB(q(0∼1), t) 6= 0, t > 0.

The system (12) satisfies the full-actuation condition, there-
fore, the formation control of the 3D under-actuated multi-
robot vehicle systems can be designed using the HOFAs ap-
proach.

Remark 1. The system (13) is widely recognized in the field
of robotics and spacecraft control. Since the control dis-
tribution matrix B(q(0∼1), t) of the system satisfies the full-
actuation condition, the system (13) is a high-order fully ac-
tuated nonlinear system. It is well known that the HOFA
systems are more realistic and can be directly obtained from
physical laws. There is no need to transform the HOFA sys-
tems into the state-space forms, such that saves the workload
of system conversion. With the HOFAs approach of [14],
the high-order fully actuated nonlinear system can be trans-
formed into a linear closed-loop system that has an arbitrar-
ily assignable eigen-structure, thus significantly reducing the
complexity of subsequent controller design.

3 Main Results

In this section, we propose a formation controller design
based on the HOFA systems approach to achieve the control
objectives. Then, the system stability is established based on
Lyapunov function analysis.

Consider that the 3D robot vehicles’ target formation is
modeled by an infinitesimally and minimally rigid frame-
work F ∗(t) = (G∗, q∗), where G∗ = (V∗, E∗,A∗) is the
rigid graph, V∗ = {1, 2, . . . , n}, the number of E∗ is 3n−6,
and q∗ = [q∗1 , . . . , q

∗
n]. The desired distance between robot

vehicle i and its neighbor robot vehicle j is given by

dij =
∥∥q∗i − q∗j∥∥ > 0, i, j ∈ V∗ (16)

where dij is a constant.
The robotic vehicles’ actual formation is determined by

the framework F (t) = (G∗, q(t)), where F (t) and F ∗(t)
have the same rigid graph, and q(t) = [q1(t), . . . , qn(t)] de-
notes the actual position of the robotic vehicles at time t. Be-
sides, assume that at t = 0, ‖qi(0)− qj(0)‖ 6= dij(0), i, j ∈
V∗.

The relative position between robot vehicle i and its
neighbor robot vehicle j is defined as

q̃ij = qi − qj , (i, j) ∈ E∗ (17)

Define distance error as

eij = ‖q̃ij‖ − dij , (i, j) ∈ E∗ (18)

The dynamics of distance errors can be calculated as

ėij =
q̃>ij (vi − vj)
eij + dij

. (19)

Define

zij = ‖q̃ij‖2 − d2ij = eij (eij + 2dij) . (20)

Given that ‖q̃ij‖ ≥ 0, from (18), we know that eij ≥ −dij .
From (20), it is easy to see that zij = 0 only when eij = 0.
Let q̃ = [. . . , q̃ij , . . .] ∈ R3L, e = [. . . , eij , . . .] ∈ RL, and
z = [. . . , zij , . . .] ∈ RL.

Following the backstepping technique, we introduce the
variable

ṽ = v − vf , (21)

where vf ∈ R3n denotes the desired velocity input of point
Hi.
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Therefore, the objective of this paper is to design control
law that can guide 3D under-actuated multi-robot vehicle
systems with nonholonomic constraint to form a desired for-
mation. To achieve the formation objective, it is required that
the following condition holds:e(t)→ 0 as t→∞, i, j ∈ V∗
and, ṽ → 0 as t→∞.

Applying HOFAs approach in [14], we obtain the con-
troller for system (13) as follows:

τ = −M(A1q̇ +A0q + f((q(0∼1))− UZ). (22)

Let A1 = diag{A11, . . . , An1} ∈ R3n×3n, A0 =
diag{A10, . . . , An0} ∈ R3n×3n, where Ai1 ∈ R3×3, Ai0 ∈
R3×3, i = 1, . . . , n are set of given matrices.

Substituting (22) into (13), we obtain the following linear
closed-loop system:

q̈ +A1q̇ +A0q = UZ , (23)

For the linear closed-loop system (23), based on rigid
graph theory and backstepping technique and using the rela-
tive distance of inter-vehicles, we propose the following for-
mation control law:

UZ = −kaṽ +A1q̇ +A0q + v̇f −R(q̃)T z, (24a)

vf = −kbR(q̃)T z, (24b)

where ka, kb are positive constants, R(q̃) is the rigidity ma-
trix of the desired formation.

Substitute (24) into (22), the controller finally designed
for the system is:

τ = −M(kaṽ +R(q̃)T z + f((q(0∼1))− v̇f ), (25a)

vf = −kbR(q̃)T z, (25b)

Theorem 1. Given the framework F = (G∗, q), let ξ =
(e, ṽ). Consider the under-actuated multi-robot vehicle sys-
tems with nonholonomic constraint and dynamics model (4),
by using the proposed control law (25), the dynamics of
(e, ṽ) can be asymptotically stable. Therefore, the control
law (25) can guide 3D under-actuated multi-robot vehicle
systems (4) to form a desired formation.

Proof. First, we introduce the following candidate Lya-
punov function.

Wξ = We +Wṽ (26)

with

We =
1

4

∑
(i,j)∈E∗

[eij (eij + 2dij)]
2

=
1

4

∑
(i,j)∈E∗

z2ij =
1

4
z>z

(27)

and

Wṽ =
1

2
(ṽ)T ṽ (28)

The time derivative of We is computed as

Ẇe = zTR(q̃)v = zTR(q̃)(ṽ + vf )

= zTR(q̃)(ṽ − kbR(q̃)T z),
(29)

and, the time derivative of Wṽ is computed as

Ẇṽ = (ṽ)T (M−1τ −M−1Cq̇ −M−1Dq̇ − v̇f )

= (ṽ)T (−kaṽ −R(q̃)T z),
(30)

where (19), (20), (21) and (25) are used. Combining the
above analysis, we can obtain that

Ẇξ = Ẇe + Ẇṽ

= zTR(q̃)(ṽ − kbR(q̃)T z) + (ṽ)T (−kaṽ −R(q̃)T z)

= −kbzTR(q̃)R(q̃)T z − ka(ṽ)T ṽ,

(31)

Since F ∗ is infinitesimally and minimally rigid, thenR(q̃)
has full row rank. Since rank[R(q̃)] = rank[R(q̃)R(q̃)T ], the
matrix R(q̃)R(q̃)T is invertible; therefore,

Ẇξ ≤ −kbλmin(R(q̃)R(q̃)T )zT z − ka(ṽ)T ṽ

≤ −min{2ka, 4kbλmin(R(q̃)R(q̃)T )}Wξ.
(32)

where (27) and (28) are used and λmin(·) denotes the mini-
mum eigenvalue.

From (26) and (32), we know that Wξ is positive definite,
and Ẇξ < 0. According to the Lyapunov stability theory,
we prove that (e, ṽ) is asymptotic stable.

Remark 2. Applying HOFAs approach in [14], the high-
order fully actuated nonlinear system can be always con-
verted to a linear closed-loop system one with a desired
eigenstructure by simply designing a controller, and the de-
sired performance of the system can be obtained by only
choosing the matrices A0 and A1 appropriately. Then, the
rigid graph theory and backstepping technique are used to
design the formation controller for the linear closed-loop
system so that the distance error and virtual error eventu-
ally converge to 0. The final obtained formation controller of
under-actuated multi-robot vehicle systems can achieve the
formation control objective, and the stability is proved by us-
ing Liyapunov stability theory. As can be seen from the main
results, the HOFAs approach can significantly reduce the
complexity of subsequent controller design. Moreover, from
the proof of Theorem 1, we observe that the method based
on rigid graph theory produces only one equilibrium point,
this overcomes the disadvantage of the traditional distance-
based methods with multiple equilibrium points.

Remark 3. In this paper, uncertain parameters and exter-
nal disturbances of under-actuated multi-robot vehicle sys-
tems are neglected. The robustness of the system is unknown,
which can result in a significant deviation of the control ef-
fect from the expectation, and affect the accuracy and sta-
bility of the formation. In practical applications, robustness
must be considered in the process of designing control strat-
egy in order to ensure that the system maintains stable, ef-
ficient and reliable performance in the presence of a wide
range of uncertainties. Considering robustness is not only
essential to improve the performance of the system, but also
to expand its application areas. Therefore, in future work,
the focus will be on incorporating robust design principles
in multi-robot formation control strategies based on higher-
order all-drive system approaches. Robust control theories
such as H∞-control, sliding mode control, etc. will be used
to ensure performance maintenance under parameter uncer-
tainty and external disturbances.
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Fig. 2: Desired formation of multi-robot vehicle systems.

4 Simulation Results

In this section, the effectiveness and advantages of the
proposed HOFAs approach are shown via computer sim-
ulations, which are carried out on a robot-vehicle system
consisting of five robot vehicles, the desired formation is
shown in Fig.2. In order to make the framework to be mini-
mally rigid and infinitesimally rigid, the number of edges is
(rank[R(ζ)] = 3n− 6 = 3× 5− 6 =)9, as shown in Fig.2.
Thus, the edge set is selected as

E∗ ={(1, 2), (1, 3), (1, 4), (1, 5),

(2, 3), (2, 5), (3, 4), (3, 5), (4, 5)}.

The initial position and velocity of robot vehicles
are randomly chosen be q1(0) = [−1,−0.6,−1.5],
q2(0) = [2,−2,−1.5], q3(0) = [0.8, 1.2,−1], q4(0) =
[−0.6, 0.8,−0.6], q5(0) = [−0.6,−1.1, 2], v1(0) =
[0.5, 0.5, 0.5], v2(0) = [−0.2, 0.3, 1], v3(0) = [0.6,−1, 1],
v4(0) = [−1,−0.8, 2], v5(0) = [0.4,−0.4, 1], while its ini-
tial orientation αi(0) and βi(0) are set to be any values in
the interval (0, 2π). The control parameters are set to be
ka = 2, kb = 1. The system parameters are set to be:
mi = 1.6 kg, Ī1i = 0.4333 kg ·m2, I2i = 0.6000 kg ·m2,
D̄i = diag {0.3 kg/s, 0.004 kg/s, 0.5 kg/s}, and, Li =
0.2 m for i = 1, . . . , 5.

The trajectories of the five robot vehicles in space as they
converge to the desired formation are shown in Fig.3. The
inter-vehicle distance errors are depicted in Fig.4, the dis-
tance errors between neighboring robotic vehicles gradu-
ally tends to zero, which indicates that the proposed con-
trol law can achieve the control objective and the robot vehi-
cle system can form a desired formation. Fig.5 we plot the
x−, y−, z− direction components of the velocity errors of
each robotic vehicle, after a certain range of flutuations, the
errors gradually tend to zero. From the simulation results,
we can see that the formation control objective is achieved.

5 Conclusion

In this paper, we propose formation control for under-
actuated multi-robot vehicle systems with nonholonomic
constraint based on HOFAs approach and grid graph. By us-
ing coordinate transformation, the nonlinear dynamic model
is transformed into the Euler-Lagrangian-like system that
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Fig. 3: Robot-vehicles trajectories qi(t).
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satisfies the full-actuation condition. Then, by using the HO-
FAs approach, the general control law of the under-actuated
multi-robot vehicle systems is designed and the linear con-
stant closed-loop system is obtained. The nonlinear sys-
tem formation control problem is converted into a forma-
tion control problem of linear constant closed-loop system.
According to the formation control requirements and objec-
tives, designing the final formation controller using a rigid
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graph theory approach allows the under-actuated multi-robot
vehicle systems to accurately converge to the desired forma-
tion. Lyapunov-based stability analysis shows that the er-
ror function theoretically converges to zero eventually. In
addition, simulation results demonstrate the effectiveness of
the formation control law. Note that the limitations of the
proposed approach are that the system parameters are fully
known and the influence of perturbations are not taken into
account. However, there are extensive uncertainties and ex-
ternal disturbances in multi-robot vehicle systems that affect
the stability of the system. Therefore, in future work, we will
develop adaptive formation controllers based on HOFAs ap-
proach for under-actuated multi-robot vehicle systems, con-
sidering the effects of disturbances and unknown items of
model.
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Abstract: This paper takes the attitude control of the middle and final stages of the aircraft as the research background, and 

explores a new nonlinear control method for the strong nonlinearity, strong coupling, fast time-varying and uncertainty 

characteristics of the aircraft. A second-order fully actuated system model of the aircraft is constructed, which is starting from 

the six degree of freedom mathematical model, including aerodynamic coupling and control coupling. It is a nonlinear model, 

including roll, yaw and pitch full three channels. Also, the paper designed an attitude controller on fully actuated system, which 

is based on the PD control method, and proved the stability of the controller through Lyapunov stability analysis method. Then, 

the controller is integrated into the aircraft simulation, and mathematical simulation verification is carried out under benchmark 

conditions, achieving good attitude control effect. 
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1 Introduction 

For aircraft with strong coupling, strong nonlinearity and 

fast time-varying characteristics [1], the design of their 

control systems requires extremely high requirements: the 

control system must have both flexible maneuverability and 

necessary robustness and adaptability. Experts and scholars 

have conducted extensive in-depth research in the field of 

control of such aircraft, and have achieved rich research 

results. The commonly used control methods currently 

include active disturbance rejection control, dynamic 

inverse control, backstepping control, sliding mode variable 

structure control, intelligent control, etc. They have their 

own advantages, but at the same time, there are problems 

such as model inaccuracy [2], computational inaccuracy [3], 

and poor robustness [4]. For aircraft with nonlinear and 

coupled dynamic characteristics, sometimes satisfactory 

dynamic characteristics cannot be obtained. 

In order to reduce the impact of the above issues on the 

stability control effect of the aircraft, it is necessary to 

explore a new nonlinear control method. The control 

problem of aircraft itself is a type of nonlinear, highly 

coupled, and real-time problem, and the fully actuated 

system method has outstanding advantages in dealing with 

nonlinear, time-varying, hysteresis and other problems [5]. " 

Fully actuated " was originally a physical concept, and the 

fully actuated system has unparalleled control characteristics 

compared to other systems. Academician Guangren Duan's 

team has extended the physical concept of fully actuated 

systems at the mathematical level, equivalently transforming 

actual fully actuated systems and subfully actuated systems 

into fully actuated systems in mathematical terms [6]. They 

are a type of control-oriented model for dynamic systems, 

which can easily achieve stabilization. 

This paper explores a nonlinear control method for the 

coupling and nonlinear characteristics of aircraft, aiming to 

reduce errors and achieve stable control effects in the middle 

 
* This work is supported by National Natural Science Foundation (NNSF) 

of China under Grant 62188101. 

and final stages of aircraft. The main research content is 

aimed at the attitude control problem of aircraft, using the 

nonlinear model of the aircraft to establish a second-order 

fully actuated system model, designing a control method on 

the fully actuated system theory, and integrating the 

controller into the simulation models of the middle and final 

stages of the aircraft. The effectiveness and corresponding 

performance of the designed controller are verified through 

mathematical simulation experiments. 

2 Aircraft Fully Actuated System Model 

Construction 

Establishing middle and final motion models for aircraft 

is the foundation for establishing a second-order fully 

actuated system model. 

The centroid dynamic equations of the aircraft are 

 

d
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(1) 

where, P  is the propulsion, and the aerodynamic force 

expressions are 

 0( )

( )

z

y

x

y y y z

z z y

X qSC

Y qS C C C

Z qS C C





 

 

 =


= + +


= +

 (2) 

In the formula, S  is the reference area, y  is the yaw 

rudder angle, z  is the pitch rudder angle, xC  is the drag 

coefficient, 0yC  is the zero lift coefficient, yC  is the attack 
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angle lift coefficient, z

yC  is the pitch rudder lift coefficient, 

zC   is the sideslip angle lateral force coefficient, y

zC


 is the 

yaw rudder lateral force coefficient, q  is the dynamic 

pressure 

 21

2
q V=  (3) 

where, V  is the speed of the aircraft,   is the atmospheric 

density calculated using Bingwei Yang's atmospheric 

model. 

The rotation aerodynamic equation is 

 

( )
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y y x z x z y
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J J J M
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 (4) 

where, x , y , z  are the components of the rotational 

angular velocity of the aircraft coordinate system relative 

to the ground coordinate system along the axes of the 

aircraft coordinate system, and xJ , yJ , zJ  are the 

moments of inertia of the aircraft relative to the axes of the 

aircraft coordinate system. xM , yM , zM  are the 

expressions for the roll moment, yaw moment and pitch 

moment, and the three aerodynamic moments are 
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 (5) 

where, L  is the reference length, x  is the roll rudder 

angle, xm  is the sideslip angle roll moment coefficient, 

ym  is the sideslip angle yaw moment coefficient, zm  is 

the attack angle pitch moment coefficient, x

xm


 is the roll 

rudder roll moment coefficient, y

xm


 is the yaw rudder roll 

moment coefficient, y

ym


 is the yaw rudder yaw moment 

coefficient, x

ym


 is the roll rudder yaw moment coefficient, 

z

zm
 is the pitch rudder pitch moment coefficient. 

The centroid kinematic equation of the aircraft is 

 

d
cos cos

d

d
sin

d

d
cos sin

d

c

c

x
V

t

y
V

t

z
V

t

 



 


=




=



= −


 (6) 

where, x , y  and z  are the positions of the aircraft's 

centroid relative to the ground coordinate system. 

The rotation kinematic equations are 
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and 
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The angle relationship equation is 
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According to equation (5), it can be obtained that 
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From equation (10), we can get 
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substitute equation (4) into equation (11) to obtain 
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Then substitute equation (7) into equation (12) to obtain 
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So, the second-order fully actuated system model of the 

aircraft can be obtained as 

 ( ) ( , ) ( , )+ + =M x x D x x x x x u  (21) 

3 Controller Design on Fully Actuated System 

Theory  

Let 

  1( , ) ( ) ( , ) ( , )−= − +f x x M x D x x x x x  (22) 

and design fully actuated controller as 

  ( ) ( , )= − −u M x f x x v  (23) 

where, v  is the virtual angular accelerations to be designed. 

According to the equation (16), the control signal u  

generated by the controller represents the rudder deviation 

angles. 

To achieve the calculation of aircraft control signals, let 
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Construct the relationship between attitude angle errors, 

attitude angular velocity errors and angular accelerations:  
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where, av  is the virtual roll angle acceleration, bv  is the 

virtual yaw angle acceleration, cv  is the virtual pitch angle 

acceleration.  ,  ,  ,  ,  ,   are the error 

values 
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where, ref , ref  and ref  are angle commands, ref , ref  

and ref  are angular velocity commands. 

For aircraft attitude control, given the angle commands 

and angular velocity commands, the error value is calculated 

using equation (28), and the parameter matrixes aK , bK , 

cK are adjusted. The virtual angular accelerations are 

calculated using equations (25) to (27) to further generate 

control signals. The following is a method for selecting aK , 

bK  and cK . 

Substitute the controller model equation (23) into aircraft 

fully actuated model equation (21):  
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Substitute equation (22) into equation (29), we can get 

 =x v  (30) 

Then we can get the state space equation: 
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According to equations (25) to (27): 
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According to equation (33): 

 ( ) ( ) 0
ref d ref p ref

− + − + − =v x K x x K x x  (35) 

Let the error 

 ref
= −e x x  (36) 

then equation (35) is transformed into 

 0
d p

+ =e + K e K e  (37) 

To ensure rapid stability of the system, i.e. convergence 

of e , e  and e  to 0, the parameter matrixes should be 

positively definite, i.e. pK  and dK  is greater than 0. 
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Combine equation (31) and (32), we can get 
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Therefore, the characteristic equation is 
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Substituting equation (33) and (34) into equation (39) yields 
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Solve equation (40) to obtain the poles as 
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It is known that for second-order control systems, the 

control effect is better when the damping ratio 0.4 ~ 0.8 = , 

and the relationship between the damping ratio and the poles 

is shown in the Fig 1. 



j

0

1

2

 
Fig. 1: The relationship between the damping ratio and the poles 

 

Where, cos = ,    is the damping angle. Then:  
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Therefore, the range of values for the controller parameters 

can be determined as 
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In summary, substitute equation (32) into equation (23), 

the attitude controller based on the theory of fully actuated 

system is obtained as follows: 
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Therefore, the structural diagram of the attitude controller 

on the fully actuated system theory is as Fig. 2 
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Fig. 2: Structure diagram of the attitude controller 
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The Lyapunov analysis method is used below to 

demonstrate the stability of the above control method. 

When using the fully actuated controller to achieve 

attitude control, substituting the controller model equation 

(23) into the second-order fully actuated model equation (21) 

yields 
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 (43) 

Substitute equation (22) into equation (29), we can get 

 =x v  (44) 

By error expression equation (36), we can get  

 ref ref= − = −e x x v x  (45) 

According to the equation (35), the equation (45) is 

transformed into 
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Let  

 =
 
 
 

e
L

e
 (47) 

0e =L  is an equilibrium state of the system, i.e:  

0,  0= =e e  

According to the equation (42), we can get 
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Select the Lyapunov function be 

 ( ) T
=V L L PL  (49) 

where, P  satisfies the Lyapunov equation: 

 T
= −A P + PA I  (50) 

According to equation (49) and (50), when the parameter 

matrixes pK  and dK  satisfy the selection criteria, P  is 

the unique positive definite solution matrix of the Lyapunov 

equation. Therefore, we can get ( ) 0V L . 

Taking the derivative of ( )V L : 

 ( ) T T
= +V L L PL L PL  (51) 

Substituting equation (48) into equation (51) yields 
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T
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 (52) 

Therefore, ( ) 0V L . 

According to the Lyapunov asymptotic stability theorem, 

the control system is stable in equilibrium state 

0,  0= =e e . 

4 Simulation  

The attitude controller designed on the fully actuated 

system theory is applied to control the middle and final 

stages of the aircraft, and the simulation results are shown 

below 

 
(a) 

 

(b) 

 
(c) 

Fig. 3: The attitude angle curve 
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(a) 

 
(b) 

 
(c) 

Fig. 4: The rudder angle curve 

 

Under the attitude control on the fully actuated system 

theory, it is possible to achieve smooth tracking of roll angle 

command, yaw angle command and pitch angle command, 

as shown in Fig. 3. At the same time, according to Fig. 4, it 

can be concluded that the controller has good speed, and the 

rudder angles of the roll, yaw and pitch channels can be 

quickly adjusted in a short period of time, then maintain 

stable control of the attitude. 

5 Conclusion  

This paper first establishes a second-order fully actuated 

system model through the motion model of the aircraft in the 

middle and final stages, and designs an fully actuated 

attitude controller based on it. At the same time, the stability 

of the controller is proved through Lyapunov stability 

analysis method. Subsequently, the controller was integrated 

into the aircraft model simulation and achieved good attitude 

control performance under benchmark conditions. At the 

level of scientific theory, this paper explores a new type of 

nonlinear control method that utilizes the nonlinear model of 

the aircraft for control, replacing small disturbance 

linearization. At the level of engineering practice, this paper 

has been seeking new control methods for aircraft in 

engineering, solving control problems that arise under 

nonlinear and coupling conditions, and reserving a new 

approach for achieving stable control of aircraft in 

engineering. 
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Abstract: This paper considers the stabilization problem for nonlinear interconnected systems with prescribed performance via
high-order fully actuated (HOFA) system approach. Based on a novel performance function in which the initial value is infinity,
the effect of the initial value is eliminated for the prescribed performance method. Then, by some transformation, the nonlinear
interconnected system is transformed into a HOFA system, and a decentralized controller is designed via the HOFA system
approach. Finally, a numerical simulation is provided to substantiate our method.

Key Words: Nonlinear interconnected system, High-order fully actuated system, Prescribed performance control

1 Introduction

Interconnected systems exist in practical engineering,
such as network systems [1], power systems [2], and so on,
which consist of several subsystems coupled to each other
and received more attention in recent years [3–7]. Among
them, decentralized control is a method to deal with inter-
connected terms by their own states’ variables in subsys-
tems. In [5–8], various interconnected systems were inves-
tigated for stabilization and tracking problems with the de-
centralized method.

At present, practical engineering not only requires ba-
sic stability for the system but also imposes some con-
straints on transient response and steady-state performance.
The prescribed performance control (PPC) method could
constrain the transient and steady-state performance of the
system. The prescribed performance control problem for
MIMO and SISO systems are considered in [9, 10]. [11, 12]
consider prescribed performance stabilization and tracking
problems for interconnected time-delay systems. In [13],
the author gives the prescribed-performance-driven event-
triggered machine for a class of uncertain nonlinear inter-
connected systems, which reduces the communication bur-
dens and simply the system design produced. However, all
of those methods have requirements for the initial values of
the system. In [14], based on a novel performance function
which infinity at initial, the author achieves global prescribed
performance for an uncertain nonlinear system and removes
the limitation on the initial value.

HOFA systems widely exist and many practical systems
could be described by HOFA systems model. In [15], Duan
first proposes the significant advantages of HOFA approach.
Based on the method, a nonlinear system could be trans-
formed into the HOFA system, and the controller could be
easily designed. In recent years, the HOFA system ap-
proach has been generalized from general nonlinear sys-

This work is supported in part by the National Natural Science Foun-
dation of China under Grant 62103355, 62373319; in part by the Hebei
Natural Science Foundation under Grant F2023203079; in part by the
Science Research Project of Hebei Education Department under Grant
BJK2023113, and in part by the Hebei Innovation Capability Improvement
Plan Project under Grant 22567619H.

tems to nonlinear time-delay systems [16, 17] and multi-
agent systems[18]. [17] considers the stabilization problem
for a nonlinear time-delay system via the HOFA system ap-
proach and a novel Lyapunov-Krasovskii functional. Based
on the HOFA system approach, the author considers the co-
ordinative control problem for nonlinear multi-agents with
communication delay in [18]. In [19], the author considers
the partially prescribed time control problem via the HOFA
system approach for the interconnected integrator chain sys-
tem. However, there is little work considering nonlinear in-
terconnected systems via the HOFA system approach, and
no work considers the global prescribed performance con-
trol for interconnected systems via the method. Motivated
by the above observation, this work considers global pre-
scribed performance problems for interconnected systems
with a more general model via the HOFA system approach.

This paper is organized as follows: Section 2 presents the
problem formulation. The performance function and system
transformation are also given in this section. The controller
design and stability analysis are presented in Section 3. Sec-
tion 4 gives a simulation and the conclusion is given in Sec-
tion 5.

Notation: In this paper, λ(Ai) represents the eigenvalues
of matrix Ai, Re(s) represent the real part of complex num-
ber s. g(n)(t) denote the nth derivative of g(t). ℜ denote
the set of real number; ℜn denote the n-dimensional Eu-
clidean space. f(·) ∈ Cn means function f(·) has contin-
uous derivatives up to the order n. For vector xi ∈ ℜn,
positive define matrix Ai ∈ ℜn×n and Pi ∈ ℜkn×n, one has
the following definition

∥xi∥ = (xT
i xi)

1
2 , x

(0∼k−1)
i =


xi

ẋi

...
x
(k−1)
i

 ∈ ℜkn,

A0∼k−1
i = [Ai0, Ai1, · · · , Ai(k−1)] ∈ ℜn×kn,

Pi(A
0∼k−1
i ) = [Pi1, · · · , Pik]

T ∈ ℜkn×kn,
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Φ(A0∼k−1
i ) =


0 I 0 0
... 0

. . . 0
0 0 0 I

−Ai0 −Ai1 · · · −Ai(k−1)

 ∈ ℜkn×kn

2 System formulation and preliminaries

2.1 System Description
In this paper, we consider the following interconnected

systems
ẋij(t) =gij(x̄ij(t))xi(j+1)(t) + fij(x̄ij(t))

ẋini(t) =gini(x̄ini(t))ui(t) + fini(x̄ini(t))

+ hi(t, y1(t), . . . , yN (t))

yi(t) =xi1(t)

(1)

where 1 ≤ i ≤ N , N is the number of subsystems, j =
1, . . . . . . , ni − 1. xi(t) = [xi1(t), xi2(t), . . . , xini

(t)]T ∈
ℜni , ui(t) ∈ ℜ, and yi(t) ∈ ℜ represent the system state,
control input and output of the ith subsystem, respectively.
x̄ij(t) = [xi1(t), xi2(t), . . . , xij(t)]

T ∈ ℜj . The smooth
nonlinear functions hi(·) ∈ ℜ and fij(·) ∈ ℜ satisfy that
fij(0, 0, . . . , 0) = hi(t, 0, 0, . . . , 0) = 0. The nonlinear
function gij(·) ∈ ℜ is nonsingular and bounded for all
xij ∈ ℜ.

The objective of this paper is to design a decentralized
controller for the system (1) via the HOFA approach to
achieve global prescribed performance. The following As-
sumption and Lemmas are given.

Assumption 1: The interconnected function hi(·) satisfy
the following inequation:

|hi(t, y1(t), . . . , yN (t))|2 ≤
N∑

k=1

cikh̄ik(yk(t)) (2)

where cik is known constant, h̄ik(·) is known continue func-
tion.

Lemma 1: For the ith system, assume that matrix Ai ∈
ℜni×ni satisfies Re(λ(Ai)) < −µi, i = 1, . . . , N . There
exist a positive matrix Pi ∈ ℜni×ni such that AT

i Pi +
PiAi < −µiPi.

Lemma 2: For µi > 0, there exist a set of matrix
Ai ∈ ℜni×ni , such that Re(λ(Φ(A0∼ni−1

i ))) < −µi

2 ,
i = 1 . . . N .

According to Lemma 1-2, for the ith system, one can
obtain that there exist a positive constant µi such that
ΦT (A0∼ni−1

i )Pi(A
0∼ni−1
i ) + Pi(A

0∼ni−1
i )Φ(A0∼ni−1

i ) ≤
−µiPi(A

0∼ni−1).
Lemma 3: For real numbers a and b, in which b > 0, one

has

a− a2

4b
≤ b

2.2 Global Performance Function
At first, we introduce the following lemma.
Lemma 4 [14]: Consider the following function with

scalar variable xi:

Qi(xi(t)) =

√
ξixi√
1− x2

i

(3)

where ξi is positive constant. Then, Qi(xi(t)) is strictly in-
creasing with respect to xi(t) over the interval (−1, 1).

Design the performance function

Qi(t) =

√
ξiΛi(t)√
1− Λ2

i (t)
(4)

where Λi(t) is a smooth function that satisfies the following
properties:

1) Λi(t) ∈ Cni ;
2) Λi(0) = 1, Λi(t) is monotonically decreasing in t ≥ 0;
3) lim

t→+∞
Λi(t) = bti with 0 < bti ≪ 1 being a constant.

Then, one can know Qi(t) is monotonically decreasing on
time t, and it holds that

Qi(0) = Qi(Λi(0)) = Qi(1) = ∞

lim
t→+∞

Qi(Λi(t)) → Qi(bti) =

√
ξibti√
1− b2ti

.
(5)

In fact, Qi(t) defined by (4) is the performance function,
namely, if the following condition

−Qi(Λi(t)) < yi < Qi(Λi(t)) (6)

can be satisfied, then the output signal will be constrained
with prescribed performance. In addition, since the initial
value of Qi(t) is infinity, one can achieve global prescribed
performance control objective. To ensure that condition (6)
can be satisfied, introduce the following variable

ηi(yi(t)) =
yi(t)√

y2i (t) + ξi
(7)

where ξi is parameter as in (3). Then, ηi(yi(t)) has the fol-
lowing features

1) ηi(yi(t)) is strictly increasing with variable yi(t);
2) ηi(yi(t)) ∈ (−1, 1) with lim

yi→+∞
ηi(yi(t)) = 1 and

lim
yi→−∞

ηi(yi(t)) = −1;

3) ηi(yi(t)) = 0 ⇐⇒ yi(t) = 0.

Now, we define the following transformation variable

si(t) =
ρi(t)

1− ρ2i (t)
(8)

in which

ρi(t) =
ηi(yi)

Λi(t)
. (9)

According to the properties of ηi(·), one have ρi(0) =
ηi(yi(0)) ∈ (−1, 1). For any initial conditional ρi(0) ∈
(−1, 1), one has{

ρi(t) → 1 ⇔ si(t) → +∞
ρi(t) → −1 ⇔ si(t) → −∞

(10)

which means for any ηi(0) ∈ (−1, 1), if one can ensure the
boundness of si(t), then ρi will be within the small set Ξ =
{ρi(t) ∈ ℜ| − 1 < ρi < 1}. In addition, for ∀t ≥ 0,
there exist a small constant 0 < δi < 1 such that δi < |ρi|.
According to (9), one have

−Λi(t) < −δiΛi(t) < ηi < δiΛi(t) < Λi(t) (11)
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Note that, Q(ηi(yi(t))) = yi(t), then performance (11)
yields

−Qi(t) < yi(t) < Qi(t) (12)

which clearly indicates that performance condition (6) is sat-
isfy. Meanwhile, the initial value for Q(t) is infinity, which
eliminates the limitation of initial values in the PPC method.
Based on the transformation of this section, the prescribed
tracking performance control problem is transferred to stabi-
lization of variable si(t) given by (8), whose time derivative
is derived as

ṡi(t) =
1 + ρ2i

(1− ρ2i )
2
ρ̇i(t). (13)

According to (9) and (7), one has

ρ̇i(t) = − Q̇(t)

Q2(t)
ηi(yi(t)) +

1

Q(t)
η̇i(yi(t))

= − Q̇(t)

Q2(t)
ηi(yi(t)) +

1

Q(t)

ξiẏi(t)

(y2i (t) + ξi)
√
y2i (t) + ξi

.

Substituting it into (13), we obtain that

ṡi(t) = σi1(t)ẏi(t) + σi2(t)

= σi1gi1(xi1)xi2(t) + σi1fi1(xi1(t)) + σi2

= Gi1xi2(t) + Fi1

(14)

where

σi1(t) =
1 + ρ2i

(1− ρ2i )
2

ξiẏi(t)

Q(t)((y2i (t) + ξi)
√
(y2i (t) + ξi

σi2(t) = − 1 + ρ2i
(1− ρ2i )

2

Q̇(t)

Q2(t)
ηi(yi(t))

Gi1(t) = σi1(t)gi1(yi(t))

Fi1(t) = σi1(t)fi1(yi(t)) + σi2(t)

2.3 System Transform
In this subsection, we aim to transform the ith subsystem

into a high-order fully actuated system. According to work
[20], we consider the following transformation



zi = si

xi2 = G−1
i1 (żi − Fi1(z, t))

xi(j+1) = G−1
ij (z(0∼j−1), t)

× [z
(j)
i − Fi(j+1)(z

(0∼j−1)
i , t)]

j = 2, . . . , ni − 2

xini
= G−1

i(ni−1)(z
(0∼ni), t)

× [z
(ni)
i − Fini

(z
(0∼ni−1)
i , t)

− hi(y1, . . . , yN )]

(15)

Then system (1) can be transformed into the following high-
order fully actuated system.

z
(ni)
i = Gini

ui + Fini
+Hi (16)

where

Gij(z
0∼j−1
i , t) = Gi(j−1)(z

(0∼j−1)
i , t)gij(x̄ij , t)

Fij(z
(0∼j−1)
i , t)

= Ḟi(j−1)(z
(0∼j−2)
i , t) + Ġi(j−1)(z

(0∼j−2)
i , t)xij

+Gi(j−1)(z
(0∼j−2)
i , t)fij(x̄ij)

Hi(y1, . . . , yN ) = Gi(ni−1)(z
(0∼ni−2)
i , t)

× hi(y1, . . . , yN )

j = 1, . . . , ni

(17)

3 Main Results

For system (16), we design the following controller for the
ith subsystem:

ui(t) = −G−1
ini

(ui0 + ui1) (18)

where

ui0 = A0∼ni−1z
(0∼ni−1)
i + Fini

ui1 =
G2

i(ni−1)

4ϵi

N∑
k=1

ckih̄
2
ki(yi)P

T
L z

(0∼ni−1)
i

(19)

in which ϵi is positive design constant.
The main result is given as follow:
Theorem 1: Consider system (1) that satisfies Assump-

tion 1, under transformation (15), the controller (18) could
ensure that all signals of the system are bounded, and the
prescribed performance of the output signal can be guaran-
teed which is independent of the initial value of system’s
state.

Proof. For the ith subsystem, substituting the (18) and (19)
into (16), one can obtain the following close-loop system.

z
(n)
i +A0∼ni−1z

(0∼ni−1)
i = Hi − ui1 (20)

which also could be written as

ż(0∼ni−1) = Φ(A0∼ni−1
i )z

(0∼ni−1)
i +

[
0ni−1

Hi − ui1

]
(21)

choose the following Lyapunov function

Vi =
1

2

(
z
(0∼ni−1)
i

)T
Pi(A

0∼ni−1
i )z

(0∼ni−1)
i (22)

With the help of Lemma 1-2, one can get that

V̇i =
1

2

(
ż
(0∼ni−1)
i

)T
Pi(A

0∼ni−1
i )z

(0∼ni−1)
i

+
1

2

(
z
(0∼ni−1)
i

)T
Pi(A

0∼ni−1
i )ż

(0∼ni−1)
i

=
1

2

(
ż
(0∼ni−1)
i

)T (
ΦT (A0∼ni−1

i )Pi(A
0∼ni−1
i )

+ Pi(A
0∼ni−1
i )Φ(A0∼ni−1

i )

)
z
(0∼ni−1)
i

+
(
z
(ni−1)
i

)T
Pi(A

0∼ni−1
i )

[
0ni−1

Hi − ui1

]
≤− µiVi +

(
z
(ni−1)
i

)T
PLi(A

0∼ni−1
i )(Hi − ui1)

(23)
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where

PLi(A
0∼ni−1
i ) = Pi(A

0∼ni−1
i )

[
0ni−1

I

]
According to Assumption 1 and Lemma 3, one has

(
z
(ni−1)
i

)T
PLi(A

0∼ni−1
i )(Hi − ui1)

≤
∥∥∥∥(z(ni−1)

i

)T
PLi

∥∥∥∥Gi(ni−1)

N∑
k=1

cikh̄ik(yk)

−
(
z
(ni−1)
i

)T
PLi

G2
i(ni−1)

4ϵi

N∑
k=1

ckih̄
2
ki(yi)P

T
L z

(0∼ni−1)
i

≤
∥∥∥∥(z(ni−1)

i

)T
PLi

∥∥∥∥Gi(ni−1)

N∑
k=1

cikh̄ik(yk)

−
G2

i(ni−1)

4ϵi

∥∥∥∥(z(ni−1)
i

)T
PLi

∥∥∥∥2 N∑
k=1

cikh̄
2
ik(yk)

+
G2

i(ni−1)

4ϵi

∥∥∥∥(z(ni−1)
i

)T
PLi

∥∥∥∥2
×

(
N∑

k=1

(ckih̄
2
ki(yi)− cikh̄

2
ik(yk))

)

≤
G2

i(ni−1)

4ϵi

∥∥∥∥(z(ni−1)
i

)T
PLi

∥∥∥∥2
×

(
N∑

k=1

(ckih̄
2
ki(yi)− cikh̄

2
ik(yk))

)

+ ϵi

N∑
k=1

cik

(24)

For the whole interconnected system, choose the Lyapunov
function as V =

∑N
i=1 Vi, note that

N∑
i=1

N∑
k=1

ckih̄
2
ki(yi) =

N∑
i=1

N∑
k=1

cikh̄
2
ik(yk)

Then, one has

V̇ ≤ −
N∑
i=1

µiVi +

N∑
i=1

N∑
k=1

cikϵi

≤ −µV + ϵ

(25)

where ϵ =
∑N

i=1

∑N
k=1 cikϵi, µ = min{µ1, . . . , µN}. By

(25), one can obtain the boundness of si, which means the
output signal for each subsystem yi satisfies the prescribed
performance. In addition, the initial value for the prescribed
function is infinity. Thus, the PPC method removes the ef-
fection of the initial value in this paper. Meanwhile, then xi2

is bounded with the boundness of it z(1)i1 . In this way, one can
get the boundness of xij and z

(j)
ij . Thus, the control signal

ui is also bounded. Therefore, all signals of the closed-loop
system are bounded. The proof ends.

0 0.5 1 1.5 2 2.5 3

Time (sec)

-3

-2

-1

0

1

2

3

Fig. 1: Response of output signal y1(t)

4 simulation

To verify the effectiveness of methods, consider the fol-
lowing example of nonlinear interconnected systems:

ẋ11(t) = x12(t) + f11(x̄11)

ẋ12(t) = u1(t) + f12(x̄12) + h1(y1, y2)

y1(t) = x11(t)

ẋ21(t) = x22(t) + φ21(x̄21)

ẋ22(t) = u2(t) + f22(x̄22) + h2(y1, y2)

y2(t) = x21(t)

(26)

where

f11 = sin(x11(t))

f12 = x2
11(t) + sin(x12(t))

f21 = cos(x21(t))

f22 = x2
21(t) + cos(x22(t))

h2 = h1 = cos(x21(t)) + sin(x11(t))

For the performance function, select time-scaling function as
Λ1(t) = 0.99e−3t+0.01 and Λ2(t) = 0.99e−3t+0.01. The
parameter ξi is selected as ξ1 = ξ2 = 4. Then we can get
performance function and transformation immediately. The
controller design as:

ui = −G−1
i2 (ui0 + ui1)

ui0 = A0∼1z
(0∼1)
i + Fi2

ui1 =
G2

i1

4ϵi

N∑
k=1

cikh̄
2
ki(yi)P

T
L z

(0∼1)
i

where

N∑
k=1

ck1h̄
2
k1(y1) =

N∑
k=1

ck2h̄
2
k2(y1) = 2 cos2(x11) + 3 sin2(x11)

According to [19], one have A0∼1
1 = A0∼1

2 = [11.25 6],
PT
L1 = PT

L2 = [0.002 0.0006]. Select the initial values as
[x11(0) x12(0) x21(0) x22(0)]

T = [1.5 0.2 − 1 0.5]T .
The results of the simulation are depicted in Figs 1-4.

Fig.1 and 2 show that the output signal of each subsystem
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Fig. 2: Response of output signal y2(t)

0 2 4 6 8 10

Time (sec)

-4

-3

-2

-1

0

1

Fig. 3: Response of states x12 and x22

could be within the region of performance function. Fig.3
shows the response of state variable x12 and x22 and Fig.4
shows the control signal ui(t), i = 1, 2 for each subsystem,
respectively.

5 Conclusion

This paper considers the prescribed performance control
problems for interconnected systems. Based on transforma-
tion (15), the nonlinear interconnected system is transformed
into a HOFA system, a decentralized prescribed performance
control law is given, which can ensure the prescribed per-
formance of the output signal and eliminates the affection
of the initial value. All signals for closed-loop systems are
bounded. The simulation results have shown the reliability
of the proposed method.
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Manipulator: A High-Order Fully Actuated System Approach
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Abstract: The 7-DOF manipulator system is a complex dynamic system characterized by high nonlinearity and strong coupling.
To tackle these challenges, this study focuses on developing a trajectory-tracking controller based on the high-order fully actuated
(HOFA) system approach. The dynamic model is derived using the Lagrange dynamic equation. Subsequently, the system model
is converted into a HOFA model, and the trajectory tracking controller is formulated through direct parameterization within
the HOFA system model framework. Internal and external uncertainties, including variations in internal model parameters and
external frictional forces, can impact the tracking precision of the actual manipulator system in operational conditions. To address
these uncertainties affecting tracking accuracy and overall performance, a nonlinear extended state observer (ESO) is devised to
counteract the aggregated system disturbances. The simulation outcomes illustrate the effectiveness of the HOFA method and
ESO in enhancing manipulator trajectory tracking accuracy and ensuring strong resilience.

Key Words: High-order fully actuated system, Manipulator, Trajectory tracking, Extended state observer

1 Introduction

As a typical example of industrial robots, the multi-
degree-of-freedom manipulator is widely used in industrial
assembly, safety, and explosion protection [1] due to its ex-
ceptional operational versatility.

Manipulators are complex systems characterized by high
precision, multiple inputs and outputs, high nonlinearity, and
strong coupling, resulting in intricate and challenging con-
trol requirements. In most manipulator control problems,
implementing precise and rapid tracking control for manip-
ulator joint trajectories is particularly crucial.

Various control methods have been proposed to ensure ac-
curate tracking to meet the dynamic stability performance
requirements under different working conditions.

Specially, PID control [2], as a model-independent con-
trol method, is widely used due to its strong applicability.
However, simple PID control struggles to meet system per-
formance requirements, necessitating significant time for pa-
rameter tuning to achieve higher control accuracy. There-
fore, adaptive control [3] is frequently employed in manip-
ulator systems due to its ability to mitigate disturbances and
interference effectively. For example, [4] employs known
function regressors to handle the uncertain dynamics of
robots and introduces adaptive control to address saturation.
This approach consequently achieves convergence of manip-
ulator tracking errors.

Nevertheless, the drawback of adaptive control is its com-
putationally intensive online identification process, which
makes implementation more complex. Furthermore, due to
their capacity to approximate nonlinear unknown functions,
neural networks are also applicable in uncertain manipulator
systems. For instance, a fuzzy PD control method based on
a back-propagation neural network is proposed in [5] for a
3-DOF manipulator. The membership function is optimized
online by the neural network to enhance the performance of

This work is supported by Full-Time Introduction of the National
High-Level Innovative Talent Research Foundation of Hebei Province under
Grant 2021HBQZYCXY003.

the fuzzy PD algorithm. However, neural networks are less
interpretable and rely more heavily on personal experience
in practical applications. The first-order state-space equa-
tion model is commonly employed as the research focus for
model-dependent control methods. However, the dynamics
modeling process for multi-degree-of-freedom manipulators
is difficult.

Motivated by the above observations, this paper studies
the trajectory tracking control problem for the multi-degree-
of-freedom manipulator using the high-order fully actuated
(HOFA) system model, avoiding reduction to a first-order
state-space equation. The HOFA approach is a controller-
oriented design model [6-8] characterized by the direct ac-
tuation of each degree of freedom. A direct parameteriza-
tion method [9] is employed in this paper to design a non-
linear feedback controller, transforming the original nonlin-
ear open-loop system into a linear steady closed-loop system
with the desired characteristic structure.

Our control strategy also involves utilizing an extended
state observer (ESO) to estimate the combined disturbance
caused by model uncertainty and external interference and
compensate for this disturbance in the HOFA controller.

Hence, the contributions of this paper can be summarized
as follows: (1) The establishment of a dynamic model for
the 7-DOF manipulator, providing an accurate representa-
tion of the system’s dynamic characteristics; (2) By employ-
ing the ESO to estimate the plant dynamics and disturbances
precisely, the HOFA controller can achieve stable and rapid
tracking performance.

2 Modeling of 7-DOF Manipulator

The 7-DOF manipulator ”Diana” can be depicted in Fig.1.
All seven joints are rotating joints, and the Lagrange dy-
namic equation establishes its dynamic model.

The Lagrange dynamic equation is

d

dt

∂L

∂q̇
− ∂L

∂q
= u (1)

within which, L = T − U is the Lagrangian function, q is

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China

951  



Fig. 1: 7-DOF manipulator ”Diana”

the generalized vector - for the manipulator system q = θ,
and u is the generalized joint torque.

The total kinetic energy of a 7-DOF manipulator system
can be expressed as

T =
∑
i

Ti

Ti =

7∑
i=1

(
1

2
miv

T
Ci
vCi

+
1

2

i

ωT
i I

i
iωi

) (2)

where, mi is the mass of the I-th link and Ii is the rigid body
inertia tensor.

The potential energy of the 7-DOF manipulator system is

U =

7∑
i=1

(
mig

0yci
)

(3)

within which g is the acceleration of gravity, 0yci is the
height of the centroid of each connecting rod in the refer-
ence coordinate system.

The nominal dynamic model of the 7-DOF manipulator is
obtained by simplifying the above formula

M(q)q̈ + C(q, q̇)q̇ +G(q) = u (4)

where, M(q) ∈ R7×7 is the mass matrix that is a positive
definite symmetric matrix, C(q, q̇) ∈ R7×7 is the coefficient
matrix representing Centrifugal force and Coriolis force vec-
tor, G(q) ∈ R7 is the gravity matrix, q ∈ R7 is the state
vector, u ∈ R7 is the control vector.

External factors such as joint friction and disturbance dur-
ing operation inevitably affect the actual manipulator. In this
case, the dynamic model can be expressed as

M(q)q̈ + C(q, q̇)q̇ +G(q) = u+ d (5)

where d denotes the lumped disturbance. We make the fol-
lowing assumption in the remainder of the paper.

Assumption 1. The disturbance d is bounded, that is, there
is a constant λ ≥ 0 so that ∥d(q, q̇, q̈)∥ ≤ λ,∀q ∈ R7, q̇ ∈
R7, q̈ ∈ R7

3 Control scheme

The desired trajectory tracked by the controller is shown
in Fig.2.

Fig. 2: Desired trajectory

3.1 Problem formulation
To solve the nonlinear problems of the manipulator, an

adaptive tracking controller is constructed [10].
Define that x∗(t) ∈ Rr be a reference signal to be tracked

by x(t), and given
z = x− x∗ (6)

Then

z(i) = x(i) − (x∗)(i), i = 0, 1, . . . , n. (7)

The direct parameterization design method is as follows:
H
(
x(0∼n−1)

)
= H

(
z(0∼n−1), t

)
q
(
x(0∼n−1)

)
= q

(
z(0∼n−1), t

)
L
(
x(0∼n−1)

)
= L

(
z(0∼n−1), t

) (8)

Thus the general HOFA system is as follows:

z(n) = H
(
z(0∼n−1), t

)
θ + q

(
z(0∼n−1), t

)
+

L
(
z(0∼n−1), t

)
u− (x∗)

(n)
(9)

The adaptive tracking control law is as follows:u = −L−1

([
A0 A1

] [ z

ż

]
+ u∗

)
u∗ = HT

(
z(0∼n−1)

)
θ̂ + q

(
z(0∼n−1)

)
− (x∗)(n)

when applied to the system (5), guarantees the following:

(1) x(0∼n−1) − (x∗)(0∼n−1) → 0, t → ∞;

(2) ∥θ − θ̂∥ is bounded;

For an arbitrarily chosen F ∈ Rnr×nr, all the matrix
A0∼n−1 and the nonsingular matrix V ∈ Rnr×nr satisfy-
ing

Φ
(
A0∼n−1

)
= V FV −1 (10)

are given by

A0∼n−1 = −ZFnV −1(Z,F ) (11)

V (Z,F ) =


Z
ZF

...
ZFn−1

 (12)

where Z ∈ Rr×nr is an arbitrary parameter matrix satisfying

det V (Z,F ) ̸= 0
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3.2 Controller design
The structure of the proposed HOFA control strategy is

shown in Fig.3.

Fig. 3: Structure of the HOFA control strategy

The system (5) turns into a general second-order fully ac-
tuated model

z̈ = d− 1

M
(Cż +G) +

1

M
u− ẍ∗ (13)

The parameters are described as follows:
H
(
z(0∼n−1), t

)
= 1

q
(
z(0∼n−1), t

)
= − 1

M (Cż +G)

L
(
z(0∼n−1), t

)
= 1

M

(14)

The model satisfies the fully actuated condition:

det 1
M ̸= 0

The adaptive trajectory tracking control law is designed as
follows:

u = −M

([
A0 A1

] [ z

ż

]
+ u∗

)
u∗ = d̂− 1

M (Cż +G)− ẍ∗

(15)

3.3 Solution of A0∼1

The F matrix represents the system characteristic matrix.
To ensure the stability of the closed-loop system, the eigen-
value of the matrix F is required to be located in the left
half-complex plane. Choose a diagonal matrix F with nega-
tive diagonal elements

F =

[
−a −b
b −a

]
(16)

with a and b being two positive scalars, included as a diago-
nal block in F . The eigenvalues of the matrix F are −a±jb.

Particularly choosing

a = b = 30

Further choosing

Z =
[
1 1

]
we have

V (Z,F ) =

[
Z
ZF

]
=

[
1 1
0 −60

]
(17)

where

det V (Z,F ) ̸= 0

and then obtain the gain parameters matrix

A0∼1 = −ZF 2V −1 =
[
1800 60

]
(18)

Lemma 3.1. For any µ>0, there exsits a set of matrices
Ai ∈ Rr×r,i = 0, 1, ..., n− 1 satisfying

Reλi(Φ(A
0∼n−1))<− µ

2
, i = 1, 2, 3 . . . , n, (19)

when the condition in (26) holds for some µ>0, there ex-
ists a positive definite matrix P (A0∼n−1) satisfying

ΦT (A0∼n−1)P (A0∼n−1) + P (A0∼n−1)Φ(A0∼n−1)

<− µP (A0∼n−1) (20)

3.4 ESO design
A nonlinear ESO is designed to estimate and compensate

for the lumped disturbance d [11].
Let x3 = d represent the extended state, and x =[
x1 x2 x3

]T
. Assuming that d is differentiable, we

define
˙̂
d = θ (21)

and a continuous ESO for Eq.(??) can be constructed as

˙̂x1 = x̂2 + l1 (x1 − x̂1)

˙̂x2 =
1

M
(u− Cx2 −G) + x̂3 + l2 (x1 − x̂1)

˙̂x3 = l3 (x1 − x̂1)

(22)

where L =
[
l1 l2 l3

]T
is the observer gain vector, and

d̂ is the estimate of disturbance d. The state errors are defined
as

ex = x1 − x̂1

ey = x2 − x̂2

ed = d− d̂

(23)

The following error state space model is obtained ėx
ėy
ėd

 =

 −l1 1 0
−l2 0 1
−l3 0 0

 ex
ey
ed

+

 0
0
1

 ḋ (24)

The observer gains are chosen such that the characteris-
tic polynomial (26) is Hurwitz [12]. The error model (24)
is globally asymptotically stable. If parameter d is constant
or time-varying slowly, ḋ is approximated to zero and dis-
regarded [13]. All the observer poles are placed at −ω0 for
tuning simplicity. Then, there exists the system characteris-
tic polynomial of (25)

λ0 (s) = s3 + l1s
2 + l2s+ l3 = (s+ ω0)

3 (25)

where ω0 is a positive real number representing the observer
bandwidth and L =

[
3ω0 3ω2

0 ω3
0

]T
.
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3.5 Controller Stability Analysis
We have the following theorem regarding the robust stabi-

lization for the high-order system with nonlinear uncertain-
ties.

Theorem 3.1. Let µ and ε are two arbitrarily given positive
numbers, and Ai ∈ Rr×r,i = 0, 1, ..., n − 1 be a set of
matrices satisfying (23). Then, the following control lawu = −M

([
A0 A1

] [ z

ż

]
+ u∗

)
u∗ = d̂− 1

M (Cż +G)− ẍ∗

(26)

for the uncertain system (5) guarantees that the state
x(0∼n−1) converges into the following ellipsoid centered at
the origin:

Θµ,η(0)

=

{
x(0∼n−1) |

(
x(0∼n−1)

)T
P
(
A0∼n−1

)
x(0∼n−1) ≤ η

µ

}
Proof. Substituting the control law (15) into system (13),
gives the following closed-loop system

z(n) +A0∼n−1z(0∼n−1) = ϕ
(
z(0∼n−1)

)
(27)

where
ϕ
(
z(0∼n−1)

)
= d− d̂ (28)

The closed-loop system (27) can be written in the following
state-space form:

ż0∼1 = Φ(z0∼1)z0∼1 +

[
0r

ϕ(z0∼1)

]
(29)

There, Ai ∈ Rr×r,i = 0, 1, ..., n−1 satisfying the condition
(19).

Then the following Lyapunov function can be chosen for
the system (13):

V =
1

2
(x(0∼1))TP (A0∼1)x(0∼1) (30)

we have

V̇ =
1

2
(ẋ(0∼1))TPx(0∼1) +

1

2
(x(0∼1))TPẋ(0∼1)

=
1

2
(Φx(0∼1) +

[
0r

ϕ(z(0∼1))

]
)TPx(0∼1) +

1

2
(x(0∼1))T

P (Φx(0∼1) +

[
0r

ϕ(z(0∼1))

]
)

=
1

2
(x(0∼1))T (ΦTP + PΦ)x(0∼1) + (x0∼1)TP

[
0r

ϕ(z(0∼1))

]
≤− µ

2
(x(0∼1))TPx(0∼1) + (x(0∼1))TPLϕ(z

(0∼1))

=− µV + (x(0∼1))TPLϕ(z
(0∼1))

where d− d̂ is bounded, gives

V̇ ≤ −µV + η

It thus follows from the Comparison Theorem that [14]

V ≤ V (0)e−µt +
η

µ
(1− e(−µt)), (31)

which gives

V ≤ (V (0)− η

µ
)e−µt +

η

µ
→ +

η

µ
, t → ∞.

Thus the state x(0∼1) eventually converges into the ellipsoid
Θµ,η(0). The proof is completed.

3.6 ESO Stability Analysis
By denoting x̃1 = xi − x̂i, i = 1, 2, 3, the observer esti-

mation error dynamics can be expressed as [15-17]

˙̃x1 = x̃2 − 3ω0x̃1

˙̃x2 = x̃3 − 3ω2
0 x̃1

˙̃x3 = θ − ω3
0 x̃1

(32)

Now, let us scale the observer estimation error ξ̃i(t) by ωi−1
0 ,

define ϵi(t) =
ξ̃i(t)

ωi−1
0

, i = 1, 2, 3. Then, (32) can be rewritten
as

ϵ̇ = ω0Aϵϵ+Bϵ
h(ξ, d)

ω2
0

(33)

where

Aϵ =

 −3 1 0
−3 0 1
−1 0 0

Bϵ =

 0
0
1

 (34)

Theorem 3.2. Assuming that θ is bounded, there exist a con-
stant σi > 0 and a finite time T1 > 0 such that |x̃i| ≤ σi, i =
1, 2, 3, ∀t ≥ T1 > 0 and ω0 > 0. σi is dependent on the ini-
tial condition of x̃i and upper boundary of θ. Furthermore,
σi = O

(
1/ωk

0

)
for some positive integer k.

Proof. Solving (33), we can obtain

ϵ(t) = eω0Aϵtϵ(0) +

∫ t

0

eω0Aϵ(t−τ)Bϵ
h(ξ(τ), d)

ω2
0

dτ (35)

Let

p(t) =

∫ t

0

eω0Aϵ(t−τ)Bϵ
h(ξ(τ), d)

ω2
0

dτ (36)

Since h(ξ(τ), d) is bounded, h(ξ(τ), d) ≤ δ, where δ is a
positive constant, it follows that

|pi(t)| ≤
δ

ω3
0

[|
(
A−1

ϵ Bϵ

)
i
|+ |

(
A−1

ϵ eω0AϵtBϵ

)
i
|] (37)

for i = 1, 2, 3. Since

A−1
ϵ =

 0 0 −1
1 0 −3
0 1 −3

 (38)

one has

|
(
A−1

ϵ Bϵ

)
i
| =

{
1 |i=1

3 |i=2,3

(39)

Since Aϵ is Hurwitz, there exists a finite time T1 > 0 such
that

|[eω0Aϵt]ij | ≤
1

ω3
0

(40)

for all t ≥ T1, i, j = 1, 2, 3. Hence

|[eω0AϵtB]i| ≤
1

ω3
0

(41)
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(a) Joint 1 (b) Joint 2

(c) Joint 3 (d) Joint 4

(e) Joint 5 (f) Joint 6

(g) Joint 7

Fig. 4: Simulation results

for all t ≥ T1, i = 1, 2, 3. Note that T1 depends on ω0Aϵ.
Define

A−1
ϵ =

 s11 s12 s13
s21 s22 s23
s31 s32 s33

 (42)

eω0Aϵt =

 d11 d12 d13
d21 d22 d23
d31 d32 d33

 (43)
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One has

|
(
A−1

ϵ eω0AϵtBϵ

)
i
| = |si1d13 + si2d23 + si3d33| ≤{

1
ω3

0
|i = 1

4
ω3

0
|i = 2, 3

(44)

for all t ≥ T1. From (38), (39), and (45), we obtain

|pi(t)| ≤
3δ

ω3
0

+
4δ

ω6
0

(45)

for all t ≥ T1, i = 1, 2, 3. Let ϵsum(0) = |ϵ1(0)|+ |ϵ2(0)|+
|ϵ3(0)|. It follows that

|[eω0Aϵtϵ(0)]i| ≤
ϵsum(0)

ω3
0

(46)

for all t ≥ T1, i = 1, 2, 3. From (35), one has

|ϵi(t)| ≤ |[eω0Aϵtϵ(0)]i|+ |pi(t)| (47)

Let ξ̃sum(0) = |ξ̃1(0)| + |ξ̃2(0)| + |ξ̃3(0)|. According to
ϵi(t) =

ξ̃i(t)

ωi−1
0

, i = 1, 2, 3 and (45)-(47), we have

|ξ̃i(t)| ≤ | |ξ̃sum(0)|
ω3
0

+
3δ

ω4−i
0

+
4δ

ω7−i
0

= σi (48)

for all t ≥ T1, i = 1, 2, 3. Q.E.D.

The results indicate that under the assumption of the
boundedness of θ, the estimation error of ESO is bounded.
Generally, the larger the bandwidth, the more accurate the
estimation. However, a large bandwidth will increase noise
sensitivity. Therefore, a proper bandwidth should be se-
lected. By replacing the true value d, Eq.(5) can be rewritten
as follows:

M (q) q̈ + C (q, q̇) q̇ +G (q) = u+ x̂3 (49)

Finally, the appropriate bandwidth ω0 = 15 is determined.
4 Simulation results

The simulation duration is 10 s, and the simulation step is
set to 0.01s. The simulation results of joint angle trajectory
tracking are depicted in Fig.4. The ESO is applied to ob-
serve the lumped parameter disturbance caused by internal
and external uncertainty disturbances such as joint friction
and external enhancement of the anti-interference ability of
the system. The simulation results show that the steady-state
errors of the seven joints can be controlled within 0.05 °,
which exhibits that the proposed HOFA control strategy has
excellent dynamic and steady-state characteristics.
5 Conclusion

This study proposes a joint trajectory tracking control
approach for the 7-DOF manipulator utilizing the HOFA
system model and designing the trajectory tracking con-
troller through direct parameterization. An ESO is imple-
mented to estimate and compensate for the lumped distur-
bance and manage internal and external uncertainties in the
manipulator control system. The compensated control strat-
egy enables the system to follow the desired target trajec-
tory while meeting performance criteria. Simulation results
demonstrate the effectiveness and robustness of the proposed
HOFA control method. Future experiments will validate the
proposed theory using real robotic arm hardware platform
parameters.
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Abstract: This paper considers a problem on the design of algebraic differentiator based fractional order controller by using the
high-order fully actuated (HOFA) system approach. First, the considered nonlinear system is transformed into a HOFA system
model. Second, a fractional order controller involving the Riemann-Liouville fractional sequential derivatives is directly written
out for the HOFA system model in the framework of the closed-loop fractional order linear time invariant (LTI) system. Then,
the algebraic integral formulas of the unknown derivatives are derived by applying the modulating functions method. Finally, an
example is provided to illustrate the efficiency of the proposed method with noisy observation.

Key Words: Nonlinear control system, high-order fully actuated system, fractional order controller, algebraic differentiator.

1 Introduction

In reality, almost all physical systems are intrinsically
nonlinear. Based on the state-space models, many efforts
have been devoted to nonlinear control systems during the
past decades. Though, the problems on the nonlinear control
systems are still challenging. The high-order fully actuat-
ed (HOFA) system approach was raised from the fact that
many practical fully actuated systems are governed by cer-
tain physical laws, which are usually second- or high-order
differential equations, such as Newton’s laws, Kirchhoff’s
laws, etc. [1,2]. By applying the HOFA system approach, the
controller of a nonlinear system can be immediately written
out as soon as a single HOFA system model or a set of HO-
FA system models are derived in [3–5]. Within the frame-
work of HOFA system approach, considerable contributions
on theories and applications have emerged in the most recent
years [6–9].

As an extension of the classical calculus, fractional cal-
culus has the ability to model some complex physical phe-
nomena more accurately [10, 11]. In the field of control en-
gineering, more and more researchers have realized the su-
perior performance of controllers with fractional order op-
erators, such as providing flexible stability margin and en-
hanced robustness [12–14]. However, the implementation of
fractional order controllers is not easy due to the singulari-
ties and long-memory characteristics of the fractional order
operators [15, 16]. Meanwhile, the adoption of inappropri-
ate differentiators may amplify the effects of measurement
noises caused by practical sensors [17]. Fortunately, a series
of recent works on the modulating functions based algebraic
differentiators have shown several advantages such as fast-
convergence, robustness against sensor measurement noises,
independence of initial conditions, and so on [18–22]. In-
spired by the above mentioned works, this paper intends to
design an algebraic differentiator based fractional order con-

This work was supported by National Natural Science Foundation of
China (No. 62303397), Natural Science Foundation of Hebei Province of
China (No. F2021203028), Hebei innovation capability improvement plan
project of China (No. 22567619H), and was supported by the project APR-
IA 2021: COVEMR of the region of Centre Val de Loire, France.

troller by combining the HOFA system approach with the
modulating functions method, where the following symbols
introduced in [1] are useful:

x(0∼n) :=


x
ẋ
...

x(n)

 , x
(0∼n)
i∼j :=


x

(0∼n)
i

x
(0∼n)
i+1

...
x

(0∼n)
j

 , j ≥ i.

2 Problem formulation

Consider the nonlinear system model as follows [1]:

x(mc) = F (x(0∼mc−1)) +G(x(0∼mc−1))u, (1)

where x ∈ Rr, and mc is a positive integer. Assumed that
(1) satisfies the following conditions:
(C1) : F (x(0∼mc−1)) is a continuously differentiable

vector-valued function of x(0∼mc−1),
(C2) : r

2 ≤ rank(G(x(0∼mc−1))) ≤ r.
The objective of this work is to design an algebraic dif-

ferentiator based fractional order controller u for the system
(1). By denoting α ∈ R+ as the fractional order and dαe as
the smallest integer such that dαe ≥ α, we introduce some
basic concepts on the Riemann-Liouville fractional order op-
erators in the following.

Definition 1 [10] Let l be the smallest integer such that l ≥
α. The Riemann-Liouville fractional derivative of a function
f is defined as follows: ∀ t ∈ R+,

Dα
t f(t) :=

dl

dtl
{

Dα−l
t f(t)

}
,

where Dα−l
t refers to the Riemann-Liouville fractional inte-

gral operator.

Based on the above definition, the Riemann-Liouville
fractional sequential derivative is defined as follows.

Definition 2 [10] Let k ∈ N, the Riemann-Liouville frac-
tional sequential derivative of a function f is defined as fol-
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lows: ∀ t ∈ R+,

Dkαt f(t) :=

{
f(t), for k = 0,

Dα
t

{
D(k−1)α
t f(t)

}
, for k ≥ 1.

(2)

3 Main results

The main results on the proposed fractional order con-
troller are introduced in this section.

3.1 Fractional order controller
Similar as done in [23], a fractional order controller is

provided in the following theorem by applying the HOFA
system approach. Different from [23], the proposed con-
troller is given based on the fractional sequential derivatives
of Riemann-Liouville type instead of Caputo type.

Theorem 1 For the system (1) fulfilling (C1) and (C2), let
r, s ∈ N∗, 0 < α < 1, ᾱ = [α0, . . . , αi, . . . , αs−1]

> ∈
Rs×1 with αi = iα and 0 < αs−1 < 2mc. If there exists a
nonsingular matrix Q(x) ∈ Rr×r such that:

z =

[
za
zb

]
= Q(x)x ∈ Rr, za ∈ Rr0×1, zb ∈ Rrc×1, (3)

with r0 = r−rc ≤ r, the corresponding HOFA system model
of (1) is given as follows:

z(2mc)
a = h(z(0∼2mc−1)

a , zb) + L(z(0∼2mc−1)
a , zb)u, (4)

where h(z
(0∼2mc−1)
a , zb) ∈ Rr0×2mc−1 is a vector function,

and L(z
(0∼2mc−1)
a , zb) ∈ Rr0×r0 is a matrix function fulfill-

ing:
detL(z(0∼2mc−1)

a , zb) 6= 0. (5)

If there exists the following vector z(ᾱ)
a :

z(ᾱ)
a =


za
Dα1
t za
...

Dαs−1

t za

 ∈ Rsr,

and the matrix Aᾱ =
[
Aα0

, Aα1
, . . . , Aαs−1

]
with Aαi

∈
Rr0×r0 for i = 0, 1, . . . , s−1, the fractional order controller
u given by u := −L−1

(
z

(0∼2mc−1)
a , zb

)(
Aᾱz

(ᾱ)
a + u∗

)
,

u∗ := h
(
z

(0∼2mc−1)
a , zb

)
− ν∗,

(6)

with an external input ν∗ ∈ Rr0×1 can lead to a closed-loop
fractional order LTI system of (4) as follows:

z(2mc)
a +

s−1∑
i=0

AαiD
αi
t za = ν∗. (7)

In order to guarantee the stability of the closed-loop frac-
tional order LTI system (7), the matrix Aᾱ is chosen such
that the following condition is fulfilled [23]:

|arg(eig(Ac))| >
απ

2
, (8)

where

Ac :=


0 Ir0 0 0
0 0 . . . 0
0 0 . . . Ir0
−Aα0

−Aα1
. . . −Aαs−1

 ∈ Rrc×rc ,

with rc = sr0. Thus, the derivation of z(0∼2mc−1)
a for the

fractional order controller u becomes the main task of this
work.

3.2 Algebraic integral formulas of z(0∼2mc−1)
a

In this subsection, the algebraic integral formulas of
z

(0∼2mc−1)
a are derived for the fractional order controller (6)

of the system (7).

Theorem 2 Let t, T ∈ R+, t0 be max{0, t−T}, α be a real
number in ]0, 1[ and φl for l = 0, . . . , 2mc − 1 be a family
of modulating functions satisfying the following properties:
∀j ∈ {0, . . . , 2mc − 1},
• (P1) : φl ∈ C2mc([0, t− t0]),
• (P2) : φ

(j)
l (0) = 0,

• (P3) : φ
(j)
l (t− t0) = 1 if j = l, φ(j)

l (t− t0) = 0 else.

Then, for the system (4), z(0∼2mc−1)
a can be given by the

formulas as follows: for l = 0, . . . , 2mc − 1,

z(2mc−1−l)
a (t)

= (−1)l
{∫ t

t0

φl(τ − t0)ν∗(τ)dτ

−
∫ t

t0

φ
(2mc)
l (τ − t0)za(τ)dτ

−
∫ t

t0

φl(τ − t0)

[
s−1∑
i=0

AαiDαi
τ za(τ)

]
dτ

}
.

(9)

Proof. The proof is given by following the steps below [18].
Step 1: Multiply and integration. For l = 0, . . . , 2mc−

1, we multiply the modulating functions φl to both side of
(7) and take integration from t0 to t. Then, we can get: for
l = 0, . . . , 2mc − 1,∫ t

t0

φl(τ − t0)z(2mc)
a (τ)dτ

+

∫ t

t0

φl(τ − t0)

[
s−1∑
i=0

AαiDαi
τ za(τ)

]
dτ

=

∫ t

t0

φl(τ − t0)ν∗(τ)dτ.

(10)

Step 2: Application of integration by parts. By apply-
ing 2mc times integration by parts formula to the first term
of (10), we have: for l = 0, . . . , 2mc − 1,∫ t

t0

φl(τ − t0)z(2mc)
a (τ)dτ

= (−1)2mc

∫ t

t0

φ
(2mc)
l (τ − t0)za(τ)dτ

+

2mc−1∑
j=0

(−1)j
[
φ

(j)
l (τ − t0)z(2mc−1−j)

a (τ)
]τ=t

τ=t0
.

(11)
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Then, we get: for l = 0, . . . , 2mc − 1,

(−1)2mc

∫ t

t0

φ
(2mc)
l (τ − t0)za(τ)dτ

+

2mc−1∑
j=0

(−1)j
[
φ
(j)
l (τ − t0)z(2mc−1−j)

a (τ)
]τ=t
τ=t0

+

∫ t

t0

φl(τ − t0)

[
s−1∑
i=0

AαiD
αi
τ za(τ)

]
dτ

=

∫ t

t0

φl(τ − t0)ν∗(τ)dτ.

(12)

Step 3: Elimination of undesired terms. Thanks to (P1)
and (P2) satisfied by φl, (12) becomes:∫ t

t0

φ
(2mc)
l (τ − t0)za(τ)dτ

+

2mc−1∑
j=0

(−1)jφ(j)
l (t− t0)z(2mc−1−j)

a (t)

+

∫ t

t0

φl(τ − t0)

[
s−1∑
i=0

AαiD
αi
τ za(τ)

]
dτ

=

∫ t

t0

φl(τ − t0)ν∗(τ)dτ,

(13)

where the terms involving the initial conditions of za are
eliminated. Then, by applying the property (P3) of φl to
(13), we obtain (9) and complete the proof. �

In this paper, the modulating functions φl required by
Theorem 2 are constructed as follows [18]: for l =
0, . . . , 2mc − 1,

φl(τ − t0) =

2mc−1∑
j=0

cl,j(τ − t0)2mc+j+1, (14)

with τ ∈ [t0, t]. For l = 0, . . . , 2mc − 1, the coefficient
vectors Cl = (cl,0, . . . , cl,2mc−1)> are the solutions of the
algebraic systems as follows: for l = 0, . . . , 2mc − 1,

BlCl = dl, (15)

where Bl ∈ R2mc×2mc is defined by: for k = 0, . . . , 2mc −
1 and j = 0, . . . , 2mc − 1

Bl(k, j) =
(2mc + j + 1)!

(2mc + j − k + 1)!
(t− t0)2mc+j−k+1, (16)

and dl ∈ R2mc×1 is defined by: dl(k) = 1 if l = k, dl(k) =
0 else.

4 Illustrative example

Similar as the previous works on algebraic differentia-
tors [18–20, 22], the proposed formulas are also applicable
in noise measurement environment.

Example: Consider the following nonlinear system [1]:
ẋ1 = x1 + x1x4 + x3u1 + u2,
ẋ2 = x2e

x3 + u1,
ẋ3 = x2 + x2

3,
ẋ4 = x1 + x2 − x4 + x1x4 + (1 + x3)u1 + u2.

(17)

We can learn from (17) that mc = 1 and r = 2. The system
(17) matches the form of (1) by defining:

x =


x1

x2

x3

x4

 , F (x) =


x1 + x1x4

x2e
x3

x2 + x2
3

x1 + x2 − x4 + x1x4

 ,

G(x) =


x3 1
1 0
0 0

1 + x3 1

 , u =

[
u1

u2

]
.

By applying the transformation introduced in [1], we get:

z1∼4 = Qx1∼4, (18)

with

Q =


−1 −1 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,
and the corresponding HOFA system model is:

z̈1∼2 = h
(
z

(0∼1)
1∼2 , z3, z4

)
+ L

(
z

(0∼1)
1∼2 , z3, z4

)
u, (19)

where

L
(
z

(0∼1)
1∼2 , z3, z4

)
=

[
−z2 − ez2 −1

1 0

]
, (20)

and

h
(
z

(0∼1)
1∼2 , z3, z4

)
=

[
−ż1 − ζz4 − z3(e2z2 + ez2 ż2)

2z2ż2 + z3e
z2

]
,

(21)

with ζ = 1 + z1 + z3 + z4. Let α be 1/2 and ᾱ be
(0, α, 2α, 3α)>, i.e., s = 4. According to (6), the fractional
order controller can be designed as follows: u = −L−1

(
z

(0∼1)
1∼2 , z3, z4

)(
Aᾱz

(ᾱ)
1∼2 + u∗

)
,

u∗ = h
(
z

(0∼1)
1∼2 , z3, z4

)
.

(22)

Let Aᾱ be given by the following matrices such that (8) is
fulfilled:

Aα0
=

[
−0.2204 −39.3959
1.5141 −1.8611

]
,

Aα1
=

[
−77.3649 −76.1591
−1.3837 −3.9031

]
,

Aα2
=

[
150.3091 −108.4296
4.6048 −5.5316

]
,

Aα3
=

[
−0.8857 −55.4753
2.8862 −3.9470

]
.

The pole location of Ac is depicted in Fig. 1.
Let the observations of z1 and z2 be corrupting by zero-

mean white Gaussian noises with a variance 0.0005 on [0, 5]
and the sampling period Ts be 0.0005. The exogenous in-
put signal v∗ is (3 sin(5t), 5 sin(10t))> as depicted in Fig.
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Fig. 1: Location of the desired eigenvalues.
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Fig. 2: Exogenous input signal v∗.

2. The initial value of x is given by [0.01, 0.01, 0.01, 0.01]>.
By taking T = 1.5 in Theorem 2, z(0∼1)

1∼2 is estimated on-
line by using (9). The noisy observation and estimation of
z1∼2 are depicted in Fig. 3. To illustrate the performance of
the proposed algebraic estimation method, the classical nu-
merical difference method is adopted for comparison [24].
Then, the estimations of z(1)

1 and z(1)
2 are depicted in Fig. 4

and Fig. 5, respectively. The corresponding trajectories of x
are shown in Fig. 6. Hence, the efficiency of the proposed
algebraic differentiator based fractional order controller is
verified in a noisy environment.

5 Conclusion

In this paper, a fractional order controller u designed by
the HOFA system approach was studied. To obtain the frac-
tional order controller u, the algebraic integral formulas of
z

(0∼2mc−1)
a were derived by applying the modulating func-

tions method, where the Riemann-Liouville fractional se-
quential derivatives of za are involved. A simulation exam-
ple was given to illustrate the proposed results. More effort-
s on the implementation of fractional order controllers for
HOFA system models will be devoted in future works.
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Angle Attitude Control for Motion Platform Driven by
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Abstract: In this paper, angle attitude control is investigated for a pneumatic motion platform driven by pneumatic puscle actu-
ators (PMAs) with unknown system parameters and time-varying disturbances. A nonlinear disturbance observer is constructed
to observe the lumped disturbances, which consist of external time-varying disturbances and nonlinearity. In order to improve
tracking control accuracy, an adaptive parameter estimation method based on estimation error is designed to ensure that the
estimated value converges near the true value. A novel practical prescribed-time control is designed to make the tracking error
converge to a prescribed performance boundary in a prescribed time, which is independent of the initial conditions. A sufficient
condition of the prescribed-time convergence for PMAs system is given by the Lyapunov method. Finally, a series of experiments
are provided to verify the effectiveness of the proposed control method.

Key Words: Pneumatic muscle actuators, disturbance observer, parameter estimation, adaptive control, prescribed-time control

1 Introduction

With the rapid development of artificial intelligence and
robotics technology, robots are widely used in a variety of
complex scenarios [1]-[3], which can be mainly divided
into rigid robots and flexible robots. Compared with rigid
robots, flexible robots have significant advantages in terms
of human-robot safety and robustness to unknown environ-
ments, and are more capable of meeting the urgent needs of
the next-generation smart revolution. As a kind of soft actu-
ator, pneumatic muscle actuators (PMAs) with bionic prop-
erties inspired by human muscles are widely used in the me-
chanical structure design of various flexible robots because
of their advantages of lightness, safe operation and fast re-
sponse [4].

However, it is noted that the control difficulties of PMAs
mainly include model inaccuracy, strong nonlinearity, hys-
teresis, and disturbances [5], which is a challenge to fur-
ther improve the precision of the pneumatic motion control
driven by PMAs. The existing control methods mainly in-
clude sliding-mode control approach [6], active disturbance
rejection control approach [7] and model predictive con-
trol approach [8]. In the practical application driven by
PMAs, it is very important to achieve the ideal control ac-
curacy in a very short control response time. In the past few
decades, finite-time control [9], fixed-time control [10] and
prescribed-time control [11] are widely used in time-critical
applications such as target interception and spacecraft dock-
ing. The prescribed time control can set the convergence
time in advance, which is independent of the initial condi-
tions and parameters. In [12], Song proposes a prescribed
finite-time control method with regular state feedback based
on time-varying scaling functions. In addition, research on
the prescribed time control of PMAs is limited, and existing
methods cannot maintain control of the system beyond the

The authors would like to thank the anonymous reviewers for their
detailed comments that helped to improve the quality of the paper. The
work was supported by the National Natural Science Foundation of China
(61773334), and the Key Laboratory of Intelligent Rehabilitation and Neu-
roregulation of Hebei Province (22567619H).

Fig. 1: Structure schematic of the experimental platform

(a) Initial period (b) Preloaded period (c) Simulation period

Fig. 2: Movement process of the pneumatic motion platform

preset time interval. Therefore, it is of great theoretical and
practical significance to develop a more practical prescribed
time control method to make the system run in infinite time
interval.

It is worth noting that the PMAs system is a fully-actuated
system (FAS), that is, the number of system inputs is equal
to the number of controlled degrees of freedom. The objec-
tive of this paper is to investigate the angle attitude control
of the pneumatic motion platform driven by PMAs with un-
known parameters and time-varying disturbances. The main
contributions of this paper are summarized as follows:

i The unknown system parameters are estimated by an im-
proved adaptive algorithm based on the parameter esti-
mation error.

ii A nonlinear disturbance observer (NDOB) is constructed
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to observe the time-varying disturbances.
iii An adaptive practical prescribed-time control (APPTC)

method is designed to make the tracking error converge
to a prescribed performance boundary in a prescribed
time, which is independent of the initial conditions.

2 Problem formulation and preliminaries

2.1 Experimental platform
As shown in Fig. 1, a pneumatic motion platform driven

by PMAs is shown in Fig. 1. The motion simulation plat-
form can be used for simulated training systems and re-
mote operating systems such as driving body simulators for
airplanes, tanks and automobiles, which consists of four
parts: a motion platform, an industrial control computer
(610H, Advantech), a control cabinet and an air compressor
(DA7003CS, DYNAIR). The motion platform is composed
of a D/A card, a counting card, a cylinder (DA7003CS, DY-
NAIR), four PMAs (DMSP40, Festo) and two angle sensors
(E6B2-CWZ3E, OMRON). The industrial control computer
is used to produce control voltage signals. A proportional di-
rectional control valve (MPYE-5-3/8-010-B, Festo) and four
pressure proportional valves (ITV3050-313BS, SMC) are in-
tegrated in the control cabinet to regulate the internal pres-
sures of cylinder and four PMAs. Moreover, the air com-
pressor is utilized to compress air.

As shown in Fig. 2, the motion process of the pneumatic
motion platform mainly has three periods: initial period,
preloaded period and motion simulation period. In the ini-
tial period shown in Fig. 2(a), the parameter initialization
operation is accomplish and the cylinder and PMAs are not
injected with compressed air. In the preloaded period shown
in Fig. 2(b), the cylinder drives the motion platform to rise
to the specified height along the Z-axis, and the preloaded
voltages cause four pressure proportional valves to generate
preloaded internal pressures. Then, two groups of PMAs use
the preloaded internal pressures to generate the preloaded
pulling forces. In the motion simulation period shown in Fig.
2(c), one group of PMAs maintains the preloaded state, and
the internal pressure of the other group of PMAs is regulated
by the change of the control voltages in the pressure propor-
tional valves. Then, PMAs generate different pulling forces
and displacements through different internal pressures, re-
sulting in a single-degree-of-freedom deflection motion. The
maximum deflection angle of the motion platform is 15◦.

2.2 System description
From [13], the following dynamic system model driven by

a group of PMAs is shown as

θ̈(t) =− bv
J
θ̇(t) +

2υ0u0r
2(2ϵ1σ0 + ϵ2)L

−1
0

J
θ(t)

+
2υ0υur(ϵ1σ

2
0 + ϵ2σ0 + ϵ3)

J
u(t)

+
2υ0υuϵ1r

3L−2
0 θ2(t)u(t) + ω(t)

J
. (1)

where θ(t) represents the deflection angle of the pneumatic
motion platform driven by PMAs, u(t) represents the con-
trol voltage signal, ω(t) represents the unknown nonlinear-
ity, bv represents the damping coefficient during deflection,

Fig. 3: Control block diagram of the proposed method

u0 represents the preloaded voltage, υ0 represents the pro-
portionality coefficient of input pressure to input voltage, υu
represents the voltage distribution coefficient, ϵ1, ϵ2 and ϵ3
represent the known parameters of the dynamic model, J
represents the moment of inertia, L0 represents the initial
length of PMAs, σ0 represents the contraction coefficient of
PMAs in preloaded state, and r represents the moment arm
during deflection. Let x1(t) = θ(t) and x2(t) = θ̇(t), the
state space equations of system (1) are described as{

ẋ1(t) = x2(t)

ẋ2(t) = b1x1(t) + b2x2(t) + b0u(t) + f(t)
(2)

with b0 is an adjustable parameter and f(t) = (b−b0)u(t)+
ϖ(t), where

b1 =
2υ0u0r

2(2ϵ1σ0 + ϵ2)L
−1
0

J
, b2 = −bv

J
,

b =
2υ0υur(ϵ1σ

2
0 + ϵ2σ0 + ϵ3)

J
,

ϖ(t) =
2υ0υuϵ1r

3L−2
0 x21(t)u(t) + ω(t)

J
.

Before the specific method design, we first introduce a defi-
nition and an assumption.

Definition 1 There is a system defined as

χ̇ = f(t;χ;φ) (3)

where χ is a state variable, f : R+ × Rn → Rn is a non-
linear function and piecewise continuous in time t for all
parameter φ. Let Φ ⊂ Rm be a set of parameters. Sys-
tem (3) is said to be practical prescribed time stable, if for
all t ≥ T and χ(0) = χ0 ∈ Rn, there exist φ ⊂ Φ such
that ∥χ(t, φ)∥ < ε for any given positive scalars ε > 0 and
T > 0.

Assumption 1 Note that f(t) is continuously differentiable
and bounded, which is treated as a lumped disturbance of
the system (2). Thus, there exist positive constants df1 and
df2 such that |f(t)| ≤ df1 and |ḟ(t)| ≤ df2 hold.

3 Controller Design

As shown in Fig. 3, APPTC method is proposed to realize
the attitude control of PMAs system.
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3.1 Adaptive parameter estimation error acquisition
We will design a unified adaptive law to estimate unknown

parameters b1 and b2, which is convenient for the subse-
quent development of NDOB and APPTC. Define ψ(t) =
[x1(t), x2(t)]

T and ϑ = [b1, b2], the second equation of (2)
can be represented as a compact form as

ẋ2(t) = ϑψ(t) + b0u+ f(t), (4)

where ϑ is unknown system parameter vector.
Based on (4), an explicit expression of the error ϑ̃ = ϑ−ϑ̂

will be obtained using the filter operation. To avoid the use
of ẋ2(t), ψ̇(t) and u̇(t), the following three variables through
the low-pass filter are expressed as

kẋ2r(t) + x2r(t) = x2(t), x2r(0) = 0

kψ̇r(t) + ψr(t) = ψ(t), ψr(0) = 0

ku̇r(t) + ur(t) = u(t), ur(0) = 0

(5)

where k > 0 is a filtered parameter. x2r(t), ψr(t) and ur(t)
are filtered variables. Then the following dummy variable fr
is defined as

kḟr(t) + fr(t) = f(t), fr(0) = 0 (6)

where fr is only used for analysis and does not need to be
calculated online. Based on the (4)-(6), one has that

ẋ2r(t) =
x2 − x2r

k
= ϑψr(t) + b0ur + fr(t) (7)

Define intermediate matrix P1 and vector Q1, one can be
calculated by{
Ṗ1(t) = −lP1(t) + ψr(t)ψr(t)

T ,

Q̇1(t) = −lQ1(t) + ψr(t)[(x2(t)− x2r(t))/k − b0ur]

where P1(0) = 0 and Q1(0) = 0, and l > 0 is a positive
scalar to guarantee the boundedness of P1 and Q1. Then,
the solution of P1 and Q1 can be calculated as{
P1(t) =

∫ t

0
e−l(t−s)ψr(s)ψr(s)

T ds,

Q1(t) =
∫ t

0
e−l(t−s)ψr(s)[(x2(t)− x2r(t))/k − b0ur]ds

Combining with (7), the following relationship between P1

and Q1 is expressed as

Q1(t) = P1(t)ϑ
T −∆(t)

where ∆(t) = −
∫ t

0
e−l(t−s)ψs(r)fr(s)ds is bounded be-

cause the ψ(t), ψr(t) and lumped disturbances f(t), fr(t)
are bounded. Hence, there exists |∆(t)| ≤ d∆ for a positive
scalar d∆ > 0.

Then, another online calculated vectorH1 associated with
P1 and Q1 is expressed as

H1(t) = P1(t)ϑ̂
T −Q1(t) = P1(t)ϑ̂

T − P1(t)ϑ
T +∆(t)

= −P1(t)ϑ̃
T +∆(t) (8)

where ϑ̂ represents the estimate of the unknown parameter
ϑ, and ϑ̃ = ϑ− ϑ̂ represents the estimation error.

It can be seen that the online calculated vector H1 in (8)
associated with P1 and Q1 contains information of the es-
timation error ϑ̃. Therefore, driving the designed adaptive
law by using H1 can ensure the convergence of parameter
estimation while improving the control performance of the
system.

In addition, appropriate excitation condition needs to be
imposed in adaptive control to ensure the convergence of
parameter estimation. As shown in the proof of [14], the
intermediate matrix P1 is positive definite and satisfies the
minimum eigenvalue λmin(P1) > ϕ > 0, which is related
to the standard persistent excitation condition. The research
case in this paper is able to ensure that there is a persistent
excitation condition in the designed adaptive update law.

3.2 NDOB design
In this subsection, motivated by [17], the NDOB is de-

signed to estimate the lumped disturbances f(t) for more
accurate attitude control. The specific design is as follows

f̂(t) = fz(t) + κ(t)x2(t)

ḟz(t) = −κ(t)(b̂1x1(t) + b̂2x2(t)

+ b0u(t) + f̂(t))− κ̇(t)x2(t)

κ(t) = κ1(1− e−κ2t)

(9)

where f̂(t) is estimate value of f(t), κ(t) is a nonlinear func-
tion with κ1 > 0, κ2 > 0, and f̃(t) is disturbance estimation
error with

˙̃
f(t) = ḟ(t)− ˙̂

f(t)

= ḟ(t)− ḟz(t)− κ̇(t)x2(t)− κ(t)ẋ2(t)

= κ(t)
(
(b̂1 − b1)x1(t) + (b̂2 − b2)x2(t)

+ f̂(t)− f(t)
)
+ ḟ(t)

= κ(t)(−ϑ̃ψ(t)− f̃(t)) + ḟ(t)

3.3 APPTC method design
In order to improve the control accuracy while reducing

the overshoot and response time in the attitude control of
pneumatic motion platforms, APPTC method is proposed in
this subsection.

Based on the user-assigned settling time T and perfor-
mance boundary ε, the designed time-varying function η(t)
is expressed as

η(t) =

{
a(e−t − e−T )2p + ε, t ∈ [0, T )

ε, t ∈ [T, ∞)
(10)

with a > 0, where 0 < T < ∞ and 0 < ε < ∞. p
is a positive integer with 2p > n + 1, which ensures that
η(i)(t)(i = 0, 1, ..., n) is continuously differentiable. Let
z1(t) = x1(t) − xd(t) with z1(t) is tracking error, if the
following

−η(t) < z(t) < η(t) (11)

is satisfied. Based on (10) and (11), one has that

|z1(t)| < ε, ∀t ≥ T

964  



Then, define a performance function γ(t) that is repre-
sented as

γ(t) = c(η(t)− z1(t))(ηt+ z1(t)) = c(η2(t)− z21(t))

where c is a positive constant. η(t)− z1(t) and η(t) + z1(t)
are regarded as two distances from constraint boundaries
η(t) and −η(t) to tracking error z1(t). Different from [15],
the deferred constraint boundary in (11) can be changed by
adjusting parameter a in the designed time-varying function
η(t), which avoids the infinity of γ(t) caused by the infinity
of η(t) in time [0, T ) and reduces the complexity of analysis.

Further, the transformed variable ξ1(t) is constructed as

ξ1(t) =
z1(t)

c(η2(t)− z21(t))

It is noted that the variable ξ1(t) exhibits the following two
properties. The first property is that ξ1(t) = 0 if and only
if z1(t) = 0. The second property is that ξ1 → ∞ when
z1(t) → η(t) or z1(t) → −η(t).

Before the subsequent design, a crucial lemma based on
the properties of ξ1(t) is given.

Lemma 1 [15] If ξ1 ∈ L∞, then |z1(t)| < η(t) holds for
all t ∈ [0,∞).

Differentiating ξ1(t) with respect to time, it is obtained
that

ξ̇1(t) =
( 1

γ(t)
+

2cz21(t)

γ(t)

)
ż1(t)−

2cη(t)η̇(t)z1(t)

γ2(t)
(12)

Combining with (2) and (12), the ξ̇1(t) is rewritten as

ξ̇1(t) = µ(x2(t)− ẋd(t)) + ν

where

µ =
1

γ(t)
+

2cz21(t)

γ(t)
, ν = −2cη(t)η̇(t)z1(t)

γ2(t)

It can be easily that µ is strictly positive. Meanwhile, the
system (2) is converted into the following form

ξ̇1(t) = µ(x2(t)− ẋd(t)) + ν

ẋ1(t) = x2(t)

ẋ2(t) = b1x1(t) + b2x2(t) + b0u(t) + f(t)

(13)

Further, it is only necessary to focus on the design of con-
troller u(t) to stabilize the transformed system (13) to en-
sure the deferred tracking error constraint given in (11). The
controller u(t) will be designed by an backstepping method.
First, the transformed coordinate is represented as follows

ξ2(t) = x2(t)− α(t)

with the virtual controller α(t) derived as

α = −k1
µ
ξ1 − µξ1ẋ

2
d −

ν2

µ
ξ1

Note that the adaptive updating law for parameter estima-
tion is constructed as

˙̂
ϑ = Γ (ξ2(t)ψ(t) + κ(t)f̂(t)ψ(t)− σH1(t)) (14)

where Γ > 0 is an adaptive gain vector and σ > 0 is a
learning gain. Hence, the final control law is designed as

u =
1

b0
(α̇− k2ξ2 − ϑ̂ψ − f̂ − µξ21ξ2) (15)

where k2 > 0 is another adjustable control parameter. Then,
define

V = V1 + V2 + V3 + V4

=
1

2
ξ21 +

1

2
ξ22 +

1

2
ϑ̃Γ−1ϑ̃T +

1

2
f̃2

It can be derived that

V̇ ≤ −k1ξ21 − (k2 −
δ

2
)ξ22 − (ϕ− σ

2δ
− κdf1

2δ
)∥ϑ̃∥2

− (κ− 1

δ
)f̃2 +

δ

2
(σ∥∆∥2 + κdf1∥ψ∥2 + d2f2) +

3

4
≤ −φV + ϱ

with

φ = min

{
2k1, 2(k2 −

δ

2
),

2(ϕ− σ

2δ
− κdf1

2δ
)
/
λmax(Γ

−1), 2(κ− 1

δ
)

}
,

ϱ =
δ

2
(σ∥∆∥2 + κdf1∥ψ∥2 + d2f2) +

3

4

where φ is a positive scalar for any control parameter k2 > δ
2

and δ > max
{

1+κdf1

2ϕ , 1κ

}
, and χ is an another positive

scalar. Subsequently, the following theorem will be further
elaborated.

Theorem 1 Consider the system (13) with parameter esti-
mation updating law (14) and adaptive control law (15), then

(i) The closed loop system is stable. And the disturbance
estimation error f̃(t) and parameter estimation error ϑ̃
converges to a small compact set

(ii) The tracking error z1(t) will converge to the preset per-
formance region Ω = {z1 ∈ R : |z1(t) < ε|} within
prescribed settling time T , where ε and T are all pre-
determined by users.

Proof.
(i) Integrating over V̇ ≤ −φV + ϱ yields V ≤

e−φtV (0) + ϱ
φ (1− e−φt) ≤ V (0) + ϱ

φ . Thus, there
exists V ∈ L∞ for any bounded initial conditions, in
which implies ξ1 ∈ L∞ and ξ2 ∈ L∞. Therefore,
the signals ξ1 and ξ2 are ultimately uniformly bounded
and the closed-loop system (13) is stable. At the same
time, it is concluded that the disturbance estimation er-
ror f̃(t) and parameter estimation error ϑ̃ are ultimately
uniformly bounded. The proof is completed.

(ii) From Lemma 1, it is obtained that −η(t) < z1(t) <
η(t) since ξ1 is bounded. Thus, we can infer that the
tracking error |z1(t)| < ε within time t ≥ T by the
design of η(t). That is, the tracking error z1(t) con-
verges to the preset performance region Ω = {z1 ∈
R : |z1(t) < ε|} within the prescribed settling time T .
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Fig. 4: Tracking control experiment results. (a) Deflection angle x1(t) and angular velocity x2(t). (b) Tracking error signal
z1(t). (c) Control voltage signal u(t). (d) Estimated parameter b̂1. (e) Estimated parameter b̂2. (f) Disturbance estimation
signal f̂(t) by NDOB.

4 Experimental results and analysis

In this paper, attitude control is studied for the pneumatic
motion platform based on PMAs. In order to further explore
the effectiveness of the proposed control method, a series
of tracking control experiments are carried out on the pneu-
matic motion platform. The desired signal xd(t) is selected
as a sinusoidal signal with 0.25 Hz frequencies and 10◦ am-
plitudes for a group of PMAs. The sampling interval is 0.01
s in all tracking control experiments. The proportional co-
efficient of the pressure proportional valves is υ0 = 0.09.
The preloaded voltage u0 is 2 V and the voltage distribution
coefficient is set as υu = 1.

In the experiment, the observer parameters are selected as
k1 = 36, k2 = 26, κ1 = 0.5 and κ2 = 0.2. And the pa-
rameters of APPTC method are designed as T = 1, ε = 2,
a = 80, c = 80, Γ = [1 4], l = 1, σ = 0.01 and k = 0.02.
As shown in Fig. 4(a), the deflection angle x1(t) and x2(t)
of PMAs are presented, which also implies the experimental
result of tracking control. To show the control performance
of APPTC method more clearly, the tracking error z1(t) is
shown in Fig. 4(b). It can be seen that z1(t) converges to
a bounded region |z1(t)| < ε for t > T , where the settling
time T = 1 s and the performance boundary ε = 2 are all
prescribed. As shown in Fig. 4(c), the maximum control
voltage signal u(t) does not exceed 2 V, in which the peak
voltage generated is to make the deflection angle x1(t) to
track the desired signal xd(t) quickly. Moreover, the estima-
tion values b̂1 and b̂2 of the unknown parameters are indi-
cated in Fig. 4(d) and Fig. 4(e), respectively. Based on the
tracking results in Fig. 6, it is confirmed that b̂1 and b̂2 con-
verge to the bounded regions near the true values, that is, the
validity of the designed parameter update law (14) based on

the estimated error is verified. In Fig. 4(f), the disturbance
value f̂(t) estimated by the designed NDOB (9) is given,
which presents a periodic change trend.

5 Conclusion

In this paper, we have investigated the angle attitude con-
trol for the pneumatic motion platform driven by PMAs with
unknown system parameters and time-varying disturbances.
NDOB has been designed to observe the lumped disturbance
consists of external time-varying disturbances and nonlinear-
ity. For ensuring that the estimated value converges near the
true value, the adaptive parameter estimation method based
on estimation error has been designed to improve tracking
control accuracy. Subsequently, the observed lumped dis-
turbances of PMAs system have been compensated by the
designed APPTC law while the tracking error converges to
a prescribed performance boundary in a prescribed time.
Then, the convergence analyses of NODB and PMAs system
have been given. Finally, experimental results have demon-
strated the effectiveness of the proposed method. In the fu-
ture work, since PMAs system is a FAS, we hope to use the
FAS approach [16] to analyze the motion control problem
driven by PMAs.
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Abstract: Thermoacoustic instability is the main form of combustion instability in aeroengine. For the thermoacoustic system
with coupling between sound field and unknown nonlinear flame heat release, an active control method based on the fully actuated
system method and a time-delay neural network (NN) state observer is proposed for one acoustic mode. Firstly, a time-delay NN
observer is proposed, which addresses the shortcomings of the linear observer in observing nonlinear systems and extends the
NN observer to time-delay nonlinear systems. Subsequently, the finite covering lemma is combined with the radial basis neural
network (RBF NN) to approximate the unknown nonlinear heat release with the unknown thermal inertia. Then, based on the
fully actuated system approach, an adaptive active control strategy is proposed, which ensures that the pressure and velocity of
the thermoacoustic system, as well as the observation errors of the pressure and velocity, converge to a small neighborhood about
the origin. Finally, the feasibility and effectiveness of the adaptive active control method based on the time-delay NN observer are
verified through the coupling of the Culick acoustic motion model and the nonlinear flame response to form the thermoacoustic
system.

Key Words: Adaptive Control, Fully Actuated Systems Approach, Nonlinear Time-Delay Systems, Time-Delay Neural Network
State Observer

1 Introduction

The combustion chamber is one of the core components
of aircraft engines, whose main task is to convert chemi-
cal energy into thermal energy. However, a small energy
conversion in the combustion chamber may generate ran-
dom fluctuations or noise, leading to combustion instabili-
ty. The main form of combustion instability in aircraft en-
gines is thermoacoustic instability [1], which is essentially
the coupling of the heat release rate and the pressure, and the
process of thermal power conversion (thermal and acoustic
energy). Initially, the phenomenon of thermoacoustic insta-
bility is discovered by Higgins [2] in experiments. Subse-
quently, the thermoacoustic system is first scientifically de-
scribed, and the ”Rayleigh criterion” is proposed [3]. On
this basis, mathematical models for thermoacoustic instabil-
ity corresponding to different combustion situations [4, 5]
are provided. In 1976, the second-order nonlinear dynam-
ics model (Culick model) is proposed by using the Galerkin
method [6], which is extended to the third-order nonlinear
dynamics model [7].

However, in the Culick model, only the impact of acoustic
motion on the model is considered, while the effects of flame
combustion response and fluid dynamics instability are not
taken into account. In this regard, Meng et al. [8] applied the
n−τ model of combustion response [9] to the acoustic mod-
el based on the Culick acoustic model through the source ter-
m. However, with the development of computer simulation
technology and a large number of experimental studies, it
has been found that the unbounded nature of the n− τ flame
response model can lead to divergent results, which increas-
ingly cannot meet the needs of actual working conditions.
Therefore, a nonlinear delayed flame response model [10]

This work is supported by NSFC under Grant U23A20324.

is proposed, which utilizes the arctangent function to ensure
that the final result does not diverge and reaches a finite val-
ue. However, the above heat release models are not derived
from physical principles, but are obtained through experi-
ments and other means, and nonlinear convection and other
factors are ignored in the models. Therefore, it is difficult to
provide an accurate model for heat release. So, the unknown
nonlinear function is considered to describe the coupling be-
tween the flame combustion response and the sound field.

At present, in order to suppress the phenomenon of ther-
moacoustic instability, both the passive control and the active
control have received attention. Among them, the passive
control mainly suppresses combustion instability by chang-
ing the structure of the combustion chamber or replacing
propellants [11, 12]. The advantages of the passive con-
trol are its simple structure and good reliability, but its ap-
plicability is limited, the development cycle is long, and the
development cost is high. Tsien [13] first applied control
theory to suppress combustion instability in rocket engines.
Subsequently, the proportional integral derivative (PID) con-
troller [14], the feedback controller [15] and the optimal con-
troller [16] are proposed to suppress thermoacoustic instabil-
ity.

It is worth noting that through the concept and description
of the high-order fully actuated system proposed in [17], we
find that the thermoacoustic system is a typical type of the
fully actuated system. Obviously, designing an active con-
trol strategy based on the fully actuated system method can
not only reduce the complexity of controller design, but also
facilitate the implementation of actual physical system de-
sign. Based on the high-order fully actuated system method
[18], it is easy to design a controller to eliminate any measur-
able nonlinear terms and transform the closed-loop system
into a linear system with the required characteristic struc-
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ture. This result also extends to the uncertain nonlinear sys-
tem and proposes the adaptive controller [19] and the robust
controller [20]. The related work has also been applied to
the robust stabilization of thermoacoustic systems in the Ri-
jke tube [21].

It is worth mentioning that the control methods proposed
above are all state feedback control strategies, which rely
on all states of the system. However, for the thermoacous-
tic system in the combustion chamber of aircraft engines, it
only measures the fluctuation of pressure, and the fluctua-
tion of velocity is difficult to measure. Therefore, the above
control strategies are not applicable to thermoacoustic sys-
tems where only pressure fluctuations can be measured. To
overcome this difficulty, the linear observer [22], the fuzzy
observer [23], and the NN observer [24] have been proposed
for nonlinear systems with unmeasurable states. However,
it must be said that the linear observer ignores the nonlin-
ear structure of the system, resulting in larger observation
errors compared to the fuzzy or NN observer. However, the
heat release in thermoacoustic systems has a time delay, so
the fuzzy observer and the NN observer are not applicable.
Therefore, a time-delay NN observer is proposed to over-
come the drawbacks of the linear observer and extends the
nonlinear observer to time-delay systems.

An adaptive active control strategy is proposed based on
the fully actuated system method and the time-delay NN ob-
server for the thermoacoustic system of an aircraft engine
combustion chamber to ensure that the pressure and the ve-
locity and the observation errors of the pressure and the ve-
locity converge to a small neighborhood about the origin.
The main contributions of this article include: 1)The finite
covering lemma and the RBF NN are combined to approx-
imate the unknown nonlinear heat release with the time de-
lay from fuel injection to combustion. 2) A time-delay NN
observer is proposed to overcome the shortcomings of the
linear observer and extends the nonlinear observer to time-
delay systems.

2 System Statements and Preliminaries

2.1 Model of the Thermoacoustic unstable System
Thermoacoustic instability is the main form of combus-

tion instability in aircraft engines. According to the ther-
moacoustic unstable model with flame combustion effects in
[8], a second-order nonlinear time-delay system with one a-
coustic mode is represented as{

η̈1 + ω1
2η1 = F1(η1, η̇1) +Q1 (η1(t− τ)) +Bu1,

y = p̄ψ1 (x) η1,

(1)

where F1 = −D11η̇1 − E11η1 −A111η̇1η̇1 −B111η1η1

− R1111η̇1η̇1η̇1 − S1111η1η1η1, B = ā2

p̄E2
1
ψ1(r), η1 and η̇1

respectively represent the amplitude of the pressure fluctua-
tion and the velocity fluctuation; ω1 is the natural frequen-
cy; D11, E11, A111, B111, R1111, S1111 are coefficients re-
lated to the motion of sound waves; ā represents the speed of
sound in the mixture; P̄ represents the average pressure of
the combustion chamber; E1 represents the Euclidean nor-
m; ψ1(x) = cosπxL and ψ1(r) = cosπrL are basis func-
tions, x and r are the positions of the sensor and the actua-
tor, respectively; L is the length of the combustion chamber;

Q1 (η1(t− τ)) is the heat release model related to the pres-
sure amplitude with the unknown thermal inertia τ , where τ
is the convective time from fuel injection to its combustion
with upper bound τM . Due to the fact that the existing heat
release models are not mechanistic models, but approximate
models obtained through experiments, and a large number of
experiments have shown that nonlinear factors are ignored
in the models. Therefore, without loss of generality, an un-
known nonlinear heat release with the unknown thermal in-
ertia is considered in this paper. The system output y is the
pressure fluctuation in the combustion chamber, and only the
pressure fluctuation y is measurable directly.

According to [8], η1 and η̇1 are the amplitude of the pres-
sure and the velocity obtained through the Galerkin method,
respectively. What’s more, the pressure p and the velocity vg
are respectively represented as

p =p̄ψ1 (x) η1, (2)

vg =
∇ψ1 (x)

γ̄k2
1

η̇1, (3)

where k1 = π
L , ∇ψ2

1 (x) + k2
1ψ

2
1 (x) = 0, γ̄ represents the

specific heat ratio.
The control gain B of the thermoacoustic system (1) is

reversible, so the thermoacoustic system (1) is a second-
order fully actuated system. Therefore, by using the stan-
dard description in [18], the thermoacoustic system (1) can
be rewritten as{

η
(2)
1 = f1

(
η

(0∼1)
1

)
+Q1

(
η

(0∼1)
1 (t− τ)

)
+Bu1,

y = Cη
(0∼1)
1 ,

(4)

where η̈1 = η
(2)
1 (t), f1

(
η

(0∼1)
1

)
= F1−ω1

2η1(t), η(0∼1)
1 =[

η1

η̇1

]
, C =

[
p̄ψ1 (x) 0

]
.

2.2 Preliminaries
Lemma 1 [25]: Supposing that Q1

(
η

(0∼1)
1

)
: Ω

η
(0∼1)
1

→
R is a smooth function on compact set Ω

η
(0∼1)
1

⊂ Rn, and for

a constant time-delay τ ∈ [0, τM ], η(0∼1)
1 = η

(0∼1)
1 (t− τ)

is uniformly continuous with respect to t. Then, for any pa-
rameter δ1 > 0, there exists a finite partition of [0, τM ], in-
dependent of t

0 ≤ t1 ≤ t2 ≤ . . . ≤ tm ≤ τM

from which a point

τ̄ ∈ {t1, . . . , tm}

can be extracted, such that

|Q1

(
η

(0∼1)
1 (t− τ)

)
−Q1

(
η

(0∼1)
1 (t− τ̄)

)
| < δ1, ∀t ≥ 0.

Remark 1: Since τ represents an unknown constant
time-delay, the RBF NN cannot directly approximate
the unknown nonlinear function Q1

(
η

(0∼1)
1 (t− τ)

)
.

Therefore, using Lemma 1, the unknown nonlin-
ear function Q1

(
η

(0∼1)
1 (t− τ)

)
can be rewritten as
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Q1

(
η

(0∼1)
1 (t− τ)

)
= Q1

(
η

(0∼1)
1 (t− τ̄)

)
+ δ1, ∀t ≥ 0,

then the RBF NN is used to approximate the unknown
nonlinear function Q1

(
η

(0∼1)
1 (t− τ̄)

)
with time-delay τ̄ ,

where τ̄ ∈ {t1, . . . , tm} ∈ [0, τM ].
The control objective is to design an adaptive control

method based on the time-delay NN state observer and the
fully actuated system approach, so that the pressure p and the
velocity vg and the observation errors of the pressure p̃ and
the velocity ṽg of the thermoacoustic system are bounded.

3 Time-Delay NN State Observer Design

According to Lemma 1, Q1

(
η

(0∼1)
1 (t− τ)

)
can be ex-

pressed as

Q1

(
η

(0∼1)
1 (t− τ)

)
= Q1

(
η

(0∼1)
1 (t− τ̄)

)
+ δ1, (5)

where δ1 > 0.
Therefore, using the RBF NN [26] to approximate

the unknown nonlinear function Q1

(
η

(0∼1)
1 (t− τ̄)

)
, and

Q1

(
η

(0∼1)
1 (t− τ̄)

)
can be represented as

Q1

(
η

(0∼1)
1 (t− τ̄)

)
=WT

1 S1

(
η

(0∼1)
1 (t− τ̄)

)
+ ε1

(
η

(0∼1)
1 (t− τ̄)

)
, (6)

where STi
(
η

(0∼1)
1 (t− τ̄)

)
Si

(
η

(0∼1)
1 (t− τ̄)

)
≤ N1, W1

andN1 respectively are the weight vector and the node num-
ber of the RBF NN, ε1

(
η

(0∼1)
1 (t− τ̄)

)
≤ ε̄1, ε̄1 > 0.

Since all states in the system (1) are unmeasurable, a time-
delay NN state observer is designed as,

˙̂η
(0∼1)
1 =

[
0

f1

(
η̂

(0∼1)
1

) ]
+

[
0

ŴT
1 S1

(
η̂

(0∼1)
1 (t− τ̄)

) ]

+

[
0

Bu1

]
+

[
0 1
0 0

]
η̂

(0∼1)
1

+L
(
y − Cη̂(0∼1)

1

)
, (7)

where Ŵ1, η̂(0∼1)
1 are the estimations of W1, η(0∼1)

1 , respec-

tively. L =

[
l1
l2

]
is the matrix of parameters to be de-

signed, where the parameters li(i = 1, 2) are selected so that
the matrix H is Hurwitz. If Γ and Q are positive definite
matrices, then

HTΓ + ΓH = −Q, (8)

where H =

[
−l1 1
−l2 0

]
.

The closed-loop system (4) can be also described by the
following state-space form:

η̇
(0∼1)
1 =

[
0

Q1

(
η

(0∼1)
1 (t− τ)

) ]
+

[
0 1
0 0

]
η

(0∼1)
1

+

[
0

f1

(
η

(0∼1)
1

) ]− [ 0
Bu1

]
. (9)

Combining (7) and (9), the error system can be described
by the following state-space form:

˙̃η
(0∼1)
1 =

[
0

f1

(
η

(0∼1)
1

)
− f1

(
η̂

(0∼1)
1

) ]
+Hη̃

(0∼1)
1

+

[
0

Q1

(
η

(0∼1)
1 (t− τ)

)
− ŴT

1 S1

(
η̂

(0∼1)
1 (t− τ̄)

) ]
,

(10)

where η̃(0∼1)
1 = η

(0∼1)
1 − η̂(0∼1)

1 is an observation error.
One of our control objectives is that the pressure p and the

velocity vg are bounded. It can be inferred from (2) and (3)
that the pressure p and the velocity vg are related to η(0∼1)

1 ,
therefore, it is only necessary to prove that η(0∼1)

1 is bound-
ed. But the boundedness of states η(0∼1)

1 cannot be directly
proven. Since η(0∼1)

1 = η̃
(0∼1)
1 + η̂

(0∼1)
1 , as long as the ob-

servation error η̃(0∼1)
1 and the estimation of the state η̂(0∼1)

1

are proven to be bounded, then the state η(0∼1)
1 in the system

(1) has been proven to be bounded.
For the error system (10), choose Lyapunov function

V0 = (η̃
(0∼1)
1 )TΓη̃

(0∼1)
1 . (11)

where Γ =

[
Γ1

Γ2

]
, Γ1,Γ2 ∈ R2×1.

According to (10), the derivative of V0 is

V̇0 =2(η̃
(0∼1)
1 )TΓ2

(
f1

(
η

(0∼1)
1

)
− f1

(
η̂

(0∼1)
1

))
+ 2(η̃

(0∼1)
1 )TΓ2Q1

(
η

(0∼1)
1 (t− τ)

)
− 2(η̃

(0∼1)
1 )TΓ2Ŵ

T
1 S1

(
η̂

(0∼1)
1 (t− τ̄)

)
+ (η̃

(0∼1)
1 )T (HTΓ + ΓH)η̃

(0∼1)
1 . (12)

Since the function f1

(
η

(0∼1)
1

)
satisfies the Lipschitz con-

dition, we have

‖f1

(
η

(0∼1)
1

)
− f1

(
η̂

(0∼1)
1

)
‖ ≤ α‖η(0∼1)

1 − η̂(0∼1)
1 ‖

= α‖η̃(0∼1)
1 ‖, (13)

where α > 0.
Combining (5) and (6), the unknown nonlinear function

Q1

(
η

(0∼1)
1 (t− τ)

)
− ŴT

1 S1

(
η̂

(0∼1)
1 (t− τ̄)

)
in (10) can

be rewritten as

Q1

(
η

(0∼1)
1 (t− τ)

)
− ŴT

1 S1

(
η̂

(0∼1)
1 (t− τ̄)

)
=WT

1 S1

(
η

(0∼1)
1 (t− τ̄)

)
− ŴT

1 S1

(
η̂

(0∼1)
1 (t− τ̄)

)
+ δ1 + ε̄1

=WT
1

(
S1

(
η

(0∼1)
1 (t− τ̄)

)
− S1

(
η̂

(0∼1)
1 (t− τ̄)

))
+ W̃T

1 S1

(
η̂

(0∼1)
1 (t− τ̄)

)
+ δ1 + ε̄1, (14)

where W̃1 = W1 − Ŵ1.
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Based on the Young’s inequality and (14), we have

2(η̃
(0∼1)
1 )TΓ2Q1

(
η

(0∼1)
1 (t− τ)

)
− 2(η̃

(0∼1)
1 )TΓ2Ŵ

T
1 S1

(
η̂

(0∼1)
1 (t− τ̄)

)
≤4a0‖Γ2‖2

∥∥∥η̃(0∼1)
1

∥∥∥2

+
1

a0

(
δ2
1 + ε̄2

1

)
+

1

a0
N1

∥∥WT
1

∥∥2
+

1

a0
N1

∥∥∥W̃T
1

∥∥∥2

. (15)

According to (8),(13) and (15), (12) can be inferred as

V̇0 ≤2α‖Γ2‖2‖η̃(0∼1)
1 ‖2 − (η̃

(0∼1)
1 )TQη̃

(0∼1)
1

+ 4a0‖Γ2‖2
∥∥∥η̃(0∼1)

1

∥∥∥2

+
1

a0

(
δ2
1 + ε̄2

1

)
+

1

a0
N1

∥∥WT
1

∥∥2
+

1

a0
N1

∥∥∥W̃T
1

∥∥∥2

≤− λ0

∥∥∥η̃(0∼1)
1

∥∥∥2

+
1

a0
N1

∥∥∥W̃T
1

∥∥∥2

+ ∆0, (16)

where

λ0 =λminQ− 4a0‖Γ2‖2 − 2α‖Γ2‖2,

∆0 =
1

a0

(
δ2
1 + ε̄2

1

)
+

1

a0
N1

∥∥WT
1

∥∥2
.

According to (16), if 1
a0
N1

∥∥∥W̃T
1

∥∥∥2

is bounded, then the

observation error η̃(0∼1)
1 is bounded. Therefore, to design

a controller based on the fully actuated system approach
not only the boundedness of the state estimation η̂(0∼1)

1 is

ensured, but also 1
a0
N1

∥∥∥W̃T
1

∥∥∥2

is ensured to be bounded.

Thereby, the boundedness of the observation error η̃(0∼1)
1 is

ensured.

4 Adaptive Controller Design Based on the Fully
Actuated System approach

In the paper, we introduce the following notationsA0∼1 =
[A0 A1], P

(
A0∼1

)
= [P1 P2], P1, P2 ∈ R2×1, and

Φ
(
A0∼1

)
=

[
0 1
−A0 −A1

]
. P

(
A0∼1

)
= P , and

Φ
(
A0∼1

)
= Φ.

Based on the fully actuated system approach, for the sys-
tem (7), an adaptive control law is designed as

u1 =−B−1
(
A0∼1η̂

(0∼1)
1 + u∗1

)
, (17)

u∗1 =f1

(
η̂

(0∼1)
1

)
+ ŴT

1 S1

(
η̂

(0∼1)
1 (t− τ̄)

)
+

3

4
PT2 η̂

(0∼1)
1 , (18)

˙̂
W1 =PT2 η̂

(0∼1)
1 S1

(
η̂

(0∼1)
1 (t− τ̄)

)
− κ1Ŵ1, (19)

where κ1 is a design parameter.
Substituting (17) and (18) into (7) yields

˙̂η
(0∼1)
1 =Φ

(
A0∼1

)
η̂

(0∼1)
1 +L

(
y − Cη̂(0∼1)

1

)
−
[

0
3
4P

T
2 η̂

(0∼1)
1

]
. (20)

Thus, we choose the Lyapunov function candidate as fol-
lows:

V1 =
(
η̂

(0∼1)
1

)T
P
(
A0∼1

)
η̂

(0∼1)
1 +

1

2
W̃T

1 W̃1. (21)

Then, the derivative of (21) along with (20) is

V̇1 =
(
η̂

(0∼1)
1

)T (
ΦTP + PΦ

)
η̂

(0∼1)
1 − ˙̂

WT
1 W̃1

− 3

2

(
η̂

(0∼1)
1

)T
P2P

T
2 η̂

(0∼1)
1

+ 2
(
η̂

(0∼1)
1

)T
PL

(
y − Cη̂(0∼1)

1

)
. (22)

Based on the Young’s inequality, we have

2
(
η̂

(0∼1)
1

)T
PL

(
y − Cη̂(0∼1)

1

)
≤
(
η̂

(0∼1)
1

)T
P2P

T
2 η̂

(0∼1)
1

+
‖P‖2‖L‖2

∥∥∥η̃(0∼1)
1

∥∥∥2

PT2 P2
.

(23)

Substituting (19) and (23) into (22), we have

V̇1 ≤
(
η̂

(0∼1)
1

)T (
ΦTP + PΦ

)
η̂

(0∼1)
1 + κ1W̃

T
1 Ŵ1

− 1

2

(
η̂

(0∼1)
1

)T
P2P

T
2 η̂

(0∼1)
1 +

‖P‖2‖L‖2
∥∥∥η̃(0∼1)

1

∥∥∥2

PT2 P2

− PT2 η̂
(0∼1)
1 W̃T

1 S1

(
η̂

(0∼1)
1 (t− τ̄)

)
. (24)

Based on the Young’s inequality, we have

κ1W̃
T
1 Ŵ1 ≤−

κ1

2

∥∥∥W̃1

∥∥∥2

+
κ1

2
‖W1‖2. (25)

−PT2 η̂
(0∼1)
1 W̃T

1 S1

(
η̂

(0∼1)
1 (t− τ̄)

)
≤1

2

∥∥∥W̃1

∥∥∥2

N1 +
1

2

(
η̂

(0∼1)
1

)T
P2P

T
2 η̂

(0∼1)
1 .

(26)

Substituting (25) and (26) into (24) yields

V̇1 ≤
(
η̂

(0∼1)
1

)T (
ΦTP + PΦ

)
η̂

(0∼1)
1 +

κ1

2
‖W1‖2

− (
κ1

2
− 1

2
N1)

∥∥∥W̃1

∥∥∥2

+
‖P‖2‖L‖2

∥∥∥η̃(0∼1)
1

∥∥∥2

PT2 P2
.

(27)

5 Stability Analysis of Closed-Loop Systems

Theorem 1: Consider the thermoacoustic system (1).
For any parameter W1, if there exists a matrix A0∼n−1

to make the matrix Φ
(
A0∼n−1

)
stable, and Φ

(
A0∼n−1

)
,

P
(
A0∼n−1

)
satisfying

ΦTP + PΦ ≤ −mP (28)

then the time-delay NN state observer (7) and the adaptive
control laws (17)-(19) can make sure that the pressure p and
the velocity vg and the observation errors of the pressure and
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the velocity amplitudes p̃, ṽg of the thermoacoustic system
are bounded.

Proof : The Lyapunov function candidate is chosen as,

V = V0 + V1. (29)

From (16) and (27), V̇ can be inferred as

V̇ ≤− λ0

∥∥∥η̃(0∼1)
1

∥∥∥2

+
1

a0
N1

∥∥∥W̃T
1

∥∥∥2

+ ∆0

+
(
η̂

(0∼1)
1

)T (
ΦTP + PΦ

)
η̂

(0∼1)
1 +

κ1

2
‖W1‖2

− (
κ1

2
− 1

2
N1)

∥∥∥W̃1

∥∥∥2

+
‖P‖2‖L‖2

∥∥∥η̃(0∼1)
1

∥∥∥2

PT2 P2
(30)

Substituting (28) into (30) yields

V̇ ≤− λ
∥∥∥η̃(0∼1)

1

∥∥∥2

− (
κ1

2
− 1

2
N1 −

1

a0
N1)

∥∥∥W̃1

∥∥∥2

−m
(
η̂

(0∼1)
1

)T
P η̂

(0∼1)
1 + ∆

≤− cV + ∆, (31)

where

λ = λ0 −
‖P‖2‖L‖2

PT2 P2
> 0,∆ =

κ1

2
‖W1‖2 + ∆0,

c = min

{
λ

‖Γ‖2
, 2(

κ1

2
− 1

2
N1 −

1

a0
N1),m

}
,

κ1

2
− 1

2
N1 −

1

a0
N1 > 0.

According to (29) and (31), we know that W̃1, η̂
(0∼1)
1 ,

and η̃
(0∼1)
1 are bounded, and thus the system state η(0∼1)

1

is bounded. (Due to η
(0∼1)
1 = η̃

(0∼1)
1 + η̂

(0∼1)
1 , η(0∼1)

1

is bounded.) It can be inferred from (2) and (3) that the
pressure p and the velocity vg and the observation errors
of pressure and velocity amplitudes p̃, ṽg are bounded (p̃ =
p− p̂, ṽg = vg − v̂g). The proof is thus completed.

6 Simulation Results

In actual combustion chambers, the heat release not only
has nonlinear effects, but also reaches a saturation state when
it reaches a certain degree. Therefore, according to [10], the
heat release model Q1 (η1(t− τ)) is given as follows,

Q1 (η(t− τ)) =
β

kc
arctan (kcη̇1 (t− τ)) (32)

where β = 1 is a dimensionless constant, and kc = 0.5
is a parameter used to describe the nonlinear saturation of
flames.

The control parameters are chosen as κ1 = 5, Ŵ1 =[
0.01 0.01 0.01 0.01 0.01

]T
, and η

(0∼1)
1 (0) =[

0.3 0
]T

. According to [21], we have A0∼1
1 =[

2 2
]
, PT12 =

[
0.25 0.375

]
. Base on [8], the physi-

cal parameters are given in Table 1.
Fig. 1 illustrates the trajectory of the velocity and pres-

sure p, vg and the estimations of the velocity and the pres-
sure p̂, v̂g for the thermoacoustic system with one acoustic

mode. Obviously, under the proposed adaptive control, the
estimations of states p̂, v̂g can effectively track the motion
trajectory of the system velocity and pressure p, vg . It can
be clearly seen from Fig. 2 that the observation errors p̃, ṽg
can converge to a small region about the origin. The control
law and the adaptive law are shown in Fig. 3 and Fig. 4,
respectively.

Table 1: physical parameters.

Parameter Value Parameter Value
D11 -0.01 E11 -0.005
A111 0 B111 0
R1111 -0.16525 S1111 0.019
ω1 1 L 0.762m

ā 0.762m/π τM 0.8s

P̄ 5.5atm γ̄ 1.23
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Fig. 1: The pressure and velocity p, vg and the estimations
of pressure and velocity p̂, v̂g .
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Fig. 3: The control law u1.
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Fig. 4: The adaptive law Ŵ1.

7 Conclusion

An adaptive active control strategy based on a time-delay
NN state observer was proposed for the thermoacoustic sys-
tem with the unknown nonlinear flame heat release in the
combustion chamber of an aircraft engine. For the nonlin-
ear system with state time-delay, the time-delay NN state
observer has better effectiveness and smaller observation er-
rors compared to the linear observer. In addition, instead of
the traditional Krasovskii functional, the finite covering lem-
ma was combined with the RBF NN to approximate the un-
known nonlinear heat release with the time delay. An adap-
tive active control was proposed based on the fully actuated
system method to ensure that the pressure and the velocity
fluctuations of the thermoacoustic system, as well as the ob-
servation errors of the pressure and the velocity fluctuations,
converged to a small neighborhood around the origin. Fi-
nally, the feasibility and effectiveness of the design method
were verified through simulation results.
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Abstract: The robust prescribed-time global control for the elliptical orbital rendezvous system is investigated under a class
of time-varying disturbances. The elliptical orbital rendezvous system formulated by Newton’s equation turns out to be a fully
actuated system (FAS), thereby the idea of FAS approaches is applied to facilitate the controller design. Based on the parametric
Lyapunov equation, a time-varying high-gain feedback is constructed such that the target spacecraft is captured successfully by
the arbitrarily positioned chaser spacecraft within any prescribed time, that is, the origin of the closed-loop system is globally
finite-time attractive within any prescribed time. In the absence of disturbances, the closed-loop system is strengthened to be
globally finite-time stable with any prescribed time. Notably, the attractive result of the perturbed system implies the globally
almost disturbance decoupling to such a class of disturbances. Comparative simulations verify the effectiveness of our approach.

Key Words: Elliptical Orbital Rendezvous, FAS Approach, Prescribed-Time Control, Parametric Lyapunov Equation, Time-
Varying Feedback

1 Introduction

Spacecraft on-orbit operation and service, including re-
pairing, saving, docking, and large structure assembling rely
heavily on the technology of autonomous rendezvous [1, 2].
The spacecraft rendezvous system is characterized by a tar-
get spacecraft in a circular or elliptical orbit and another
chaser spacecraft actively engaged with it, whose visualized
sketch is depicted in Fig. 1. In the rotating frame XY Z, the

Chaser 
Spacecraft

Target Spacecraft

Center Planet PerigeeApogee

Target Orbit

x

X
Z

Y

R

ω

Fig. 1: Elliptical orbital rendezvous system and coordinates

relative motion between the chaser spacecraft and the tar-
get can be described by the nonlinear differential equation
[3] (Newton’s equation) for which the linearized equations
are known as the Hill–Clohessy–Wiltshire equation [4] or
the Tschauner–Hempel equation [2]. Notably, by employing
three independent control accelerations (or thrusts) as con-
trol signals for the rendezvous system, the spacecraft ren-
dezvous system can be classified as a fully actuated system
(FAS), aligning with the definition of FASs (see [5, 6]). This
characterization implies that the idea of FAS approaches can

This work is supported by Science Center Program of the National Nat-
ural Science Foundation of China under grant 62188101, Major Program
of National Natural Science Foundation of China under grants 61690210,
61690212, National Natural Science Foundation of China under grant
61333003.

be applied in the control of the spacecraft rendezvous sys-
tem.

Recently, the FAS approach [5–9] has attracted much
more attention within the realm of nonlinear control. A vari-
ety of intricate problems including robust backstepping con-
trol with the weakened differential explosion [6, 10], distur-
bance attenuation [7], stabilization of nonholonomic systems
[8], robust stabilization of a class of cascade systems [9], and
fault-tolerant control of uncertain FASs [11], were studied
by FAS approaches. The fundamental characteristic of FASs
lies in their inherent fully actuated nature, where each de-
gree of freedom possesses a direct control mechanism. This
distinctive feature makes the FAS approach a direct and sim-
plified methodology, especially effective in designing con-
trollers with robustness against disturbances.

The rendezvous problem can be abstracted to a basic sta-
bilization problem of the rendezvous system, in which other
possible requirements such as robustness to disturbance [12],
actuator saturation [13], lower thrust [14], fuel optimization
[15], and optimal guidance [16] are also involved. Parallel to
these problems, finite-time control of the rendezvous system
has emerged as a highly active research area. For the circular
orbital rendezvous system with bounded inputs, the finite-
time stabilization was achieved by a class of time-varying
high-gain feedback in [17], the nonsingular terminal sliding
mode control in [18], and the dynamic event-triggered con-
trol and self-triggered control in [19]. For the elliptical or-
bital rendezvous system with bounded inputs, the fixed-time
stabilization was achieved by the smooth periodic delayed
feedback in [20].

We proceed to introduce the existing finite-time control
approach briefly, particularly the time-varying feedback ap-
proach. In [21, 22], prescribed-time stabilization of a class
of nonlinear normal form systems was originally achieved
based on a time-varying high-gain that grows unbounded
towards the terminal time. In [23], prescribed-time sta-
bilization of generalized strict-feedback-like systems was
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achieved with the development of a class of dynamic high-
gains and a state scaling process. Based on parametric
Lyapunov equations (PLEs), another time-varying high-gain
feedback method was designed in [17] to achieve the finite-
time stabilization of linear systems with bounded input,
and then this idea was generated in [24] to achieve the
prescribed-time stabilization for a class of lower-triangular
nonlinear systems.

This paper focuses on the robust prescribed-time global
control for the elliptical orbital rendezvous system. A class
of time-varying disturbances caused by the gravitational
force of other stars is incorporated and further assumed to
be piecewise continuous. With three independent control ac-
celerations (or thrusts) being used as the control input, the
elliptical orbital rendezvous system formulated by Newton’s
equation turns out to be an FAS, thereby the idea of FAS
approaches in [6] is used to facilitate the controller design.
In addition, motivated by the time-varying high-gain feed-
back approach in [17], a prescribed-time controller is de-
signed for the perturbed rendezvous system such that the
target spacecraft is captured successfully by the arbitrarily
positioned chaser spacecraft within the prescribed time, that
is, the origin of the closed-loop system is globally finite-time
attractive within any prescribed-time.

We should highlight the contributions now. Firstly, our ap-
proach retains the control-oriented characteristic inherent in
FAS approaches, noting that the controller is designed based
on the FAS model. Secondly, our approach achieves an at-
tractive result even in the presence of disturbances, which
is not included in the analysis of [17]. Thirdly, our consid-
eration of a piecewise continuous disturbance in this work
is comparatively weaker than the one in [6]. It is important
to acknowledge that our approach is motivated by the FAS
approach [6] and the prescribed-time control approach [17].

Notations: A function f(x) : D → Rm is said to be
Cn on a domain (open and connected set) D ⊂ Rn if it is n
times continuously differentiable for some integer n ≥ 1. Ir

denotes the identity matrix with the dimension being r. 0r

denotes the zero matrix with the dimension being r. detA
represents the determinant of the square matrix A. tr(A)
denotes the trace of a matrix A. λmin(A) and λmax(A) rep-
resent the minimal and maximal eigenvalues of the symmet-
ric matrix A. We use blockdiag(A1,A2, . . . ,An) to denote
a diagonal matrix whose ith diagonal element is the matrix
Ai.

2 Preliminary Knowledge

We firstly recall the definition of finite-time stability.

Definition 1. [25] The equilibrium x = 0 of ẋ = f(x, t)
is said to be globally finite-time stable with the convergence
time T (x0) > 0 (denoted by T -GFTS) if it is stable in the
Lyapunov sense and the origin is globally attractive with
the convergence time T (x0) (denoted by T -GFTA), namely,
∀x0 ∈ Rn ⇒ limt→T ∥x(t)∥ = 0.

We proceed to recall some approaches regarding paramet-
ric Lyapunov equations. The following lemma is modified
from the lemma 3 in [24], whose proof can be conducted in
the same way.

Lemma 1. [24] Consider the linear system (Φ,B) ∈

(Rnr×nr,Rnr×r) with

Φ =


0 Ir

. . .
. . .
0 Ir

0

 , B =


0
...
0
Ir

 . (1)

The following PLE

ΦTP + PΦ− PBBTP = −γP (2)

has a unique positive definite solution if and only if γ > 0.
Assume that γ > 0 is satisfied, then,

1) the positive definite solution P (γ) can be given by

P (γ) = γLnP nLn, (3)

where Ln = blockdiag(γn−1Ir, γ
n−2Ir, · · · , Ir) and

P n = P (1);
2) there hold

0 <
P (γ)

nγ
≤ dP (γ)

dγ
≤ δcP (γ)

nγ
, ∀γ > 0, (4)

tr(BTPB) = nγ, (5)

where δc = n
(
1 + λmax(En + P nE0P

−1
n )
)

with En =
blockdiag((n− 1) Ir, (n− 2) Ir, · · · , Ir,0).

3 FAS Model and Problem Formulation

The relative motion of chaser spacecraft in the inertial
frame can be captured by

d2x

dt2
= −µ

(
R+ x

|R+ x|3
− R

|R|3

)
+ u+d(t), (6)

where x ∈ R3 is the vector from target spacecraft to chaster
spacecraft, R ∈ R3 is the vector from center of gravity to
target spacecraft with R = [0, 0,−R]

T and R being the dis-
tance from the center of gravity to the target spacecraft, µ
is the gravity constant, u ∈ R3 is the acceleration vector
due to thrust forces on the chaser spacecraft, and d(t) de-
notes the external time-varying disturbance due to the gravi-
tational force of other stars or other situations. System (6) is
formulated by the well-known Newton’s equation.

As shown in Fig. 1, fix the rotating frame XY Z at the
center of mass of the target spacecraft. For a vector χ,
the derivative dχ/dt in the inertial frame and the derivative
drχ/drt in the rotating frame satisfy

dχ

dt
=

drχ

drt
+ ω × χ,

where ω is the angular velocity of the rotating frame, and

ω = [0,−ω, 0]
T

with ω being the orbital rate of the rotating frame. As a re-
sult, along with (6), the relative motion of chaser spacecraft
in the rotating frame can be formulated as

d2rx

drt2
=− µ

(
R+ x

|R+ x|3
− R

|R|3

)
+ u+d(t)

−
(
2ω × drx

drt
+

dω

dt
× x+ ω × ω × x

)
. (7)
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We now recapitulate the remaining parameters and sym-
bols of the target orbit. Let a be the semimajor axis and e
be the eccentricity of the target obit. According to [3], there
yields {

Tt = 2π
√

a3

µ ,

h =
√
µ (1− e2) a,

(8)

where Tt is the period of the target orbit, and h is the orbital
angular momentum of the target spacecraft. We point out
that Tt and h are constant parameters. Besides, we know
from [3] that

R =
a
(
1− e2

)
1 + e cos θ

, (9)

where θ is true anomaly of the target orbit. Let tp be the time
when the target spacecraft arrives at the perigee. At time tp,
the triple including the true anomaly θ, eccentric anomaly
E, and mean anomaly M are equal to zero. The relation
between these anomalies can be formulated as [3]

M = 2π
Tt

(t− tp) ,

M = E − e sinE,

tan θ
2 =

√
1+e
1−e tan

E
2 .

(10)

Clearly, these three anomalies M,E, θ are time-varying and
one-to-one with respect to t. By the law of conservation of
angular momentum R2ω = h, we obtain

ω = h/R2. (11)

To this section end, the elliptical orbital rendezvous prob-
lem shall be abstract to the control problem. For simplicity,
we denote ẋ ≜ drx/drt, ẍ ≜ d2rx/drt

2, and

f(x(0∼1), t) ≜− µ

(
R+ x

|R+ x|3
− R

|R|3

)

−
(
2ω × ẋ+

dω

dt
× x+ ω × ω × x

)
,

where x(0∼1) = [ xT ẋT ]T. Then, system (7) can be
written in the form of FAS model, namely,

ẍ = f(x(0∼1), t) + u+d(t), (12)

where u turns out to be the control input, f : R6 × R≥0 →
R3 is a C∞ function with f(0, t) = 0, ∀t ≥ 0, and the
disturbance d(t) satisfies

Assumption 1. d : R≥0 → R3 is an unknown piecewise
continuous function.

Remark 1. In view of (9), (10), and (11), the terms R =
R(θ) and ω = ω(θ) are time-varying and thus the vector
field f is in the time-varying case f(x(0∼1), t). According
to the definition of FAS in [5, 6], system (1) is a single-order
FAS. In addition, the disturbance d(t) is only required to be
piecewise continuous, which is weaker than the one in [6].

By noting the practical task is that the target spacecraft
could be captured successfully by the arbitrarily positioned
chaser spacecraft within any prescribed time, we now high-
light the main problem.

Problem 1. Let T > 0 be a prescribed constant. Find a
bounded control input u(x(0∼1), t) such that the origin of
the closed-loop system consisting of system (12) and u is T -
GFTA. In addition, in the absence of d(t), namely, d(t) = 0,
system (12) is T -GFTS.

4 Main Results

When it concerns the elliptical orbital rendezvous system,
the associated PLE (2) is formed by

Φ =

[
0 I3

0 0

]
, B =

[
0
I3

]
. (13)

Then, we state the main results as follows.

Theorem 1. Let T > 0 be a prescribed constant. Choose γ0
as

γ0 =
n+ δc

(1− s)nT
, (14)

where s ∈ (0, 1) is a prescribed constant, and δc is given in
(4). If we design the time-varying state feedback

u(t) = v(t)− f(x(0∼1), t),

v(t) = −BTP (γ(t))x(0∼1)(t),
γ(t) = T

T−tγ0, ∀t ∈ [0, T ) ,
(15)

where P (γ(t)) is the unique positive definite solution to the
PLE (2) with the pair (Φ,B) given by (13). Then the point
x(0∼1) = 0 of the closed-loop system consisting of (12) and
(15) is T -GFTA and the input u(t) is bounded on the time
interval [0, T ). In addition, in the absence of d(t), that is,
d(t) = 0, the closed-loop system is T -GFTS.

Proof. For simplicity, we omit the domain [0, T ) unless oth-
erwise stated. The closed-loop system consisting of (12) and
(15) turns out to be ẍ = −BTPx(0∼1) − d(t), which can
be written in the state-space form as

ẋ(0∼1) =
(
Φ−BBTP

)
x(0∼1) +Bd(t), (16)

with (Φ,B) given by (13 ). Define a function V (x(0∼1), t) :
R6 × [0, T ) → R≥0 as

V (x(0∼1), t) ≜ γ
(
x(0∼1)

)T
P (γ)x(0∼1).

The derivative of V (x(0∼1), t) along the trajectory of the
closed-loop system (16) is evaluated as

V̇ = γ̇
(
x(0∼1)

)T
Px(0∼1) + γγ̇

(
x(0∼1)

)T dP

dγ
x(0∼1)

+ γ
(
x(0∼1)

)T [(
Φ−BBTP

)T
P+

P
(
Φ−BBTP

)]
x(0∼1) + 2γdT(t)BTPx(0∼1)

≤ n+ δc
nγ

γ̇V − γV − γ
(
x(0∼1)

)T
PBBTPx(0∼1)

+ 2γ
∥∥∥BTPx(0∼1)d(t)

∥∥∥ , (17)

where (2) and (4) are used. It follows from the Yong’s in-
equality that

2
∥∥∥BTPx(0∼1)d

∥∥∥ ≤
(
x(0∼1)

)T
PBBTPx(0∼1)+∥d∥2 .
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Then, V̇ (x(0∼1), t) in (17) can be continued as

V̇ ≤ n+ δc
nγ

γ̇V − γV + γ ∥d(t)∥2

=
1

αγ

(
γ̇ − αγ2

)
V + γ ∥d(t)∥2 . (18)

where α ≜ n/ (n+ δc). By using the definition of γ0, γ(t)
in (14) and (15), we obtain

γ̇ − αγ2 = −αsγ2.

Define dm ≜ sup0≤t≤T ∥d(t)∥2. Then V̇ (x(0∼1), t) in (18)
can be continued as

V̇ ≤ −sγ(t)V + dmγ(t),

which, by the comparison lemma, implies

V ≤
(
T − t

T

)sγ0T

V0 +
dm
s
, (19)

where V0 ≜ V (x(0∼1)(0), 0). Observe that

V (x(0∼1), t) ≥ λmin(P (γ0))γ(t)
∥∥∥x(0∼1)

∥∥∥2 , (20)

V0 ≤ λmax(P (γ0))γ0

∥∥∥x(0∼1)(0)
∥∥∥2 , (21)

where dP (γ)/dγ > 0 in (4) and γ ≥ γ0 are used in (20).
Let σ1 ≜ λmin(P (γ0)) and σ2 ≜ λmax(P (γ0)). Combined
(19), (20), and (21) obtains∥∥∥x(0∼1)(t)

∥∥∥2 ≤ σ2

σ1

(
T − t

T

)sγ0T+1 ∥∥∥x(0∼1)(0)
∥∥∥2

+
1

sσ1γ0

T − t

T
dm. (22)

In view of limt→T

∥∥x(0∼1)(t)
∥∥ = 0, the point x(0∼1) = 0

of the closed-loop system of (16) is T -GFTA.
The boundedness of u(t) should be revealed. It follows

from (3) and (5) that

∥v(t)∥2 =
(
x(0∼1)

)T
PBBTPx(0∼1)

≤ λmax(P
1
2BBP

1
2 )
(
x(0∼1)

)T
P

1
2P

1
2x(0∼1)

≤ tr
(
P

1
2BBTP

1
2

)(
x(0∼1)

)T
Px(0∼1)

= tr
(
BTPB

)(
x(0∼1)

)T
Px(0∼1)

= nV (x(0∼1), t),

which together with (19) implies

∥v(t)∥2 ≤ n

(
T − t

T

)sγ0T

V0 +
ndm
s

. (23)

In view of the boundedness of x(0∼1)(t) in (22),
f(x(0∼1)(t), t) is bounded on the time interval [0, T )
owing to the continuity, which, together with the bounded-
ness of v(t) in (23), implies that the control input u(t) is
bounded on the time interval [0, T ).

When it concerns d(t) = 0, substituting dm = 0 into (22)
leads to∥∥∥x(0∼1)(t)

∥∥∥2 ≤ σ2

σ1

(
T − t

T

)sγ0T+1 ∥∥∥x(0∼1)(0)
∥∥∥2 , (24)

which implies that the equilibrium x(0∼1) = 0 of
the closed-loop system (16) is Lyapunov stable and
limt→T

∥∥x(0∼1)(t)
∥∥ = 0. This proof is finished.

Remark 2. In the absence of d(t), the bounded results of
x(0∼1)(t) in (22) is strengthened to the Lyapunov stable case
(24), which results in the stabilization result for system (6).

Remark 3. Denote the trajectory of the closed-loop sys-
tem (16) with and without d(t) as x(0∼1)(t) and x

(0∼1)
∗ (t),

respectively. By checking that limt→T ∥x(0∼1)(t)∥ =

limt→T ∥x(0∼1)
∗ (t)∥ = 0, it can be concluded that the dis-

turbance d(t) is globally almost decoupled by the developed
controller (15).

5 Simulations

In this section, some comparative simulations are pro-
vided to verify the effectiveness of robust prescribed-time
control for the elliptical orbital rendezvous system. We point
out that the original plant (7) is chosen as the simulation
plant. Some key parameters of the target orbital are listed
in Table 1 [13]. Among these parameters, a, e, µ, tp are ba-

Table 1: Parameters of the target orbit

Parameters Symbol Values
Semimajor axis a 2.4616× 107m

Eccentricity e 0.073074
Gravity constant µ 3.986× 1014m3/s2

Time at perigee tp 0s
Angular momentum h 6.672× 1010m2/s

Period Tt 38436s

sic parameters of the target orbit, but Tt, h are calculated by
(8). By using Lemma 1, the employed controller (15) can be
written as

u(t) = −BTγLn(γ)P nLn(γ)x
(0∼1)(t)− f(x(0∼1), t)

where P n and Ln(γ) are given by

P n =

[
I3 I3

I3 2I3

]
, Ln(γ) =

[
γI3 0
0 I3

]
.

For a clear interpretation, we partition the vector x in the
rotating frame XY Z as x =

[
x1 x2 x3

]T
and choose

three types of initial conditions

x0,1 = [1000,−3, 100, 10000, 3,−3]T,

x0,2 = [2000,−6, 200, 20000, 6,−6]T,

x0,3 = [5000,−15, 500, 50000, 15,−15]T,

and two types of disturbances

d1(t) = [e0.01t, 3tx2(t), 100]
T,

d2 = [200, 200, 100]T.
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5.1 Cases Under Various T
We consider three cases regarding various prescribed

times T , whose simulation parameters are listed as follows,
Case 1: T = 1, γ0 = 10,x(0∼1)(0) = x0,1,d = d1(t);
Case 2: T = 2, γ0 = 10,x(0∼1)(0) = x0,1,d = d1(t);
Case 3: T = 5, γ0 = 10,x(0∼1)(0) = x0,1,d = d1(t).

The simulation results including the state response and in-
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Fig. 2: The response x(t) under various T
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Fig. 3: The response ẋ(t) under various T
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Fig. 4: Control input u(t) under various T

puts are printed in Figs. 2-4. As observed, any states of
x(0∼1)(t) converge to the origin within the prescribed time
T , and in the meantime, the input u(t) is bounded, which
validates the attractive results in Theorem 1.

5.2 Cases Under Various d(t)
We consider three cases regarding various disturbances

d(t), whose simulation parameters are listed as follows,
Case 4: T = 5, γ0 = 10,x(0∼1)(0) = x0,1,d = d1(t);
Case 5: T = 5, γ0 = 10,x(0∼1)(0) = x0,1,d = d2;
Case 6: T = 5, γ0 = 10,x(0∼1)(0) = x0,1,d = 0.
The time-varying disturbance d1(t) and the constant dis-

turbance d2 are considered in Case 4 and Case 5 respec-
tively. The trajectory x(t) converges to the origin in any
cases, whose simulation results are printed in the rotating
frame and captured by Fig. 5. By comparing these three
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210010
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14000 700
-10 0

Fig. 5: Trajectory x(t) in the rotating frame under various
d(t)

cases, we obtain that the disturbance d1(t) and d2 are almost
disturbance decoupled, which verifies the results in Remark
3. However, it is clear that the attractive performance relies
on the form of disturbances.

5.3 Cases Under Various γ0
We consider three cases regarding various initial gains γ0,

whose simulation parameters are listed as follows,
Case 7: T = 5, γ0 = 10,x(0∼1)(0) = x0,1,d = d1(t);
Case 8: T = 5, γ0 = 20,x(0∼1)(0) = x0,1,d = d1(t);
Case 9: T = 5, γ0 = 50,x(0∼1)(0) = x0,1,d = d1(t).
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Fig. 6: Trajectory x(t) in the rotating frame under various
γ0

The trajectory x(t) converges to the origin in any case,
whose simulation results are printed in the rotating frame
and captured by Fig. 6. It is worth mentioning that the over-
shoots, particularly in the coordinate X (namely, the compo-
nent x1), are distinct under the different γ0.
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5.4 Cases Under Various x(0∼1)(0)

We consider three cases regarding various initial values
x0 , whose simulation parameters are listed as follows,

Case 10: T = 5, γ0 = 20,x(0∼1)(0) = x0,1,d = d1(t);
Case 11: T = 5, γ0 = 20,x(0∼1)(0) = x0,2,d = d1(t);
Case 12: T = 5, γ0 = 20,x(0∼1)(0) = x0,3,d = d1(t).
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Fig. 7: Trajectory x(t) under various x(0∼1)(0)

The trajectory x(t) converges to the origin in any case,
whose simulation results are printed in the rotating frame and
captured by Fig. 7. The demands for a large initial condition
x0 in practical applications can be met by our approach ow-
ing to the global results in Theorem 1.
6 Conclusion

The robust prescribed-time global control for the ellip-
tical orbital rendezvous system is studied, where the in-
volved time-varying disturbances (concerning time only) is
assumed to be piecewise continuous merely. With three in-
dependent control accelerations (or thrusts) being used as the
control input, the elliptical orbital rendezvous system formu-
lated by Newton’s equation turns out to be an FAS, thereby
the idea of FAS approaches is used to facilitate the con-
troller design. In addition, motivated by the time-varying
high-gain feedback approach, a prescribed-time controller is
designed for the perturbed rendezvous system such that the
target spacecraft is captured successfully by the arbitrarily
positioned chaser spacecraft within the prescribed time, that
is, the origin of the closed-loop system is globally finite-time
attractive within any prescribed time.
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Abstract: In this paper, an event-triggered control scheme for nonlinear switched system is proposed based on the fully actuated
system approach. By integrating the switching signal information into the event-triggered mechanism (ETM), a mode-dependent
event-triggered controller is designed to save communication resources. In addition, neural network is used to approximate the
unknown nonlinear dynamics of the system. By combining the fully actuated system approach with mode-dependent ETM, the
computational complexity is reduced. The proposed scheme guarantees that all the signals in the closed-loop system remain
bounded. Finally, the effectiveness of the proposed control scheme is proved by example.

Key Words: Neural network, Event-triggered control, Nonlinear switched system.

1 Introduction

In recent years, the control problem of nonlinear sys-
tems has received extensive attention. Therefore, the stabil-
ity of nonlinear systems has become a key problem that re-
searchers need to solve. Many scholars have studied the sta-
bility of nonlinear systems and achieved fruitful results [1-
4]. Nevertheless, all of the aforementioned outcomes require
the conversion of the second-order system into the form of
a first-order state space, which increases the computational
complexity and wastes resources. In order to solve the prob-
lem, high-order fully actuated (HOFA) systems theory was
proposed in [5–7]. Compared with the first-order state-space
form, the HOFA systems can not only greatly simplify the
controller design but also ensure the full-actuation charac-
teristic of the system.

The existence of uncertainty problems in practical appli-
cations is widespread, which is solved by adaptive control
design for uncertain nonlinear systems. And fuzzy logic sys-
tem and NN are also used to approximate unknown contin-
uous nonlinear functions [8–12]. Reference [8] considered
the problem of adaptive NN control for nonlower triangular
nonlinear systems with unmodeled dynamics and additional
disturbances. However, these excellent results do not take
into account energy consumption and communication bur-
den.

Event-triggered control (ETC) has received a lot of atten-
tion due to their ability to conserve resources [13–16]. When
we consider the ETC of switched system, it is inevitable
to solve asynchronous switching problems between mode-
dependent controllers and subsystems caused by triggering
and switching. However, strict assumptions in the control
design have been made to avoid asynchronous switching in
many papers. In addition, the above ETC only applies to
general first-order nonlinear systems, and cannot be directly
applied to high-order fully actuated systems. Therefore, it is
necessary to study ETC for HOFA nonlinear switched sys-
tems.

Inspired by the above analysis, this brief considers adap-
tive ETC for nonlinear switched system based on fully actu-
ated system method. The innovations of the brief are shown
as follows

(1) Compared with the above papers, the proposed ETM
can be directly applied to HOFA systems, which not only
successfully save resources, but also ensure that the state of
the system is bounded.

(2) Combining fully actuated system approach with
model-dependent ETM, the computational complexity is re-
duced.

(3) NN is utilized to estimate the unknown nonlinear func-
tions, which is more convenient for controller design.

2 Problem formulation and preliminaries

Consider a single-link FJ robot system whose manipula-
tors with an elastic revolute joint is actuated by a brushed
direct current motor that can be given by

Mσ q̈1 +mglσ sin(q1) = K(q2 − q1),

J q̈2 +Bq̇2 −K(q1 − q2) = KT I,

Lİ +RI +KB q̇2 = u,

(1)

where q1 and q2 are the angular position on the link and mo-
tor sides, respectively. M and m represent the load and link
masses, respectively. l is the link length, g is the gravitational
acceleration,K is stiffness coefficient of the torsional spring,
J is the rotor inertia, B is the coefficient of viscous friction.
KT and KB are torque constant of the direct current motor
and back-emf coefficient, respectively. L, I and R are the
armature inductance, current, and resistance, respectively. u
is the torque input. σ(t) : [0,∞) → M = {1, 2, · · · ,m} is
the switching signal.

Obviously, the above system is a second-order system, and
the proposed high-order ETC backstepping can deal with it
directly without transforming it into a first-order state space
form. Let x1 = q1, x2 = q2, x3 = I . Then the system (1)
can be converted to the following form
x
(m1)
1 = fσ1 (x

(0∼m1−1)
1 ) + gσ1 (x

(0∼m1−1)
1 )x2,

x
(m2)
2 = fσ2 (x

(0∼mi−1)
i |i=1∼2)+g

σ
2 (x

(0∼mi−1)
i |i=1∼2)x3,

x
(m3)
3 = fσ3 (x

(0∼mi−1)
i |i=1∼3)+g

σ
3 (x

(0∼mi−1)
i |i=1∼3)u,

(2)
where xi (i = 1, 2, 3) and u denote the system state, in-
put, respectively. mi (i = 1, 2, 3) are positive integers, and
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m1 = 2,m2 = 2,m3 = 1. fσi (x
(0∼mi−1)
i |i=1∼i) are suf-

ficiently smooth nonlinear functions. gσi (x
(0∼mi−1)
i |i=1∼i)

are control gain functions, and satisfies full-actuation
conditions. And fσ1 (x

(0∼m1−1)
1 ) = −mglσ

Mσ sin(x1) −
K
Mσ x1, fσ2 (x

(0∼mi−1)
i |i=1∼2) = K

J x1 − B
J ẋ2 − K

J x2,
fσ3 (x

(0∼mi−1)
i |i=1∼3) = −KB

L ẋ2− R
Lx3, gσ1 (x

(0∼m1−1)
1 ) =

K
Mσ , gσ2 (x

(0∼mi−1)
i |i=1∼2) =

KT

J , gσ3 (x
(0∼mi−1)
i |i=1∼3) =

1
L . σ(t) : [0,∞) → M = {1, 2, · · · ,m} is the switch-
ing signal. In the next, make some necessary symbols, full-
actuation assumptions and lemmas.

In the paper, In represents the identity matrix and

x(0∼n) =


x
ẋ
...

x(n)

 ,

I◦n =

0 0 1

0 . .
.

0
1 0 0

 ,

x
(0∼n)
i∼j =


x
(0∼n)
i

x
(0∼n)
i+1

...
x
(0∼n)
j

 , j ≥ i

A0∼n−1 =
[
A0 A1 . . . An−1

]
,

Φ(A0∼n−1) =


0 I

. . .
I

−A0 −A1 . . . An−1

 .
Assumption 1. [6] gpk(x

(0∼mi−1)
i |i=1∼k) ̸= 0, k =

1, · · · , n, p ∈M .
Assumption 2. [9] The desired signal yd(t) and ẏd(t) are

known, continuous and bounded.
Lemma 1.[3] Let f(x) be a continuous function which is

defined on a compact set Ξ, there is NN such that the follow-
ing inequality holds

f(x) =W ∗TS(x) + ε(x), (3)

where ε(x) represents the approximation error with |ε(x)| ≤
ε and ε > 0 is positive constant.

Lemma 2.[15] For ∀ϵ > 0 and σ ∈ R, it can be concluded
that

0 ≤ |σ| − σ tanh(
σ

ϵ
) ≤ 0.2785ϵ. (4)

Lemma 3.[6] When the matrix A0∼n−1 is chosen to
make the matrix Φ(A0∼n−1) stable, it follows from the Lya-
punov Theorem that there exists a positive definite matrix
P (A0∼n−1) satisfying

Φ(A0∼1
i )

T
Pi(A

0∼1
i )+Pi(A

0∼1
i )Φ(A0∼1

i )

=−µiIi, (5)

where µi > 0 is a constant and i = 1, · · · , n.

3 Controller Design and Stability Analysis

At the beginning of high-order ETC backstepping design,
we give the some notations. Define

Pi(A
0∼1
i ) =

[
PiF (A

0∼1
i ) PiL(A

0∼1
i )

]
,

P̃i(A
0∼1
i ) = I◦2P

T
i (A0∼1

i ),

P̃−1
i (A0∼1

i ) =

[
Qi11(A

0∼1
i ) Qi12(A

0∼1
i )

QiF (A
0∼1
i ) QiL(A

0∼1
i )

]
,

where i = 1, · · · , 3, and QiL(A0∼1
i ) ̸= 0.

Step 1: Firstly, the following coordinate transformation is
defined as

e
(0∼1)
1 = x

(0∼1)
1 − y

(0∼1)
d , (6)

P̃2(A
0∼1
2 )e

(0∼1)
2 = x

(0∼1)
2 −

[
α1

0

]
.

Based on the above notations, one has

PT2L(A
0∼1
2 )e

(0∼1)
2 = x2 − α1,

PT2F (A
0∼1
2 )e

(0∼1)
2 = ẋ2. (7)

From (2) and (6), the time derivative of e1 is

ë1 =fp1 (x
(0∼1)
1 ) + gp1(x

(0∼1)
1 )PT2L(A

0∼1
2 )

× e
(0∼1)
2 + gp1(x

(0∼1)
1 )α1. (8)

Choose virtual controller α1 as

α1 =− 1

g1
(A

(0∼1)
1 e

(0∼1)
1 +

1

2a21
PT1L(A

0∼1
1 )e

(0∼1)
1

× θ̂1S
T
1 S1 +

1

2
PT1L(A

0∼1
1 )e

(0∼1)
1 ), (9)

where g1 = maxp∈M {gp1 , }. Then, (8) can be expressed in
the state-space form

ė
(0∼1)
1 = sp1Φ(A

0∼1
1 )e

(0∼1)
1 +

[
0
Hp

1

]
where sp1 = {gp1/g1, p ∈ M}, Hp

1 = fp1 (x
(0∼1)
1 ) +

gp1(x
(0∼1)
1 )PT2L(A

0∼1
2 )e

(0∼1)
2 − 1

2P
T
1L(A

0∼1
1 )e

(0∼1)
1 −

1
2a21

PT1L(A
0∼1
1 )e

(0∼1)
1 θ̂1S

T
1 S1.

The Lyapunov candidate function V1 is designed as

V1 = (e
(0∼1)
1 )TP1(A

0∼1
1 )e

(0∼1)
1 +

1

2
θ̃21, (10)

where θ1 = maxp∈M{∥W p
1 ∥2} and θ̃1 = θ1 − θ̂1.

The derivative of V1 can be derived as

V̇1 ≤− µ1s1,m(e
(0∼1)
1 )T e

(0∼1)
1 −θ̃1 ˙̂θ1

+2PT1L(A
0∼1
1 )e

(0∼1)
1 fp1 (x

(0∼1)
1 )

− PT1L(A
0∼1
1 )e

(0∼1)
1 (e

(0∼1)
1 )TP1L(A

0∼1
1 )

+ 2PT1L(A
0∼1
1 )e

(0∼1)
1 gp1(x

(0∼1)
1 )PT2L(A

0∼1
2 )e

(0∼1)
2

− PT1L(A
0∼1
1 )e

(0∼1)
1

1

a21
PT1L(A

0∼1
1 )e

(0∼1)
1 θ̂1S

T
1 S1

(11)
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where s1,m = minp∈M{sp1}. With the help of NN and
Young’s inequality, one gets

PT1L(A
0∼1
1 )e

(0∼1)
1 F p1 (X1)

=PT1L(A
0∼1
1 )e

(0∼1)
1 (WT

1 S1(X1) + ε1)

≤ (PT1L(A
0∼1
1 )e

(0∼1)
1 )2θ1S

T
1 (X1)S1(X1)

2a21
+

1

2
a21

+
1

2
PT1L(A

0∼1
1 )e

(0∼1)
1 PT1L(A

0∼1
1 )e

(0∼1)
1 +

1

2
ε̄21, (12)

where F p1 (X1) = fp1 (x
(0∼1)
1 ), a1 is a constant.

The adaptive law θ̂1 is designed as

˙̂
θ1 =

1

a21
PT1L(A

0∼1
1 )e

(0∼1)
1 PT1L(A

0∼1
1 )e

(0∼1)
1 ST1 S1 − l1θ̂1.

(13)

Replacing (12) and (13) into (11), one gives

V̇1 ≤− µ1s1,m(e
(0∼1)
1 )T e

(0∼1)
1 − 1

2
l1θ̃

2
1 + a21 + ε̄21 +

1

2
l1θ

2
1

+ 2PT1L(A
0∼1
1 )e

(0∼1)
1 gp1(x

(0∼1)
1 )PT2L(A

0∼1
2 )e

(0∼1)
2 .

(14)

Step 2: From (2) and (7), the time derivative of e2 is

ë2 =Q2F (A
0∼1
2 )(ẋ2 − α̇1) +Q2L(A

0∼1
2 )fp2 (x

(0∼1)
2 )

+Q2L(A
0∼1
2 )gp2(x

(0∼1)
2 )P̃3(A

(0∼1)
3 )e

(0∼1)
3

+Q2L(A
0∼1
2 )gp2(x

(0∼1)
2 )α2. (15)

Choose virtual controller α2 as

α2 =− 1

Q2L(A0∼1
2 )g2

(A
(0∼1)
2 e

(0∼1)
2 +

1

2a22

× PT2L(A
0∼1
2 )e

(0∼1)
2 θ̂2S

T
2 S2 +

1

2
PT2L(A

0∼1
2 )e

(0∼1)
2 ),

(16)

where g2 = maxp∈M {gp2}. And (15) can be expressed in
the state-space form

ė
(0∼1)
2 = sp2Φ(A

0∼1
2 )e

(0∼1)
2 +

[
0
Hp

2

]
where sp2 = {gp2/g2, p ∈ M}, Hp

2 =

Q2F (A
0∼1
2 )(ẋ2 − α̇1) + Q2L(A

0∼1
2 )f2(x

(0∼1)
2 ) −

1
2a22

PT2L(A
0∼1
2 )e

(0∼1)
2 θ̂2S

T
2 S2 − 1

2P
T
2L(A

0∼1
2 )e

(0∼1)
2 +

Q2L(A
0∼1
2 )gp2(x

(0∼1)
2 )P̃3(A

(0∼1)
3 )e

(0∼1)
3 .

The Lyapunov function candidate V2 is presented as

V2 = V1 + (e
(0∼1)
2 )TP2(A

0∼1
2 )e

(0∼1)
2 +

1

2
θ̃22. (17)

Taking the derivative of V2, one has

V̇2 =V̇1 − s2,mµ2(e
(0∼1)
2 )T e

(0∼1)
2 +2PT2L(A

0∼1
2 )e

(0∼1)
2

× (Q2F (A
0∼1
2 )(ẋ2 − α̇1) +Q2L(A

0∼1
2 )fp2 (x

(0∼1)
2 ))

+ 2PT2L(A
0∼1
2 )e

(0∼1)
2 Q2L(A

0∼1
2 )gp2(x

(0∼1)
2 )P̃3(A3)

× e3 − PT2L(A
0∼1
2 )e

(0∼1)
2

1

a22
PT2L(A

0∼1
2 )e

(0∼1)
2 θ̂2S

T
2 S2

− PT2L(A
0∼1
2 )e

(0∼1)
2 (e

(0∼1)
2 )TP2L(A

0∼1
2 )−θ̃2 ˙̂θ2.

(18)

And similar to the (12), one gets

PT2L(A
0∼1
2 )e

(0∼1)
2 F p2 (X2)

=PT2L(A
0∼1
2 )e

(0∼1)
2 (W pT

2 S2(X2) + ε2)

≤ (PT2L(A
0∼1
2 )e

(0∼1)
2 )2θ2S

T
2 (X2)S2(X2)

2a22
+

1

2
a22

+
1

2
PT2L(A

0∼1
2 )e

(0∼1)
2 PT2L(A

0∼1
2 )e

(0∼1)
2 +

1

2
ε̄22 (19)

where F p2 (X2) = Q2F (A
0∼1
2 )(ẋ2 − α̇1) +

Q2L(A
0∼1
2 )fp2 (x

(0∼1)
2 ) + PT2L(A

0∼1
2 )e

(0∼1)
2 , a2 is a

constant.
The adaptive law θ̂2 is designed as

˙̂
θ2 =

1

a22
PT2L(A

0∼1
2 )e

(0∼1)
2 PT2L(A

0∼1
2 )e

(0∼1)
2 ST2 S2 − l2θ̂2.

(20)

Replacing (19) and (20) into (18), one gives

V̇2 ≤−
2∑
i=1

si,mµi(e
(0∼1)
i )T e

(0∼1)
i +

2∑
i=1

(a2i + ε̄2i +
1

2
liθ

2
i )

+2PT2L(A
0∼1
2 )e

(0∼1)
2 gp2P3(A3)e3 −

2∑
i=1

li
2
θ̃2i (21)

Step 3: The HOFA adaptive event-triggered controller is
designed as follows

v(t) = −(1 + γ)(α3 tanh(
e3P3g

p
3(x

(0∼mi−1)
i |i=1∼3)α3Q3

ϵ
)

+m̄ tanh(
e3P3g

p
3(x

(0∼mi−1)
i |i=1∼3)m̄Q3

ϵ
), (22)

u(t) = v(tk), tk ≤ t < tk+1, (23)
tk+1 = inf{t ∈ R||η(t)| ≥ γ|u(t)|+ d}, (24)

where η(t) = u(t) − v(t), d > 0, ϵ > 0, 0 < γ < 1 and
m̄ > d

1−γ are design parameters. Then, we can get following
equations

P3(A3) = P̃3(A3) ∈ R, P̃−1
3 (A3) = Q3(A3). (25)

From (2), the time derivative of e3 is

ė3 =Q3(A3)(f
p
3 (x

(0∼mi−1)
i |i=1∼3)− α̇2)

+Q3(A3)g
p
3(A3)(x

(0∼mi−1)
i |i=1∼3)u

+Q3(A3)g
p
3(A3)(x

(0∼mi−1)
i |i=1∼3)α3

−Q3(A3)g
p
3(A3)(x

(0∼mi−1)
i |i=1∼3)α3. (26)

Choose virtual controller α3 as

α3 =− 1

Q3(A3)g3
(A3e3 +

1

2a23
PT3

× (A3)e3θ̂3S
T
3 S3 +

1

2
PT3 (A3)e3), (27)

where g3 = maxp∈M {gp3}. And we can obtain the state-
space form

ė3 = sp3Φ(A3)e3 +Hp
3 (28)
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where sp3 = {gp3/g3, p ∈ M}, Hp
3 = −A3e3 −

1
2a23

PT3 (A3)e3 + Q3(A3)g
p
3(A3)(x

(0∼mi−1)
i |i=1∼3)u +

Q3(A3)(f
p
3 (x

(0∼mi−1)
i |i=1∼3)−α̇2)− 1

2P
T
3 (A3)e3θ̂3S

T
3

× S3 −Q3(A3)g
p
3(A3)(x

(0∼mi−1)
i |i=1∼3)α3.

The Lyapunov function candidate V3 is designed as

V3 = V2 + e3P3(A3)e3 +
1

2
θ̃23. (29)

Taking the derivative of V3, we obtain

V̇3 = V̇2 − s3,mµ3e
T
3 e3 −

1

a23
PT3 (A3)e3P

T
3 (A3)e3θ̂3

× ST3 S3 + 2PT3 e3(Q3(A3)f
p
3 (x

(0∼mi−1)
i |i=1∼3

−Q3(A3)α̇3−1) + 2PT3 e3Q3(A3)g
p
3(A3)u

− PT3 (A3)e3Q3(A3)g
p
3(A3)(x

(0∼mi−1)
i |i=1∼3)α3

− PT3 (A3)e3P
T
3 (A3)e3 −θ̃3 ˙̂θ3. (30)

And similar to the (12), one gets

PT3 (A3)e3F
p
3 (X3)

=PT3 (A3)e3(W
pT
3 S3(X3) + ε3)

≤ (PT3 (A3)e3)
2θ3S

T
3 (X3)S3(X3)

2a23
+

1

2
a23 +

1

2
ε̄23

+
1

2
PT3 (A3)e3P

T
3 (A3)e3 (31)

where F p3 (X3) = Q3(A3)(f
p
3 (x

(0∼mi−1)
i |i=1∼3) − α̇2) +

PT2L(A
0∼1
2 )e

(0∼1)
2 , a3 is a constant.

The adaptive law θ̂3 is designed as

˙̂
θ3 =

1

a23
PT3 (A3)e3P

T
3 (A3)e3S

T
3 S3 − l3θ̂3. (32)

From (22)-(24), we have v(t) = (1 + γλ1(t))u(t) +
λ2(t)d, ∀t ∈ [tk, tk+1), where λ1(t) ∈ [−1, 1], λ2(t) ∈
[−1, 1]. Then, we can get

u(t) =
v(t)

1 + γλ1(t)
− λ2(t)d

1 + γλ1(t)
. (33)

According to Q3(A3)P3(A3)A3g
p
3 (x

(0∼mi−1)

i |i=1∼3)v(t)

1+γλ1(t)
≤

Q3(A3)P3(A3)A3g3(x
(0∼mi−1)

i |i=1∼3)v(t)

1+γ ,

Q3(A3)P3(A3)A3g
p
3(x

(0∼mi−1)
i |i=1∼3)| λ2d

1+γλ1(t)
| ≤

Q3(A3)P3(A3)A3g
p
3(x

(0∼mi−1)
i |i=1∼3)

d
1−λ , m̄ > d

1−γ , it
yields

V̇3 ≤−
3∑
i=1

si,mµi(e
(0∼1)
i )T e

(0∼1)
i + 0.2785ϵ

−
3∑
i=1

li
2
θ̃2i +

3∑
i=1

(a2i + ε̄2i +
1

2
liθ

2
i ). (34)

Theorem 1: Consider the system (1) under the Assump-
tion 1-2, the virtual controller (9), (16) and (27), the ac-
tual controller (23) and the adaptive law (13), (20) and (32)
are designed. Then, the following statements holds: (1) all

signals in closed-loop system are bounded; (2) the event-
triggered condition is Zeno-free.

Proof: We prove the result of the theorem in the follow-
ing. Let V = Vn. Then we can get

V̇ =V̇3

≤−
3∑
i=1

si,mµi(e
(0∼1)
i )T e

(0∼1)
i + 0.2785ϵ

−
3∑
i=1

li
2
θ̃2i +

3∑
i=1

(a2i + ε̄2i +
1

2
liθ

2
i )

≤−DV (t) + C, (35)

where D = min{ si,mµi

λmin(Pi)
, li, i = 1, · · · , 3}, C =∑3

i=1(a
2
i + ε̄2i +

1
2 liθ

2
i ). According to (??), the following

inequality holds

0 ≤ V (t) ≤ C

D
+ (V (0)− C

D
)e−Dt, (36)

which means that all signals in closed-loop system can con-
verge to a small neighborhood of zero. Next, we will prove
that the designed ETC is Zeno-free.

From η(t) = u(t)− v(t), ∀t ∈ [tk, tk+1), we have

d
dt |η| =

d
dt (η × η)

1
2 = sign(η)η̇ ≤ ϖ.

where ϖ is a constant. Since η(tk) = 0 and lim
t→tk+1

η(t) =

(γ|u(t)|+ d) thus tk+1 − tk ≥ (γ|u(t)|+ d)/ϖ > 0.
This proof is completed.

4 Simulation Example

In simulations, the parameters of the system are choose as
follows: M1 = 1, M2 = 2, mgl1 = 1, mgl2 = 2, K0 = 2,
J = 1, B = 0.9, KT = 1, L = 0.125, R = 25 andKB = 1.

The design parameters are chosen as a1 = 100, µ1 =
0.16, l1 = 10, a2 = 20, µ2 = 0.16, l2 = 120, a3 = 15, µ3 =
112, l3 = 110, m̄ = 1.1, d = 0.5, γ = 0.5, ϵ = 7. The initial
conditions are chosen as x1(0) = 0.11, ẋ1(0) = −0.12,
x2(0) = 0.02, ẋ2(0) = 0.02, x3(0) = 0.05, θ̂1(0) = 0.04,
θ̂2(0) = 0.55, θ̂3(0) = 1.64. In order to satisfy (5), some
matrixes are designed as follows.

P1(A
(0∼1)
1 ) =

[
68.2 0.40
0.40 3.36

]
; A1 =

[
20 0.4

]
;

P2(A
(0∼1)
2 ) =

[
0.2107 0.0198
0.0198 0.0399

]
;A2 =

[
4.04 0.4

]
;

P3(A3) =
[
7
]
; A3 =

[
8
]
.

The simulation results are shown in Figs. 1-8. Fig. 1 exhibits
the trajectories of q1 and yd. Fig. 2 displays the trajectories
of q̇1 and ẏd. Fig. 3 displays the trajectories of q1 − yd.
Fig. 4 displays the trajectories of q̇1 − ẏd. Fig. 5 displays
the trajectories of q2, q̇2 and I . Fig. 6 displays adaptive
laws. Fig. 7 displays the trajectories of actual input u. The
trajectory of time interval of event-triggered is shown in Fig.
8.
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Fig. 1: The trajectories of q1 and yd.
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Fig. 2: The trajectories of q̇1 and ẏd.
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Fig. 3: The trajectory of q1 − yd.
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Fig. 4: The trajectory of q̇1 − ẏd.

5 Conclusion

In this paper, the control problem of nonlinear switched
systems is studied by using HOFA systems methods, which
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Fig. 5: The trajectories of q2, q̇2 and I .
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Fig. 6: The trajectories of adaptive laws.
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Fig. 7: The trajectory of u.
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Fig. 8: The trajectory of time interval of event-triggered.

doesn’t have to convert the system into a first-order system.
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NN is introduced to deal with the unknown nonlinear func-
tions. An adaptive event-triggered HOFA system control
scheme is proposed by using HOFA system backstepping
and event-triggered strategy. The proposed event-triggered
controller guarantees that system states converge to a small
neighborhood of zero. Finally, a single-link FJ robot exam-
ple proves the validity of the proposed control scheme.
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Abstract: This paper studies the fixed-time (FxT) tracking control problem of an uncertain high-order fully actuated (HOFA)
system with parameter uncertainty, external disturbance, and input saturation. Firstly, to tackle the impact of the input saturation
on the system, a hyperbolic tangent function is introduced to approximate the saturation function. Subsequently, utilizing the
HOFA system method, an intermediate control variable with adaptive laws and a tracking error fractional order term is designed,
which can effectively compensate for system parameter uncertainty and external disturbances, while promoting the FxT stability
of the system. Based on this, a FxT controller is then constructed, incorporating an adaptive law designed to effectively manage
the uncertainty in the input matrix resulting from the estimation of the saturation function. By employing FxT stability theory,
the designed adaptive controller guarantees the boundedness of all system states, while ensuring that the tracking error converges
to a small neighborhood of the origin within a fixed time. Finally, the effectiveness of the proposed control scheme is verified by
simulating a three degree of freedom marine surface vessel system model.

Key Words: High-Order Fully Actuated System, Fixed-Time Stability, Input Saturation, Marine Surface Vessel

1 Introduction

Over the past few decades, considerable research attention
has been dedicated to the analysis and synthesis of nonlin-
ear systems due to the prevalence of nonlinearity in practical
systems [1]. In existing results, many effective controller
design methods have been proposed to improve the perfor-
mance of nonlinear systems, such as feedback linearization
[2], adaptive control [3], backstepping control [4], etc. Fol-
lowing this line, numerous meaningful studies have been
conducted from diverse perspectives to explore nonlinear
system control [5–9]. However, existing results rely on the
first-order state space model of the system, which is suitable
for state response analysis but not suitable for controller de-
sign [10]. Especially for increasingly complex and uncertain
nonlinear systems, there is still an anticipation for the devel-
opment of more efficient techniques to design controllers.

Most real-world physical systems are directly modeled
based on specific physical laws, and their models are mostly
described using second-order or higher-order differential
equations. Based on this fact, the high-order fully actu-
ated (HOFA) system method first presented by Duan in re-
cent years has provided a new research perspective for non-
linear control systems [10–12]. In comparison to the first-
order state space scheme, the HOFA system method not only
greatly simplifies the controller design and ensures the full-
actuation characteristics of the system, but also has a clearer
physical background [13]. Therefore, since its inception,
the HOFA method has received widespread attention from
scholars in terms of control theory and applications [14–24].
These studies encompass adaptive control [14, 15], robust
control [16], fault-tolerant control [17, 18], predictive con-

This work was supported in part by Shenzhen Key Laboratory of
Control Theory and Intelligent Systems ZDSYS20220330161800001,
the Major Program of National Natural Science Foundation of China
(61690210, 61690212), the National Natural Science Foundation of China
(61333003), and the Science Center Program of the National Natural Sci-
ence Foundation of China under grant No. 62188101.

trol [19, 20], finite-time control [21, 22], and their applica-
tions in spacecraft [23, 24] and other various domains.

It should be noted that the aforementioned research results
and their references have either focused solely on achieving
infinite-time convergence or finite-time convergence. While
finite-time stability [21, 22] ensures that the system trajec-
tory converges within a finite time, its settling time depends
on the initial values, which limits its practical applicability
[25–27]. In order to address these limitations, fixed-time
(FxT) stability was proposed in [28], wherein the settling
time is a constant regardless of the initial conditions, mak-
ing it better suited for real-time implementation. However, to
the best of the author’s knowledge, no research has achieved
adaptive FxT control based on the HOFA method.

Based on the above discussions, this paper aims to han-
dle the adaptive FxT tracking problem for the HOFA system
with parameter uncertainty and input saturation. The main
contributions of this paper are as follows:

(i) The adaptive FxT tracking control of uncertain non-
linear systems is achieved for the first time using the HOFA
system method, expanding the applicability of this approach.

(ii) The presented control scheme is directly based on the
high-order system model derived from physical laws, mak-
ing it more convenient for controller design while reducing
the burden of system conversion. Furthermore, in contrast to
the existing FxT control algorithms [25–27] based on back-
stepping, the proposed control strategy in this paper also
eliminates repeated derivation of the virtual controller, re-
sulting in reduced computational complexity.

(iii) This paper takes into account not only system un-
certainty but also input saturation. Typically, it may gener-
ate large control actions to maintain acceptable performance
within a fixed time, making it essential to address this issue.
To mitigate the effects of saturation, the hyperbolic tangent
function is employed to approximate the saturation function,
and by utilizing the mean value theorem, the adverse im-
pact caused by input saturation can be effectively mitigated,
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which extends existing control algorithms [10–24] without
considering saturation.

2 Problem Formulation and Preliminaries

2.1 Mathematical Preliminaries
Notations: Throughout this paper, the argument (s) in a

function or variable will be dropped if no confusion is likely
to occur. For any variable x ∈ Rm, x(n) denotes its nth
derivative, and x(0∼n−1) = [xT ẋT · · · x(n−1)T ]T ∈
Rnm. For a set of constants Ai,

A0∼n−1 = [A0 A1 · · · An−1] ∈ R1×n,

Φ(A0∼n−1) =


0 I

. . .
I

−A0 −A1 · · · −An−1

 ∈ Rn×n.

Im denotes the m-dimensional identity matrix.
Furthermore, we provide the following lemmas for con-

troller design.
Lemma 1. [26] For ∀x ∈ R and any constant σ > 0, it

has 0 ≤ |x| − x2
√
x2+σ2

< σ.
Lemma 2. [11] For a matrixA ∈ Rn×n, if its eigenvalues

satisfy λi(A) < −γ for i = 1, · · · , n with γ > 0, then
there exists a positive definite matrix P ∈ Rn×n such that
ATP + PA < −γP .

Lemma 3. [11] For any positive constant κ > 0, there
always exists a set of constantsAi ∈ Rwith i = 0, · · · , n−1
that make λi(Φ(A0∼n−1)) < −κ

2 hold, where i = 1, · · · , n.
On the basis of Lemmas 2 and 3, we can obtain

that, for any κ > 0, there exists a positive definite
matrix P (A0∼n−1) such that ΦT (A0∼n−1)P (A0∼n−1) +
P (A0∼n−1)Φ(A0∼n−1) ≤ −κP (A0∼n−1). Next, for the
subsequently controller design, we will define

PL(A
0∼n−1) = P (A0∼n−1)

[
0n−1

I

]
. (1)

Lemma 4. [11] For any selected matrix F ∈ Rn×n, all
matrices A0∼n−1 and Λ ∈ Rn×n satisfying det Λ ̸= 0
and Φ(A0∼n−1) = ΛFΛ−1 are derived by the equation
A0∼n−1 = −ZFnΛ−1(Z,F ) with

Λ(Z,F ) =


Z
ZF
· · ·

ZFn−1

 ,
where Z ∈ R1×n is a design parameter matrix satisfying
det Λ(Z,F ) ̸= 0.

Lemma 5. [25] For any xi ∈ R, i = 1, 2, · · · , n,
when p ∈ (0, 1), there is

(∑n
i=1 |xi|

)p ≤
∑n

i=1 |xi|p ≤
n1−p

(∑n
i=1 |xi|

)p
.

Lemma 6. [26] For x, y ∈ Rn, the Cauchy–Schwarz
inequality (xT y)2 ≤ ∥x∥2∥y∥2 holds. In particular, for
yi > 0, the inequality

(∑n
i=1 yi

)2
=

(∑n
i=1 1 · yi

)2 ≤
n
(∑n

i=1 y
2
i

)
is further satisfied.

Lemma 7. [25] For a nonlinear dynamic ẋ = f(t, x)
with x0 being the initial value, let the origin be its equi-
librium point. If a continuous positive definite function

V (x) : Rn → R+ ∪ {0} and scalars c, b > 0, 0 < µ1 < 1
and µ2 > 1 satisfies (i) V (x) = 0 if and only if x = 0; (ii)
V̇ ≤ −cV µ1(x)−bV µ2(x)+ϑ, then the following two types
of stability properties can be obtained: (1) when ϑ = 0, the
dynamic ẋ = f(t, x) is globally FxT stable with the settling
time being Tf ≤ Tm = 1

c(1−µ1)
+ 1

b(µ2−1) ; (2) when ϑ ∈
(0,+∞), the dynamic ẋ = f(t, x) is practically FxT stable
with Tf being estimated as Tf ≤ Tm = 1

cβ(1−µ1)
+ 1

bβ(µ2−1)

and the residual set of the solution x(t) is

Ω =
{

lim
t→Tf

x|V ≤ min
{
c−

1
µ1

( ϑ

1−β

) 1
µ1
, b−

1
µ2

( ϑ

1−β

) 1
µ2
}}

with 0 < β < 1 being a constant.

2.2 Problem Formulation
In this paper, we consider the following HOFA system

x(n) = G(x(0∼n−1))us+f(x(0∼n−1))+ψ(x(0∼n−1))θ+d(t),

y = x,
(2)

where x = [x1, · · · , xm]T ∈ Rm and y ∈ Rm de-
note the state vector and output vector, respectively. f =
[f1, · · · , fm]T is a known sufficiently smooth function vec-
tor, ψ ∈ Rm×r denotes the known nonnegative function ma-
trix, θ = [θ1 · · · θr]T ∈ Rr is an unknown constant vector,
d = [d1, · · · , dm]T ∈ Rm represents the unknown time-
varying disturbance vector, G = [gT1 , ..., g

T
m]T ∈ Rm×m is

the smooth function matrix with gk ∈ R1×m, k = 1, · · · ,m,
and det(G(·)) ̸= 0, which is the controllability rank condi-
tion. Additionally, us = [us1, u

s
2, · · · , usm]T ∈ Rm denotes

the control force subject to the saturation constraint. The sat-
uration function usk = sat(uk) has the following definition:

usk = sat(uk) =

 ukM , uk ≥ ukM ,
uk, ukm < uk < ukM ,
ukm, uk ≤ ukm,

(3)

where k = 1, · · · ,m, ukM > 0 and ukm < 0 are two known
constants, uk is the actual control input to be designed.

Problem 1. Set the desired system output trajectory as
yd. This paper aims to design an adaptive FxT controller
for system (2) such that: (i) the system output tracking error
converges to a sufficiently small neighborhood of the origin
within a fixed time; (ii) all signals of the closed-loop system
are bounded.

For the above control objective, we first provide the fol-
lowing commonly used assumptions.

Assumption 1. The disturbance vector d(t) is bounded
by an unknown constant d̄ > 0, that is, ∥d(t)∥ ≤ d̄,∀t ≥ 0.

Assumption 2. The trajectory yd = [y1d, · · · , ymd]
T is

available and its nth derivative is bounded and known.
Next, to facilitate the subsequent controller design, sim-

ilar to [5], we will introduce a smooth function H(uk) to
approximate the saturation sat(uk), which is defined as

H(uk) =

{
ukM tanh

(
uk

ukM

)
, uk ≥ 0,

ukmtanh
(

uk

ukm

)
, uk < 0.

(4)

Then, by using the Lagrange mean value theorem yields

usk = sat(uk) = H(uk) + ς(uk) = H ′
uk
uk + ς(uk), (5)
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where the error ς(uk) = sat(uk)−H(uk) satisfies |ς(uk)| ≤
max{ukM (1− tanh(1)), ukm(tanh(1)−1)} ≜ ςkM , H ′

uk
=

∂H(uk)
∂uk

|uk=u′
k

and u′k = πkuk + (1− πk)uk0 with uk0 = 0,
0 < πk < 1 and 0 < Hkm ≤ H ′

uk
≤ 1. Based on the above

preparation, it is easy to obtain that there exist two unknown
constants ςM > 0 and Hm > 0 such that

|ς(uk)| ≤ max{ςkM} ≤ ςM , k = 1, 2, · · · ,m,
H ′

uk
≥ min{Hkm} ≥ Hm. (6)

Let the augmented vectors u = [u1, · · · , um]T , H ′
u =

diag{H ′
u1
, · · · , H ′

um
}, ς̄(u) = [ς(u1), ς(u2), · · · , ς(um)]T .

Then, by using Eq. (5), the system (2) can be rewritten as:

x(n) =G(x(0∼n−1))H
′

uu+f(x
(0∼n−1))

+ψ(x(0∼n−1))θ+d(t) +G(x(0∼n−1))ς̄(u), (7)

which will be used for the design of the actual controller u.

3 Controller Design

In this section, a FxT controller will be designed for the
system (7) by utilizing the HOFA system approach.

Firstly, introduce the following coordinate transformation:

e(0∼n−1) = y(0∼n−1) − y
(0∼n−1)
d . (8)

From equations (2) and (7), it can be concluded that

e(n) =G(x(0∼n−1))H
′

uu+f(x
(0∼n−1))+ψ(x(0∼n−1))θ

+d(t) +G(x(0∼n−1))ς̄(u)− y
(n)
d . (9)

As a result of the impact of input saturation, the system (7)
or (9) exhibits an unknown input matrixH

′

u and produces an
additional term of uncertaintyG(x(0∼n−1))ς̄(u). To this end,
first introduce the following unknown constant vector

ρ = [ρ1, ρ2]
T =

[
1

Hm

,
ςM
Hm

]T
. (10)

Subsequently, let the estimated signals of unknown param-
eter vectors θ ∈ Rr, ρ ∈ R2 and unknown constant d̄ be
θ̂ = [θ̂1 θ̂2 · · · θ̂r]T , ρ̂ = [ρ̂1 ρ̂2]

T and d̂, respectively. And
introduce the mathematical symbols

ξ = e(0∼n−1)T e(0∼n−1),

Z =
(
e(0∼n−1)

)T (
PL(A

0∼n−1)⊗ Im
)

(11)

with PL(A
0∼n−1) being defined in equation (1).

Next, in view of the uncertainty of the control gain matrix
H

′

u, before designing the controller u, we first construct a
intermediate control variable α on the basis of the HOFA
idea and FxT stability theory for the system (9):

α =(A0∼n−1 ⊗ Im)e(0∼n−1)−y(n)d +f(· )+ψ(· )θ̂

+ φ(· )d̂+ λmax(P )(A
0∼n−1 ⊗ Im)e(0∼n−1)ξ

+(A0∼n−1 ⊗ Im)e(0∼n−1)(λmin(P )ξ
)µ−1

η(· ), (12)

and concurrently design the adaptive laws ˙̂
θ and ˙̂

d with the
following updated form

˙̂
θ = ψ(· )TZT − δθ1 θ̂ − δθ2Fθ,

˙̂
d = φ(· )TZT − δd1

d̂− δd2
d̂3, (13)

where λmin(P ) and λmax(P ) denote the minimum and maxi-
mum eigenvalue of matrix P (A0∼n−1) defined in Lemma 3,
respectively, δθ1 > 0, δθ2 > 0, δd1

> 0, δd2
> 0 and

µ ∈ (0, 1) are the design parameters. The functions Fθ,
φ(· ) and η(· ) are defined as Fθ =

[
θ̂31 θ̂32 · · · θ̂3r

]T
, and

φ(· ) = ZT√
∥Z∥2 + σ2

,

η(· ) =
{

1, if ∥e(0∼n−1)∥ ⩾ ϵ,∑n
j=1 ϱjξ

j− 3
4 (ϵ2)−j+ 3

4 , otherwise,

where σ has the same properties as defined in Lemma 1, ϵ >
0 is a small constant, and the selection of coefficients ϱj are
the same as the method in reference [26].

Now, based on the above preparations, the actual con-
troller u is designed as

u = −G−1(x(0∼n−1))ZTΨT ρ̂, (14)

with the adaptive law ˙̂ρ being chosen as

˙̂ρ = ∥Z∥2Ψ− δρ1
ρ̂− δρ2

Fρ, (15)

where δρ1
and δρ2

are two positive design parameters, and
the functions Fρ and Ψ are Fρ = [ρ̂31 ρ̂32]

T and

Ψ =

[
∥α∥2√

∥Zα∥2 + σ2
,

∥G(· )∥2√
∥ZG∥2 + σ2

]T
. (16)

4 Stability Analysis and Main Results

Based on the above designed FxT controller with adaptive
laws, the stability of the closed-loop system will be provided.

Theorem 1. For the HOFA model (2) with parameter un-
certainty and input saturation, under Assumptions 1-2, the
designed controller (14) with the intermediate control sig-
nal (12) and adaptive laws (13) and (15) can ensure that the
closed-loop system is FxT stable and all signals are bounded.
Furthermore, there exists a fixed time Tf , such that the sys-
tem tracking error e = y − yd is bounded by

∥e∥ ≤

√√√√√2min
{
α
−4

3
1

(
C
1−β

) 4
3

, α
−1

2
2

(
C
1−β

) 1
2
}

λmin(P )
, (17)

where positive constants α1, α2 and C are defined in (32),
β ∈ (0, 1) are defined in (33) for the stability analysis.

Proof. Let the estimation error variables θ̃ = θ−θ̂, d̃ = d̄−d̂
and ρ̃ = ρ− ρ̂. Then, combining the above equations (9) and
(12)-(16), we can obtain the following closed-loop system

e(n) + (A0∼n−1 ⊗ Im)e(0∼n−1)

+ λmax(P )(A
0∼n−1 ⊗ Im)e(0∼n−1)ξ

+ (A0∼n−1 ⊗ Im)e(0∼n−1)
(
λmin(P )ξ

)µ−1
η

=−G(· )H
′

uG(· )−1ZTΨT ρ̂+ ψ(· )θ̃

+G(x(0∼n−1))ς̄(u) + d(t)− φ(· )d̂+ α. (18)

This can be further rewritten as the state-space form

ė(0∼n−1) =
(
Φ(· )⊗ Im

)
e(0∼n−1)

+ λmax(P )
(
Φ(· )⊗ Im

)
e(0∼n−1)ξ

+
(
Φ(· )⊗ Im

)
e(0∼n−1)

(
λmin(P )ξ

)µ−1
η

988  



+

[
0(n−1)m

d(t)− φ(· )d̂+ ψ(· )θ̃

]
+

[
0(n−1)m

−GH ′

uG
−1ZTΨT ρ̂+Gς̄(u)+α

]
. (19)

where Φ(· ) = Φ(A0∼n−1). Next, select the Lyapunov func-
tion for the system (19) as

V =
1

2

(
e(0∼n−1)

)T (
P (A0∼n−1)⊗ Im

)
e(0∼n−1)

+
1

2
θ̃T θ̃ +

1

2
d̃2 +

1

2
Hmρ̃

T ρ̃. (20)

By using equation (19), the time derivative of V is

V̇ =
1

2

(
e(0∼n−1)

)T [(
P (· )⊗ Im

)(
Φ(· )⊗ Im

)
+
(
Φ(· )⊗ Im

)T (
P (· )⊗ Im

)]
e(0∼n−1) ×

[
1+λmax(P )ξ

+
(
λmin(P )ξ

)µ−1
η
]
+ Z

[
d(t)− φ(· )d̂+ ψ(· )θ̃

]
+ Z

[
Gς̄(u)+α−GH

′

uG
−1ZTΨT ρ̂

]
− ˙̂
θT θ̃ − d̃

˙̂
d−Hm

˙̂ρT ρ̃. (21)

Based on the definition φ(· ) in equation (12), it follows from
Assumption 1 and Lemma 1 that

Z
[
d(t)− φ(· )d̂

]
≤ ∥Z∥d̄− Zφ(· )d̂
≤ Zφ(· )d̃+ σd̄. (22)

Similarly, combining (5), (6), (10), (16) and Lemma 1 yields

Z
[
Gς̄(u)+α−GH

′

uG
−1ZTΨT ρ̂

]
≤ ∥Z∥2∥G∥2ςM√

∥Z∥2∥G∥2 + σ2
+ ςMσ

+
∥Z∥2∥α∥2√

∥Z∥2∥α∥2 + σ2
+ σ −Hm∥Z∥2ΨT ρ̂

≤ Hm∥Z∥2ΨT ρ̃+ ςMσ + σ. (23)

According to Lemma 3 and substituting equations (22) and
(23) into (21) yields

V̇ ≤− 1

2
κ
(
e(0∼n−1))TPe(0∼n−1) ×

[
1+λmax(P )ξ

+
(
λmin(P )ξ

)µ−1
η
]
+ Zφ(· )d̃+ Zψ(· )θ̃

+Hm∥Z∥2ΨT ρ̃+ ςMσ + σ + σd̄

− ˙̂
θT θ̃ − d̃

˙̂
d−Hm

˙̂ρT ρ̃. (24)

From adaptive laws (13) and (15), we can further obtain that

V̇ ≤− 1

2
κ
(
e(0∼n−1))TPe(0∼n−1) ×

[
1+λmax(P )ξ

+
(
λmin(P )ξ

)µ−1
η
]
+ d̃

(
δd1
d̂+ δd2

d̂3
)

+
(
δθ1 θ̂

T + δθ2F
T
θ

)
θ̃ +Hm

(
δρ1 ρ̂

T + δρ2F
T
ρ

)
ρ̃

+ (1 + ςM + d̄)σ. (25)

Note that µ ∈ (0, 1) means µ − 1 < 0, and λmin(P )ξ ≤(
e(0∼n−1))TP (· )e(0∼n−1) ≤ λmax(P )ξ holds, where ξ is

defined in (11). Then, it can be obtained that

− 1

2
κ
(
e(0∼n−1))TP (· )e(0∼n−1)λmax(P )ξ

≤ −2κ
(1
2

(
e(0∼n−1))TP (· )e(0∼n−1)

)2

, (26)

− 1

2
κ
(
e(0∼n−1))TP (· )e(0∼n−1)(λmin(P )ξ

)µ−1

≤ −2µ−1κ
(1
2

(
e(0∼n−1))TP (· )e(0∼n−1)

)µ

. (27)

Furthermore, the following inequalities can be obtained, and
their proof are provided in the appendix.

d̃
(
δd1
d̂+ δd2

d̂3
)

≤ −δd1

8
d̃2−τ1

(1
2
d̃2
) 3

4 −δd2

(
1− 9ϵ4/3

4

)
d̃4+c1, (28)(

δθ1 θ̂
T + δθ2F

T
θ

)
θ̃ ≤−δθ1

8
θ̃T θ̃−τ1

(1
2
θ̃T θ̃

) 3
4

− δθ2
r

(
1− 9ϵ4/3

4

)
(θ̃T θ̃)2+c2, (29)(

δρ1 ρ̂
T + δρ2F

T
ρ

)
ρ̃ ≤−δρ1

8
ρ̃T ρ̃−τ1

(1
2
ρ̃T ρ̃

) 3
4

− δρ2

r

(
1− 9ϵ4/3

4

)
(ρ̃T ρ̃)2+c3, (30)

with τ1, ϵ, c1, c2 and c3 being appropriate positive constants.
For ∥e(0∼n−1)∥ ⩾ ϵ, substituting (26)-(30) into (25) yields

V̇ ≤− 2κ
(1
2

(
e(0∼n−1))TP (· )e(0∼n−1)

)2

− 2µ−1κ
(1
2

(
e(0∼n−1))TP (· )e(0∼n−1)

)µ

−τ1
(1
2
d̃2
) 3

4

−τ1
(1
2
θ̃T θ̃

) 3
4 −Hmτ1

(1
2
ρ̃T ρ̃

) 3
4 − δd2

(
1− 9ϵ4/3

4

)
d̃4

− δθ2
r

(
1− 9ϵ4/3

4

)
(θ̃T θ̃)2 − Hmδρ2

r

(
1− 9ϵ4/3

4

)
(ρ̃T ρ̃)2

+ (1 + ςM + d̄)σ+c1+c2+Hmc3. (31)

Now, select µ = 3
4 and ϵ satisfying 1 − 9ϵ4/3

4 > 0. Subse-

quently, let α1 = min{2µ−1κ, τ1, Hmτ1}, ϖ = 1 − 9ϵ4/3

4

and α2 = 1
4 min{2κ, 4δd2

ϖ,
4δθ2
r ϖ,

4δρ2
rHm

ϖ}. Then, based
on the definition of V , the inequality (31) will further satisfy

V̇ ≤− α1V
3
4 − α2V

2 + C, (32)

where C = (1 + ςM + d̄)σ+c1+c2+Hmc3. Therefore,
it follows from Lemma 7 that the closed-loop system (19)
is FxT stable with µ1 = 3/4, µ2 = 2, c = α1, b = α2

and ϑ = C. This further means that there exist a analysis
constant 0 < β < 1 and a fixed-time Tf satisfying Tf ≤
Tm = 4

βα1
+ 1

βα2
, so that the function V converge to the set

V ≤ min
{
α
−4

3
1

( C

1−β

) 4
3

, α
−1

2
2

( C

1−β

) 1
2
}
, (33)

which indicates that V is bounded. From the definition of
V , it can deduce that all variables e(0∼n−1), θ̃, d̃ and ρ̃ of the
closed-loop system are also bounded. Because

1

2
λmin(P )∥e∥2 ≤ 1

2
λmin(P )∥e(0∼n−1)∥2

≤ 1

2

(
e(0∼n−1)

)T (
P (A0∼n−1)⊗ Im

)
e(0∼n−1) ≤ V,
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combined with inequality (33), it is evident that the inequal-
ity (17) holds. This completes the stability proof.

Remark 1. The purpose of designing function η in (12) is
to prevent the singularity of term

(
λmin(P )ξ

)µ−1
e(0∼n−1)η.

By observing the definition of η, it becomes evident that term(
λmin(P )ξ

)µ−1
e(0∼n−1)η is continuous along the bound-

ary ∥e(0∼n−1)∥ = ϵ, effectively avoiding the chatting phe-
nomenon. Furthermore, when ∥e(0∼n−1)∥ < ϵ holds, an
extra term

He =
1

2
κ
(
e(0∼n−1))TPe(0∼n−1)(λmin(P )ξ

)µ−1

− 1

2
κ
(
e(0∼n−1))TPe(0∼n−1)(λmin(P )ξ

)µ−1

×
n∑

j=1

ϱjξ
j− 3

4 (ϵ2)−j+ 3
4

emerges in inequality (31). Since ∥e(0∼n−1)∥ < ϵ is met,
there exists a small constant ϵ̄ that ensures ∥He∥ ≤ ϵ̄. As a
result, inequality (31) continues to hold with only a minimal
increase in the constant term C.

5 Example and Simulation

In this section, the proposed HOFA fixed-time control
scheme will be applied to a marine vessel to verify the ef-
fectiveness of the algorithm. The kinematics and kinetics of
the ship can be described as [29]

η̇ = R(ϕ)ν,

Mν̇ =g(ν) + Φ(η, ν)θ+us+ω(t), (34)

where η = [x, y, ϕ]T with (x, y) being the position informa-
tion and ϕ being the heading angle in the earth-fixed coor-
dinate, ν = [τ, υ, r]T with τ, υ and r being its surge, sway
and yaw velocities respectively in the body-frame, the vector
ω = [ωτ , ωυ, ωr]

T is the unknown disturbances induced by
the wind, waves and ocean currents, g(ν) and Φ(η, ν) denote
the known nonlinear functions, θ is the unknown parameter
vector, us = [usτ , u

s
υ, u

s
r]

T denotes the control force subject
to input saturation as defined in (3), that is, us = H

′

uu+ς̄(u).
The matrix R(ϕ) denotes a rotate matrix described by

R(ϕ) =

 cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 . (35)

The definitions and meanings of the inertia matrix M with
M =MT > 0, the functions g(ν) and Φ(η, ν) are the same
as in [29]. From the system equation (34), we can obtain

η̈ = −rRSν +RM−1(g(ν) + Φ(η, ν)θ+us+ω), (36)

where Ṙ = −rRS with S = diag{S̄, 0} and S̄ =[
0 1
−1 0

]
is used to get the above equation.

Note that ν = R−1(ϕ)η̇, indicating that ν depends on η
and η̇. Let f(η, η̇) = −rRSν + RM−1g(ν), ψ(η, η̇) =
RM−1Φ(η, ν), G(η, η̇) = RM−1 and d(t) = RM−1ω.
Then the above system (36) can be further written as

η̈ = f(η, η̇) + ψθ +G(η, η̇)us+d(t). (37)

From the definitions of R and M , det(G) ̸= 0 can be ob-
tained, and there exists an unknown constant d̄ > 0 that
holds ∥d(t)∥ ≤ d̄. Therefore, system (36) is a HOFA with
the same properties as the studied system (2).

Next, we select the trajectory of the desired sys-
tem output as ηd = [0.2t + 3, 0.2t + 3, π/4]T .
The external disturbance is chosen as ω(t) =
[0.1 sin(0.1t), 0.1 cos(0.1t), 0.1 sin(0.02t)]T . The param-
eters of the saturation constraint are chosen as uτM = 10,
uτm = −10, uυM = 10, uυm = −10, urM = 10,
urm = −10. Based on the design process presented in
Section III, the fixed-time HOFA controllers similar to
the form of (14) with adaptive laws (13) and (15) can be
constructed. For simulation, choose the initial value to
be η(0) = [3, 2, 0]T , ν(0) = [0, 0, 0]T , θ̂(0) = [0.5]7×1,
d̂(0) = 0 and ρ̂(0) = [0.1, 0.1]T . Let the design parameters
be δθ1 = 2, δθ2 = 0.1, δd1

= 0.5, δd2
= 0.002, δρ1

= 0.02
and δρ2

= 0.001. Additionally, according to Lemma 4,

select Z = [1, 1] and F =

[
−3 −1.5
1.5 −3

]
. Then, we

have Λ(Z,F ) =

[
1 1

−1.5 −4.5

]
. Hence, we further

obtain A0∼1 = −ZF 2Λ−1 = [11.25 6], and Φ(A0∼1) =[
0 1

−11.25 −6

]
. By selecting κ = 4 and solving the

equation Φ(A0∼1)TP (A0∼1) + P (A0∼1)Φ(A0∼1) ≤

−κP (A0∼1), we have P (A0∼1) =

[
11.2 2
2 0.6

]
. Using

the above given controller parameters and these initial
values, the simulation results are shown in Figs. 1-3 (Due to
limited space, only selected key curves are displayed here).
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Fig. 1: The trajectories of system output and tracking signal

0 5 10 15 20 25 30

Time(s)

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80

Time(s)

0

0.2

0.4

0 10 20 30 40 50 60 70 80

Time(s)

0

5

10

Fig. 2: The trajectories of adaptive laws

Fig. 1 shows the curves of position information [x, y] of
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the system and the tracking trajectory ηd = [0.2t+3, 0.2t+
3], indicating that the system output can quickly track the
desired trajectory. From the trajectories of the adaptive law
norms ∥θ̂∥, d̂ and ∥ρ̂∥ shown in Fig. 2, it can be concluded
that all adaptive signals are all bounded. The trajectories of
control input signals in three different directions are demon-
strated in Fig. 3, which implies the control input is also
bounded. This further implies the boundedness of other state
signals. From Figs.1-3, the effectiveness of the proposed al-
gorithm is verified.
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Fig. 3: The trajectory of the actual input signal

6 Conclusions

The FxT stability of an uncertain nonlinear system with
input saturation, parameter uncertain and external distur-
bance has been investigated using the HOFA system ap-
proach. A hyperbolic tangent function has been employed
to approximate the saturation function. Then, by introduc-
ing a special order of tracking error and combined with the
adaptive techniques, a controller has been designed to ensure
the FxT stability. The proposed algorithm achieves FxT sta-
bility of an uncertain higher-order system for the first time
based on the fully actuated system method, expanding the
adaptability of this method. Future work will study the FxT
formation problem of multiple HOFA systems.

7 Appendix

Part I: Proof of inequality (28)
Based on the error signal d̃ = d̄−d̂, using Lemma 4 yields

δd1
d̃d̂ = δd1

d̃(d̄− d̃) ≤ −δd1

2
d̃2 +

δd1

2
d̄2. (38)

It follows from the complete square formula that

−δd1

2
d̃2 =− δd1

4
d̃2 +

1

2
√
2

τ21
δd1

|d̃| − τ1

(1
2
d̃2
) 3

4

− 1

4

(√
δd1

|d̃| − 2
1
4

τ1√
δd1

√
|d̃|

)2

, (39)

where τ1 is a positive constant to be selected. Furthermore,
using Young inequality further yields

1

2
√
2

τ21
δd1

|d̃| ≤ δd1

8
d̃2 +

τ41
4δ3d1

. (40)

Substituting inequalities (39) and (40) into (38), we have

δd1
d̃d̂ ≤ −δd1

8
d̃2 − τ1

(1
2
d̃2
) 3

4

+
τ41
4δ3d1

+
δd1

2
d̄2. (41)

Next, for the term δd2 d̃d̂
3, we can obtain that

δd2
d̃d̂3 = δd2

d̃(d̄− d̃)3

= δd2
d̃(d̄3 − 3d̄2d̃+ 3d̄d̃2 − d̃3)

= −δd2 d̃
4+δd2 d̃d̄

3−3δd2 d̃
2d̄2+3δd2 d̄d̃

3. (42)

For terms δd2
d̃d̄3 and −3δd2

d̃2d̄2 of the above equation, it
can be obtained from the Young inequality that:

δd2 d̃d̄
3 ≤ 3δd2 d̃

2d̄2 +
δd2

12
d̄4, (43)

−3δd2
d̃2d̄2 ≤ 3δd2

3ϵ4/3

4
|d̃3| 43 + 3δd2

1

4ϵ4
d̄4. (44)

Combining inequalities (43) and (44), we have

δd2
d̃d̂3 ≤−δd2

(
1− 9ϵ4/3

4

)
d̃4+

δd2

12
d̄4+3δd2

1

4ϵ4
d̄4. (45)

Then, based on inequalities (41) and (45), we can obtain that

d̃
(
δd1 d̂+ δd2 d̂

3
)

≤−δd1

8
d̃2−τ1

(1
2
d̃2
) 3

4 −δ2
(
1− 9ϵ4/3

4

)
d̃4+c1, (46)

where c1 is a positive constant with the following definition

c1 =
τ41
4δ3d1

+
δd1

2
d̄2 +

δd2

12
d̄4 + 3δd2

1

4ϵ4
d̄4.

This proves the inequality (28).
Part II: Proof of inequalities (29) and (30)
From the definitions of θ, θ̂ and Fθ in Section III, one has

(
δθ1 θ̂

T +δθ2F
T
θ

)
θ̃ =

r∑
j=1

(
δθ1 θ̂j θ̃j+δθ2 θ̂

3
j θ̃j

)
. (47)

For each term in equation (47), by using steps similar to in-
equality (46), we can deduce

δθ1 θ̂j θ̃j + δθ2 θ̂
3
j θ̃j

≤−δθ1
8
θ̃2j−τ1

(1
2
θ̃2j

) 3
4 −δθ2

(
1− 9ϵ4/3

4

)
θ̃4j+c2j ,(48)

with c2j =
τ4
1

4δ3θ1
+

δθ1
2 θ

2+
δθ2
12 θ

4+3δθ2
1

4ϵ4 θ
4. This together

with Lemmas 5 and 6 mean that (47) satisfies

(
δθ1 θ̂

T + δθ2F
T
θ

)
θ̃ ≤

r∑
j=1

(
− δθ1

8
θ̃2j−τ1

(1
2
θ̃2j

) 3
4

−δθ2
(
1− 9ϵ4/3

4

)
θ̃4j+c2j

)
≤− δθ1

8
θ̃T θ̃−τ1

(1
2
θ̃T θ̃

) 3
4

− δθ2
r

(
1− 9ϵ4/3

4

)
(θ̃T θ̃)2+c2.(49)

This proves that inequality (29) holds. Similarly, the inequal-
ity (30) regarding the adaptive law ρ̂ also holds.
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DC-Link Voltage Control of Three-Phase AC/DC Converters
with Current Constraints
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Abstract: For three-phase AC/DC converters, the fast dynamic response of the DC-link voltage usually involves overlarge
transient grid currents. Hence, users have to choose conservative control parameters to restrict the transient current, but this
choice sacrifices dynamic performances to some extent. In this paper, a single-loop structure current-constrained control strategy
is proposed to achieve fast dynamic performance of the DC-link voltage. In the controller, it introduces a nonlinear variable
gain, acting as the penalty term, to regulate the control action as the current approaches its limit. Rigorous stability analysis
is conducted for the closed-loop control system. Test results demonstrate that the proposed method successfully constrains the
current within a safe threshold while achieving fast dynamic performance.

Key Words: Current constraint, nonlinear variable gain, single-loop structure, three-phase AC/DC converter.

1 Introduction

Three-phase AC/DC converters serve as vital interfaces
connecting renewable energies to the public grid. One of the
primary control objectives for three-phase AC/DC convert-
ers is to regulate the DC-link voltage to its reference value.
For most applications, delivering a fast dynamic response of
the DC-link voltage is crucial for ensuring the stable opera-
tion of loads [1]. However, a fast voltage dynamic response
is usually accompanied by overlarge transient grid currents,
which may result in equipment shutdown due to over-current
protection and pose risks to power devices safety [2].

In general, the voltage regulation of three-phase AC/DC
converters is controlled by a dual-loop structure, includ-
ing the outer voltage and inner power/current loops. Lin-
ear proportional-integral (PI) methods are popular for these
two loops due to its ease of implementation. Since the PI
methods are developed based on the bounded operating hori-
zon, their dynamic performance degrades when the system
is exposed to large system uncertainties. To accommodate
a wide range of operating conditions, several nonlinear con-
trol methods are introduced for these two loops, such as the
sliding-mode control (SMC) [3], the passive-based control
(PBC) [4], and the backstepping control (BSC) [5]. Un-
der the dual-loop structure, the users usually set a soft lim-
iter to restrict the current reference generated from the outer
voltage loop to a safe threshold [6]. Thereafter, the inner
current loop is designed to track the restricted reference to
avoid overlarge transient grid currents. However, the cur-
rent constraint cannot be strictly guaranteed. There is still
some chance for the current to exceed the safe threshold,
especially in the case of high control gains. Therefore, it
is needed to choose conservative control gains to avoid the
overlarge transient current, which sacrifices the dynamic re-
sponse to some extent [7]. It is meaningful to design a con-
trol strategy for AC/DC converters to obtain a fast dynamic
response while satisfying current constraints.

This work was supported in part by the National Natural Science Foun-
dation of China under Grant 62273205 and Grant 62188101. (Correspond-
ing authors: Guanguan Zhang.)
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Fig. 1: Circuit structure of the three-phase AC/DC converter.

Inspired by the aforementioned methods, a simple current-
constrained control is proposed to regulate the DC-link volt-
age of AC/DC converters. The contributions are given as
follows.

1) It incorporates a nonlinear variable gain into the con-
troller, as gird currents approach the safe threshold, the
nonlinear gain is automatically adjusted to restrict the
current promptly.

2) Unlike the cascade control structure results, a single-
loop structure is utilized to regulate the DC-link volt-
age, which simplifies the control structure and requires
fewer tuned parameters.

3) Theoretical analysis and test results demonstrate that
the proposed strategy achieve a fast voltage dynamic re-
sponse while avoiding overlarge transient grid currents.

2 System Description and Modeling

Fig. 1 shows the circuit structure of the three-phase
AC/DC converter operating as a rectifier. It is connected
to the grid through the filter inductor L and the line resis-
tor R. The AC/DC converter employs a three-level T-type
structure with two capacitors of equal capacitance C. The
voltages across the capacitors are denoted as VP and VN ,
respectively. Table I presents an overview of the remaining
system variables.

Next, we will give the mathematical model of the AC/DC
converter and introduce the control objective. Note that the
system modeling is built under some standard assumptions,
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Table 1: System variables and parameters.

Variables Description
ea, eb, ec Grid voltages in the abc reference frame
ed, eq Grid voltages in the dq reference frame
ia, ib, ic Grid currents in the abc reference frame
id, iq Grid currents in the dq reference frame
ua, ub, uc Converter voltages in the abc reference frame
ud, uq Converter voltages in the dq reference frame
Vdc, V ∗

dc DC-link voltage and its reference

such as balanced grid voltages and ignoring power losses.

2.1 System Modeling
Using the law of power conservation and instantaneous

power theory, the DC-link mathematical model is built as

CV̇dc =
3ed
Vdc

id − 2
Vdc

RL
(1)

where RL represents the equivalent load resistance.
Define U = 0.5V 2

dc, the DC-link model is rewritten as

U̇ =
3ed
C

id −
4

CRL
U. (2)

Using the Kirchhoff’s Voltage Law, the ac-side mathemat-
ical model is built as

Li̇a = ea −Ria − ua − uon

Li̇b = eb −Rib − ub − uon

Li̇c = ec −Ric − uc − uon

(3)

in the abc reference frame.
Typically, the ac-side mathematical model is transformed

from the abc axis to the dq axis to facilitate the control de-
sign [8]. The transformation matrix is expressed as

T =
2

3

[
cosωt cos

(
ωt− 2π

3

)
cos
(
ωt+ 2π

3

)
− sinωt − sin

(
ωt− 2π

3

)
− sin

(
ωt+ 2π

3

) ] .
Then, the ac-side model in the dq-axis can be written as

Li̇d = −Rid + ωLiq + ed − ud (4)

Li̇q = −Riq − ωLid + eq − uq (5)

in which ω is the grid angle frequency.
For the AC/DC converter acting as a rectifier, iq is con-

trolled to zero to achieve the unit power factor. In fact, this
issue has been well addressed in existing literature. Here, a
traditional PI method is adopted to control iq for the purpose
of achieving this goal simply and efficiently. Under this con-
dition, the amplitude of grid currents is determined by iq ,
i.e., limiting |id| prevents overlarge grid currents.

Combining (2) and (4), the model for regulating the DC-
link voltage is described as follows:

U̇ =
3ed
C

id −
4

CRL
U

i̇d = −R

L
id + ωiq +

1

L
ed −

1

L
ud

. (6)

The main control objective is to regulate the DC-link voltage
to its reference with a fast dynamic response. In the mean-
time, the d-axis current is required to satisfy the constraint
condition |id| < Is, so as to avoid overlarge grid currents
and ensure the safe operation of converters. Is > 0 is the
safety threshold of grid currents and selected as around 2
times rated currents.

2.2 Preliminaries
Before the control design, we introduce the following

lemma that is used to complete the stability analysis of the
closed-loop control system.

Lemma 1: [9] (Barbashin’s theorem) For an autonomous
system

ẋ = f(x) (7)

where f : D → Rn is a locally Lipschitz map from a domain
D ⊂ Rn to Rn. Let x = 0 be an equilibrium point for (7)
and D be a domain containing x = 0. Let V : D → R
be a continuously differentiable function such that V (x) is
positive definite and V̇ (x) is negative semidefinite in D. Let
S = {x ∈ D|V̇ (x) = 0} and suppose no solution can stay
identically in S, other than the trivial solution x(t) ≡ 0 holds
identically for all time. Then, x = 0 is asymptotically stable.

3 Current-Constrained Control

In this section, a simple current-constrained control is de-
veloped for the AC/DC converter to regulate the DC-link
voltage.

Define the DC-link voltage and d-axis current tracking er-
rors as follows:

e1 = U∗ − U, e2 = −id +
4U∗

3edRL
(8)

in which U∗ = 0.5(V ∗
dc)

2 is the reference of U . Then, taking
the derivative of (8) yields that

ė1 = −3ed
C

id +
4

CRL
U

= − 4

CRL
e1 +

3ed
C

e2

ė2 =
R

L
id − ωiq −

1

L
ed +

1

L
ud

. (9)

As per (8), it is clear that

id ∈ (−Is, Is) ⇔ e2 ∈
(
E,E

)
(10)

where E = −Is + 4U∗

3edRL
and E = Is + 4U∗

3edRL
. Based

on (6) and instantaneous power theory, 4U∗

3edRL
is the steady-

state value of the d-axis current, thus it yields E < 0 and
E > 0.

Based on (8)–(10), the control objective is equal to design
a controller ud such that e1 tends to zero with e2 ∈

(
E,E

)
.

In order to satisfy the current constraint, the key is to es-
tablish a punishment mechanism for d-axis current in the
controller. Here, the current-constrained voltage controller
is constructed as

ud = −k1e1 −
[
k2 +

η

I2s − i2d

]
e2 −Rid + ωLiq + ed

(11)
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where k1, k2, and η are positive parameters.
Remark 1: In the designed controller (11), a nonlinear

variable gain η
I2
s−i2d

is introduced as the punishment mecha-
nism of d-axis current. In particular, when |id| tends to the
safety threshold Is, this nonlinear gain increases automati-
cally. In this manner, the control action will be adjusted to
limit the current in time.

Theorem 1: If id(0) ∈ (−Is, Is), i.e., e2(0) ∈ (E, E),
then the DC-link voltage tracks its reference value, while the
current constraint condition |id| < Is is not violated.

Proof: For any given initial state e(0) = (e1(0), e2(0)) ∈
G, R × (I, Ī), let [0, T ) be the largest time interval that
satisfies e2(t) ∈ G, where T is a positive constant or T =
+∞. Since the choice of initial state e(0) ∈ G, the time
interval [0, T ) does exist.

Step 1: Prove that |e1 (t)| ≤ N for t ∈ [0, T ), in which N
will be specified later.

In the time interval [0, T ), substituting (11) into (9), the
error closed-loop system is described by

ė1 = − 4

CRL
e1 +

3ed
C

e2

ė2 =
1

L

(
−k1e1 −

[
k2 +

η

I2s − i2d

]
e2

)
=

1

L

(
−k1e1 −

[
k2 +

η(
E − e2

)
(e2 − E)

]
e2

) .

(12)
Choose the Lyapunov function candidate as

V =
k1C

2 · 3edL
e21 +

1

2
e22. (13)

Note that the vector field of (12) is continuously differen-
tiable in G. Taking the derivative of V in the time interval
t ∈ [0, T ), it yields that

V̇ =
k1C

3edL
e1ė1 + e2ė2

=
k1C

3edL
e1

(
− 4

CRL
e1 +

3ed
C

e2

)
−k1

L
e1e2 −

1

L

[
k2 +

η(
E − e2

)
(e2 − E)

]
e2

2

=− 4k1
3edRLL

e21 −
1

L

[
k2 +

η(
E − e2

)
(e2 − E)

]
e22

≤− 4k1
3edRLL

e21 −
k2
L
e22.

(14)
From (14), it is obtained that V̇ ≤ 0 and V (t) ≤ V (0),
t ∈ [0, T ). Therefore, we have

k1C

2 · 3edL
e21 (t) +

1

2
e2 (t)

2 ≤ V (0)

⇒|e1 (t)| ≤
(
2 · 3edL
k1C

V (0)

) 1
2

, t ∈ [0, T ).

(15)

Denote N = (2 · 3edL/(k1C)V (0))
1
2 . It is concluded that

if e(0) ∈ G, then |e1 (t)| ≤ N , t ∈ [0, T ).
Step 2: Prove the proposition as follows: If e(0) ∈ G,

then there exist E1 ∈ (0, E) and E2 ∈ (E, 0) such that

e2(t)ė2(t) ≤ 0, when e(t) ∈ [−N,N ]×([E1, E)∪(E,E2]),
t ∈ [0, T ).

Let E1 = max
{
e2(0), (κ/(η + κ))E

}
, κ = k1N(E −

E). For t ∈ [0, T ), if e2(t) ∈ [E1, E), then we have

ė2 (t) ≤
1

L

(
k1N − ηe2 (t)(

E − e2 (t)
)
(e2 (t)− E)

)

≤ 1

L

(
k1N − ηe2 (t)(

E − e2 (t)
) (

E − E
)) ,

(16)

and

k1N
(
E − E

) (
E − e2 (t)

)
≤ k1N

(
E − E

) (
E − E1

)
≤ k1N

(
E − E

)(
E − κ

η + κ
E

)
≤ κη

η + κ
E ≤ ηe2 (t)

.

(17)
From (16) and (17), it is obtained that e2(t)ė2(t) ≤ 0 if
e2(t) ∈ [E1, E), t ∈ [0, T ).

Let E2 = min {e2(0), (κ/(η + κ))E}. For t ∈ [0, T ), if
e2(t) ∈ (E,E2], then we have

ė2 (t) ≥ − 1

L

(
k1N +

ηe2 (t)(
E − e2 (t)

)
(e2 (t)− E)

)

≥ − 1

L

(
k1N +

ηe2 (t)(
E − E

)
(e2 (t)− E)

)
,

(18)

and

k1N
(
E − E

)
(e2 (t)− E) ≤ k1N

(
E − E

)
(E2 − E)

≤ k1N
(
E − E

)( κ

η + κ
E − E

)
≤ −ηκ

η + κ
E ≤ −ηe2 (t)

.

(19)
From (18) and (19), it is obtained that e2(t)ė2(t) ≤ 0 if
e2(t) ∈ (E,E2], t ∈ [0, T ). This completes the proposition.

Based on Steps 1–2, it is obtained that

e(t) = (e1(t), e2(t)) ∈ [−N,N ]× [E2, E1], t ∈ [0, T ),
(20)

for any given e(0) ∈ G. Using the well-known continuation
theorem of solution and the definition of the time interval
[0, T ), it gets T = +∞, i.e., the current constraints |id| <
Is is guaranteed and the inequality (14) holds all the time.
Using Lemma 1, the closed-loop system (12) with (11) is
asymptotically stable, i.e., the tracking error of the DC-link
voltage converges to zero exponentially. This completes the
proof of Theorem 1. ■

Remark 2: Fig. 2 illustrates the control diagram of the
proposed current-constrained control. The proposed strat-
egy employs a single-loop structure to regulate the DC-link
voltages. In comparison to the existing works that employ a
cascaded control structure, the proposed strategy has fewer
parameters and is more practical to implement. Addition-
ally, the proposed strategy integrates a nonlinear variable
gain in the controller. As the d-axis current approaches the
safe threshold, the nonlinear gain is automatically adjusted
to timely limit the current.
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Fig. 2: Control diagram of the proposed strategy for the
AC/DC converter.

Table 2: System parameters of the tested AC/DC converter.

Parameters Symbol Value
Rated power Sr 2 kW

Grid voltage ea,b,c 110 Vrms

Grid angle frequency ω 100π rad/s

DC-link voltage reference V ∗
dc 350 V

DC-link capacitor C 1100 µF

DC-link load resistance RL 100 Ω

Filter inductance L 3 mH

Line resistance R 0.3 Ω

Switching frequency Tf 10 kHz

Current safety threshold Is 15 A

4 Performance Validations

In this section, the proposed current-constrained control
strategy is implemented on MATLAB/Simulink to verify its
effectiveness. Table 2 summarizes the system parameters of
the tested AC/DC converter. The control parameters are set
as k1 = 0.2, k2 = 30, and η = 1200. Additionally, the
traditional dual-loop PI method is implemented for the com-
parison, with a soft limiter of 15 A. Moreover, the PI method
uses two sets of parameters: one set with high-gain param-
eters to achieve fast dynamic performance, and another set
with conservative-gain parameters to ensure the current con-
straint condition is not violated. Details are given in Ap-
pendix.

4.1 DC-Link Voltage Regulation
The dynamic behavior of various control schemes is eval-

uated in this test as the DC-link voltage is regulated from
320 V to 350 V. Figs. 3–4 show the corresponding response
waveforms including the DC-link voltage, d-axis current,
and grid currents. Both the high-gain PI method and the
proposed strategy exhibit fast dynamic response for the DC-
link voltage, with a similar settling time (<8 ms). However,
the transient d-axis current of the high-gain PI exceeds the
safety threshold. Correspondingly, the grid currents exceed
the safety threshold, see Fig. 4(b). This situation could result
in equipment shutdown due to over-current protection and
potentially lead to a risk of hardware damage. In contrast,
the proposed strategy effectively limits the current amplitude

Time (s)
(a)

Time (s)
(b)

Time (s)
(a)

Time (s)
(b)

Time (s)
(c)

Fig. 3: DC-link voltage and d-axis current waveforms when
the DC-link voltage is regulated from 320 V to 350 V. (a)
DC-link voltage; (b) d-axis current.

Time (s)
(a)

Time (s)
(b)

Time (s)
(c)

Fig. 4: Grid currents waveforms when the DC-link voltage
is regulated from 320 V to 350 V. (a) Current-constrained
control; (b) PI (High gain); (c) PI (Conservative gain).

while delivering a rapid voltage response. Employing a con-
servative gain to adjust the transient current of the PI method
to match the proposed strategy will significantly slow down
the DC-link voltage response, resulting in a settling time of
30 ms.

4.2 Load Disturbances
In this case, the load RL changes from 100 Ω to 60 Ω to

verify the dynamic performance against load disturbances.
Figs. 5(a) and (b) display the response waveforms of the DC-
link voltage and the d-axis current, respectively. All three
methods restore the DC-link voltage to its reference value
after load disturbances, but they exhibit distinct dynamic re-
sponses. Compared to the high-gain and conservative-gain
PI methods, the proposed current-constrained control strat-
egy exhibits faster dynamic response speed and smaller volt-
age drop. At the same time, there is no violation of the cur-
rent constraint.

Recently, the fully actuated system approach has liberated
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Time (s)
(a)

Time (s)
(b)

Fig. 5: DC-link voltage and d-axis current waveforms when
the load changes from 100 Ω to 60 Ω. (a) DC-link voltage;
(b) d-axis current.

itself from the constraints of state-space models and demon-
strated superiority in handling nonlinearities and time-delays
[10, 11]. In the future, the author will attempt to employ the
fully actuated system approaches to address the control is-
sues of converters with current constraints.

5 Conclusion

This paper has proposed a simple current-constrained
voltage control strategy for three-phase AC/DC converters.
Initially, an error dynamic system of the converter was built
and the current constraint issue is transformed into limitation
on the tracking error of the d-axis current. Subsequently, a
single-loop controller with nonlinear variable gain was de-
signed to regulate the DC-link voltage to its reference. The
grid current was restricted within a safe threshold through
automatic regulation of the nonlinear gain. Theoretical anal-
ysis and test results demonstrated the effectiveness and su-
periority of the proposed control strategy.

Appendix

In the test, two sets of PI parameters used for comparisons
are given as follows:

Hign gain parameters: KPV = 0.6, KIV = 80, KPI =
60, KPI = 80, and KII = 750;

Conservative gain parameters: KPV = 0.4, KIV = 50,
KPI = 60, and KII = 700.
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Integrated Guidance and Control Design Subject to Actuator
Saturation Based on Fully Actuated System Approach
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Abstract: Based on fully actuated system approach, this paper proposes a design scheme for integrated guidance and control
systems subject to actuator saturation. By elimination elevation-order way, the integrated guidance and control model in the
pitch channel is transformed into a high-order fully actuated system with uncertain disturbances and actuator saturation. Firstly,
a disturbance observer is constructed to estimate the disturbances generated by model nonlinearities, unknown target maneuvers,
variations of aerodynamic parameters, etc. Then, an observer-based fully actuated controller is designed to stabilize the inte-
grated guidance and control system and perform disturbance attenuation. Since the missile’s deflection angle for pitch control
is constrained by actuator saturation, an anti-windup compensator is introduced into the designed fully actuated controller to
reduce the negative impact of saturation. Moreover, the stability conditions of the closed-loop system are established by the
Lyapunov stability theory and the invariant set principle. Finally, a numerical simulation is provided to verify the effectiveness
of the proposed design scheme.

Key Words: Fully Actuated System Approach, Integrated Guidance and Control, Actuator Saturation, Anti-windup Compen-

sator

1 Introduction

Integrated guidance and control (IGC) design has become

the mainstream solution to the missile-target interception

[1]. The strategy of IGC design considers the guidance loop

and the control loop as a whole. According to the missile’s

dynamics and the relative kinematics between missile and

target, the control input of missile is directly designed to re-

alize the target interception. Based on the sliding-mode con-

trol approach, Reference [2] proposed an adaptive sliding

mode IGC design scheme that can adaptively estimate the

upper bound of the uncertainties existing in system, thereby

achieving robust tracking of the missile to the target. In [3],

the IGC model is transformed into a linear system with un-

certain disturbances, and a disturbance observer-based con-

troller is designed to implement the guidance and control

of missile. In [4], the unknown states and uncertain distur-

bances existing in IGC system are estimated by constructing

an extended observer, and an observer-based backstepping

control strategy is presented to robustly stabilize the system.

Even though the control approaches mentioned above

have achieved many valuable results in IGC design, these

approaches generally have some shortcomings, such as com-

plex design process of controller, harsh stability conditions,

and high requirements for model accuracy. Recently, Ref-

erence [5] pioneered the fully actuated system approach for

nonlinear control problems. Based on the fully actuated sys-

tem approach, the controller can be directly designed accord-

ing to the characteristic structure of the desired closed-loop

system, greatly reducing the design complexity of nonlinear

controllers. Nowadays, the fully actuated system approach

is mainly applied in the attitude and orbit control of space-

craft [6, 7], and is rarely applied in IGC design. Based on

the fully actuated system approach, Reference [8] designed

a three-dimensional interception guidance law for the mis-

This work is supported by the Science Center Program of National Nat-

ural Science Foundation of China under Grant Nos. 62188101 and National

Natural Science Foundation of China under Grant Nos. 62373249.

sile system subject to the terminal impact-angle constraint.

However, Reference [8] only considers the guidance process

and does not consider the missile control issues.

On the other hand, since the physical limitation of mis-

sile’s control surface, the deflection angle for pitch con-

trol will be constrained by saturated actuator. An effective

method for handling actuator saturation is anti-windup de-

sign [9], also known as the two-step method. The first step

is to design a controller without considering actuator satura-

tion, and the second step is to design a compensator to allevi-

ate the negative impact of saturation. Since the compensator

is not functional if the actuator is not saturated, the perfor-

mance of the nominal system is not affected by the compen-

sator. Moreover, the introduction of anti-windup compen-

sator will not modify the designed controller gain, so this

method is able to deal with the saturated control problem of

high-order fully actuated system (HOFAS).

Based on the above discussions, this paper studies the IGC

design problem with actuator saturation through the fully ac-

tuated system approach. Firstly, the two-dimensional IGC

model in the pitching channel is established, and further is

transformed into a HOFAS by elimination elevation-order

way. Secondly, a disturbance observer is constructed to es-

timate the disturbances caused by the aerodynamic param-

eters, model nonlinearities and target unknown maneuvers,

and an observer-based fully actuated controller is designed

to stabilize the HOFAS. Finally, an anti-windup compen-

sator is introduced into the designed fully actuated controller

to reduce the negative impact of actuator saturation on sys-

tem performance. The stability of the closed-loop system is

guaranteed by a set of matrix inequalities.

The remainder of this paper is organized as follows. Sec-

tion 2 gives the IGC model. In Section 3, the control scheme

is presented and the stability of the closed-loop system is

analyzed. In Section 4, the effectiveness of the proposed

method is validated by a numerical simulation. Section 5

concludes this paper.
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2 Model Derivation

During the endgame phase, the missile’s guidance and

control problem can be treated as a planar one, and the cor-

responding geometric structure of missile-target engagement

is shown in Fig. 1. The coordinate systems O-XIZI and O-

XIIZII represent the inertial reference frame and the line-

of-sight (LOS) reference frame respectively, where the LOS

reference frame is defined to be rotated from the inertial ref-

erence frame by q0. M and T denote the missile and the

target, respectively. R is the relative distance between the

missile and the target, z is the lateral distance between the

missile and the target perpendicular to the XII -axis, and q is

the LOS angle. The velocities of the missile and the target

are VM and VT , their accelerations are aM and aT , and their

flight path angles are θM and θT . In addition, aMN and aTN

represent the acceleration normal to the LOS of the missile

and the target, respectively.

Fig. 1: Geometric structure of missile-target engagement

Letting z1 = z and z2 = ż, the relative kinematics equa-

tion between the missile and the target is modeled as

⎧⎪⎪⎨
⎪⎪⎩

ż1 = z2,
ż2 = aT cos (θT − q0)− aM cos (θM − q0) ,

θ̇M = aM/VM ,

θ̇T = aT /VT .

(1)

Based on the model in [3], the dynamics equation of the mis-

sile is described as

⎧⎪⎪⎨
⎪⎪⎩

α = ϑ− θM ,
α̇ = 1

mVM
(mg cos θM − Y ) + ωz + dα,

ϑ̇ = ωz,
Jzω̇z = M0 +Mδzδz + Jzdωz ,

(2)

where α, ϑ and ωz are the attack angel, the pitch angel and

the pitch angular rate, respectively. m is the missile mass, g
is the gravitational acceleration and Y is the lift force. JZ is

the moment of inertia about ZII -axis, and δz is the deflec-

tion angle for pitch control. dα and dωz
are the bounded un-

certainties caused by unknown target maneuver, unmodeled

dynamics and external disturbances. M0 = Mαα+Mωzωz

is the pitch angular acceleration generated by the attack an-

gle and pitch angle. The lift force Y and these parameters

Mα, Mωz
and Mδz have the following form⎧⎪⎪⎨
⎪⎪⎩

Y = 57.3QS (Lαα+ Lδzδz) ,
Mα = 57.3QSmα

z ,
Mωz

= QSL2mα
z /VM ,

Mδz = 57.3QSLmδz
z ,

where Q = 0.5ρV 2
M is the dynamic pressure, S is the aero-

dynamics reference area, and L is the aerodynamics refer-

ence length. Lα and Lδz are the derivatives of the lift force

with respect to α and δz , respectively. Moreover, mα
z , mωz

z

and mδz
z are the derivatives of the pitch moment with respect

to α, ωz and δz . Without loss of generality, it is assumed

that the aerodynamic force generated by the deflection angle

is negligible and the nonlinearities are treated as bounded

uncertainties. Denoting z3 = α, z4 = ωz , b = Mδz and

u = δz , it follows from equations (1) and (2) that the IGC

model can be represented by the following system⎧⎪⎪⎨
⎪⎪⎩

ż1 = z2,
ż2 = a23z3 + d2,
ż3 = a33z3 + z4 + d3,
ż4 = a43z3 + a44z4 + bu+ d4,

(3)

where

a23 =− 57.3QSLα cos (θM (0)− q0) /m,

a33 =− 57.3QSLα/mVM ,

a43 = 57.3QSLmα
z /Jz,

a44 = QSL2mωz
z /JzVM ,

d2 = (cos (θM − q0)− cos (θM0 − q0))VMa33z3

+ cos (θM − q0)VMd3 + cos (θT − q0) aT ,

d3 = g cos θM/VM + dα,

d4 = dωz
,

b = 57.3QSLmδz
z /Jz.

To complete the IGC design, we give the following as-

sumptions.

Assumption 1. During the endgame phase, the missile does
not have engine thrust, that is, the velocity VM is constant.

Assumption 2. Since the physical limitation of actuator, the
deflection angle for pitch control will be constrained by the
executable displacement of rudder surface. Assume that the
actual control input of system (3) is defined by

sat(u) =

⎧⎪⎨
⎪⎩
ulim, u ≥ ulim,

−ulim, u ≤ −ulim,

u, ulim > u > −ulim,

where ulim is the maximum amplitude of actuator.

Assumption 3. The disturbances di(t) and their arbitrary-
order time derivatives are bounded, namely, there exist con-
stants dmax

ij > 0 such that∣∣∣∣djdi(t)dtj

∣∣∣∣ ≤ dmax
ij , i = 2, 3, 4, j = 0, 1, 2 · · ·

The IGC model (3) is a first-order under-actuated sys-

tem, which can be converted to a HOFAS by elimination
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elevation-order way. Calculating the second order, third or-

der and fourth order derivatives of z1 yields that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z
(2)
1 = a23z3 + d2,

z
(3)
1 = a23 (a33z3 + z4 + d3) + ḋ2,

z
(4)
1 = a23[a33 (a33z3 + z4 + d3) + a43z3

+ a44z4 + b sat(u) + d4 + ḋ3] + d
(2)
2 .

(4)

It follows from equations (3) and (4) that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z2 = ż1,

z3 =
z
(2)
1 − d2
a23

,

z4 =
z
(3)
1 − ḋ2
a23

− a33
z
(2)
1 − d2
a23

− d3.

(5)

According to equations (4) and (5), the states z2, z3 and z4
can be replaced by the functions related to z

(i)
1 , and a high-

order model of z1 is described by

z
(4)
1 =(a33 + a44) z

(3)
1 + (a43 − a33a44) z

(2)
1 + d

(2)
2

− (a33 + a44) ḋ2 + (a44a33 − a43) d2 + a23ḋ3

+ a23d4 − a44a23d3 + a23b sat(u). (6)

Letting a0 = a1 = 0, a2 = a43 − a33a44, a3 = a33 + a44,

b̂ = a23b and d = d̈2−(a33 + a44) ḋ2+(a44a33 − a43) d2+
a23ḋ3 + a23d4 − a44a23d3, system (6) is rewritten as the

following standard HOFAS

z
(4)
1 =

3∑
i=0

aiz
(i)
1 + b̂ sat(u) + d. (7)

3 Main Results

The IGC design mainly includes three steps. In the first

step, we construct a disturbance observer to estimate the

bounded disturbance d. In the second step, an observer-

based fully actuated controller is designed to stabilize sys-

tem (7) and perform disturbance attenuation. In the third

step, an anti-windup compensator is introduced into the de-

signed fully actuated controller to reduce the negative impact

of saturation.

Step 1. Considering HOFAS (7), we design a disturbance

observer as⎧⎪⎨
⎪⎩

d̂ = δ + μz
(3)
1 , δ(0) = −μz

(3)
1 (0),

δ̇ = −μ2z
(3)
1 − μ

(
δ +

3∑
i=0

aiz
(i)
1 + b̂ sat(u)

)
,

(8)

where μ > 0 is the observer gain and δ is the observer vari-

able. The estimation error is defined by d̃ = d − d̂, and the

error dynamic equation is computed by

˙̃
d = ḋ− ˙̂

d

= ḋ−
(
δ̇ + μz

(4)
1

)

= ḋ− μ

(
z
(4)
1 − μz

(3)
1 −

(
δ +

3∑
i=0

aiz
(i)
1 + b̂ sat(u)

))

= ḋ− μd̃. (9)

It can be obtained from equation (9) that if the disturbance d
is constant (i.e., ḋ = 0), the estimation error d̃ will converge

to 0. If the disturbance d is time-varying, there exists a scalar

d̃max ≥ 0 such that |d̃| ≤ d̃max due to the assumption that ḋ
is bounded.

Step 2. Based on observer (8), a fully actuated controller

involving disturbance estimation is designed as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u = −b̂−1

(
3∑

i=0

aiz
(i)
1 + v + d̂

)
,

v =

3∑
i=0

kiz
(i)
1 ,

(10)

where ki is the feedback gain to be designed.

Step 3. In order to reduce the negative impact of saturation,

an anti-windup compensator η = −λξ is introduced into

controller (10), where λ ≥ 0 is a scalar and ξ = u− sat(u).
Then, controller (10) becomes⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
u = −b̂−1

(
3∑

i=0

aiz
(i)
1 + v + d̂

)
− λξ,

v =

3∑
i=0

kiz
(i)
1 .

(11)

Under controller (11), we can obtain the closed-loop system

in the following form

z
(4)
1 = −

3∑
i=0

kiz
(i)
1 − b̂(1 + λ)ξ + d̃. (12)

In what follows, we will give the parametric design

method of feedback gain ki such that the nominal closed-

loop system have the desired characteristic structure. Denot-

ing x = [z1 ż1 z
(2)
1 z

(3)
1 ]T, system (12) is equivalent to

{
ẋ = Φ(k0∼3)x−Bξ + Ed̃,

u = −b̂−1(Kx+ d̂),
(13)

where

Φ (k0∼3) =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

−k0 −k1 −k2 −k3

⎤
⎥⎥⎦ ,

B =
[
01×3 b̂

]T
, E =

[
01×3 1

]T
,

K =
[
k0 k1 k2 + a2 k3 + a3

]
.

Lemma 1. [10] Assume that there exists matrices F, V ∈
R4×4 satisfying Φ(k0∼3)V = V F , then the feedback gain
ki can be computed by[

k0 k1 k2 k3
]
= −ZF 4V −1, (14)

where Z ∈ R1×4 satisfies det(V ) �= 0 with

V = V (Z,F ) =

⎡
⎢⎢⎣

Z
ZF
ZF 2

ZF 3

⎤
⎥⎥⎦ .
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Since the missile does not have engine thrust during the

endgame phase, to reduce the requirement on acceleration,

the following desired control performance is taken into ac-

count: the LOS angle q converges slowly to the expect-

ed value, and the LOS angular rate q̇ converges quickly to

0. Therefore, the desired closed-loop poles are selected as

s1 = −ρ1, s2 = −ρ2 and s3, s4 = −ρ3 ± jv, where

ρ3 > ρ2 > ρ1 > 0. Thus, matrix F is determined by

F = diag

{
−ρ1,−ρ2,

[ −ρ3 −v
v −ρ3

]}
.

Based on the results in Lemma 1, letting Z = [1 1 1 1],
substituting the expressions of Z and F into (14) yields

k0 = ρ1ρ2ρ
2
3 + ρ1ρ2/25,

k1 = ρ1/25 + ρ2/25 + ρ1ρ
2
3 + ρ2ρ

2
3 + 2ρ1ρ2ρ3,

k2 = ρ1ρ2 + 2ρ1ρ3 + 2ρ2ρ3 + ρ23 + 1/25,

k3 = ρ1 + ρ2 + 2ρ3.

Meanwhile, the feedback gain matrix K is

K =
[
ρ1ρ2ρ

2
3 + ρ1ρ2/25, ρ1/25 + ρ2/25 + ρ1ρ

2
3

+ ρ2ρ
2
3 + 2ρ1ρ2ρ3, ρ1ρ2 + 2ρ1ρ3 + 2ρ2ρ3

+ρ23 + 1/25 + a2, ρ1 + ρ2 + 2ρ3 + a3
]
.

Using the parametric design method in Lemma 1, we can

obtain the feedback gain K such that the closed-loop matrix

Φ(k0∼3) is Hurwitz. However, the closed-loop system (13)

may still be unstable due to the existence of q and d̃. In the

following parts, we will give the stability conditions of the

closed-loop system (13). Given that d and d̃ are bounded,

the disturbance estimation d̂ is also bounded, so there exists

a scalar d̂max ≥ 0 such that |d̂| ≤ d̂max. The saturation con-

straint |u| ≤ umax implies |Kx| ≤ u∗
lim = |b̂|ulim − d̂max.

To ensure that the control input u is bounded, a time-varying

saturation coefficient g(t) is employed to describe the non-

linear saturation function sat(u), i.e., sat(u) = g(t)u, where

g(t) =

{
1, |Kx| ≤ u∗

lim,

ulim/|u|, |Kx| > u∗
lim.

Assume that there exists a scalar gd ∈ (0, 1] satisfying |u| ≤
ulim/gd, then we have g ∈ [gd, 1]. The actuator saturation

constraint can be transformed into the following constraint

on state space

|Kx| ≤ b̂ulim (1 + λ (1− gd)) /gd − d̂max.

Thus, the feasible set of the system state is determined by

L(H) =
{
x ∈ R4 : |Hx| ≤ 1

}
, where

H =
Kgd

b̂ulim (1 + λ (1− gd))− d̂maxgd
.

Selecting a Lyapunov function V = (xTx + d̃Td̃)/2, its a

level set is defined by ε(ρ) = {V ∈ R : V ≤ ρ}. Similar-

ly, we also define another level set as ε(ρ∗) = {x ∈ R4 :
xTx ≤ ρ∗}, where ρ∗ = 2ρ − d̃2max. It is obvious that

ε(ρ∗) ⊆ ε(ρ).

Lemma 2. [11] The constraint |u| ≤ ulim/gd can be in-
terpreted into a sector nonlinearity condition. Denoting
S = 1− gd, the following inequality holds

qTM(Su− ξ) ≥ 0, ∀M > 0. (15)

Theorem 1. Under the saturation constraints characterized
by the polyhedron L(H), the closed-loop system (13) is uni-
form ultimate bounded within the invariant set ε(ρ), if there
exists a observer gain μ > 0 and a compensator gain λ > 0
such that [

1 ρ∗H
ρ∗HT ρ∗I4

]
> 0, (16)

Φ+
1

2

(
(1 + λ)BBT +

(
1 + b̂−1MS + γ

)
I
)
< 0, (17)

1 + λ− 2M(1 + λS) + b̂−1MS
(
KKT + 2

)
< 0, (18)

1+ETE+ b̂−1MS− 2μ+ γ < 0, (19)

where γ > 0 is a scalar. Furthermore, the system state can
converge to an arbitrarily small bounded region by increas-
ing the scalar γ.

Proof. Given the quadratic Lyapunov function V =
(xTx+ d̃Td̃)/2, its time derivative is computed by

V̇ = xTΦx− xTB(1 + λ)ξ + xTEd̃

− μd̃T d̃+ d̃T ḋ. (20)

Based on inequality (15) in Lemma 2, it follows from equa-

tion (20) that

V̇ ≤ xTΦx− xTB(1 + λ)ξ + xTEd̃− μd̃T d̃

+ d̃T ḋ+ ξTM(Su− ξ). (21)

Substituting u = −b̂−1(Kx + d̂) − λξ and d̂ = d − d̃ into

inequality (21) yields that

V̇ ≤ xTΦx− xTB(1 + λ)ξ + xTEd̃− b̂−1MSξTKx

−M(λS + 1)ξT ξ + b̂−1MSξT d̃− b̂−1MSξT d

− μd̃T d̃+ d̃T ḋ. (22)

In view of Young’s inequality, we have

−(1 + λ)xTBξ ≤ 1 + λ

2

(
xTBBTx+ ξT ξ

)
, (23)

xTEd̃ ≤ 1

2

(
xTx+ d̃TETEd̃

)
, (24)

−b̂−1MSξTKx ≤ 1

2
b̂−1MS

(
xTx+ ξTKKT ξ

)
, (25)

b̂−1MSξT d̃ ≤ 1

2
b̂−1MS

(
ξT ξ + d̃T d̃

)
, (26)

−b̂−1MSξT d ≤ 1

2
b̂−1MS

(
ξT ξ + dT d

)
, (27)

d̃T ḋ ≤ 1

2

(
d̃T d̃+ ḋT ḋ

)
. (28)

Combining equalities (22)-(28), it is obtained that

V̇ ≤ xTQ1x+ ξTQ2ξ + d̃TQ3d̃

+
1

2
b̂−1MSdT d+

1

2
ḋT ḋ, (29)
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where

Q1 = Φ+
1

2

[
(1 + λ)BBT + 1 + b̂−1MS

]
I,

Q2 =
1

2

[
1 + λ− 2M(1 + λS) + b̂−1MS(KKT + 2)

]
,

Q3 =
1

2

(
1 + ETE + b̂−1MS − 2μ

)
.

It follows inequalities (17)-(19) that Q1 < −γI/2, Q2 < 0
and Q3 < −γ/2. Moreover, according to the assumption

that the disturbance d and its derivative ḋ are bounded, there

exists a constant C such that

b̂−1MSdT d+ ḋT ḋ ≤ C. (30)

It can be inferred form inequalities (29) and (30) that

V̇ ≤ −γV + C. (31)

We can derive from inequality (31) that V̇ < 0 if γ > C/ρ
and V (0) = ρ. Thus, the level set ε(ρ) is an invariant set,

and further it can be concluded that ε(ρ∗) is an invariant set.

Moreover, inequality (17) is equivalent to ε(ρ∗) ⊆ L(H),
which implies that the system state will remain within the

feasible set L(H) if the initial state is within the level set

ε(ρ∗). Based on the comparison lemma, inequality (31) is

equivalent to

0 ≤ V (t) ≤ C

γ
+

(
V (0)− C

γ

)
e−γt. (32)

Furthermore, it can be derived from inequality (32) that

‖x‖ ≤
√

2C

γ
+ 2

(
V (0)− C

γ

)
e−γt. (33)

It is concluded from inequality (33) that the state x can con-

verge to an arbitrarily small bounded region by increasing

the value of γ.

4 Numerical Simulation

According to the model in [3], the corresponding aerody-

namic parameters of the missile are as follows

−57.3QScαy
mVM

= −0.3487,
57.3QSLmα

z

Jz
= 17.801,

QSL2mωz
z

JzVM
= −0.2741,

57.3QSLmδz
z

Jz
= −31.267.

Consider that the deflection angle for control is constrained

by |δz| ≤ 10◦ and the known maneuver of target is at = 0.

The initial states of missile and target are shown in Table 1.

Table 1: The initial states of missile and target

Distance LOS angle Missile velocity Target velocity
R0 q0 VM0 VT0

10Km 20◦ 500m/s 250m/s

Attack Pitch angel Pitch angel Pitch rate
angel of missile of target of missile
α0 θM0 θT0 ωz0

0◦ 45◦ 125◦ 0 ◦/s

Based on the proposed parametric design method of feed-

back gain, the desired closed-loop eigenvalues are chosen as

s1 = −1, s2 = −2 and s3,4 = −4 ± j, and the feedback

gain matrix is calculated as K = [34 67 60.8966 11.6228].
The observer gain is designed as μ = 2, and the simula-

tion is firstly completed with the compensator gain λ = 0.

Fig. 2 shows the relative motion between the missile and the

target, indicating that the missile successfully intercepts the

target. As shown in Fig. 3, the lateral distance and the later-

al acceleration between the missile and the target gradually

converge to 0, and the LOS angle remains stable during mis-

sile interception. Fig. 4 shows that the attack angle, the pitch

angular rate, and the deflection angle of the missile gradually

converge to the expected values. Fig. 5 depicts the trajecto-

ries of disturbance d and its estimation d̂, indicating that the

designed disturbance observer can accurately estimate the

uncertain disturbance d. From the simulation results, it can

be concluded that the proposed IGC design scheme in this

paper is effective.

In what follows, to demonstrate the effect of anti-windup

compensator on system performance, different compensator

gains will be selected for comparative simulation. The com-

pensator gain λ is chosen as 0, 1 and 5, respectively. Fig.

6 and Fig .7 show the lateral distance and the deflection an-

gle for control with different compensator gains. It can be

seen from the two figures that compared to λ = 0, select-

ing a compensator gain λ = 1 can effectively improve the

transient performance of the closed-loop system and reduce

the duration of saturation. Furthermore, as the compensator

gain increases to λ = 5, the transient performance of the

closed-loop system is further improved, and the duration of

saturation is further reduced. Therefore, the introduction of

anti-windup compensator can effectively reduce the negative

impact of saturation, and improve the transient performance

of closed-loop system.

0 2 4 6 8 10
x(Km)

0

2

4

6

8

y
(K

m
)

missile
target

Fig. 2: Missile-target interception geometry.

5 Conclusion

This paper proposes a IGC design scheme that combines

disturbance observer, fully actuated controller, and anti-

windup compensator. Firstly, the IGC model is established

and is further transformed into a HOFAS with disturbances

and actuator saturation. Then, a disturbance observer-based

controller is designed to stabilize the IGC system. Finally, an

anti-windup compensator is introduced to improve the con-

trol performance. The effectiveness of the proposed design
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Fig. 3: Missile-target lateral distance, lateral relative velocity

and LOS angle.
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Fig. 4: Attack angle, pitch angular rate and deflection angle

of missile.
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Fig. 5: Disturbance d and its estimation d̂.
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Fig. 6: Lateral distance between missile and target.
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Fig. 7: Deflection angle of missile for control.

scheme is verified through a numerical simulation.
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Planned Fully Actuated Attitude Control Strategy for Flexible Spacecraft  
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Abstract: This paper addresses the problem of attitude control of flexible spacecraft. Considering the nonlinear system under 

external disturbance and model uncertainty, an attitude controller based on Fully Actuated System (FAS) theory and Sinusoidal 

angular acceleration attitude path can be designed to achieve the attitude maneuver with minimal residual vibration. Compared to 

traditional controllers, FAS is often more immune to the nonlinear factors and its control law is easier to design.  FAS compound 

with Extended disturbance observer is designed to achieve the desired linear system when compensating for the lumped 

disturbance and adverse nonlinearity. Moreover, the planned smooth path can suppress the flexible vibration to great extent. 

Simulations show that the proposed method is tolerant to the external disturbance. And it can make the modal response superior 

with fast convergence and small oscillation which means our algorithm can achieve quality dynamic character in a short time. 

This explores the application of flexible spacecraft control of FAS. 

Key Words: Flexible Spacecraft, Attitude Control, Fully Actuated System, Attitude path planning, Extended disturbance 

observer 
� 

1 Introduction 
Due to the dynamic interactions between rigid motion and 

flexible deformation, unlike rigid spacecraft, flexible 

spacecraft exhibit structural vibrations and mode couplings 

that must be carefully managed to achieve precise attitude 

control and stabilization. The demand for agile spacecraft 

has led to advancements in attitude control systems, 

particularly for flexible structures such as solar arrays, 

which deform elastically as the spacecraft maneuvers and is 

exposed to environmental disturbances. 

For the attitude control of flexible spacecraft, in the state 

space approach, the high-dimensional state space model 

corresponding to the rigid body motions and elastic modes is 

difficult to compute, the nonlinear dynamics of the 

under-actuated system cannot be adequately captured, and 

designing the control law is cumbersome. Against this 

background, Fully Actuated System (FAS) theory was 

developed. FAS[1] was first proposed by Duan in 2020 for 

the problem of the state space method. Unlike the 

state-space method, the FAS theory guarantees that a 

mathematically fully actuated structure can be constructed 

to compensate for the dynamic properties of the system, 

regardless of the complexity of the nonlinear terms, when 

the physical context remains. The controller based on FAS 

can achieve any quality dynamic performance only if the 

control parameters are chosen appropriately theoretically. 

However, it’s the wide degree of design freedom that raises 

the problem of the difficulty in the selection of the design 

parameters.  

Since the birth of FAS theory, there have been many 

researches on FAS control t application in spacecraft control 

since the birth of FAS. Duan proposed a generalized PID 

control in the tracking problem[3], developed[4] an 

anti-disturbance robust controller for models subject to 

external disturbances, and optimal control[5] for spacecraft 

attitude stabilization. Moreover, FAS is applied in attitude 

control of rigid spacecraft[6], liquid-filled spacecraft[7], and 

tracking control for rigid spacecraft with actuator saturation. 
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of China under Grant No.61973153. 
*Corresponding author at: College of Astronautics, Nanjing University 

of Aeronautics and Astronautics, Nanjing 210006, China. 

E-mail address: yunhuawu@nuaa.edu.cn (Y. H. Wu). 

Although the FAS-based attitude control for spacecraft has 

been researched for some time, the problem of vibration 

suppression in attitude control of flexible spacecraft hasn’t 

been solved well. 

At the same time, external disturbances, and inertia 

uncertainty are considered, making the proposed method 

more applicable in practice. The main contributions are 

summarized as follows: 

1) The attitude system of the flexible spacecraft is built 

based on the FAS, which makes for the control algorithm 

design. We will investigate how tolerant the algorithm based 

on FAS is to external disturbance.  

2) An attitude-planned path-integrated compound 

algorithm based on FAS and the Extended disturbance 

observer (EDO) from the Anti-disturbance rejection control 

(ADRC) technique has been designed. The controller 

developed includes two parts, one FAS to achieve linear 

equivalence, and the other auxiliary algorithm to achieve the 

vibration suppression.  

2 Problem Formulation 
2.1 Spacecraft Attitude Kinematics and Dynamics 

Under the assumption that the power demanded by the 

flexible spacecraft is 1kW, the geometric parameters of the 

simplified model are designed according to the power 

generation efficiency of the solar panel of about 

140-150W/m2, as shown in Fig. 1. The satellite body and 

solar panels will be made of aluminum honeycomb, while 

the supporting structure will be made of carbon fiber. 

 
Fig.1 Spacecraft with flexible solar panels 

Put 
T

[ , , ]s � � ���� , with the roll angle, the pitch angle 

and the yaw angle denoted by , ,� � � . ( )sN ��   denotes 

coordinate transformation matrix from ��  to ss��  of the 

spacecraft.The flexible spacecraft fully actuated attitude 
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dynamic system with inertia uncertainty and external 

disturbance can be written in the following second-order 

matrix form (Duan, 2020[1]) 

 ( , ) ( , )s s s s s� �( , ) ( , )s s s s s( , ) ( ,, ) (� ( , )�� � � � � uf B  (1) 
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where 
T 3

 [   ]x y z� � �� �R��  denotes the angular velocity 

vector of spacecraft respect to the inertia system,
3�Ru is 

the control torque vector, 
3�Rd  denotes the disturbance 

torque vector constituted by the environmental disturbance 

and unmodeled dynamics. 
3 3��RJ  denotes the positive 

definite inertia matrix of the spacecraft, with the nominal 

inertia matrix of the spacecraft 
0J  and the inertia 

uncertainty �J  from onboard payload motions, fuel 

consumptions and etc. 
n�R��  is elastic modal coordinate 

vector of the solar wings, 
n 3

( 1, 2, ... )i m � ��R  is the 

coupling matrix between the rigid dynamics and flexible 

modal of the solar wings, � � n n
2 ndiag �� �� �RC  is the 

damping matrix of flexible appendage, 

� �2 n n

ndiag � �� �RK  is the stiffness matrix of flexible 

appendage, with damping ratio � , modal frequency n� . 

Besides rigid attitude motion 
1f , the lumped nonlinearity 

3
( , )s s �R3

)s �R�� �f  is a continuous vector function that consists 

of nonlinear vibration from rigid-flexible coupling 
2f , 

external environmental disturbance 
3f , and nonlinearity 

from inertia uncertainty 
4f , respectively. 

3 3
,( )s s

��R3 3
)s �RB �� �  

is a continuous vector function, satisfying the fully actuated 

condition 
( ) 3 1

.d ( , ) , 0,1,et ) 0, 2(
i

s s s i�� �� �R))s )�� � �B  

2.2 Attitude path planning 

To ensure timely payload entry into operations, the 

spacecraft attitude maneuver must achieve high stability 

control within a short time after positioning, so the settling 

time must be shortened. Different attitude planning 

trajectories, such as triangular angular velocity, trapezoidal 

angular velocity, and sinusoidal angular acceleration 

trajectories, are designed as desired orientations around the 

Euler Axis for the flexible spacecraft attitude controller 

based on the fully actuated system (FAS) theory. Different 

trajectories combined with the controller are compared for 

maneuver performance with bending inhibition 

performance. 

 
a. Triangular attitude angular velocity path 

 
b. Trapezoidal attitude angular velocity path 

 
c. Sinusoidal attitude angular acceleration path 

Fig. 2 Planned attitude path 

2.2.1 Triangular attitude angular velocity path 
Under time-optimal control, given the desired attitude 

angle f� , relation between angular velocity ��  and control 

amplitude u  is shown in Fig.2.a, where 
1t  is the time 

corresponding to 0.5 f� �� , 12ft t�  is the completed time 

of the maneuver. 

For large-angle maneuvering, the angular velocity, 

acceleration are limited by the angular momentum law 

max max max max max max,  ,/ /h J u J� �� �max max max max maxmax max Jmax max/ /max max�max max maxhmax maxmax / max ,h /h /  where 
max�max� is the 

maximum angular velocity; maxJ  is the rotational inertia of 

the rotating axis, and  
max max,  h u  are the maximum angular 

momentum, output torque that actuator can provide. 

The triangular path of the spacecraft attitude angular 

velocity during and after the maneuver is 

 

max 1

max 0 max max 1

                                         0 <

2 ( )/       <

0                                               

f f

f

t

t

t t t

t t t

t

� �
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�
�
�
�
�
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� �

� 	 	 �

� �

max� �maxt� �� �m

max ( )/f 0 max max 1max 11� �max ( )/2 max 0 max0 max0 max0 max max       1�� ( )/)/)/2 max )/0 max m0 max m0

0           ��0           �

 (3) 

where �  is the maneuver angle; 0 , f� �  is the initial angle; 

is the target angle and t is the control time. The spacecraft 

maneuver is to use maximum actuator output torque to 

accelerate the spacecraft to 0 2( /)f� �� , then decelerate 

with maximum torque. 

2.2.2 Trapezoidal attitude angular velocity path 
Given the maximum angular velocity constraint, the 

time-optimal maneuver about the instantaneous Euler 

rotation axis is shown in Fig.2.b, where the angular velocity 

profile is trapezoidal. The angular velocity profile is 

trapezoidal, where max max1 /t � ��

g

max max� �max /  indicates the end of 

acceleration, 12 ht t	  indicates the start of deceleration 

(reverse acceleration), and 2 ht is the uniform speed time. 

The spacecraft is accelerated by the maximum output torque 

of the actuator first, and when the actual angular velocity 
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reaches the maximum angular velocity constraint 
max�max� , the 

output torque of the actuator is zero and the angular 

acceleration is zero, and at this time spacecraft maintains the 

constant speed and decelerates at the moment of 
12 ht t	  

with the maximum angular acceleration in the reverse 

direction. Since the maximum torque and the maximum 

reverse torque generated by the actuator in a given direction 

are constants of equal amplitude, the acceleration time and 

deceleration time are equal, and the attitude velocity motion 

equation can be expressed as 

 

max 1

max 1 1

max h 1( )

                                         0 <

                                          <2  
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where  0, , , fft � � �  are defined as above; ht satisfies the 

constraint  

m

2

1 1max 1 0ax .2 ( )h ft t t t� � �� � 	 � �2

1 1mmax 2 ( h1m (t2

1 2 t (�� t1m (2  

3.2.3 Sinusoidal attitude angular acceleration path 
The time-optimal attitude maneuver planned path strategy 

involves a step change in the control torque during the 

maneuver, which tends to excite low-frequency vibrations in 

the flexible structure, which can negatively affect the 

maneuver performance. To solve this problem, a simple 

form of sinusoidal angular acceleration is used for maneuver 

path design, as shown in Fig.2.c, considering both pointing 

accuracy and computational complexity. 

The sinusoidal path of the spacecraft attitude angular 

velocity and acceleration during and after the maneuver is 
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where  1 2, , ft t t  represent the end moments of acceleration, 

uniform velocity, and deceleration respectively, satisfying 

max
1
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where  
max max max

, , , fh u J �   are defined as above. 

3 Controller Design 
In this section, the proposed planned smooth maneuver 

path and FAS-based control scheme for flexible spacecraft 

will be introduced in detail, as shown in Fig.3. The 

controller comprises two parts: one for parametric method 

designed linear feedback about the state error between the 

real attitude ,s ss�� �  and the planned attitude ,d dd�� � , and one 

for nonlinear compensation of the lumped disturbance, 

which is composed of external environmental disturbance 

and flexible vibration, depending on the estimated state by 

an extended disturbance observer.  

3.1 Extended Disturbance Observer (EDO) Design 
Here, the ESO technique from ADRC is employed, with 

3 ( , )s s� )s�� �fz  treated as an additional state variable. 

1 2 3,  ,  s s� � �3 �3�� �z z z ff assumed, let 3 ( ),t�3 ( ),�z g  

following the assumption that ( )tg  is unknown and 

bounded. Then, Eq. (1) can be expressed as: 
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A parallel system of the EDO is designed based on the 

dynamic model of the original system. 
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where 1 2,  ˆ ˆz z and 3ẑ are the estimates of 

1 2,z z and 3z respectively, and ( )i )g  is a modified 

exponential weighting function dependent on 1.e  

Function ( )i )g  is defined as 

1

sgn( ),

,        

( , , )

i

i

i i

e e e

e
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g e
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i!  is selected from the range of 0 to 1, enabling ig  a high 

gain for small errors. Additionally, a small positive   is 

used to restrict the gain in the source neighborhood. 

If  1 1 1
ˆ� 	e z z , observation error dynamic can be defined 

from the parallel systems from Eqs.(8-9). 
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Problem 1: Given the FAS system, find appropriate 

observer parameter 1 2 3     such that 

 33 3
ˆlim ( ) lim[ ] 0

x x
t

#$ #$
� 	 �ze z  (8) 

3.2 Controller Design 
The observer mentioned above uses 1 2

ˆ ˆ,  z z  and 3ẑ to 

estimate ,  s ss�� � , and f '  respectively. Taking the FAS 

approach, the following ADRC controller can be proposed, 

whose architecture is shown in Figure 3. Control torque can 

be expressed as Eq. (9). 

 ,  f d� �u u u  (9) 

To compensate for the lumped disturbance f ' , the 

control du  introduces an estimated state 3ẑ  that 

accounts for ambiguity and uncertainty of f ' . 
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Fig. 3 FAS-based ADRC controller architecture 
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3( ) ,  ˆd s
	� 	 �� zu B  (10) 

  The state feedback term fu  is implemented using the 

PD strategy, which plays the role of the tracking 

differentiator in traditional ADRC. 

 
0

1

1( ) ( )f s s s ex
	� 	 � )s ex)�� � �u B +A A v  (11) 

where  
0

A  and 
1

A  are the feedback gain matrices to be 

designed, and exv  is the external input feedforward control 

signal. By applying the controller (11)- (13) to the FAS 

model (3), the following constant linear closed-loop system 

can be obtained 

 
1 0 3 .s s s ex��
1 0s s s1 0

���� � � - +A BvA e�  (12) 

Since the proposed method has a feedforward control part 

du  for nonlinear compensation of lumped nonlinearity, 

external input exv  is not considered, the system (14) can be 

converted into the state-space form  

 
(0~1) (0~1) 3 3

0~1
3

,( )s s
�� %

& '� ( )* +
(0~1)

(s (� %�� �
-

O
A e  (13) 

where
10

0~1

3 3 3 3
( ) .

� �& '
( )
( )
* +

�
	 	

%% A
A A

O I
 Select the coefficient 

matrices 0~1A ,  making 0~1( )%% A  stable. 

3.3 Parametric Design of 
0~1

A  
The closed-loop system (15), when the external signal 

exv  is removed and the disturbance estimation error 3 0#e , 

is as follows. 

 
1 0s s s�� 0
1 0s s s1 0

���� � �A A �  (14) 

Process: Following the FAS approach[16], the matrices are 

designed using parametric design method. An arbitrary 

nonsingular parameter matrix 
3 6��RZ , Hurwitz matrix 

6 6��RF  are introduced, satisfying det ( , ) 0�V Z F . Here 

the nonsingular matrix 
6 6��RV  is given by 

T
(  )�V Z ZF  

to make 1(0~1) (0~1)

s s

	�(0~1)

s ��� �VFV .  Matrices 
0~1

A  satisfy 

 
1

0~1( )
	% �A VFV  (15) 

where 0~1

2 1
.

	� ZF VA  

Design the feedback controller fu  

 
2 1 T1
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	 	� T
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4 Numerical Simulation 
In the section, some simulation examples are performed 

to study the planned maneuver strategy proposed control law. 

Attitude paths such as triangle attitude angular velocity path, 

trapezoidal attitude angular velocity path, and sinusoidal 

attitude angular acceleration path are integrated with the 

proposed controller to discover what combination can 

achieve both maneuverability and flexural vibration 

suppression. Furthermore, to verify the robustness to 

disturbance of the proposed method, 4 cases with different 

disturbances are applied. 

The rigid-flexible coupling dynamics model of the 

flexible spacecraft in Fig.1 is based on the mode truncation 

method. The first four order dynamic characteristics are 

selected due to the high energy concentration in lower order 

modes. The spacecraft in Fig.1 dynamics and external 

environmental disturbance are listed in Table 1. 

Table 1. The main parameters of the flexible spacecraft 

Description Value 
Moments of 

inertia(
2

kg.m ) 
diag([87,100, 96])�J  

Inertia 

uncertainty(
2

kg.m ) 
0.2� �J J  

Coupling matrix 
1.3523 1.2784 2.1553

-1.1519 1.0176 -1.2724

2.2167 1.5891 -0.8324

1.23637 -1.6537 1.2251

=

& '
( )
( )
( )
* +

  

Number of considered 
elastic mode 4N �  

Natural frequency(rad/s) [1.736, 10.859, 22.365, 29.892]�,,  

Damping ratios 
1 2 3 4

0.01� � � �� � � �  

Disturbance Torque -4
3cos(0.1 ) 4

10 1.5sin(0.1 ) 3cos(0.1 )

3sin(0.1 ) 1

t
t t

t

�
�

�

& '
( )
( )* +

d =  

For the initial instantaneous Euler-rotation-axis angle of 

the flexible spacecraft 0 0 deg� � , whose corresponding 

Euler angle attitude 0 0[0, 0, 0]deg,  [0, 0, 0]deg /s� �0 [0, 0, 000�� � , 

the desired attitude 

37 degf� � , [20,14,30]deg,  [0, 0, 0]deg /s,d d� � [0, 0,d�� � rela

-tive control parameters are selected, the parameters for the 

observer:
10 1 2, , [50,150,500],  0.01,  0.25,    !� � �

2
0.5 ;! �  Parameters for controller: 
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3 3 3 3
=

diag([ 10, 7, 5]) diag([ 7, 11, 2])

� �& '
( )
( )* +	 	 	 	 	 	

O I
F ,

= diag([ 10, 7, 5]) diag([ 7, 11, 2]) ,& '* +	 	 	 	 	 	Z in the case in the 

case where the output capacity of actuator is 

max 1.5Nm,�u  maximum momentum  
maxh  is 2.5 

N m s� � , which can be provided by hybrid actuator, 
maxJ  is 

100 
2

kg m .�  

4.1 Performance Analysis
Under the attitude path-based attitude controller, attitude 

response and structural dynamics of flexible spacecraft are 

depicted by Figs.4-8. Euler angle and attitude angular 

velocity response in the controlled system are shown in 

Figs.4-5. The controlled elastic modes arising from solar 

wings are shown in Figs.7-8.  

 
a. roll direction  �       b. pitch direction �        c. yaw direction �  

Fig. 4 Euler angle

 
a. roll direction  ��      b. pitch direction ��       c. yaw direction ��  

Fig.5 Angle velocity  

It’s evident that the closed-loop system based on the 

triangular angular velocity trajectory has a significantly 

faster maneuvering time than the controlled systems 

following the other two attitude paths, and that following 

trapezoidal trajectory takes seconds. As also reflected in 

Fig.5, the maximum attitude angular velocity of triangular 

path-based system during the maneuver is much higher than 

that of the closed-loop system under the other two paths. 

   
a. roll direction        b. pitch direction       c. yaw direction  

Fig.6 Control input  

 
a.1st order        b.  2nd order       c.  3rd order       d.  4th order 

Fig.7 Modal displacement 

Besides, attitude angular velocity trajectory of closed 

loop system following trapezoidal path and that following 

sinusoidal path approximate. Correspondingly, as shown in 

Fig.6, control torque amplitudes of the trapezoidal path and 
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sinusoidal path closed-loop attitude systems are close, but 

the sinusoidal path output torque is smoother than that of the 

trapezoidal path, which is more conducive to high-precision 

attitude pointing and high-stability attitude maneuvering. 

 
a.1st order        b.  2nd order       c.  3rd order       d.  4th order 

Fig.8 Modal velocity 

As depicted in Figs.7-8, it’s found that as the modal order 

increases, the modal response amplitude decreases, which 

confirms the validity of the previous proposal to consider 

only the first four orders of modes in the structural dynamics 

of flexural spacecraft. 

It’s observed that though the modal displacement 

response of the closed-loop system based on the sinusoidal 

path lags behind that of the other two paths, the closed-loop 

system exhibits the strongest vibration suppression, 

achieving high steady-state accuracy of the first four orders 

of modal displacements and modal velocities. It's noted that 

the modal responses have no jitter like that of the other two 

paths, which can be attributed to the planned gentle 

sinusoidal attitude angular acceleration. The jitter on modal 

responses arises from the rigid maneuver, which validates 

the sinusoidal attitude path can minimizes the excitation 

from attitude motions on the flexible attachments during 

rigid orientation. 

4.2 Robustness to External Disturbance Analysis 
Table 2. Cases the spacecraft may encounter 

Case Disturbance Potential Expn 

1 No \ 

2 Harmonic hd  
-3

3cos(0.1 ) 4

10 1.5sin(0.1 ) 3cos(0.1 )

3sin(0.1 ) 1

t
t t

t

& '�
( )

�( )
( )�* +

 

3 Gaussian gd  -3
10 (4,1)rand  

4 Harmonic + Gaussian md  hd + md  

 

The issue of disturbance rejection is especially noticeable 

for low-Earth orbiting satellites, which operate at altitudes 

where their dynamics are significantly influenced by most of 

the jamming. Therefore, we will investigate the robustness 

of the proposed control scheme to various external 

disturbances, as shown in Table 2. The table corresponds to 

different cases in which the flexible spacecraft will be 

subjected to disturbances. 

The simulation results for the attitude control and 

vibration suppression of flexible spacecraft under the 

proposed method are presented in Figs 9-13 in four different 

cases. 

   
a. roll direction  �       b. pitch direction �        c. yaw direction �  

Fig. 9 Euler angle 

   
a. roll direction  ��      b. pitch direction ��       c. yaw direction ��  

Fig.10 Angle velocity  
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a. roll direction        b. pitch direction       c. yaw direction 

Fig.11 Control input 

As shown in Figs 9-13, attitude control and vibration 

suppression for flexible spacecraft show modestly strong 

robustness in four cases under the proposed method. Notably, 

the system under the method behaves differently in 

robustness to different disturbances, which perform better 

with harmonic disturbance than Gaussian disturbance and 

mixed disturbance, shown obviously in Figs 9-13. 

 
a.1st order        b.  2nd order       c.  3rd order       d.  4th order 

Fig.12 Modal displacement 

 
a.1st order        b.  2nd order       c.  3rd order       d.  4th order 

Fig.13 Modal velocity 

It’s obvious that, from the attitude response to the elastic 

vibration response, the amplitudes are approximately equal 

under the four cases, which means whether disturbance or 

not, whatever type of disturbance, the proposed method is so 

robust that the static and dynamic performance keep stable. 

5 Conclusion 
In this paper, a sinusoidal-path integrated controller is 

proposed for attitude control of flexible spacecraft subject to 

unknown inertia parameters and external disturbances. To 

handle the nonlinearity of flexible spacecraft, a potential 

controller based on a fully actuated system (FAS) is 

constructively developed, whereby a compound ADRC 

controller that integrates FAS and Extended disturbance 

observer is further derived to deal with the nonlinearity 

caused by the external disturbance and achieve high 

precision pointing. It is shown that the proposed control 

algorithm can steer the spacecraft to the desired orientation 

with minimal residual vibration despite the presence of 

external disturbances and system uncertainty. By leveraging 

the inherent dynamics of the vehicle's attitude path, this 

method optimizes control torque usage, enabling more 

efficient and reliable spacecraft maneuvers, and ultimately 

enhancing the success of space missions. 
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Robust multi-mobile robot formation control: A fully actuated
system control approach
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Abstract: In this paper, a control law for a multi-mobile robot formation system with the leader-follower’s distance-angle
tracking method is developed based on the theory of fully actuated system (FAS), where the stability under disturbance is also
characterized. Firstly, the dynamic error model of the target robot formation system with disturbance is established. Once the
second-order nonlinear differential equation is obtained, it will be transformed into a linear time-invariant one by deploying the
fully actuated system technique. Consequently, a control law is designed to eliminate the uncertainty and drive the error dynamic
to converge to zero. Finally, the robot team can move forward along the desired trajectory in the predetermined formation. At
the same time, the effectiveness of the proposed method is examined by extensive numerical experiments in comparison with
the conventional sliding mode control (SMC). The simulation results show that the fully actuated parameter design method has
better stability and faster convergence. Moreover,the proposed method shows higher robustness against disturbance.

Key Words: Fully actuated system, linear time-invariant system, distance-angle, multi-mobile robot formation

1 Introduction

With the rapid improvement of productivity, the depen-
dence on the work of robots is consistently increasing espe-
cially for those complex and huge engineering tasks. Multi-
mobile robot collaboration can handle work that cannot be
achieved by a single robot [1]. Formation control is widely
used not only in industrial production and military fields [2],
but also in application scenarios such as UAV aerial perfor-
mances with the popularization of unmanned aerial vehicles
(UAVs) in recent years [3, 4]. Therefore, the study of forma-
tion control has important theoretical and practical value.

The control methods of robot formation are mainly di-
vided into five categories: leader-follower, behavior-based,
artificial potential, virtual structure, and graph theory. The
leader-follower method transforms the formation control
problem into the orientation and distance problem of the fol-
lower relative to the leader, which is convenient for the stan-
dard control theory to study and analyze its stable tracking
error [5]. Therefore, the robot formation model in this paper
is established and analyzed by the leader-follower method
based on distance-angle [6, 7]. From the perspective of
multi-robot system control, it is mainly divided into two
categories: centralized control and distributed control. In
distributed control, each robot only needs to interact with a
few neighboring robots with its pose and other information,
which reduces the amount of computation and the commu-
nication burden of a single robot. The advantages of dis-
tributed control, such as good adaptability and fault toler-
ance, make the research hotspots on multi-robot formation
information interaction biased towards it. Thus, this paper
uses a relatively simple distributed control to achieve the for-
mation target, which not only reduces the amount of commu-
nication, but also helps to reduce the error and make it more
flexible.

The robot model used in this paper is a common second-

*This work is partly supported by National Natural Science Foun-
dation (NNSF) of China (Grant 62303133 and 62188101) and partly by
the Guangdong Basic and Applied Basic Research Foundation (Grant
2021A1515110262, 2022A1515011274).

order dynamics model. The high-order system approach pro-
posed in [8] can be used to design the control law to obtain a
linear constant closed-loop system, which has a better effect
on the control problem of general nonlinear systems than that
of state-space technique. Reference [9] pointed out some
problems of the controllability of the first-order dynamical
system based on the state-space model, and then defined the
complete controllability of the dynamics system with more
general applicability and its relationship with the fully actu-
ated system (FSA). Also, it proved that a fully actuated sys-
tem can be transformed into a linear time-invariant closed-
loop system with the desired characteristic structure by ap-
propriately selecting a nonlinear state feedback control law.
In this paper, the control model of the fully actuated system
(FAS) proposed in [8] is used to achieve the control law, with
the target nonlinear system being described through variable
elimination and model transformation. An obvious advan-
tage of this method is that a linear constant closed-loop sys-
tem can always be obtained from arbitrarily assignable fea-
ture structures. This convenience helps to deal with many
control problems, such as observer design [10], robust con-
trol [11], adaptive control [12], robust adaptive control [13],
disturbance attenuation [14], and optimal control [15].

However, it is worth noting that the FAS technique re-
quires accurate knowledge of system dynamics. Although it
is robust to small modeling errors, it is not suitable for large
uncertainty, such as the lack of dynamic details known, and
the closed-loop system will be affected by the uncertainty
characteristics [16]. Therefore, there exist some difficulties
using FAS to achieve the formation. One is that the over-
shoot may be large and even lead to divergence, especially
when each agent suffered both random and time-varying dis-
turbance. This article manages to overcome it through suit-
ably setting the limitations of the acceleration and velocity .
Additionally, the formation model is coupled with only two
separate control inputs, which makes it difficult to use fully
actuated system technique to design the control law. This pa-
per manages to find two suitable control variables and trans-
form the dynamic error model into a fully actuated system.

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China
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In this work, under a second-order error model of the
leader-follower’s distance-angle tracking formation, a con-
trol law is proposed deploying the fully actuated design ap-
proach. The uncertainty including the nonlinear term of
the original system is eliminated by using the fully actu-
ated characteristics, so as to obtain a linear time-invariant
error system with asymptotic convergence and consequently
to achieve the goal of formation control. The main contribu-
tions of this paper are as follows

(1) The nonlinear control method based on the theory of
fully actuated system is applied to the multi-robot formation
through the leader-follower control based on the distance-
angle method.

(2) Considering both the random and the time-varying dis-
turbance of each agent under the formation, the robustness
of the fully actuated system control approach is confirmed
though simulation.

(3) Combined with the theory of the fully actuated system,
the acceleration and velocity are limited considering the con-
trol and safety of formation.

The rest of this paper is arranged as follows: Section 2
introduces a distance-angle-based leader-follower dynamic
error model and the design formula of the conventional slid-
ing mode control with its stability proof. In Section 3, a
second-order fully actuated system model is established by
designing a control law to ensure that the linear system ob-
tained is stable and convergent. In Section 4, a specific ex-
ample is simulated, and the simulation results of fully actu-
ated system (FAS) and sliding mode control (SMC) under
disturbance are given, which verifies the effectiveness of the
fully actuated system technique. Finally, conclusions and
prospects are summarized in Section 5.

Symbol description: In indicates a nth order identity ma-
trix, and 0m×n represents a zero matrix with n columns and
m rows. ∥·∥∞ represents the vector infinite norm.

2 Problem Formulation and Preliminaries

In this section, the dynamic model of the leader-follower
system considering uncertainty and the error differential
equation are established. Subsequently, the theoretical strat-
egy of the conventional sliding mode control and the proof
of its stability are given.

2.1 Dynamic error model of the leader-follower system
In this paper, the distance-angle control structure of the

leader-follower framework is considered, where the ith robot
is selected as the leader and the kth robot is selected as the
follower. When the leader moves along the desired trajec-
tory, the follower needs to maintain the desired relative posi-
tion and relative phase angle to follow the leader and achieve
the desired formation movement. The structure of the model
is shown in Fig. 1.

As shown in Fig. 1, the relative distance lik between the
leader i and the follower k is defined as the distance from the
center of the leader i to the front sensor of the follower k. Its
calculation formula is as follows

lik =
√

(xi − xk − r cos θk)2 + (yi − yk − r sin θk)2, (1)

where (xi, yi) and (xk, yk) respectively represent the central
coordinate position of the leader i and the follower k, and r

Fig. 1: Schematic diagram of the relevant parameters
between robot i and k.

represents the radius of the robots. θi and θk represent the
azimuth angle of i and k, respectively.

The relative phase angle Ψik between i and k in Fig. 1 is
defined as

Ψik = π + ςik − θi, (2)

where ςik is described and calculated as

ςik = arctan
yi − yk − r sin θk

xi − xk − r cos θk
.

Taking the second derivative of lik and Ψik , defining Wik =

[lik, Ψik]T , and considering the uncertainty (which will be
described in more detail in subsection 2.2), the state space
expression for the dynamical model of the leader-follower
formation system is

Ẅik = Gikuik + dik

(
Wik, Ẇik, t

)
. (3)

In equation (3), defining φik = Ψik + θi − θk, Fik =

[F1, F2]T , and Pik = [P1, P2]T , then each parameter matrix
is described as follows

Gik =

 cosφik r sinφik

− sinφik

lik

r cosφik

lik

 , Lik =

− cosΨik 0
sinΨik

lik
−1

 ,
∆′i = I2 + ∆i,

dik

(
Wik, Ẇik, t

)
= Gik∆kuk + Lik∆

′
iui + Fik + Pik,

F1 = (Ψik)2 lik + 2Ψikθ̇ilik +
(
θ̇i

)2
lik − r cosφik

(
θ̇k

)2
−
(
ẏkθ̇k − ẏiθ̇i

)
cos (Ψik + θi) +

(
ẋkθ̇k − ẋiθ̇i

)
sin (Ψik + θi) ,

F2 = −
(ẏkφ̇ik − Ψikẏi) sin (Ψik + θi)

lik
− l̇ikrθ̇k cosφik

l2ik

− (ẋkφ̇ik − Ψik ẋi) cos (Ψik + θi)
lik

− rθ̇kφ̇ik sinφik

lik

+
l̇ik ((ẏi − ẏk) cos (Ψik + θi) − (ẋi − ẋk) sin (Ψik + θi))

l2ik
,

P1 = − (πix − πkx) cos (Ψik + θi) + rπkθ sin (φik)

−
(
πiy − πky

)
sin (Ψik + θi) ,

P2 =
(πix − πkx) sin (Ψik + θi)

lik
− πiθ

−

(
πiy − πy

)
cos (Ψik + θi) − rπkθ cosφik

lik
.
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Note: This paper makes the following assumptions about
the leader-follower system:

1) There is no communication delay between the leader
and the follower.

2) Each robot can detect its own pose and velocity.
3) The leader can transmit its pose and velocity to each of

its followers precisely through communication.
Define W∗ik =

[
l∗ik Ψ

∗
ik

]T
as the desired relative position and

phase angle that the follower k expects to maintain with the
leader i, and

Weik = Wik −W∗ik =
[
lik − l∗ik Ψik − Ψ ∗ik

]T
,

is the error state variable of the formation system. Then the
state space expression for the dynamic error model of the
leader-follower formation system is

Ẅeik = Gikuik + dik

(
Weik, Ẇeik, t

)
. (4)

2.2 Uncertainty in multi-robot formation
In the formation system dynamics error model (4) pro-

posed in this paper, dik = dik

(
Weik, Ẇeik, t

)
represents the

uncertainty existing in the system, including four parts:
Gik∆kuk, Lik∆

′
iui, Pik, and Fik. Specifically:

1) Gik∆kuk indicates the change in the parameter of the
follower k itself.

2) Lik∆
′
iui indicates the changes of the control quantity in-

formation of the leader i and its parameter change that affect
the followers.

3) Pik denotes the set of external disturbance to which the
leader i and the follower k are subjected.

4) Fik represents the set of the part related to the state of
the system.

While Gik∆kuk, Lik∆
′
iui, and Pik are disturbance items, Fik

is the nonlinear term of the system itself.

2.3 Sliding Mode Control (SMC) theory and strategy
The sliding mode control (SMC) forces the states of a sys-

tem to move on a certain sliding mode surface and finally
converge to zero [17]. SMC has good robustness to distur-
bance, since the designed sliding mode surface equation is
only related to the states, and has nothing to do with other
parameters of the system or external disturbance [18].

Hypothesis 1: There is an unknown constant d∗ik > 0 that
makes the uncertainty dik in the system (4) satisfy ∥dik∥∞ ≤
d∗ik, i.e, the uncertainty is bounded.

Design conventional sliding surface equation for the for-
mation system

S ik = J̄ikWeik + K̄ikẆeik, (5)

where S ik ∈ R2×1, J̄ik and K̄ik are the 2nd-order positive def-
inite matrices to be designed.

Correspondingly, the conventional sliding mode control
law of the system is designed as follows

uk = −
(
K̄ikGik

)−1 [
κ̄ik sat (S ik) + η̄ikS ik + J̄ikẆeik

]
, (6)

where κ̄ik and η̄ik are the parameters to be designed. Espe-
cially, considering that the discontinuity of the sgn(·) func-
tion at the origin may affect the stability of the system, it is

replaced by the saturation function sat(·), which is described
as

sat (S ) =


1, S > δ,

kS , |S | ≤ δ, k =
1
δ
,

−1, S < −δ,
where δ is defined as a very small number.

Consider a positive definite Lyapunov function and its
derivative

V =
1
2

S T
ikS ik,

V̇ = S T
ikṠ ik

= S T
ik

(
J̄ikẆeik + K̄ikẄeik

)
= S T

ik

(
J̄ikẆeik + K̄ik (Gikuk + dik)

)
= S T

ik

(
−κ̄ik sat (S ik) − η̄ikS ik + K̄ikdik

)
.

While choosing κ̄ik > ∥K̄ik∥∞d∗ik, V̇ is negative definite,
the system is asymptotically stable according to Lyapunov
theorem.

Especially, if dik is known, design

uk = −
(
K̄ikGik

)−1 [
κ̄ik sat (S ik) + η̄ikS ik + J̄ikẆeik + K̄ikdik

]
,

then
V̇ = S T

ik (−κ̄ik sat (S ik) − η̄ikS ik) .

V̇ is negative definite. Similarly, the system is stable.

3 Modeling of the Fully Actuated System (FAS)
Approach

For the sake of convenience, the system (4) is recalled as

Ẅeik = Gikuik + dik

(
Weik, Ẇeik, t

)
. (7)

For system (7), it is easy to prove that det (Gik) , 0, ∀t >
0, due to the fact that

det (Gik) =

 cosφik r sinφik

− sinφik

lik

r cosφik

lik

 = r2

lik
, 0.

Therefore according to [8], the system is fully actuated.
Consequently, the system can be converted into a desired
linear time-invariant one by designing a suitable control law.
For the two-dimensional higher-order equation of states (7),
extend it to a four-dimensional first-order system, defining
Z1 = Weik, Z2 = Ẇeik, which means Ż1 = Ẇeik = Z2 and the
state is

Z =
[

Weik

Ẇeik

]
=

[
Z1
Z2

]
=


lik − l∗ik
Ψik − Ψ ∗ik
l̇ik − l̇∗ik
Ψik − Ψ ∗ik

 .
Then the error system (7) can be described as

Ż =
[

Ẇeik

Ẅeik

]
=

[
02×2 I2
02×2 02×2

] [
Z1
Z2

]
+

[
02×2

Gikuk

]
+

[
02×1
dik

]
,

where uk ∈ R2×1 is the control input to be designed, Gik ∈
R2×2 is the matrix of known parameters related to the relative
distance, relative angle, and radius of the robots, and dik =
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dik

(
Weik, Ẇeik, t

)
∈ R2×1 is the uncertainty, whose detailed

calculation formula has already been shown in subsection
2.1.

By designing the control law

uk = G−1
ik

(
−dik − A1Ẇeik − A0Weik + B1v

)
,

one can obtain the following linear time-invariant system

Ż =
[
02×2 I2
−A0 −A1

]
Z +
[

02×2
B1

]
v

= AZ + Bv,
(8)

where

A =
[
02×2 I2
−A0 −A1

]
, B =

[
02×2
B1

]
,

in which A1, A0∈ R2×2, B1 ∈ R2×2, and v ∈ R2×2, which all
can be arbitrarily chosen. By selecting the four matrices ap-
propriately, the system (8) can be controllable. In particular,
if B1 = 02×2 , with A1 and A0∈ R2×2 properly selected, the
matrix A in equation (8) can be Hurwitz. Then the system is
stable consequently. Particularly, in this article, A1 = 12I2,
A0 = 36I2, B1 = 02×2. Consequently, it holds that

A =
[

02×2 I2
−36I2 −12I2

]
, B = 04×2.

and the system (8) is then transformed into the following
system

Ż =
[

02×2 I2
−36I2 −12I2

]
Z. (9)

Considering that

|λI4 − A| =
∣∣∣∣∣∣ λI2 −I2
36I2 (λ + 12) I2

∣∣∣∣∣∣
=
(
λ2 + 12λ + 36

)2
I2

= 0.

It can be seen that the eigenvalues of A are all −6, which
means A is Hurwitz. Based on Routh-Hurwitz stability cri-
terion, one can conclude that the linear time-invariant (LTI)
system (9) is stable. Thus ultimately, the states

Z =
[

Weik

Ẇeik

]
=

[
Z1
Z2

]
=


lik − l∗ik
Ψik − Ψ ∗ik
l̇ik − l̇∗ik
Ψik − Ψ ∗ik

 = 0.

In this paper, each follower follows only one leader. Con-
sequently, each follower maintains the desired relative dis-
tance and angle with their respective leader, which means
the formation is achieved that the robot team moves in the
desired formation following the main leader moving along
the expected trajectory.

4 Simulation Verification and Application

To verify the effectiveness of the designed scheme, a robot
team with a distributed structure is used. The robot forma-
tion system consists of 8 robots with a radius of 0.2m and
a virtual robot, which is the main leader and is numbered
as 0th. The eight robots have their own leader respectively.

The leader transmits its pose and velocity to the follower in
one direction. Define that, if row j + 1 in column i + 1 is
equal to 1, it means that the ith robot transmits the informa-
tion such as its own pose and velocity to the jth robot. The
communication matrix is as follows

Con =
[
C1 05×4
C2 04×4

]
,

where

C1 =


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0

 , C2 =


0 0 0 0 1
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

 .
The specific distributed communication topology is de-

picted as follows

Fig. 2: Formation communication topology diagram.

Referring to [19], while the speed of the 0th virtual robot
is

v0 =

[√
b
(
cos (bt)2 + 1

)
−b sin (bt) /

(
cos (bt)2 + 1

)]T
,

where b = 0.05, the robot team will move along the sinu-
soidal trajectory as shown in Fig. 3. The velocity v0 is dif-
ferentiated to get the acceleration of the 0th virtual robot.

Fig. 3: Formation trajectories.

The disturbance parameters are set as follows

∆k =

[
0.3rand () − 0.15 0

0 0.3rand () − 0.15

]
,

πkx = πky = πkθ = 0.1 sin (2πt) ,

where k=1, ..., 8, and rand() produces a random number
ranging from 0 to 1 each time.

The initial pose of every robot, the initial relative distance
and angle between every follower and their respective leader,
and the desired ones are shown in Table 1-3, respectively.
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Table 1: Initial poses

qi =

[xi yi θi]T

/(m m rad)

q0 = [1 1 π/4]T

q1 = [0 0 π/4]T

q2 = [−1.3 1.5 0]T

q3 = [1.3 −1.5 π]T

q4 = [2 −1.5 π/3]T

q5 = [0 1.5 π/3]T

q6 = [0 −1.5 π/6]T

q7 = [−2 −1.5 −π/4]T

q8 = [0 2.5 −π/6]T

Table 2: Initial relative distances and angles

Wik =

[lik ψik]T

/(m rad)

W01 = [1.2142 3.1416]T

W12 = [1.3601 −3.8178]T

W13 = [1.3601 3.5125]T

W14 = [0.9840 4.9343]T

W45 = [3.1985 −4.1729]T

W46 = [1.3295 0.9925]T

W27 = [2.1907 −0.6996]T

W38 = [3.0595 3.9465]T

Table 3: Desired relative distances and angles

W∗ik =

[l∗ik ψ∗ik]T

/(m rad)

W∗01 = [1 π]T

W∗12 = [0.5 π/1.5]T

W∗13 = [0.5 −π/1.5]T

W∗14 = [1.5 −π]T

W∗45 = [0.5 π/1.5]T

W∗46 = [0.5 −π/1.5]T

W∗27 = [1 π/1.5]T

W∗38 = [1 −π/1.5]T

Considering the safety issues, limitations are applied to
the velocities together with the control inputs of the robot
which are the accelerations. The maximum control inputs
are the maximum accelerations, with the maximum linear
acceleration being 50m/s2, and the maximum angular ac-
celeration being 10πrad/s2. Simultaneously, the maximum
linear velocity is 5m/s, and the maximum angular velocity is
πrad/s. That is, this paper sets ∥ukl∥∞ ≤ 50, ∥ukw∥∞ ≤ 10π,
∥vl∥∞ ≤ 5, ∥vw∥∞ ≤ π, where respectively, ukl and ukw repre-
sent linear acceleration and angular acceleration, and vl and
vw represent linear velocity and angular velocity.

For sliding mode control (SMC), design

J̄ik = 4000I2, K̄ik = 5000I2, κ̄ik = η̄ik = 12I2.

For fully actuated system (FAS) , design

A1 = 12I2, A0 = 36I2.

Simulation results are shown in Fig. 4-8, where it can be
seen that by deploying the FAS technique, the error conver-
gence speed is faster, and the robustness against disturbance
is higher. The steady state error is reduced, and the fluc-
tuation of the control input is suppressed. In addition, the
parameter design of FAS is more straight forward and sim-
pler.

1) The relative distance errors and relative angle errors are
shown in Fig. 4-5.

Fig. 4: FAS state errors.

Fig. 5: SMC state errors.

2) The control inputs are shown in Fig. 6-7.
3) Additionally, the state errors with the disturbance term

not removed is also given in this paper, as shown in Fig. 8.
As can be seen from the comparison of Fig. 4 and Fig. 5,

the FAS control method has a faster convergence speed, less
overshoot, and smaller stability error. From the comparison
of the control input curves in Fig. 6 and Fig. 7, it can be
seen that the control input of the FAS control method con-
verges to a stable value faster, and the stability fluctuation is
smaller, which means that the performance of FAS control is
better. From Fig. 8, it can be concluded that FAS is more ro-
bust than SMC in response to disturbance especially on the
distance errors since the fluctuations are smaller.
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Fig. 6: FAS control inputs.

Fig. 7: SMC control inputs.

Fig. 8: The state errors in 200 seconds.

5 Conclusion and Future Work

It is difficult to establish a suitable high-order system for
formation using the theory of fully actuated system. This
paper succeeds in establishing a suitable robot formation
error system based on the distance-angle and converting it
into a linear stationary system through the design method of
FAS. In this paper, the dynamic error system model of the
robot formation is transformed into a high-order fully actu-
ated system. Subsequently, the target closed-loop system is
converted into a linear time-invariant one with the coefficient
matrix being Hurwitz, so that the error converges to zero ul-
timately. Compared with the conventional sliding mode con-
trol (SMC) method, the fully actuated system (FAS) control
method performs a faster convergence speed, higher robust-
ness against disturbance, and less fluctuation of the control
input in steady state.

Future research efforts will be devoted to considering ob-
stacle avoidance and possible collisions between robots. The

disturbance observers will be designed in the future to esti-
mate the disturbance and then eliminate the effects of distur-
bance as effectively as possible.

References
[1] Y. Toda and N. Kubota. Self-Localization Based on Multires-

olution Map for Remote Control of Multiple Mobile Robots,
IEEE Transactions on Industrial Informatics, 9(3): 1772-1781,
2013.

[2] Lee C.E, Im H.J, Lim J.M, et al. Seamless Routing and Coop-
erative Localization of Multiple Mobile Robots for Search and
Rescue Application, ETRI Journal, 37(2): 262-272, 2015.

[3] Juan Li, Ruikun Yuan, Honghan Zhang. Research on Multi-
AUV Formation Control Algorithm Based on Leader-follower
Method, Chinese Journal of Scientific Instrument, V40(06):
240-249, 2019.

[4] Lei Ji, Chunxia Fan. Multi-UAV Formation Control Method
Based on Stochastic Delay, Journal of Applied Sciences,
037(004): 551-564, 2019.

[5] CHEN J, SUN D, YANG J, et al. Leader-follower formation
control of multiple nonholonomic mobile robots incorporating
a receding-horizon scheme, Internatinal Journal of Robotics
Research, 29(6): 727-747, 2010.

[6] Lu Yu. Multi-robot sliding mode formation control based on
disturbance observer. North China Electric Power University
(Beijing), 2017: 6-24.

[7] Jiarong Chen. Research on formation control of leader-
follower robot based on second-order sliding mode algorithm.
North China Electric Power University (Beijing), 2021: 5-13.

[8] Duan Guang-Ren. High-order system approaches: I. Fullyac-
tuated systems and parametric design. Acta Automatica Sinica,
46(7): 1333-1345, 2020.

[9] Duan Guang-Ren. High-order system approaches: II. Con-
trollability and fully-actuation. Acta Automatica Sinica, 46(8):
1571-1581, 2020.

[10] Duan G R, High-order system approaches: III. Observabil-
ity and observer design, Acta Automatica Sinica, 46(9): 1885-
1895, 2020.

[11] Duan G R, High-order fully actuated system approaches: Part
III. Robust control and high-order backstepping, International
Journal of Systems Science, 52(5): 952-971, 2021.

[12] Duan G R, High-order fully actuated system approaches: Part
IV. Adaptive control and high order backstepping, Interna-
tional Journal of Systems Science, 52(5): 972-989, 2021.

[13] Duan G R, High-order fully actuated system approaches: Part
V. Robust adaptive control, International Journal of Systems
Science, 52(10): 2129-2143, 2021.

[14] Duan G R, High-order fully-actuated system approaches:
Part VI. Disturbance attenuation and decoupling, International
Journal of Systems Science, 52(10): 2161-2181, 2021.

[15] Duan G R, High-order fully actuated system approaches: Part
VIII. Optimal control with application in spacecraft attitude
stabilisation, International Journal of Systems Science, 53(1):
54-73, 2022.

[16] Qin Z, Ren G D. Fully Actuated System Approach for 6DOF
Spacecraft Control Based on Extended State Observer, Journal
of Systems Science and Complexity, 35(2): 604-622, 2022.

[17] Peng Li. Research and application of traditional and high-
order sliding mode control. National University of Defense
Technology, 2012: chapter 2.

[18] Feng Chen. Research on sliding mode variable structure con-
trol theory and its application in robot. Jiangnan University,
2008: chapter 2.

[19] Qing Han. Research on Robot Formation Control Method.
Shanghai: Shanghai Jiao Tong University Press, 2020: 23-27.

1016  



  

Sliding Mode Control for Tower Crane with Double Spherical Pendulum 

and Variable Cable Length 

Gang Li1,2, Xin Ma1,2*, Jing Li3, Yibin Li1,2 

1. Center for Robotics, School of Control Science and Engineering, Shandong University, Jinan 250061, China 

2. Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Jinan 250061, China 

3. Shandong Fenghui Equipment Technology Co. LTD, Jinnan 250200, China 

E-mail: maxin@sdu.edu.cn 

 

Abstract: The complex dynamics of the double spherical pendulum with variable cable length present a significant challenge in 

controlling the swing of underactuated tower cranes. In this article, we present a sliding mode anti-sing controller for the 

underactuated seven degrees of freedom (7-DOF) tower crane with the double spherical pendulum and cable length variations. 

The underactuated 7-DOF tower crane model provides a comprehensive representation of the dynamics involved in jib slewing, 

trolley movement, cable length variations, hook swing, and payload swing. Utilizing the elimination method, a fully actuated 

system model is obtained from the underactuated 7-DOF tower crane model. Based on the fully actuated system model, we 

designed a sliding mode controller to effectively suppress both hook swing and payload swing. The theoretical analysis and 

experimental results demonstrate the accuracy of the 7-DOF tower crane dynamic model and the effectiveness of the sliding 

mode controller. 

Key Words: Full actuated system model, Sliding mode control, 7-DOF Tower crane system, Anti-swing control. 

 

 
  

1 Introduction 

Tower cranes are typically used in the construction 

industry for lifting and transporting materials, including 

concrete, steel, and other building materials [1]. Tower 

cranes are the underactuated systems, which have fewer 

control inputs than the number of degrees of freedom (DOF) 

in the system [2]. Not all DOFs can be directly controlled 

simultaneously in underactuated tower cranes. This is 

because tower cranes have a limited number of controllers 

that can only control the trolley moving, jib slewing and 

payload hoisting, but lack the controller for the 

hook/payload swing directly. It is necessary to design the 

control strategies that effectively manage the tower crane, 

ensuring stability and safety throughout its operation.  

In practices, the double spherical pendulum motion which 

may happen when jib slews and trolley moves to transport 

the large-size payload (e.g. distributed-mass beam) [3]. 

Furthermore, the lengths of the suspension cables are 

adjusted to lift or lower the payload. The tower crane with 

its variable cable lengths and double spherical pendulum 

effect constitutes a complex multi-input multi-output 

electromechanical system. This system features three inputs, 

including the jib controller, trolley controller, and cable 

controller, and seven DOFs, which encompass jib slewing, 

trolley movement, payload hoisting/lowering, and 

payload/hook spherical swing. Designing effective 

controllers that can counteract swinging motion while 

ensuring stability and safety is indeed a complex task in the 

7-DOF tower crane system.  

After decades of in-depth research, numerous remarkable 

results have been published regarding the control of 

underactuated tower crane systems with single spherical 

                                                           
* This work is supported by the Science Center Program of National 

Natural Science Foundation of China under Grant 62188101, Key Research 

and Development Project of Shandong Province under Grant 

2021CXGC010701, Central Guidance for Local Scientific and 

pendulum effect. Various anti-swing controllers are 

designed for the 4-DOF tower crane with single spherical 

pendulum and fixed cable length, including sliding mode 

control [4,5], fault-tolerant control [6], proportional integral 

derivative control [7], and observer-based nonlinear control 

[8], et.al. As the suspension cable length is time-varying, the 

anti-swing control performance of the aforementioned 

methods based on fixed cable lengths fails to work 

effectively. To solve anti-swing control problem of 5-DOF 

tower crane with single spherical pendulum and varying 

cable length, several control methods have been developed, 

including optimization trajectory planning [9], active 

disturbance rejection control [10], model predictive control 

[11], neural network system estimation based input shaping 

control [12,13], and adaptive control [14,15], et.al. However, 

these control methods belong to single spherical pendulum 

tower crane model while ignoring the hook swing motion.  

Recently, some research works focus on complicated 

double spherical pendulum dynamic and controller design in 

6-DOF tower crane with fixed cable lengths. Some open-

loop controllers, such as input shaper [16], smoother [17] 

and trajectory planners [18,19] are designed for the 6-DOF 

tower crane. However, these open-loop control methods are 

very sensitive to the disturbances. By incorporating state 

feedback, several closed-loop control techniques, including 

energy analysis-based (EAB) control [20], neural network 

triggered control [21], adaptive tracking control [22,23], and 

active disturbance rejection control [24], significantly 

enhance the tower crane system’s robustness to disturbances. 

The existing tower crane controllers typically consider 6-

DOF (e.g., payload/hook spherical swing, trolley moving, 

and jib slewing), but often neglect the variable cable lengths, 

which can significantly impact the swing frequencies. The 

Technological Development Funding Projects of Shandong Province under 

Grant YDZX2023042, and the Joint Fund of the National Nature Science 

Foundation of China and Shandong Province under Grant U1706228. 
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controller design for the tower crane with double spherical 

pendulum effect requires further improvement. 

In order to solve the above issues, this paper proposes a 

sliding mode anti-swing control method for 7-DOF tower 

crane with variable cable lengths. Firstly, a underactuated 

dynamic model of 7-DOF tower crane is established by 

using Lagrange’s modeling methods. Then, a fully actuated 
system model of 7-DOF tower crane is obtained from the 

underactuated model by utilizing the elimination method. 

After, a sliding mode anti-swing controller is designed based 

on the fully actuated system model of 7-DOF tower crane. 

At last, the effectiveness of the proposed sliding mode anti-

swing controller is verified by hardware experiments. 

The main contribution is outlined as follows: 

1) This paper establishes a underactuated 7-DOF tower 

crane with variable cable lengths and double spherical 

pendulum effects.  

2) This paper presents a sliding mode anti-swing control 

method that effectively addresses the challenges in 7-DOF 

tower crane systems. This control method utilizes three 

inputs to simultaneously regulate seven system outputs. 

2 Dynamics Model of 7-DOF Tower Crane 

The 7-DOF tower crane model is illustrated in Fig. 1. 

Table 2 presents its system parameters in full detail.  

Mast

Base

Payload

X



JibTrolley M

Hook

Rigging cable

Suspension cable

1 2

3 4

1m

2m

2l

1l

J

Y

O

Z

r

F
rF

lF

 
Fig. 1: Model of 7-DOF tower crane 

Table 1: Nomenclature of 7-DOF Tower Crane Parameters 

Para. Parameter definition Units 

M,m1,m2 Trolley, hook and payload masses kg 

J Jib inertia moment kgm2 

l1,l2 Suspension and rigging cable lengths m 

  Jib slewing angles deg 

r Trolley translation displacements m 

1 2,   Hook swing angles deg 

3 4,   Payload swing angles deg 

, ,
r l

F F F  
Resultant torques/forces controlling 

jib, trolley and suspension cable 
Nm, N 

g Gravity constant m/s2 

The position vectors of trolley, hook and payload are 

expressed as follows 

  0 0
T

M
p r=  (1) 

  1 1 1 2 1 2 1 1 2

T
p x l s c l s l c c= + −  (2) 

  2 1 1 2 2 3 4 1 2 2 4 1 1 2 2 3 4

T
p x l s c l s c l s l s l c c l c c= + + + − −  (3) 

where ,
i i

s c  are the abbreviation for sin ,cos
i i

  , i=1~4. 

The angular velocity vector of the jib slewing is given as 

 0 0
T

j
v  =   . (4) 

The velocity vectors of trolley, hook and payload are 

calculated as  

 
d

d

M

M j M

p
v v p

t
= +   (5) 

 1

1 1

d

d
j

p
v v p

t
= +   (6) 

 2

2 2

d

d
j

p
v v p

t
= +  . (7) 

The entire kinetic energy of the 7-DOF tower crane is 

obtained by using the velocity vectors (5)-(7) as follows: 

 2

1 1 1 2 2 2

1 1 1 1

2 2 2 2

T T T

M MK J Mv v m v v m v v= + + + . (8) 

The potential energy of the 7-DOF tower crane is given as 

 ( )1 1 1 2 2 1 1 2 2 3 4P m gl c c m g l c c l c c= − − + . (9) 

We define the Lagrange’s function L K P= −  and 

calculate the following Lagrange’s equations  

 
1

d
, , , ,

d

d
, 1,2,3,4.

d
i i

i i

L L
F r l

t

L L
d i

t

  
 


 

  − = =  
   − = − =
  

 (10) 

The dynamic model of 7-DOF tower crane can be 

obtained from (10) as  

( ) ( )
( )

( )  ( )
 ( )

( ) ( )

2 2 2 2

1 2 1 2 1 2 2 2 3

2 2 2 2 2

4 2 2 2 4 1 2 1 2 1 2 1 2 3 4 2

1 2 1 2 1 2 1 2 3 4 1 2 1 2

2

2 1 2 4 2 1 2 1 2 2 1 2 1 2 4 1 2 1

1 2 2 2 2 1 2 4 2 3 4

2 2

2 2

J M m m r m m l m l m c

c l m s s l l m m c c l m s c rl

m m s c rl m s c s c l l m m

s l m s l r m m c c s l m c c s l l

m m s r m l s c s s s c




 + + + + + + −
 + − + +
+ + + − +

  + − + + 
+ + − +

( )( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

1

2

1 2 1 1 2 1 2 1 2 2 3 4 1 2 4 2

2 2 1 4 2 3 4 2 3 2 2 3 2 4 2 1 2

1 2 4 2 3 4 4 1 2 1 2 1

1 2 2 3 4 2 2 2 2 4 1 2 3 4

2 2

1 2 1 1 1 2

2 2

2 2

2

l

m m s l c l r m l l c s c s s s

m s l s l c c l m l s l c r m l l

s c c s s s M m m r s c l

m m m s c l r m l s s s c s c

m m l s c s









 + + + + + 

− + + + +    
 + + + + +  
 + + + +  
+ + +( ) ( )

( ) ( )
 ( )

( )

2

1 2 1 2 1

2 2

1 2 1 2 1 1 2 1 1 2 1 2 1 2

2 2

3 4 1 2 1 2 2 4 1 2 1 2 1 2 2 1

1 2 1 2 1 2 1 2 3 4 1 2 2

2 2

2 3 4 2 2 3 3 4 2 2 1 2 3 4 1 2 3

2 2

2

2 2 2

2 2

2 2

2 2 2

2

m m s c r l

m m c c rl m m c s c l m c c

s c l l m c s l l m m c c s l

m m s s l r m s s s c l l

m c c rl m c s c l m s c c c l l

m s c








+ + 
+ + + + +

 + + +
− + − 

 + + + 
+

 ( )
( ) ( )

( )
( )

2 2

4 1 2 2 3 4 4 2 2 3 4 2 2 1 2

3 4 1 2 4 1 2 1 2 2 1 2 1 2 4 2 1 1

2 2

1 2 1 2 2 1 2 1 2 4 1 2 1 1 2

1 1 2 2 2 3 4 2 2 1 2 4 2 1 2 1 2

2 2

1 2 1 2 1

2 2 2

2 2

2

2 2

2

l l m c s c l m s s l r m s c

s s l l m m c c s l m c c s l l

m m s c s l m s c s l l m m

s l c x m c s c l m s s s l l

m m c s l

 


  

 + − −
 − + +  

 + + + + + 
 + + + +
 + + 

( )


 

2 1 2 4 1 2 2 1 2 4 1 2

2 2

1 2 2 1 2 2 3 4 1 2 2 2 3 4 4 2

2 2 2

2 2 3 4 1 2 3 2 3 4 2 2 2 3 4 1 2 3 4

2

2 2 3 4 1 2 2 4 2 2 1 2 4 1 2 4

2

2 2

m c s s l l m s c s l l

m m s l r m s s c l l m s c s l

m s s c l l m c s l m s c s l l

m s s c l l m s l r m s c s l l F



  


  + 
− + − + 

 + + + 
+ − − =

 (11) 
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( ) ( )
( ) ( )

( )
( ) ( )

 ( )
( ) ( )

1 2 1 2 2 1 2 4 2

1 2 1 2 1 1 2 1 2 1 1

1 2 1 2 1 2 2 3 4 2 3 2 3 4

2 4 1 2 1 2 1 1 2

2

2 3 4 2 1 2 2 1 2 2 4

2 4 1 2 2 1 1 2 1 2

2 2

2 2

M m m r m m s l m s l

m m s c l m m c c l

m m s s l m c c l m s s

l m m s c l M m m r

m s c l m m c l m c

l m m s l m m c c

l

 
 


 

 

+ + − + +  
 + + + +
− + + −
 − + + +
+ − + −
 − + + +
 ( ) ( )

( )
1 1 1 2 1 2 1 2 1 2 1 2

2 2

1 1 1 2 1 2 1 1 2 2 3 4 2 3

2

2 3 4 2 3 4 2 3 4 2 4

2

2

2
r

m m s s l m m s c

l m m c s l m s c l

m c s l m s c l F

 
   

  

− + − +
 − + −
− − =

 (12) 

 

( )
( ) ( )

( )
( ) ( )( )

( ) 
( ) ( )

1 2 2 2 1 2 4 2 2 2 3 4

1 2 1 2 1 2 1 2 1 3 2

4 3 2 2 2 4 1 3 2 4 4 2

2 2 2

1 2 1 2 1 2 1 1

2

2 2 4 2 1 2 1 2 2 1 2 3 4 2

1 2 1 2 2 1 1 1 2 1 1 2

2

2 2

m m s r m s c s l m s s c

m m s c r m m l m s c

c m l s c c c s s r

m m m m c s s l

m s s l m m s c r m s c s c l

m m c s c l m m s l



  


 

−

−

+ − +  
+ + + + +
 + − +

 + − + +
+ + + +
+ + − +

( )
( ) ( )

( ) ( )

2 2 3 4 2 3 2 1 2 4 2 3 4 2 4

2 2 2

1 2 2 1 1 1 2 1 2 2 2 1 3

2

2 4 3 2 2 1 3 2 4 3 4 2 2

2

2 4 1 3 2 4 4 1 2 1 2

2 2

2

l

m s c c l m s c c s s s l

m m c l m m l m l c

c c m l s c s m l

s s c c c m m gc c F

 
 

  


−

−

−

+ − +
− + − + −
 − −
 + − + =

 (13) 

 

( )
( ) ( )

( ) ( )
( )
( )

2

1 2 1 2 2 1 2 1 2 4 1 2

2 2

1 2 1 2 1 1 2 2 1 1

2 1 3 2 4 1 2 3 2 1 3 2 4 1 2 4

1 2 1 2 2 1 1 1 2 1 2 1

2 2 2

1 2 1 1 2 1 2 1 2 3 4 1 2

2 2

1 2 1 2 1 2 2

2

2 2

m m c c s l m c c s l l

m m c c l r m m c l

m c c c l l m s c s l l

m m c s c l l m m c c l r

m m s c c l m c c s c l l

m m c c l m c




 





− −

 − + + 
+ + + +
+ +
− + − +

+ + + 
− + −

( ) ( )

( )

1 2 4 1 2 4

2 2

1 2 2 1 1 1 1 2 2 2 1 1 2

2

2 1 3 2 4 1 2 3 2 1 3 2 4 1 2 3 4

2

2 1 3 2 4 1 2 4 1 2 1 2 1 1 1

2 2

2

c c l l

m m c l l m m c s l

m s c c l l m c c s l l

m s c c l l m m gs c l d


  

  
 

− −

−

+ + − +
+ −
+ + + = −

 (14) 

 

( ) ( )
( ) ( )
( )

( ) ( )
( ) ( )

2

1 2 1 1 1 2 2 1 2

2 3 4 1 2 4 1 2 1 2 1 2 1

2

1 2 1 1 2 1 3 2 4 1 2 3 2 1 2

2 4 1 3 2 4 4 1 2 2 1

1 2 1 2 1 2 2 4 1 2 1 2

2 2 2

1 2 2 1 2 1 2 3 4 1 2

2

m m s l m m c l r m

c s c s s s l l m m s s l r

m m l m s s c l l m l l

c c c s s m m c l r

m m s s l r m c s l l m m

c s c l m s s s c l l


 

 



−

−

 + + + +
 + − +
+ + − +
 + + +
+ + − − +

 + + ( )
( )

( )
( ) ( )

( ) ( )

1 2 1

2 2

1 1 1 2 1 2 1 1 2 2 3 4 1 2

3 2 1 2 1 2 4 2 3 4 4 1 1 2

2 2

1 2 1 2 2 2 1 1 2 1 3 2

2 2

4 1 2 3 2 1 3 2 4 1 2 3 4 2 1 2 4

1 3 2 4 2 4 1 2 1 2 1 2

2

2 2

2 2

2

m m s

l l m m c c l m c c c l l

m l l s s c c s s l l

m m m m c s l m c s

c l l m s s s l l m l l

c s c c s m m gc s l d

 
  


   

−

−

−

+

 + + +
 + − +
 + + + +
 + +
 − + + = − 2

 (15) 

 

2

2 3 4 4 2 2 2 3 4 1 2 2 3 4 2

2 2

2 1 3 2 4 2 1 2 1 3 2 4 1 2 1 2 4 2 3

2 2 2

2 3 4 2 2 3 3 4 2 2 1 2 3 4 1 2

2 1 3 2 4 1 2 2 2 2 3 4 2 1 2 2

3 4 1 2 2 2 3

2 2

2

m c c s l m s c c l l m c c l r

m s c c l l m c c c l l m c l

m c c l r m c s c l m s c c c l l

m s s c l l m s c c l l m c

c c l l m c


 


 



− −

−

 − + + 
+ + +

 − + + 
− − −
 − 2 2

4 2 4 2 1 3 2 4

2

2 1 1 2 1 3 2 4 2 1 2 2 1 3 2 4 1 2 1

2

2 1 3 2 4 1 2 1 2 2 1 3 2 4 1 2 2

2

2 4 4 2 3 4 2 3 4 2 3 3

2

2

2

2

c l m c c c

l l m s s c l l m s c c l l

m c s c l l m s c c l l

m c s l m gs c l d


  

  
  

−

− −

− −

+
 − −
− −
− + = −

 (16) 

 

( )
 

( )


2

2 3 2 2 4 2 2 1 2 4 2 3 4 1 2

2 3 4 2 2 2 4 2 2 1 3 2 4 2 1

2 1 3 2 4 1 2 1 2 1 2 2 4 1 3 2 4 2

2

2 2 4 2 4 2 2 3 4 2 2 2 4

2 2

1 2 2 3 4 4 2 2 1 2 3 4 1 2

2

m s l m c l r m s c c s s s l l

m s s l r m s c l m c c s l l

m s c s l l m l l c c c s s

m l m c l r m s s l r m s c

l l m c c s l m s c s s l l


 

 


−

− −

 + + + 
 − + −
+ + +
+ + + −

 − + 
( )

( )
( )

2

2

1 2 4 1 2 1 2 1 2 4 2 3 4 2 1

2 2

2 1 2 2 3 4 1 2 4 2 2 3 4 2 3

2 2 1 3 2 4 1 1 2 2 2 4 1 3 2 4

2

1 2 2 1 3 2 4 1 2 1 2 1 3 2 4 1 2 1 2

2 2

2 4 4 2 3 2 1 2 1 3

2

2

2 2

2 2

2

m

c c c l l m s c c s s s l l

m l l c s s s s c m c c l

m l s c s l m l c c c s s

l m c c s l l m s s s l l

m s c l m l l c

 
 


   



− −

− −

−

+

 + +
+ − +
+ + +
 + −
+ + ( ) 2

2 4 2 4 2

2 3 4 2 4 4

c s s c

m gc s l d




−
+ = −

 (17) 

where , ,
a f r ra rf l la lf

F F F F F F F F F  = − = − = − . ,
a ra

F F  and 

la
F  represent the actuating torques/forces of jib, trolley and 

suspension cable, respectively. ,
f rf

F F  and 
lf

F  are the 

friction torques/forces of the jib, trolley and suspension 

cable [22,23,25]. ( 1,2,3,4)
i

d i =  represents the damping 

gains. 
1 3 1 3,s c− −   are the abbreviation for 

( ) ( )1 3 1 3sin ,cos   − − . 
Based on the fact of small swing angles, we can obtain the 

linearization dynamic model of 7-DOF tower crane from 

(11)-(17) that  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

2

1 2 2 3 2 1 2 1 1

1 2 2 1 2 4 2 1 2

1 2 1 1 2 2 3 1 2 2 1 2

2 4 1 2 1 2 1 2 1 1 2 2 3

1 2 1 1 1 2 1 2

2 2

2

2 2

2 2

2 2

J M m m r m rl m m rl

m m l m l r M m m r

m m l m l r m m rl m

l r m m l r m m r l m l r

m m l r m m rl F

 
  

   
    

 

 + + + + + + 
 − + + + + +    
+ + + + + +
 + + + + +
+ + + + =

 (18) 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )

1 2 2 1 2 4 2 1 2

1 2 1 1 1 2 1 1 2 2 3

2

1 2 1 2 1 1 2 2 3

1 2 2 1 1 2 1 2 2 2 4

1 2 1 1

2 2 2

2
r

m m l m l M m m r

m m l m m l m l

M m m r m m l m l

m m l m m l m l

m m l F

  
  

  
   


− + + − + +  
+ + + + +
− + + + + +  
− + − + −
+ + =

 (19) 

 

( ) ( ) ( )
( ) ( )
( )

1 2 2 1 2 1 1 2 1

2

1 2 1 1 2 2

1 2

2

2
l

m m r m m r m m l

m m r m m r

m m g F

  

   

+ + + + +

− + + +

− + =

 (20) 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )

2

1 2 2 1 2 4 1 2 1 2 1

2

1 2 1 1 2 1 2 3 1 2 2 1 1

2 2

1 2 1 1 2 1 1 2 1 2 3

2

1 2 1 2 2 1 2 4 1 2

1 1 1 1 2 1 1 1 1

2

2 2 2

m m l m l l m m l r

m m l m l l m m l l

m m l r m m l m l l

m m l m l l m m

l l m m g l d

  
   

  
 

  

 − + + + + 
+ + + − +

 − + + + + 
− + − + +
 + + = −

 (21) 

 

( ) ( )
( ) ( )
( )
( ) ( )
( ) ( )

2

1 2 1 1 1 2 1 2 3 1 2

2

1 2 1 2 2 1 2 4 1 2 1

2 2

1 2 1 2 2 1 2 4 2 1 2 3

2

1 2 1 1 1 1 2 1 1

1 2 1 1 2 1 2 2 1 2 2

2

2

2 2

2

m m l m m l r m l l

m m l m l l m m l r

m m l m l l m l l

m m l l m m l

m m l l m m g l d

  
  
   

  
  

 + + + + 
+ + + + +

 − + + + 
+ + + +
+ + + + = −

 (22) 
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( )2

2 2 2 4 2 2 2 1 2 2 2 1 3 1

2 2

2 1 1 2 2 3 2 2 2 2 3 2 1 2 1

2 2

2 2 2 1 2 1 2 2 2 2 4

2 2 1 1 2 3 2 3 3

2 2 2

2

m l r m l m l l m l l

m l l m l m l r m l m l l

m l l m l l m l

m l l m g l d

    

   
    

  

 − + + − 
 + + − + + 

 − − −
+ + = −

 (23) 

 

( )2

2 3 2 2 2 2 1 1 2 2 2 2 4 1

2 2 2

2 1 2 2 2 1 4 2 2 4 2 1 2 2

2

2 2 2 1 2 1 2 1 2 1 2 1 3

2 2 1 2 2 4 2 4 4

2 2 2 2

2

m l m l r m l l m l l

m l l m l m l m l l

m l r m l l m l l m l

m l l m g l d

    

    
    
  

 + + + − 
 + + − + 

+ + + +
+ + = −

. (24) 

By using the elimination method, (18)-(24) can be 

rewritten as the full actuated system form [26] 

 a a
M q N U+ =  (25) 

where 
a

q , U , a
M , N  are defined as  

1

a
q r

l

 
 =
 
 

, r

l

F

U F

F

 
 =
 
  

,
11 12 13

21 22 23

31 32 33

a

m m m

M m m m

m m m

 
 =
 
 

,
1

2

3

N

N N

N

 
 =
 
 

 

with ( )2

11 2 3 2 1 2 1 1m J Mr m rl m m rl = + + + + , 22m M= , 

( )12 21 2 4 2 1 2 2 1m m m l m m l = = − + +   , 33 1 2m m m= + , 

( )13 31 1 2 2m m m m r= = + , ( )23 32 1 2 1m m m m = = + , , 

( ) ( )
( ) ( )

1 1 2 2 3 2 1 2 1 1

2

2 4 2 1 2 2 1 1 2 2 2 2 1

2N M m m r m l m m l r

m rl m m rl m m gr rd l

  
    

= + + + + +  
+ + + − + −  

, 

( )2

2 1 2 1 1 1 1N Mr m m g d l  = − + − , 

( ) ( ) ( )2

3 1 2 1 1 2 2 1 22 2N m m r m m r m m g   = − + + + − + . 

3 Sliding Mode Controller Design 

This section provides the sliding mode controller design 

for the 7-DOF tower crane system. Fig. 2 is a block diagram 

of the proposed controller.  

3 4, 

d

dt

ee
sgn


cq
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s
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-
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+
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U
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Fig. 2: Block diagram of the proposed controller. 

A group of error signals , ,
r l

e e e  about full state variables 

are defined as follows 

 
1 2 2 4

1 1 2 3

1 1

s

r s

l s

e l l

e e r l l r

e l l

    
 

  − − − 
   = = − − −
   −    

 (26) 

where 1, ,
s s s

r l  are reference trajectory, which be selected 

to satisfy the following conditions. 
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d d

r r r l l l

r r r r

l l l l

t t t

r t r r t r t

l t l l t l t t t

  
   

   

 
 = = =

= = =
 = = =
 = = =


= = =
 = = = 

 (27) 

where i
 / d

 , i
r / d

r  and 1i
l / 1d

l  are the initial/target position 

of the actuators. d
t  is the transportation time.  

Based on the error signals (26), we construct the sliding 

mode surface as follows 

 
T

r l
s s s s e e = = +    (28) 

where  diag , ,
r l

k k k =  are the positive control gain 

matrix. Taking the time derivative of (28), we can obtain that 

 a c
s q q= −  (29) 

where 
3 1

cq
  can be expressed as 

 

1 2 1 2 1 2 2 4

1 1 1 1 1 1 2 3

1

2

2

s

c s r r

s l l

l l l l k e

q l l l l r k e

l k e

     
   

 + + + + −
 

= + + + + − 
 − 

. 

Based on full actuated system model (25) and sliding 

mode surface (28)-(29), a sliding mode control method is 

designed for 7-DOF tower crane as follows 

 ( )sgn
a c

U N M q s Hs= + − −    (30) 

where  1 2 3diag , ,k k k =  and  1 2 3diag , ,H   =  are the 

positive gain matrices.  

4 Closed-loop System Stability Analysis 

Theorem 1. By using the proposed siding mode controller 

(30), the jib slewing angles  , trolley moving displacements 

r , suspension cable lengths 1l , hook swing angles 1 2,   and 

payload swing angles 3 4,   are converged to their desired 

values, one has that  

 
1 1, , , 0, 1,2,3,4s s s ir r l l i  → → → → = . (31) 

Proof. At first, a positive scalar function ( )V t  is 

constructed as  

 
1

2

T
V s s= . (32) 

Taking the time derivative of (32) and using (25), (29)-

(30), we have 
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2 2 2
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T T
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s q q

s M U N q

s s s Hs

k s k s k s s s s
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−

=

= −

 = − − 
= − −

 − − − − − −

 − − − 

 (33) 

which indicates that ( ) ( )0V t V   . Moreover, we can get 

from (32) that  

 ,  , r ls s s  . (34) 

By substituting (32) into (33), we can obtain that 

  1 2 32min , ,V V   − . (35) 

By using the Bellman-Gronwall inequality [27] and (35), 

we can get 

 ( ) ( )  1 2 32min , ,
0 , 0

t
V t V e t

  −   . (36) 

We can obtain from (36) that 

 lim 0 lim 0,lim 0, lim 0r l
t t t t

V s s s→ → → →
=  = = =  (37) 

which indicates that sliding mode surface s  are converged 

to zero.  

We can get from (28) and (37) that the error signals 

, ,
r l

e e e  are converged to zero. Furthermore, it can be 

obtained that 
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1 1

0, 0, 0

, , , 0, 1 ~ 4.
r l

s s s i

e e e

r r l l i


  
= = =

 = = = = =
 (38) 

So far, theorem 1 is proved.           □ 

5 Experiment Results and Analysis 

7-DOF tower crane hardware platform is shown in Fig. 3. 

The system parameters of the hardware platform and 

initial/desired values of actuators are provided as follows  
2

1 2 2
2

1 1

3kg, 0.8kg, 0.5kg, 5.6kg m , 0.2m,

9.8m s , 0.1, 1,2,3,4, 0deg, 50deg,

0.15m, 0.65m, 0.1m, 0.5m.
j i d

i d i d

M m m J l

g d j

r r l l

 
= = = =  =

= = = = =
= = = =

 

 
Fig. 3: Hardware platform of the 7-DOF tower crane system 

Based on (27), the reference trajectory 1, ,
s s s

r l  are 

selected in [19]. The control gains of the proposed sliding 

mode controller are set as 10, 10, 5
r l

k k k = = = , 

 diag 5,5,5 = ,  diag 5,5,5H = . 

The energy analysis based (EAB) controller [20] is 

selected as the comparative control method.  However, The 

EAB controller does not account for changes in the length of 

the suspension cable. To ensure a fair comparison, we 

incorporate the following proportional-differential 

controller to control the suspension cable length variations: 

( )1 2l p l d lF k e k e m m g= − − − + . It allows us to directly 

compare the control performance of the proposed controller 

and comparative controller.  

Fig. 4 is the experiment results. Both controllers enable 

the trolley and jib to transfer from the initial position to the 

final position without any overshoot. The payload is lowered 

accurately to the target location. However, the proposed 

sliding mode controller has more accurate positioning 

control performance than EAB controller. Experimental 

results confirm the presence of double spherical pendulum 

dynamic behavior during the trolley and jib motion process.  

The anti-swing control performance of the EAB and 

proposed controller is shown in Fig. 5. Specially, the 

maximum payload swing angles by using the proposed 

sliding model controller are 2.27 degrees and 2.96 degrees 

for 3  and 4 , respectively. In contrast, the EAB controller 

exhibits maximum payload swing angles are 4.25 degrees 

and 3.63 degrees for 3  and 4 , respectively. Furthermore, 

the EAB controller exhibits residual swing even after the 

trolley and jib have reached the target location. The 

experimental results indicate that the proposed controller 

outperforms the EAB controller in terms of anti-swing 

control performance. 

 
Fig. 4: Experiment results: (a) trolley displacement, (b) jib 

slewing angle, (c) suspension cable length, (d) hook swing angle 

1, (e) hook swing angle 2, (f) payload swing angle 3, (g) payload 

swing angle 4, (h) trolley controller, (i) jib controller, (j) 

suspension cable controller. 
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Fig. 5: Anti-swing control performance of the two controllers: (a) 

maximum  swing angles of the hook, (b) maximum  swing angles 

of the payload. 
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6 Conclusions 

In this article, we present a 7-DOF tower crane system 

model that accounts for the effects of the double spherical 

pendulum and varying cable lengths. To our knowledge, this 

is the first 7-DOF dynamic model for tower cranes, 

incorporating the motion of the boom slewing, trolley 

movement, cable length variations, hook swing, and payload 

swing. Leveraging this model, we design an anti-swing 

control approach based on sliding mode techniques to 

achieve precise positioning and swing suppression. In the 

future, we aim to develop a robust controller for the 7-DOF 

tower crane that accounts for parameter uncertainties and 

external disturbances. 
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Abstract: The application of near-field acoustic levitation (NFAL) is increasing in popularity due to its practical applications in 

industry. This article presents a fluid-structure coupling model based on finite element analysis (FEA) for the dynamic analysis 

of wafers in NFAL. Initially, the one-eighth spherical shape equivalent model of NFAL was developed. Based on this model, 

static and transient investigations were conducted, respectively. Subsequently, various conditions that impact the wafer in NFAL, 

including deviation, initial velocity, and oscillation, were investigated. Finally, a mass-spring system with a single degree of 

freedom was explored. These results validated the feasibility of the wafer manipulation in NFAL and provided a practical method 
for dynamic modeling and analysis of wafers in NFAL. 

 

Key Words: Dynamic modeling, finite element analysis, near-field acoustic levitation, wafer manipulation, fully actuated 
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1 Introduction 

Wafer accurate manipulation has become significantly 

crucial in the semi-conductor manufacturing industry [1,2], 

especially as the geometric feature dimensions of 

microchips continue to decrease. Conventional methods for 

manipulating wafers involve utilizing grippers equipped 

with mechanical stages or negative pressure adsorption [3,4]. 

However, owing to the susceptibility of wafer surfaces, 

mechanical contact, clamping, or adsorption during 

manipulation may inevitably cause surface scratches and the 

accumulation of particles/dust, especially when a slippery 

surface exists [5]. Particles produced during abrasion can 

adhere to the wafer and affect further processing [6]. 

Meanwhile, the negative pressure, whose intensity is 

difficult to control, easily causes stress concentration and 

even fracture because of wafer’s fragility [7–9]. Thus, 

contactless levitation for wafer manipulation is gaining 

increasing attention owing to its security and micro-

maneuverability features in industrial application. 

Contactless manipulation methods typically include 

aerodynamic, magnetic, and acoustic levitations [10–12]. 

Air pumps are used to generate high-speed airflow in 

relation to aerodynamic levitation [13]. Featuring a powerful 

force and exceptionally precise manipulation, aerodynamic 

levitation is widely employed in industrial fields, e.g. air 

bearings, porous levitation stages, and chemical reactions 

[14–16]. However, the poor controllability due to its 

relatively high speed also increases the risk of fractures. 

Regarding magnetic levitation, the levitated objects should 

be magnetic or magnetically sensitive, so additional 

magnetic tray is required to hold the wafer; this likely causes 

the scratching between the tray and the wafer [17,18]. 

Acoustic levitation, including nodal acoustic levitation 

                                                           
* This work was supported in part by the Science Center Program of 

National Natural Science Foundation of China (NSFC) (No. 62188101), 

NSFC (No. 52105029 and No. 52375551), Natural Science Foundation of 

(NOAL) and near-field acoustic levitation (NFAL), 

generates a manipulable physical field by employing high-

frequency vibrations to squeeze the air and avoids the usage 

of additional components (e.g. magnetic tray) [18]. The 

unique characteristics of acoustic levitation contribute to it 

being an attractive method for wafer contactless 

manipulations. 

Comprising the exciter and the reflector, NOAL is 

typically utilized to capture/manipulate lightweight particles 

with dimensions smaller than 1/8 of the wavelength, e.g., 

tiny balls, liquid drops, or insects [19–21]; thus, it is not 

applicable for wafers to be levitated in a NOAL manner. In 

contrast to nodal capturing levitation, NFAL not only shares 

unique advantages for objects with a large diameter–

thickness ratio (e.g. glass pane or silicon chip), also 

generates circumferential forces capable of rotating the 

levitated objects [22,23]. Thus, to a large extent, NFAL is 

suitable for wafer manipulations. Hashimoto and Koyama et 

al. [24,25] initially introduced the ultrasonic air squeeze gap 

model, investigated its ultrasonic vibration properties, and 

verified the correlation between levitation heights and 

acoustic variables (e.g. modes, wavelengths, frequencies, 

and amplitudes). Bucher et al. [26,27] developed a dynamic 

equivalent model for air squeeze gap with high-frequency 

excitation. Via investigation of the effects of air viscosity 

and compressibility on air gap films, they presented a 

method for assessing the dynamic behavior of air gap films. 

Melikhov et al. [28] derived the hydrodynamic governing 

equations incorporating nonlinear boundary conditions. A 

prognostic model was developed for estimating the pressure 

distribution in the air gap utilizing these modified equations. 

However, the intricate and nonlinear nature of the governing 

equations for acoustic air gaps continues to provide 

Shandong Province (ZR2021QE020), Taishan Scholar Foundation of 
Shandong Province (tsqn202306052), and Shandong Provincial Major 

Scientific and Technological Innovation Project (2021CXGC011207). 
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challenges for NFAL in constructing a precise feedback 

model. 

In this study, a finite element analysis (FEA) model has 

been developed to investigate the fluid-structure coupling 

dynamic characteristics of fluid-structure coupling in the 

NFAL for the wafer. The stability of wafers in near-field 

acoustic levitation is evaluated via static and transient 

analyses. 

2 Theoretical principle 

Fig. 1 shows a schematic of the configuration [see Fig. 

1(a)] and a simplified model [see Fig. 1(b)] of near-field 

acoustic levitation. To achieve non-contact manipulation of 

wafers, standing waves (SWs) are typically utilized to 

generate flexural vibrations in NFAL owing to its excellent 

controllability and stability. High-frequency SW vibrations 

generated a thin film of air with alternating high- and low-

pressure areas, as shown in Fig. 1(a), which served as the 

wafer's levitation force.  As shown in Fig. 1(b), the irradiator 

is assumed to be vibrating in harmonic motion as ( , )u r t  

and the height of the wafer levitation is represented as ( )h t . 

The levitation process is classified as adiabatic because it 

involves minimal heat transfer and the absorption of acoustic 

in levitation is ignored. Based on the above assumptions, the 

Rayleigh radiation pressure in an ideal air gap on a fully 

reflecting object can be estimated as [29]: 

 1 sin(2 )
1

2 2
0

kh
p p p E

kh

γ+  
= − = +   

 
 (1) 

where, p0 represents the reference air pressure, γ denotes the 

molar heat capacity ratio of the air, k (= ω/c) means the wave 

number, in which ω is the angular frequency of the wave, 

and c is the sound velocity, h denotes the levitation distance 

between vibration source and wafer, and <E> is the time-

averaged energy of the wave, respectively. The <E> can be 

calculated as [29]: 

 ( )( )2 2 2

0/ 4 / sinhE a khρ ω  =  (2) 

Here, ah denotes the vibration amplitude of the irradiator 

plate.  

The analytical calculation of the levitation force varies 

significantly under different boundary conditions in SWs-

inspired NFAL. Considering the theory of mathematical 

models based on acoustic radiation pressure, the levitation 

force of the air squeeze film could be estimated as: 

 
2 2

2
0

20 0

1
  

8
d d d

r
h

s

a c
F p S r r

h

π ργ
θ

+
= =    (3) 

where, r (=100 mm) denotes the radius of the wafer, and s 

means the integral area. From eq. 3, it is clear to see that the 

levitation force is reversely proportional to the square of the 

levitation distance h and proportional to the square of the 

vibration amplitude a0. 

 
Fig. 1 Schematic of the near-field acoustic levitation (a) and a 

simplified mathematical model. 

3 Simplified modeling of the NEAL 

In terms of NFAL modeling, it is crucial to consider both 

the acoustic and structural fields induced by high-frequency 

vibrations. As a preliminary method, finite element analysis 

(FEA) provides efficient and convenient advantages for 

evaluating the interaction between fluid and solid fields. The 

acoustic property of the air gap was explored via acousto-

structural coupling analysis and the transient analysis was 

implemented with ANSYS (ver. 14.5, ANSYS Inc., 

Canonsburg, USA). Fig. 2(a) illustrates a FEA model of the 

free acoustic field in the form of a one-eighth spherical shape 

with a radius of 150 mm, wherein the vibrating body is 

surrounded by air. In contrast to Fig. 2(a), Fig. 2(b) shows 

the NFAL model where both the wafer and the vibrating 

body are positioned in the air. The element or the air is 

FLUID30, while that of both the vibrating bodies and the 

wafer is SOLID45. The fluid-structure interface (FSI) 

condition is set to the boundaries among the air, the 

irradiators, and the wafer, while the absorbing boundary 

condition and symmetric boundary condition is set to the 

spherical surfaces and symmetry planes, respectively. To 

simplify the calculation, the same velocity excitation 

conditions are set to the vibrating bodies. 

 
Fig. 2 FEA model of (a) the free acoustic field and (b) the NFAL,

(c) and (d) show the air pressure distribution of the free acoustic 

field over time, while (e) and (f) represent the air pressure 

distribution in the NFAL, respectively. 
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Fig. 2(c) and (d) show the initial distribution of air 

pressure in the free acoustic field and the distribution after 

approximately five vibration cycles, respectively. The high-

and low-pressure areas disperse in all spatial directions 

along the vibrating wave and decrease in intensity as they 

propagate. Thus, it is not suitable for levitating wafers. Fig. 

2(e) and (f) illustrates the air pressure variations in NFAL. It 

can be observed that the air pressure is constrained to the 

area between the wafer and the vibrating body, which is 

distinct from free fields. Additionally, the NFAL method 

provides a higher time-averaged air pressure, which makes 

it an exceptionally promising approach for levitating wafers. 

Subsequently, the transient analysis was conducted 

utilizing the FEA model of NFAL. Fig. 3 (a) illustrates the 

vibration velocity distribution along the x-axis from the 

center to the periphery of the vibrating body. On the surface 

of the vibrating body, the SW is observed to be generated. 

Fig. 3(b) donates the distribution of air pressure at the same 

positions as the vibration velocity. It can be found that the 

air pressure exhibited similar distributional trends to 

vibration velocities; this indicates that the intended 

distribution of air pressure may be modulated by generating 

various vibrating patterns, and that the higher air pressure 

values can be achieved by altering the vibration amplitude. 

As shown in Fig. 3(c), the time-averaged pressure of the air 

gap increases rapidly and oscillates around a steady value. 

The levitation height of the wafer in the NFAL demonstrates 

characteristics similar to the time-averaged air pressure, 

based on its operating principle. 

4 Stability analysis of the NFAL 

On the one hand, because of the relatively small air 

damping coefficient, any tilt or disturbance on the irradiator 

surface of the vibrating body might result in the wafer being 

positioned off-center or slipping off. On the other hand, 

there existed a vertical levitation force and two orthogonal 

acoustic viscous forces due to the presence of acoustic 

velocity gradients in the squeezing air gap. When the wafer 

deviates from the center of the vibrating body, the 

geometrical boundary conditions and the asymmetry of the 

air pressure distribution in the air film tend to be altered. 

Thus, it is essential to consider both the initial and boundary 

conditions while evaluating the stability of the levitating 

wafer. 

 
Fig. 3 (a) The x-axis vibration velocity, (b) air pressure, and (c) the 

time-averaged pressure of the air gap between the wafer and the 

vibrating body, respectively. 

 
Fig. 4 Pressure distribution of the air squeeze film when the relative 

position deviation d between the wafer and the vibrating body 

equals (a) 0 mm, (b) 0.3r, (c) 0.4r, (d) 0.7r, (e) 0.8r, and (f) r, 

respectively. Here, r (= 100mm) denotes radius of the wafer. 
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4.1 Positional deviation of the wafer 

In terms of geometric boundaries, the relative position 

between the wafer and the vibrating body strongly impacts 

the pressure distribution and levitation of NFAL. As shown 

in Fig. 4(a), the air pressure distribution was evaluated using 

the FEA method. Initially, there was no positional deviation 

(d = 0mm) between the wafer and the center of the vibrating 

body. It can be found that there is an alternating distribution 

of low- and high-pressure areas. When d increases to 0.3r, 

while the change in boundary conditions leads to a decrease 

in the intensity of the fringe acoustic field, the pressure 

distribution remains mostly unchanged. As shown in Fig. 

4(c), when d increases to 0.4r, the majority of the wafer's 

surface keeps in contact with the air squeeze film owing to 

the air viscosity force. However, the decrease in pressure at 

the periphery of the air squeeze film might result in the 

tilting of the wafer or its potential interaction with the 

vibrating body’s surface. Thus, the wafer may exist in the 

condition of instability. Figures 4(d) to (f) demonstrate a 

consistent rise in the positional deviation between the wafer 

and the center of the vibrating body, ranging from 0.7 times 

the radius (0.7r) to the whole radius (r). New sound pressure 

zones are formed to the right of the vibrating body due to the 

squeezing between the tilted wafer and the remaining air gap. 

Moreover, the overlapping area between the wafer and 

vibrating body decreases, inevitably reducing the wafer's 

levitation capacity. 

It is worth mentioning that these results are achieved in 

the static statue, which means the speed or the acceleration 

of the wafer is not considered. Meanwhile, the change in the 

wafer’s gesture is not considered. The relatively low sound 

pressure results in the reduction of levitation height, which 

is, however, a cause of the enhancement in the squeezing 

effect. Thus, oscillatory motion of the wafer occurs when the 

wafer's position remains close to the center of the vibrating 

body. 

4.2 Initial velocity of the wafer 

The wafer's stability of levitation is influenced by its 

gesture. Both the tilted irradiator surface of the vibrating 

body and the asymmetric air pressure might potentially 

result in the tipping of the wafer. However, the angle of tilt 

in relation to the dimension of the wafer remains minimal. 

An excessive angle might cause the wafer to come into 

contact with the vibrating body’s surface, thereby hindering 

the effectiveness of near-field acoustic levitation. To 

simplify the model, wafer tilt is considered equivalent to 

both initially velocity and positional offset conditions. As 

shown in Fig. 5(a), the deviation of the wafer from the center 

of the vibrating body is approximately 0.3r, and the initial 

velocity of the wafer is set to 10mm/s. The radius of the 

circular air area surrounding the wafer is equal to twice the 

wafer's radius.  

Fig. 5(a) to (f) illustrate the variation in pressure of the air 

squeeze film as the wafer is moving translationally, 

respectively. Initially, it can be observed that high- and low-

pressure areas shift to the right with the wafer [see Fig. 5(a) 

and (b)]. With an increasing deviation, the right side of the 

wafer experiences compression, resulting in the formation of 

the new areas with high pressure [see Fig. 5(c) to (e)]. 

Finally, as shown in Fig. 5(f), an extreme deviation in the 

wafer will cause the air squeeze film to be destroyed.  

4.3 Oscillation of the wafer in NFAL 

It has been reported that the dynamic response of NFAL 

is influenced by the surrounding fluid and the forces acting 

on a levitating object can be decomposed into levitation 

forces caused by the compressibility of the fluid and 

damping forces associated with the viscosity of the fluid 

[26,27]. According to eq. 1to 3, when the air pressure is 

defined by p(x,t), the levitation height can be estimated as 

[30,31]: 

 
0 1( ) (1 cos( ))h t h tε ω= +  (4) 

And the fully absorbing boundary conditions: 

 
0

0

( , )
0, ( , )

x

p x t
p x r t p

x =

∂
= = =

∂
 (5) 

Here, h0 represents a constant related to the levitation height, 

ε denotes the minimum value, and ω1 means the angular 

frequency of the wafer. 

Therefore, when considering acoustic viscous forces, the 

levitation of wafer in the NFAL may be represented as a 

spring-mass model with a single degree of freedom. The 

oscillation frequency of the wafer can be estimated as: 

 
Fig. 5 Pressure distribution of the air squeeze film considering 

initial velocity conditions 
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1

1

2 2π

k
f

m

ω

π
= =  (6) 

And, k can be calculated by: 

 /k F h=  (7) 

Here, m denotes the mass of the wafer, and k means the 

equivalent spring coefficient. Based on eqs. 1 to 4, it can be 

found that k is time-varying and strongly nonlinear; this 

makes it challenging for designing control and feedback 

systems.  

5 Conclusions and discussion 

This article presented a finite element analysis model to 

investigate the dynamic characteristics of fluid-structure 

coupling in the NFAL for the wafer. Through dynamic 

modeling and analysis of the wafer, we have drawn the 

following conclusions. 

(1) In contract to free acoustic fields, the near-field 

acoustic levitation provided a higher time-averaged air 

pressure, which makes it an exceptionally promising 

approach for levitating wafers. 

(2) The static analysis indicates that the ultrasonic air film 

can maintain stability even if the wafer is slightly off-center 

from the vibrating body. 

(3) When the wafer has an initial velocity, the pressure 

distribution of the air squeeze gap will move translationally 

alongside the wafer within a limited region because of air 

viscosity. 

(4) Wafer levitation could be modeled as a mass-spring 

system with a single degree of freedom, and control 

algorithms may be developed based on fully actuated system 

theory. 

These conclusions validate the feasibility of the wafer 

manipulation in NFAL and provides a referable method for 

dynamic modeling and analysis of wafers in NFAL. 
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Abstract: This paper investigates the fixed-time tracking error control for the robotic system with external disturbances based on
the fully-actuated system approach (FASA). Firstly, a fixed-time sliding function is introduced and the fixed-time convergence
of the sliding phase is verified. Secondly, combining the structure of the sliding function and the FASA, a fixed-time sliding
mode controller (FSMC) is proposed. The stability of the system and the fixed-time convergence of the tracking error are
proven. Finally, numerical simulation is carried out and experimental studies are provided by using a Franka manipulator for
demonstrating the effectiveness of the proposed control method.

Key Words: Fully-actuated system, Fixed-time stability, Robotic manipulator, Sliding mode control

1 Introduction

In recent years, the manipulator of robotics has received
widespread attention from researchers, and lots of control
methods have been proposed to solve industrial problems[1].
With the uncertainty of the model, a control law should be
designed to overcome the effect of these uncertainties. To
the requirement of the convergence speed, the convergence
time should be taken into consideration[2].

The tracking control problem of the robotic manipulator
has been researched for many years. The sliding mode con-
trol is one of the commonly used control methods because of
its strong robustness to external disturbance. In [3], a sliding
mode manifold and a reaching law were proposed to real-
ize the constraint tracking control of industrial robots. To
overcome external disturbances and the effect of the chatter-
ing phenomenon in sliding mode control, a robust composite
high-order super-twisting sliding mode controller was pro-
posed in [4]. For the regulation of robotic arms with dead-
zone and gravity, a sliding mode controller was designed to
guarantee the tracking error converging to zero in [5]. Most
controllers only realize the asymptotic convergence of the
tracking error. However, fast convergence is necessary in
practical industrial applications.

Convergence speed is an important indicator of con-
trol systems. In [6], a new terminal sliding mode con-
trol approach was developed for robotic manipulators based
on finite-time stability theory but ignoring external distur-
bances. In [7], to eliminate the effect of the uncertainty
and external disturbances, the finite-time stability theory and
the neural network were applied in the design of the sliding
mode control strategy to improve the tracking performance
of the robotic manipulators. In [8], a robust H∞ finite-time
tracking controller was proposed for robotic manipulators
based on time delay estimation. However, the convergence
time of the finite-time stability always depends on the initial
conditions of the system. Therefore, the fixed-time stabil-
ity theory was proposed to overcome this drawback. The
fixed-time control algorithm of the robotic manipulator has
been designed extensively in recent years. In [9], the author
proposed a fixed-time control method considering the input

saturation, output saturation, and system uncertainty, which
realized fixed-time convergence. In [10], an adaptive neu-
ral fixed-time sliding mode controller was created for a class
of uncertain robotic manipulators subject to input saturation
and prescribed constraints. In [11], the adaptive fixed-time
non-singular terminal sliding mode controller for the appli-
cation of uncertain and disturbed robotic manipulators un-
der the condition of actuator failures was proposed. How-
ever, due to the requirement to transform the system into a
first-order state-space model, the design of the controller be-
comes more complex.

To solve this problem, the full-actuated system approach
(FASA) was proposed by Duan in 2021, which opened up
a new direction for solving control problems. Modeling the
system as a first-order system will disrupt the full-actuated
property of the system. It will bring many design challenges,
such as system decoupling. In some complicated conditions,
the system may not realize the local stabilization. Different
from first-order system approaches, FASA makes use of the
full-actuation property, which allows us to eliminate all the
nonlinear dynamics [12] and makes the design of the con-
troller convenient. So far, many researchers have studied its
applications. In [13], FASA was applied in the adaptive con-
trol and high-order backstepping. In [14] and [15], FASA
was expanded to the robust adaptive control and the optimal
control, respectively. In [16], FASA was used to structure
an adaptive fault-tolerant controller to realize the full-state
constraints. In [17], a second-order quaternion system of
rigid spacecraft attitude dynamics was derived based on the
fully actuated system approach, which control strategy could
control the scalar quaternion to reach the desired value and
be used to deal with the unwinding phenomenon. In [18],
a control parameterization method was adopted to optimize
the parameter matrices of FASA based controller with the
actuator saturation. To our knowledge, there is currently no
combination of fixed-time stability theory, sliding mode con-
trol, and FASA.

In this paper, the parameter uncertainties and external dis-
turbances are taken into consideration. A controller based
on FASA is proposed for an n-link robotic manipulator. The
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main contributions are as follows:
(I) The robotic manipulator system is transformed into

a standard full-actuated system, which will make the con-
troller design convenient.

(II) A fixed-time sliding mode controller (FSMC) is pro-
posed based on FASA, which makes the tracking errors con-
verge to the small neighborhood of zero within a fixed time.

(III) The proposed control algorithm is applied in the ex-
periment with a Franka manipulator. Experimental results
verify the effectiveness of this algorithm.

The rest parts of this paper are organized as follows: Sec-
tion 2 gives the preliminaries and problem formulation. Sec-
tion 3 introduces the sliding function and the FSMC. Sec-
tion 4 and Section 5 present the simulation and experiment
results, respectively. Finally, Section 6 concludes this paper.

2 Preliminaries and Problem Formulation

2.1 Preliminaries
The notation ∥·∥ denotes the Euclidean norm of a

vector or the induced norm of a matrix. For the
vector x = [x1, x2, . . . , xr]

⊤ ∈ Rr and k >

0, x(0∼n−1) =
[
x, ẋ, . . . ,x(n−1)

]⊤ ∈ Rn×r and

sigk(x) =
[
sigk(x1), sig

k(x2), . . . , sig
k(xr)

]⊤ ∈ Rr,
where sigk(xi) = sign(xi) |xi|k , i = 1, 2, . . . , r.

Consider the following nonlinear system:

ẋ = p (x (t)) , x (0) = x0 (1)

where x ∈ Rr is the system state, and p: Rr → Rr is a
nonlinear function, with p(x0) = 0.

Definition 1 ([19], [20]) System (1) is globally finite-time
stable if it is Lyapunov stable and for all x0 ∈ Rr there
exists T (x0) ≥ 0 dependent on the initial conditions
such that, for any x(·) solution of (4) with x(0) = x0,
limt→T (x0) ∥x(t)∥ = 0, i.e. ∥x(t)∥ ≡ 0 for all t ≥ T (x0).
The function T is called the settling time.

Definition 2 ([21]) The origin of (1) is said to be fixed-time
stable if it is globally finite-time stable and the settling-time
function T (x0) is bounded, i.e., ∃Tbound > 0: T (x0) ≤
Tbound,∀x0 ∈ Rr.

Lemma 1 ([22]) Consider the system (1). If there exists a
positive definite continuous function V : Rr → R such that

V̇ (x (t)) ≤ −c1V
l1 (x (t))− c2V

l2 (x (t)) (2)

where c1 > 0, c2 > 0, 0 < l1 < 1, l2 > 1, then system (1)
is globally fixed-time stable and the settling time is bounded
by

T (x (0)) ≤ 1

c1 (1− l1)
+

1

c2 (l2 − 1)
(3)

Lemma 2 ([23]) For any nonnegative scalars χ1, χ2, . . .,
χr, there are two inequalities hold for 0 < p < 1 and q > 1,
respectively.

r∑
i=1

χp
i ≥

(
r∑

i=1

χi

)p

r∑
i=1

χq
i ≥ n1−q

(
r∑

i=1

χi

)q

In [12], [24] and [25], it has been shown that fully-actuated
systems physically exist and most nonlinear systems such
as (1) can be either physically modeled as or converted into
fully-actuated systems with uncertainties as follows

x(n) = f(x(0∼n−1)) + ∆f(x(0∼n−1)) +L(x(0∼n−1))u
(4)

where x,u ∈ Rr are the state vector and the control in-
put vector, respectively, f(x(0∼n−1)) ∈ Rr is a continu-
ous vector function, ∆f(x(0∼n−1)) ∈ Rr is the nonlinear
uncertainty of the system, and L(x(0∼n−1)) ∈ Rr denotes
a continuous matrix function satisfying the following fully-
actuated assumption:

Assumption 1 ([25]) detL(x(0∼n−1)) ̸= 0,∀x(i) ∈
Rr, i = 0, 1, . . . , n− 1.

2.2 Problem Formulation
The dynamic equation of an n-link robotic manipulator is

described as

M (q) q̈ +C (q, q̇) q̇ +G (q) = u (t) + d (t) (5)

where q, q̇, q̈ ∈ Rr represent the joint position vector, joint
velocity vector, and joint acceleration vector, respectively.
M(q) ∈ Rr×r is the inertia matrix, C(q, q̇) ∈ Rr×r de-
notes the Coriolis force and centrifugal force matrix, G(q) ∈
Rr is the gravity matrix, and u ∈ Rr denotes the control
torque which needs to be designed.

In the paper, to simplify subsequent writing, M (q),
C (q, q̇), and G (q) are replaced by M , C, and G. Con-
sidering the existed uncertainty in the C and G, we have

C = C0 +∆C

G = G0 +∆G

where C0, G0 denote the nominal parts, ∆C, ∆G are the
uncertain parts of C and G, respectively. Then (5) can be
rewritten as

Mq̈ + (C +∆C)q̇ + (G+∆G) = u (t) + d (t) (6)

Assumption 2 The desired trajectory qd is second-order
differentiable and bounded. Furthermore, its derivative q̇d

and second-order derivative q̈d are bounded.

The tracking error signal can be defined as follows:
e = [e1, e2, . . . , en]

⊤
= q − qd

ė = [ė1, ė2, . . . , ėn]
⊤
= q̇ − q̇d

ë = [ë1, ë2, . . . , ën]
⊤
= q̈ − q̈d

(7)

where e, ė, ë are the desired joint position error vector, ve-
locity error vector and acceleration error vector, respectively.
Combining (6) and (7), we can obtain that

ë = f (e, ė) + ∆f (e, ė) +M−1u(t)− q̈d (8)

where

f (e, ė) = M−1 [−C(ė+ q̇d)−G]

∆f (e, ė) = M−1 [d−∆C(ė+ q̇d)−∆G]
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Therefore, system (8) satisfies the form of the fully-actuated
tracking system proposed in [25] as follows:

e(n) =f(e(0∼n−1), t) + ∆f(e(0∼n−1), t)

+L(e(0∼n−1), t)u(t)− (qd)
(n) (9)

The aim of our work is to design a FASA based FSMC to
minimize the tracking error.

3 Sliding Function and FSMC Design

To achieve the fixed-time convergence, the sliding func-
tion we designed is as follows:

s = ė+H(e) (10)

Hi(e) =

{
a1 sig

n1 (ei) + a2 sig
n2 (ei) , |ei| ≥ ε

l1ei + l2e
3
i , |ei| < ε

i = 1, 2, . . . , n

where a1 > 0, a2 > 0, 0 < n1 < 1, n2 > 1, and l1 =
a1(3−n1)

2 εn1−1 + a2(3−n2)
2 εn2−1, l2 = a1(n1−1)

2 εn1−3 +
a1(n2−1)

2 εn2−3 can guarantee s and its derivatives contin-
uous.

Theorem 1 Considering the fully-actuated system (8) with
the sliding function (10), e and ė can converge to Ω1 ={
e| ∥e∥ ≤

√
3ε
}

and Ω2 =
{
ė| ∥ė∥ ≤ a1

√
3εn1 +

a2
√
3εn2

}
within a fixed time when s = 0, respectively. The

settling time Tset1 ≤ T1 = 1
m1(1−h1)

+ 1
m2(h2−1) , where

m1 = a12
n1+1

2 , m2 = a22
n2+1

2 n
1−n2

2 , h1 = n1+1
2 , and

h2 = n2+1
2 .

Proof. When s = 0, according to (10), we can obtain that

ė = −a1 sig
n1 (e)− a2 sig

n2 (e) (11)

The Lyapunov function we selected is

V1 =
1

2
e⊤e (12)

Combining (11) and the time derivative of (12), it has

V̇1 = e⊤ [−a1 sig
n1(e)− a2 sig

n2(e)]

= −a1e
⊤ sign1(e)− a2e

⊤ sign2(e)

≤ −a12
n1+1

2 V
n1+1

2
1 − a22

n2+1
2 n

1−n2
2 V

n2+1
2

1

= −m1V
h1
1 −m2V

h2
1 (13)

where we define m1 = a12
n1+1

2 , m2 = a22
n2+1

2 n
1−n2

2 ,
h1 = n1+1

2 , and h2 = n2+1
2 , we can calculate that the set-

tling time of e and ė converging to Ω1 and Ω2 is less than
1

m1(1−h1)
+ 1

m2(h2−1) .
Taking the time derivative of (10) into (8), we have

ṡ = f1 +∆f1 +M−1u(t)− q̈d (14)

where

f1 = M−1 [−C (s−H + q̇d)−G] + Ḣ

∆f1 = ∆f = M−1 [d−∆C(s−H + q̇d)−∆G]

Assumption 3 There exists a non-negative scalar γ such
that the nonlinear uncertainty ∆f(e, ė) ∈ Rr satisfies

∥∆f(e, ė)∥ ≤ γ

Then, we need to design the FSMC to guarantee the system
states reaching the sliding surface within a fixed time. Based
on this idea, the FASA based FSMC we designed is as fol-
lows:

u(t) = −M [As+ u∗(t)] (15)
u∗(t) = f1 + γg(s)− q̈d + β1 sig

n3(s) + β2 sig
n4(s)

where β1 > 0, β2 > 0, 0 < n3 < 1, n4 > 1, A ∈ Rr×r is a
positive definite matrix, and a boundary layer is introduced
to overcome the chattering problem. Thus, g(s) is designed
as

g(s) =

{
s

∥s∥ , ∥s∥ ≥ α
s
α , ∥s∥ < α

(16)

Theorem 2 Consider the fully-actuated tracking system (8)
with the FSMC (15). s will converge to Ω3 =

{
s| ∥s∥ ≤ α

}
with the settling time Tset2 ≤ T2 = 1

m3(1−h3)
+ 1

m4(h4−1) ,

where m3 = β12
n3+1

2 , h3 = n3+1
2 , m4 = β22

n4+1
2 n

1−n4
2 ,

and h4 = n4+1
2 .

Proof. we select the following Lyapunov function

V2 =
1

2
s⊤s (17)

Combining the FSMC (15) and the time derivative of (17),
we can obtain that

V̇2 = s⊤ [−β1 sig
n3(s)− β2 sig

n4(s)−As]

= −β1s
⊤ sign3(s)− β2s

⊤ sign4(s)− s⊤As

≤ −β1s
⊤ sign3(s)− β2s

⊤ sign4(s)

≤ −β12
n3+1

2 V
n3+1

2
2 − β22

n4+1
2 n

1−n4
2 V

n4+1
2

2

= −m3V
h3
2 −m4V

h4
2 (18)

where m3 = β12
n3+1

2 , m4 = β22
n4+1

2 n
1−n4

2 , h3 = n3+1
2

and h4 = n4+1
2 . According to Lemma 1, s will converge

to Ω3 within the settling time Tset2 ≤ T2 = 1
m3(1−h3)

+
1

m4(h4−1) .

Theorem 3 When Ω3 = {s| ∥s∥ ≤ α}, we will obtain the
following conclusion:

e and ė will converge to Ω1 and Ω4 =
{
ė| ∥ė∥ ≤ α +√

3a1ε
n1 +

√
3a2ε

n2
}

within the fixed time, respectively.

Proof. If ∥e∥ ≥ 1, with (10) and (12), we have

V̇1 = e⊤ [−a1 sig
n1(e)− a2 sig

n2(e) + s]

≤ −a1e
⊤ sign1(e)− a2e

⊤ sign2(e) + ∥e∥α

≤ −a12
n1+1

2 V
n1+1

2
1 − 2

n2+1
2

(
a2n

1−n2
2 − α

)
V

n2+1
2

1

(19)

Define k1 = 2
n2+1

2

(
a2n

1−n2
2 − α

)
. We obtain the settling

time Tset31 ≤ 1
m1(1−h1)

+ 1
k1(h2−1) . Similarly, if ∥e∥ < 1,
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we can obtain

V̇1 = e⊤ [−a1 sig
n1(e)− a2 sig

n2(e) + s]

≤ −a1e
⊤ sign1(e)− a2e

⊤ sign2(e) + ∥e∥α

≤ −a12
n1+1

2 V
n1+1

2
1 − a22

n2+1
2 n

1−n2
2 V

n2+1
2

1 + ∥e∥α

≤ −
(
a12

n1+1
2 − α2

1
4

)
V

1
4
1 − a22

n2+1
2 n

1−n2
2 V

n2+1
2

1

(20)

Define k2 =
(
a12

n1+1
2 − α2

1
4

)
. The settling time Tset32 ≤

1
k2(1−h1)

+ 1
m2(h2−1) . According to Lemma 1, e and ė

will converge to Ω1 and Ω4 respectively with the settling
time Tset3 ≤ max {Tset31 , Tset32}, which indicates the total
settling time Ttotal ≤ max {Tset31 , Tset32} + 1

m3(1−h3)
+

1
m4(h4−1) .

4 Simulation Results
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0 5 10 15 20
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0
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Fig. 1: Trajectories of q and desired signal qd
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Fig. 2: Trajectories of q̇ and desired signal q̇d

In this section, the numerical simulation on a two-DOF
robotic manipulator is presented to verify the effectiveness
of the proposed control method. The inertia matrix M(q),
the Coriolis force and centrifugal force matrix C(q, q̇), and
the gravity matrix G(q) are given as follows

M =

[
M11 M12

M21 M22

]

C =

[
C11 C12

C21 C22

]
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3
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-6
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0

7.162 13.581 20
-4

3
10
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Fig. 3: The tracking error

G =

[
G11

G21

]
where

M11 = m1l
2
1 +m2(l

2
1 + l22 + 2l1l2 cos q2)

M12 = m2(l
2
2 + l1l2 cos q2)

M21 = m2(l
2
2 + l1l2 cos q2)

M22 = m2l
2
2

C11 = −m2l1l2q̇2 sin q2

C12 = −m2l1l2(q̇1 + q̇2) sin q2

C21 = −m2l1l2q̇ sin q2

C22 = 0

G11 = (m1l2 +m2l1)g cos q1 +m2l2g cos(q1 + q2)

with m1 = 1kg, m2 = 2kg, and l1 = 0.5m, l1 = 1m being
the i th (i = 1, 2) link’s mass and length, respectively.

The external disturbances are given as

d =

[
0.2 sin(pt)
0.2 cos(pt)

]
where p = 0.05.

The uncertain parts of C and G are as follows

∆C =

[
0.1719 0.2529
−0.1720 0.0677

]
× sin(t)

∆G =

[
0.0295
0.1425

]
× sin(t)

The desired trajectories are given as qd1 = qd2 =
[sin(t), 0.5 sin(t)]⊤. The parameters of the proposed con-
troller are set as a1 = a2 = 2, β1 = β2 = 0.5, n1 = n3 = 1

2 ,
n2 = n4 = 3

2 , ε = 10−4, α = 0.001 and A = diag(4, 4).
According to Theorem 2 and 3, we can calculate the total

settling time Ttotal1 ≤ 7.162s. The corresponding tracking
trajectories are shown in Fig. 1 and Fig. 2. It can be seen that
q1, q2, q̇1 and q̇2 have tracked their respective desired trajec-
tories when t ≥ 7.162s. The tracking errors converge to the
small neighborhood of zero when t ≥ 7.162s according to
Fig. 3, which means the fixed-time convergence is achieved.

5 Experiment

In this part, we use a Franka manipulator to demonstrate
the effectiveness of the proposed control method by exper-
iment. Franka manipulator is made up of seven joints and
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Fig. 4: Trajectories of q and desired signal qd
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Fig. 5: Trajectories of q̇ and desired signal q̇d
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Fig. 6: The tracking error of e
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Fig. 7: The tracking error of ė

torque sensors are equipped at each joint, which is applied
in the rescue industry, human-machine collaboration produc-
tion, and service industry. For simplicity and without loss
of generality, we select two joints to finish this experiment.
Considering the joint space limitation, the desired trajecto-
ries of qd1 and qd2 are given as{

qd1 = 0.5 sin(0.5t)− 0.1
qd2 = 0.5 sin(0.5t)− 2

(21)

The initial conditions of q and q̇ are given as q(0) =
[−0.784316 − 2.36229]⊤ and q̇(0) = [0 0]⊤, respectively.
The parameters of controller are selected as a1 = a2 = 1,
β1 = β2 = 0.3, γ = 2, α = 0.001, ε = 0.01, and
A = diag(2, 2).

We can calculate the settling time Ttotal2 ≤ 19.269 s ac-
cording to Theorem 2 and 3. Fig. 4 and Fig. 5 present the tra-
jectories of q, q̇ and their desired signals qd, q̇d. It achieves
well tracking performance of q and q̇. Fig. 6 and Fig. 7 show
the tracking error of e and ė, respectively. e and ė can con-
verge to a small neighbourhood of zero within the fixed time
Ttotal2, respectively.

6 Conclusion

In this paper, a FASA based FSMC is proposed for a
robotic system with uncertainties and external disturbances.
The standard full-actuated system form of the robotic system
can contribute to the design of the controller. The FSMC can
achieve tracking error converging to the small region within
a fixed time. Finally, numerical simulation is carried out and
experimental studies are conducted using a Franka manipu-
lator to demonstrate the effectiveness of the proposed con-
trol method. However, the upper bounds of disturbances and
uncertainties are generally unknown. In the future, we will
combine the neural network and FASA to estimate the un-
certainties and external disturbances.
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Abstract: The magnetically levitated planar motor is utilized in precision industries, such as chip manufacturing, which 

encounters challenges in designing a high-performance motion controller. This paper proposes the robust PI controller to ensure 

the tracking error to a finite set within a specified time, even under conditions of uncertain mathematical models, actuator faults 

and output constraints. Moreover, the proposed approach utilizes a simple and computationally efficient controller structure, 

without complex adaptive strategies, observers and filters. Simulation results provide further support for the established 
theoretical findings.    
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1 Introduction 

The permanent magnet planar motors can achieve high-

precision, multi-degree-of-freedom operations without the 

need for bearings, motor reducers, gears, and other 

mechanical components, which are free from the constraints 

of mechanical transmission structures and cables [1]. The 

maglev servo system provides possibilities for complex 

motion trajectories and exhibits high adaptability in special 

processing environments such as vacuum, facilitating its 

application in EUV lithography equipment [2,3]. However, 

the uncertain mathematical model inevitably poses 

challenges in the design of motion controllers. 

Currently, the PID control is the primary feedback control 

method in precision motion control, which exhibits strong 

robustness and ease of parameter tuning [4-6]. Based on 

adaptive laws, [7] proposes an adaptive PID control strategy 

for magnetic levitation systems, improving control 

performance through online adjustments of the adaptive PID 

controller parameters. However, the PID amplifies the high 

frequency noise when it suppresses the low frequent 

disturbance.  [8] and [9] apply model predictive control to 

the maglev servo system, which can realize efficient and fast 

control. However, this method has high requirements for the 

model accuracy. [10] combines adaptive robust control and 

iterative learning control to ensure the magnetic levitated 

planar motor has excellent tracking performance. Based on 

[10], [11] utilizes gated recurrent neural networks for 

trajectory prediction and compensation in a feedforward 

control structure, which effectively regulates both steady 

and transient characteristics. [12] proposes the adaptive 

sliding-mode technique based on disturbance compensation 

for magnetic levitation systems, aiming to suppress 

disturbances and enhance dynamic response capabilities. 

However, the complex control strategy will hinder efficient 

controller operation, requiring high computational 

performance. 

                                                           
*This work is supported by National Natural Science Foundation of 

China under Grant 52207005. 
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(a)                                  (b) 

Fig.1(a): Magnetic levitation planar motor structure. (b) The 

relation between the magnetic field and coil current 

Recently, the prescribed performance control has been 

extensively researched, which allows for the predefinition of 

tracking performance, including convergence speed, 

overshoot, and accuracy [13]-[18]. However, due to the need 

for magnetic levitation planar motor to move strictly within 

the specified range, output constraint is necessary. [19]-[21] 

indicate that the barrier function can effectively constrain the 

output. [22] combines prescribed performance control with 

barrier functions to constrain the output, ensuring that 

trajectory errors are within a predetermined set.  

This paper proposes a Robust PI control approach based 

on Prescribed Performance Control and the barrier function. 

It has the following advantages: 

1） The proposed controller design principle is similar to 

the traditional PI controller, featuring a simple 

structure that ensures high computational efficiency. 

2） The proposed controller ensures the convergence of 

tracking error under output constraints and low driver 

precision.  

3） The proposed controller ensures the speed and 

accuracy of error convergence under model 

uncertainties and uncertain disturbances. 

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
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2 System Description and Problem Formulation  

2.1 System description 

The structure of the magnetic levitation planar motor 

comprises three submotors denoted A, B and C, as depicted 

in Fig.1(a), where each adjacent coil shares a common 

magnet, providing independent controllable thrust in both 

the vertical and horizontal directions. The magnetic fields in 

the x- and z-directions of the submotor A manifest as 

sinusoidal waves with a period of 4τ, as illustrated in 

Fig.1(b). Coils 1 and 2 are separated by 3τ in the magnetic 

field. The current I1 and I2 are energized in the coils 

positioned beneath the Halbach PM array. Thereby, when 

Coil 1 generates zero force, Coil 2 is positioned to generate 

maximal force, and vice versa. The functional relation 

between force and current is presented by 

1 1

1 11 0

0 1

Q

F

h D

v
F i

K
F i

    
=    

    
                       (1) 

Where KF is presented by [23] 

( )/ 2
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b h

π

τµ τ π π πω

π τ τ τ

+ +
−

=

     
     
     

 

(2) 

The decomposition method is expressed as [24] 
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sin sin
2 2 2

cos cos
2 2 2

c c
Q

D
c c

x x d
i I

Ii
x x d

π π π

τ τ τ

π π π

τ τ τ

    
+           =            +    

    

        (3) 

where d is the distance between the center of two coils.  

The same analytical approach reveals that the forces of 

submotors B and C are similar to (1). By referencing [10], 

the dynamic equations for the three degrees of freedom can 

be formulated as: 

1

x

F y
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where N−1 is the pseudo-inverse of N. M is the mass of the 

motor. The purpose of this article is to design ux to ensure 

that the motor position x accurately tracks the desired 

trajectory xd. Referring to [10], The state-space form is   

1 2

2 1 1 2 2

1

( , )

x x

x u x x

y x

θ θ

=


= + ∆ +
 =

&

&                            (5) 

where [ ] 2

1 2x x x= ∈ℜ are the x-direction position and 

velocity of the magnetically levitated planar motor 

respectively. ( )
1

1 1

1 FNQ K Mθ
−

− −= is unknow function related 

to the distance x. u ∈ ℜ  is input signal. y ∈ℜ  is output 

signal. 
1 2

( , )x x∆ is the lumped uncertainty.
2

θ  is the 

disturbance. 

Assumption 1. 
1

θ ,
2

θ and
1 2

( , )x x∆ are bounded time-

varying function. 

2.2 Actuator faults 

As a high-precision motion platform, the magnetic 

levitation planar motor imposes extremely stringent 

performance requirements on its driver. Currently, existing 

drivers are unable to perfectly amplify the driving signals, 

leading to compromised output currents and resulting in 

system malfunctions. Therefore, it is imperative to anticipate 

and address such situations: 

( )u P t η=                                    (6) 

where η ∈ ℜ represents the drive input signal. P(t) 

represents the degree of nonlinearity. When P(t)=1, the 

driver operates perfectly. When P(t)＜1, the driver suffers 

from output losses. In practice, the output of the actuator is 

continuous. Thus, the unknow function P(t) is considered 

bounded and continuous. 

2.3 Output constraints 

Due to the end effects of the Halbach magnet array, the 

motion range of the planar motor needs to be constrained 

such that 

( ) ( ) ( ),   0,v t y t v t t< < ≥                          (7) 

where ( )v t and ( )v t  represent the boundary constraints in the 

x-direction for motion. 
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Assumption 2. The functions ( )v t , ( )v t , ( )v t& , and ( )v t&  are 

bounded for all t ≥ 0. Furthermore, positive constants α  

and α  exist such that  

( ) ( ) ,   0,v t v t tα α< − < ≥                       (8) 

2.4 Problem formulation 

Problem 1. Considering the stringent requirements for 

positioning accuracy and response speed in magnetic 

levitation systems, as well as the challenges posed by 

insufficient driver precision and the influence of end effects. 

The objective is to design the controller ensuring:  

 The motion trajectory can follow the given signal, 

and the bounded tracking error is expressed as 

follows: 

1lim  sup ( ) ( ) lim  sup ( )
t t

y t r t e t δ
→∞ →∞

− = <        (9)                    

where ( )r t   and δ  are the reference trajectory and 

predefined accuracy respective.  

 All signals are bounded in the magnetic levitation 

system. 

Assumption 3.   The reference trajectory ( )r t  is belong to 

the set (  , )α α . 

3 Controller Design 

Design a function as follow: 

2

else

cos ( ),   
2( )

0                 

s

s

t
t t

tt

π

φ


<

= 



                        (10) 

where ts > 0 denotes a design parameter. 

Design a performance function as follow: 

1 2( ) ( )
i

t tϕ ϕ φ ϕ= +                              (11) 

Where 
1ϕ and 

2ϕ are the predefined positive constant such 

that  

1 1 1 2(0)     1e ϕ ϕ ϕ< + ≤                       (12) 

Considering output constraints, define the boundary 

conditions for the error as follow: 

1( ) ( ) ( ) ( ) ( )v t r t e t v t r t− < < −                   (13) 

To further refine the precision of adjustment in tracking 

accuracy, we construct 

( ( ) ( ))

( ( ) (

( ) ( )

( ) )( ) )

i

i

v t r tt t

tt v r tt

β ϕ

β ϕ −=

−=
                       (14) 

Lemma 1. If   

1
( ) ( ) ( ),    0t e t t tβ β< < ≥                        (15) 

is guaranteed, (9) is ensured. 

Proof.  Based on (10) – (14), it further obtains that 

( ) ( ) ( ) ( ) ( ) ( ),    0v t r t t t v t r t tβ β− < < < − ≥       (16) 

Based on assumption 2 and 3, it can be obtained that 

0 ( ) ( )

( ) ( ) 0

v t r t

v t r t

α

α

< − <

− < − <
                             (17) 

Based on (11) and (14), it can be derived that 

1 2

1 2

( ) ( ( ) )

( ) ( ( ) )

t t

t t

β α ϕ φ ϕ

β α ϕ φ ϕ

≤ +

≥ − +
                          (18) 

In case of (15), it holds that 

1 1 212 ( )( ( ) )  ( ( ) )e tt tα ϕ φ ϕ α ϕ φ ϕ< <− + +          (19) 

Based on (12), the tracking error e(t) will be bounded. This 

completes the proof. 

Design a barrier function to ensure (15) as follow: 

1

1

1

( ) ( )
( ) ln( )

( ) ( )

e t t
A t

t e t

β

β

−
=

−
                            (20) 

The virtual control law is designed as follow 

1 1( ) ( )t c A tγ = −                                (21) 

where c1 is the predefined positive constant. The velocity 

error is presented as 

2 2( ) ( ) ( )e t x t tγ= −                              (22) 

Considering the actuator error, design the actual control 

law to constrain 2 ( )e t as follow 

2 2 3 2

0

2
2

( ) ( ) ( )

( )
tan( )

2

t

t c A t c A t d

e t
A

k

η τ

π

= − −

=


                        (23) 

where c2>0, c3>0, and |e2(0)|<k are the design parameters. 

4 Stability Analysis 

Theorem 1. Consider the magnetic levitation system (5) 

under Assumptions1, 2, 3 and 4.  The proposed controller in 

(10)-(14) and (20)-(23) solve Problem 1. 

Proof.  It begins by assuming the existence of tracking errors 
that do not satisfy the following inequality:  

1 2
( ) ( ) ( )     ( )       0t e t t e t k tβ β< < < >                   (24) 
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This implies that the error at least satisfies the following 

conditions: 

1

1

1

1
 

1

 

1

1

2

 

lim ( )   

lim ( )   

lim ( )   

( )

( )

 

x t

x t

x t

e t

e t

e t

t

t

k

β

β

→

→

→

=

=

=









                               (25) 

where t1 is the first time of the violation of (24). Then, it 

can be derived that 

1 2 1
( ) ( ) ( )        ( )     t e t t e t k t tβ β< < < <              (26) 

Subsequently, the following proof process relies on 

seeking a contradiction to demonstrate the (26) is not valid. 

The following proof omits the time or state dependence of 

certain functions for the convenience of analysis. 
Step 1: To analyze the position error, define the Lyapunov 

function as follow: 

2

1 1

1

2
V A=                                   (27) 

Differentiating (27) as follows: 

1 1

1 1

1 1 1 1

1 1

1 1

1 1

1

)( ) ( )( )

( )( )

( ( ) ( ) )

1

( )(

(

)

V A

A

e e e e

e e

e e

e e

β β β β

β β

β β β β ββ ββ

β β

ω

ω

− − − − −
=

− −

− + − − −

=

⋅

⋅

−

⋅

−

=

&&& &
&

& && &&         (28) 

    Based on (13) and (22), it can be derived that 

1 2 1 1e e r c A= − −& &                                (29) 

Inserting (29) into (28) yields 

1 11 1 1 1

1 2 1

( ) ( )c A

e

V A I

I r e

β β

β β ββ ββ

ω

β β β β

− ⋅

− −
= − + ⋅ +

−

= ⋅ ⋅ −

−

&

& && &

&

               (30) 

Then, the proof of the boundedness of I1 is presented as 
follow: 

1) Based on (26), e1 and e2 are bounded. 

2) Based on assumption 2, 3 and (11), β , β& , β , β&  and 

r&  are bounded. Thus β β− &&  and ββ ββ−& &  are bounded. 

From (16), we know 0 ( ) ( )v t r tβ β< − < − .  

Thus, I1 is bounded as follow: 

1 1 1    I I t t< <                                     (31) 

where 1I is a constant.      

    Recalling (15), we know 
1

( ) 0βω β− >⋅ . Substituting 

(31) into (30) yields  

1 11 11 1 1
( ) ( )    V A cI A t tβω β− ⋅< ⋅ ⋅ <−&            (32) 

From (32), we know 1 0V <& when 1 1 1/A I c> . Based on 

(27), it can be obtained that  

1

1 1 1

1

( ) (0) ,         
I

A t A t t
c

 
≤ < 
 

                (33) 

Recall that A1 is the barrier function, indicating that e1 

will not approach to β  or β . 

Step 2: To analyze the velocity error, define the Lyapunov 
function as follow: 

2

2 2

1
V A

π
=                                         (34) 

Differentiating (34) yields 

2 2 2
2 2

1 1

cos ( )
2

V A e
ek

k

π
= ⋅

⋅

& &                        (35) 

Based on (5) and (23), Differentiating (22) yields  

2 1 2 2 3 2 1 2 2

0

( ) ( ( ) ( ) ) ( , )

t

e t c A t c A t d x xθ τ θ γ= ⋅ − − + ∆ + − &&   (36) 

Inserting (36) into (35) yields 

2 2 2 1 2 2
2 2

1 1
( )

cos ( )
2

V A I c A
ek

k

θ
π

= ⋅ −

⋅

&                 (37) 

where  

2 2 1 2 1 3 2

0

( , ) ( )

t

I x x c A t dθ γ θ τ= − + ∆ − ⋅ &                (38) 

By using the mean value theorem for integrals, it can be 

derived that 

[ ]3 2 3 2 1

0

( ) ( ),    0, ,  

t

c A t d c A t  t tτ ε ε= − ∈ <            (40) 

Inserting (40) into (38) yields 

2 2 1 2 1 3 2( , ) ( )I x x c Aθ γ θ ε= − + ∆ −&                   (41) 

Recalling (28), we know γ& is bounded during t<t1. Based 

on (5), 1θ , 2θ and 1 2( , )x x∆ are bounded. There exists the 

constant 1θ , 1θ such that 1 1 1θ θ θ< < . Based on (26) and the 
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continuity of A2, it can be shown A2(ε) is bounded. Thus, it 

can be derived that I2 is bounded as t<t1 as follow: 

 2 2 1    I I t t< <                                 (42) 

where 2I is a constant.  

Recalling (37), it can be derived that  

2 2 2 1 2 2
2 2

1 1
( )

cos ( )
2

V A I c A
ek

k

θ
π

< ⋅ −

⋅

&                   (43) 

From (43), we know 2 0V <&  when 2 2 1 2/A I cθ>  . Based 

on (34), it can be obtained that 

2

2 2 1

1 2

( ) (0) ,         
I

A t A t t
cθ

 
≤ < 
 

               (44) 

Recall that A2 is the barrier function, indicating that e2 

will not approach to k or -k. 

Based on (33) and (44), The scenario described by (25) 

will not occur and (24) holds consistently. 

Step 3: Taking（25）as a result, we can proof that all 

closed-loop signals are bounded as follow:  
Since e1 and e2 are bounded, it follows that A1 and A2 are 

also bounded. Consequently, the virtual control signals γ  

and the actual input signals η  are bounded. Based on (13) 

and (22), it can be deduced that x1 and x2 are bounded. The 

proof is completed. 

5 Simulation Study 

In this section, the accuracy of the theoretical derivations 

is verified through the simulation. Based on the state-space 

form (5), set the thrust coefficient associated with position ， 

external disturbance and lumped uncertainty as follow: 

1

1

2

1 2 1 2

1
0.5 0.1sin(0.2 )

0.1sin(0.2 )

( , ) 0.2( )sin(0.3 )

x

t

x x x x t

θ

θ

= +

=

∆ = +

               (45) 

The position constraint of magnetic levitation planar 

motor is presented as follow: 

( ) 1.5 (0.6 )

( ) 1.5 (0.6 )

v t t

v t t

= − −

= −
                                   (46) 

The reference trajectory is shown as follow: 

( ) sin(0.6 ) / 6r t t t= −                            (47) 

The prescribed accuracy is specified as follow: 

1lim sup ( ) 0.02
x

e t
→ ∞

≤                         (48) 

The situation of actuator faults is specified as follow: 

( ) 0.6 0.1sin( )P t t= +                          (49) 

In order to solve problem 1, the controller is designed 

based on the above analysis. The parameters of the 

performance function and the values of the control gains are 

presented as follow: 

1 2 1 2 3
0.98   0.02   0.05  3  20k =  c  c cϕ ϕ= = = = =   (50) 

Set x1(0) = 0.4, x2(0) = -1.6. The simulation results are 

shown in Fig.2-5. From the Fig.2 and Fig.3, the state 

variable, the virtual control law and are bounded signals. 

Although under actuator faults, the position of maglev 

planar motor remains constrained. From the Fig.4 and Fig.5, 

it can be derived that the tracking performances satisfy the 

predefined accuracy. 

 

Fig.2 The constrained x-position of magnetic levitation plane 

motor 

 

Fig.3 The virtual control law and velocity 

 

Fig.4 The tracking error under the imposed boundary 
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Fig.5 The tracking error under the imposed boundary 

6 Conclusion 

The paper designs a robust PI controller for the magnetic 

levitation planar motor with actuator faults, which can deal 

with the problem of unknown nonlinear dynamics model and 

external unknown disturbances. The presented PI controller 

can achieve the tracking accuracy within the prescribed time. 

Moreover, it ensures all the closed loop signals are bounded 

without violation of the output constraint. The presented 

control can achieve high computational efficiency without a 

complex structure, which is critical for realizing real-time 

control of the magnetically levitated planar motor. 
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Wave Motion Compensation Controller Design for a Catamaran
Upper Platform in the Presence of External Disturbance
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Abstract: This paper presents a nonlinear controller for the upper platform of a catamaran in the presence of external time-
varying disturbance induced by wind or wave. To handle disturbances, an observer is employed. Designed using the backstepping
method, the controller effectively maintains the platform within a small neighborhood of 10−3(m or rad) of the desired attitude
and the observer monitors external disturbance in real time. Simulation results validate the strategy, demonstrating the platform’s
ability to consistently maintain an ideal posture in the presence of dynamic disturbance.

Key Words: catamaran, disturbance observer, adaptive controller.

1 Introduction

In the field of ship control, improving the stability of ship

navigation is of great importance [1]. Wave compensation

can enhance the safety, stability and comfort of navigation at

sea, and plays a vital role in offshore operations and voyages

[2]. Implementing wave compensation improves safety by

reducing the risks caused by wave-induced motions, mak-

ing ship voyages smoother and minimizing discomfort and

seasickness to the maximum extent [3, 4].

In existing technologies, roll stabilizing fins [5, 6] and

shifting mass [7] are utilized to make ships more steady dur-

ing navigation. The principle of roll stabilizing fins works by

generating hydrodynamic lift to counteract the rolling mo-

tion of the hull, thereby enhancing ship’s stability and com-

fort [8]. This technique has been widely applied in large

vessels, yachts and other areas. Shifting mass method is to

strategically move weight within the ship to alter the center

of gravity and produce a counter moment canceling out the

lateral sway caused by waves [9, 10]. However, both roll sta-

bilizing fins and shifting mass can only compensate for the

roll motion of ships.

Inspired by [11], this paper proposes a new catamaran

structure compared to traditional fixed connection ones. The

catamaran structure, namely the combination of an upper

platform and two symmetrical lower hulls through the con-

nection of hinges and hydraulic actuators, enables relative

motions between the hulls and the upper platform, as shown

in Fig. 1. This design achieves real-time compensation for

the upper platform’s heave, pitch and roll motions, allow-

ing the catamaran to adapt to the complex sea wave envi-

ronments. Regarding this structure, a robust adaptive con-

troller is proposed in the presence of time-varying distur-

bance to improve the stability of the upper platform of cata-

maran. Furthermore, a disturbance observer is designed and

incorporated to estimate disturbance that may result from un-

modeled dynamics and external environment. The controller

*This work is supported in part by the Science Center Program of Na-

tional Natural Science Foundation of China under Grant 62188101, and in

part by the Young Elite Scientists Sponsorship Program by CAST under

Grant 2022QNRC001.
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zh1
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h1

Fig. 1: Illustration of Catamaran.

effectively maintains the platform within a small neighbor-

hood of the desired attitude, achieving global stability. Sim-

ulation results are presented to validate the efficacy and per-

formance of the proposed control strategy.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces the notations used throughout this paper.

The dynamic model of the catamaran upper platform and

control problem are presented in Section 3. A nonlinear dis-

turbance observer is given in Section 4. Section 5 presents

control scheme and stability analysis. Simulation results are

shown in Section 6. Section 7 summarizes the contents of

this work.

2 Notation

The following notations are used throughout this paper.

R
n represents the n-dimensional Euclidean space. A diago-

nal matrix P ∈ R
n×n with all diagonal elements are posi-

tive can be viewed as an element of the special matrix group

D(n). || · || represents 2-norm of a vector or Frobenius norm

of a matrix. For a matrix A ∈ R
n×n and a vector x ∈ R

n,

we have ||Ax|| ≤ ||A|| ||x|| since the Frobenius norm of

matrices is compatible with the 2-norm of vectors. Table 1

summarizes some main symbols and their corresponding de-

scriptions used in the follows.

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China
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Table 1: Symbols summary

{I} inertial frame

{c}, {h1}, {h2} body frames

q attitude of the upper platform

M mass matrix of the upper platform

d, ḋ disturbance and its derivative

G gravity vector of the upper platform

u input force

k1, k2, kd positive control gains

3 Problem Formulation

This section presents the model of the catamaran upper

platform, and formulates the control problem.

3.1 Catamaran Upper Platform Model
The catamaran upper platform, shown in Fig. 1, is mod-

eled under forces and torques generated by four hydraulic ac-

tuators and external disturbances. Considering a fixed inertia

frame {I}, a body-fixed frame {h1} attached to the Hull-1’s

center of mass, a body-fixed frame {h2} attached to the Hull-

2’s center of mass and a body-fixed frame {c} attached to the

center of mass of the upper platform, the dynamic equation

is given by

q̈ = Mtu+M−1G+M−1d (1)

where q is the attitude of the upper platform representing

heave, pitch and roll motions, Mt is a 3×4 matrix which is

related to both the specific parameters of the upper platform

and the motions of the two hulls, u = [u1, u2, u3, u4]
�

represents the input forces generated by the 4 hydraulic ac-

tuators, M = diag(M, Ix, Iy) is a diagonal matrix with

M being the mass of the upper platform and Ix and Iy
being moments of inertia for roll and pitch, respectively,

G = [Mg, 0, 0]� denotes the gravity vector of the up-

per platform, d = [d1, d2, d3]
� represents time-varying

disturbance.

Assumption 1. The disturbance d is an unknown, bounded
and time-varying parameter. In addition, d is Lipschitz con-
tinuous whose derivative, ḋ, is bounded, time-varying and
satisfies

||ḋ|| ≤ ζ (2)

for a known positive scalar ζ.

3.2 Control Objective
Let qd = [z

d
, φ

d
, θ

d
]� be a constant vector which rep-

resents the desired value of q. The goal is to maintain the

upper platform’s attitude precisely at the desired attitude qd.

To achieve this goal, the control objective is to design a con-

trol law that eliminates the heave, roll, and pitch motions

of the upper platform, while minimizing the position error

||q− qd|| as much as possible.

4 Disturbance Observer

In order to estimate unknown external disturbance in real-

time, a disturbance observer is employed to estimate d. The

following auxiliary variable is defined as

ξ = d− kdq̇ (3)

where kd ∈ R
+ is a designed parameter. The time derivative

of ξ is

ξ̇ = ḋ− kd(Mtu+M−1G+M−1d) (4)

The estimate of ξ̇ is chosen as

˙̂
ξ = −kd(Mtu+M−1G+M−1(ξ̂ + kdq̇)) (5)

where ξ̂ is the estimate of ξ. Invoking (3), the estimate of

time-varying disturbance d is

d̂ = ξ̂ + kdq̇ (6)

Two error parameters are defined as

d̃ = d− d̂ (7)

and

ξ̃ = ξ − ξ̂ (8)

Based on (3) and (6), one has

ξ̃ = d̃ (9)

Taking the time derivative of (8) and considering (4) and (5)

yield

˙̃
ξ = ḋ− kdM

−1ξ̃ (10)

Due to ξ̃ = d̃, one has

˙̃
d = ḋ− kdM

−1d̃ (11)

Lemma 1. The estimation error ˙̃
d , given by (11), is stable

and satisfies

||d̃|| ≤ ζ

kdα
(12)

where α = min{M−1, I−1
x , I−1

y }.

Proof: A Lyapunov function candidate is defined as

Vd =
1

2
d̃�d̃ (13)

Based on (11) and Assumption 1, the time derivative of Vd

is

V̇d = d̃�(ḋ− kdM
−1d̃)

≤ −kdα||d̃||2 + ζ||d̃||
= −||d̃||(kdα||d̃|| − ζ)

The previous proof shows that V̇d is strictly negative in

the region of space defined by ||d̃|| > ζ
kdα

. This implies the

estimation error d̃ can be driven to arbitrarily small value

by increasing kd or decreasing ζ through considering slowly

time-varying disturbance. Furthermore, when ζ = 0, mean-

ing the disturbance term d̃ is assumed to be constant, the es-

timation error d̃ achieves global exponential stability at the

origin.

1042  



5 Controller Design

In this section, a robust nonlinear control scheme is de-

veloped for the upper platform of the catamaran, which can

compensate for external environmental disturbance. Refer-

ring to the standard backstepping control design method

[15], a position error z1 ∈ R
3 is defined as

z1 = q− qd (14)

Since qd is a constant vector, computing the time derivative

of z1 yields

ż1 = q̇ (15)

A Lyapunov function candidate is defined as

V1 =
1

2
z�1 z1 (16)

Computing the time derivative of (16) yields

V̇1 =−W1(z1) + z�1 (k1z1 + q̇) (17)

where W1(z1) = k1z
�
1 z1 with k1 ∈ R

+. Following the

backstepping technique, z2 is denoted as

z2 = k1z1 + q̇ (18)

The second Lyapunov function candidate is defined as

V2 = V1 +
1

2
z�2 z2 (19)

and its time derivative is

V̇2 =−W2(z1, z2) + z�2 (z1 + k2z2 + k1ż1

+Mtu+M−1G+M−1d) (20)

where W2(z1, z2) = k1z
�
1 z1 + k2z

�
2 z2

A Lyapunov function is presented as

V3 = V2 + Vd (21)

where Vd is given by (13). Considering (20) and (11), the

time derivative of V3 is given by

V̇3 =−W3(z1, z2, d̃) + d̃�(ḋ+M−1z2)

+ z�2 (z1 + k2z2 + k1ż1 +M−1G

+M−1d̂+Mtu) (22)

where W3(z1, z2, d̃) = k1z
�
1 z1 + k2z

�
2 z2 + kdd̃

�M−1d̃.

The input is selected as

u = −M†
t(z1+ k2z2+ k1ż1 +M−1G+M−1d̂) (23)

where M†
t denotes the Moore-Penrose inverse matrix of Mt.

Substituting (23) into (22) yields

V̇3 = −W3(z1, z2, d̃) + d̃�(ḋ+M−1z2) (24)

Theorem 1. The dynamic model of the catamaran upper
platform is given by (1), with qd representing the desired
trajectory. For the closed-loop system formed by substitut-
ing the control input (23) and disturbance observer (6), the
position error z1 can be proven to be bounded in the pres-
ence of unknown time-varying disturbance d.

Proof: Since M−1 is a bounded, constant matrix, ||M−1||
is also bounded within a range c1 ≤ ||M−1|| ≤ c2, where c1
and c2 are positive. Based on Assumption 1 and applying

Young’s inequality, one has

d̃�ḋ ≤ 1

2
||d̃||2 + 1

2
||ḋ||2

≤ 1

2
||d̃||2 + ζ2

2
(25)

d̃�M−1z2 ≤ 1

2
||d̃||2 + 1

2
||M−1||2||z2||2

≤ 1

2
||d̃||2 + c2

2
||z2||2 (26)

Utilizing (24), (25) and (26), V3 can be upper bounded as

V̇3 ≤ −k1||z1||2 − (k2 − c22
2
)||z2||2 − (kdc1 − 1)||d̃||2 + ζ2

2

≤ −λ||z||2 + ζ2

2
(27)

where k2 ≥ c22/2, kd ≥ 1/c1, z = [z�1 , z
�
2 , ξ

�]� and λ =
min{k1, k2−c22/2, kdc1−1}. Furthermore, it can be shown

that V̇3 is strictly negative in the region where ||z||>ζ/
√
2λ,

leading to the conclusion that z is uniformly bounded.

6 Simulation Results

To validate the efficacy of the proposed controller, simu-

lation results are presented in this section. The parameters

of the system are given in Table 2.

The six degree-of-freedom motion of the catamaran hulls

was obtained through MATLAB calculations based on the

PM random wave spectrum. The resulting hull motion data,

which will be utilized in subsequent simulations, are pre-

sented in Fig. 2. However, when a catamaran is sailing or

turning, there will be surge and yaw motions on the plat-

form. So for the upper platform control, only the heave, roll

and pitch motions are compensated.

Table 2: Parameters of Catamaran Upper Platform

Parameter Value(Unit)

M 100(kg)

Ix 11(kg·m2)

Iy 21(kg·m2)

Inspired by the works in [16] and [17], the external dis-

turbance is modeled as first order Markov processes of the

form

ḋ = T−1(−d+Λω) (28)

where T ∈ R
3×3 is a diagonal time constant matrix, ω ∈ R

3

is zero-mean white Gaussian noise, and Λ ∈ R
3×3 is a di-

agonal matrix that scales ω. The initial value of the pro-

cess is set to d0 = [1/3, −2/3, −1/3]�. For T =
diag(5, 20, 20), Λ = diag(50, 50, 50), the resulting time-

varying disturbance is displayed in Fig. 3.

The desired position and attitude of catamaran upper plat-

form with respect to inertia frame {I} is

qd = [−0.7, 0, 0]�
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Fig. 3: External disturbance.

and the initial state of the catamaran upper platform is

q = [−0.6, 0.5, 1]�

Simulation results are given from Fig. 4 to Fig. 8.

Fig. 4 shows the actual and desired heave, roll and pitch

motions of the upper platform on a catamaran under the in-

fluence of the controller. As can be seen, the actual trajec-

tory fluctuations of the platform stabilize across all degrees

of motion within 5 seconds. However, due to time-varying

disturbance d, there persists slight amplitude of oscillation,

as shown in Fig. 5.

Fig. 6 shows the output force generated by the hydraulic

actuator. Owing to the large position error at the beginning,

the input force is also relatively large. The hydraulic actu-

ators equipped on the catamaran has an output of at least

104N, so a force of 103N is completely within the output

range of the hydraulic actuator. Once the platform becomes

relatively steady, the oscillation amplitude of the force is pri-

marily employed to counteract the external disturbance.

Fig. 7 presents the disturbance observer’s tracking of

time-varying disturbance. It can be observed that the lag

between d and its estimate are very small, implying the dis-

turbance observer has rapid convergence and estimation ca-

pabilities. This demonstrates the strong robustness of the
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Fig. 4: Actual and desired attitude of the upper platform.
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Fig. 5: Position error of the upper platform.

proposed disturbance observer design. Due to the observa-

tion delay of the observer, there is an error between d and its

estimated value. The estimated error results are presented in

Fig. 8.

Overall, the small position errors and rapid convergence to

steady state validate the effectiveness of the proposed control

strategy in achieving attitude control on the upper platform

of the catamaran.

7 Conclusions

This paper proposes an adaptive robust control strategy

with integrated disturbance compensation to stabilize the up-

per platform of catamaran under time-varying disturbance.

Through stability analysis, the designed controller has been

proven to maintain the upper platform within small neigh-

borhood of 10−3(m or rad) of the ideal attitude. The con-

troller demonstrates precise and fast compensation for ran-

dom wave excitation, providing an active motion control so-

lution to significantly enhance stability of the catamaran up-

per platform in different sea conditions. Simulation results

are given and analyzed, validating the efficacy of the pro-

posed control laws. There are some shortcomings, such as

the simulation being ideal compared to its actual conditions
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and the delay of hydraulic actuator output not being taken

into account. After the future ship is built, we will test it in

reality.
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Adaptive Tracking Control for State-Constrained Fully Actuated
Systems And Its Application to Overhead Cranes
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Abstract: This paper investigates the adaptive tracking problem for a class of fully actuated systems (FASs) subject to state
constraints, external disturbance, and model uncertainties. Through the utilization of carefully designed auxiliary signals, the
issue of full-state constraints in FAS is reduced to a constraint problem for a coupled variable. This transformation enables the
direct proposal of the controller without involving recursive design. The proposed control method is applied to crane system, and
its feasibility and efficacy are verified through simulation.

Key Words: Fully actuated system, state constraints, adaptive tracking control, underactuated overhead crane

1 Introduction

Over the last few decades, state-space methodologies have
been the dominant paradigm in control systems. However,
the process of designing controllers within the state-space
framework may be cumbersome, potentially overlooking the
inherent high-order fully actuated characteristics of a sys-
tem. Seeking an alternative approach, researchers have ex-
plored various avenues.

In recent developments, alongside the state-space ap-
proach, the fully actuated system (FAS) approach has e-
merged. Duan’s contributions [1–5] established the theoret-
ical framework for the FAS approach, leading to subsequen-
t studies with impressive outcomes [7–9]. The term “FAS”
initially referred to a specific component of physical systems
and underwent mathematical generalization by Duan. At the
present time, FAS approach has become an universal method
for nonlinear control. This evolution is motivated by the fac-
t that many nonlinear systems can be naturally modeled as
FASs at the physical level, and the majority of the remaining
systems can be transformed into FASs. When a known non-
linear plant is modeled or converted into a FAS, the inherent
full-actuation property allows for the partial or complete e-
limination of nonlinear dynamics. Then one gets a linear or
“close to” linear closed-loop system, enabling the direct pro-
posal of control laws. However, considering state constraints
and model uncertainties, the direct formulation of controller
faces challenges.

The issue of state constraints are commonly encountered
in systems due to security considerations. Barrier Lyapunov
function (BLF) approach is the mainstream method to deal
with the state-constrained control problem of nonlinear sys-
tems at present. During the control design process based on
BLF method, some constraint-related auxiliary terms (bar-
rier terms) are used to construct Lyapunov functions, based
on which barrier function terms can be integrated into the

This work was supported in part by the National Natural Science Foun-
dation of China (62173207, 62073187, and 62073189), the Science Center
Program of the National Natural Science Foundation of China (62188101),
the China Postdoctoral Science Special Foundation (2023T160334), the Y-
outh Innovation Team Project of Colleges and Universities in Shandong
Province (2022KJ176), and the Graduate Teaching Case Base Project of
Shandong Province (SDYAL20109).

control law to guarantee the state constraints [10, 11]. Be-
sides the BLF method, the investigations [12, 13] employed
transformations based on state-dependent functions for crane
systems. As a result, the constraints were ensured by guaran-
teeing the boundedness of the new coordinates. It should be
pointed out that the implementation of the above method is
based on backstepping design. Backstepping design can face
an explosion of complexity due to repeated differentiation
of virtual controllers. Therefore, a natural question arises,
whether a general controller can be proposed for constrained
FAS without recursive design procedures?

In this paper, a non-recursive adaptive tracking control for
a class of state-constrained FASs is studied in the presence of
disturbance and model uncertainties. The main contributions
of this paper can be summarized by the following aspects:

(i) By elaborately designing auxiliary signals, the full-state
constraints of FAS is transformed into the constraint is-
sue of a coupled variable. This approach eliminates the
use of backstepping method and simplifies the control
design process.

(ii) The proposed controller is applied to the underactuated
crane. It has been demonstrated by simulation that the
developed controller achieves precise position tracking
while also ensuring that all states remain within prede-
termined limits.

Notations
In this paper, the following notations are used. For inte-

gers i > j ≥ 0, Aj
i and Cji represent the number of permu-

tations and combinations respectively, i.e. Aj
i = i!/(i − j)!

and Cji = Aj
i/(j!). x

(i) denotes the i−th derivative of x,
specially, x(0) = x. Further, x(0∼i) = [x, x(1), · · · , x(i)]T .
2 Problem formulation

Consider the following perturbed FAS as

x(n) = f(x(0∼n−1), t) + g(x(0∼n−1), t)u+ d(t) (1)

subjected to the full-state constraints:

x(i) ∈ Ωi = {|x(i)| < kai, i = 0, 1, · · · , n− 1} (2)

where u is the control input, f and g denote the uncertain
nonlinear functions, d stands for the external disturbance,
and kai > 0 are constraint constants.
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The control objective is to develop an adaptive tracking
controller such that: 1) all signals in the closed-loop system
are bounded; 2) reference signal xd can be tracked by x, and
3) system states x(i) satisfy the constraints in (2).
Assumption 1. For i ≥ 1, states x(i) satisfy x(i)(0) = 0.
Assumption 2. For functions f(x(0∼n−1), t) and
g(x(0∼n−1), t), there holds that |f(x(0∼n−1), t)| ≤
aφ(x(0∼n−1), t) and 0 < g ≤ g(x(0∼n−1), t) ≤ ḡ where a,
g, and ḡ are positive constants. Additionally, φ(x(0∼n−1), t)
is a known function.
Assumption 3. The disturbance d is assumed to satisfy |d| ≤
D with D being an unknown constant.

3 Main results

3.1 Auxiliary variable design
In this section, we introduce three auxiliary signals. The

first one is constructed as

ζ(t) =


n+1∑
i=1

σi(
t
T )

n+i, 0 ≤ t ≤ T

1, t ≥ T
(3)

where T > 0 is a preassigned time configured by user-
s and σi > 0 will be designed later. For the sake of
simplicity, we define σ = [σ1, σ2, · · · , σn+1]

T ∈ Rn+1,
b = [1, 0, · · · , 0]T ∈ Rn+1, and

A =


A0
n+1 A0

n+2 · · · A0
2n+1

A1
n+1 A1

n+2 · · · A1
2n+1

...
...

...
An
n+1 An

n+2 · · · An
2n+1

 . (4)

Then one has the following proposition.
Proposition 1: For auxiliary signal (3), if parameters σi are
solved by σ = A−1b, then ζ(t) satisfies: a) ζ(0) = ζ(i)(0) =
0; b) lim

t→T
ζ(t) = ζ(T ) = 1, lim

t→T
ζ(i)(t) = ζ(i)(T ) = 0

(i = 0, · · · , n).
Now, let us introduce the second auxiliary signal

yd = ζ(xd − x0) + x0.

Based on proposition 1, one figures out that yd and its
derivatives up to the n−th order are continuous. Further,
it can be found that limt→T y

(i)
d (t) = y

(i)
d (T ) = x

(i)
d (T )

for t ∈ [0, T ] and y
(i)
d (t) = x

(i)
d for t ∈ [T,∞), where

i = 0, · · · , n. Therefore, the tracking issue for xd can be
achieved by forcing x(i) tracking y(i)d .

Define e = x− yd and construct the final auxiliary signal

as S =
n−1∑
r=0

Crn−1λ
n−r−1
1 λr2e

(r) with λ1 > 0 and λ2 > 0.

Proposition 2: For coupled variable S, the following infer-
ences are true: 1) S(0) = 0; 2) if S → 0, then e(i) → 0
(i = 0, · · · , n); 3) For a positive constant k, if |S| ≤ k,
then |e(i)| ≤ εi for t ≥ 0 where εi = ( 2

λ2
)i k
λn−i−1
1

(i = 0, · · · , n).

3.2 Control design
Based upon the above-mentioned analysis, the tracking

controller and the adaptive laws are given as

u =− p̂

λn−1
2

αu tanh
(g2p̂αuS

δ(t)

)
αu =

n−2∑
r=0

Crn−1λ
n−r−1
1 λr2e

(r+1) − λn−1
2 y

(n)
d +

γS

k2 − S2

+ λn−1
2 âφ tanh

(g1S
δ(t)

)
+ λn−1

2 D̂ tanh
(g2S
δ(t)

)
˙̂a =λn−1

2 g1S tanh
(g1S
δ(t)

)
˙̂
D =λn−1

2 g2S tanh
(g2S
δ(t)

)
˙̂p =|g2Sαu| (5)

where

g1 =
φ

k2 − S2
, g2 =

1

k2 − S2
, p =

1

g
,

µ > 0 and k > 0 are design parameters, and δ(t) is a contin-
uous function satisfying lim

t→∞

∫ t
0
δ(t)dτ < ∞. In addition,

â, D̂, and p̂ are estimations of a, D, and p, respectively.

3.3 Stability analysis
This section begins by presenting the main results of this

article, followed by a comprehensive stability analysis.
Theorem 1. For the FAS (1) with Assumptions 1-3 being
satisfied, if the initial condition x(0) satisfies x(0) ∈ Ω0,
and designed adaptive control law (5) is applied, then the
control objectives 1)-3) are achieved.
Proof: Consider the Lyapunov function as

V =
1

2
ln

k2

k2 − S2
+

1

2
ã2 +

1

2
b̃2 +

g

2
p̃2 (6)

where ã = a− â, D̃ = D − D̂, and p̃ = p− p̂.
Taking the derivative of V with respect to time obtains

V̇ =
S

k2 − S2

(n−2∑
r=0

Crn−1λ
n−r−1
1 λr2e

(r+1) + λn−1
2 f

+ λn−1
2 d+ λn−1

2 gu− λn−1
2 y

(n)
d

)
− ã ˙̂a− D̃

˙̂
D

− gp̃ ˙̂p. (7)

Inserting (5) into (7) follows that

V̇ ≤− γS2

(k2 − S2)2
+ (aλn−1

2 +Dλn−1
2 + g)k∗δ, (8)

which immediately implies that

V (t) + γ

∫ t

0

( S

k2 − S2

)2
dτ ≤ V (0)

+ (a+D + g)k∗

∫ t

0

δdτ < +∞. (9)

Therefore, it can be obtained that V ∈ L∞ ⇒ |S| < k,
â ∈ L∞, D̂ ∈ L∞, and p̂ ∈ L∞. Furthermore, it can be con-
cluded from Proposition 2 that |S| < k ⇒ |e(i)| < εi, which
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implies u ∈ L∞. The objective 1) is obtained. Moreover,
∂
∂t (

S
k2−S2 ) = (k2+S2)Ṡ

k2−S2 ∈ L∞. Noticed that S
k2−S2 ∈ L2,

then S
k2−S2 → 0 ⇒ S → 0 ⇒ e(i) → 0. Thus, the ob-

jective 2) is achieved. For objective 3), one defines ȳ(i)d =

max{|y(i)d (t)|}, and chooses k < min{λ
i
2λ

n−i−1
1

2i (kai− ȳid)}
(i = 0, 1, · · ·n − 1). Then, one has |x(i)| < |e(i)| + ȳ

(i)
d <

kai. The proof of Theorem 1 is completed. �
4 Application to the overhead crane

4.1 System transformation
In this section, a practical example of the underactuated

overhead crane systems is employed, whose dynamic model
is described as follows:

(M +m)ẍ+mlθ̈ cos θ −mlθ̇2 sin θ = F + d,

ml2θ̈ +mlẍ cos θ +mgl sin θ = 0 (10)

where x and θ denote the trolley position and swing angle of
the rope, respectively, M and m denote the trolley mass and
the payload mass, respectively, l is the cable length, g rep-
resents the gravity acceleration, and F is the control input.
d(t) is the friction, and it can be modeled as

d = −f1 tanh(ẋ/v1) + f2|ẋ|ẋ

where f1 ∈ R, f2 ∈ R, and v1 ∈ R are friction-related
parameters.

Similar to [14], the following auxiliary variables are intro-
duced:

µ(θ) = l ln(
1

cos(θ)
+ tan(θ)), ξ1 = x+ µ(θ),

ξ2 = ẋ+
lθ̇

cos(θ)
, ξ3 = −g tan(θ), ξ4 = − gθ̇

cos2(θ)
,

ς =
g

(M +m sin2(θ))l cos(θ)
. (11)

Then, one gets the remodeling of (10)

ξ̇1 = ξ2

ξ̇2 =
(
1− lξ24

(ξ23 + g2)1.5

)
ξ3

ξ̇3 = ξ4

ξ̇4 = ςu+ v(t)ϕ (12)

where

v(t) =
[
−

f1 tanh(
ẋ
v1
)

(m sin2(θ) +M)l
,

f2

(m sin2(θ) +M)l
,

M +m

(m sin2(θ) +M)l
,

m

(m sin2(θ) +M)l

]
ϕ =

[ g

cos(θ)
,
g|ẋ|ẋ
cos(θ)

,
g2 tan(θ)

cos(θ)
,
glθ̇2 sin(θ)

cos(θ)

]T
.

When ξ4 is confined in a narrow interval, the following result
holds:

lξ24
(g2 + ξ23)

3/2
≤ lξ24

g3
≈ 0.001lξ24 ≪ 1

⇒ ξ3 ≈ ξ3

(
1− lξ24

(ξ23 + g2)1.5

)
.

Hence, (12) can be rewritten as

ξ
(4)
1 = ςu+ v(t)ϕ. (13)

The control goal in this section is to use adaptive con-
troller (5) to make the trolley move to the desired potion pd
while suppressing rope swing, and meanwhile other states
are also expected to be satisfied some certain constraints.

It can be derived from Proposition 1 that

yd = ζ(pd − x0) + x0 (14)

where

ζ(t) =

{
126t5

T 5 − 420t6

T 6 + 540t7

T 7 − 315t8

T 8 + 70t9

T 9 , 0 ≤ t ≤ T
1, t ≥ T.

Further, by taking f = v(t)ϕ, a = sup
t>0

∥v(t)∥, φ = ∥ϕ∥, and

g = g
(M+m)l , the control design in section 3 can be applied.

For tracking error e = ξ1 − yd, one has e(i) → 0 ⇒ θ →
0 ⇒ x → pd. Meanwhile, if |ξ(2)1 | < ka2 is ensured, one
obtains |θ| < arctan(ka2

g ) , kb2, which means rope swing
is suppressed in the whole control process. Similarly, by
configuring kb2 < π

2 , it can be induced that |θ̇| < ka3

g , kb3,
|ẋ| < ka1+ l

ka2

g cos(kb2)
, kb1, and |x| < ka0+µ(kb2) , kb0.

4.2 Simulation analysis
The physical parameters of the system are set as M =

24 kg, m = 12 kg, l = 8 m, g = 9.8 m/s2, f1 = 5.4,
f2 = 1, and v1 = 0.01. The desired position is set as pd =
10 m. T is set as T = 7 s, then it can be calculated that
ȳd = supt≥0 |yd(t)| = 10, ȳ(1)d = supt≥0 |y

(1)
d (t)| = 3.52,

ȳ
(2)
d = supt≥0 |y

(2)
d (t)| = 1.92, ȳ(3)d = supt≥0 |y

(3)
d (t)| =

2.3. Therefore if kai are taken as ka0 = 10.4, ka1 = 4,
ka2 = 2.4, and ka3 = 2.7, the states of crane system (10)
satisfy |θ| < 0.2407 rad (13.7624 deg), |x| < 12.3403 m,
|ẋ| < 6.0171 m/s, and |θ̇| < 0.2755 rad/s (15.785 deg/s). To
achieve the above configuration, λ1, λ2, and k can be chosen
as λ1 = 2, λ2 = 3, and k = 3. The other parameters are set
as γ = 0.01, λ2 = 4, δ(t) = e−0.2t, x(0) = θ(0) = ẋ(0) =
θ̇(0) = 0.

0 5 10 15 20 25 30 35 40
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-3

0

3

0 0.5
0
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Fig. 1 Constrained auxiliary signal S
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Fig. 2 The position tracking of trolley.

0 5 10 15 20 25 30 35 40
T(sec)

0

22

0 5 10 15 20 25 30 35 40
T(sec)

0

4

0 5 10 15 20 25 30 35 40
T(sec)

0

4

0 5 10 15 20 25 30 35 40
T(sec)

-50

0

50

Fig. 3 The adaptive laws and control input.

The simulation results are depicted in Figs. 1-3. Fig. 1
plots the closed-loop response of the auxiliary signal S. It is
evident that the desired constraint is guaranteed and S tends
to zero asymptotically. Consequently, as shown in Fig. 2, the
trolley and payload can be adjusted to the desired position
pd with the full-state constraints being not violated. Mean-
while, swing angel θ is compelled to converge to zero. Fig.
3 illustrates the boundedness of adaptive laws and controller.

5 Conclusion

In this paper, the adaptive tracking problem for a class of
FASs with state constraints, external disturbance and model
uncertainties is studied. The constraints of full-state vari-

ables are realized by guaranteeing the constraint of a cou-
pled variable, simplifying the overall control design process.
In this way, steady-state tracking performance can be en-
sured without violating the full-state constraints. Finally, the
control algorithm is successfully applied to the underactuat-
ed crane system. Simulation result shows that the proposed
control strategy has a favorable control performance.
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Prescribed-Time Stabilization of Switched Nonholonomic
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Abstract: The problem of prescribed-time stabilization (PTS) is addressed for a kind of nonholonomic systems (NSs) with
switched chain structures and asymmetric output constraints. A tan-type Barrier Lyapunov Function (BLF) is exploited to handle
the obstacle caused by the asymmetric output constraints. By suitably introducing the time-varying function into the virtual
(actual) controllers, a non-scaling design scheme for state feedback is developed to forces the states of the closed-loop system
(CLS) to zero in any prescribed finite time without disobeying the constraints.

Key Words: switched nonholonomic systems; asymmetric constraints; Barrier Lyapunov Function; prescribed-time stabilization
(PTS)

1 Introduction

Nonholonomic systems (NSs) have received much atten-
tion in the last decades due to their widespread practical ap-
plications[1]. However, the existence of nonholonomic con-
straint such systems not to meet the famous Brockett nec-
essary condition, leading to their stabilization challenging
[2]. Thanks to the constructive methods of discontinuous
time-invariant feedback [3], smooth time-varying feedback
[4] and hybrid feedback [5], many important results have
been obtained [6–9].

From the point of view of convergence rate, the existing
stabilization results can be divided into infinite-time stabi-
lization (e.g., asymptotic or exponential stabilization) and
finite-time stabilization. By comparison, the latter is more
desired because it exhibits the appealing features of fast con-
vergence and good disturbance rejection [10–14]. However,
the existing results on finite-time stabilization suffer from
shortcoming of the settling time heavily relying on initial
system conditions. To address these, Andrieu et al. in [15]
put the idea of fixed-time stability that the involved set-
tling time function is irrespective of initial system condi-
tions. Soon afterwards, the study on fixed-time control has
become a popular topic [16–24]. Roughly speaking, the ex-
isting methods on the topic of fixed-time control come down
to two kinds: the bi-limit homogeneous-based one [15, 16]
and the Lyapunov-based one [17–25]. It is emphasized that
the both methods suffer from some inherent defects, that is,
the upper bound of the settling time (UBST) in the former
exists but is unknown, and the UBST in the latter is bounded
and adjustable, but it is so hard to be prespecified discre-
tionarily in the light of requirements because the derived set-
tling time functions currently depend on a few design param-
eters, whose selections are laborious to meet the prespecified
settling time requirements [26].

However, prespecifiable settling time is indeed expected
by some practical applications. This fact urges that the
prescribed-time stability [27](also called predefined-time

This work was partially supported by the National Natural Science
Foundation of China under Grant 61873120, the National Natural Sci-
ence Foundation of Jiangsu Province under Grants BK20201469 and
BE2021016-5 and the Qing Lan project of Jiangsu Province.

stability [28]), where the UBST can be selected by the user,
has been drew into to study the stabilization problem of the
considered systems [29–34]. For the nonholonomic systems
with dynamics of single-mode structure, the PTS were also
addressed in [35–38]. But due to the hybrid features leading
to the control design for switched systems challenging, the
research on PTS of nonholonomic systems with dynamics of
multi-mode switching structures has received less attention.
Moreover, as we know, one often faces certain constraints
that represent physical limitations and performance require-
ments in solving practical control engineering problems. For
instance, the position of an indoor robot ought to be con-
strained so that it can always work in some reasonable area.
Violation of the constraints may give rise to system damage,
unpredictability danger or performance degradation. [

Motivated by the above considerations, in this paper we
concentrate on studying the PTS problem for a kind of NSs
with switched chain structures and asymmetric output con-
straints. The contributions are highlighted as follows. (i)
Different from the existing results mainly concerning NSs
with dynamics of single-mode structure, the paper addresses
NSs with dynamics of multi-mode switching structures mak-
ing the studied systems more practical and general; (ii) A
novel non-scaling transformation-based design is presented
for switched NSs by employs the given time-varying func-
tion scaling the virtual (scaling) controllers. As a result, the
computation burden of the time-varying scaling function is
reduced to a large extent, leading to a simpler controller.

Notations. The notations adopted in this paper are fairly
standard. Specifically, for a vector z = (z1, . . . , zn)

T ∈ Rn,
denote z̄j = (z1, . . . , zj)

T ∈ Rj , j = 1, . . . , n, and define
⌈z⌉δ as ⌈z⌉δ = sign(z)|z|δ .

2 Problem formulation and preliminaries

2.1 Problem formulation
Consider the following kind of uncertain NSs with

switched chain structures
ζ̇i = u0σ(t)ζi+1 +Φiσ(t)(ζ0, ζ̄i),

ζ̇n = u1σ(t) +Φnσ(t)(ζ0, ζ̄n),

ζ̇0 = u0σ(t), i = 1, . . . , n− 1,

(1)
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where (ζ0, ζ)
T = (ζ0, ζ1, . . . , ζn)

T ∈ Rn+1 is the system
state (vector) and σ(t) : [0,+∞) → M = {1, 2, . . . , s}
is the piecewise continuous switching signal. For any k ∈
M and i = 1, . . . , n, Φik : R × Ri → R are continuous
functions satisfying Φik(ζ0, 0) = 0.

Due to physical or performance limitations, this paper
supposes the output y suffering from the following time-
varying constraints

Ωi = {ζi(t) : −ki1(t) < ζi(t) < ki2(t)} , i = 0, 1, (2)

with some pre-specified positive functions ki1(t) and ki2(t).
The control goal of this paper is to present a common state

feedback controller which stabilizes system (1) within pre-
scribed finite time Tp via the following following assump-
tion.

Assumption 1. The time-varying output constraints
kij(t) (i = 0, 1, j = 1, 2) are continuous differentiable and
there are positive constants ki1, ki2, ki3 and ki4 such that
ki1 ≤ ki1(t), ki2 ≤ ki2(t), |k̇i1(t)| ≤ ki3 and |k̇i2(t)| ≤
ki4.

Assumption 2. There are smooth functions φik ≥ 0 and
a constant τ ∈ (0, 1/n) such that

|Φik(ζ0, ζ̄i)| ≤ φik(ζ0, ζ̄i)

i∑
j=1

|ζj |
λi−τ

λj , (3)

where λi = 1− (i− 1)τ > 0, i = 1, . . . , n.

2.2 Preliminary results
Consider the nonlinear system

ż = µ(t, z), z(0) = z0, µ(t, 0) = 0 (4)

where µ : R+ × Rn → Rn is a (discontinuous) nonlinear
vector field on an open neighborhood U of the origin.

Definition 1[10]. The origin of system (4) is named finite-
time stable if it is asymptotically stable and for any z0 ∈ Rn,
a settling time function T : Rn \ {0} → (0,∞) exists such
that every solution z(t, z0) of (4) satisfies z(t, z0) = 0, ∀ t ≥
T (z0).

Definition 2[32]. The origin of system (4) is named global
prescribed-time stable if it is finite-time stable and a tunable
designing parameter ϑ ∈ R exists to ensure T (z0) ≤ Tp for
any prescribed finite time Tp > 0 and any z0 ∈ Rn.

Lemma 1[10]. For system (4), if there exists a C1 and pos-
itive definite function V (z) defined Rn, some real numbers
c > 0 and 0 < α < 1 such that V̇ (z) ≤ −cV α(z), ∀ z ∈
Rn. Then, the origin of system (4) is globally finite-time sta-
ble with T (z0) ≤ V 1−α(0)

c(1−α) , ∀ z ∈ Rn.

Lemma 2[39]. For ζ1 ∈ R, ζ2 ∈ R, and a constant
m ≥ 1, one has (i)|ζ1 + ζ2|m ≤ 2m−1|ζm1 + ζm2 |; (ii)(|ζ1|+
|ζ2|)1/m ≤ |ζ1|1/m + |ζ2|1/m ≤ 2(m−1)/m(|ζ1|+ |ζ2|)1/m.

Lemma 3[39]. If c, d are positive constant and γ(ζ1, ζ2) >
0 are real-valued function, then one has |ζ1|c|ζ2|d ≤
c

c+dγ(ζ1, ζ2)|ζ1|
c+d + d

c+dγ
−c/d(ζ1, ζ2)|ζ2|c+d.

Lemma 4[40]. For ζ1 ∈ R, ζ2 ∈ R and constant 0 < m ≤
1 and a > 0, one has |⌈ζ1⌉am − ⌈ζ2⌉am| ≤ 21−m|⌈ζ1⌉a −
⌈ζ2⌉a|m.

3 Prescribed-time stabilization

In this section, a non-scaling control strategy is designed
to achieve the stabilization task of system (1) within any
given prescribed finite time Tp > 0.

3.1 A scaling function
For the object of this paper, we introduce the following

switched scaling function:

𭟋1 =

{
Γ1, t < Ts1,
1, otherwise, (5)

where
Γ1 =

Ts1

Ts1 − t
, (6)

with the positive design parameter Ts1 satisfying 0 < Ts1 <
Tp.

To avoid the state ζi violating the constraints , an asym-
metric BLF function Vbi : Ωi → R is given as follows:

Vbi(ζi) =
k2bi
π

tan

(
πζ2i
2k2bi

)
, (7)

where kbi = ki2, if ζi > 0, otherwise kbi = ki1.
It is clear that the function Vbi(ζi) is positive definite on

Ωi and satisfies Vbi(ζi) → ∞ as ζi → −ki1 or ζi → ki2.
Besides, differentiating the function Vbi(xi) obtains that

∂Vbi(ζi)

∂ζi
= Λbi(ζi)ζi,

∂Vbi(ζi)

∂kbi
=

2kbi
π

tan

(
πζ2i
2k2bi

)
− 1

kbi
Λbi(ζi)ζ

2
i ,

(8)

with Λbi(ζi) defined as

Λbi(ζi) =


sec2

(
πζ2i
2k2i2

)
, ζi > 0,

sec2
(
πζ2i
2k2i1

)
, ζi ≤ 0.

(9)

3.2 PTS of the ζ-subsystem
Take the common control u0c for each subsystem k ∈ M

as

u0c = (| sign(ζ0(0))| − sign(ζ0(0))− 1) c∗0, (10)

where c∗0 > 0 is a design constant. As a consequence, the
following result is reaped by simple mathematical deriva-
tions.

Proposition 1. Under (10), the solution of the ζ0-
subsystem ζ0(t) is well-defined on [0, Tp).

For simplicity, without loss of generality, in later use we
assume ζ0(0) < 0, that is, the sign of u0 is positive. Then,
Under (6), the ζ-subsystem is rewritten as ζ̇i = hiζi+1 +Φiσ(t)(ζ0, ζ̄i),

i = 1, . . . , n− 1,

ζ̇n = hnu1σ(t) +Φnσ(t)(ζ0, ζ̄n),

(11)

with hi = c∗0, i = 1, . . . , n− 1 and hn = 1.
Next a common state feedback controller u1c will be de-

veloped to stabilize system (11) within a settling time T1 (
Ts1 < T1 < Tp) by the recursive idea.
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Step 1. Select V1 = Vb1 as as the common Lyapunov
function for this step. Then, for each subsystem k of
switched system (10), applying Assumptions 1-2 gives

V̇1 ≤ Λb1(ζ1)
(
h1ζ1(ζ2 − ζ∗2 ) + h1ζ1ζ

∗
2 + |ζ1|2−τ φ̃1k

)
,

(12)
where ζ∗2 is the virtual controller of ζ2.

Take the common ζ∗2 for each subsystem k ∈ M as

ζ∗2 = −𭟋1β1⌈ζ1⌉λ2 , (13)

where
β1 ≥ max

k∈M

1 + c+ φ1k

h1
, (14)

is a smooth function independent of k and c is a positive
constant. Then, by substituting (13) into (12), one has

V̇1 ≤ −(1 + c)Λb1(ζ1)(ζ1)|ζ1|2−τ + Λb1(ζ1)h1ζ1 (ζ2 − ζ∗2 ) .
(15)

Step 2. Define z2 = ⌈ζ2⌉
1
λ2 − ⌈ζ∗2 ⌉

1
λ2 and take the com-

mon Lyapunov function V2 = V1 +W2 with

W2 =

∫ ζ2

ζ∗2

⌈
⌈s⌉

1
λ2 − ⌈ζ∗2 ⌉

1
λ2

⌉2−λ2

ds. (16)

From

∂W2

∂ζ2
= ⌈z2⌉2−λ2 ,

∂W2

∂θ
= −(2− λ2)

∂
(
⌈ζ∗2 ⌉

1
λ2

)
∂θ

×
∫ ζ2

ζ∗2

∣∣∣⌈s⌉ 1
λ2 − ⌈ζ∗2 ⌉

1
λ2

∣∣∣1−λ2

ds,

(17)

where θ = t or θ = ζ1, a direct calculation gives

V̇2 ≤ −(1 + c)𭟋1Λb1(ζ1)|ζ1|2−τ

+Λb1(ζ1)h1ζ1 (ζ2 − ζ∗2 ) + ⌈z2⌉2−λ2h2ζ3

+⌈z2⌉2−λ2Φ2k +
∂W2

∂ζ1
(h1kζ2 +Φ1k) +

∂W2

∂t
.

(18)
Based on the fact 𭟋1 ≥ 1 for all t ≥ 0, we give the

following estimates for some terms of (18). First, from the
definitions of z2 and ζ∗2 and Lemma 4, one has

|ζ2 − ζ∗2 | ≤ 21−λ2

∣∣∣⌈ζ2⌉ 1
λ2 − ⌈ζ∗2 ⌉

1
λ2

∣∣∣λ2

= 21−λ2 |z2|λ2 .
(19)

Thus, from (19) and Lemma 3, it is obtained that

Λb1(ζ1)⌈z1⌉2−λ1h1k (ζ2 − ζ∗2 ) ≤
1

4
|z1|2−τ + |z2|2−τϱ21k,

(20)
where ϱ21k ≥ 0 is a smooth function.

Secondly, from Assumption 2 and Lemma 2, one gets

|Φ2k| ≤ φ2k

(
|ζ1|

λ2−τ
λ1 + |ζ2|

λ2−τ
λ2

)
≤ φ2k

(
|ζ1|λ2−τ + |z2|λ2−τ +𭟋1β1|ζ1|λ2−τ

)
.

(21)
Using (21) and Lemma 3 yields

⌈z2⌉2−λ2Φ2k ≤ 1

4
|ζ1|2−τ +𭟋

2−τ
1+τ

1 |z2|2−τϱ22k, (22)

where ϱ22k ≥ 0 is a smooth function.
Finally, notice that∫ ζ2

ζ∗2

∣∣∣⌈s⌉ 1
λ2 − ⌈ζ∗2 ⌉

1
λ 2

∣∣∣1−λ2

ds ≤ 21−λ2 |z2|, (23)

∣∣∣∣∣∣
∂
(
⌈ζ∗2 ⌉

1
λ2

)
∂ζ1

∣∣∣∣∣∣ ≤ 𭟋
1
λ2
1

∣∣∣∣∣∣∂β
1
λ2
1

∂ζ1

∣∣∣∣∣∣ |ζ1|+𭟋
1
λ2
1 β

1
λ2
1

≤ 𭟋
1
λ2
1 ϖ21,

(24)

∣∣∣∣∣∣
∂
(
⌈ζ∗2 ⌉

1
λ2

)
∂t

∣∣∣∣∣∣ ≤ 2

Ts1λ2
𭟋

1+λ2
λ2 β

1
λ2
1 |ζ1|

≤ 𭟋
1+λ2
λ2

1 |ζ1|ϖ22,

(25)

where ϖ21 and ϖ22 are some nonnegative smooth functions.
Then, from (23), (24), (25) and Lemma 3, one arrives

∂W2

∂ζ1
(h1kζ2 +Φ1k) ≤

1

4
|ζ1|2−τ +𭟋

2−τ
1−τ

1 |z2|2−τϱ23k,

(26)
∂W2

∂t
≤ 1

4
|ζ1|2−τ +𭟋

(2−τ)2

(1−τ)2

1 |z2|2−τϱ24k, (27)

where ϱ23k ≥ 0 and ϱ24k ≥ 0 are smooth functions.
As a result, by choosing ϱ2 ≥ max

k∈M
ϱ21k + ϱ22k + ϱ23k +

ϱ24k being a smooth function and letting

γ2 = max
{
1, 2−τ

1+τ ,
2−τ
1−τ ,

(2−τ)2

(1−τ)2

}
, (28)

for every k ∈ M one has

h1kζ1 (ζ2 − ζ∗2 ) + ⌈z2⌉2−λ2Φ2k +
∂W2

∂t

+
∂W2

∂ζ1
(h1kζ2 +Φ1k) ≤ |ζ1|2−τ +𭟋γ2

1 |z2|2−τϱ2.
(29)

Substituting (29) into (18) yields

V̇2 ≤ −c𭟋1Λb1|ζ1|2−τ + ⌈z2⌉2−λ2h2ζ3 +𭟋γ2

1 |z2|2−τϱ2.
(30)

Hence, the virtual controller designed as

ζ∗3 = −𭟋γ2

1 ⌈z2⌉λ2−τβ2, (31)

with β2 ≥ max
k∈M

c+ ϱ2
h2

, which together with the fact that

𭟋1 ≥ 1 for all t ≥ 0 is such that

V̇2 ≤ −c𭟋1Λb1(|ζ1|2−τ + |z2|2−τ ) + ⌈z2⌉2−λ2h2(ζ3 − ζ∗3 ).
(32)

Following the same arguments of Step 2, for Step i ( i =
2, . . . , n), we can find a C1 and positive definite common
Lyapunov function Vi = V1 +

∑i
j=2 Wj with

Wj =

∫ ζj

ζ∗j

⌈
⌈s⌉

1
λj − ⌈ζ∗j ⌉

1
λj

⌉2−λj

ds, (33)

and a group of continuous virtual controllers ζ∗j+1 =

−𭟋γj

1 ⌈zj⌉λj−τβj , j = 1, . . . , n, such that

V̇j ≤ −c𭟋1

i∑
j=1

|zj |2−τ + ⌈zj⌉2−λjhjk(ζj+1 − ζ∗j+1).

(34)
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where z1 = ζ1. Consequently, the following result is ob-
tained.

Theorem 1. Considering system (11) under Assumptions
1 and 2, the common state feedback controller u1c = ζ∗n+1

with a properly selection of the design parameters renders
renders the following conclusions hold.

(i) The state ζ1 keeps in the set Ω1 for all t ≥ 0 without
violating the constraints.

(ii) The equilibrium at the origin is prescribed-time stable
within any given settling time T1.

Proof. First, since for all θ ∈ (0, 1),

tan

(
πθ

2

)
≤ πθ

2
sec

(
πθ

2

)
≤ πθ

2
sec2

(
πθ

2

)
(35)

holds, and then we have

Vb1 =
k2b1
π

tan

(
πζ21
2k2b1

)
≤ 1

2
Λb1(ζ1)|ζ1|2. (36)

Moreover, by Lemma 4, Wj can be calculated as

Wj =

∫ ζj

ζ∗
2

⌈
⌈s⌉

1
λj − ⌈ζ∗j ⌉

1
λj

⌉2−λj

ds.

≤ |zj |2−λj |ζj − ζ∗j |
≤ 21−λj |zj |2.

(37)

Therefore the following estimation is obtained.

V
2−τ
2

n =

Vb1 +

n∑
j=2

Wj


2−τ
2

≤ Λb1(ζ1)|ζ1|2−τ +

n∑
j=2

|zj |2−τ .

(38)

which together with (32) leads to

V̇n ≤ −c𭟋1V
2−τ
2

n . (39)

When 𭟋1 = Γ1, (39) indicates the equilibrium at the ori-
gin is prescribed-time stable and the convergence time satis-
fies

Ta ≤ Ts1

(
1− exp

(
−2V

τ
2

n (0)

cτTs1

))
< Ts1. (40)

When t ≥ Ts1, one has 𭟋1 = 1. In this case (39) indicates
that system states remain to the origin for all t ≥ Ts1. As a
result, it is concluded that the equilibrium at the origin is
prescribed-time stable within any given settling time T1.

3.3 PTS of the ζ0-subsystem
Since ζ̇(t) ≡ 0, then we have that ζ(t) keeps zero for all

t ≥ T1. As a result, to achieve the PTS task of system (1), we
next only need to stabilize the ζ0-subsystem in a prescribed
time T2 ≤ (1 − ε)Tp. Similar as that in Subsection 3.1,
introduce

Γ2 =
Ts2

Ts2 − t
, (41)

with the positive design parameter Ts2 satisfying 0 < Ts2 <
T2.

Take the candidate common Lyapunov function V0 as
V0 = ζ20/2 and select

u0c = −𭟋2κ⌈ζ0⌉1−ω, (42)

with κ and ω ∈ (0, 1) being positive constants, one obtains

V̇0 ≤ −κ𭟋2(ζ0)|ζ0|2−ω. (43)

Theorem 2. For the ζ0-subsystem of (1), the common
state feedback controller (47) drives the state ζ0 to zero
within the prescribed finite time T2 without violating the
constraints.

Proof. This proof follows the same line of that of Theo-
rem 1.

Till now, the state feedback design for PTS of the sys-
tem (1) is completed. Accordingly, the following theorem is
stated to sum up the result.

Theorem 3. Consider the system (1) satisfying Assump-
tions 1 and 2. If the switching control strategy

u0c =

{
u0c |(6), t < εTp,
u0c |(38), t ≥ εTp,

(44)

u1c = ζ∗n+1, (45)

with a properly selection of the design parameters is applied,
then the states of the CLS are driven to zero within any pre-
scribed finite time Tp.

Proof. The results hold readily from the results of Theo-
rems 1 and 2.

4 Conclusions

Based on the tan-type Barrier Lyapunov Function (BLF)
to handle the the asymmetric constraints, a non-scaling de-
sign is developed for a kind of switched NSs with asym-
metric output constraints . The suitable switching mech-
anism makes the proposed control scheme achieving the
prescribed-time stabilization, leading to a simpler controller.
Extension of this result with partial state information is one
of our future research topics.
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Sliding Mode Based Incremental Tracking Control of
High-Order Fully Actuated Systems with Application

YU Miao1, HOU Mingzhe1, TAN Feng1

1. Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin, 150001, China
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Abstract: This paper proposes a sliding-mode based incremental tracking control method for the high-order fully actuated
(HOFA) system. It is ensured that the tracking error converges to zero within the given settling time which is exactly user-
assignable and maintains there from then on. By designing the desired tracking error trajectory, the reaching phase of the
sliding mode is eliminated, and by adopting the basic principle of the INDI control strategy, the proposed control method only
needs relatively limited model information, improving the robustness of the system against model uncertainties. The proposed
approach is finally applied to the attitude tracking control of the high speed aircraft and the effectiveness of the design is verified
by numerical simulation results.

Key Words: Incremental control, sliding mode control, high-order fully actuated (HOFA) system, attitude tracking control

1 Introduction

As an important one of the nonlinear control approaches,
Nonlinear Dynamic Inversion (NDI) based on output feed-
back linearization has been widely used in the flight control
[1–3] . However, NDI depends on the accurate model of the
control system. When appearing modeling uncertainties, its
robustness will deteriorate. In order to overcome shortcom-
ing of NDI, the Incremental Nonlinear Dynamic Inversion
(INDI) control method is proposed. As a simplified or en-
hanced NDI [4], this method is a sensor-based variation of
the Nonlinear Dynamic Inversion control method. The theo-
retical development of the incremental control can be dated
back to the late 1990s, started with the work from Smith
[5] for NDI-based flight control. The main advantage of the
INDI is that it is weak model dependent and thus has good
robustness against model uncertainties. The INDI control
has been widely used for flight control applications [6–12].

Adopting the core idea of INDI, other incremental con-
trol strategies have emerged, where a typical one is the slid-
ing mode based incremental control. Refs.[13–15] investi-
gate the sliding mode based incremental fault-tolerant con-
trol methods and their applications. Due to its good robust-
ness against model uncertainties, the sliding mode based in-
cremental control have also been widely used to the control
of aircrafts, for example, [16] considers the sliding mode
based incremental control of rotor-crafts, [17] blended-wing-
body aircrafts, [18] tailless aircrafts and [19] morphing-wing
aircrafts. However, the existing sliding mode based incre-
mental control methods cannot ensure that the tracking error
converges to zero within the given settling time which is ex-
actly user-assignable and maintains there from then on.

Recently, high-order fully actuated (HOFA) model is pro-
posed by Duan [20] to serve as a general model for control
systems. Different from the state-space model, the HOFA
model with a huge advantage of the full-actuation feature
can easily eliminate the complicated nonlinear terms which

This work was supported by the National Natural Science Founda-
tion of China under Grant Number 62073096, the Science Center Pro-
gram of National Natural Science Foundation of China under Grant Number
62188101, and the Heilongjiang Touyan Team Program. (Corresponding
author: Mingzhe Hou).

are measurable. And many kinds of nonlinear systems in the
state-space form can also be converted into HOFA form. Due
to the full-actuation feature, the HOFA model is especially
effective and convenient in tackling with nonlinear control
problems. Some demonstrations can be found in [21] for
adaptive control, [22] for robust control, [23] for optimal
control and [24] for disturbance rejection control.

Motivated by the above discussions and based on our pre-
vious work [25], this paper proposes a novel sliding mode
based incremental control approach for the HOFA system
which could ensure that the tracking error converges to
zero within the given settling time which is exactly user
assignable and maintains there from then on. As a combina-
tion between incremental control and sliding mode control
(SMC), the proposed approach has less model dependence
by substituting a portion of the model information with ac-
celeration measurement, and thus reduces the influence of
model uncertainty on the system response. It possesses many
merits such as good robustness, simplicity, and effectiveness
to apply sliding mode based incremental control approach
to the HOFA system. The main contributions of this paper
can be summarized as follows. Firstly, the incremental con-
trol oriented model is established via expanding the HOFA
model by the first-order Taylor series. Then a desired output
tracking error trajectory which becomes zero after the user-
assigned settling time is designed, based on which the sliding
mode vector is constructed. Further, the sliding mode based
incremental control law is designed to ensure that the sliding
mode vector and thus the error between the output tracking
error and the desired output tracking error maintains zero all
the time, as a result, the output tracking error becomes zero
after the settling time as desired output tracking error tra-
jectory does. Finally, the proposed method is applied to the
attitude control of high speed aircrafts and the effectiveness
of the design is illustrated by simulation results.

The rest of this paper is structured as follows, a review of
the INDI strategy and the problem formulation are presented
in Section 2. In Section 3, the sliding mode based incremen-
tal control design for the HOFA system is given. Applica-
tion to the attitude tracking control of high speed aircrafts
and the effectiveness varication of the design result by nu-
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merical simulations are given in Section 4. And conclusions
are presented in Section 5.

2 Review of INDI and Problem Formulation

This section gives a brief review of the INDI control
framework and then introduces the problem to be solved in
the next section.

2.1 Review of INDI
Consider a class of nonlinear multiple-input multiple-

output (MIMO) systems of the form

ẋ = f(x) +G(x)u, (1)
y = h(x), (2)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector,
and y ∈ Rm is the output vector.

Instead of the total input vector u directly, the Incremental
Nonlinear Dynamic Inversion (INDI) is based on the compu-
tation of the demanded control increment. To do so, the non-
linear MIMO system (1) is approximated by the first-order
terms of its Taylor series expansion. Let x0 and u0 respec-
tively represent the values of x and u at the last sampling
time. For x and u in the neighborhoods of x0 and u0,

ẋ =ẋ0 +
∂

∂x
[f(x) +G(x)u]|x=x0

u=u0

(x− x0)

+
∂

∂u
[f(x) +G(x)u]|x=x0

u=u0

(u− u0) + o

≈ẋ0 +
∂

∂x
[f(x) +G(x)u]|x=x0

u=u0

(x− x0)

+G(x0)(u− u0), (3)

where ẋ0 = f(x0) + g(x0)u0, and o represents the higher
order term that can be neglected.

For very small time increments (high sampling frequen-
cies of the controller), it is reasonable to assume that u can
change significantly faster than x, therefore, the assumption
∆x = x − x0 = 0 can be made. Considering this, (3) is
further simplified as

ẋ ≈ ẋ0 +G(x0)∆u, (4)

where ∆u = u− u0.
When det G(x0) 6= 0, let

∆u = G−1(x0)(v − ẋ0), (5)

where v is an auxiliary control vector to be designed, then
one can obtain a linear system ẋ = v. Once v is determined,
the incremental control input can be computed by (5) and the
total control input can be computed by

u = u0 + ∆u = u0 +G−1(x0)(v − ẋ0). (6)

From this equation, the main advantage of the INDI can
be clearly known: the control law does not depend on f any-
more, which means that the designed controller is insensitive
to a part of the model, improving the robustness of the sys-
tem against model uncertainties.

2.2 Problem Formulation
Consider the following general HOFA system model with

multiple orders [26]:
x
(n1)
1

x
(n2)
2
...

x
(nm)
m

 =


f1(x

(0∼nj−1)
j |j=1∼m)

f2(x
(0∼nj−1)
j |j=1∼m)

...
fm(x

(0∼nj−1)
j |j=1∼m)

 +B(·)u, (7)

where u ∈ Rr is the control input; xj ∈ Rrj , j =
1, 2, . . . ,m, are a set of vectors of proper dimensions
with r1 + r2 + . . . + rm = r; nj , j = 1, 2, . . . ,m,
are a set of integers; x = [xT1 , x

T
2 , · · · , xTm]T

represents the system output; x
(nj)
j |j=1∼m =

[(x
(n1)
1 )T, (x

(n2)
2 )T, · · · , (x(nm)

m )T]T, x
(0∼nj−1)
j =

[xTj , ẋ
T
j , · · · , (x

(nm−1)
j )T]T and x

(0∼nj−1)
j |j=1∼m =

[(x
(0∼n1−1)
1 )T, (x

(0∼n2−1)
2 )T, · · · , (x(0∼nm−1)

m )T]T;
fj are known rj−dimensional smooth functions de-
fined on Rµ with µ =

∑m
j=1 rjnj ; B is known

r × r−dimensional smooth function defined on Rµ.
It is assumed in this paper that detB(·) 6= 0 for all
· ∈ Rµ. For convenience, x(0∼nj−1)

j |j=1∼m is some-
times denoted by X in the following derivation. Denote
f(X) = [(f1(X))T, (f2(X))T, · · · , (fm(X))T]T, then (7)
can be compactly written as

x
(nj)
j |j=1∼m = f(X) +B(X)u. (8)

In this paper, the basic principle of INDI is used in the
sliding mode control of the above HOFA system to achieve
the following design objective: Given am−dimensional ref-
erence signal xd(t) with xjd(t) of dimension rj belonging
to Cnj , j = 1, 2, 3 · · · ,m and satisfying that x(k)jd (t), k =
0, 1, · · · , nj are all bounded, and a settling time Tf > 0,
design a sliding mode based incremental control law u for
the HOFA system (8) such that all the signals in the closed
loop system are bounded, and the tracking error e = x− xd
equals to zero when t ≥ Tf .

3 Sliding Mode Based Incremental Control De-
sign for the HOFA System

First of all, the HOFA system (8) is expanded by the first-
order Taylor series around the point at the last sampling time
(denoted by the subscript 0)

x
(nj)
j |j=1∼m =x

(nj)
j0 |j=1∼m

+
∂

∂X
[f(X) +B(X)u]|X=X0

u=u0

(X −X0)

+
∂

∂u
[f(X) +B(X)u]|X=X0

u=u0

(u− u0)

+ o, (9)

with

x
(nj)
j0 |j=1∼m = f(X0) +B(X0)u0. (10)
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Omitting the high-order terms, one has that

x
(nj)
j |j=1∼m ≈x

(nj)
j0 |j=1∼m

+
∂

∂X
[f(X) +B(X)u]|X=X0

u=u0

(X −X0)

+B(X0)(u− u0). (11)

Considering the high sampling frequencies of the controller,
it is assumed that X −X0 = 0, then (11) can be written as
follows

x
(nj)
j |j=1∼m ≈ x

(nj)
j0 |j=1∼m +B(X0)(u− u0). (12)

Define

z = e− ed, (13)

where ed is the desired tracking error trajectory to be de-
signed, ed = [eT1d, e

T
2d, · · · , eTmd]T where rj−dimensional

ejd, j = 1, 2, · · · ,m, are such that: ejd(t), ėjd(t), · · · ,
e
(nj)
jd (t) are all bounded; ejd(0) = ej(0), ėjd(0) = ėj(0),

· · · , e(nj−1)
jd (0) = e

(nj−1)
j (0); ejd(t) = ėjd(t) = · · · =

e
(nj−1)
jd (t) = 0 when t ≥ Tf . It is noted that ejd can be

designed by all kinds of curve interpolation methods, with
t = 0 and t = Tf being the interpolation nodes. For exam-
ple, we can design ejd, j ∈ {1, 2, · · · ,m} as follows

ejd =

{
bj0 + bj1t+ · · ·+ bj(2nj−1)t

2nj−1, if 0 ≤ t ≤ Tf ,
0, if t > Tf ,

where bj0, bj1, · · · , bj(nj+1), · · · , bj(2nj−1) are determined
by

bj0 = ej(0), bj1 = ėj(0),

bj2 = −(2nj − 1)(ej(0)/T 2
f )− 2nj(ėj(0)/Tf ),

bj3 = (2nj − 2)(ej(0)/T 3
f ) + (2nj − 3)(ėj(0)/T 2

f ),

...

bj(nj+1) = (−1)nj [nj(ej(0)/T
nj+1
f ) + (nj − 1)ėj(0)/T

nj

f ],

...

bj(2nj−1) = 2(ej(0)/T
2nj−1
f ) + ėj(0)/T

2nj−2
f . (14)

From (13), we can obtain that

z
(nj)
j |j=1∼m = e

(nj)
j |j=1∼m − e

(nj)
jd |j=1∼m. (15)

Define the sliding mode variable as

sj =z
(nj−1)
j + Cj(nj−2)z

(nj−2)
j + · · ·

+ Cj0zj , j = 1, 2, · · · ,m, (16)

where Cj0, Cj1, · · · , Cj(nj−2) are design parameter matri-
ces such that

Φj =


0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
Cj0 Cj1 Cj2 · · · Cj(nj−2)

 , (17)

for j = 1, 2, · · · ,m are all Hurwitz matrices. It is easy to
obtain that sj(0) = 0 since zj(0), żj(0), · · · , z(nj−1)

j (0) are
all zero. Then we can obtain that

ṡj |j=1∼m =z
(nj)
j |j=1∼m + Cj(nj−2)z

(nj−1)
j |j=1∼m

+ · · ·+ Cj0żj |j=1∼m

=e
(nj)
j |j=1∼m − e

(nj)
jd |j=1∼m

+ Cj(nj−2)z
(nj−1)
j |j=1∼m

+ · · ·+ Cj0żj |j=1∼m

=x
(nj)
j |j=1∼m − x

(nj)
jd |j=1∼m

− e(nj)
jd |j=1∼m + Cj(nj−2)z

(nj−1)
j |j=1∼m

+ · · ·+ Cj0żj |j=1∼m. (18)

Substituting (12) into (18) yields that

ṡj |j=1∼m =x
(nj)
j0 |j=1∼m +B(X0)(u− u0)

− x(nj)
jd |j=1∼m − e

(nj)
jd |j=1∼m

+ Cj(nj−2)z
(nj−1)
j |j=1∼m

+ · · ·+ Cj0żj |j=1∼m

=x
(nj)
j0 |j=1∼m +B(X0)(u− u0) + η, (19)

where

η =− x(nj)
jd |j=1∼m − e

(nj)
jd |j=1∼m

+ Cj(nj−2)z
(nj−1)
j |j=1∼m

+ · · ·+ Cj0żj |j=1∼m. (20)

For det B(X0) 6= 0, the incremental control input is de-
signed as

u− u0 = −B−1(X0)(x
(nj)
j0 |j=1∼m + η +Ksj |j=1∼m),

(21)

where K = diag(K1,K2, · · · ,Km) with Kj ∈
Rrj×rj , j = 1, 2, · · · ,m being positive definite design
parameter matrices. As a result, the final sliding mode based
incremental control law is as follows

u =−B−1(X0)(x
(nj)
j0 |j=1∼m + η +Ksj |j=1∼m)

+ u0, (22)

and the following closed-loop dynamic equation can be ob-
tained

ṡj |j=1∼m = −Ksj |j=1∼m, (23)

The incremental controller structure is presented in Fig.1.
Choose

V =
1

2
sTj |j=1∼msj |j=1∼m, (24)

as the Lyapunov function, then the time derivative of V along
the closed-loop dynamic equation is

V̇ =sTj |j=1∼mṡj |j=1∼m

=− sTj |j=1∼mKsj |j=1∼m ≤ 0. (25)
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Fig. 1: Sliding mode based incremental control block diagram of the HOFA system.

Since sj(0)|j=1∼m = 0, one has that V (0) = 0, as a result,
V (t) = 0 for t ≥ 0, which in turn means that sj(t)|j=1∼m =
0 for t ≥ 0, or equivalently, sj(t) = 0, j = 1, 2, · · · ,m
for t ≥ 0. From (16), one can obtain that, for any j ∈
{1, 2, · · · ,m},

z
(1∼nj−1)
j = Φjz

(0∼nj−2)
j +Bjsj , (26)

where Bj = [0rj×rj , 0rj×rj , · · · , Irj×rj ]T. Considering

that Φj is Hurwitz, one has that z(0∼nj−2)
j = 0 and thus

zj = 0 for t ≥ 0. Therefore, ej(t) = ejd(t) for t ≥ 0. This
means that the tracking error ej(t) = 0 for t ≥ Tf since
ejd(t) = 0 for t ≥ Tf .

It is noted, by designing the desired tracking error trajec-
tory, it is ensured that sj(0)|j=1∼m = 0, this means that
the reaching phase of the sliding mode is eliminated. Ad-
ditionally, by adopting the basic principle of the INDI, the
proposed control law does not depend on f anymore, which
means that it only needs relatively limited model informa-
tion, improving the robustness of the system against model
uncertainties.

4 Application to the Attitude Control of High
Speed Aircrafts

Consider control of the high speed aircraft attitude system
given in [27]. Define

x =

 γ
ψ
ϑ

 , u =

 δx
δy
δz

 , (27)

where γ, ψ and ϑ are respectively the roll angle, the yaw
angle and the pitch angle; δx, δy and δz are the deflection an-
gles of the control surfaces. The simplified dynamic model
for the attitude system of the high speed aircraft can be writ-
ten in the following HOFA system form:

ẍ = D(x, ẋ) +G(x)u, (28)

whereD(x, ẋ) = F (x, ẋ)+qslB(x)m0,G(x) = qslB(x)T
(q is the dynamical pressure, s is the reference area and l is

the reference length) with

B(x) =


1
Jx

− tan(ϑ)cos(γ)Jy

tan(ϑ)sin(γ)
Jz

0 cos(γ)
Jycos(ϑ)

− sin(γ)
Jzcos(ϑ)

0 sin(γ)
Jy

cos(γ)
Jz

 ,

m0 =

 mx(V, α, β, ωx, ωy, ωz, 0, 0, 0)
my(V, α, β, ωx, ωy, ωz, 0, 0, 0)
mz(V, α, β, ωx, ωy, ωz, 0, 0, 0)

 ,
T =


∂mx

∂δx
∂mx

∂δy
∂mx

∂δz
∂my

∂δx

∂my

∂δy

∂my

∂δz
∂mz

∂δx
∂mz

∂δy
∂mz

∂δz

 , (29)

and

F (x, ẋ) =[f1(x, ẋ), f2(x, ẋ), f3(x, ẋ)]T (30)

with

f1 =Θ(0, 1, 0)ϑ̇2 sin γ cos γ

−Θ(sin2 ϑ, cos2 ϑ, sin2 ϑ)ψ̇2 sin γ cos γ

−Θ0(ϑ, γ)
1

cosϑ
ψ̇ϑ̇− 1

cosϑ
ψ̇ϑ̇

+ Θ(1, 0, 1)γ̇ψ̇ sinϑ sin γ cos γ

+ [Θ(sin2 γ, 0,− cos2 γ) + 1]γ̇ϑ̇tanϑ

f2 =[Θ(− sin γ, 0, cos γ)
cos γ

cosϑ
− 1

cosϑ
]γ̇ϑ̇

+ Θ(sin γ, 0,− cos γ)ψ̇2 sinϑ sin γ

+ Θ(− sin γ, 0, cos γ)ϑ̇ψ̇ tanϑ cos γ

−Θ(sin γ, 0,− cos γ)ψ̇γ̇ sin γ + ψ̇ϑ̇ tanϑ

f3 =Θ(1, 0, 1)(ψ̇ sinϑ+ γ̇)ϑ̇ sin γ cos γ

+ Θ(cos2 γ, 0,− sin2 γ)ψ̇2 sinϑ cosϑ

+ (Θ(cos2 γ, 0,− sin2 γ) + 1)ψ̇γ̇ cosϑ

,

where V is the velocity, wx, wy and wz are the attitude an-
gular velocity; α, β are respectively the angle of attack and
the angle of sideslip, and the Θ function is defined by ([28])

Θ(ξ, ζ, τ) =
Jx − Jy
Jz

ξ +
Jy − Jz
Jx

ζ +
Jz − Jx
Jy

τ, (31)
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where ξ, ζ and τ are the variables of the function; Jx, Jy, Jz
are the rotary inertia corresponding to the body coordinate.

The objective is to design an attitude control law based on
the model (28) to drive x to track the given reference signal
xd = [γd, ψd, ϑd]

T.
Expanding system (28) by the first-order Taylor series,

one can obtain that

ẍ ≈ ẍ0 +G(x0)(u− u0), (32)

where x0, ẍ0 and u0 are all obtained at the last sampling
time.

According to the derivation of the sliding mode based in-
cremental control in the previous section, the sliding mode
variable is designed as

s = ż + Cz. (33)

where C = diag(c1, c2, c3) with c1, c2, c3 being positive de-
sign parameters, z = x − xd − ed, and ed is designed as
follows

ed =

{
b0 + b1t+ b2t

2 + b3t
3, if 0 ≤ t ≤ Tf ,

0, if t > Tf ,
(34)

with

b0 = e(0), b1 = ė(0),

b2 = −3(e(0)/T 2
f )− 2(ė(0)/Tf ),

b3 = 2(e(0)/T 3
f ) + (ė(0)/T 2

f ). (35)

The final sliding mode based incremental control law is as
follows

u = u0 −G−1(x0)(ẍ0 − ẍd − ëd + Cż +Ks). (36)

In order to identify the performance of the obtained slid-
ing mode based incremental attitude controller, the 6-DOF
numerical simulation is carried out on the Winged-Cone hy-
personic aircraft model. The equations to compute the aero-
dynamic moments and forces and the other parameters about
the aircraft can be found in [29].

In the simulation, the initial values of roll, yaw and pitch
angles are respectively set as −3◦, 1◦ and 2.4◦; the initial
value of roll, yaw and pitch angular rates are all set as 0; the
design parameters are set as follows: C = diag(10, 10, 10),
K = diag(10, 10, 10), Tf = 2s; the attitude reference signal
is taken as xd = [0, 0, ϑd]

T with ϑd being generated by the
guidance system; the simulation step is set as T = 0.01s;
and the angular accelerations ẍ0 are computed by

ẍ[k] =
ẋ[k]− ẋ[k − 1]

T
. (37)

The simulation results are shown in Figs.2 to Figs.4. It is
easy to see that the reference signals are tracked very well
with the tracking error being zero when t ≥ Tf . The sim-
ulation results show the effectiveness of the control method
proposed in this paper.

5 Conclusion

In this paper, a sliding mode based incremental output
tracking control method is proposed for the HOFA system. It

is proved that the proposed control method could ensure that
the tracking error equal to zero after the user-assigned set-
tling time. The proposed approach is further applied to the
attitude tracking control of some high speed aircraft. The
simulation results show the effectiveness of the obtained re-
sults.
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Fig. 2: The attitude angles and their reference signals.
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Fig. 3: The attitude angular velocities.
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High-Order Sliding Mode Control for Flexible Servo Systems
using Fully Actuated System Approach
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Abstract: This paper presents a high-order sliding mode control scheme for servo systems with the unknown disturbance via
the fully actuated system (FAS) approach. Firstly, a three-order sliding surface based on the FAS approach is developed, and
the integral part of the sliding surface contains the dynamical compensator, which can optimize the control performance of the
system. Then, the asymptotical stability for sliding mode dynamics is ensured based on the Lyapunov technology. In addition,
a sliding mode controller is proposed such that the unknown disturbance can be compensated and the trajectories of the system
can be driven onto the sliding surface in a finite time. Finally, the effectiveness of the proposed approach is validated through
comparative simulations.

Key Words: Sliding mode control (SMC), FAS approach, the unknown disturbance, the dynamical compensator.

1 Introduction

Servo systems play a pivotal role in diverse processes,
encompassing industrial applications and mechatronic sys-
tems. Wherein, velocity control assumes paramount sig-
nificance. Consequently, numerous studies are dedicated
to designing velocity control schemes that achieve regu-
lation, tracking accuracy, robustness, and energy efficien-
cy [1, 2]. Several advanced control algorithms, including
proportional-integral-derivative (PID) control [3, 4], sliding
mode control (SMC) [5], and adaptive control [6] etc. have
been employed to enhance the control performance of servo
systems. Servo systems pertain to a category of underac-
tuated mechanical systems where the dimension of control
input is less than the degrees of freedom in motion [7]. The
presence of underactuation poses challenges and complexi-
ties in designing and analyzing control systems. Servo sys-
tems inevitably encounter parameter uncertainties and un-
known disturbances due to environmental changes [8]. Al-
though high-gain feedback control is commonly employed to
enhance disturbance rejection, it can potentially induce me-
chanical resonance and even lead to equipment damage. To
deal with this problem, a state feedback controller with a dy-
namical compensator is proposed based on the fully actuat-
ed system (FAS) approach. However, unknown disturbances
still cannot be fully compensated.

The SMC algorithm is highly effective and robust, as it
demonstrates insensitivity to model uncertainties, external
disturbances, and parameter variations [9–12]. Over the
past few decades, SMC has been extensively applied in var-
ious physical systems such as robot manipulators, automo-
tive engines, and power systems [12–14]. Consequently,
the design problem of SMC has garnered significant atten-
tion with notable achievements for both linear and nonlinear

This work has been partially supported by Shenzhen Key Laboratory
of Control Theory and Intelligent Systems ZDSYS20220330161800001,
Shenzhen Science and Technology Program under grant No. KQT-
D20221101093557010 and the 8th batch of post-doctoral Innovative Talent
Support Program BX20230150.

systems[15–17]. In [16], a design method for sliding mode
control is developed for a class of fully nonlinear systems in
generalized regular form, considering both input distribution
uncertainty and system uncertainties. Based on the general-
ized regular form, a new nonlinear sliding surface is devel-
oped, and the uniform ultimate stability of the corresponding
sliding mode dynamics is analyzed. However, the research
on sliding mode control of nonlinear systems is still not very
sufficient.

As widely acknowledged, the physical world is predom-
inantly governed by a set of fundamental physical laws.
These laws have been employed to construct various basic
second-order systems for modeling purposes, typically char-
acterized as fully actuated [18]. Consequently, approaches
towards higher order fully actuated (HOFA) systems have
gradually emerged [18–20]. According to the FAS approach,
a majority of physical nonlinear systems can be represented
as a fully actuated model, which serves as an alternative sys-
tem description form and offers enhanced universality, sim-
plicity, and flexibility for the design and analysis of nonlin-
ear systems. Thus, the HOFA system approach has received
wide research [21–27]. Therein, the focus of [21] is on the
cooperative control of high-order fully actuated networked
multiagent systems (HOFA-NMASs). For effectively facili-
tating cooperation among HOFA-NMASs and actively com-
pensating for communication delays, a proportional-integral
(PI) predictive control scheme is proposed. Moreover, [22]
develops an optimal tracking control strategy for a discrete-
time nonlinear time-varying FAS with full state constraints
and time-varying delays. To achieve this, a predictive con-
troller by integrating the predictive control scheme and the
constraint elimination technique into FAS approaches is de-
signed. In addition, [25] investigates the problem of adaptive
event-triggered control for a class of uncertain HOFA sys-
tems. An adaptive technique is employed to estimate the
unknown parameters, while concurrently co-designing the
controller and its event-triggered mechanism in order to op-
timize energy efficiency during signal transmission.

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China
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Motivated by the above discussions, this paper studies
high-order sliding mode control for FS systems with the un-
known disturbance using the FAS approach. The typical
characteristics of FS systems are described by a two-mass
system (TMS) model [27]. The main contributions of this
study are summarized as follows:

1) A three-order sliding surface based on the FAS ap-
proach is proposed, and the dynamical compensator is added
in the integral part of the sliding surface, which can optimize
the control performance of the system.

2) The asymptotical stability for sliding mode dynamics is
ensured based on the Lyapunov technology. Then, a sliding
mode controller based on the FAS approach is proposed to
match the unknown disturbance.

Notation: In this paper, Rr stands for the r-dimensional
Euclidean space; P < 0 is a negative definite matrix.

2 System descriptions

2.1 HOFA model with uncertain nonlinearity

Fig. 1: The diagram of TMS configuration.

The diagram of the TMS configuration is depicted in Fig.
1, comprising two main components: the mechanical sub-
system and the electrical subsystem. In the mechanical sub-
system, a spring connects the driving shaft and the load shaft,
with negligible impact on modeling due to its low damp-
ing factor. The electrical subsystem employs a permanent
magnetic synchronous motor (PMSM) for supplying driv-
ing torque, while the servo driver operates in torque con-
trol mode. Typically, achieving a control bandwidth exceed-
ing 1000 Hz through current closed-loop enables significant-
ly faster response compared to the mechanical subsystem.
Consequently, neglecting current-loop dynamics simplifies
TMS modeling [27].{

JLθ̈L +BLθ̇L + TL = Ks (θm − θL)
Jmθ̈m +Bmθ̇m +Ks (θm − θL) = u,

(1)

where θL denotes the motor shaft, θm is load shaft position,
JL is the moment of inertia of motor, Jm is the moment of
inertia of load,BL is the damping coefficient of motor,Bm is
the damping coefficient of load, Ks and TL are the stiffness
of spring and denotes the external disturbance, respectively,
u is the control input torque.

Based on [27], the following HOFA model can be ob-
tained:

θ
(4)
L = −β3

...
θL − β2θ̈L − β1θ̇L + b0u− d1, (2)

where 
β1 = 1

JmJL
Ks (Bm +BL)

β2 = 1
JmJL

(KsJm +KsJL +BmBL)

β3 = 1
JmJL

(JmBL +BmJL)

b0 = Ks

JmJL
.

d1 represents the external disturbance given by

d1 =
1

JmJL

(
JmT̈L +BmṪL +KsTL

)
.

Assumption 1 [25]
1). The system states θL, θ̇L, θm, and θ̇m are measurable;
2). The system parameters are constants and their deviations
are bounded;
3). The load disturbance is bounded and differentiable.
4). d1 is a bounded external disturbance satisfying ‖d1‖ ≤
dmax.

Remark 1 It can be seen that the HOFA model is same as
the literature [27]. A state feedback control law with a dy-
namical compensator is proposed for the HOFA system (2)
in [27]. However, the external disturbance is not well com-
pensated by the proposed controller in [27]. To deal with
this problem, a sliding mode control method based on the
HOFA approach is developed in this paper.

2.2 Three-order sliding surface
In the following, the three-order sliding function is de-

signed as

s(t) =
...
θL +

∫ t

0

3∑
i=0

kiθ
(i)
L (v)−Kωω (v) dv, (3)

where ω̇ = aωω+bxθ, θ =
[
θL θ̇L θ̈L

...
θL

]T
,Kω =[

kω1 kω2 kω3 kω4

]T
.

Then, we have

ṡ(t) =θ
(4)
L +

3∑
i=0

kiθ
(i)
L −Kωω, (4)

When s(t) = ṡ(t) = 0, an equivalent control law can be
developed:

ueq =
1

b0
(

3∑
i=1

βiθ
(i)
L −

3∑
i=0

kiθ
(i)
L +Kωω + d1), (5)

Then, the sliding mode dynamics is obtained as:

θ
(4)
L = −

3∑
i=0

kiθ
(i)
L +Kωω, (6)

Let kx0 = − 1
b0
k0, kxi = 1

b0
(βi − ki), i = 1, 2, 3. The

closed-loop system (6) can be transformed as:[
θ̇
ω̇

]
=

[
A+BKx Kω

bx aω

] [
θ
ω

]
, (7)

where

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 −β1 −β2 −β3

 , B =


0
0
0
b0

 ,
Kx =

[
kx0 kx1 kx2 kx3

]
.
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Remark 2 In this paper, a three-order sliding surface based
on the HOFA system approach is proposed. At the same time,
the pole assignment component and the dynamical compen-
sator are added in the integral part of the sliding surface.
This not only ensures the stability of the system, but also op-
timizes the control performance of the system through the
dynamic compensator.

2.3 Stability analysis
In the theorems, the asymptotic stability of the closed-

loop system (7) is guaranteed based on the Lyapunov tech-
nology. Then, the state trajectories of the closed-loop system
(6) can be driven onto the sliding surface in a finite time.

Theorem 1. Consider HOFA system (2). For given vector
bx, matricesA,B,Kω , if there exist a positive matrix P > 0
such that the following inequality holds

1

2

[
A+BKx BKω

bx aω

]T
P

+
1

2
P

[
A+BKx BKω

bx aω

]
< 0,

(8)

then the closed-loop system (7) can asymptotically stabilize.
Proof. Choose the following Lyapunov function

V (t) =
1

2

[
θL
ω

]T
P

[
θL
ω

]
. (9)

Then, we have

V̇ (t) =
1

2

[
θ
ω

]T [
A+BKx BKω

bx aω

]T
P

[
θ
ω

]
+

1

2

[
θ
ω

]T
P

[
A+BKx BKω

bx aω

] [
θ
ω

]
.

(10)

Based on (8), we get V̇ (t) < 0 when
[
θ
ω

]
6= 0. Thus,

the asymptotic stability of the system (2) can be guaranteed.
This completes the proof.

Remark 3 Note that the first-order dynamical compensator
is applied as an illustrative example in [27], and Kω = kω1,
aω = aω1, bx =

[
bx1 bx2 bx3 bx4

]
are obtained. By

using the method in [27], the system (6) can be transformed
into the following HOFA model:

θ
(5)
L +

4∑
i=0

γiθ
(i)
L = 0, (11)

with
γ0 = b0bx1aω1 − b0kω1bx1
γ1 = −b0kx1 − (β1 − b0kx2) aω1 − b0kω1bx2
γ2 = β1 − b0kx2 − (β2 − b0kx3) aω1 − b0kω1bx3
γ3 = β2 − b0kx3 − (β3 − b0kx3) aω1 − b0kω1bx3
γ4 = β3 − b0kx4 − aω1.

(12)

Then, the characteristic polynomial can be designed as

s5 +

4∑
i=0

γis
i =

∏5

i
(s+ λi), (13)

with si = −λi, λi > 0, i = 1, 2, 3, 4, 5.
The control gains can be deduced as

kω1 = − 1
b0bx1

γ0
kx1 = − 1

b0
γ1 − kω1bx2

kx2 = − 1
b0

(γ2 − β1)− kω1bx3
kx3 = − 1

b0
(γ3 − β2)− kω1bx4

kx4 = − 1
b0

(γ4 − β3) ,

(14)

where bxi, i = 1, 2, 3, 4, are arbitrarily given parameters
satisfying bx1 6= 0. Thus, the explicit solution of the control
gains can still be obtained in this paper.

2.4 SMC law synthesis
In this subsection, the state trajectories of the closed-loop

system (7) can be driven onto the sliding surface in a finite
time and maintain there by the developed SMC law.

Theorem 2. Consider HOFA system (2). For given posi-
tive constants dmax > 0 and % > 0, if the sliding surface is
designed as (3), then the state trajectories of the closed-loop
system in (6) can be driven onto the sliding surface s(t) = 0
in a finite time by the following SMC law:

u(t) =
1

b0
(

3∑
i=0

βiθ
(i)
L (t)−

3∑
i=0

kiθ
(i)
L +Kωω (t)

− (dmax + %)sign(s(t))).

(15)

Proof. Choose the following Lyapunov function:

V (t) =
1

2
sT (t)s(t). (16)

Then, we have

V̇ (t) =sT (t)ṡ(t)

=sT (t)(θ
(4)
L +

3∑
i=0

kiθ
(i)
L −Kωω)

=sT (t)(−β3
...
θL − β2θ̈L − β1θ̇L + b0u

− d1 +
3∑

i=0

kiθ
(i)
L −Kωω)

=sT (t)(−β3
...
θL − β2θ̈L − β1θ̇L +

3∑
i=0

βiθ
(i)
L

−
3∑

i=0

kiθ
(i)
L +Kωω − (dmax + %)sign(s(t))

− d1 +
3∑

i=0

kiθ
(i)
L −Kωω)

≤− % ‖s(t)‖ , ∀ ‖s (t)‖ 6= 0.

(17)

Thus, the closed-loop system (6) states will be driven into
sliding surface in a finite time. This completes the proof.

Remark 4 Different with the literature [27], based on the
FAS approach, a sliding mode control with a first-order dy-
namical compensator law is designed in (15). The external
disturbance can be matched by dmaxsign(s(t)).
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3 Experimental Results

To verify the effectiveness of the proposed method, the
controller algorithm is implemented using the function of
MATLAB/ Simulink module in this section.

The system parameters are same as [27]. The proposed
approach is demonstrated to be superior through a compari-
son with the following two control approaches.

When we choose a sine disturbance, the results of the
comparison are shown in Figs. 2-4.

S-FAS approach This approach has been used in [27].
Output position and output velocity under sine disturbance
are shown in Figs. 2-3. We can see from the picture, and the
curve fluctuations of output position and output velocity are
very large.

DCSMC-FAS approach This is the proposed SMC-FAS
approach based on a dynamical compensator. The SMC law
is developed in (15). The results shows that the curve fluctu-
ations of output position and output velocity are very small.

Fig. 2: Output position under sine disturbance.

Fig. 3: Output velocity under sine disturbance.

When we choose a ramp disturbance, the results of the
comparison are shown in Figs. 5-6.

S-FAS approach Output position under ramp disturbance
is ploted in Figs. 5-6. Similarly, the curve fluctuations of
output position is very large.

DCSMC-FAS approach This is the proposed SMC-FAS
approach based on a dynamical compensator. The SMC law
is developed in (15). The results shows that the curve fluctu-
ations of output position is very small.

4 Conclusions

In this paper, the high-order SMC for FS systems with un-
known disturbance via the FAS approach has been studied.

Fig. 4: Sine disturbance.

Fig. 5: Output position under ramp disturbance.

Fig. 6: Ramp disturbance.

The three-order sliding surface with the dynamical compen-
sator has been designed. Then, the asymptotical stability of
sliding mode dynamics has been obtained based on the Lya-
punov technology even if there exists the unknown distur-
bance. Then, a sliding mode controller has been proposed
such that the trajectories of the system can be driven onto
the sliding surface in a finite time. Finally, a comparative
simulation has been developed to illustrate the effectiveness
of the proposed approach.

On the other hand, the small embedded microprocessors
have been widely applied in industrial equipment, includ-
ing the FS systems. Thus, the FS systems can be treated
as networked control systems, which are often implemented
over networks, where controllers communicate with actua-
tors and/or sensors through shared networks. In such im-
plementation, a control task consists of sampling physical
signals. However, the network communication resources are
usually limited. Thus, in future studies, the proposed method
can be extended to event-triggered sliding mode control for
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flexible servo systems using the FAS approach.
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Abstract: The 3D Cubli is an interesting underactuated mechatronics system that has reaction wheels mounted on three of its
faces and can balance on its corner or edge by applying controlled torques to the reaction wheels. Control of the 3D Cubli has
attracted much attention in the literature, yet remains challenging due to strong nonlinearity and coupling inherent in the system,
as well as adverse effects from external disturbances, unknown friction and other unmodeled dynamics that further intensify
the difficulty of regulating system attitude. To address the above issues, this paper is concerned with high-order fully actuated
(HOFA) system approach to control of the 3D Cubli. First, by adopting the concepts and tools from the recently developed fully
actuated system approach, we transform the system dynamics of the Cubli into a nonlinear HOFA model. We leverage the full
actuation property of the latter model to design a baseline controller to eliminate the nonlinearities inherent in the Cubli system.
Second, a nonlinear observer is developed to estimate the additive system disturbance in real time. The estimated disturbance
is then used to enhance the performance of the baseline controller. The stability of the closed-loop system has been rigorously
established. Compared to the linearization-based LQR strategy, the proposed framework exhibits significantly better performance
in hardware experiments that were conducted on a self-built 3D Cubli platform by the authors.

Key Words: HOFA system approaches, Underactuated Cubli, Nonlinear systems, Unmodeled dynamics, Nonlinear observer

1 Introduction

Control of underactuated systems has received much at-
tention in the robotics and control community [1–3]. The
3D Cubli, introduced in [4], is an interesting underactuated
mechatronics system that has reaction wheels mounted on
three of its faces and can balance on its corner or edge by
applying torques to the reaction wheels. Due to the potential
applications (e.g., in space exploration [5]), control of the
3D Cubli has aroused considerable interest recently. A num-
ber of controller design frameworks have been proposed and
examined for the 3D Cubli, including backstepping-based
control [6], Linear Quadratic Regulator (LQR) [7, 8], etc.

In particular, Muehlebach et al. suggested a backstepping-
based control scheme for the underactuated 3D Cubli sys-
tem, which ensures the global stability of the system [6].
Gajamohan et al. designed a LQR-based controller for the
2D Cubli system and verified the effectiveness of this strat-
egy through an experimental platform [7]. Furthermore, Ga-
jamohan et al. employed a frequency-domain-based method
to identify the parameters of the 3D Cubli, and achieved cor-
ner balancing based on the LQR-based controller, which was
also validated through a 3D Cubli hardware system [8]. Re-
cently, Hofer et al. introduced the one-wheel Cubli, a 3D
inverted pendulum that can balance with a single reaction
wheel [9]. They rederived the model of the system dynam-
ics utilizing first principles and designed an LQR-based con-
troller to stabilize the system in its upright equilibrium state.

This paper is concerned with control of the underactuated

Zhijie Liu and Fuxing Yao contributed equally to this work.
This work was supported by the Science, Technology, and Innova-
tion Commission of Shenzhen Municipality, China, under Grant No.
ZDSYS20220330161800001, and the Shenzhen Science and Technology
Program under Grant No. KQTD20221101093557010. This work was also
supported by the Science Center Program of the National Natural Science
Foundation of China (NSFC) under Grant No. 62188101, as well as the
NSFC under Grant No. 62350055.

3D Cubli that is influenced by unmodeled dynamics. Our in-
terest in considering the above scenario is motivated by the
fact that the motor within the Cubli system might experience
unknown friction [10–12] or the system might not be per-
fectly built (in our self-built Cubli, the flying wheels are not
installed symmetrically, resulting in structural imbalance).

Toward the goal of achieving satisfactory performance un-
der unmodeled dynamics, we propose a fully actuated sys-
tem approach to control the 3D Cubli. First, based on the
concepts and tools from the recently developed fully actu-
ated system approach [13–16], we transform the system dy-
namics of the Cubli into a nonlinear high-order fully actuated
(HOFA) model. By leveraging the full actuation property of
the latter model, we design a baseline controller to elimi-
nate the nonlinearities inherent in the system. Afterward, a
nonlinear observer is developed to estimate the additive sys-
tem disturbance in real-time. The estimated disturbance is
used to enhance the performance of the baseline controller.
The stability of the closed-loop system has been rigorously
established. Compared to the linearization-based LQR strat-
egy [8], the proposed framework exhibits significantly better
performance in hardware experiments that were conducted
on our 3D Cubli platform.

2 Problem Formulation and Preliminaries

Consider the Cubli system depicted in Fig. 1. Table. 1
contains notations used in this paper, where i = x, y, z and
j = 1, 2, 3. Define Θω ≜ diag(Θω1,Θω2,Θω3) and Θ̂0 ≜
Θ0 −Θw. The Lagrangian of the Cubli system is given by:

L =
1

2
ωT

h Θ̂0ωh +
1

2
(ωh + ωw)

TΘw(ωh + ωw)

+mTg.
(1)

Based on Eq. (1), we can calculate the generalized momenta
for the full Cubli system:
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Table 1: Relevant Parameters and Variables of the Cubli
Symbol Description Unit
Θ0 Total moment of inertia of the Cubli kg ·m2

Θwj Moment of inertia of each reaction wheel kg ·m2

m
Position vector from O to the center

of gravity multiplied by the total mass
kg ·m

g Gravity vector m/s2

ωh Body angular velocity rad/s
ωw Reaction wheel angular velocity rad/s
T Torque vector N ·m
D Unmodeled dynamics N ·m

pωh
≜

∂LT

∂ωh
= Θ̂0ωh +Θw(ωh + ωw), (2)

pωw
≜

∂LT

∂ωw
= Θw(ωh + ωw), (3)

From Eqs. (1)-(3), based on the Euler-Lagrange equations,
the dynamic model of the Cubli system can be established:

ṗωh
= −ωh × pωh

+m× g, (4)

ṗωw
= T +D, (5)

where D stands for the unmodeled dynamics. We make the
following assumption for D.

Fig. 1: Schematic diagram of the Cubli system. Note that 1)
i and i′ stand for the principle axis of the body fixed frame
and inertial frame; 2) O denote the common origin of two
coordinate systems.

Assumption 1. The unmodeled dynamics D ∈ R3 is con-
tinuous, smooth, and bounded, and there exists a positive-
definite scalar vector ρ such that the 1st order derivative of
unmodeled dynamics satisfies: ∥Ḋ∥ ≤ ρ.

3 Main Results

3.1 A HOFA Model for 3D Cubli
Based on the FA system approach [13–16], we next trans-

form the Cubli system into a FA model. Firstly, based on
Coriolis Theorem [17], Eq. (4) can be converted into:

I ṗωh
= RI

Bṗωh
+ Iωh × Ipωh

= Im× Ig. (6)

By inspecting Eq. (6), we know that the third element of the
vector I ṗωh

is always zero. Hence, one can extract the first
two elements of Ipωh

by denoting

x1
∆
=

[
Ipωh1

Ipωh2

]T
= N Ipωh

, (7)

where

N =

[
1 0 0
0 1 0

]
.

We also introduce matrix M =

[
0 1
−1 0

]
such that the

cross product a× b of vectors a and b satisfies

N(a× b) = −a3MNb+ b3MNa. (8)

In light of (6), (8) and Coriolis Theorem, deriving the 1st
order of derivatives of x1 w.r.t. time yields:

ẋ1 = N I ṗωh
= N(Im× Ig)

= −Im3MN Ig − |g|MN Im

= − |g|MN Im.

(9)

One can also calculate the second and third orders of deriva-
tives of x1 w.r.t. time, and obtain:

ẍ1 = − |g|MN Iṁ

= − |g|MN(RI
Bṁ+ Iωh × Im)

= − |g|MN(Iωh × Im),

(10)

and

x1
(3) = − |g|MN(Iω̇h × Im+ Iωh × Iṁ)

= − |g|MN(Iω̇h × Im)

− |g|MN [Iωh × (Iωh × Im)].

(11)

Then, by utilizing (2) and (3) , one has:

ωh = Θ̂
−1

0 (pωh
− pωw

). (12)

Deriving the 1st order of derivatives of ωh w.r.t. time and
using (4), (5) and (12) gives

ω̇h = Θ̂
−1

0 (ṗωh
− ṗωw

) = Θ̂
−1

0 (ṗωh
− T −D)

= Θ̂
−1

0 (−ωh × pωh
+m× g − T −D).

(13)

One can project ω̇h in the inertial frame, and then construct
a HOFA controller utilizing the FA system approach [13–16]
for the Cubli system with unmodeled dynamics as follows:

T = −ωh × pωh
+m× g −Θ0(R

I
B)

T Iv, (14)

where Iv is a reference input vector, whose specific form can
be expressed as:

Iv = RI
BΘ̂

−1

0 D + ω̇h. (15)

Then, substituting Eqs. (15) and (8) into Eq. (11) yields:

x
(3)
1 = − |g|MN [(Iv −RI

BΘ̂
−1

0 D)× Im]

− |g|MN [Iωh × (Iωh + Im)]

= |g| [Im3N(Iv −RI
BΘ̂

−1

0 D)]

− |g| (Iv3N
Im+MN Iω̃h

Iω̃h
Im).

(16)

Based on Eq. (16), one can establish the relationship be-
tween the reference input vector Iv and the virtual variable
x
(3)
1 :

N Iv =
1

Im3
(
z

|g|
+ Iv3N

Im)

+
1

Im3
MN Iω̃h

Iω̃h
Im,

(17)
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within which z = x
(3)
1 + |g| Im3NRI

BΘ̂
−1

0 D. In accor-
dance with Eqs. (15) and (17), the following linear FA sys-
tem can be derived:{

x
(3)
1 = z − |g| Im3NRI

BΘ̂
−1

0 D,
Iω̇h3 = Iv3 − PRI

BΘ̂
−1

0 D.
(18)

where P =
[
0 0 1

]
.

3.2 Observer Design for Disturbance Estimation
Note that Eq. (18) can be rewritten in the following form:

ξ̇ = τ +ΥRI
BΘ̂

−1

0 D = τ +D, (19)

with 
ξ̇

∆
=

[
x
(3)
1

Iω̇h3

]T
, τ

∆
=

[
z Iv3

]T
,

Υ
∆
=

[
− |g| Im3N −P

]T
,

D = ΥRI
BΘ̂

−1

0 D.

For the linear closed-loop system (19), one can design a non-
linear observer D̂ estimate the unmodeled dynamics [18]:

˙̂
D = Ξξ̇ −Ξ(D̂+ τ ), (20)

within which Ξ ∈ R3×3 represents a matrix to be designed
to guarantee the stability of the estimation error.

Note, however, that the observer in the form of (20) con-
tains unmeasurable state variables ξ̇ such that it cannot be
applied in practice. To handle this issue and eliminate the
necessity of unmeasurable information, we propose to re-
construct the observer as follows:{

D̂ = Ψ+Z,

Ψ̇ = −Ξ(τ +Ψ+Z),
(21)

where Z =
∫ t

0
Ξξ̇dt. In the meantime, solving for the first-

order derivative of Z w.r.t. time yields:

∂Z

∂t
=

∂Z

∂ξ

∂ξ

∂t
=

∂Z

∂ξ
ξ̇ = Ξξ̇. (22)

Denote Ξ as a gain matrix to be designed. We then define
the structure of Z as:

Z = Ξξ. (23)

We then have the following sufficient condition for the Lya-
punov stability of the nonlinear observer (21) and (23).

Theorem 1. Consider the linear FA system with unmodeled
dynamics D presented in Eq. (19). Given Assumption 1, if
the nonlinear observer takes the forms as in Eq. (21), and
the vector Z related to this observer D̂ is provided by Eq.
(23) with Ξ being select as a diagonal matrix that satisfies
the following condition{

Ξ = diag(Ξ1,Ξ2,Ξ3),
Ξj > 0, j = 1, 2, 3,

(24)

then the estimation error of the nonlinear observer (21) is
globally uniformly bounded.

Proof. Firstly, we define the estimation error of the nonlin-
ear observer D̂ as follows

D̃ = D̂−D, ˙̃
D = ˙̂

D− Ḋ. (25)

Based on (19), (21), (22) and (25), one can then calculate the
1st order derivative of the nonlinear observer Ḋ w.r.t. time
and obtain the following results:

˙̂
D = Ψ̇+

∂Z

∂t

= −Ξ(τ +Ψ+Z) +Ξξ̇

= −Ξ(τ + D̂) +Ξ(τ +D)

= −ΞD̃.

(26)

For the nonlinear observer (21) presented above, one can es-
tablish a Lyapunov candidate function V (t) as follows:

V(t) = 1

2
D̃

T
D̃ (27)

In accordance with Eqs. (25)-(27), computing the 1st order
derivative of the Lyapunov function V (t) mentioned above
w.r.t. time yields:

V̇(t) = D̃
T ˙̃
D = −D̃

T
ΞD̃− D̃

T
Ḋ. (28)

By utilizing the Cauchy-Schwarz inequality and Eq. (27),
the following results from Eq. (28) can be furthen derived:

V̇ (t) ≤ −ΞminD̃
T
D̃+ εD̃

T
D̃+ Ḋ

T
Ḋ
/
4ε

≤ −(Ξmin − ε)D̃
T
D̃+ η2

/
4ε

= −αV (t) + γ.

(29)

within which 1) ε represents an external tuning parameter
that is positive and bounded; 2) α = Ξmin − ε and γ =
η2
/
4ε; 3) η stands for a positive scalar that is always no less

than the upper bound ∥Ḋ∥max of the 1st order derivative Ḋ
of the comprehensive uncertain dynamics D. Since both ε
and η are all positive and bounded, γ is always positive and
bounded. Moreover, if α is positive-definite diagonal matrix,
i.e., ∀ Ξj > ε, (j = 1, 2, 3), then the nonlinear observer (21)
is Lyapunov stable.

In addition, the external parameter ε can be selected as a
sufficiently small scalar, such that ε → 0. Therefore, The
range of admissible values for Ξj can be extended to:

Ξj > 0, (j = 1, 2, 3). (30)

Then, one can multiply both sides of Eq. (29) by eαt and
conduct the integration operation over the closed interval
[0, t] to further derive the following conclusion:

∂

∂t
(V eαt) ≤ γeαt ⇒

0 ≤ V (t) ≤ γ

α
+

[
V (0)− γ

α

]
e−αt.

(31)

Based on Eqs. (27) and (31), one can derive:

|D̃| ≤
√

2γ

α
+ 2

[
V (0)− γ

α

]
e−αt. (32)
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This implies that for any given arbitrarily positive scalar X ∈
R+ >

√
2γ/α, there exists a T > 0 such that |D̃| ≤ X

holds for any t > T. Consequently, D̃ is globally uniformly
ultimate boundeded. The proof is now completed.

Remark 1. Note that, both the unmodeled dynamics D and
its derivative Ḋ are all bounded. In addition, the each ele-
ment within Υ and Θ̂

−1

0 are bounded scalars, while RI
B rep-

resents a rotation matrix that preserves the vector’s length.
Hence, it can be deduced that the newly introduced unmod-
eled dynamics D and its derivative Ḋ are also bounded.

Remark 2. Note that X can be made sufficiently small by
appropriately selecting the parameters Ξj , (j = 1, 2, 3)
while ensuring that conditions in (24) hold. Moreover, it
should be remarked that the choice Z = Ξξ is only a viable
choice (there might be other possibilities) for achieving the
Lyapunov stability of the nonlinear observer (21).

3.3 Controller Design
A controller development process for the linear FA system

(18) and (19) is provided as follows. Firstly, we introduce a
new state variable, denoted as x, for the closed-loop control
system mentioned above:

x
∆
=

[
x1 ẋ1 ẍ1

Iωh3

]T
. (33)

Based on the state variable x, one can define the control ob-
jective xd of the Cubli system as:

lim
t→∞

x =
[
x1d ẋ1d ẍ1d

Iωh3d

]T
= xd, (34)

within which x1d and Iωh3d indicate the desired trajectories
of x1 and Iωh3, respectively.

Denote the error signal as e
∆
= x − xd. Further, in light

of Eqs. (33), (34) and the error signal e, Eq. (19) can be
rewritten in a state-space form as:

ė = Ae+Bu, (35)

where u = τ + D + ϵ; ϵ ∈ R3×1 represents the tracking
vector, and A ∈ R7×7, B ∈ R7×3 can be expressed as:

A =


02×2 I2×2 02×2 02×1

02×2 02×2 I2×2 02×1

02×2 02×2 02×2 02×1

01×2 01×2 01×2 0

 ,

B =

[
04×3

I3

]
, ϵ =

[
x
(3)
1d

Iω̇h3d

]T
.

Therefore, one can define a quadratic cost function J(t) =∫∞
0

eTQe + uTRudt by appropriately selecting matrices
Q ∈ R7×7 and R ∈ R3×3. Then the associated LQR gain
can be obtained as

K ∈ R3×7 =

[
A0 A1 A2 02×1

01×2 01×2 01×2 Aω

]
.

Subsequently, the control input u can be determined as [19]:

u = −Ke.

Fig. 2: Self-constructed 3D Cubli experimental setup.

Based on Eq. (19), (21) and (35), substituting u, D̂ and ϵ
into τ yields:

τ =
[
z Iv3

]T
= −Ke− D̂− ϵ. (36)

Following this, one can substitute Nτ (i.e., z) and Pτ (i.e.,
Iv3) into Eq. (17) and get Iv1 and Iv2. The last step in the
controller development is to substitute the reference input
vector Iv into the HOFA controller T in Eq. (14).

Based on the above steps, one can derive the following
closed-loop feedback system:

ė = Ae−BKe+B(D− D̂)

= (A−BK)e−BD̃

= Ãe−BD̃.

(37)

If one selects the gain matrix K such that Ã is Hurwitz sta-
ble, then the closed-loop system is essentially comprised of a
stable system with bounded noise. Therefore, existing tools
in set theory can be used to characterize the attraction and
positive invariant property of the closed-loop state. Detailed
discussions on these are skipped here due to limited space.

4 Experiments and Results

In this section, we carry out experimental studies to vali-
date the effectiveness and advantages of the proposed frame-
work, in comparison to the linearization-based LQR ap-
proach [8]. Towards this goal, we have built a 3D Cubli
in-house as depicted in Fig. 2. The system parameters of the
3D underactuated Cubli system are determined as:

Θ̂0 = 10−3 ×

 16 −5.6 −5.6
−5.6 16 −5.6
−5.6 −5.6 16

 , g =

 0
0

−9.8

,

m =

 0.0787
0.0787
0.0787

,Θw = 1.811× 10−4 I3×3.

For a fair comparison, the control gains for the proposed
HOFA approach and the linearization-based LQR frame-
work have been fine tuned until the control performance
cannot be further improved. Specifically, the gains for the
proposed HOFA controller with nonlinear observer are de-
noted as: A0 = 200 I2×2, A1 = 50 I2×2, A2 = 10 I2×2,
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Table 2: Quantitative indicators (bold means better)

Controllers ×10−3 epmax

(rad)
ermax

(rad)
exmax

(rad/s)
eymax

(rad/s)
ezmax

(rad/s)
e1max

(rad/s)
e2max

(rad/s)
e3max

(rad/s)
T1max

(N ·m)
T2max

(N ·m)
T3max

(N ·m)

Proposed controller 9.3 7.4 83.8 85.5 114.8 11741.1 9924.4 17911 137.4 128.4 238.7
LQR-based controller 16.7 10.7 111.3 114.9 189 17455 19028.8 34414.5 147.9 141 266.5
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(a) Results of the proposed HOFA controller.
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(b) Results of the LQR-Based controller.

Fig. 3: Control inputs of the two controllers
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(a) Results of the proposed HOFA controller.
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(b) Results of the LQR-Based controller.

Fig. 4: Experimental performance under the implementation of the two controllers

Aω = 10, Ξ = diag(30, 30, 30).Note that the control gains
for the LQR-based controller are intricate. Due to space con-
straints, these parameters cannot be provided herein.

During our experiment, disturbances with magnitudes of
0.1 N ·m, 0.1 N ·m, and 0.2 N ·m are respectively applied
to the Cubli system in each of the three directions as D1, D2

and D3 after this experimental system stabilized for 2 sec-
onds to emphasize the effectiveness and robustness of each
controller. These disturbances are removed after 7 seconds
later. The outcomes of these experiments can be depicted
in Figs. 3-5. In addition, a series of quantitative indicators
that can better justify the performance of each controller are
defined as:

1) epmax indicates the maximum pitch angle error.
2) ermax indicates the maximum roll angle error.
3) eimax, (i = x, y, z) stands for the maximum body an-

gular velocity error in the ith direction.

4) ej max, (j = 1, 2, 3) stands for the maximum angular
velocity error of the jth reaction wheel.

5) Tj max represents the maximum torque applied by the
jth reaction wheel.

Based on the observations from Figs. 3-5, detailed nu-
merical values of the quantitative performance indicators for
the HOFA controller with nonlinear observer and the LQR-
based controller are provided in Table 2. More quantita-
tively, the following conclusions can be drawn (i.e., after 2
seconds when the system stabilizes):

1) The observer accurately tracks these unmodeled uncer-
tainties in various directions and provides timely feedback to
the HOFA controller to compensate for them. The estimated
curve is almost consistent with the actual disturbance vari-
ation curve. This fact indicates that the proposed nonlinear
observer possesses excellent tracking accuracy.

2) Compared with the LQR-based controller, the HOFA

1070  



0 2 4 6 8 10

-0.2

0

0.2

0 2 4 6 8 10

-0.2

0

0.2

0 2 4 6 8 10

-0.2

0

0.2

Fig. 5: Observer tracking performance of the proposed
HOFA Controller.

controller can reduce the oscillation magnitudes of the Cubli
experimental platform (i.e., the pitch angle and the roll an-
gle). Its anti-disturbance capability increases by at least
30.8%. This sufficiently underscores the effective suppres-
sion of oscillation magnitudes of the pitch and roll angles in
the Cubli system manipulated by the HOFA controller. Sub-
sequent to the elimination of disturbances, these two system
states rapidly stabilize and converge to the desired angles.

3) The oscillation magnitudes of each body angular veloc-
ity under the manipulation of the HOFA controller are sig-
nificantly smaller than those under the control of the LQR-
based controller. It can be summarized that the body angu-
lar velocities under the proposed controller are attenuated by
at least 24.7%. In other words, the proposed controller can
achieve smaller body angular velocities, which contributes
to stabilize the entire system.

In conclusion, the comprehensive analysis in Table 2 and
Figs 3-5 reveal that the HOFA controller with nonlinear dy-
namics exhibits better performance compared to the LQR
scheme, especially in terms of robustness against unmodeled
uncertainties.

5 Conclusion

In this paper, we have proposed an HOFA system ap-
proach to control of underactuated 3D Cublis with unmod-
eled dynamics. Inspired by the FA system approaches, we
transformed the intricate underactuated model into a nonlin-
ear FA system, without using any linearization or approxi-
mation. Based on the obtained FA system, a nonlinear ob-
server was then designed to track the unknown disturbance,
with a rigorous estimation error stability guarantee. Fur-
thermore, through the construction of the tracking error sig-
nal, we developed a HOFA feedback controller for the 3D
Cubli system. Thorough experimental studies have been car-
ried out to validate and illustrate the improved performance
of the proposed control scheme, compared to the existing
linearization-based LQR approach.
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Stabilization Control of Second-order Nonholonomic System
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Abstract: This paper explores the stabilization of a category of second-order nonholonomic systems through a high-order fully
actuated system approach. To begin with, explicit constructions of system state and control input transformations are devised to
convert the second-order nonholonomic system into a second-order canonical chained form. Subsequently, within the framework
of the fully actuated system, the stabilization quandary is tackled by formulating a straightforward, continuous, and smooth
stabilizing controller, along with delineating the associated region of attraction. Lastly, numerical simulation of second-order
nonholonomic unmanned vehicle control systems is provided to exhibit the efficacy of the proposed methodology.

Key Words: Second-order nonholonomic systems, stabilization control, fully actuated system approach, region of attraction

1 Introduction

In recent years, research endeavors aimed at controlling
trajectory tracking and pose stabilization of nonholonomic
systems have experienced a discernible upsurge. A consider-
able body of research has been accumulated, primarily con-
centrating on first-order nonholonomic systems that adhere
to classical nonholonomic velocity relations [1, 2, 3]. Nev-
ertheless, there exists another class of systems, namely the
second-order nonholonomic system, which is even more cru-
cial and ubiquitous. Due to a complexity distinct from that
of first-order systems, this characteristic renders the control
of second-order nonholonomic systems more challenging.

As the demand for motion control in complex mechani-
cal systems and robotic systems increases, numerous inves-
tigations on first-order nonholonomic systems have been car-
ried out. In [4], a class of SE(2) unmanned vehicle track-
ing and stabilization problems with first-order nonholonomic
constraints are solved, and global exponential stability and
tracking are achieved. For hardware restriction and distur-
bance, reference [5] converts the first-order nonholonomic
system of the control moment gyroscope into a chain system,
and then performs nonlinear control. Based on these foun-
dations, for under-actuated parallel robots and manipulators,
a hierarchical sliding film controller is designed to achieve
steady-state motion control, and a particle swarm optimiza-
tion algorithm is used to calculate the target angle according
to geometric constraints in [6] and [7], respectively.

On the basis of first-order nonholonomic systems, the
research on second-order nonholonomic systems is in full
swing. References [8] and [9] establish essential conditions
for identifying underactuated manipulators with dynamic
equations seen as nonholonomic constraints and demonstrate
that feedback stabilization to a single point is unfeasible,
proposing stabilization to an equilibrium manifold instead.
In [10], a specific class of second-order nonholonomic sys-
tems has been explored, offering a discontinuous controller
for exponential stabilization. Building on these foundations,
an advanced controller is designed for trajectory tracking

This work was supported in part by the National Natural Science Foun-
dation of China under Grant 62103189, in part by the Science Center
Program of National Natural Science Foundation of China under Grant
62188101.

and robust control under uncertainties through the transfor-
mation of error models and the application of second-order
sliding mode control in [11] and [12], respectively. Most re-
cently, a control method for two-dimensional underactuated
robots has been innovated in [13], emphasizing simplicity
and efficiency in control through smart optimization, appli-
cable even with passive links.

Recently, a methodology known as the High-Order Fully
Actuated (HOFA) system approach has been investigated in
[14, 15, 16], which has been expanded to discrete-time sys-
tems [17], time-varying and time-delay systems [18]. Con-
sidering fundamental physical principles such as Newton’s
laws, the principle of momentum, Euler’s equations, and
Lagrange’s equations, which typically exhibit second-order
characteristics, the transition to a state-space representation
often simplifies these systems to first-order [19]. This sim-
plification, while facilitating the consolidation of state vari-
ables into state vectors, sometimes overlooks the inherent
complexity of the systems. Against this backdrop, the con-
cept of ”fully-actuated” systems has been introduced in [14],
offering a fresh perspective by transforming a first-order
system into a second-order fully-actuated model or even
a higher-order one. This approach not only leverages the
strengths of higher-order dynamics but also addresses some
limitations of the traditional state-space method.

The HOFA system approach is particularly valuable for
nonholonomic systems where smooth or continuous stabi-
lizing controllers are often non-existent. For completely
controllable systems, a global HOFA model enables a sim-
ple design of a globally exponentially stabilizing controller,
as demonstrated in [20]. Similarly, for locally controllable
systems, a local HOFA model facilitates the design of a
locally exponentially stabilizing controller. In the case of
sub-controllable systems, a sub-HOFA model aids in deter-
mining the region of exponential attraction within the initial
state space, allowing for the straightforward design of a sub-
stabilizing controller, also discussed in [20]. Notably, refer-
ence [21] applies the HOFA system approach to Brockett’s
first example system, while reference [22] extends this treat-
ment to Brockett’s second example system, using the HOFA
system approach.

In light of the preceding discussions, few studies have
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Fig. 1: Model of an unmanned vehicle

concentrated on the stabilization control for the second-order
nonholonomic systems, especially those adopting a HOFA
system approach for more efficient problem-solving. Mean-
while, the existing HOFA approach has solved first-order
nonholonomic systems as illustrated in Brockett’s first ex-
ample [21] and second example [22]. Building upon the re-
search conducted on first-order nonholonomic systems, this
paper extends its findings to second-order nonholonomic
systems, offering the following contributions. Initially, a
second-order chain canonical system is explored and an ex-
ample of an unmanned vehicle model moving in the hori-
zontal plane is further given. In pursuit of this objective,
a general HOFA controller is designed to ensure the sys-
tem variables and control inputs of the system exponentially
converge to zero, alongside the development of a special-
ized controller tailored to stabilize the unmanned vehicle in
the horizontal plane. Furthermore, methods for determining
fairly large attraction regions and defining generalized pa-
rameters are concurrently presented.

The structure of the subsequent sections of this paper is
organized as follows. Section 2 presents the problem de-
scription. Section 3 delineates the canonical second-order
chained form, the design of the stabilization controller, and
the region of attraction. Section 4 conducts numerical simu-
lations. Finally, section 5 provides conclusions for this work.

2 Problem Statement

Consider a second-order nonholonomic unmanned vehicle
[23] moving within a horizontal plane, as depicted in Fig.1.
Its mass and moment of inertia are m and I , respectively.
In the inertial coordinate system, let (x, y, θ) be the position
and attitude angle of the center of mass of the unmanned
vehicle. The external force along the x-axis and y-axis di-
rections of the inertial coordinate exerts on the unmanned
vehicle is (F1, F2). The distance between the external force
application point and the center of mass of the moving un-
manned vehicle is r. The motion of an unmanned vehicle is
governed by the following equation

mẍ = F1

mÿ = F2

Iθ̈ = F1r sin θ − F2r cos θ

(1)

In consideration of practical situations, the attitude angle
θ of the unmanned vehicle is restricted to (−π/2, π/2). The
control objective of the paper is to make the unmanned vehi-
cle move to the origin and the attitude angle also converges
to zero, namely

lim
t→∞

x → 0

lim
t→∞

y → 0

lim
t→∞

θ → 0

(2)

3 Main Results

This section will detail the findings from three main sub-
sections. Firstly, an analysis is conducted on the coordinate
transformation of the typical chained nonholonomic systems
in second-order form. Subsequently, control laws are de-
signed for the transformed system using the HOFA system
approach. Finally, to circumvent singularities, the broad at-
traction regions for the initial values are discussed.

3.1 Canonical second-order chained form
It is well known that standard second-order nonholonomic

systems can be recast into the subsequent universal form [10]

ẍ1 = u1

ẍ2 = u2

ẍ3 = α(x2)u1 + β(x2)u2

(3)

where α(x2), β(x2) are second-order differentiable func-
tions of x2. By employing (3), (1) can be expressed as

ẍ = u1

θ̈ = u2

ÿ = u1 tan θ − u2I/(rm) sec θ

(4)

with u1 = F1

m , u2 = r
I (F1 sin θ − F2 cos θ).

Lemma 1 Model (4) can be transformed into the subsequent
second-order chained form

ÿ1 = v1 (5a)
ÿ2 = v2 (5b)
ÿ3 = y2v1 (5c)

with the following specified coordinate and input feedback
transformations

y1 = x+ I/(rm)(cos θ − 1)

y2 = tan θ

y3 = y + I/(rm) sin θ

v1 = − I/(rm)θ̇2 cos θ + u1−
u2I/(rm) sin θ

v2 = sec2 θ(u2 + 2θ̇2 tan θ)

(6)

Proof. Equation (5) can be obtained by simply differen-
tiating equation (6) twice while using equation (4). □

Remark 1 The singular points occur at θ ̸= π/2. When θ
closely approaches these singular points, equation (4) can be
rewritten in an alternative form as follows

ÿ = u1

θ̈ = u2

ẍ = u1 cot θ + u2I/(rm) csc θ

(7)
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with u1 = F2

m , u2 = r
I (F1 sin θ − F2 cos θ). Equation (6)

can be converted into the second-order chained form using
the subsequent coordinate transformations

y1 = y + I/(rm) sin θ

y2 = cot θ

y3 = x+ I/(rm)(cos θ − 1)

v1 = − I/(rm)θ̇2 sin θ + u1+

u2I/(rm) cos θ

v2 = − csc2 θ(u2 − 2θ̇2 cot θ)

(8)

The singular point of the new transformation is θ = 0.
Combining the above two coordinate transformation meth-
ods and their respective advantages and disadvantages, we
can choose the appropriate transformation at the right time.
In order to avoid singular points, for example, when the an-
gle is close to π/2, select transformations (8), and when it is
close to 0, switch to transformations (6).

3.2 Controller Design
Based on the coordinate transformation above, the deriva-

tion of the HOFA model and the design of the fully actuated
controller for the system will be conducted. To begin with,
let us construct the HOFA model based on the system (5).
By examining the equations (5a) and (5c), we obtain

ÿ3 = y2ÿ1 (9)

and when ÿ1 ̸= 0, it gives

y2 =
ÿ3
ÿ1

(10)

Differentiating the equation (5c) with respect to time, yield
...
y 3 = ẏ2v1 + y2v̇1 (11)

when ÿ1 ̸= 0,

ẏ2 =

...
y 3 − y2v̇1

v1
(12)

Then, continue to differentiate the equation (11),

y3
(4) = ÿ2v1 + 2ẏ2v̇1 + y2v̈1

= 2ẏ2v̇1 + y2v̈1 + ÿ1v2
(13)

On the other side, it can be derived from the equation (5a)
that

y1
(4) = v̈1 (14)

Combining the aforementioned equation with equation (13),
yields the subsequent fully actuated system[

y
(4)
1

y
(4)
3

]
=

[
0

2ẏ2v̇1

]
+

[
1 0
y2 ÿ1

] [
v̈1
v2

]
(15)

with the following feasibility constraint

ÿ1 ̸= 0 (16)

Next, based upon the aforementioned HOFA model (15),
following the standard HOFA system approach, a continu-
ous, and smooth controller can be established as follows[

v̈1
v2

]
= −B−1(A+

[
b3y

(3)
1 + b2y

(2)
1 + b1y

(1)
1 + b0y1

c3y
(3)
3 + c2y

(2)
3 + c1y

(1)
3 + c0y3

]
)

(17)

with coefficients bi, ci, i ∈ {0, 1, 2, 3} are positive constant,

A =

[
0

2ẏ2v̇1

]
, B =

[
1 0
y2 ÿ1

]
, which results in a closed-

loop system composed of

y
(4)
1 + b3y1

(3) + b2y1
(2) + b1y1

(1) + b0y1 = 0 (18a)
ÿ1 ̸= 0 (18b)

and

y3
(4) + c3y

(3)
3 + c2y

(2)
3 + c1y

(1)
3 + c0y3 = 0 (19)

To enhance the concreteness and intuitiveness of the con-
trol law representation for facilitating subsequent proofs,
equation (17) is reformulated as follows

v̈1 = −b3y
(3)
1 − b2y

(2)
1 − b1y

(1)
1 − b0y1 (20)

Up to this point, due to the equivalent coordinate trans-
formation, the control law of the original system u1, u2 or
F1, F2 can be derived from the inverse transformation of
v1, v2.

In the forthcoming subsection, an elaboration on the re-
gion of attraction ensues, defining it as a domain within the
initial state space wherein system trajectories, governed by
the controller (17), exhibit exponential convergence towards
the origin.

3.3 Region of Attraction
In order to achieve controller effectiveness and conver-

gence, it is necessary to consider the controller’s region of
attraction due to the uniqueness of the HOFA approach. It
has been proven that the fully actuated controller can achieve
smooth and stable control for systems with the initial value
set within the attraction region.

Considering the system (18), it should be noted that

y
(4)
1 + b3y1

(3) + b2y1
(2) + b1y1

(1) + b0y1 = 0 (21)

can be expressed in the state-space form
y1

(1)

y1
(2)

y1
(3)

y1
(4)

 = ϕ


y1

y1
(1)

y1
(2)

y1
(3)

 (22)

where

ϕ =


0 1 0 0
0 0 1 0
0 0 0 1

−b0 −b1 −b2 −b3

 (23)

Clearly, the solution of the system (22) is given by
y1

y1
(1)

y1
(2)

y1
(3)

 = eϕt


x0

y0
p0
q0

 (24)

where x0 = y1(0), y0 = y1
(1)(0), p0 = y1

(2)(0), and q0 =
y1

(3)(0) are the system initial values.
As is well-known

eAt = L−1[(SI −A)
−1

] (25)
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Concerning the feasibility constraint ÿ1 = 0, using (25)
and then expanding the third term in (22), easily get ÿ1 = 0
is equal to

f(t)x0 + g(t)y0 + α(t)p0 + β(t)q0 = 0 (26)

and

b3 = d0 + d1 + d2 + d3

b2 = d0d1 + d0d2 + d0d3 + d1d2 + d1d3 + d2d3

b1 = d0d1d2 + d0d1d3 + d0d2d3 + d1d2d3

b0 = d0d1d2d3

where d0, d1, d2, d3 are four positive scalars and d0 > d1 >
d2 > d3.

f(t) =
d0 d1

2 d2 d3 e
−d1 t

(d0 − d1) (d1 − d2) (d1 − d3)

− d0
2 d1 d2 d3 e

−d0 t

(d0 − d1) (d0 − d2) (d0 − d3)

− d0 d1 d2
2 d3 e

−d2 t

(d0 − d2) (d1 − d2) (d2 − d3)

+
d0 d1 d2 d3

2 e−d3 t

(d0 − d3) (d1 − d3) (d2 − d3)

(27)

g(t) =
e−d1 t

(
d0 d1

2 d2 + d0 d1
2 d3 + d1

2 d2 d3
)

(d0 − d1) (d1 − d2) (d1 − d3)

−
e−d0 t

(
d0

2 d1 d2 + d0
2 d1 d3 + d0

2 d2 d3
)

(d0 − d1) (d0 − d2) (d0 − d3)

−
e−d2 t

(
d0 d1 d2

2 + d0 d2
2 d3 + d1 d2

2 d3
)

(d0 − d2) (d1 − d2) (d2 − d3)

+
e−d3 t

(
d0 d1 d3

2 + d0 d2 d3
2 + d1 d2 d3

2
)

(d0 − d3) (d1 − d3) (d2 − d3)

(28)

α(t) =
d1

2 e−d1 t (d0 + d2 + d3)

(d0 − d1) (d1 − d2) (d1 − d3)

− d0
2 e−d0 t (d1 + d2 + d3)

(d0 − d1) (d0 − d2) (d0 − d3)

− d2
2 e−d2 t (d0 + d1 + d3)

(d0 − d2) (d1 − d2) (d2 − d3)

+
d3

2 e−d3 t (d0 + d1 + d2)

(d0 − d3) (d1 − d3) (d2 − d3)

(29)

β(t) =
d1

2 e−d1 t

(d0 − d1) (d1 − d2) (d1 − d3)

− d0
2 e−d0 t

(d0 − d1) (d0 − d2) (d0 − d3)

− d2
2 e−d2 t

(d0 − d2) (d1 − d2) (d2 − d3)

+
d3

2 e−d3 t

(d0 − d3) (d1 − d3) (d2 − d3)

(30)

Next, a brief explanation of the properties of the attraction
region and how to obtain values within the attraction region.

Firstly, collect and simplify equation (27)-(30) can obtain

e−d0t

(d0 − d1)(d0 − d2)(d0 − d3)
A1

e−d1t

(d0 − d1)(d1 − d2)(d1 − d3)
A2

e−d2t

(d0 − d2)(d1 − d2)(d2 − d3)
A3

e−d3t

(d0 − d3)(d1 − d3)(d2 − d3)
A4

(31)

with
A1 = a11x0 + a12y0 + a13p0 + a14q0

A2 = a21x0 + a22y0 + a23p0 + a24q0

A3 = a31x0 + a32y0 + a33p0 + a34q0

A4 = a41x0 + a42y0 + a43p0 + a44q0

(32)

Now to find the attraction region is to find the region
where ÿ1 ̸= 0, that is make the sum of the four formulas of
(31) not equal to zero. Without sacrificing generality, we ini-
tially assume the determination of the region’s positive part.
Due to the fact that d0 > d1 > d2 > d3 > 0 and e−dit > 0,
i ∈ {0, 1, 2, 3}, so the first parts of (31) are greater than zero.
For more convenient expression, the second parts of (31) are
rewritten into matrix form,

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



x0

y0
p0
q0

 ≤ 0 (33)

It is patently evident that (33) represents a polyhedron in
a geometric sense, and the symbol R is used to represent
this part of the area. The area inside the polyhedron is the
feasible region where the closed-loop system (18) is estab-
lished. Without loss of generality, feasible points satisfying
sufficient conditions can be directly found by substituting
appropriate values as long as the equation is satisfied.

3.4 Stability analysis
Based on the attraction region of the designed system, this

subsection analyzes the stability of the system. The main
results are stated in the following theorem.

Theorem 1 For the coefficients b3, b2, b1, b0 in (18), and de-
sign the controller for the system (5) as (17). The system
variables and control inputs all can converge to zero ex-
ponentially provided that the control system initial values
are chosen from the attraction region and the polynomial
s4+ c3s

3+ c2s
2+ c1s+ c0 has four distinct roots which are

both less than −d0.

Proof. Since y3(t), ẏ3(t), ÿ3(t),
...
y 3(t) are the system

variables of the closed-loop linear system (19), and ci, i ∈
{0, 1, 2, 3} are both positive, both y3(t), ẏ3(t), ÿ3(t) and
...
y 3(t) converge to zero exponentially. Moreover, as previ-
ously demonstrated, provided that the system’s initial values
x0 = y1(0), y0 = ẏ1(0), p0 = ÿ1(0), and q0 =

...
y 1(0) are

chosen from within the attraction region R, the system vari-
ables y1(t), ẏ1(t), ÿ1(t), and ...

y 1(t) satisfy the closed-loop
subsystem (18). Consequently, y1(t), ẏ1(t), ÿ1(t),

...
y 1(t),
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and v1 = ÿ1 also converge to zero exponentially. Thus, the
second conclusion is verified.

Subsequently, from equation (20), it follows that the ex-
ponential convergence of y1(t), ẏ1(t), ÿ1(t), and ...

y 1(t) im-
mediately implies the exponential convergence of v̈1. Next,
when the polynomial s4 + c3s

3 + c2s
2 + c1s + c0 has four

distinct roots which are both less than −d0, the exponential
decay rates of all orders of derivatives of y3 are faster than
those of y1. Thus, by equation (10), it follows that y2 con-
verges to zero exponentially. According to equation (5), (10)
and (12), when ÿ1 ̸= 0, equation (12) can be rewritten as

ẏ2 =

...
y 3 −

ÿ3

ÿ1

...
y 1

ÿ1
(34)

Obviously, ẏ2 also converges to zero exponentially.
Ultimately, with equation (17) and the preceding conver-

gence analysis in consideration, v2 exhibits exponential con-
vergence towards zero. Consequently, the comprehensive
proof is concluded, elucidating that the designed smooth and
progressive controller (17) indeed renders the closed-loop
system exponentially stable, owing to its notably vast region
of attraction. □

4 Simulation

In this section, numerical simulations of the proposed con-
troller are presented to substantiate its control efficacy and
stability.

Case 1, apply control law (17) to simulate the system (5).
According to Theorem 1, the initial values are chosen as
y1(0) = 3, y1(1)(0) = − 55

24 , y1(2)(0) = 2, and y1
(3)(0) =

−2. At the same time, y2(0) = −1, y3(0) = 0.1516,
y2

(1)(0) = 0, y3(1)(0) = 0.
Then, the controller parameters in (17) are chosen as

b3 = 4, b2 = 6, b1 = 4, b0 = 1

c3 =
24

5
, c2 =

216

25
, c1 =

864

125
, c0 =

1296

625

Using the initial values described above, we conducted
simulations for stabilizing the transformed model, and the
results are depicted in Fig. 2. It is evident from the figures
that system variables and the control variables all converge
to zero within a finite time.

Case 2, apply controller (17) to simulate the system (1).
The physical parameters of system (1) are taken as

m = 1, I = 1.2, r = 1

According to Theorem 1, the initial values are chosen as
x(0) = 3.3516, x(1)(0) = − 55

24 , v1(0) = 2, and v1
(1)(0) =

−2. At the same time, y(0) = 1, θ(0) = −π
4 , y(1)(0) = 0,

θ(1)(0) = 0.
When employing the same parameters in the controller

(17) as described previously, and utilizing the aforemen-
tioned initial values, simulations were conducted to stabilize
the initial model. As the outcomes illustrated in Fig. 3, both
system variables and control variables exhibit convergence
to zero within a finite time frame.

Remark 2 In fact, the initial system and the transformed
system are equivalent in theory. However, by comparing the

(a) y1 (b) y2

(c) y3 (d) v1

(e) v2

Fig. 2: results of transformed system

(a) x (b) y

(c) θ (d) u1

(e) u2

Fig. 3: results of initial system
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two situations of Fig.2 and Fig.3, it is not difficult to find that
the position, attitude angle, and control law of the system
change more smoothly after the transformation. The main
reason is the introduction of tangent transformation during
the coordinate transformation process of the original system.
Thus, it is affected by the θ, tan θ when transforming back
to the original system.

5 Conclusion

The stabilization of a category of second-order non-
holonomic systems through a HOFA system approach has
already been realized in this paper. The methodology
commenced with the construction of explicit system state
and control input transformations aimed at converting the
second-order nonholonomic system into a second-order
canonical chained form. Subsequently, the stabilization
problem has been tackled utilizing the fully actuated sys-
tem approach, culminating in the design of a straightforward,
continuous, and smooth sub-stabilizing controller. Addition-
ally, the corresponding region of attraction has been char-
acterized and it can be found that the size of the attraction
region is large enough. Finally, the simultaneous stabiliza-
tion of the position and attitude of the second-order non-
holonomic unmanned vehicle was achieved through numeri-
cal simulation, confirming the effectiveness of the method in
this paper.
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Fully-Actuated Sliding Mode Synchronization Control for
H-type Linear Motor System
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Abstract: This article proposes a fully-actuated sliding mode synchronization control to realize high-precision tracking motion
for an H-type linear motor system. Firstly, a dynamic model of the H-type linear motor system is presented, which establishes
the relationship between the thrust difference and synchronization error. Secondly, utilizing the fully-actuated system theory,
the dynamic model is transformed into a fully-actuated model instead of directly controlling the original model. Then, a fully
actuated sliding mode synchronous controller is designed via sliding mode control and pole configuration to enhance control
performance. To compensate for external disturbances and model uncertainties, an extended state observer is developed to
achieve effective synchronous control for H-type linear motor system. Finally, comparative experiments are conducted on the
H-type linear motor system to validate the effectiveness of the proposed method.

Key Words: H-type linear motor system, fully-actuated system theory, fully-actuated sliding mode control, extended state
observer

1 Introduction

The H-type linear motor system (HLMS) has a wide ap-
plications for the fields of servo control [1, 2], such as, pre-
cise computer numerical control machines, surface mounted
technology machines, lithography machines, and other ap-
plications related to linear motion owing to its high thrust,
precision, and low vibration. In precise electromechanical
equipment, permanent magnet linear synchronous motors
(PMLSM), with their direct driving characteristics, eliminate
the requirement of converting rotating motion into linear mo-
tion, thus greatly improving work efficiency [3]. They are
commonly used as actuators to push the gantry stage to the
designated position or track the specified trajectory. In the
dual driven HLMS, synchronous control of two PMLSMs is
crucial, which can reduce platform oscillation, increase sta-
bility, and improve thrust and bandwidth. Based on this, ex-
tensive researches have been conducted on the synchronous
control of HLMS.

In terms of synchronous control of dual PMLSMs, Lin
proposed a cross-coupled intelligent complementary sliding
mode controller for the synchronous control of dual linear
motors servo system [2]. He et al. adopted a synchronous
planning control mode and an overall decoupling control
mode to synchronously control the two axes. This achieves
high-speed and high-precision control of the Y-direction bi-
linear motor, allowing simultaneous control of both axes dur-
ing high-speed motion [3]. Li proposed a scheme that di-
rectly incorporates additional rotational dynamics, synchro-
nizes the motion of two parallel motors, adjusts internal
forces, and addresses parameter uncertainty [4]. Li devel-
oped a sliding mode state observer to replace sensors, re-
sulting in a significant reduction in system chattering and
achieving excellent control accuracy [5]. In order to guar-
antee the desired tracking performance of a linear motor
control system, Sun et al. proposed a novel discrete-time

This work was supported in part by the National Natural Science Foun-
dation of China under Grant 62303139, in part by the Science Center
Program of National Natural Science Foundation of China under Grant
62188101, and in part by the Heilongjiang Touyan Team Program. (Cor-
responding author: Xiaolei Li.)

fractional-order sliding mode control scheme [6, 7]. By
combining classic cross-coupling with virtual line axis con-
trol, Chen utilized model predictive torque control to en-
hance dynamic response even further [8]. Shi adopted adap-
tive robust control to mitigate interference from measure-
ment noise and achieve model compensation [9, 10]. Xie
proposed a composite synchronous control scheme for a gen-
eralized model of dual parallel motion systems to address the
issue of coupling effects [11].

In recent years, there has been flourishing development in
the high-order fully-actuated (HOFA) theory since Duan’s
work [12–14]. HOFA is a method for eliminating state vari-
ables and increasing the system’s order, which can organize
the state and control variables of the under-actuated system
into a single equation. Moreover, the HOFA method uti-
lizes control variables to compensate for the known nonlin-
ear items and original dynamics of the system, effectively
transforming it into a linear system. By using the HOFA
method, the new linear system can be configured with arbi-
trary poles to achieve a stable state in the closed-loop system.
Duan proposed a generalized form of a strict feedback sys-
tem and transformed it into a recursive solution of the HOFA
model, which was proven to be more effective than the back-
stepping method [15, 16]. Duan addressed the problem
of state feedback disturbance attenuation in HOFA systems
with deterministic disturbances [17]. Wang designed state
feedback control laws and virtual control laws [18]. By uti-
lizing the approximate disturbance decoupling method to ad-
dress unknown disturbances, Zhao developed a model for the
motion of a fully-actuated system (FAS) in a six-degrees of
freedom spacecraft and designed an extended state observer
to estimate the total disturbance [19].

An accurate mathematical model is necessary for fully-
actuated system theory to establish preferable closed-loop
dynamic characteristics. However, when system model is
not accurate enough, the control performance will be very
poor. To tackle this issue, a fully-actuated sliding mode con-
trol (FASMC) is designed to enhance system robustness, and
an extended state observer (ESO) is employed to compensate
model uncertainties within a specific bandwidth.

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China

1078  



The remainder of this article is as follows: In section 2,
a physical model of the system will be developed, and the
model will be converted into a FAS model through appropri-
ate simplification and linear transformation. Section 3 will
involve conducting a proof of the combination and stability
of FASMC with ESO. Section 4 is to design experiments to
validate the effectiveness of the algorithm. Section 5 pro-
vides conclusions.

2 System Model

2.1 Basic Physical Model

Controller

Driver

Current Output

1I

2I

1u 2u

PMLSM1

PMLSM2

Guide Rail

Linear Encoder Feedback

1y

2y

Cross Beam

L



Torsion Spring 
with Damper

( )1 1,C K

( )2 2,C K

1M

2M

reference

1F

2F

2fF

1fF

Fig. 1: The diagram of HLMS structure

The mechanical structure and electrical connection of the
HLMS are illustrated in Fig. 1. In terms of the mechani-
cal structure, both sides of the stage are equipped with lin-
ear motors that have nearly identical specifications. Cross-
beams are used to establish mechanical coupling in the mid-
dle section. When the two motors operate asynchronously,
synchronization errors occur, leading to deformation in both
the beam and its connection with the motor.

The inclination angle of the crossbeam can be determined
using a geometric relationship as

θ = arctan
y1 − y2

L
≈ y1 − y2

L
(1)

where θ represents the inclination angle of the cross-
beam, y1, y2 stand for the displacement of PMLSM1 and
PMLSM2, and L is the length of the crossbeam.

According to Lagrange’s theorem and geometric relation-
ships, the dynamic equation of the system is shown as

m1ÿ1 = −K1θ − C1θ̇ + F1 − Ff1

m2ÿ2 = K2θ + C2θ̇ + F2 − Ff2

Jθ̈ = −Kθ − Cθ̇ +
1

2
L (F1 − F2)

(2)

where m1,m2 represent the equivalent mass of the dual mo-
tor system, Ki, Ci(i = 1, 2) express the equivalent spring
stiffness coefficient and equivalent damping coefficient at the
connection between the crossbeam and the motors, respec-
tively. Fi, Ffi(i = 1, 2) are the electromagnetic thrust and
frictional disturbance, separately. J indicates the equivalent
moment of inertia of the crossbeam satisfying J = 1

12mbL
2,

and mb represents the equivalent mass of the crossbeam.
The friction disturbance is

Ffi (y, ẏ) = µkmigsign (ẏi) + kv ẏi, ẏi ̸= 0 (3)

where µk indicates the static friction coefficient, kv is the
damping friction coefficient, mi, g denote equivalent mass
and gravitational acceleration, respectively. It can be found
that friction is influenced by velocity. Furthermore, the dis-
turbance also arises from the nonlinear characteristics of the
stator magnetic field.

2.2 Fully-Actuated Dynamics Model
Based on the basic physical model above, it is challenging

to analyze and control. Therefore, the following assumption
can be made.

Assumption 1 The holistic method is used to analyze the
bilateral linear motor and the middle crossbeam. The re-
search object is the y-axis coordinate of the midpoint of the
crossbeam, and the external force acting on the system is
simplified as the electromagnetic thrust and friction force on
both sides. The simplified equation is shown as

(m1 +mb +m2) ÿ = F1 + F2 − Ff1 − Ff2

Jθ̈ = −
(
Kθ + Cθ̇

)
+ 1

2L (F1 − F2)
(4)

The system’s structure is divided into two parts: the posi-
tion control subsystem and the synchronous control subsys-
tem. These are controlled by the combined thrust force of
two motors and the differential force of the two motors. Ac-
cording to Assumption 1, the controlled degree of freedom
is reduced by one compared to the original system, which
can be transformed into a fully-actuated system by the for-
mula as {

uc =
(F1+F2)

2
ud = F1 − F2

⇔
{

F1 = uc +
1
2ud

F2 = uc − 1
2ud

(5)

where uc denotes the common mode thrust of two actual
electromagnetic thrusts F1, F2, and ud indicates the differ-
ential mode thrust.

For tracking control, an error dynamics equation can be
established as

ëy = ÿr +
1
m (Ff1 + Ff2)− 2

muc

θ̈ = − 1
J

(
Kθ + Cθ̇

)
+ L

2J ud
(6)

where the error variable is ey = yr − y , and yr is the refer-
ence input position of the linear motor. The total mass of the
system is m = m1 +mb +m2, which stands for the sum of
the masses of the moving parts of the entire system.

Remark 1 An analysis is conducted for equation (4): when
a single-axis drive is used (such as when F2 = 0), it is neces-
sary to employ a control effect to simultaneously manage two
degrees of freedom, y and θ, leading to an under-actuated
system. When the double-axis drive with uc and ud is em-
ployed to the HLMS, it becomes fully-actuated without addi-
tional conversion, which facilitates the controller design.

3 Main Results

3.1 Fully-actuated System Control
The conventional FAS approach adopts a method of re-

ducing states and increasing orders. This transforms the low-
order under-actuated system into a HOFA system, eliminates
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the nonlinear system dynamics, converts it into a linear fully-
actuated structure, and employs pole configuration for stabi-
lization control. In Section II, the model has been established
as FAS, which can utilize this theory to eliminate the nonlin-
ear components of each control subsystem. For position and
synchronization control channels, the theory of conventional
FAS approach is actually equivalent to PD control with feed-
forward control. Based on the equations (4) and (5), the fol-
lowing controllers can be designed

ucFA
= m

2 ÿr +
1
2 (Ff1 + Ff2)− a0ey − a1ėy

udFA
= 2

L

(
Kθ + Cθ̇

)
− b0θ − b1θ̇

(7)

where a0 = − 1
2mk0, a1 = − 1

2mk1, b0 = 2J
L l0 and b1 =

2J
L l1 that can be used to adjust the pole positions of the po-

sition and synchronization control subsystem. The remain-
ing portion of the equation (7) is utilized to incorporate the
feedforward component, which helps to eliminate the known
components and nonlinearity of the model, thereby facilitat-
ing pole configuration.

The poles of two subsystems are given as

λc1,2 =
−k1±

√
k2
1−4k0

2

λd1,2 =
−l1±

√
l21−4l0

2

(8)

where, λc1,2, λd1,2 express the poles of position and syn-
chronous loop, respectively. Pole configuration of two sub-
system can be adjusted by changing the values of parameters
k0, k1, l0 and l1.

3.2 Fully-actuated Sliding Mode Control
Based on the above analysis, the synchronous control sys-

tem can be decomposed into the position subsystem and
the synchronization subsystem. Then, HLMS can be trans-
formed into a fully-actuated linear system with poles repre-
sented by equation (8) using the theory of FAS. However,
in the application of control theory for FAS, there may be
situations where the system order is too high, leading to in-
creased model uncertainty and noise. Hence, sliding mode
control can reduce the system’s order. On the other hand,
sliding mode control can enhance robustness and increase
convergence speed in the second-order control system (9).
The original system structure uses a controller (7) that is con-
figured as

ẍ+ k1ẋ+ k0x = busmc (9)

where usmc is a sliding mode controller based on the fully-
actuated control (7) design mentioned above. b represents
the coefficient of control input. Consider the sliding mode
variable to the following structure for the linear second-order
system (9)

s = Cxx+ ẋ (10)

Choose appropriate parameters Cx, η can ensure that the fol-
lowing results are valid

ṡ+ ηs = ẍ+ (Cx + η) ẋ+ Cxηx (11)

If the following equation is satisfied

k1 = Cx + η
k0 = Cxη

(12)

then the dynamic equation (10) of the sliding surface is
equivalent to equation (9).

In order to improve the convergence speed, the following
control law

usmc =
η

b
s− k

(
|s|

1
2 + ks

)
sgn (s)− rs (13)

is designed to make the state s of the subsystem converge
to 0, and when s = 0, the state variable x exponentially
converges to 0. In equation (13), k, ks, r ∈ R are ad-
justable parameters. By integrating the position control sub-
system and synchronous control subsystem (4), and employ-
ing fully-actuated sliding mode control (FASMC), based on
the established error dynamics equation (6), it can be derived
that. Firstly, the known nonlinear and poles of the system
are eliminated using FAS theory shown in (7), and the poles
are reconfigured to a stable state. By pole configuration, the
original system was restructured into a system with the con-
figuration as

ëy + k1ėy + k0ey = bcucs

θ̈ + l1θ̇ + l0θ = bduds

(14)

where bc = − 2
m , bd = L

2J , according to the sliding mode
FAS theory mentioned above. Let the sliding mode variable
be equation (15), utilizing FASMC (13), it can be inferred
the controllers is shown in (16), respectively.

sc = Ccey + ėy
sd = Cdθ + θ̇

(15)

ucs =
ηy

bc
sc − kc

(
|sc|

1
2+kcs

)
sgn (sc)− rcsc

uds = ηθ

bd
sd − kd

(
|sd|

1
2+kds

)
sgn (sd)− rdsd

(16)

where
Cc + ηy = k1 Ccηy = k0
Cd + ηθ = l1 Cdηθ = l0

The parameters kd, rd, kc, and rc are adjustable, which can
be used to modify the approaching rate of control and ro-
bustness of system. Finally, by combining equations (7)
and (16), the final control quantity is given as

uc = ucFA
+ ucs

ud = udFA
+ uds

(17)

According to [20], it is evident that the system (6) is sta-
ble. This is the ultimate solution for the theory of FASMC,
and achieving its stability is straightforward.

3.3 ESO-based Robust FASMC
It is noteworthy that the above process of controller de-

sign, is based on an ideal model and does not account for
model uncertainty and external disturbances. In most prac-
tical systems, model uncertainty and external disturbances
always exist. These factors not only affect control effec-
tiveness but can also lead to system instability at times. To
deal with them, an ESO-based control scheme is proposed to
achieve better control performance.

For the nonlinear single degree of freedom FAS as equa-
tion (18), the general structure of the linear observer is to
first establish the observation error for the known variables.

ẋ1 = x2

ẋ2 = f (x) + bu+ d (x, t)
(18)
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where x1, x2 represents the system state variable. f (x) is
the function of x1, x2. The use of ESO aims to address
uncertainties in system modeling and external disturbances
d (x, t). The expanded state is used to estimate the total sys-
tem disturbance, and the control compensates the system to
match the nominal model. Then, set the expanded state as
x3 = d (x, t). The second-order system can be represented
in the following form ẋ1 = x2

ẋ2 = f (x) + bu+ x3

ẋ3 = h (t)
(19)

The three states observed by the designed ESO are zi,
where i = 1, 2, 3. Define eoi as the observation error of
the observer, where i = 1, 2, 3. h (t) is a bounded function.
The observation error signal is calculated

eoi = xi − zi, i = 1, 2, 3 (20)

the structure of ESO is as follows
ż1 = z2 + α1eo1
ż2 = z3 + α2eo1 + β1eo2 + f (x) + bu
ż3 = α3eo1 + β2eo2

(21)

where α1, α2, α3 stand for the gain for adjusting position
observation error, and β1, β2 represent the gain for adjusting
velocity observation error. According to [21], it can be found
that the error dynamics system of equations (19) − (21) con-
verge to the origin. Similarly, ESO can be used to calculate
the total disturbance of the position and synchronization con-
trol subsystem, represented by zc3 and zd3 respectively. The
compensation for the estimated system disturbance is in the
following form

ut = u− 1

b
z3 (22)

where ut is the control quantity after compensation, u is the
output generated by FASMC as shown in (13). bc = − 2

m

and bd = L
2J are the control input coefficient of the position

and synchronization control subsystem respectively.

Theorem 1 The closed-loop system’s control variable (22),
composed of FASMC (13) and LESO (21), can ultimately
maintain the stability and ensure robustness of HLMS. The
control expression with disturbance observer is organized in
the equations (23),

uc =
m

2
ÿr +

1

2
(Ff1 + Ff2)− a0ey − a1ėy+

ηy
bc

sc − kc

(
|sc|

1
2+kcs

)
sgn (sc)− rcsc +

m

2
zc3

ud =
2

L

(
Kθ + Cθ̇

)
− b0θ − b1θ̇+

ηθ
bd

sd − kd

(
|sd|

1
2+kds

)
sgn (sd)− rdsd −

2J

L
zd3

(23)

Proof 1 Firstly, by combining equations (9), (13), (19) and
(21), the error dynamics equation of the system is estab-
lished. The error system form is organized using a fully actu-
ated sliding mode controller and an extended state observer[

ẋ
ėo

]
=

[
A Be

0 Ae

] [
x
eo

]
+Bs

(
|s|

1
2 + ks

)
sgn (s) +Bhh (t)

(24)

where x =
[
x1 x2

]T
, eo =

[
eo1 eo2 eo3

]T
is the augmented state variable in the system. Bh =[
0 0 0 0 1

]T
, Bs =

[
0 −bk 0 0 0

]T
rep-

resent input matrix of perturbation term and nonlinear com-
ponents of FASMC. The remaining parts are defined as

A =

[
0 1

−brCx −br

]
, Ae =

 −α1 1 0
−α2 −β1 1
−α3 −β2 0


Be =

[
0 0 0
0 0 1

]
For the observation error subsystem

ėo = Aeeo +Bhh (t)

choose the Lyapunov function in this form

Ve = eTo Peeo

where Pe is a symmetric positive definite matrix that satisfies
the Lyapunov equation AT

e Pe + PeAe = −Qe, and Qe is a
positive definite matrix. Find the derivative of the energy
function with respect to time

V̇e = −eTo Qeeo + 2hBT
h Peeo

≤ −λmin (Qe) ∥eo∥2 + 2
∥∥BT

h Pe

∥∥ ∥eo∥ ∥h∥
≤ −

(
λmin (Qe) ∥eo∥ − 2

∥∥BT
h Pe

∥∥ ∥h∥) ∥eo∥
If h is bounded and satisfies ∥eo∥ ≥ 2∥PeBh∥∥h∥

λmin(Q) , V̇e ≤ 0.
Then, it can be observed that the norm of the observation er-
ror tends to decrease. However, under this condition, it may
not converge to 0. This means that observation errors always
exist. Due to the presence of observation errors caused by
disturbances, the sign term in sliding mode control can ef-
fectively reduce this residual uncertainty at a minimal cost.
By adjusting the parameter ks to an appropriate range, sys-
tem stability can be achieved, and control performance can
be guaranteed. Select the appropriate parameters to meet

ṡ+ ηs = bu

Put it into equation (22)

ṡ = −brs− bk
(
|s|

1
2 + ks

)
sgn (s) + eo3

If bkks > ∥eo3∥∞ is satisfied, ṡ ≤ 0. Then s can converge
to 0 in finite time. According to the relationship between s
and the system state, the system state also converges to the
equilibrium point. ■

Remark 2 Significantly, employing this method to observe
disturbances results in a limited observation errors. Since
matrix Pe, Bh, andQ are constant matrices, the factors in-
fluencing this limit are contained in the rate of change h of
the lumped disturbance d. When estimating static distur-
bances, setting h = 0 can lead to an unbiased estimation.
When there are significant changes in model uncertainty or
external disturbances and they exhibit a certain degree of
variation, the extended observer experiences significant ob-
servation errors. Due to the bandwidth limitation of ESO, it
is necessary to incorporate as much known nonlinear model
information as possible into the feedforward control. This
will enable ESO to better observe and alleviate the influence
of unknown disturbances.
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4 Experimental Results

4.1 Experimental Platform
As shown in Fig. 2, Akribis’s HLMS is equipped with

PMLSMs on both sides of the stage. The permanent mag-
nets are affixed to the grooves of the marble platform, and
the motor coils on both sides of the crossbeam are energized
to produce electromagnetic thrust, propelling the platform to
move in a straight line. Both motors are equipped with AC
servo drives for power delivery. The controller on the com-
munication line is implemented on the TwinCat platform in
Beckhoff’s industrial control computer and programmed us-
ing the ST language of the IEC61131-3 protocol. The indus-
trial computer can receive the position measurement signal
with a resolution of 0.1µm feedback from the grating ruler,
establish a feedback control loop, and transmit current in-
structions to the driver through the EtherCat network port.
Forces are generated on both sides of the beam. PMLSM1
experiences electromagnetic thrust, friction resistance, and
conduction force from the beam, and the same applies to
PMLSM2.

Fig. 2: The diagram of HLMS platform

4.2 Positioning Motion Control
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Fig. 3: Comparison of three control strategies in positioning
control

A step signal with the amplitude of 100mm and the S-
shaped speed profile, is utilized in this experiment to evalu-

ate the positioning performance of the controllers. The ex-
perimental results are depicted in Fig. 3. From the standpoint
of rise time and overshoot, the three control methods exhibit
similar rise times and no overshoot. In terms of tracking er-
ror, a conventional fully actuated controller has a static error
of about 0.6µm, while a fully actuated SMC controller has a
static error of about 10µm. However, using a FASMC with
ESO controller can reduce the static error to about 15µm. In
terms of synchronization errors, the conventional FAS con-
trol performs well, and the synchronization error stabilizes
at about 0.9µm. The FASMC method exhibits strong oscil-
lations due to the presence of symbol terms during control.
In contrast, the FASMC with ESO control method can par-
tially mitigate the oscillation issue associated with FASMC
method, leading to a gradual reduction in synchronization
error towards 0. Overall, FASMC with ESO performs sig-
nificant advantages in positioning accuracy compared to the
conventional FAS control and SMC. In terms of synchro-
nization errors caused by positioning, the FASMC with ESO
method can mitigate the synchronization error oscillation is-
sue associated with the FASMC method.

4.3 Tracking Motion Control
The experiment uses a sine signal with the amplitude of

40mm and the angular velocity of ω = πrad/s as the
tracking signal. The experimental results of the three con-
trol methods are shown in Fig. 4. It is evident that in
terms of tracking error, the conventional FAS control ex-
hibits the maximum tracking error of 124.3µm, the FASMC
method demonstrates a better tracking effect of 67.5µm,
and the FASMC with ESO control method can achieve the
best tracking error of 14.3µm. In Fig. 5, it is evident that
ESO reduces control oscillation to a certain extent. At the
same time, in terms of synchronization error performance,
the FASMC with ESO control method exhibits similar syn-
chronization error amplitudes to those of the conventional
FAS control and FASMC method. Overall, in terms of track-
ing performance, the FASMC with ESO control method per-
forms equally well in tracking motion compared to conven-
tional FAS control and FASMC methods, and excels in re-
ducing tracking errors.

To quantify the control performance, the tracking error
magnitudes of three controllers are presented in Table 1.
These errors represent the positioning error in the position-
ing control experiment, the tracking error and the synchro-
nization error in the tracking control experiment, as illus-
trated in the table. By comparison, FASMC with ESO can
achieve a balance between tracking performance and syn-
chronization performance. It is evident that FASMC with
ESO demonstrates a significant improvement in control ac-
curacy for both position and tracking control. This indirectly
indicates its strong ability to compensate for disturbances. In
addition, Synchr Error is an abbreviation for synchronization
error of HLMS.

5 Conclusion

This article proposes fully-actuated sliding mode synchro-
nization control approach with ESO for HLMS. For address-
ing the synchronization control issue, a fully-actuated er-
ror dynamics model is presented, whose uc and ud can ex-
plicitly express the synchronization dynamics of HLMS. To
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Table 1: Tracking Error of Three Control Strategies
Control

Strategies
Conventional
FAS Control FASMC FASMC+ESO

Positing Error 50µm 10µm 0.6µm

Tracking Error 124.3µm 67.5µm 14.3µm

Synchr Error 15.2µm 14.8µm 16.1µm
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Fig. 4: Comparison of tracking sinusoidal signal
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Fig. 5: Common mode and differential mode control inputs

achieve better control performance, FASMC approach is de-
signed with the preferable robustness. Additionally, the ESO
is raised to enhance the capabilities of disturbance observa-
tion and compensation of HLMS. According to experimental
results, FASMC with ESO can significantly improve track-
ing motion control performance, compared with the conven-
tional FAS control and FASMC.
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Stackelberg Differential Game-based Hierarchical Approximate
Optimal Interaction Control of Human-Centered Reconfigurable

Robot Manipulator Systems
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Abstract: This paper proposes a Stackelberg game-based approximate optimal interaction control approach for human-centered
reconfigurable robot manipulator (RRM) systems. Joint torque feedback technique is utilized to form the RRM dynamic model.
According to differential game, the RRM’s optimal control issue is transformed into a Stackelberg game issue between the
human and the RRM. By the adaptive dynamic programming (ADP) algorithm, the cost functions of human as well as RRM
are developed by critic neural network (NN) and implement to solve Hamilton-Jacobian (HJ) equations, which facilitate the
acquisition of Stackelberg equilibrium. The position tracking error is ultimately uniformly bounded (UUB) according to the
Lyapunov theory. Experiment results demonstrate the effectiveness of the proposed method.

Key Words: Adaptive dynamic programming, Reconfigurable robot manipulators, Human-robot collaboration, Stackelberg
differential game, Interaction Control

1 Introduction

Since human-robot collaboration (HRC) combines the
high precision and efficiency of robots with the high flex-
ibility and intellectuality of humans, collaborative robots
(also known as cobots) have been continually developed
and widely adapted to medical, industrial, pension and other
daily circumstances. Particularly, the nontrivial application
of cobots such as rehabilitate stroke patients, assist trans-
portations, etc is human-centered robotic systems where as-
sists humans or acts instructions. Reconfigurable cobot with
the properties of well disassembly and mezzo size came into
being, that can recombine and reconfigure its own config-
uration according to different human-centered collaborative
task requirements.

Compared with common robot-centered collaborative ta-
sks, human-centered robotic systems draws on expertise and
experience of human that is with higher security and in-
tuitiveness, therefore, it is extensively applied in coopera-
tive carrying heavy objects, teleoperation, assisted manip-
ulator production and manufacturing, and other occasions.
When human and robot collaborate with each other, bilat-
eral participants (players) make decisions based on each
other’s strategy, whereafter, game theory has been utilized
to describe the interaction process between robot and hu-
man/environment, that quantifying the indescribable inter-
action behavior. Notable Nash equilibrium of zero-sum [1],
nonzero-sum [2] game and Pareto equilibrium of coopera-
tive game [3] are achieved equilibrium by adopting different
strategies among the participants. It is worth emphasizing
that in Nash as well as Pareto equilibrium, every player in a
dynamic system is with fair access to the information, how-
ever, in human-dominated collaborative tasks, human pos-
sesses absolute dominance over robot that can perceive the
entirely information of the robot, on the contrary, the robotic

The work is supported by National Natural Science Foundation of
China (62173047), Scientific Technological Development Plan Project in
Jilin Province of China (20220201038GX), Key Laboratory of Advanced
Structural Materials (Changchun University of Technology), Ministry of
Education, China (ASM-202202).

systems can but response to the human’s action therewith, in
consequence, the aforementioned game-based methods with
equal roles between players are not appropriate.

Stackelberg game was proposed by the German econ-
omist Stackelberg in 1934 and widely used to solve vari-
ous economic problems [4]. Subsequent applications have
been made in other fields such as nonlinear dynamics, biol-
ogy, and decision processes. Stackelberg game involves two
types of players, the leader and the follower, that the main
feature is to address successive decision processes and the
leader prioritizes the strategy over the decision maker. The
follower then attempts to optimize the strategy based on the
leader’s response. In the meantime, the leader makes the
best response corresponding to the follower’s strategy ac-
cording to the perceived policy. When humans initiatively
interact with reconfigurable cobots, different reconfigurable
robot manipulator (RRM)’s subsystem and its relevant in-
teraction torque are deemed as hierarchical control policy
in Stackelberg game. For the sake of obtaining the optimal
control strategy for bilateral human and robotic systems re-
spectively, the Stackelberg equilibrium solution of the dy-
namic system needs to be solved. Adaptive dynamic pro-
gramming (ADP), proposed by Professor Werbos can ob-
tain the optimal controller of the nonlinear system accord-
ing to the highly nonlinear partial differential HJB equation
to be solved, that is widely applied in scope of continuous
time [5], discrete time [6], data driven [7], input/output con-
straint [8], actuator/sensor failure [9], uncertain disturbance
[10] systems. Unfortunately, up to now, the most of ex-
isting methods for dealing with optimal interaction control
are with the same access between the human as well as the
robot. Thereupon, it leaves a seminal project to investigate
the hierarchical game for human-centered collaborative is-
sue and then address the Stackelberg differential game-based
approximate optimal interaction control problem.

Motivated by above, a Stackelberg game-based approx-
imate optimal interaction control approach is assessed for
human-centered RRM systems.
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2 Dynamic analysis

2.1 RRM’s dynamic model
On the basis of JTF technique, the ith RRM subsystem

dynamic model is:

Iimγiq̈i+
τis
γi

+fir(qi, q̇i)+Ii(q, q̇, q̈) = τi+
[
JTi fhu

]
i
, (1)

where subscript i is the ith joint subsystem, Iim indicates
motor’s moment of inertia, γi is gear ratio, qi means the joint
position, τis denotes coupled joint torque, fir(qi, q̇i) means
joint friction, Ii(q, q̇, q̈) represents IDC effect, τi means con-
trol torque, Ji is Jacobi matrix, fhu is human force input, and
[.]i means the ith element of the vector.

1) Joint friction
fir(qi, q̇i) can be expressed as:

fir(qi, q̇i) =f̂ibq̇i + (f̂ise
(−f̂iτ q̇2i ) + f̂ic)sgn(q̇i)

+ fip(qi, q̇i) + Yi(q̇i)F̃ir,
(2)

in which

Yi(q̇i) =
[
fib − f̂ib, fic − f̂ic, fis − f̂is, fiτ − f̂iτ

]T
, (3)

where fip(qi, q̇i) means position dependency friction,
fib, fiτ are viscous as well as Stribect friction parameters,
fis, fic denote static as well as Coulomb friction effect.
Furthurmore, f̂ib, f̂ic, f̂is, f̂iτ are the estimated values of
fib, fic, fis, fiτ .

2) IDC effect
IDC is coupled among joint modules that formulates as:

Ii = Iim

i−1∑
j=1

vTmivlj q̈j + Iim

i−1∑
j=2

j−1∑
k=1

vTmi(vlk × vlj)q̇kq̇j

= Iim

i−1∑
j=1

Di
j q̈j + Iim

i−1∑
j=2

j−1∑
k=1

Θi
kj q̇kq̇j

=

i−1∑
j=1

[
IimD̂

i
j , Iim

] [
q̈j , D̃

i
j q̈j

]T
+

i−1∑
j=2

j−1∑
k=1

[
IimΘ̂i

kj , Iim

] [
q̈j , Θ̃

i
kj q̇kq̇j

]T
,

(4)
in which vmi, vlj , vlk are unit vectors along with ith, jth and
kth joint rotation axes. Accordingly, we have Di

j = vTmivlj
and Θi

kj = vTmi(vlk × vlj). Moreover, we also have the
relations that D̂i

j = Di
j − D̃i

j and Θ̂i
kj = Θi

kj − Θ̃i
kj , in

which D̂i
j , Θ̂

i
kj denote the estimated values of Di

j ,Θ
i
kj as

well as D̃i
j , Θ̃

i
kj are alignment errors.

Define state vector xi = [xi1, xi2]
T

= [qi, q̇i]
T and the

control input ui = τi, hi =
[
JTi f

]
i
. One has the ith subsys-

tem state space:{
ẋi1 = xi2

ẋi2 = `i(x) + giui + hi
, (5)

where

gi = (Iimγi)
−1

`i=−gi

(f̂ise
(−f̂iτ ẋ2

i1) + f̂ic)sgn(xi2) + fip(xi1, xi2)

+ f̂ibxi2 + Yi(xi2)F̃ir +
τis
γi

+ Ii(x, ẋ, ẍ)

 .

(6)

2.2 Human limb model as well as motion intention esti-
mation

fhu is regarded as only external force exerting on the ma-
nipulator’s end-effector in the human-centered robotic sys-
tems. The interaction control transfers human force input
into motion commands of human-centered robotic systems:

− CH ċ+GH(cd − c) = fhu, (7)

where CH , GH denote human’s damper, spring matrices, c
represents RRM actual position in Cartesian space that for-
mulates as c(t) = ξ(q), q(t) = [q1, · · · , qi, · · · , qn]

T repre-
sents joint space’s position, ξ(·) means mapping matrix, cd
is the motion intention.
cd is formulated as:

cd = Λ(fhu, c, ċ), (8)

where Λ(fhu, c, ċ) represents unknown nonlinear function.
On account of cd is unknown because of human’s inten-

tion, according to the RBFNN, the human motion intention
while interacting with an RRM system and its estimation are
represented as:

cd = WT
h ψ(f, z, ż) + ε, ĉd = ŴT

h ψ(f, z, ż), (9)

where ε means estimation error, Ŵh represents estimated
value of Wh, as well as ψ is Gaussian function.

On the basis of the cost function respect to the interaction
force Ehu = 1

2

∥∥f2hu∥∥, the RRM can actively move toward
subjective human’s intention. Thus, one can obtain:

˙̂
Wh = −α′ ∂Ehu

∂Ŵh

= −α′fhuGHψ = −αhufhuψ, (10)

where α′ is a positive scalar, αhu = α′GH .
We can get Ŵh as

Ŵh (t) = Ŵh (0)− αhu
∫ t

0

(fhu (v)ψ(v)) dv. (11)

The control object includes optimally ensuring RRM sys-
tems’ tracking error under human-centered collaborative
task is UUB. Therefore, a Stackelberg game-based hierar-
chical optimal control approach is presented in next section.

3 Stackelberg game-based hierarchical approx-
imate optimal control approach of human-
centered RRM system

3.1 Derivation of Stackelberg differential game
Define the cost function of RRM system and human re-

spectively as:
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ViF (ėi, ui, hi) =

∫ ∞
t

riF (ėi, ui, hi)dτ

=

∫ ∞
t

(
ėTi QiF ėi + uTi RiFuui + hTi RiFhhi

)
dτ,

(12)

ViL(ėi, ui, hi) =

∫ ∞
t

riL(ėi, ui, hi)dτ

=

∫ ∞
t

(
ėTi QiLėi + uTi RiLuui + hTi RiLhhi

)
dτ.

(13)

where riF and riL are the utility functions of follower and
leader respectively. The position error is ei = xi1 − xid and
the velocity error vector means ėi = xi2 − ẋid, xid = q̂i(t)
represents estimated human motion. QiF , QiL, RiF i, RiLi,
RiFh, RiLh are determined positive definite matrices.

The RRM system expects to seek the optimal response to
the human base on the system’s state. Define the follower’s
optimal cost function:

V ∗iF (ėi, ui, hi) = min
ui

∫ ∞
t

riF (ėi, ui, hi)dτ. (14)

Then, using the infinitesimal version of (12) with (1) and
(5), the follower’s Hamiltonian function is expressed as:

HiF (ėi, ui, hi,∇ViF ) =riF (ėi, ui, hi)

+∇ViF (`i(x) + giui + hi) .
(15)

According to the stationary condition ∂HiF
∂ui

= 0, the local
follower’s optimal control policy is given by:

u∗i = −1

2
R−1iFug

T
i ∇V ∗iF . (16)

Subsequently, we define the costate h̄ considering the fu-
ture effect from the follower, then, the leader makes response
when making actions. It guarantees the human’s requirement
for the RRM’s cost function.

˙h̄i1 = −∂HiF

∂ėi

= −∇`Ti ∇V ∗iF − 2QiF ėi −∇gTi ∇V ∗iFui −∇V ∗iFhi.
(17)

According to the costate (17) and the modified dynamic
system ẋi2 = `i(x) + giu

∗
i + hi, we can obtain the leader’s

optimal cost function:

V ∗iL(ėi, ui, hi) = min
hi

∫ ∞
t

(
riL(ėi, ui, hi) + λTi

˙̄hi1

)
dτ,

(18)
where λi means the Lagrange multiplier with respect to (17).

To the same, we can obtain the leader’s Hamiltonian func-
tion and optimal control policy:

HiL(ėi, ui, hi,∇ViL) = riL(ėi, ui, hi)

+∇ViL (`i(x) + giui + hi) + λTi
˙̄hi1,

(19)

∂HiL

∂ėi
= 0→ h∗i = −1

2
R−1iLh (∇V ∗iL −∇V ∗iFλi) . (20)

The related costate can be demonstrated as:

˙̄hi2 = −
(
∂HiL

∂ėi

)T
= −∇`Ti ∇V ∗iL − 2QiLėi +

∂ ˙̄h1
∂ėi

λi,

(21)

λ̇i = −
(
∂HiL

∂V ∗iF

)T
= −1

2
gi(xi)R

−1
iFuRiLuR

−1
iFu∇V

∗
iF

+
1

2
gi(xi)R

−1
iFug

T
i (xi)∇V ∗iL +∇`Ti λi +∇giuiλi + hiλi.

(22)
Afterwards, by substituting (16) and (20) into the Hamil-

tonian functions (15) and (19), the coupled HJ equations are:

0 = riF (ėi, u
∗
i , h
∗
i ) +∇ViF (`i(x) + giui + hi) , (23)

0 = riL(ėi, u
∗
i , h
∗
i ) +∇ViL (`i(x) + giui + hi) + λTi

˙̄hi1.
(24)

As (23) and (24) can be deduced to obtain ∇V ∗iF and
∇V ∗iL, the required Stackelberg optimal solution can be de-
rived. However, in the framework of the Stackelberg dif-
ferential game the issue is transformed to optimally ensure
RRM position tracking under the HRC task and the end-
effector can actively move toward its human partner’s in-
tended position. As the coupled HJ equations with costates
are difficult to solve, we use critic NN approach to deal with
it.

3.2 Approximate solution of the Stackelberg game-
based hierarchical optimal interaction control via
the implementation of critic NN

Decomposition (16), one can represent as:

u∗i = ui1 + u∗i2, (25)

where ui1 is dealing with `i(x), and u∗i2 is the optimal com-
pensation of human-centered collaborative tasks.

According to (5), ui1 can be designed as:

ui1 = −

−
(
f̂ise

(−f̂iτx2
i2) + f̂ic

)
sgn(xi2)

− f̂ibxi2 − g−1i ẍid −
τis
γi

 . (26)

The optimal compensation control issue is then trans-
formed into a Stackelberg game-based hierarchical optimal
control approach.

The critic NN is developed to approximate the cost func-
tions (14) and (18):

Vim
∗(ėi) = WT

imφim(ėi) + εim,m = F,L, (27)

where Wim denotes the critic NN vector, εim is the finite
approximate error, as well as φim(ėi) represents activation
function.

The gradient of the (27) is as follow equation:

∇Vim∗(ėi) = ∇φim(ėi)Wim +∇εim,m = F,L, (28)

where ∇φim(ėi) = ∂φim(ėi)/∂ėi denotes gradient of the
activation function,∇εim means gradient error.
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By substituting (28) into (16) and (20), the optimal control
and interaction torque are given by:

u∗i2 = −1

2
R−1iFug

T
i (∇φiF (ėi)WiF +∇εiF ) , (29)

h∗i =− 1

2
R−1iLhg

T
i (∇φiL(ėi)WiL +∇εiL)

+
1

2
R−1iLh (∇φiF (ėi)WiF +∇εiF )λi.

(30)

Substituting (29), (30) into (15) and (19), one yields:

HiF (ėi, ui, hi,WiF ) = riF (ėi, ui, hi)

+∇φiF (ėi)WiF (`i(x) + giui + hi) = eiHF ,
(31)

HiL(ėi, ui, hi,WiL) = riL(ėi, ui, hi) +∇φiL(ėi)WiL(
`i(x) + hi

+ giui

)
+

(
−∇`T∇φiL(ėi)WiL − 2QiF ėi −∇gTi
∇φiL(ėi)WiLui −∇φiL(ėi)WiLhi

)
λi = eiHL.

(32)
where eiHF and eiHL denote residual error.

The estimated optimal cost function is:

V̂ ∗im(ėi) = ŴT
imφim(ėi),m = F,L. (33)

Based on (29), (30) and (33), the approximate optimal
control is:

û∗i2 = −1

2
R−1iFug

T
i

(
∇φiF (ėi)ŴiF

)
, (34)

ĥ∗i =
1

2
R−1iLhg

T
i

(
∇φiL(ėi)ŴiL

)
+

1

2
R−1iLh

(
∇φiF (ėi)ŴiF

)
λi.

(35)

Applying (34) and (35) into (31) and (32), the approxi-
mated Hamiltonian functions are given by:

ĤiF (ėi, ûi, ĥi, ŴiF ) = riF (ėi, ûi, ĥi)

+∇φiF (ėi)ŴiF

(
`i(x) + giûi + ĥi

)
= eiF ,

(36)

ĤiL(ėi, ûi, ĥi, ŴiL) = riL(ėi, ûi, ĥi) +∇φiL(ėi)ŴiL(
`i(x) + ĥi

+ giûi

)
+

(
−∇`T∇φiL(ėi)ŴiL − 2QiF ėi −∇gTi
∇φiL(ėi)ŴiLûi −∇φiL(ėi)ŴiLĥi

)
λi = eiL.

(37)
The approximated Hamiltonian error functions eiF and

eiL are defined as follow equation:

eim = Ĥim −Him,m = F,L, (38)

where eim = Ĥim,m = F,L is obtained using (31), (32),
(36) and (37).

When defining the vector estimate error W̃im =
Wim − Ŵim, it can be deduced that eim = eiHm −

W̃T
im∇φim(ėim)ëim, by combining (31), (32), (36), (37)

with (38). Base on gradient decent algorithm, define residual
error function Eim = 1

2e
2
im, which is minimized for adjust-

ing critic NN weights. The update law is designed as:

˙̂
W im = −ςimeim∇φim(ėi)ëi, (39)

where ςim is the updated rate of the critic NN. ξim is de-
noted as ∇φim(ėim)ëim, and a positive constant ξiLm and
‖ξim‖ ≤ ξiLm is assumed. Hence, one obtains:

˙̃W im = − ˙̂
W im = ςimeim∇φim(ėim)ëim

= ςim(eiHm − W̃T
imξim)ξim.

(40)

Theorem 1: Considered Vim which is approximated by (27),
with Wim, and V̂im given by (33) built with Ŵim, if the
weight of the critic NN is updated by (39), then the weight
approximation error is UUB.
Proof: Choose Lyapunov function candidate:

Lim(t) =
1

2ςim
W̃T
imW̃im,m = F,L. (41)

The time derivative of Lim(t) is:

L̇im (t) =
1

ςim
W̃T
im

˙̃W im = W̃T
im

(
eiHm − W̃T

imξim

)
ξim

= W̃T
im

(
eiHm − W̃T

imξim

)
ξim

= W̃T
imeiHmξim −

∥∥∥W̃T
imξim

∥∥∥2
≤ 1

2
e2iHm −

1

2

∥∥∥W̃T
imξim

∥∥∥2,m = F,L,

(42)
where L̇im(t) ≤ 0 when error function ėim lies outside
Ωim =

{
W̃im :

∥∥∥W̃im

∥∥∥ ≤ eiHm
ξiLm

}
. The proof is completed.

Based on (26) and the hierarchical optimal interaction
control (34), û∗i is given as follows:

û∗i = ui1 + û∗i2

= −

−
(
f̂ise

(−f̂iτx2
i2) + f̂ic

)
sgn(xi2)

− f̂ibxi2 − g−1i ẍid −
τis
γi


− 1

2
R−1iFug

T
i

(
∇φiF (ėi)ŴiF

)
.

(43)

Theorem 2: Considered RRM system (1), the position
tracking error of the closed-loop system is UUB under the
human-centered collaborative task, by the developed Stack-
elberg game-based hierarchical approximate optimal control
policy derived in (43).
Proof: Define the Lyapunov function:

VLy =

n∑
i=1

ViLy =

n∑
i=1

L,F∑
m

V ∗im. (44)

Derivative (44) as follow equation:

V̇Ly(t) =

n∑
i=1

L,F∑
m

(
(∇V ∗im)

T
(`i(x) + giui + hi − ẍid)

)
.

(45)
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According to coupled HJ equations in (23) and (24), they
are with follow equations:

(∇V ∗iF )
T

(`i(x)− ẍid) = −ėTi QiF ėi +
1

4
(∇V ∗iF )

T

giR
−1
iFug

T
i (∇V ∗iF ) +

1

4
(∇V ∗iF )

T
hiR

−1
iFhh

T
i (∇V ∗iF ).

(46)

(∇V ∗iL)
T

(`i(x)− ẍid) =− ėTi QiLėi +
1

4
(∇V ∗iL)

T
gi

R−1iLug
T
i (∇V ∗iL) +

1

4
(∇V ∗iL)

T
hiR

−1
iLhh

T
i (∇V ∗iL) + λTi

˙̄hi1.

(47)
Combining (46), (47) into (45), we obtain:

V̇iLy(t) = −ėTi (QiF +QiL) ėi +
1

4
(∇V ∗iF )

T
giR
−1
iFug

T
i

(∇V ∗iF ) +
1

4
(∇V ∗iF )

T
hiR

−1
iFhh

T
i (∇V ∗iF ) +

1

4
(∇V ∗iL)

T

giR
−1
iLug

T
i (∇V ∗iL) +

1

4
(∇V ∗iL)

T
hiR

−1
iLhh

T
i (∇V ∗iL)+

λTi
˙̄hi1 + (∇V ∗iF +∇V ∗iL)

T
(giui + hi).

(48)
Considering (48), one obtains:

V̇iLy(t) = −ėTi (QiF +QiL) ėi − (∇V ∗iF )
T

(gi(u
∗
i − ui))

− (∇V ∗iL)
T

(h∗i − hi) +
1

4
(∇V ∗iF )

T
giR
−1
iFug

T
i (∇V ∗iF )+

1

4
(∇V ∗iF )

T
hiR

−1
iFhh

T
i (∇V ∗iF ) +

1

4
(∇V ∗iL)

T
giR
−1
iLug

T
i

(∇V ∗iL) +
1

4
(∇V ∗iL)

T
hiR

−1
iLhh

T
i (∇V ∗iL) + λTi

˙̄hi1.

(49)
Then, substituting (45) into (49), one yields:

V̇iLy(t) = −ėTi (QiF +QiL) ėi +
1

4
(∇V ∗iF )

T
giR
−1
iFug

T
i

(∇V ∗iF ) +
1

4
(∇V ∗iF )

T
hiR

−1
iFhh

T
i (∇V ∗iF ) +

1

4
(∇V ∗iL)

T

giR
−1
iLug

T
i (∇V ∗iL) +

1

4
(∇V ∗iL)

T
hiR

−1
iLhh

T
i (∇V ∗iL)

+ λTi
˙̄hi1 +

1

2

(
∇φiF (ėi)ŴiF +∇εiF

)T
(giR

−1
iFu

(gTi ∇φTiF W̃iF + gTi ∇εiF )) +
1

2
(∇φiL(ėi)ŴiL +∇εiL)

T(
R−1iLh

(
∇φTiLW̃iL +∇εiL

))
=− ėTi (QiF +QiL) ėi + ΠiJ ,

(50)
in which ΠiJ has up-bound:

ΠiJ ≤ πiJ , (51)

where πiJ is a constant.
Combining (50), V̇Ly(t) has:

V̇iLy(t) ≤ −ėTi (QiF +QiL) ėi + πiJ

≤ −λmin (QiF +QiL) ‖ėi‖2 + πiJ .
(52)

If ėi lies outside:

Ωi =

{
ėi : ‖ėi‖ ≤

√
πiJ

λmin(QiF +QiL)

}
, (53)

Fig. 1: Motion intention estimation and position tracking
under handshaking tasks via proposed control approach (a)
joint one (b) joint two.

Fig. 2: Control torque under handshaking tasks via existed
and proposed control method (a) joint one (b) joint two.

(45) is negative. Hence, we have V̇Ly(t) < 0 for any ėi 6=
0 when (53) is satisfied. The position tracking error under
human-centered collaborative task is UUB under (43). This
proof is completed.

4 Experiments

The proposed Stackelberg game-based approximate opti-
mal interaction control approach method is verified by 2-
DOF RRM experimental platform. Two kinds of control
methods are utilized to demonstrate the effectiveness of the
developed method: the existed ADP-based optimal control
without Stackelberg game method, and the proposed Stack-
elberg game-based hierarchical optimal interaction control
approach.

Fig. 1 is position tracking curves under handshaking
tasks, obtained by the proposed Stackelberg game-based ap-
proximate optimal interaction control approach. Fig. 2
is control torque under handshaking tasks via existed op-
timal control method and the proposed Stackelberg game-
based approximate optimal interaction control approach. Us-
ing the Stackelberg game-based approximate optimal in-
teraction control approach, the instant increase of control
torques is restrained within safe limits. Fig. 3 is the ini-
tiative interaction torque curves under handshaking tasks by
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Fig. 3: Interaction torque under handshaking tasks via ex-
isted and proposed control method (a) joint one (b) joint two.

Fig. 4: NN curves under handshaking tasks via pro-
posed Stackelberg game-based hierarchical optimal interac-
tion control approach (a) joint one (b) joint two.

the existed optimal control method as well as the devel-
oped Stackelberg game-based approximate optimal interac-
tion control approach. The existed learning-based optimal
control method is without hierarchical level, therefore the in-
teraction torque is a touch of quavering and massive than the
proposed method. It can be seen that the value of interaction
torque keeps within a reasonable range during handshaking
tasks, under the Stackelberg game-based approximate opti-
mal interaction control approach, and without strong chat-
tering phenomenon. This is because Stackelberg game tech-
nique, which guarantees security of the human. Fig. 4 shows
the critic NN weight curves under handshaking obtained by
the proposed Stackelberg game-based approximate optimal
interaction control approach. According to the figure, the
weight can reflect the human intention in real time.

5 Conclusion

A Stackelberg game-based approximate optimal interac-
tion control approach is presented for human-centered RRM
systems. JTF technique is utilized to form the RRM dy-
namic model. The major objective of optimal control with
HRC is transformed into approximating Stackelberg equilib-
rium by adopting Stackelberg game governed between the
human and the RRM that are regarded as players with dif-

ferent hierarchical level in interaction process. On the basis
of the ADP, the approximate optimal interaction control pol-
icy with HRC task is developed via critic NN-based Stack-
elberg game manner for addressing HJ equations. The posi-
tion tracking error is UUB according to the Lyapunov theory.
Experiment results demonstrate the effectiveness of the pro-
posed method.
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Tracking Ability of High-Order Fully Actuated
Iterative Learning Control
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Abstract: This article investigates the tracking ability of iterative learning control (ILC) for a class of affine high-order fully
actuated (HOFA) systems. Tracking ability refers to the property that the system can track any desired output trajectory. The
emerging HOFA system theory is a control-oriented approach. Under this theory framework, we present an iterative HOFA
system model, and find that the tracking ability of the HOFA system is solely related to the measurement matrix due to the
fully actuated characteristic. To achieve the tracking ability of HOFA systems, we propose an ILC scheme by a HOFA control
approach, including HOFA feedback and learning-based feedforward. By using the proportional update law, the tracking ability
of the HOFA system is achieved, that is, the actual output of the system asymptotically tracks to the desired output. In addition,
we verify the proposed scheme through numerical simulations.

Key Words: High-order fully actuated systems, iterative learning control, trajectory tracking, tracking ability

1 Introduction

Iterative learning control (ILC) is an intelligent control
method which is widely used in robotics, chemical plants,
and traffic control [1–3]. Iterative system means that a sys-
tem operates in a finite time interval, resets, and then oper-
ates again. This iterative system generates a lot of historical
data. ILC controller can learn from the data and improve the
transient performance. With the increase of iterations, ILC
can achieve high-accuracy trajectory tracking in the whole
time interval.

ILC is usually used to achieve perfect trajectory tracking,
depending on the tracking ability. The tracking ability, we
refer to the ability of an iterative system to track any desired
output trajectory. It can be studied by determining the output
range of the system. This problem, also referred to as learn-
ing ability of ILC, has been reported in much literature in re-
cent years [4–15]. In [4–6], the authors analyze the relation
between tracking ability and system matrices (input-output
matrix and feedforward matrix) for discrete-time state-space
models. The results are generalized to discrete-time affine
nonlinear systems with iteration-varying trial lengths [7],
and further, to linear systems with delay and varying length
[8]. Under fading communication, the authors of [9] pro-
vide techniques that trade off tracking ability and conver-
gence speed. In [10], a data-driven criteria approach is pro-
posed to judge whether a given desired output can be perfect-
ly tracked. For the desired output that can not be perfectly
tracked, the authors of [11] present a data-driven solution
achieving the least-square approximation of the desired out-
put. The tracking ability of discrete-time linear systems is
intensively studied in [12] through the lens of linear alge-
braic equations. For continuous-time systems, the authors of
[13] analyze the tracking ability of linear systems based on
frequency domain algebraic equations. The tracking abili-
ty of linear fractional-order and distributed-order fractional
systems are studied in [14, 15], respectively. These studies,

all published in the last three years, show that this emerging
problem has attracted the attention of researchers. Moreover,
except for [13], which uses the transfer function model, the
rest use the first/fractional-order state space model.

High-order fully actuated (HOFA) system is a common
model oriented for control design. Many basic physical
laws exist in the HOFA form. Controllable linear system-
s, pseudo-strict-feedback systems, and feedback linearisa-
tion systems can be transformed into HOFA systems [16–
19]. This theory shows its superiority in dealing with a se-
ries of complex problems such as nonlinearity, time-varying
and delays. For example, predictive control and coordinat-
ed control based on HOFA systems are studied in [20–22].
Fault-tolerant control problems are investigated in [23–26].
In [27], the authors present practical prescribed time control
design based on HOFA system approach. In addition, the ap-
plication of HOFA system in spacecraft, DC microgrids, and
quadrotor can be seen in [28–30]. Following the widespread
adoption of HOFA system approach, this paper investigates
the iterative learning control of HOFA system, which is still
a blank.

In this paper, we analyze the tracking ability of HOFA
systems and propose the HOFA–ILC scheme (HOFAILC)
to achieve the tracking task. First, we introduce the iter-
ative HOFA system model, whose repetitive characteristic-
s are analyzed. The corresponding assumptions are given.
Then, we use the lifting technique to determine the tracking
ability of the system. We find that the HOFA systems can
achieve arbitrary state trajectories, resulting that the tracking
ability relies solely on the measurement matrix. Finally, the
HOFAILC is proposed to achieve the tracking ability. The
HOFAILC consists of two parts : the HOFA state feedback
is designed to improve the closed-loop performance of the
system; a proportional (P)-type ILC scheme is used to learn
from the previous iteration for generating feedforward sig-
nal. This provides an asymptotic convergence of the actual
output to the desired output.

This work was supported by the National Natural Science Foundation
of China (62173333, 12271522) and Beijing Natural Science Foundation
(Z210002).
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Organization. Section 2 describes the system model, as-
sumptions and problem formulation. Section 3 gives the re-
sults of the problem. Numerical examples are illustrated in
Section 4. Finally, the conclusion is in Section 5.

Notation. span(M) denotes the linear space spanned by
the columns of matrix M . rank(M) is the rank of matrix
M . I is the identical matrix. ρ(M) is the spectral radius of
matrix M .

2 Problem Formulation

In this section, we introduce the iterative HOFA system,
related assumptions, and the definitions about the tracking
ability.

2.1 System Description
According to the step backward discrete-time HOFA mod-

els [31], we give the iterative discrete-time HOFA system:

xk,t+1 = f(x
[0∼τ−1]
k,t , t) +B(x

[0∼τ−1]
k,t )uk,t,

yk,t = Ctxk,t,
(1)

where k = 0, 1, · · · is the iteration index, t = 0, 1, · · · , N
denotes the time instant, and N is the trial length. xk,t ∈
Rr, uk,t ∈ Rr, and yk,t ∈ Rm are the system state, in-
put, and output, respectively. f(·) ∈ Rr is a nonlinear
vector function. B(·) ∈ Rr×r is a nonlinear matrix func-
tion. Ct is the time-varying measurement matrix. The vector
x
[0∼τ−1]
k,t = [xTk,t, x

T
k,t−1, . . . , x

T
k,t−τ+1]

T .

Assumption 1. The initial values xk,t, t ≤ 0 are reset to
fixed values.

Remark 1. The assumption of identical initial condition
(i.i.c.) is common in the ILC field, and it is necessary to
achieve perfect tracking [13]. Its implementation and relax-
ation have been widely studied as an important issue of ILC
[32–34]. In the first-order state space model, only xk,0 is
usually involved. This paper, however, extends i.i.c. to be
compatible with the HOFA system.

The system (1) is fully actuated if it satisfies the following
condition.

Condition 1. [35] detB(x
[0∼τ−1]
k,t ) 6= 0, ∀x[0∼τ−1]k,t ∈ Rτr

and ∀t ≥ 0.

This fully actuated characteristic facilitates constant linear
closed-loop systems with arbitrarily assignable eigenstruc-
tures.

2.2 Tracking Ability
Denote the desired output as yd,t, t = 1, . . . , N . The

control task is that the errors converge to zero as the itera-
tion increases, i.e., limk→∞ ek,t = 0, t = 1, . . . , N , where
ek,t = yk,t − yd,t. In this way, for any predetermined
tracking accuracy, there exists k∗ such that the output of all
time instants exactly track to the desired output for k ≥ k∗.
In particular, achieving zero-error tracking is called perfect
tracking.

Definition 1. For a desired output that can be perfectly
tracked, we call it is realizable, i.e., {yd,t}t=1,...,N is real-
izable if there exists some {xd,t}t≤N and {ud,t}t=0,...,N−1

such that

xd,t+1 = f(x
[0∼τ−1]
d,t , t) +B(x

[0∼τ−1]
d,t )ud,t,

yd,t = Ctxd,t.

Definition 2. The system (1) has complete tracking ability if
any desired output yd,t ∈ Rm, t = 1, . . . , N is realizable.
Otherwise, it has incomplete tracking ability.

Define the output trajectory space

Y =
{
[yTk,1, y

T
k,2, · · · , yTk,N ]T

∣∣yk,t is generated by (1)
}

of system (1). The system (1) has complete tracking abil-
ity if Y = RmN , and has incomplete tracking ability if
Y ( RmN .

3 Main Results

In this section, we use the HOFA control method to study
the tracking ability and achieve it.

Set 1 ≤ $ ≤ τ , and A0, A1, · · · , A$−1 ∈ Rr×r are $
arbitrarily given matrices. Then the HOFAILC controller is
given as

uk,t = B−1(·)[−f(x[0∼τ−1]k,t , t) +

$−1∑
i=0

Aixk,t−i + vk,t],

(2)

where vk,t is the learning control input to be designed. Us-
ing this controller, the following closed-loop iterative HOFA
system is obtained as

xk,t+1 =

$−1∑
i=0

Aixk,t−i + vk,t. (3)

This constant linear system can be transformed to a more
simple form by utilizing the lifting technique, which is a
common trick to represent ILC systems and analyze conver-
gence. In specific, due to the finite length of the trial, we
stack variables in the time domain over time. As a result, we
can highlight the system dynamics along the iteration axis.

From (3), we derive the relation between state and learn-
ing control input. Denote A[j1,j2,...,jn]

[i1,i2,...,in]
, Aj1i1A

j2
i2
· · ·Ajnin ,

we give some examples

xk,1 =

$−1∑
i=0

Aixk,−i + vk,0,

xk,2 = A
[1,1]
[0,$−1]xk,1−$ +

$−2∑
i=1

(Ai+1 +A
[1,1]
[0,i] )xk,−i

+ (A1 +A2
0)xk,0 +A0vk,0 + vk,1,

xk,3 = (A1 +A2
0)A$−1xk,1−$

+ (A
[2,1]
[0,$−2] +A

[1,1]
[0,$−2] +A

[1,1]
[0,$−1])xk,2−$

+

$−3∑
i=1

(Ai+2 +A
[1,1]
[0,i+1] +A

[2,1,1,1]
[0,i,1,i] )xk,−i

+ (A3
0 +A

[1,1]
[1,0] +A

[1,1]
[0,1] +A2)xk,0 + vk,2

+A0vk,1 + (A2
0 +A1)vk,0,

xk,4 = (A3
0 +A

[1,1]
[1,0] +A

[1,1]
[0,1] +A2)A$−1xk,1−$

+ (((A2
0 +A0 +A1)A0 +A2)A$−2
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+ (A2
0 +A1)A$−1)xk,2−$

+ (A
[1,1]
[0,$−1] + (A2

0 +A1)A$−2

+ (A
[3,1,1]
[0,$−3,1] +A

[1,1]
[1,0] +A1

2)A$−3)xk,3−$

+

$−4∑
i=1

(A
[1,1]
[0,i+2] + (A1 +A2

0)A
1
i+1

+A
[3,1,1,1]
[0,i,1,i] +A

[1,1,1]
[1,0,i] +A

[1,1]
[2,i]xk,−i)xk,−i

+ (A4
0 +A1,1,1

[0,1,0] +A
[1,1]
[0,2] +A

[1,1]
[2,0]

+A
[2,1]
[0,1] +A

[1,2]
[1,0] +A2

1 +A3)xk,0

+ vk,3 +A0vk,2 + (A2
0 +A1)vk,1

+ (A3
0 +A

[1,1]
[0,1] +A

[1,1]
[1,0] +A2)vk,0,

...

We conclude that xk,t is a combination of initial values xk,i,
i ≤ 0, and inputs uk,i, i ≤ t− 1, then we have the following
matrix representation: Denote super-vectors

Yk = [yTk,1, y
T
k,1, · · · , yTk,N ]T ∈ RmN ,

X◦ = [xTk,0, x
T
k,−1, · · · , xTk,$−1]T ∈ Rr$,

Xk = [xTk,1, x
T
k,2, · · · , xTk,N ]T ∈ RrN ,

Vk = [vTk,0, v
T
k,0, · · · , vTk,N−1)]T ∈ RrN ,

we have an algebraic representation between output trajecto-
ry and state trajectory, and that of state trajectory and input
trajectory.

Xk = SVk +MX◦,

Yk = CXk,
(4)

where S is a block Toeplitz matrix

S =


S1 O · · · O
S2 S1 · · · O
...

...
. . .

...
SN SN−1 · · · S1


with S1 = I , S2 = A0, S3 = A2

0 + A1, S4 = A3
0 +

A
[1,1]
[0,1] + A

[1,1]
[1,0] + A2, · · · . C = diag{C1, C2, . . . , CN} ∈

RmN×rN . The elements of matrix M are constructed by
Ai, i = 0, . . . , $ − 1.

Now we have the following result.

Theorem 1. Let system (1) with Assumption 1 satisfy ful-
ly actuated Condition 1, it has the complete tracking ability
Y = RmN if and only if C is of full row rank.

Proof. Note that S is non-singular, thus any state trajec-
tory Xk can be realized by some Vk for any initial value
X◦. That is, Xk can take any vector in RrN . The out-
put trajectory space Y = {Yk|Yk = CXk} is thus equal to
span(C). One can check that span(C) = RmN if and only if
rank(C) = mN , if and only if C is of full row rank.

We notice that rank(C) = mN if and only if rank(Ct) =
m, t = 1, 2, . . . , N . The measurement matrix Ct measures
the state at time t,which falls within the measurement range

of the sensor. Thanks to the fully actuated characteristic,
any state can be reached, hence, any output within the mea-
surement range can also be realized, i.e., Y = span(C). In
short, when the sensors have sufficient measurement range,
the system has a complete tracking ability.

The above discussion implies that the system (1) can pro-
vide arbitrary trajectory tracking within the measurement
range of the sensors, which is guaranteed by the fully ac-
tuated condition. This reminds engineers that for the HOFA
system, as long as the desired output within the measuremen-
t range is selected, the existence of perfect tracking can be
guaranteed, even if the system has incomplete tracking abili-
ty. On the other hand, fully actuated characteristics are diffi-
cult to maintain when using state-space models [16]. Hence,
the findings illustrate the analytical convenience of HOFA
approach over state space approach.

3.1 Update of Learning Control Input
We have analyzed the tracking ability and tracking range

of the HOFA system. To implement the tracking ability, we
now design the update law of the learning control input in
HOFAILC which is actually the feedforward signal.

The P-type learning update law is given as

vk+1,t = vk,t − Ltek,t+1, (5)

where Lt is the time-varying learning gain matrix. This
scheme has the advantages of simple structure, high compu-
tational efficiency and only error requirement. The conver-
gence along the iteration axis of the HOFAILC is provided
by the following theorem.

Theorem 2. Suppose that system (1) with Assumption 1 sat-
isfies Condition 1 and has the complete tracking ability. We
apply the HOFAILC (2) and (5), then, for any desired output
yd,t, the error converges to zero as k tends to infinity if and
only if ρ(I − CtLt) < 1.

Proof. We derive the lifted representation for the update law
(5):

Vk+1 = Vk − LEk,

where the matrix L = diag{L1, L2, · · · , LN} and the super-
vector Ek = [eTk,1, e

T
k,1, · · · , eTk,N ]T .

Denote H = CS , Yd = [yTd,1, y
T
d,1, · · · , yTd,N ]T , consider-

ing the lifted form (4) of closed-loop system (3), we obtain
the evolution of lifted error

Ek+1 = Yk+1 − Yd = H(Vk − LEk) + CMX0 − Yd
= (I −HL)Ek.

Since C is of full row rank, H is of full row rank. The se-
quence Ek converges to zero if and only if ρ(I −HL) < 1
[36]. The matrix HL is lower triangular, and the sub-block
on its diagonal is CtLt. Hence, the eigenvalues of I − HL
are the eigenvalues of I − CtLt, t = 1, 2, . . . , N , which
means that ρ(I −HL) < 1 if and only if ρ(I − CtLt) < 1,
t = 1, 2, . . . , N . The proof is completed.

4 Numerical Examples

4.1 Example 1
We give an example of the difference between a HOFA

model and a state-space model when designing an ILC con-
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troller. Consider an externally-driven spring mass system
whose dynamics are given by

mq̈ + cq̇ + kq = u (6)

which is fully actuated. Here, m is the mass, q is the dis-
placement of the mass, c is the coefficient of viscous friction,
k is the spring constant, and u is the applied force.

We consider discretization of system (6). For example, we
discretize it in central difference format:

q̈(tδ) =
q((t+ 1)δ)− 2q(tδ) + q((t− 1)δ)

δ2
,

q̇(tδ) =
q((t+ 1)δ)− q((t− 1)δ)

2δ
,

which derives an iterative discrete-time fully actuated system

xk,t+1 +
2k − 4m

2m+ cδ
xk,t +

2m− cδ
2m+ cδ

xk,t−1 =
2δ2

2m+ cδ
uk,t.

(7)

In general, the value of xk,t = qk(tδ) can be measured di-
rectly. Hence, the desired output is given as displacement,
that is, xd,t is expected to be tracked by xk,t. Moreover,
the system (7) has complete tracking ability. The HOFAIL-
C can be applied. The displacement error can be directly
used in the update law. In short, we can easily implement
arbitrary displacement trajectories with this model and HO-
FAILC. Moreover, we can achieve the tracking task of dis-
placement by a simple P-type ILC scheme:

uk+1,t = uk,t −Kp(xk,t+1 − xd,t+1).

The convergence proof can follow the study in [8].
Now we use the state space model to design the controller.

Set x = [q, q̇] as the state, system (6) is identical to the sys-
tem:

ẋ =

[
0 1

−k/m −c/m

]
x+

[
0

1/m

]
u.

We discretize the above model using Euler’s method to have

xk,t+1 =

[
1 δ

−kδ/m −cδ/m+ 1

]
xk,t +

[
0

δ/m

]
uk,t

= Axk,t + Buk,t,

yk,t = Cxk,t

where xk,t = [qk(tδ), q̇k(tδ)], and B is an overdetermined
matrix. We discuss three cases.

Case 1. If the measurement matrix is C = [1 0], which
coincides with reality, then CB = 0 causes the system to
lose full tracking ability [5]. Since CAB = δ2/m 6= 0, the
relative degree of the system is 2. Thus, yk,2, yk,3, · · · , yk,N
can track any desired output, which can be realized by the
following P-type update law:

uk+1,t = uk,t −Kp(qk((t+ 2)δ)− qd((t+ 2)δ),

where qd(t) is the desired displacement. However, the track-
ing of yk,1 is neglected.

Case 2. If the measurement matrix is C = [0 1], then
CB 6= 0 causes the system to have full tracking ability [5].

The desired output q̇d(t) is for velocity. The velocity error
converges to zero instead of the displacement error. The P-
type update law is given by

uk+1,t = uk,t −Kp(q̇k((t+ 1)δ)− q̇d((t+ 1)δ)).

However, the velocity must be accessible either directly or
through the difference in displacements. This approach also
amplifies the noise.

Case 3. If the measurement matrix is C = [ 1 0
0 1 ], setting

the desired trajectories for both displacement and velocity
can create unachievable problems. For example, set N = 2,
we have the lifted system

[
yk,1
yk,2

]
=


0 0

δ/m 0
δ2/m 0
−cδ2/m2 δ/m

[uk,0uk,1

]
.

Therefore, any desired output meeting yk,1(1) 6= 0 can not
be tracked.

These three cases show that the state space model brings
some inconvenience and challenges for the design of the con-
troller. With HOFA model, we give inputs directly by utiliz-
ing displacement errors.

4.2 Example 2
We verify the convergence of HOFAILC scheme. Given

the following HOFA system

xk,t+1 =
xk,t
2
− sin(xk,t)

100
− xk,t−1 + 0.1uk,t,

yk,t = xk,t,
(8)

with initial values xk,t = 0, t ≤ 0. The desired output is
yd,t = 30 sin(0.3t) + 5 cos(0.1t), the trial length N = 50,
and the number of iterations is 10.

0 2 4 6 8

iteration

10
1

10
2

2
-n

o
rm

 o
f 
e
rr

o
r

Fig. 1: Performance profile along the iteration axis

The HOFAILC is designed as: Set the initial iteration in-
put v0,t = 0, the input is given as

uk,t = 10(−xk,t
2

+
sin(xk,t)

100
+ xk,t−1 + 0.5xk,t + vk,t),

vk+1,t = vk,t − 0.2ek,t.
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Fig. 2: Output trajectories of ILC at the (a) 0th, (b) 4th, (c) 7th, and (d) 10th iterations. The black dash lines and red solid
lines are the desired outputs and output trajectories, respectively.

The learning gain matrix Lt = 0.2 derives 1 − CtLt =
0.8 < 1 satisfying the spectral radius condition, which en-
sures the convergence of vk,t. The HOFA feedback control
contributes the closed-loop system

xk,t+1 = 0.5xk,t + vk,t,

yk,t = xk,t,

which coincides with a state space model.
Fig. 1 shows that the l2 norm ‖Ek‖ of the lifted error expo-

nentially converges to zero. The performance index ‖Ek‖ in-
dicates the overall performance of the system tracking task.
This verifies the effectiveness of HOFAILC and Theorem 2.

In Fig. 2, we show that the output of system (8) controlled
by the HOFAILC gradually approaches the desired output
from the initial iteration to the 10th iteration. Few iterations
improve the transient performance. In the 10th iteration, the
actual output has accurately tracked the desired output. This
demonstrates the ability of HOFAILC to track with high pre-
cision.

5 Conclusion

In this paper, we described the trajectory tracking problem
of ILC on HOFA systems. We establish an iterative HOFA

system model. For the model, we analyzed the tracking a-
bility of the system through a HOFA control approach. We
found that the tracking ability of the HOFA system is only
related to the measurement matrix. In other words, the sys-
tem can achieve any desired output in measurement range
thanks to the fully actuated characteristic of the system. We
designed a HOFA–ILC scheme to iteratively update the in-
put, and finally achieve perfect trajectory tracking.

The HOFA system is a powerful tool to analyze nonlin-
ear systems, and we expect to analyze the tracking ability
of ILC for sub-HOFA systems. Considering that ILC com-
pensates nicely for repetitive disturbance and requires low
system knowledge, this will help to relax the requirement of
state and system dynamics knowledge in the HOFA system
approach, which is left for future work.
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Robust Adaptive Control for a class of Nonlinear Uncertain
HOFA Systems with Actuator Attacks
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Abstract: In this paper, a robust adaptive controller is proposed for a class of nonlinear uncertain High-order Fully Actuated
(HOFA) systems in the presence of actuator attacks. Specifically, a parameterizable adaptive controller is designed to address
actuator attacks and nonlinear uncertainties. By employing Lyapunov stability theory, it is demonstrated that the designed robust
adaptive controller can guarantee the stability of the closed-loop system. Finally, the effectiveness of the proposed algorithm is
verified through the simulation of a numerical example.

Key Words: Robust Adaptive Controller, High-order Fully Actuated (HOFA) Systems, Nonlinear Uncertainty, Actuator Attacks

1 Introduction

The state space method has been proven to be a high-
ly effective approach for studying nonlinear systems, and
the method has significant practical implications in the do-
mains of control engineering, dynamics analysis, circuit de-
sign, and related fields. In the field of control system theory,
many scholars have focused their research on the state space
method or have applied it within the framework of first-order
systems [1]. This includes the analysis of Lyapunov stabil-
ity theory [2], the Pontryagin’s maximum principle [3], the
Kalman filter [4] and so on. The analysis and design of con-
trollers for nonlinear systems have attracted significant atten-
tion from scholars due to the prevalence of such systems. Re-
garding nonlinear systems, there have been many outstand-
ing research results [5–8]. In [9] , the adaptive fuzzy sliding
mode control problem of nonlinear systems was examined.
Further, Wen, Chen and Ge investigated a nonlinear strict
feedback system using the backstepping control method in
[10]. In [11], the issue of asymptotic tracking of nonlinear
systems is discussed.

Unlike traditional first-order state space models, HO-
FA systems represent a completely new model suitable for
designing controllers. This model was initially proposed
by Duan in 2020, who highlighted that the HOFA system
serves as a descriptive framework for dynamic systems and
a control-oriented model [12]. In recent years, extensive re-
search on the HOFA system has led to significant advance-
ments and notable achievements. Duan generalized physical
concepts to fully actuated systems and introduced a HOFA
system model to describe the dynamic system in [1, 12]. Du-
an established a connection between the generalized form of
strict feedback systems and HOFA systems in [13]. In [14],
a robust control method was proposed to address the chal-
lenges posed by the HOFA systems with nonlinear uncer-
tainties. An adaptive control method was proposed in [15]
to address a set of unknown parameters. Furthermore, in
[16, 17], the application of robust adaptive control was ex-
plored to address the challenges posed by the presence of
nonlinear uncertainties and unknown parameter vectors in
HOFA systems, and the effectiveness of both robust adap-

This work is supported by the Natural Science Foundation of Shandong
Province under Grant ZR2017JL028.

tive control and disturbance rejection control was demon-
strated and validated. In [18–21], Duan also developed other
aspects of HOFA systems, such as the stability problem, op-
timal control problem, generalized PID control problem, and
discrete-time models. Furthermore, the fault-tolerant control
and event-triggered control issues of HOFA systems have
been investigated in [22, 23].

Cyber-physical systems (CPSs) are found in numerous au-
tomation industries, including aerospace, automotive, ener-
gy, manufacturing, and transportation etc. The security of
CPSs is of utmost importance, and extensive research on
CPSs attacks has consistently been a prominent and press-
ing concern in the field. Based on the method of execution,
there are two common types of cyber-attacks: deception at-
tacks and denial of service attacks. Deception attacks have
the potential to compromise data integrity through the al-
teration of data packets, while denial of service attacks can
disrupt data availability by blocking information flow [24].
When a control system experiences a cyber-attack, it can sig-
nificantly impair the system’s performance. Therefore, it is
imperative to develop a control algorithm that can effective-
ly restore the system’s performance. To date, a substantial
body of literature has been published on the topic of cyber-
attacks on control systems, yielding a multitude of promis-
ing findings [25–34]. For instance, Zhang, Wang and Li-
u et al. investigated recoverable cyber-attacks on nonlinear
multi-agent systems in [27]. In [30], the issue of false da-
ta injection in networked systems was discussed. In [34],
Yucelen, Haddad and Feron introduced an adaptive control
algorithm aimed at mitigating sensor attacks. This algorithm
ensures that the linear dynamic system remains stable in the
presence of sensor attacks. It can be seen that the issue of
cyber-attacks within the framework of state space has been
deeply studied by numerous scholars, and many outstanding
findings have been achieved.

Up to now, despite the existence of numerous research
findings on control systems affected by cyber-attacks in state
space, there remains a scarcity of studies focusing on HO-
FA systems impacted by cyber-attacks. Based on the afore-
mentioned research findings, this paper introduces a robust
adaptive control algorithm for a specific category of uncer-
tain HOFA systems with time-invariant actuator attacks. The
algorithm not only mitigates the impact of nonlinear uncer-
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tainties in the system but also guarantees the stability of the
system in the presence of actuator attacks.

Notation: In this paper, Rr denotes the r-dimensional real
vectors. The notation Rr×r represents the set of r × r real
matrix. ∥ · ∥ is used to denote the Euclidean norm. The no-
tation x(i) represents the i-th derivative of x ∈ Rr. P and
Φ represent the matrices P (A(0∼m−1)) and Φ(A(0∼m−1)),
respectively. The notation λmax(·) is used to represent the
maximum eigenvalue of a matrix. λi(A) represents the i-th
eigenvalue of matrix A. Both blank matrices and 0 represent
null matrices. In addition, we will use the following symbol-
s:

∥x∥ = (xTx)
1
2 ,

∥x(0∼m−1)∥P = ((x(0∼m−1))TPx(0∼m−1))
1
2 ,

A(0∼m−1) = [A0, A1, · · · , Am−1] ∈ Rr×mr,

A(0∼m−1)x(0∼m−1) = A0x+A1ẋ+ · · ·+Am−1x
(m−1),

x(0∼m−1) =


x
ẋ
ẍ
...

x(m−1)

 ∈ Rmr,

Φ =


0 I

. . .
I

−A0 −A1 . . . −Am−1

 ∈ Rmr×mr,

where P refers to some symmetric positive definite matrix,
x ∈ Rr, Ai ∈ Rr×r, i = 0, 1 · · ·m− 1.

2 Problem Formulation and Preliminaries

Consider a class of nonlinear uncertain HOFA systems of
the following form

x(m) = g(x(0∼m−1)) + b(x(0∼m−1))u(t)

+∆g(x(0∼m−1)), (1)

where x ∈ Rr, ẋ, . . . x(m) represent the state vector and its
derivatives of each order, u(t) ∈ Rr refers to the control in-
put, g(x(0∼m−1)) ∈ Rr denotes a nonlinear vector function
of known form, b(x(0∼m−1)) ∈ Rr×r refers to a nonlinear
gain matrix of known form, ∆g(x(0∼m−1)) ∈ Rr is the non-
linear uncertainty of the system.

Due to the presence of fundamental physical laws, numer-
ous systems can be effectively represented and analyzed as
HOFA systems. As a result, HOFA systems are very vulner-
able to attacks. In this paper, we make the assumption that
the compromised control input is available and can be used.
Furthermore, we consider the specific form of the compro-
mised control input as

ũ(t) = u(t) + δa, t ≥ 0, (2)

where ũ(t) represents the control input following an actuator
attack. δa is a vector of unknown bounded constants repre-
senting time-invariant actuator attacks.

Our control objective is to develop a robust adaptive con-
troller for the HOFA system (1) with actuator attacks so that
the closed-loop system signals are bounded.

In order to achieve the control objective, we present the
following assumptions and lemmas.

Assumption 1. ([14]) Det b(x(0∼m−1)) ̸= 0, ∀x(i) ∈
Rr, i = 0, 1, . . . ,m − 1. This is the basic assumption of
HOFA systems.

Assumption 2. ([16]) The nonlinear uncertainty sys-
tem (1) possess a non-negative continuous scalar function
ω(x(0∼m−1)) that satisfies

∥∆g(x(0∼m−1))∥ ≤ ω(x(0∼m−1)). (3)

Lemma 1. ([16]) If there exists a value σ such that
Reλi(A) < −σ

2 , then there exists a positive definite matrix
P ∈ Rn×n such that satisfies ATP + PA ≤ −σP , where σ
is a positive constant and A is an n× n real matrix.

Lemma 2. ([16]) For any µ > 0, there exists a set of
matrices Ai ∈ Rr×r, i = 0, 1, . . . ,m− 1 satisfying

Reλi(Φ(A
(0∼m−1))) < −µ

2
, i = 1, 2, . . . ,mr. (4)

Based on Lemma 1 and Lemma 2, for any µ > 0 , there
exists a positive definite matrix P (A(0∼m−1)) such that

ΦTP + PΦ ≤ −µP, (5)

where P , P (A(0∼m−1)) = [P1, P2, . . . , Pm], Pi ∈
Rmr×r. Besides, we define the symbol

PL , PL(A
(0∼m−1)) = P (A(0∼m−1))

[
0
Ir

]
= Pm.

Lemma 3. ([16]) For an arbitrarily chosen matrix E ∈
Rmr×mr and a nonsingular matrix V ∈ Rmr×mr, the para-
metric solutions of A(0∼m−1) and Φ(A(0∼m−1)) satisfies

Φ(A(0∼m−1)) = V EV −1,

A(0∼m−1) = −ZEmV −1(Z,E),

V (Z,E) =


Z
ZE

...
ZEm−1

 ,
where Z ∈ Rr×mr is an appropriate parameter matrix satis-
fying

DetV (Z,E) ̸= 0.

Lemma 4. For two real numbers m and n, and n > 0, the
following inequality holds

m− m2

4n
≤ n.

3 Robust Adaptive controller Design and Stability
Analysis

3.1 Controller Design
In this section, we present the robust adaptive control al-

gorithm for the nonlinear uncertain HOFA system (1) con-
sidering time-invariant actuator attack (2). The controller is
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designed as follows:



u = −b−1(x(0∼m−1))[v0 + v1]− δ̂a,

v0 = g(x(0∼m−1)) +A(0∼m−1)x(0∼m−1),

v1 =
ω2(x(0∼m−1))

4ϖ
PTL (A(0∼m−1))x(0∼m−1),

˙̂
δa = ΓbT (x(0∼m−1))PTL x

(0∼m−1) − Γδ̂a,

(6)

where ϖ is a suitably chosen positive real number. Γ is a
positive definite matrix of appropriate dimensions. The role
of v0 is to eliminate the nonlinear terms in the system in
order to obtain a linear constant closed-loop system. On the
other hand, the roles of v1 and adaptive law are to suppress
the effects of nonlinear uncertainty and actuator attacks in
the system.

By incorporating the controller (6) into the HOFA system
(1), we can derive the closed-loop system as follows:

x(m) = −A(0∼m−1)x(0∼n−1) + b(x(0∼m−1))δ̃a

−ω
2(x(0∼m−1))

4ϖ
PTL (A(0∼m−1))x(0∼m−1)

+∆g(x(0∼m−1)), (7)

where δ̃a = δa − δ̂a,

˙̃
δa = Γδ̂a − ΓbT (x(0∼m−1))PTL x

(0∼m−1). (8)

Furthermore, we can get the following state-space form

ẋ(0∼m−1) = Φ(A(0∼m−1))x(0∼m−1)

+

[
0

ϕδ(x
(0∼m−1)) + ϕu(x

(0∼m−1))

]
, (9)

where ϕδ(x(0∼m−1)) = b(x(0∼m−1))δ̃a, ϕu(x
(0∼m−1)) =

∆g(x(0∼m−1))− ω2(x(0∼m−1))

4ϖ
PTL (A(0∼m−1))x(0∼m−1).

Then, we can get the following theorem:
Theorem 1. Under Assumptions 1-2, choose appropriate

positive real numbers µ and ϖ, and let A(0∼m−1) ∈ Rr×mr
satisfy condition (4). The control law (6) ensures that the
signals of the closed-loop systems (8) and (9) are all bound-
ed.

Remark 1. When designing the controller (6), we can ap-
propriately select values for ϖ and Γ to minimize the bound
of the closed-loop system state x(0∼n−1) and the estimation
error δ̃a.

3.2 Stability analysis
To establish the validity of Theorem 1, we select a Lya-

punov function candidate in the following format:

V =
1

2
(x(0∼m−1))TPx(0∼m−1) +

1

2
δ̃Ta Γ

−1δ̃a, (10)

where P = P (A(0∼m−1)) is a positive definite matrix satis-
fying inequality (5).

Based on equations (8) and (9), the time derivative of e-

quation (10) can be expressed as

V̇ =
1

2
(ẋ(0∼m−1))TPx(0∼m−1) − δ̃Ta Γ

−1 ˙̂δa

+
1

2
(x(0∼m−1))TPẋ(0∼m−1)

=
1

2
(x(0∼m−1))T (ΦTP + PΦ)x(0∼m−1)

−δ̃Ta Γ−1 ˙̂δa + (x(0∼m−1))TP ·[
0

ϕδ(x
(0∼m−1)) + ϕu(x

(0∼m−1))

]
=

1

2
(x(0∼m−1))T (ΦTP + PΦ)x(0∼m−1)

+(x(0∼m−1))TPLϕδ(x
(0∼m−1))

+(x(0∼m−1))TPLϕu(x
(0∼m−1))

−δ̃Ta Γ−1 ˙̂δa. (11)

According to Equation (3) and Lemma 4, one can derive
that

(x(0∼m−1))TPLϕu(x
(0∼m−1))

= (x(0∼m−1))TPL∆g

− 1

4ϖ
ω2(x(0∼m−1))[(x(0∼m−1))TPLP

T
L x

(0∼m−1)]

= (x(0∼m−1))TPL∆g

− 1

4ϖ
ω2(x(0∼m−1))∥PTL x(0∼m−1)∥2

≤ ∥∆g∥∥PTL x(0∼m−1)∥

− 1

4ϖ
ω2(x(0∼m−1))∥PTL x(0∼m−1)∥2

≤ ω(x(0∼m−1))∥PTL x(0∼m−1)∥

− 1

4ϖ
ω2(x(0∼m−1))∥PTL x(0∼m−1)∥2

≤ ϖ. (12)

Substituting (5), (6) and (12) into (11), we have

V̇ =
1

2
(x(0∼m−1))T (ΦTP + PΦ)x(0∼m−1)

− 1

4ϖ
ω2(x(0∼m−1))∥PTL x(0∼m−1)∥2

−δ̃Ta Γ−1[
˙̂
δa − ΓbT (x(0∼m−1))PTL x

(0∼m−1)]

+(x(0∼m−1))TPL∆g

≤ −µ
2
(x(0∼m−1))TPx(0∼m−1) +ϖ

−1

2
δ̃Ta δ̃a +

1

2
δTa δa

≤ −αV + β, (13)

where α = min{µ, 1

λmax(Γ−1)

}, β =
1

2
δTa δa +ϖ.

Thus, it can be verified that 0 ≤ V ≤ e−αt(V(0)−
β

α
)+

β

α
from inequality (13), which means that the states and errors
of the closed-loop systems are bounded.

If the uncertain nonlinearity of the HOFA system (1) sat-
isfies Assumption 3 below, we can get Corollary 1.

Assumption 3. ([16]) The nonlinear uncertainty sys-
tem (1) possess a non-negative continuous scalar function
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ω(x(0∼m−1)) that satisfies

∥∆g(x(0∼m−1))∥ ≤ ω(x(0∼m−1))∥PTL (x(0∼m−1))∥. (14)

Corollary 1. Letting the HOFA system (1) satisfies As-
sumption 1 and Assumption 3, the control law (15) can en-
sure that when time goes to infinity, ∥x(0∼m−1)∥ → 0 and
∥δ̃a∥ is bounded. The control law is given by

u = −b−1(x(0∼m−1))[v0 + v1]− δ̂a,

v0 = g(x(0∼m−1)) +A(0∼m−1)x(0∼m−1),

v1 =
1

ϖ
ω(x(0∼m−1))PTL (A(0∼m−1))x(0∼m−1),

˙̂
δa = ΓbT (x(0∼m−1))PTL x

(0∼m−1),

(15)

where ϖ is a suitably chosen positive real number satisfying
ϖ ≤ 1; Γ is a positive definite matrix of appropriate dimen-
sions.

Proof: Under the control law (15), we can get the follow-
ing closed-loop system:

x(m) =−A(0∼m−1)x(0∼m−1) + b(x(0∼m−1))δ̃a

− 1

ϖ
ω(x(0∼m−1))PTL (A(0∼m−1))x(0∼m−1)

+∆g(x(0∼m−1)),

(16)

which can be equivalently expressed as

ẋ(0∼m−1) = Φ(A(0∼m−1))x(0∼m−1)

+

[
0

ϕδ(x
(0∼m−1)) + ϕu1(x

(0∼m−1))

]
,(17)

where ϕδ(x(0∼m−1)) = b(x(0∼m−1))δ̃a, ϕu1(x
(0∼m−1)) =

∆g(x(0∼m−1))− 1

ϖ
ω(x(0∼m−1))PTL (A(0∼m−1))x(0∼m−1).

We can choose the same Lyapunov function as in (10). In
view of equations (15) and (17), we can obtain

V̇ =
1

2
(ẋ(0∼m−1))TPx(0∼m−1)

+
1

2
(x(0∼m−1))TPẋ(0∼m−1) − δ̃Ta Γ

−1 ˙̂δa

=
1

2
(x(0∼m−1))T (ΦTP + PΦ)x(0∼m−1)

+(x(0∼m−1))TPLϕδ(x
(0∼m−1))− δ̃Ta Γ

−1 ˙̂δa

+(x(0∼m−1))TPLϕu1(x
(0∼m−1)). (18)

Based on Assumption 2, we can prove

(x(0∼m−1))TPLϕu1(x
(0∼m−1))

= (x(0∼m−1))TPL∆g

− 1

ϖ
ω(x(0∼m−1))[(x(0∼m−1))TPLP

T
L x

(0∼m−1)]

≤ ∥∆g∥∥PTL x(0∼m−1)∥

− 1

ϖ
ω(x(0∼m−1))∥PTL x(0∼m−1)∥2

≤ ω(x(0∼m−1))∥PTL x(0∼m−1)∥2

− 1

ϖ
ω(x(0∼m−1))∥PTL x(0∼m−1)∥2

= −1−ϖ

ϖ
ω(x(0∼m−1))∥PTL x(0∼m−1)∥2. (19)

From lemma 2 and equation (19), we can obtain

V̇ ≤ −µ
2
(x(0∼m−1))TPx(0∼m−1)

−1−ϖ

ϖ
ω(x(0∼m−1))∥PTL x(0∼m−1)∥2

−δ̃Ta Γ−1[
˙̂
δa − ΓbT (x(0∼m−1))PTL x

(0∼m−1)]

≤ −µ
2
(x(0∼m−1))TPx(0∼m−1)

−1−ϖ

ϖ
ω(x(0∼m−1))∥PTL x(0∼m−1)∥2

≤ −µ
2
∥x(0∼m−1)∥P

−1−ϖ

ϖ
ω(x(0∼m−1))∥PTL x(0∼m−1)∥2

≤ 0. (20)

Thus, according to the Lyapunov stability analysis, the
corollary 1 holds.

4 Simulation

In this section, we present a numerical example to illus-
trate the effectiveness of the proposed method for nonlinear
uncertain HOFA systems with actuator attacks. Now, let us
consider the HOFA system model [36] given by

ẍ = g(x(0∼1)) + b(x(0∼1))u+∆g(x(0∼1)), (21)

where x ∈ R2 represents the state, u ∈ R2 represents the
control input, g(x(0∼1)) ∈ R2 denotes the nonlinear vector
function, b(x(0∼n−1)) ∈ R2×2 refers to the nonlinear gain
matrix, ∆g(x(0∼1)) ∈ R2 is the nonlinear uncertainty of the
system, and their specific forms are

g(x(0∼1)) = −M−1(x(0∼1))D(x(0∼1))ẋ,

b(x(0∼1)) =M−1(x(0∼1)),

∆g(x(0∼1)) = 0.05(3x+ 2ẋ),

D(x(0∼1)) = −15.1875 sin(x2)

[
ẋ2 ẋ1 + ẋ2
ẋ1 0

]
,

M(x(0∼1)) =

[
30.375 15.1875
15.1875 0

]
cos(x2)

+

[
50.625 10.125
10.125 10.125

]
.

In order to deal with the nonlinear uncertain HOFA system
(21) with actuator attacks, the robust adaptive controller is
designed as

u = −M(x(0∼1))[v0 + v1]− δ̂a,

v0 = −M−1(x(0∼1))D(x(0∼1))ẋ+A(0∼1)x(0∼1),

v1 =
1

4ϖ
ω2(x(0∼1))PTL (A(0∼1))x(0∼1),

˙̂
δa = Γ(M−1(x(0∼1)))TPTL x

(0∼1) − Γδ̂a,

(22)

where ω(x(0∼1)) = 0.05(3∥x∥ + 2∥ẋ∥), ϖ = 10−4, Γ =[
1 0
0 1

]
.
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According to Lemma 2 and Lemma 3, we can get µ = 8,

A0 =

[
24 21
−16 56

]
, A1 =

[
11 3
−2 15

]
,

Φ(A(0∼1)) =


0 0 1 0
0 0 0 1

−24 −21 −11 −3
16 −56 2 −15

 .
Furthermore, by solving the Lyapunov equation

(Φ(A(0∼1)) +
µ

2
I)TP + P (Φ(A(0∼1)) +

µ

2
I) = −0.001I,

we can get

P = 10−3


148.39 −75.09 17.5 −10.88
−75.09 67.88 −9.38 −8.37
17.5 −9.38 2.18 −1.36

−10.88 8.37 −1.36 1.18

 ,
PTL = 10−3

[
17.5 −9.38 2.18 −1.36

−10.88 8.37 −1.36 1.18

]
.
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Fig. 1: Response of x, ẋ
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Fig. 2: Response of δ̃a

In order to establish the validity of Theorem 1, it is
postulated that the actuator attacks, which is both time-
invariant and input-independent, can be represented by

0 0.5 1 1.5 2 2.5 3

Time(s)
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-2000

0

2000

u
1

Control input u1

0 0.5 1 1.5 2 2.5 3

Time(s)

-1500

-1000

-500

0

u
2

Control input u2

Fig. 3: Control input u

the vector [δa1(0), δa2(0)] = [0.3, 0.2]. The initial values

are given by [x1(0), x2(0), ẋ1(0), ẋ2(0)] = [
π

6
,
π

3
, 0.5, 0.4]

and [δ̂a1(0), δ̂a2(0)] = [0.6, 0.4]. The simulation results are
depicted in Fig. 1 to Fig. 3. Fig. 1 illustrate the trajectories
of the state response x and ẋ, respectively. Fig. 2 shows the
errors signals of system (8). The control input u is plotted
in fig. 3. Based on the simulation results, it is evident
that the signals of the closed-loop systems (8) and (9) are
all bounded. Therefore, the effectiveness of the robust
adaptive control strategy proposed in this paper has been
demonstrated.

5 Conclusion

Cyber-physical systems exist in many fields. System per-
formance will be significantly affected when a cyber-attack
occurs on the system. How to ensure the stable operation of
the system is an issue worth considering. This paper propos-
es a robust adaptive control algorithm to solve the actuator
attack problem in the field of HOFA systems. First of all,
the control algorithm can deal with uncertainties in the sys-
tem. When actuator attacks occur in the HOFA system, the
controller designed in this paper can effectively mitigate the
impact of actuator attacks on the system. Finally, the algo-
rithm’s effectiveness is verified through simulation. In order
to further advance research in this field, it is recommended to
explore the possibility of expanding the research direction to
include time-varying and input-dependent actuator attacks.
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Adaptive Iterative Learning Control for Permanent Magnet
Synchronous Motors with Uncertainties
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Abstract: This paper proposes a novel adaptive iterative learning control (AILC) strategy for position tracking of permanent
magnet synchronous motor (PMSM) servo systems. The primary objective of this paper is to achieve precise position tracking
control in the presence of both the load disturbances and the friction forces. The designed control scheme compensates for the
load disturbance indirectly by adjusting the desired control input in the controller. Moreover, an adaptive parametric update law
is employed to estimate the unknown parameters. The convergence properties of the proposed control algorithms are analyzed
using the composite energy function (CEF) methodology. Additionally, the effectiveness of the proposed method for the PMSM
system is validated through simulations conducted in MATLAB.

Key Words: Adaptive Iterative Learning Control, Permanent magnet synchronous motor (PMSM), Composite Energy Function

1 Introduction

Permanent magnet synchronous motor (PMSM) servo
systems have been extensively used in various high-
precision motion control applications because of their attrac-
tive advantages including a compact structure, high power
density, high efficiency and reliability, etc.,[1]. Research in
PMSM control typically focuses on two primary aspects en-
hancing motor disturbance rejection capabilities and improv-
ing rotor tracking performance. Both rotor speed and posi-
tion tracking control are crucial, with a particular emphasis
on high-precision position control. Precise control over the
rotor’s position directly impacts the system’s accuracy, sta-
bility, and dynamic performance.

In practical PMSM implementations, external nonlinear
disturbances, such as the load disturbances and the fric-
tion forces, wield a substantial impact on position control.
Load disturbances materialize from abrupt alterations in ex-
ternal load, while friction forces, stemming from transmis-
sion gears, would degrade the system’s performance, both
of them potentially culminating in undesirable vibrations
[2]. Optimizing motor position control, particularly in high-
precision position tracking, demands effective compensa-
tion for load disturbances and friction forces. Various con-
trol techniques, such as model predictive control (MPC) [3],
high-order sliding-mode control [4], and fuzzy sliding-mode
control [5], have been proposed in the literature. Despite its
optimal solutions within specific control intervals, the MPC-
based approach exhibits poor real-time performance and in-
curs high computational costs in practical applications [6].
On the other hand, the high-order sliding mode controller
facilitates rapid achievement of desired performance in mo-
tor systems [7]. However, the specific switching logic in the
sliding mode reaching law induces chattering in the control
input, adversely affecting overall control effectiveness [8].
The intricacies of the PMSM system, characterized by com-
plex dynamics, present challenges in adjusting fuzzy rule

This work is supported by the National Natural Science Foundation of
China (Grant No. 62373385), the Natural Science Foundation of Guang-
dong Province (Grant No. 2022A1515010881), the Shenzhen Science and
Technology Program(Grant No. 202305063000008, 20231121093427001)

*Corresponding author

parameters to adapt to system variations. Furthermore, the
lack of robustness in the face of motor system parameter
changes deteriorates the application of fuzzy sliding mode
control [9]. In summary, while the methods above offer ef-
fective approaches for addressing compensation uncertain-
ties in motor position control, challenges related to real-time
performance, computational costs, and robustness need to
be carefully addressed for practical implementation in high-
precision applications.

In practical applications, the maneuver of the PMSM ro-
tor position notably demonstrates repetition. Learning con-
trol approaches enhance tracking accuracy by updating the
control input with the data generated from the previous trails
or periods [10]. Two widely utilized methods are repetitive
learning control (RLC) and iterative learning control (ILC),
both commonly applied in periodic trajectory tracking tasks.
RLC is employed for achieving high-precision tracking con-
trol in the infinite time domain [11]. On the other hand,
ILC is utilized for performing tracking tasks within finite
time intervals [12]. In [13], it presents an improved adaptive
iterative learning current control approach for interior per-
manent magnet synchronous motor (IPMSM) drives, greatly
improving performance in dynamic and steady-state scenar-
ios. In [14], the proposed adaptive ILC-based method for
sensorless PMSM drives does not require the offline detec-
tion and the discrimination of harmonic frequencies, which
has a strong suppression ability for the estimated rotor po-
sition harmonic error. In [15], an adaptive PD-type ILC ap-
proach is proposed to improve the PMSM position tracking
in the presence of friction uncertainty. However, the major-
ity of the aforementioned works employ the ILC approach to
address periodic disturbances, combined with other control
algorithms to handle non-periodic uncertainties, which com-
plicates the control systems significantly. To simultaneously
address the load disturbances with periodic tracking trajec-
tories and the non-periodic friction disturbances, it is worth
developing an effective strategy based on ILC.

This paper proposes a novel position tracking control
scheme for PMSM based on an adaptive iterative learning
control (AILC) method within the finite-time domain, in
the presence of both the load disturbances and the friction
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forces. The proposed control scheme indirectly compensates
for load disturbances by adjusting the desired control input
in the controller. Moreover, an adaptive parametric update
law is employed to estimate the unknown parameters, effec-
tively mitigating the impact of friction forces. The controller
gradually adjusts by learning and adapting to compensate for
disturbances. This enables accurate position tracking control
of PMSM, even in challenging scenarios where both the load
disturbances and the friction forces coexist.

This paper is organized as follows. Section II provides an
introduction to the dynamics of the PMSM and formulates
the position tracking control problem. Section III shows the
design of the AILC controller, along with the observer for
estimating unmeasurable states in the friction model and the
adaptively updated laws for estimating unknown parameters
in the system. The convergence analysis of the proposed
control scheme is presented in section IV. Section V presents
the simulation on MATLAB to validate the proposed method
in the PMSM system and Section VI is a conclusion for the
whole paper.

2 Problem formulation

The mathematical dynamics of the PMSM in the rotating
d− q reference frame is described as [16]


θ̇ = ω,
ω̇ = g1iq − g2ω − g3TL(θ)− g1Ff ,

i̇q = −g4iq + g5ω + g6uq − g7ωid,

i̇d = −g4id + g6ud + g7ωiq,

(1)

where g1 ≜ 3npφf

2J , g2 ≜ B
J , g3 ≜ 1

J , g4 ≜ R
L , g5 ≜

nPφf

L , g6 ≜ 1
L , g7 ≜ nP , θ is rotor position, ω is rotor an-

gular speed, iq, id are the stator currents of the d-axis and
q-axis, uq, ud are the stator voltages of the d-axis and q-axis.
R is the stator resistance, L is the stator inductance, J is the
moment of inertia, B is the equivalent damping coefficient,
np is the number of pole pairs, φf is the flux linkage. All
the above motor parameters are known. TL(θ) is load torque
related to motor rotor position θ, Ff is friction torque gener-
ated by friction force during the motor operation.

It is now recognized that the two high-performance con-
trol strategies for PMSM systems are field-oriented control
(FOC) and direct torque control (DTC) [17]. In this sec-
tion, the FOC scheme is adopted, which commonly employs
a conventional cascade control structure. In this setup, the
inner loop handles current control, while the outer loop man-
ages speed and position control. When performing position
control in the outer loop, the q-axis current iq works as a
control input, and the motor rotor position θ and speed ω
both work as state variables. Consequently, we consider the
following position mechanical dynamics for the controller
design in the iteration domain, and the subscript k is the it-
eration index{

θ̇k = ωk,
ω̇k = g1iq,k − g2ωk − g3TL(θk)− g1Ff,k,

(2)

where θk is position state, ωk is speed state, iq,k is the q-axis
current. TL(θk) is the load torque dependent on position
state, Ff,k is friction torque.

Define x1,k = θk, x2,k = ωk, and uk = iq,k, the above-
mentioned equation is rewritten as follows{

ẋ1,k = x2,k,
ẋ2,k = g1uk − g2x2,k − g3TL(x1,k)− g1Ff,k,

(3)

where TL(x1,k) represents the position-dependent load
torque. To accurately describe the friction process, this paper
adopts the dynamic LuGre model, which closely resembles
real-world friction phenomena, to model friction torque. By
utilizing this friction model, the nonlinear characteristics of
friction in the PMSM system can be effectively compensated
for. Thus the friction torque Ff,k in PMSM system can be
accurately described by the LuGre model [18]

Ff,k = ρ0zk + ρ1żk + ρ2x2,k,
żk = x2,k − ϕ(x2,k) |x2,k| zk,
ϕ(x2,k) = Fc + (Fs − Fc)

−(x2,k/ωs)
2

.

(4)

For the friction model (4), the nonlinear function ϕ(x2,k)
is used to model the Stribeck effect, which is assumed to be
strictly positive. However, the stiffness coefficient ρ0, the
damping coefficient ρ1, and the viscous coefficient ρ2 are
unknown. z is an unmeasurable state associated with the
motor rotor state. Fc, Fs are the coulomb friction torque and
stiction friction torque and ωs is the characteristic Stribeck
angular velocity.

According to the first and second formulas in (4), the
above friction model (4) can be streamlined, yielding the
subsequent expression for the friction torque

Ff,k = ρ0zk − ρ1 |x2,k|ϕ(x2,k)zk + ρx2,k, (5)
ρ = ρ1 + ρ2. (6)

For the system (3), define x1,r as a periodic position ref-
erence trajectory that will be tracked. The reference velocity
trajectory x2,r = ẋ1,r, is also periodic with the same pe-
riod. The expected reference tracking trajectory model is as
follows, which is generated by{

ẋ1,r = x2,r,
ẋ2,r = g1ur − g2x2,r − g3TL(x1,r),

(7)

where ur is the periodic desired control input to the reference
model.

The main objective of this paper is to develop an adap-
tive iterative learning controller uk for position tracking in
the PMSM systems, which enables the rotor position x1,k

to precisely track a periodic reference trajectory x1,r in the
presence of the uncertainty TL(x1,k) and friction disturbance
Ff,k. To facilitate the controller design and analysis, the fol-
lowing assumptions are imposed.

Assumption 1: The initial states of the system (3) can
be aligned with the initial value of the desired trajectories,
namely, x1,k(0) = x1,r(0) and x2,k(0) = x2,r(0).

Assumption 2: TL(·) is Lipschitz continuous function
such that for all x1,k1, x1,k2 ∈ R, |TL(x1,k1)−TL(x1,k2)| ≤
η|x1,k1 − x1,k2|, where η is a positive constant.

Remark 1: In the PMSM system, position-dependent load
disturbances are typically subjected to physical limits and
mechanical constraints, leading to an upper bound on their
rate of change. This implies that, for a given range of rotor
position variations, the change rate of load disturbances is
bounded. In this paper, TL(x1) is bounded load torque and
the Lipschitz continuous is commonly used [19].
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3 Controller Design

When designing the controller of high-order systems, the
linear filter error is introduced to reduce the system’s order
and simplify the design process [20]. Accordingly, define
e1,k as the position tracking error, e2,k as the speed tracking
error, and sk as the filter error. The defined errors are as
follows  e1,k = x1,k − x1,r,

e2,k = x2,k − x2,r,
sk = ė1,k + λe1,k.

(8)

To decouple the dynamics of the friction model (5) with
unknown parameters ρ0 and ρ1, we introduce the variables
z0,k and z1,k, representing specific instances of the general
variable zk associated with ρ0 and ρ1, respectively. This en-
ables a clear distinction and independent treatment of these
parameters throughout the analysis. To facilitate the AILC
design, we rewrite the second formula in the nonlinear model
(3) into the parameterized form

ẋ2,k = g1uk +Θkf(x2,k)− g3TL(x1,k), (9)

where Θ ≜
[
σ0 σ1 σ2

]
is unknown, and σ0 = −g1ρ,

σ1 = g1ρ1, σ2 = −g1ρ − g2, the known nonlinear sys-
tem function f(x2,k) ≜

[
z0,k |x2,k|ϕ(x2,k)z1,k x2,k

]T
,

given that the unmeasurable state zk can be estimated. Both
g1, g3 are the known PMSM parameters, TL(x1,k) is a non-
parametric load disturbance dependent on state x1,k.

The load disturbance TL(x1,k) can be considered as a
time-varying disturbance with a periodic trajectory. How-
ever, its specific characteristics are unknown and difficult to
model accurately. To address this issue, one effective ap-
proach is to introduce the estimation of the expected con-
trol input in the controller. This allows for an indirect sup-
pression of the uncertainties caused by the load disturbance,
thereby enhancing the robustness of the system.

For the PMSM system (9),the following AILC law can be
developed if f(x2,k) is known

uk =ûr,k − 1

g1
(Θ̂kf(x2,k) + g2x2,r + λe2,k

+ pe1,k +
η̂1,k
4pλ

sk),

(10)

where ûr,k is the estimate of desired control input ur,k, and
Θ̂k is the estimate of the parametric uncertainty, η̂1,k is the
estimate of the gain η1,k associated with η. The parameters
λ and p denote the gain coefficients for the corresponding
error terms e2,k and e1,k.

The updating law for Θ̂k is developed as follows

Θ̂k(t) = Θ̂k−1(t) + f̂(x2)
TΓsk, (11)

Θ̂−1(t) = 0, t ∈ [0, T ] (12)

where Γ ≜diag{r1, r2, r3} is the diagonal learning gain ma-
trix with positive diagonal elements, f̂(x2,k) is the estimate
of the system function f(x2,k).

Thus the nonparametric uncertainty TL(x1,k) is addressed
by utilizing the periodic characteristics of the expected tra-
jectory ur,k. The adaptive law updates ûr,k(t) as follows

ûr,k(t) = ûr,k−1(t)− µ0sk, (13)

ûr,−1(t) = 0, t ∈ [0, T ] (14)

where µ0 > 0 is learning gain.
Also, design adaptive law in the iteration domain of the

unknown coefficient η1,k as follows

η̂1,k(t) = η̂1,k−1(t) + µ1s
2
k, (15)

η̂1,−1(t) = 0, t ∈ [0, T ] (16)

where µ1 > 0 is learning gain.
However, the premise of designing the controller (10) re-

lies on the assumption that the function f(x2,k) is known.
The LuGre friction model (4) indicates that zk is an unmea-
surable state associated with f(x2,k). This contradicts the
prerequisite that function f(x2,k) is known.

To obtain information about the function f(x2,k), a dual-
observer is designed to estimate z0,k and z1,k separately
[21],

ẑ0,k(t) = ẑ0,k−1(t) + sk, (17)
ẑ0,−1(t) = 0, t ∈ [0, T ], (18)
ẑ1,k(t) = ẑ1,k−1(t) + ϕ(x2,k)|x2,k|sk, (19)

ẑ1,−1(t) = 0, t ∈ [0, T ]. (20)

After obtaining the estimate of z0,k and z1,k, rewrite
f(x2,k) in (10) as f̂(x2,k), and the estimated function
f̂(x2,k) ≜

[
ẑ0,k |x2,k|ϕ(x2,k)ẑ1,k x2,k

]T
.

The final proposed controller algorithm is as follows

uk =ûr,k − 1

g1
(Θ̂k f̂(x2,k) + g2x2,r + λe2,k

+ pe1,k +
η̂1,k
4pλ

sk).

(21)

With the proposed AILC scheme, we have the following
result in theorem 1.

Theorem 1: For system (4) under Assumptions 1− 2, the
proposed controller (21) with the updating laws (11)− (20)
ensures that both the filter error sk and the position tracking
error e1,k converge to zero pointwisely as k → ∞.

4 Convergence analysis
To carry out the convergence analysis, the designed CEF

is as follows, t ∈ [0, T ]

Ek(t) =
1

2
s2k +

1

2
pe21,k +

1

2

∫ t

0
Θ̃kΓ

−1Θ̃T
k dτ +

σ0

2

∫ t

0
z̃20,kdτ

+
σ1

2

∫ t

0
z̃21,kdτ +

g1

2µ0

∫ t

0
ũ2
r,kdτ +

1

2µ1

1

4pλ

∫ t

0
η̃21,kdτ,

(22)

where Θ̃k, z̃0,k, z̃1,k, ũr,k, η̃1,k, which defined as Θ̃k ≜
Θk − Θ̂k, z̃0,k ≜ z0,k − ẑ0,k, z̃1,k ≜ z1,k − ẑ1,k, ũr,k ≜
ur,k−ûr,k, η̃1,k ≜ η1,k−η̂1,k represent the estimation errors.

Proof of Theorem 1: The proof is divided into two parts.
The first part illustrates the nonincreasing property of the
composite energy function (CEF) along the iteration axis.
The second part focuses on demonstrating the convergence
of both filter error and tracking error.

Part I. The difference of the CEF: For a given t ∈ [0, T ],
the difference of the CEF at two consecutive iterations is at
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two consecutive iterations is defined as

∆Ek =Ek − Ek−1

=
1

2
s2k − 1

2
s2k−1 +

1

2
pe21,k − 1

2
pe21,k−1

+
1

2

∫ t

0

(Θ̃kΓ
−1Θ̃T

k − Θ̃k−1Γ
−1Θ̃T

k−1)dτ

+
σ0

2

∫ t

0

(z̃20,k − z̃20,k−1)dτ +
σ1

2

∫ t

0

(z̃21,k − z̃21,k−1)dτ

+
g1
2µ0

∫ t

0

(ũ2
r,k − ũ2

r,k−1)dτ

+
1

2µ1

1

4pλ

∫ t

0

(η̃2
1,k − η̃2

1,k−1)dτ.

(23)

The first term and the third term in (22) can be rewritten
as

1

2
s2k +

1

2
pe21,k =

∫ t

0

(skṡk + pe1,kė1,k)dτ. (24)

To simplify the process, use Lk(t) to represent the right
formula in (26) and can derive that

Lk(t) =

∫ t

0

(skṡk + pe1,kė1,k)dτ

=

∫ t

0

sk[g1uk +Θkf(x2,k)− g3TL(x1,k)− g1ur + g2x2,r

+ g3TL(x1,r) + λe2,k] + pe1,k[sk − λe1,k]dτ

=

∫ t

0

sk[g1uk +Θkf(x2,k)− g1ur + g2x2,r + λe2,k

− g3(TL(x1,k)− TL(x1,r))] + pe1,ksk − pλe21,kdτ

≤
∫ t

0

sk[g1uk +Θkf(x2,k)− g1ur + g2x2,r + λe2,k

+ g3|(TL(x1,k)− TL(x1,r))|] + pe1,ksk − pλe21,kdτ

≤
∫ t

0

sk(g1uk +Θkf(x2,k)− g1ur + g2x2,r + λe2,k + pe1,k)

+ g3η|x1,k − x1,r|sk − pλe21,kdτ

=

∫ t

0

sk(g1uk +Θkf(x2,k)− g1ur + g2x2,r + λe2,k + pe1,k)

− [pλe21,k − g3η·sign(e1,k)·e1,ksk +
g23η

2

4pλ
s2k] +

g23η
2

4pλ
s2kdτ

≤
∫ t

0

sk(g1uk +Θkf(x2,k)− g1ur + g2x2,r + λe2,k

+ pe1,k +
g23η

2

4pλ
sk)dτ,

(25)

where the sign(·) is a sign function, that returns the sign of
a real number.

Substitute the AILC controller (21) into the above (25)

yieds as follows, where η1 = g23η
2

1

2
s2k +

1

2
pe21,k =

∫ t

0

(skṡk + pe1,kė1,k)dτ

≤
∫ t

0

sk(g1uk +Θkf(x2,k)− g1ur + g2x2,r

+ λe2,k + pe1,k +
1

4pλ
η1sk)dτ

≤
∫ t

0

sk[Θk(t)f(x2,k)

− Θ̂k f̂(x2,k)− g1ũr +
1

4pλ
η̃1,ksk]dτ.

(26)

Simplify the term which is related to friction parameters in
(22), where updating law (11) is used

1

2

∫ t

0

(Θ̃kΓ
−1Θ̃T

k − Θ̃k−1Γ
−1Θ̃T

k−1)dτ

=
1

2

∫ t

0

(Θ̃k + Θ̃k−1)Γ
−1(Θ̃T

k − Θ̃T
k−1)dτ

=
1

2

∫ t

0

(2Θ̃k + Θ̃k−1 − Θ̃k)Γ
−1(Θ̃T

k − Θ̃T
k−1)dτ

=
1

2

∫ t

0

2Θ̃kΓ
−1(Θ̃T

k − Θ̃T
k−1)

+ (Θ̃k−1 − Θ̃k)Γ
−1(Θ̃T

k − Θ̃T
k−1)dτ

≤
∫ t

0

Θ̃kΓ
−1(Θ̃T

k − Θ̃T
k−1)dτ

=

∫ t

0

Θ̃kΓ
−1(Θ̂T

k−1 − Θ̂T
k )dτ

= −
∫ t

0

Θ̃k f̂(x2,k)skdτ.

(27)

The other terms in (22) about the state z0,k can be simplify
by using updating law (18) as follows

σ0

2

∫ t

0

(z̃20,k − z̃20,k−1)dτ

=
σ0

2

∫ t

0

(z̃0,k − z̃0,k−1)((z̃0,k + z̃0,k−1))dτ

=
σ0

2

∫ t

0

(z̃0,k − z̃0,k−1)((2z̃0,k + z̃0,k−1 − z̃0,k))dτ

≤ σ0

2

∫ t

0

2z̃0,k(z̃0,k − z̃0,k−1)dτ

= σ0

∫ t

0

z̃0,k(ẑ0,k−1 − ẑ0,k)dτ

= −σ0

∫ t

0

z̃0,kskdτ.

(28)

Do the same simplification like (28) for the term related
to z1,k in (22), so that

σ1

2

∫ t

0

(z̃21,k − z̃21,k−1)dτ ≤ −σ1

∫ t

0

z̃1,kϕ(x2,k)|x2,k|skdτ.

(29)

Combining (28) and (29), we have

σ0

2

∫ t

0

(z̃20,k − z̃20,k−1)dτ +
σ1

2

∫ t

0

(z̃21,k − z̃21,k−1)dτ

≤ −σ0

∫ t

0

z̃0,kskdτ − σ1

∫ t

0

z̃1,kϕ(x2,k)|x2,k|skdτ

= −
∫ t

0

Θk f̃(x2,k)skdτ,

(30)
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where f̃(x2,k) ≜ f(x2,k)− f̂(x2,k).
The second to last term in (22) becomes like follows,

where updating law (13) is used

g1
2µ0

∫ t

0

(ũ2
r,k − ũ2

r,k−1)dτ

=
g1
2µ0

∫ t

0

(ũr,k − ũr,k−1)(ũr,k + ũr,k−1)dτ

=
g1
2µ0

∫ t

0

(ũr,k − ũr,k−1)(2ũr,k + ũr,k−1 − ũr,k)dτ

≤ g1
2µ0

∫ t

0

2ũr,k(ũr,k − ũr,k−1)dτ

=
g1
µ0

∫ t

0

ũr,k(ûr,k−1 − ûr,k)dτ

= g1

∫ t

0

ũr,kskdτ.

(31)

The last term in (22) holds as follows, where updating law
(15) is used

1

2µ1

1

4pλ

∫ t

0

(η̃2
1,k − η̃2

1,k−1)dτ

=
1

2µ1

1

4pλ

∫ t

0

(η̃1,k − η̃1,k−1)(η̃1,k + η̃1,k−1)dτ

=
1

2µ1

1

4pλ

∫ t

0

(η̃1,k − η̃1,k−1)(2η̃1,k + η̃1,k−1 − η̃1,k)dτ

≤ 1

2µ1

1

4pλ

∫ t

0

2η̃1,k(η̃1,k−1 − η̃1,k)dτ

=
1

µ1

1

4pλ

∫ t

0

η̃1,k(η̂1,k−1 − η̂1,k)dτ

= − 1

4pλ

∫ t

0

η̃1,ks
2
kdτ.

(32)

Finally, according to (23) and combining the above ex-
pressions (26), (27), (30), (31) and (32) , it holds that

∆Ek =Ek − Ek−1

≤
∫ t

0

sk(t)[Θkf(x2,k)− Θ̂k f̂(x2,k)

− g1ũr,k +
1

4pλ
η̃1,ksk]dτ

−
∫ t

0

Θ̃k f̂(x2,k)skdτ −
∫ t

0

Θk f̃(x2,k)skdτ

+ g1

∫ t

0

ũr,kskdτ − 1

4pλ

∫ t

0

η̃1,ks
2
kdτ

− 1

2
s2k−1 −

1

2
pe21,k−1

≤ −1

2
s2k−1 −

1

2
pe21,k−1

≤ 0.

(33)

Part II. Convergence property of tracking error: At iter-
ation number i = 0, Θ̂−1(t) = 0, ẑ0,−1 = 0, ẑ1,−1 = 0,
ûr,−1 = 0 and η̂1,−1 = 0 thus E0 is boundedness. Applying
(33) repeatedly we have

Ek = E0 +

k∑
i=1

∆Ei, (34)

lim
k→∞

Ek ≤ E0 − lim
k→∞

k−1∑
i=1

(
1

2
s2i )− lim

k→∞

k−1∑
i=1

(
1

2
pe21,i).

(35)

Consider the positiveness of Ek and boundedness of E0, fil-
ter error sk, and position tracking error e1,k both converge to
zero pointwisely as k → ∞.

5 Simulation Results

In this section, simulations are conducted in MATLAB to
show the effectiveness of the proposed AILC Scheme in the
PMSM system. The motor parameters employed in the sim-
ulation are described in Table 1

Table 1: Parameters of the PMSM
Names Parameters Values

Moment of Inertia J(kg×m2) 1.95× 10−3

Flux linkage φf (Wb) 4.73× 10−4

Pole Paris np 4
Equivalent damping coefficient B 2.53× 10−4

Stator Resistance R(Ω) 0.53

Stator Inductance L(mH) 3.7×10−4

Load Torque TL(Nm) 0.5sin(x1)

Stiffness Coefficient ρ0 0.5
Damping Coefficient ρ1 0.3

Vicious Coefficient ρ2 0.01

Column Friction Torque Fc(Nm) 0.25

Stiction Friction Torque Fs(Nm) 0.34

Stribeck Angular Velocity ωs(rad/s) 0.01

The reference trajectory of the rotor position is given by
x1,r = 0.2πsin(2πt), with a period T= 2π. In the scheme,
the learning gain is selected as Γ =diag{0.5, 0.01, 0.05}.
Other gains are set as λ = 5, p = 5, and in the updated
law (13) and (15), where µ0 = 0.01, µ1 = 0.01.
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Fig. 1: Variation of PMSM state x1,k in iteration domian

The simulation results are illustrated in Figs. 1-3. Fig.
1 illustrates the evolving rotor position trajectory across it-
erations, gradually converging to the desired reference with
increasing iteration numbers. Examining the system’s track-
ing performance at the first iteration, it is evident that the
system state x1,k at the initial iteration deviates from the ref-
erence x1,r. However, the 50th iteration tracking trajectory
shows that the disparity between the output trajectory and
the reference x1,r becomes invisible.

Specifically, Fig. 2 and Fig. 3 provide a more detailed
insight into the performance of the proposed controller. Fig.
2 showcases the convergence of the filter error, emphasizing
the progressive reduction of error values over successive iter-
ations. Simultaneously, Fig. 3 presents the position tracking
error, illustrating a trend of error reduction with the increas-
ing iteration numbers. This consistent convergence towards
zero for both errors illustrates the efficacy of the proposed
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Fig. 3: Maximum tracking error along the iteration axis

AILC scheme. The AILC scheme is thereby convincingly
demonstrated through the mitigation of these considered dis-
turbances, validating its effectiveness in achieving desired
control objectives.

6 Conclusion

In this article, a novel design scheme of CEF-based AILC
for the precise tracking of PMSM rotor position with the load
disturbances and friction forces is proposed. The scheme in-
corporates compensatory strategies to address the load dis-
turbances, while a parametric update law is employed to es-
timate the unknown parameters within the friction model.
This research contributes valuable insights into the appli-
cation of AILC for systems with unknown parameters and
complex dynamics. Future work may focus on further re-
finement of the proposed scheme and its application in real-
world scenarios, solidifying its potential for practical imple-
mentations.
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Abstract: Quadrotor has been widely used because of its high maneuverability and its ability to take off in limited space. It is
very challenging to eliminate the swing in the course of its dispatching task because there is no direct control of the payload. The
quadrotor transport system has to realize not only the control of the position and load of the outer loop, but also the control of the
attitude of the inner loop, which shows the cascaded underactuated–underactuated property. This feature makes the quadrotor
precise positioning and effectively restrain the load swing become extremely difficult.This paper presents a nonlinear hierarchical
control scheme for quadrotor transport system, which makes full use of the cascading characteristics of the system and separates
the inner loop and outer loop controller design to facilitate the design process. To be more specific, in the outer loop subsystem,
a virtual control vector is designed based on the proposed energy storage function, and a saturation function is introduced to
make the desired attitude unaffected by any singularity. For the inner loop, a geometric attitude tracking controller based on the
body coordinate system is designed to drive the quadrotor to achieve the desired attitude. Based on that, a new control method
which makes full use of the coupling effect is proposed, which not only achieves the precise positioning of the quadrotor, but
also achieves the effective load swing elimination.

Key Words: Underactuated systems, Quadrotor, Coupling effect, Energy analysis

1 Introduction

Recently, unmanned aerial vehicles (UAVs) have received
extensive attention from the mechatronic engineering com-
munity. Among the many applications, air cargo transporta-
tion is an important application, which has received exten-
sive attention in recent years. The conventional approach
is to grasp the payload through a gripper equipped on the
quadrotor [1], but the load increases the inertia of the whole
system, which makes the attitude change response slow [2].
Another, more interesting method of transport is to dangle
the payload underneath the quadcopter using a cable. In con-
trast, this method allows the quadrotor to still maintain good
agility when transporting large objects [3]. Therefore, it is
of practical engineering and theoretical significance to study
the cable-suspended payload-quadrotor system.

Up to now, the control problem of quadrotor is still a
fairly open topic. With the exception of open-loop approach,
almost all previous schemes required full state feedback
[4]. Compared to quadrotor control without suspension pay-
loads, the work presented in this paper is more challenging
due to the addition of system degrees of freedom [5] and
the newly introduced payload swing suppression objective,
still having the same control input. Theoretical analysis and
simulation results show that the designed controller can re-
alize accurate positioning of the quadrotor and restrain the
load swing at the same time, thus improving the safety and
transportation efficiency of the system. Specifically, through
dynamic analysis using the Lagrange method, we know that
the inner and outer loop of the cascade are coupled by a
nonlinear interconnect term [6]. For the outer loop, a new
energy storage function is constructed and analyzed, and a

This work was supported in part by the National Natural Science
Foundation of China under Grant No. 62273163, the Taishan Scholar
Foundation of Shandong Province under Grant No. tsqn202312212, the
Outstanding Youth Foundation of Shandong Province Under Grant No.
ZR2023YQ056, the Key RD Project of Shandong Province under Grant
No. 2022CXGC010503.(Corresponding author: M. Zhang)

simple virtual control vector is constructed. Then, the thrust
input and desired attitude of the quadrotor were derived, and
the inner loop was driven by the non-coordinate geometric
tracking controller on the Lie Group [7] to achieve the de-
sired attitude. At the same time, the control framework of
coupling effect identification and coupling effect utilization
is introduced to make the system have better transient char-
acteristics. Lyapunov techniques and LaSalle invariance the-
orem are used to ensure the stability of the integral closed
loop system.

Therefore, the main contributions of this paper are as fol-
lows.

1) Different from the existing results, there is no singular-
ity in the design of saturated virtual control input considering
the saturation problem of motor input in the actual situation.

2) Due to careful mathematical treatment, and the treat-
ment of the coupling terms between the inner and outer rings,
this allows us to construct the control law of the inner and
outer rings separately, so long as both subsystems are asymp-
totically stable, the asymptotic stability of the whole system
can be theoretically guaranteed.

3) Coupling effect identification and coupling effect uti-
lization control are introduced to improve the transient char-
acteristics of the system by judging whether coupling is ben-
eficial and applying beneficial coupling terms to the system.

The rest of this article is arranged as follows. In the Sec-
tion 2, we model an unmanned quadrotor transport system.
Then, the development of the controller is introduced in de-
tail in Section 3. The Section 4 is the simulation result. Fi-
nally, the Section 5 summarizes and looks forward to the
work of this paper.

2 Dynamics Analysis and Error Definition

Consider the fully dynamic unmanned quadrotor transport
system shown in Fig. 1. Based on Lagrange modeling tech-
nique, we can use the following dynamic equation to repre-
sent the system:
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Fig. 1: quadrotor transportation system.

Mc(q)q̈ + Vc(q, q̇)q̇ +G(q) = u+ Fr (1)

Ṙ = Rsk(Ω) (2)

JΩ̇+ sk(Ω)JΩ = τ (3)

Where (1) represents the outer loop dynamics model,
which includes quadrotor translation and payload swing;
(2) and (3) represent the dynamics model of the inner
loop, showing the attitude characteristics. sk(·) : R3 →
so(3) transform a vector into a skew-symmetric matrix.
q(t) ∈ R5 represents the state vector of the outer loop,
and Mc(q),Vc(q, q̇) ∈ R5×5,G(q) ,and u ∈ R5 represent
the inertia matrix, the centripetal-Coriolis matrix, the gravity
vector, and the resultant force applied to the outer loop sub-
system, and Fr represent air resistance vector, respectively.
The above symbols are expressed in detail as follows:

q = [ξT , θx, θy]
T (4)

Mc =


mc11 0 0 mc14 mc15

0 mc22 0 0 mc25

0 0 mc33 mc34 mc35

mc41 0 mc43 mc44 0
mc51 mc52 mc53 0 mc55

 (5)

mc11 = mc22 = mc33 = M +m,mc44 = ml2C2
y ,

mc55 = ml2,mc41 = mc14 = mlCxCy,
mc43 = mc34 = mlSxCy,mc51 = mc15 = −mlSxSy,
mc52 = mc25 = mlCy,mc53 = mc35 = mlCxSy

Vc =


0 0 0 Vc14 Vc15

0 0 0 0 Vc25

0 0 0 Vc34 Vc35

0 0 0 Vc44 Vc45

0 0 0 Vc54 0

 (6)

Vc14 = −mlθ̇xSxCy −mlθ̇yCxSy, Vc44 = −ml2θ̇yCySy,

Vc34 = mlθ̇xCxCy −mlθ̇ySxSy, Vc54 = ml2θ̇xCySy,

Vc15 = −mlθ̇xCxSy −mlθ̇ySxCy, Vc25 = −mlθ̇ySy,

V35 = −mlθ̇xSxSy +mlθ̇yCxCy, Vc45 = −ml2θ̇xCySy

G = [0, 0, 0,mglSxCy,mglCxSy]
T (7)

u = [(fRe3 − (M +m)ge3)
T , 0, 0]T (8)

Fr = [frx, fry, frz, frθx , frθy ]
T (9)

e3 = [0, 0, 1]T (10)

where ξ(t) = [x(t), y(t), z(t)]T ∈ R3represents the posi-
tion of the quadrotor’s center of mass in the inertial coordi-
nate system; θx(t) ∈ R and θy(t) ∈ R are the motion of the
projection signal; R(t) ∈ SO(3) is the rotation matrix of
the quadrotor from fixed coordinate frame to inertial coordi-
nate frame; Ω(t) ∈ R3 represents the angular velocity of the
quadrotor in the body coordinate frame; M ∈ R and m ∈ R
represent the mass of quadrotor and payload, respectively;
l ∈ R is the length of rope; g ∈ R is the gravitational ac-
celeration; J ∈ R3×3 is the inertia moment of the quadrotor
in body coordinate system; Cx, Cy, Sx and Sy are abbrevia-
tions of cos(θx), cos(θy), sin(θx), and sin(θy) , respectively.

As mentioned above, there are two main control ob-
jectives of the quadrotor lifting system, which are to en-
sure that the quadrotor reaches the target position ξd =
[xd, yd, zd]

T ∈ R3 accurately and to suppress the payload
swing ξ → ξd,Θ → 02×1, the target can also be expressed
in the following form:

q → qd = [ξTd , 0, 0]
T (11)

In order to facilitate the subsequent controller design and
analysis, the outer loop tracking error eq(t), ėq(t) ∈ R5 is
defined as

eq = q − qd = [eξ
T ,ΘT ]T (12)

ėq = [ėξ
T , Θ̇

T
]T = [ξ̇

T
, Θ̇

T
]T (13)

Then,the outer loop dynamics (1) can be reorganized as

ėq = eq̇ (14)

eq̇ = M−1
c (u− Vceq̇ −G) (15)

For the inner loop subsystem, define the attitude tracking
error eR(t) ∈ R3 and the angular velocity tracking error
eR(t) ∈ R3as

eR =
1

2
vex(Rd

TR−RTRd) (16)

eΩ = Ω−RTRdΩd (17)

where vex(·) : so(3) → R3 is the inverse operation of
sk(·), Rd ∈ R3×3,Ωd ∈ R3 are the desired attitude and
desired angular velocity of the quadrotor respectively, which
will be determined later. The derivative of eR and eΩ with
respect to time is as follows:

ėR =
1

2
vex(Rd

TRsk(eΩ) + sk(eΩ)R
TRd)) (18)

JėΩ = τ − sk(Ω)JΩ+J(sk(Ω)RTRdΩd−RTRdΩ̇d)
(19)

Then, a nonlinear control scheme is designed for the
quadrotor transport system with cascade structure of (12),
(13), (18) and (19) to achieve the control objective. It is
worth pointing out that the inner loop subsystem and the
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outer loop subsystem are coupled by the nonlinear intercon-
nect term, which is caused by the rotation matrix R appear-
ing in (8).

Remark 1: It can be seen from (1)-(3) that the full dynam-
ics of the quadrotor transport system presents eight degrees
of freedom.

Remark 2: With four control inputs consisting of f ∈
Rand τ ∈ R3, the quadrotor itself is underactuated and pro-
vides the driving force for the entire transportation system,
presenting a ”double” underactuated characteristic. This is
quite different from other underactuated systems where the
drive part is fully actuated, because the outer loop control
input u(t)is not only related to the thrust f(t), And directly
depends on the attitude of the quadrotor R(t)determined by
the moment τ (t).

3 CONTROL DEVELOPMENT

The total energy in the outer loop subsystem consists of
kinetic energy and potential energy, which are expressed as
follows:

E =
1

2
q̇TMcq̇ +mgl(1− CxCy) (20)

The derivative of (20) can be derived as follows:

Ė = q̇T (Mcq̈ + 1
2Ṁcq̇) +mgl(θ̇xSxCy + θ̇yCxSy)

=ėξ
T [fRe3 − (M +m)ge3]

(21)
Furthermore, in order to construct the “shaped” energy stor-
age function, define the following auxiliary function:

Es = [kpx, kpy, kpz]A (22)

where kpx, kpy and kpz are positive control gains, and vector
A ∈ R3 is represented by the following form:

A = [ln cosh(ex), ln cosh(ey), ln cosh(ez)]
T (23)

According to (20) and (22), the total energy storage function
is constructed as

V = E + Es (24)

Taking the time derivative of (21) and utilizing (24), We can
get the following results:

V̇ = Ė + [kpx, kpy, kpz]Ȧ

=ėξ
T [fRe3 − (M +m)ge3 + kpB]

(25)

wherein kp = diag([kpx, kpy, kpz]) ∈ R3×3 is a positive
definite diagonal matrix, and B ∈ R3 is defined in the fol-
lowing form:

B = [tanh(ex), tanh(ey), tanh(ez)]
T (26)

To deal with the coupling term, fRe3 can be divided into
the following two parts:

fRe3 = f
e3

TRd
TRe3

[(e3
TRd

TRe3)Re3 −Rde3]

+ f
e3

TRd
TRe3

Rde3
(27)

where the signal ∆(t) = [∆1,∆2,∆3]
T ∈ R3 and the to-be-

constructed virtual control vector fd = [fd1, fd2, fd3]
T ∈

R3 are defined as

∆ =
f

e3TRd
TRe3

[(e3
TRd

TRe3)Re3 −Rde3] (28)

fd =
f

e3TRd
TRe3

Rde3 (29)

To make full use of beneficial coupling term, the definition
of indicator for coupling term effects are purposed proposed
and defined as follows

J1 = sgn[ėx∆1] (30)

J2 = sgn[ėy∆2] (31)

J3 = sgn[ėz∆3] (32)

Based on the introduced coupling term effect indicator,
the coupling term effect is defined in the following [10] J1, J2, J3 < 0, coupling effect is beneficial

J1, J2, J3 > 0, coupling effect is detrimental
J1, J2, J3 = 0, coupling effect is nil

(33)

Furthermore, (29) implies that vectors fd and Rde3 have
the same direction; therefore, the desired unit direction vec-
tor b3d = Rde3 ∈ R3 can be constructed as

b3d = Rde3 =
fd

∥fd∥
(34)

Substituting the results of (34) into (29) yields

fd =
f ∥fd∥
fd

TRe3

fd

∥fd∥
=

ffd

fd
TRe3

(35)

indicating that
f = fd

TRe3 (36)

It can be seen that as long as the virtual controller fd(t)is
designed, the real control fcan be obtained directly through
(36). Therefore, the core step is to design f(t). For this, note
from (25) and (27)that

V̇ = ėξ
T [fd +∆− (M +m)ge3 +KpB] (37)

construct fd in the following saturated way:

fd = −KpB + (M +m)ge3 −KdC − P (38)

where Kd = diag([kdx, kdy, kdz]) ∈ R3×3 denotes a pos-
itive definite diagonal matrix. C ∈ R3 and P is defined as
follows:

C = [tanh(ėx), tanh(ėy), tanh(ėz)]
T (39)

P = [p1, p2, p3]
T (40)

p1 =

{
0,J1 ≤ 0

J1∆1,J1> 0
(41)

p2 =

{
0,J2 ≤ 0

J2∆2,J2> 0
(42)

p3 =

{
0,J3 ≤ 0

J3∆3,J3> 0
(43)

In order to avoid possible singularity problems in quadrotor
attitude control, for the inner loop subsystem (18) and (19),
we adopt the following control method [8]:

τ = −kReR − kΩeΩ + sk(Ω)JΩ

− J(sk(Ω)RTRdΩd −RTRdΩ̇d)
(44)
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where KR,KΩ ∈ R3×3 are positive constants. Considering
the characteristic ∥tanh( cdot)∥ ≤ 1, we choose that the
(38) control gains should meet the following conditions:

kpz + kdz ≤ (M +m)g (45)

to make the last term of fd nonzero, implying that fd = 0;
therefore, the desired direction vector b3d is free of any sin-
gularity problems on the basis of (34). In order to determine
the expected attitude Rd, choose an arbitrary vector b1 ∈ R3

not parallel to the b3d. Then, we can get the desired attitude:

Rd = [b2d × b3d; b2d; b3d] (46)

where b2d ∈ R3 represents the direction of the body-fixed
axes calculated as

b2d =
b3d × b1c

∥b3d × b1c∥
(47)

Subsequently, we intend to rewrite the outer loop subsys-
tem dynamics to separate out the coupling term. According
to (8), (28), (29), the input uof the outer loop subsystem can
be divided into the following three parts: [9]:

u = ud −m0 +∆u (48)

where ud = R5 is derived from vector fd,m0 ∈
R5represents the total mass of the quadrotor and payload,
∆u ∈ R5represents the coupling term between the inner
loop and the outer loop, whose concrete expression is:

ud = [fd
T , 0, 0]T (49)

m0 = [0, 0, (M +m)g, 0, 0]T (50)

∆u = [∆T , 0, 0]T (51)

Substituting (48) into (13), one has

ėq̇ = M−1(ud − um − Vcėq −G) +Mc
−1u∆ (52)

By defining e(t) = [eq
T (t), ėq

T (t)]T ∈ R10, and then uti-
lizing (14) and (52), it is derived that

ė = α(e,fd, ξd) + β (53)

where α(t) ∈ R10 can be expressed as

α =
∏
10

ėq +
∏
01

Mc
−1(ud − um − Vcėq −G) (54)

and β(t) ∈ R10 is the coupling term defined as follows:

β =
∏
01

Mc
−1u∆ (55)

where matrices
∏

10,
∏

01 ∈ R5×5 are constants explicitly
expressed as∏

10

=

[
I5×5

05×5

]
,
∏
01

=

[
05×5

I5×5

]
(56)

where I5×5 stands for a 05×5 identity matrix, and 5×5 stands
for a 5× 5 zero matrix.

The procedure of stability proof is omitted because of pa-
per space

4 Simulation Results

In order to verify the performance of the proposed control
method, two sets of simulations are designed for verification.
Among them, the first group will be compared and analyzed
with PD control method; The second group further tested the
robustness of the method against external interference. The
system parameters in the experiment are as follows:

M = 0.625kg,m = 0.075kg, g = 9.8kg ·m/s2,
l = 0.535m,J = diag(0.005, 0.005, 0.013)kg ·m2

In the first set of simulations, the control gain of the pro-
posed control method is set as follows:

J = diag([0.005, 0.005, 0.013])kg ·m2 (57)

Kp = diag([2.7, 3.5, 4.9]) (58)

Kd = diag([3.7, 3.7, 3.6]) (59)

KR = diag([6.6, 6.6, 6.3]) (60)

KΩ = diag([0.6, 0.6, 1]) (61)

and vector b1c is chosen as [1, 0, 0]T in this paper.
We compare the performance of the proposed controller

with PD controller without any external disturbances. The
quadrotor initial position is set as

ξ(0) = [−0.5, 1.3, 1.0]T (62)

and the desired position is set as

ξd = [0.5, 0.3, 1.5]T (63)

The results obtained are shown in Fig. 2 and Fig. 3, in-
cluding the position of quadrotor, the swing Angle of the
payload, the thrust fd and torque τ(t) . By comparing the
simulation results of Fig. 2 and Fig. 3, it can be seen that
this method has higher positioning accuracy, smaller pay-
load swing, and almost higher transportation efficiency.

Fig. 2: Quadrotor position ξ(t) and the payload swing angle
Θ(t)

In the simulation of the second set of robustness tests, the
robustness of the system is tested by applying disturbance in
different directions to the payload and the body respectively.
The specific performance is shown in Fig. 4. In the process
of quadrotor transport, even if the payload is disturbed at t1,
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Fig. 3: Control inputs f(t) and τ(t)

the proposed algorithm can still ensure the accurate arrival of
the aircraft to the target position and effectively suppress the
payload swing. When t2 and t3 apply interference from dif-
ferent directions to the payload, the system can still quickly
restore the equilibrium state; The position of the quadrotor
is offset by interference at t4 and t5, but the proposed algo-
rithm can still ensure the stability of the system.

Fig. 4: Control inputs f(t) and τ(t)

In summary, the simulation results clearly show the supe-
rior performance of the method in suppressing the quadrotor
payload swing. At the same time, it also shows strong ro-
bustness

5 Conclusion

For the unmanned quadrotor transport system, a hierarchi-
cal control scheme is proposed, which can effectively sup-
press and eliminate the load swing, ensure the accurate posi-
tioning of the quadrotor and handle the coupling term. The
core contribution of this paper is the construction of formula
based on the cascade system theory and the processing of
inner and outer loop coupling terms. This allows us to de-
sign the inner loop and the outer loop respectively, which
brings great convenience to the design and analysis of the
controller. Simulation results show that this method has su-
perior control performance.
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Abstract: This paper develops a new model reference adaptive control for multi-variable systems with input disturbance. The
controller structure is established by using reduced-order state observer and the direct estimate of nominal controller parameters.
The output matching condition, new tracking error, estimate error as well as adaptive properties are developed depending on the
available signals, rather than the state or output signals in the existing schemes. The new output matching condition is crucial to
the analysis of model reference adaptive control output tracking. With this presented control design, the desired system properties
are achieved including system stability and output tracking, and the simulation results indicate the disturbance rejection ability
of the developed scheme.
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1 Introduction

Many scholars focus on the research of adaptive distur-

bance rejection control. The commonly used methods in-

clude active disturbance rejection control [1, 2], sliding mod-

e control [3, 4], disturbance-observer-based control [5] and

model reference adaptive control (MRAC) [6–9]. Model ref-

erence adaptive control is a valid anti-interference control

method, which can realize system state or output tracking by

designing a feedback controller, and is often used in aircraft

model.

The existing feedback methods of model reference adap-

tive disturbance rejection feedback control schemes for

multi-variable system are mainly state feedback [10, 11] and

output feedback [12, 13]. In addition to these two feedback

techniques, a new partial-state feedback MRAC scheme was

put out in [14, 15] to solve system uncertainty for single-

variable and multi-variable systems, respectively. The dis-

turbance rejection issue can also be resolved by the partial

state feedback MRAC. The partial-state feedback method

was first used to solve disturbance rejection problem for

single-variable systems in [16]. However, the research on

partial-state feedback disturbance rejection control for multi-

variable system is lacking.

It is challenging to study anti-disturbance control for

multi-variable systems with unmatched disturbances. Since

the disturbance does not occur in the input channel, a sim-

ple compensation term −αd(t), with constant matrix α, can

not eliminate the effect of the disturbance. It is necessary

to design a new disturbance compensation term. In addition,

compared with single-input single-output (SISO) system, the

high frequency gain Kp is a matrix rather than a constant

which equals to the leading coefficient of molecular polyno-

mial of the transfer function for SISO system. For multiple-

input multiple-output system, a prior knowledge of the gain

matrix Kp is more difficult to determine for stable adaptive

law design. [17] used the condition that KT
p S

−1
p > 0 is a

symmetric matrix to relax the knowledge of Kp to solve the
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aircraft turbulence compensation problem using state feed-

back. To use less information about Kp for adaptive con-

trol, matrix decomposition technique was developed in [18].

Only the knowledge of leading principal minors is applied

to design adaptive control. In [19], a stable adaptive con-

trol strategy was proposed relied on LDS decomposition of

Kp. And, the matrix decomposition technique was utilized

in dealing with disturbance problem in [20].

This paper develops a MRAC approach by using available

signal for feedback. The novel control structure is designed,

and the new feedback method adds the flexibility in feedback

signal selection. For multi-variable systems in the presence

of disturbances, the proposed new approach has forced us to

reconsider the selection of auxiliary signals and estimation

error. In addition, the new output matching conditions are es-

tablished, which is crucial for constructing the tracking error.

The adaptive law is designed based on LDS matrix decom-

position, and its properties are verified. The designed M-

RAC scheme can guarantee the system stability, disturbance

rejection and asymptotic output tracking.

2 Controller Structure Design

Consider a multi-variable linear time invariant uncertain

system:

ẋ(t) = Ax(t) +Bu(t) +Bdd(t), y(t) = Cx(t), (1)

where x(t) ∈ R
n is the system state, u(t) ∈ R

M is the input,

and y(t) ∈ R
M is the output, matrices A,B,Bd, and C are

unknown. The disturbance signal can be expressed as

d(t) = [d1(t), · · · , dp(t)]T , (2)

di(t) = di0 +

si∑
j=1

dijwij(t), (3)

with unknown parameters dij , i = 1, · · · , p, j = 0, · · · , si
and known signals wij(t). The system (1) has another form:

y(s) = G(s)u(s) +Gd(s)d(s), (4)

with G(s) = C(sI − A)−1B, Gd(s) = C(sI − A)−1Bd.

The objective of this paper is that developing an adap-

tive controller, whose feedback signals are available signals,
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makes the uncertain systems stable and achieves the output

tracking between system and a reference model:

yr(t) = Wr(s)[r](t), (5)

where Wr(s) is stable, and r(t) ∈ R
M is a bounded contin-

uous function. The model reference adaptive control needs

the following assumptions:

Assumption 1. The system is controllable and observ-

able;

Assumption 2. Transfer matrix G(s) has full rank and

its modified left interactor matrix ξr(s) is known, nonsingu-

lar matrix Kp satisfies lims→∞ ξr(s)G(s) = Kp, N(s) =
Cadj(sI −A)B is stable;

Assumption 3. The relative degree of (A,B,C) is not

greater than that of (A,Bd, C).
For designing the controller using available signal, the

available signal has the following description:

ya(t) = Cax(t), (6)

where Ca ∈ R
q×n. It has the input-output form: ya(s) =

Ga(s)u(s) + Gad(s)d(s). In addition, we add the assump-

tion:

Assumption 4. (A,Ca) is observable.

Based on this assumption, we design the state observer

using available signal ya(t). Finding a invertible matrix P ∈
R

n×n guarantees CaP = [Iq×q, 0]. The controlled plant has

the new form:

ẋa(t) =

[
D1 D2

D3 D4

] [
xa1(t)
xa2(t)

]
+

[
E1

E2

]
u(t)+

[
F1

F2

]
d(t). (7)

with xa(t) = P−1x(t) = [xT
a1, x

T
a2]

T , xa1(t) = ya(t).
To achieve feedback control using available signal ya(t),
signal ya(t) is used to express xa2(t). According to the

state observer theory, the estimate x̂a2(t) is generated as
˙̂xa2(t) = (D4 − LoD2)x̂a2(t) + (D3 − LoD1)ya(t) +
(E2−LoE1)u(t)+(F2−LoF1)d(t)+Loẏa(t), with matrix

Lo ∈ R
(n−q)×q making matrix D4−LoD2 stable. It follows

that

x̂a2(t) = (sI −D4 + LoD2)
−1{((D4 − LoD2)Lo +D3−

LoD1)ya(t) + (E2 − LoE1)u(t) + (F2 − LoF1)d(t)}+
Loya(t) + e(D4−LoD2)t(x̂a2(0)− Loya(0)). (8)

From the observer, we have the result that

lim
t→∞(x̂a2(t)− xa2(t)) = 0. (9)

From the definition of xa(t) in (7), xa1(t) equals to available

signal ya(t), and

lim
t→∞ (x̂a(t)− xa(t)) = 0, (10)

is obtained, and then, with the transformation between xa(t)
and x(t),

lim
t→∞ (x̂(t)− x(t)) = 0, (11)

is established. According to the state feedback controller

structure

u(t) = K∗
1x(t) +K∗

2r(t) +K∗
3d(t), (12)

with K∗
1 ∈ R

M×n, K∗
2 = K−1

p ∈ R
M×M , K∗

3 ∈ R
M×p

and (8), the term K∗
1x(t) can be expressed using available

signal ya(t) as

K∗
1x(t) = K∗

1 x̂(t) +K∗
1δ0(t) = K∗

1Px̂a(t) +K∗
1δ0(t)

= Q1ya(t) +Q2(sI −D4 + LoD2)
−1{((D4−

LoD2)Lo +D3 − LoD1)ya(t) + (E2 − LoE1)u(t)+

(F2 − LoF1)d(t)}+Q2Loya(t) + δ1(t), (13)

with K∗
1P = [Q1, Q2], Q1 ∈ R

M×q, Q2 ∈ R
M×(n−q), and

exponentially decaying terms δ0(t) and δ1(t). The new con-

troller structure is obtained as

u(t) =
M1(s)

Λ(s)
[ya](t) +

M3(s)

Λ(s)
[u](t) +

M4(s)

Λ(s)
[d](t)+

M2ya(t) +K∗
2r(t) +K∗

3d(t) + δ1(t), (14)

where M1 = Q2adj(sI −D4 + LoD2)((D4 − LoD2)Lo +
D3 − LoD1) ∈ R

M×q , M2 = Q2Lo + Q1 ∈ R
M×q ,

M3 = Q2adj(sI − D4 + LoD2)(E2 − LoE1) ∈ R
M×M ,

M4 = Q2adj(sI − D4 + LoD2)(F2 − LoF1) ∈ R
M×p,

Λ(s) = det(sI − D4 + LoD2). The elements of matri-

ces M1(s),M3(s), and M4(s) are polynomials, which can

separate the parameters from the operator “s”. From (13)

and (14), the structure of state-observer-based state feedback

controller is changed. The full state feedback changes to

partial-state feedback. Combining with the parametrization

of signal

d(t) = NW (t), (15)

W (t) = [1,WT
1 (t), · · · , 1,WT

p (t)]T ∈ R
s+p,

Wi(t) = [wi1(t), · · · , wisi(t)]
T ,

where parameter matrix N ∈ R
p×(s+p), and s = s1 + · · ·+

sp. Ignoring the exponential decay term δ1(t), we get the

parameterized controller as

u(t) =
Θ∗

1H1(s)

Λ(s)
[ya](t) +

Θ∗
2H2(s)

Λ(s)
[u](t) +

Θ∗
3H3(s)

Λ(s)
·

[W ](t) + Θ∗
4ya(t) + Θ∗

5r(t) + Θ∗
6W (t), (16)

where H1 = [Iq, sIq, · · · , sn−q−1Iq]
T ∈ R

(n−q)q×q ,

H2 = [IM , sIM , · · · , sn−q−1IM ]T ∈ R
(n−q)M×M , H3 =

[Is+p, sIs+p, · · · , sn−q−1Is+p]
T ∈ R

(n−q)(s+p)×(s+p),

Θ∗
1H1(s) = M1(s) with parameter matrix Θ∗

1 ∈
R

M×(n−q)q , Θ∗
2H2(s) = M3(s) with parameter matrix

Θ∗
2 ∈ R

M×(n−q)M and Θ∗
3H3(s) [W ](t) = M4(s)[d](t)

with parameter matrix Θ∗
3 ∈ R

M×(n−q)(s+p), Θ∗
4 = M2,

Θ∗
5 = K∗

2 ∈ R
M×M , and Θ∗

6 = K∗
3N ∈ R

M×(s+p).

The designed controller relies on reduced-order state ob-

server and state feedback control design. Because the close

degree of state and the estimate of state converges to ze-

ro [17] and the state feedback controller has the ability of

achieving output tracking, the new controller (16) has the

same control performance. We have the following result.
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Theorem 1. For the systems with known parameters and

disturbance, the controller parameters exist and the con-

troller (16) guarantees the boundedness of system signals

and output tracking of plant and reference model.

The proof of this Theorem is divided into two parts. One

is to verify the existence of controller parameters to achieve

plant-model output tracking. The other is to ensure the

boundedness of system signals. From the controller structure

(16), the parameters Θ∗
i , i = 1, · · · , 6, are related to state

feedback controller parameters whose existence is verified in

the previous work. Thus, the existence of the designed new

controller parameters Θ∗
i , i = 1, · · · , 6, can be guaranteed.

From the output tracking property y(t)− yr(t) = δ2(t), the

output signal is bounded with ξr(s)[y− δ2](t) = r(t), expo-

nential decay term δ2(t) and Wr(s) = ξ−1
r (s). Combining

with the system model (4), the boundedness of signals x(t)
and u(t) is easily proved. According to the plant-model out-

put tracking, a matching condition is established.

Corollary 1. The partial-state feedback controller param-

eters Θ∗
i , i = 1, · · · , 6, satisfy

Λ(s)I −Θ∗
1H1(s)Ga(s)−Θ∗

2H2(s)−Θ∗
4Λ(s)Ga(s)

= Θ∗
5Λ(s)ξr(s)G(s), (17)

Θ∗
1H1(s)Gad(s)d(s) + Θ∗

3H3(s)W (s) + Θ∗
4Λ(s)Gad(s)d(s)

+ Λ(s)Θ∗
5ξr(s)Gd(s)d(s) + Θ∗

6Λ(s)W (s) = 0. (18)

Corollary 1 is essential for establishing the output tracking

error equation, and lays a foundation for designing a stable

adaptive law.

3 Adaptive Control Design

In the above Section, the controller parameters are sepa-

rated from signals. For uncertain systems, the parameters are

unknown. Thus, it needs to be estimated and then we have

the adaptive controller by estimating the controller parame-

ters Θ∗
i , i = 1, · · · , 6, as:

u(t) = Θ̂1(t)
H1(s)

Λ(s)
[ya](t) + Θ̂2(t)

H2(s)

Λ(s)
[u](t)+

Θ̂3(t)
H3(s)

Λ(s)
[W ](t) + Θ̂4(t)ya(t) + Θ̂5(t)r(t)+

Θ̂6(t)W (t), (19)

where Θ̂i(t) are estimates of Θ∗
i , i = 1, · · · , 6, in (16). Next,

we will design adaptive law to update Θ̂i(t) to obtain the

desired results. Operating u(s) on both sides of (17), we

have

u(s) = Θ∗
1

H1(s)

Λ(s)
(ya(s)−Gad(s)d(s))+

Θ∗
2

H2(s)

Λ(s)
u(s) + Θ∗

4(ya(s)−Gad(s)d(s))+

Θ∗
5ξr(s)(y(s)−Gd(s)d(s)). (20)

Combining with (18),

u(s) = Θ∗
1

H1(s)

Λ(s)
ya(s) + Θ∗

2

H2(s)

Λ(s)
u(s) + Θ∗

4ya(s)+

Θ∗
5ξr(s)y(s) + Θ∗

3

H3(s)

Λ(s)
W (s) + Θ∗

6W (s). (21)

Based on the reference model ξr(s)[yr](t) = r(t) with

Wr(s) = ξ−1
r (s), subtracting (19) from (21), a tracking er-

ror equation about parameter errors Θ̃i(t) = Θ̂i(t) − Θ∗
i is

shown as

Θ∗
5ξr(s)[e](t) = Θ̃1(t)

H1(s)

Λ(s)
[ya](t) + Θ̃2(t)

H2(s)

Λ(s)
[u](t)+

Θ̃3(t)
H3(s)

Λ(s)
[W ](t) + Θ̃4(t)ya(t) + Θ̃5(t)r(t)+

Θ̃6(t)W (t), (22)

that is,

Θ∗
5ξr(s)[e](t) = Θ̃(t)Υ(t), (23)

where e(t) = y(t) − yr(t), Θ̃(t) = [Θ̃1(t), Θ̃2(t),
Θ̃3(t), Θ̃4(t), Θ̃5(t), Θ̃6(t)], Υ(t) = [υT

1 (t), υ
T
2 (t), υ

T
3 (t),

yTa (t), r
T (t),WT (t)]T , υ1(t) = H1(s)Λ

−1(s)[ya](t),
υ2(t) = H2(s)Λ

−1(s)[u](t), υ3(t) = H3(s)Λ
−1(s)[W ](t),

u(t), ya(t), W (t), and y(t) derive from inverse laplace trans-

form, and Θ∗
5 = K−1

p . According to (23), we know that, in

uncertain systems, the output tracking error e(t) is related

to the unknown constant matrix Kp, and it has the another

description as

e(t) = ξ−1
r (s)Kp[Θ̃Υ](t), (24)

where the prior knowledge of Kp is needed. We add the fol-

lowing assumption:

Assumption 5. The signs of leading principal minors αi

of matrix Kp, i = 1, · · · ,M , are known.

It is well known that an arbitrary matrix can be trans-

formed into a diagonal matrix through elementary trans-

formation. Hence, LKpU = D is achievable with u-

nit lower triangular matrix L, diagonal matrix D and u-

nit upper triangular matrix U . Then, the gain matrix Kp

has a decomposition: Kp = L̄D̄S where unit lower tri-

angular matrix L̄ = L−1D̄UT D̄−1, diagonal matrix D̄ =
diag{sign[α1]β1, · · · , sign[αMα−1

M−1]βM}, arbitrary βj >
0, j = 1, · · · ,M , and symmetric and positive definite matrix

S = U−Tβ−1|D|U−1, β = diag{β1, · · · , βM}. According

to the above matrix decomposition, we have the new expres-

sion of error equation (23) as

L̄−1ξr(s)[e](t) = D̄SΘ̃(t)Υ(t), (25)

where L̄−1 = I + Z, Z = [0, Z∗
2 , · · · , Z∗

M ]T , Z∗
i =

[z∗Ti , 0]T ∈ R
M , and z∗i = [z∗i1, · · · , z∗ii−1]

T , i =
2, · · · ,M . Choose a stable polynomial f(s), whose de-

gree equals to the maximum degree of polynomials in

ξr(s). Let h(s) = f−1(s), ē(t) = h(s)ξr(s)[e](t) =
[ē1, · · · , ēM ]T and ηk(t) = [ē1, · · · , ēk−1]

T , k =

2, · · · ,M , where ēi(t) =
∑M

j=1 h(s)ξrij(s)[ej ](t) and

ξrij(s) represents the element in row i and column j
of the matrix ξr(s). Equation (25) can be expressed

as ē(t) + Zē(t) = D̄Sh(s)[Θ̃Υ](t), which can be fur-

ther expressed as ē(t) + [0, z∗T2 η2(t), · · · , z∗TM ηM (t)]T =
D̄Sh(s)[Θ̃Υ](t), with unknown vector z∗i , i = 2, · · · ,M ,

and matrix D̄S. Introduce estimate error signal σ(t) =
ē(t)+[0, zT2 (t)η2(t), · · · , zTM (t)ηM (t)]T +Φ(t)ϕ(t), where

zi(t) and Φ(t) are estimates of z∗i and D̄S, and ϕ(t) =
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Θ̂(t)τ(t) − h(s)[Θ̂Υ](t), τ(t) = h(s)[Υ](t), Θ̂(t) =
[Θ̂1(t), Θ̂2(t), Θ̂3(t), Θ̂4(t), Θ̂5(t), Θ̂6(t)]. The estimate er-

ror equation can be expressed as

σ(t) =[0, z̃T2 (t)η2(t), · · · , z̃TM (t)ηM (t)]T+

D̄SΘ̃(t)τ(t) + Φ̃(t)ϕ(t), (26)

where z̃i(t) = zi(t) − z∗i and Φ̃(t) = Φ(t) − D̄S. From
estimate error equation (26), the adaptive law is designed by
gradient algorithm as:

żi(t) = −Γiσi(t)ηi(t)

m2(t)
, i = 2, · · ·M, (27)

˙̂
Θ(t) = − D̄σ(t)τT (t)

m2(t)
, Φ̇(t) = −ΓΦσ(t)ϕ

T (t)

m2(t)
, (28)

with diagonal positive definite matrices Γi and ΓΦ, and

m2(t) = 1 + ϕT (t)ϕ(t) + τT (t)τ(t) +
∑M

i=2 η
T
i (t)ηi(t).

Then, we have the following properties of adaptive laws.

Lemma 1. (1) żi(t) ∈ L2,
˙̂
Θ(t) ∈ L2, Φ̇(t) ∈ L2 and

σ(t)m−1(t) ∈ L2;

(2) zi(t), Θ̂(t), Φ(t) and σ(t)m−1(t) are bounded.

The Lemma 1 can be proved by designing the positive

definite function V (z̃i(t), Θ̃(t), Φ̃(t)) =
∑M

i=2 z̃
T
i (t)Γ

−1
i ·

z̃i(t) + trace[Θ̃T (t)SΘ̃(t)] + trace[Φ̃T (t)Γ−1
Φ Φ̃(t)]. The

derivative of V (·) is V̇ (·) = −2σT (t)σ(t)m−2(t). Based

on the L̄D̄S matrix decomposition, adaptive law design and

Lemma 1, the desired closed-loop system performance can

be achieved.

Theorem 2. For uncertain systems satisfying Assump-

tions 1-5 with input disturbances, the adaptive controller (19)

whose parameters are updated by adaptive laws (27) and (28)

makes the closed-loop system stable and can realize asymp-

totic output tracking.

The proof of Theorem 2 omitted here depends on Small-

Gain Lemma and Barbalat Lemma described in [21]. The

control signal u(t), output y(t), and signal ē(t) can be

described using auxiliary signal yh(t) = F (s)[y](t) and

bounded signals r(t), f(t) and various stable operators,

where stable F (s) satisfys sF̄ (s) = 1 − F (s) and F (s) =
āl(s+ā)−l, with the maximum degree l of polynomials in ξr
and sufficiently large constant ā > 0. From the Small-Gain

Lemma, the boundedness of yh(t) can be further obtained.

Then, combining with signal properties in Lemma 1 and the

stable filter, boundedness of closed-loop system signals and

tracking property are further obtained.

4 Example
In this section, we use a linearized aircraft model [22] to

illustrate the feasibility of this scheme:

⎡
⎢⎢⎢⎢⎣

v̇b
ṗb
ṙb
φ̇

ψ̇

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

−0.1386 14.326 −219.04 32.167 0
−0.0207 −2.1692 0.9132 0.0003 0
0.0029 −0.1644 −0.1577 −0.0049 0

0 1 0.0062 0 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

vb(t)
pb(t)
rb(t)
φ(t)
ψ(t)

⎤
⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎣

0.159 0.002
0.013 0.213
−0.129 0.002

0 0
0 0

⎤
⎥⎥⎥⎥⎦

[
dr(t)
da(t)

]

+

⎡
⎢⎢⎢⎢⎣

0.13858 −14.326
0.0207 2.1692
−0.0029 0.16444

0 −1
0 0

⎤
⎥⎥⎥⎥⎦

[
vw
pw

]
,

y =

[
1 0 0 0 0
0 0 0 0 1

]
⎡
⎢⎢⎢⎢⎣

vb(t)
pb(t)
rb(t)
φ(t)
ψ(t)

⎤
⎥⎥⎥⎥⎦
, (29)

where the state variables are lateral velocity, roll rate, yaw

rate, roll angle, and yaw angle, respectively, the control in-

put are the rudder position and aileron position, respectively,

and we just consider the effect of lateral wind velocity vw
and roll gust velocity pw on aircraft. In this simulation, the

Assumptions 1-5 are satisfied, and Kp is nonsingular. With

the choices of initial state x(0) = [0.1, 0.2, 0.5, 0.1, 0.1],
Λ(s) = (s + 1)2, ξr(s) = diag{(s + 1), (s + 1)2}, h(s) =
(s + 1)−2, Γ2 = 10, ΓΦ = diag{1, 5}, D̄ = diag{2, 6},

r(t) = [1, 0.1sin(0.2t)]T , vw(t) = 10 + 0.2sin(0.2πt),
pw(t) = 0.5sin(0.2t), and partial state signal ya(t) =
[vb, φ, ψ]

T . The system response curves of the partial-state

feedback control and output feedback control schemes are

shown in Figures 1 and 2 with the same conditions, where

the curves of u(t) are shown in Figure 1, the curves of track-

ing error e(t) are shown in Figure 2.

It follows from Figures 1 and 2 that the control input sig-

nals are bounded, the output tracking between system and

reference model is achieved, and the new scheme enables

faster tracking under the same conditions and initial values.

In a word, the designed partial-state feedback disturbance re-

jection control scheme has the ability to make aircraft model

stable and to reject turbulence disturbance.

5 Conclusion

This paper develops a disturbance rejection control

scheme using partial-state feedback MRAC method for mul-

tivariable linear time-invariant system with disturbances.

The nominal controller structure is proposed. The adap-

tive law is designed using L̄D̄S matrix decomposition tech-

nique of Kp. In addition, some properties of adaptive law

are given, which is crucial in stability analysis. The de-

signed control scheme uses partial available signal for feed-

back and guarantees that system output asymptotically track-

s the reference output yr(t). The simulation results demon-

strate the feasibility of this control scheme. The proposed

control method is potential, which can be extended to other

control problems such as adaptive actuator failure compen-

sation, time-delay systems and PDE systems.
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Abstract: Electric vehicles (EVs) play a crucial role in the global transition to low-carbon and clean energy. Large amounts
of uncontrolled EVs charging can cause short-term overloading problems with distribution transformers in some areas. EVs as
a mobile energy storage component with Vehicle-to-Grid (V2G) capability can provide a solution to alleviate the overloading
and aging problems of distribution transformers. This paper comprehensively considers the charging and discharging losses of
EVs and the peak load of distribution transformers, with the constraint of EVs’ own charging and discharging demands. The
rolling-horizon optimization is employed to solve the model, which can adapt to dynamic changes in load conditions and provide
rapid solutions. In this paper, the effectiveness of the proposed method is verified and the loads exceeding the capacity of the
transformer are successfully shifted to other times and the charging needs of the users participating in the V2G program are met.

Key Words: electric vehicles, load shift,rolling-horizon optimization, Vehicle-to-Grid

1 Introduction

As global climate change and environmental pollution be-
come increasingly severe, reducing greenhouse gas emis-
sions and dependence on traditional petroleum fuels has be-
come a global consensus [1]. Electric vehicles (EVs), as a
novel form of transportation that uses electricity as a driving
energy source and does not require traditional fuel engines,
can achieve zero or low emissions during operation. How-
ever, the widespread adoption of EVs, while improving the
environment, often leads to overload and aging problems in
distribution transformers due to their large-scale and uncon-
trolled charging behavior [2].

EVs also have energy storage and vehicle-to-grid (V2G)
capabilities, which can play a more active role in the energy
system [3]. Through the energy storage function of EVs,
they can be viewed as mobile energy storage devices that
interact with the power grid. If the V2G feature is fully uti-
lized to transfer power loads, it can greatly alleviate the over-
load pressure and aging problems caused by uncontrolled
EV loads on distribution transformers [4].

It is projected that uncontrolled EV charging loads will
lead to a peak load increase of up to 10% by 2030 [5]. V2G
can mitigate the impacts caused by uncontrolled EV charg-
ing on the power grid and effectively reduce electricity pres-
sure on the distribution network during peak load periods. If
issues such as “range anxiety” and “minimum range” can be
addressed, there will be a high willingness among EVs users
to participate in V2G [6]

Existing research has made numerous innovative and
practical contributions in the domain of coordinated con-
trol for EVs. The study documented [7] investigated op-
timization and coordination strategies for plug-in EVs, ef-
fectively reducing peak loads and the cost of grid expan-
sion. A communication-free intelligent charging algorithm
for EVs was proposed [8], which can effectively address dis-

This work was supported by the project of the State Grid Zhejiang Elec-
tric Power Co. Ltd. (B311HZ23000Q).

tribution transformer overload issues even without central-
ized control. Reference [9] considered photovoltaic power
and building demand forecasts, V2G and vehicle-to-building
(V2B) capabilities of EVs, as well as the impact of power
trading, to regulate the charging and discharging power of
EVs. An intelligent framework for energy sharing among
EVs was proposed [10], optimizing cost, time, system effi-
ciency, user satisfaction, and social welfare through a two-
tier matching approach. Reference [11] focused on the issue
of distribution transformer overloads, determining the range
of EVs that can be accommodated by monitoring key param-
eters and adopting corresponding charging control strategies.
Reference [12] proposes a centralized control strategy based
on smart meters, which enables effective management of the
charging load for EVs.

In terms of improving EV users’ participation in V2G
systems, reference [13] established a real-time settlement
system for V2G, which increased V2G participation rates.
The simulation results showed that this system significantly
improved user participation rates. A vehicular ad-hoc net-
work system model was established and applied to the Texas
power market in the study documented [14]. The results in-
dicated that reducing battery costs, providing subsidies and
incentive-based market products can increase user participa-
tion rates. The V2G-OLC algorithm proposed [15], it can ef-
fectively reduce EV users’ charging costs, solving the prob-
lem of charging costs in the housing sector. In [16], a sub-
sidy program designed for V2G services was proposed to
compete with the renewable energy market.

In industry practice, EVs have been able to achieve bidi-
rectional interaction with the power grid. Reference [17] in-
troduces a configuration of an AC-DC converter for V2G
technology, enabling the bidirectional flow of energy. Ref-
erence [18] presents a topology structure based on current-
source-type converters and a unified control scheme based
on active disturbance rejection control principles, demon-
strating its effectiveness through experimental validation. A
novel bidirectional DC/DC converter is developed in [19],
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which enables energy conversion and control at different
voltage levels in EV systems.

Given the aforementioned discussions, this paper ad-
dresses the issue of transformer overload caused by a large
number of uncontrollable EV charging. To tackle this
problem, a rolling-horizon optimization model is proposed,
which calculates the optimal control actions at each time step
to adapt to system dynamics and environmental changes.
This approach enables a rational regulation of V2G re-
sources. Firstly, the paper classifies and defines the char-
acteristics of uncontrollable EVs engaged in unregulated
charging and controllable EVs participating in V2G. Subse-
quently, considering user demands, vehicle electrical char-
acteristics, and substation capacity constraints, the objective
function is formulated to minimize charging and discharg-
ing losses while incorporating a penalty term for maximum
load. rolling-horizon optimization is performed upon the ar-
rival of each EV to achieve the optimal control outcome at
the current time. Simulation results demonstrate the efficacy
of this method in effectively resolving the problem of trans-
former overload resulting from uncontrolled EV charging,
while maintaining the overall load at a lower level.

This paper is structured as follows. Section II provides
definitions of the controlled and uncontrollable EVs used in
this study. Section III presents the proposed V2G control
strategy using rolling-horizon optimization. In Section IV,
the proposed method is simulated and analyzed using data
from an industrial park in Shanghai. Finally, Section V sum-
marizes the key findings and conclusions of this thesis.

2 Charging Modes for EVs

2.1 Problem Statement
When a large number of EVs enter the charging state, it

may cause serious overload and aging issues for distribu-
tion transformers. In this paper, we propose a method based
on rolling-horizon optimization to regulate V2G resources
and alleviate the overload and aging problems of distribution
transformers. Specifically, this method combines future grid
load conditions and user demands to dynamically formu-
late corresponding charging and discharging strategies. By
employing rolling-horizon optimization, intelligent manage-
ment of charging and discharging behaviors can be achieved,
effectively controlling the overload and aging problems of
distribution transformers.

In power systems, proper protection of transformer min-
eral oil is particularly important. Prolonged operation under
high loads can have adverse effects on the transformer itself,
leading to a shortened lifespan [4]. Therefore, the objective
of V2G charging and discharging control in this study is to
reduce peak loads on distribution transformers and ensure
their safe operation.

By implementing flexible scheduling of EV charging and
discharging through V2G technology, power load can be dis-
persed in time and space. Consequently, the load on distribu-
tion transformers becomes more evenly distributed, avoiding
damages caused by excessive peak loads and load fluctua-
tions. Therefore, the V2G charging and discharging control
strategy proposed in this paper aims to optimize the load dis-
tribution of the power system, reduce the load pressure on
distribution transformers, mitigate the risk of overload, and

delay the aging process.

2.2 Uncontrolled Charging
Uncontrolled EVs are considered as simple electrical de-

vices in this paper, where they continuously charge at the
rated power of the EV when plugged into a power source
until the battery is full or the EV leaves the charging station
[20]. As a result, the power level during the charging period
and the charging duration of EV users cannot be adjusted
and solely depend on the type of EV and the user’s charging
gun time.

However, the simultaneous connection of a large number
of uncontrolled EVs for charging can lead to extremely high
peak loads, often coinciding with the peak loads of other
electrical devices. This seriously affects the safe operation
of the power grid, particularly causing issues related to trans-
former overload and aging. To address this problem, mea-
sures need to be taken to mitigate the adverse effects of un-
controlled EV charging loads on distribution transformers.

2.3 Controlled Charging
In this paper, controlled EVs refer to a way of regulat-

ing charging and discharging power during the EV’s stay by
utilizing V2G technology. This means that we can reason-
ably allocate charging resources based on grid load condi-
tions and user demand. Although the plug-in time of con-
trolled EVs has a high degree of uncertainty, the charging
and discharging time of EVs can be specified, and their be-
havior can be managed in an orderly manner through the use
of corresponding schedulers.

The application of this V2G technology enables the power
system to adjust and manage loads more flexibly, improve
the reliability and stability of the power grid. Through intel-
ligent scheduling algorithms and real-time monitoring sys-
tems, we can optimize the charging and discharging behav-
ior of controlled EVs according to the actual situation, min-
imizing the impact on the power grid. The load that exceeds
the carrying capacity of the distribution transformer can be
transferred to the EVs, thereby achieving smooth regulation
of the power load. The energy storage capabilities of EVs
can be fully utilized to participate in power market trans-
actions and regulation. This orderly management approach
can meet the needs of users while alleviating pressure on the
power system, achieving sustainable development and opti-
mal operation of the power system [6]. Therefore, controlled
EVs have significant potential and value in future energy
planning and management.

3 Rolling-Horizon Optimization Strategy

3.1 General Overview of the Proposed Scheme
In this paper, we employ the rolling-horizon optimiza-

tion method to address the issue of load exceeding trans-
former capacity and achieve control over V2G resources’
charging and discharging. The unique aspect of the rolling-
horizon optimization method lies in its ability to provide
near-optimal solutions that are continuously updated and in-
corporate new information over time. Compared to other ap-
proaches for handling uncertain problems such as stochastic
programming and robust optimization, the rolling-horizon
optimization method demonstrates higher practicality and
effectiveness in dealing with complex optimization prob-
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lems. Through this method, we are able to find the opti-
mal charging and discharging strategy in situations of ex-
cessive load, ensuring that the transformer’s capacity is not
overloaded. Additionally, the rolling-horizon optimization
method possesses flexibility and can dynamically adjust with
the incorporation of new information, thereby better adapt-
ing to complex real-world scenarios.

When a controllable EV is connected or when the load
of the distribution transformer is excessive, the method pro-
posed in this paper makes decisions based on the known fu-
ture period information to allocate the control power of EVs
for future periods, as illustrated in Fig. 1.

Fig. 1: Rolling-horizon optimization adjustment

It comprehensively considers factors such as the charging
demand constraints of EVs, grid load conditions, and bat-
tery status to formulate the optimal charging and discharging
strategy. The overall structure of the method is illustrated in
Fig. 2. By utilizing the rolling-horizon optimization method,
the charging and discharging plans can be dynamically ad-
justed based on real-time data, minimizing the occurrence of
load exceeding transformer capacity as much as possible.

Fig. 2: Real-time rolling-horizon optimization framework

The key to the rolling horizon optimization method is to
re-solving the problem at each time step and update it with
new information. This iterative approach enables the opti-
mization results to progressively approach the global opti-
mum and adapt to dynamic changes in parameters. Through
continuous iteration and updating, the rolling horizon opti-
mization method can provide efficient and feasible charging
and discharging control schemes in practical applications,
ensuring that the load does not exceed the transformer capac-
ity while meeting the charging needs of EV users. The afore-
mentioned energy management strategy is implemented us-
ing an Mixed Integer Linear Programming based optimiza-
tion method.

3.2 Optimization Model
3.2.1 Objective Function

The objective function is crucial in achieving overall con-
trol of EV loads. From the perspective of minimizing the
energy loss during the charging and discharging processes
of EVs and ensuring the safe operation of distribution trans-
formers, ordered charging and discharging strategies are ad-
justed to mitigate the numerous problems caused by unreg-
ulated EV charging. This guarantees that the load does not
exceed the capacity of the distribution transformer, with the
formula represented by (1). The objective function of this
model aims to minimize the energy loss during the charg-
ing and discharging processes of EVs, while considering the
penalty for exceeding the load limit.

min (

N∑
i=1

P loss
i +K ∗ Lmax) (1)

where N represents the total number of controllable EVs,
P loss
i represents the energy loss during the charging and dis-

charging processes, K represents the penalty term for ex-
ceeding the maximum load during regulation periods, Lmax

represents the maximum load during the regulation period
for EVs.

3.2.2 Constraint

1) Charging adjustment period constraint
Considering the specific implementation of the charging

and discharging control equipment and the practical solv-
ability of this strategy, a day is divided into 96 independent
regulation periods with a 15-minute interval. For instance,
if 00:00-00:15 is considered as one regulation period, the ar-
rival time of the EV user is treated as the first regulation pe-
riod. The information of each arriving EV user is uploaded
to the rolling horizon optimization model, followed by the
issuance of strategies for the next 96 time points.

2) Distribution transformer capacity constraint
The future substation load for the regulation periods is ob-

tained by summing the power curve of the future load profile
and the power curve generated by the rolling horizon opti-
mization strategy for EVs. The formula for calculating the
substation load for the future regulation periods is given as
equation (2):

Lt =

N∑
i=1

pi,t + Lpre,t t = 1, 2, · · · , T (2)

where Lt is the total power of the distribution transformer at
time t, Lpre,t is the power of uncontrollable loads at time t,
pi,t is the power of the formulated EV charging and discharg-
ing strategy, T is the total number of segmented charging and
scheduling periods.

To ensure that the total load at any given time during the
regulation period does not exceed the safe capacity of the
distribution transformer, the formula is as follows:

Lt ≤ η1ST t = 1, 2, · · · , T (3)

where η1 is the safety constraint percentage of the distribu-
tion transformer, ST is the capacity of the distribution trans-
former in the substation.
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3) Charging period constraint
To ensure that the charging and discharging strategy for

EV users is not executed after they leave, the formula is rep-
resented as equation (4):

ui,t = 0 t ≥ tend (4)

where ui,t is a binary variable indicating the on-off control
of the EV charging and discharging controller at time t, tend
represents the departure time when the user leaves.

4) Charging power limitation constraint
Based on the actual carrying capacity of the EV’s power

battery, the actual charging and discharging power of the EV
is limited to a certain safe range, as represented by equation
(5):

ui,t ∗ Pi,min ≤ |pi,t| ≤ ut ∗ Pi,max t = 1, 2, · · · , T (5)

where Pi,max represents the maximum charging and dis-
charging power that the EV battery can withstand, Pi,min

represents the minimum charging and discharging power
limited by the control strategy for the EV.

5) User energy demand constraint
During the stay time of the EV user, it is necessary to

meet the demand for charging capacity required for their
own travel without exceeding the maximum capacity of their
battery. The equation (6) is represented as follows:

Ci ∗ SOCi,2 ≤ Ci ∗ SOCi,1 +

T∑
t=1

pi,tutη∆t ≤ Ci (6)

where Ci represents the battery capacity of the i-th EV,
SOCi,1 represents the battery state of charge when user i ar-
rives, SOCi,2 represents the minimum required battery state
of charge when user i leaves, η represents the charging and
discharging efficiency of the EV, Deltat represents the time
interval of the regulation periods.

6) Battery SOC limitation constraint
During the stay time of the EV user, to prevent the situ-

ation where the discharge energy of the EV exceeds its re-
maining energy during the regulation process, a correspond-
ing physical constraint is added. The equation (7) is repre-
sented as follows:

0 ≤ Ci∗SOCi,1+

Tk∑
t=1

pi,tui,tη∆t Tk = 1, 2, · · · , T (7)

where η represents the energy conversion efficiency of the
charging and discharging process of EVs.

7) Maximum load penalty term
Considering the situation of high load rate on the distri-

bution transformer, in order to ensure the safe operation of
the power grid and reduce the aging of the transformer due
to overload, a maximum load penalty term is introduced to
minimize the maximum load during the regulation period.
The formulas are given as equation (8) and equation (9):

Lmax ≥ (
Lt − η2

⋆ST

ST
) t = 1, 2, · · · , T (8)

Lmax ≥ 0 (9)

where η2 represents the percentage constraint penalty term
for the maximum load constraint during EV regulation pe-
riod, Lmax represents the maximum load during the regula-
tion period.

8)Energy loss term
To avoid ineffective charging and discharging regulation

under the rolling horizon optimization strategy for EVs, the
energy loss generated during the charging and discharging
process is included in the objective function. The equation
(10) is represented as follows:

P loss
i =

T∑
t=1

pi,t(1− η) (10)

The overall rolling-horizon optimization process is illus-
trated in Fig. 3. This strategy solves the charging and dis-
charging power of controllable EVs in different time peri-
ods based on the users’ own demand information and corre-
sponding transformer constraints. If the calculated charging
and discharging strategy fails to meet the constraint require-
ments, all connected EVs will be re-planned and resolved.
In case the constraints still cannot be satisfied after resolving
all EVs, new arrivals of uncontrollable EVs will be rejected
to ensure the safe operation of the distribution transformer.

Fig. 3: Real-time rolling-horizon optimization strategy flow
chart

4 Case Study

4.1 Data Preparation
The relevant scenario parameters of the industrial park se-

lected in this paper are shown in Table 1. According to the
literature [21], the travel patterns of EV users can be approx-
imated as a normal distribution. It is assumed that the arrival
time of EV users at the industrial park follows a normal dis-
tribution with a mean of 8 and a standard deviation of 1,
limited to between 7:00 am and 9:00 am. At the same time,
it is assumed that the departure time of EV users from the
industrial park follows a normal distribution with a mean of
18 and a standard deviation of 1, limited to between 5:00 pm
and 7:00 pm. To simulate the initial charging state of EVs,
we set their charge state to follow a normal distribution with
a mean of 0.4 and a standard deviation of 0.12, limited to be-
tween 0.1 and 0.6. In addition, we set the battery capacity of
the EV to 42kWh, and its maximum charging and discharg-
ing power to 7kW. The parameters set can be seen in Table
2.
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Table 1: Parameterization of the Selected Scenario
Parameter Value Parameter Value

Transformer capacity 800 kVA Time resolution 15min
EVs num 80 Maximum Load Penalty 1000

Table 2: EV Parameter Setting
Parameter Distribution Boundary

Arrival time N(8, 12) 7-9
Departure time N(18, 12) 17-19
Arrival SOC N(0.4, 0.12) 0.1-0.6

Departure SOC 0.9 /

Battery capacity C = 42kWh /

Maximum charge and discharge power P = 7kW /

Charge efficiency η1 = 0.95 /

The industrial park data used in this study was obtained
from a real industrial area located in Shanghai, China. The
load data for one day was selected as the baseline load,
which does not include the uncontrollable load of EVs.

Based on the parameter settings in Table 1 and Table 2,
we conducted a simulation of the EVs under uncoordinated
charging. The results are shown in Fig. 4. The EV load
overlaid on top of the baseline load far exceeded the capacity
of the distribution transformer. Long-term overloading can
accelerate the aging and damage of internal components of
the transformer, shorten its service life, and seriously affect
the power supply quality.

Fig. 4: Load profile graph after uncontrolled integration of
EVs

Based on the generated EV behavior data, we selected
25% of the EVs as our controlled EVs. These EVs were reg-
ulated using the rolling-horizon optimization strategy. The
results of this regulation are illustrated in Fig. 5. Through
the application of the rolling-horizon optimization strategy,
the excessive load that was originally beyond the capacity
of the distribution transformer has been shifted to other time
periods. This ensures the safe operation of the substation
transformer while simultaneously meeting the self-charging
needs of the participating V2G users.

When 50% of the EVs are selected as controlled EVs
and participate in V2G regulation, the results, as shown in
Fig. 6, demonstrate the effectiveness of the rolling-horizon
optimization strategy in minimizing the overall load curve
well below the rated capacity of the distribution transformer.
This indicates that by regulating the charging and discharg-
ing behavior of EVs, it is possible to significantly reduce
peak loads and ensure the safe operation of the distribution

Fig. 5: Load profile graph after the integration of 25% con-
trollable EVs

transformer. Furthermore, this regulation strategy also sat-
isfies the self-charging requirements of V2G participants,
thereby achieving load balancing and resource optimization
objectives.

Fig. 6: Load profile graph after the integration of 50% con-
trollable EVs

If all the EVs connected are controllable, the simulation
results through the rolling-horizon optimization strategy are
shown in Fig. 7. Although the simulation results appear sim-
ilar to those obtained in Fig. 6, which involved 50% of the
controlled EVs participating in the V2G program, the behav-
ior of individual EVs is completely different. When all EVs
participate in the V2G program, one of the target functions
is to minimize losses. Therefore, EVs tend to discharge less
and engage in more orderly charging regulation.

Fig. 7: Load profile graph after the integration of 100% con-
trollable EVs

The load conditions under different percentages of con-
trollable EVs are shown in Table 3. The research findings
indicate that as the number of controllable EVs participat-
ing in the V2G program increases, the effectiveness of load
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management in the distribution area also improves gradu-
ally. Experimental data reveals that as the number of con-
trollable EVs increases, the peak load of the transformer
gradually decreases, demonstrating the effectiveness of the
rolling-horizon optimization strategy in optimizing and reg-
ulating the load of the power system. Therefore, in future
power system planning, it is important to consider promot-
ing and utilizing controllable EVs to further enhance the sus-
tainability and economic benefits of the power system.

Table 3: EV Parameter Setting
Controllable EVs Ratio Peak(kW) Transformer Capacity Ratio

0% 1066.7 133.3%
25% 792.6 99.1%
50% 589.1 73.6%
100% 564.7 70.6%

5 Conclusion

This paper proposes a rolling-horizon optimization
method utilizing V2G resources to reduce peak loads on
distribution transformers. The paper first distinguishes be-
tween uncontrolled EVs with unordered charging and con-
trollable EVs participating in V2G, defining their respective
characteristics. Furthermore, considering the constraints of
user demands for controllable EVs, vehicle electrical char-
acteristics, and substation transformer capacity, an optimiza-
tion model is proposed with the objective function of min-
imizing charging and discharging losses while incorporat-
ing a penalty term for maximum load. Real-time control is
achieved through the rolling-horizon optimization approach
at each EV’s arrival to obtain the optimal solution for the cur-
rent time period. Through simulation experiments, the effec-
tiveness of this method in addressing the issue of overloaded
distribution transformers under uncontrolled EV charging is
validated, resulting in a lower overall load level.
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Uncertain Nonholonomic Systems

Li Liu1, Yan Zhao2, Jiangbo Yu2, Chunxiao Wang2, Xiao Yu2

1. School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, P. R. China
2. School of Science, Shandong Jianzhu University, Jinan 250101, P. R. China

E-mail: zhaoyan@sdjzu.edu.cn

Abstract: A learning control approach is developed to tackle the robust stabilization problem for a class of chained-form non-
holonomic systems with dynamic uncertainty and nonlinear parameterization. Different from the existing results, the additive
periodic perturbations are allowed in the input channel, and a learning-based feedforward term is incorporated into the com-
posite controller against unknown periodic dynamics with a known period. Moreover, a switching adaptive control strategy is
constructed to get around the smooth stabilization burden associated with the nonholonomic systems due to Brockett’s necessary
condition. Numerical simulation results are presented to illustrate the performance of the proposed algorithm.

Key Words: Nonholonomic systems, Input-to-state stable (ISS), Iterative learning control (ILC), Periodic disturbance , Dynamic
uncertainty

1 Introduction

The term “nonholonomic” originated in modern analytical
mechanics. As described in [1], many plants are subject to
the so-called nonholonomic (non-integrable) constrained in
practical engineering applications, such as wheeled mobile
robots [2] and vertical rolling unicycle cars [3]. Compared
with traditional nonlinear systems, the existence of non-
holonomic constraints limits the direct application of clas-
sical nonlinear methods, which makes the control theory re-
search of nonholonomic systems more challenging. Howev-
er, due to Brockett’s condition [4], non-holonomic systems,
although controllable, cannot be stabilized through a series
of smooth continuous state feedbacks. This makes the sta-
bility control of such nonlinear systems an interesting and
challenging area in the field of nonlinear control [5].

In almost all engineering control systems, the presence
of disturbances, model uncertainties and nonlinear model
parts are inevitable, which could influence system perfor-
mance and lead to instability. Exogenous periodic distur-
bances commonly occur in repetitive robot tasks. For exam-
ple, many industrial applications require robots to perform
repetitious tasks (e.g., assembly, manipulation, inspection).
When there is input disturbance, the control design of the
system usually needs to make some compensation. Iterative
learning control (ILC) is a powerful tool to deal with the pe-
riodic perturbations in [6] and [7]. The learning methods
are proposed for periodic perturbations with known periods
and unknown periods (see [8]). In [9], Ham et al. used a
Lyapunov-based technique to study an ILC combined with
a robust control design to achieve globally consistent final
bounded link position tracking of a robot operator.

In this paper, we propose a repetitive learning controller
for chained-form nonholonomic systems with exogenous pe-
riodic disturbances that satisfy the matching condition. The

This work is supported in part by the National Natural Science Foun-
dation of China under Grants 62076150, 62133008 and 62303280, in part
by the National Natural Science Foundation of Shandong Province under
Grants ZR2021MF009 and ZR2023MF055, in part by the Development
Plan of Youth Innovation Team of University in Shandong Province un-
der Grant 2021KJ067, in part by the Taishan Scholar Project of Shandong
Province under Grant TSQN201812092.

main work of this paper is as follows: (i) There are cascad-
ed dynamic uncertainties and additional disturbances in the
system, iterative learning control is used to compensate the
additive periodic disturbances in the adaptive stability con-
trol framework of nonholonomic systems. (ii) This paper
discusses the use of small gain conditions and parameter sep-
aration techniques to describe the growth of nonlinear drift.
The proposed stability control scheme improves the exist-
ing results of robust stabilization of uncertain nonholonomic
systems with external perturbations.
2 Problem Formulation

In this paper, we study the global adaptive stabilizing con-
trol problem for the following class of nonholonomic uncer-
tain systems:

η̇ = q(η, x, θ)
ẋ0 = d0(t)u0 + φd0(u0, x0, η, θ)
ẋi = di(t)xi+1u0 + φdi (u0, x0, x, η, θ)
ẋn = dn(t) (u+ d(t)) + φdn(u0, x0, x, η, θ)

(1)

where u0, u are control inputs, (x0, x
T)T ∈ R1+n in-

dicates the measurement status, η ∈ Rr is the remain-
ing part of the unmeasurable state, representing the un-
measurable dynamic uncertainty. Moreover, θ ∈ Rnθ is
an unknown constant vector, and the functions di(·) and
φdi (·)(i = 0, 1, · · · , n) represent the virtual control factor
and inputs and states driven uncertainties, respectively. Sup-
pose φdi (·)(i = 0, 1, · · · , n) and q(·) are unknown Lipschitz
continuous functions that disappear at the origin.

The objective in this paper is to find, if possible, a partial
state feedback control law of the following form

u0 = µ0(x0, x, θ̂ ), u = µ(x0, x, θ̂ ),
˙̂
θ = ν(x0, x, θ̂ ), (2)

such that not only
(
η(t), x0(t), x(t)

)
converge to zero as

t → ∞, and moreover, all signals in closed-loop system are
bounded. Throughout the paper, the following assumptions
are needed for the system (1):

(A1) For the η-subsystem in (1), there is an ISS-Lyapunov
function U0(η) satisfying

αη(‖η‖) ≤ U0(η) ≤ αη(‖η‖), (3)
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∂U0

∂η q(η, x, θ) ≤ −α0(‖η‖) + σ0γ0(|x1|), (4)

where αη(·), αη(·), α0(·), γ0(·) ∈ K∞, σ0 is an unknown
positive constant.

(A2) For each i = 0, 1, · · · , n, there exist two known pos-
itive constants ci1 > 0 and ci2 > 0, satisfies

ci1 ≤ di(t) ≤ ci2. (5)

(A3) There exist known non-negative smooth functions
ϕ0(·), ϕij(·) and ψi(·), with ϕij(0) = 0 and ψi(0, · · · , 0) =
0, i = 0, 1, · · · , n, satisfies

|φd0(u0, x0, η, θ)| ≤ θ0|x0|ϕ0(x0), (6)

|φdi (u0, x0, x, η, θ)| ≤ θi

i∑
j=1

|xj |ϕij(η)

+θiψi(x1, · · · , xi). (7)

where i = 1, · · · , n.
(A4) For the functions γ0(·) and ϕij(·) from (A1) and

(A3), the following local small-gain condition holds

lim sup
s→0+

γ0(s)
s2 < +∞, (8)

lim sup
s→0+

ϕ2
ij(s)

α0(s) < +∞, (9)

where j = 1, · · · , i; i = 1, · · · , n.
(A5) The additive disturbance d(t) satisfies |d(t)| ≤ µ,

where µ > 0 is unknown positive constant.
The following lemma is used for the control design.
Lemma 1[10]: For any x, y ∈ R, there holds

2xy≤ 1

λ
x2 + λy2, (10)

where λ > 0 is a constant.

3 Learning-based controller design and switching
strategy

The design process is summarized in two separate phases.
In the first stage, we design the control law u0 to stabilize
the x0-subsystem. The second stage and then select control
u so that the rest of the state converges to zero.

For convenience, we let the initial time be t0 = 0, and we
first consider the condition that x0(0) 6= 0. In this case, the
controller u0 takes the following form

u0 = x0β0(x0, θ̂0),
˙̂
θ0 = x2

0ϕ0(x0), (11)

where θ̂0 be the estimate of θ0, β0(x0, θ̂0) =

−
√
λ2

0 + ϕ2
0(x0)θ̂2

0 − λ0ϕ0(x0)θ̂0, and λ0 > 0 is to
satisfy the design parameters λ0 c01 > 1.

Lemma 2: Assume that the control signal u0 (11) is ap-
plied into the x0-subsystem in (1). If x0(0) 6= 0, the state
x0(t) asymptotically converges to zero as t approaches in-
finity, but never reaches zero.

Proof: Substituting (11) into x0-subsystem in (1), yields

ẋ0 = −d0(t)x0

√
λ2

0 + ϕ2
0(x0)θ̂2

0 − d0(t)λ0x0ϕ0(x0)θ̂0

+φd0(u0, x0, η, θ). (12)

Then, we select the Lyapunov function

V0(x0) =
1

2
x2

0 +
c01λ0

2
θ̃2

0, (13)

where θ̃0 = θ0− θ̂0 is the estimate error. Differentiating (13)
along system trajectories yields

V̇0(x0) ≤ −c01λ0x
2
0 + c01λ0θ̃0

(
x2

0ϕ0(x0)− ˙̂
θ0

)
= −c01λ0x

2
0. (14)

Hence, when x0(t) → 0 as t → ∞, in view of LaSalle’s
Theorem [11], we can establish that x0(t) and θ̂0(t) are
bounded.

In terms of φd0(0, 0, 0, θ) = 0, then, there exists a smooth
function φ0(u0, x0, η, θ) such that

φd0(u0, x0, η, θ) = x0φ0(u0, x0, η, θ). (15)

Furthermore, combining the control law (11), we get

ẋ0 = −x0

(
d0(t)

√
λ2

0 + ϕ2
0(x0)θ̂2

0 + d0(t)λ0ϕ0(x0)θ̂0

−φ0(u0, x0, η, θ)
)
. (16)

Since x0(t) and θ̂0(t) are bounded, we obtain the solution of
(16) satisfying

x0(t) = x0(0)e
−
∫ t
0
χ(τ)dτ

, (17)

where χ(τ) = d0(τ)

√
λ2

0 + ϕ2
0(x0(τ))θ̂2

0(τ) + d0(τ)λ0

ϕ0(x0(τ))θ̂0(τ)− φ0(u0(τ), x0(τ), η(τ), θ).
It is known from (17) that there are two possible cases for

x0(t) = 0, i.e., x0(0) = 0 and t = ∞. The proof is hence
established.

In order to avoid the uncontrollable situation of the sys-
tem, the following coordinate changes are introduced

zi =
xi

un−i0

, i = 1, · · · , n. (18)

Under this transformation defined in (18), the x-subsystem
is transformed into{

żi = di(t)zi+1 + φ̄di (u0, x0, z, η, θ),
żn = dn(t) (u+ d(t)) + φ̄dn(u0, x0, z, η, θ),

(19)

where φ̄di (u0, x0, z, η, θ) =
φdi (·)
un−i
0

−(n−i)∂u0

∂x0
d0(t)zi−(n−

i) 1
u0

∂u0

∂θ̂0
x2

0ϕ0(x0)zi − (n− i) 1
u0

∂u0

∂x0
φd0(·)zi, i = 1, · · · , n.

In order to deal with the nonlinearities φ̄di (·)(i =
1, · · · , n), we give the following Propositions 1-2, and their
proofs can be found in [12].

Proposition 1: For each φ̄di (u0, x0, z, η, θ)(i = 1, · · · , n),
there holds

|φ̄di (u0, x0, z, η, θ)| ≤ θ∗
( i∑
j=1

|zj ||u0|i−j
(
ϕij(η) (20)

+ψij(x[i])
))

+ ωi(x0, θ̂0)|zi|.
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Proposition 2: Introduce another ISS-Lyapunov function

V 0(η) =

∫ V0(η)

0

ρ(s)ds

such that

V̇ 0(η) ≤ −(1− ε)ρ ◦ αη(‖η‖)α0(‖η‖)
+σξ2

1 γ̂0(u0, ξ1), (21)

where ρ(·) is a smooth, non-decreasing function, γ̂0(·) is a
smooth nonnegative function, σ is an unknown positive con-
stant, and ε satisfying ε ∈ (0, 1) is a positive constant.

Next, we use a recursive approach to describe the con-
troller design process.

Step 1: Let α1 be the first virtual control law, the error is
ξ2 = z2 − α1, and denote ξ1 = z1. Then, we choose

V1(ξ1) = V 0(η) +
1

2
ξ2
1 . (22)

Differentiating (22) along system trajectories yields

V̇1 ≤ −(1− ε)ρ ◦ αη(‖η‖)α0(‖η‖) + σξ2
1 γ̂0(u0, ξ1)

+d1(t)ξ1α1 + ξ1φ̄
d
1(·) + d1(t)ξ1ξ2. (23)

According to Proposition 1 and Lemma 1, we can get

ξ1φ̄
d
1(·) ≤ ξ2

1ψ11(x1)θ∗ + ξ2
1ω1(x0, θ̂0) +

1

4
ξ4
1θ
∗2

+ϕ2
11(η). (24)

Denote
Θ = max{1

4
θ∗2, θ∗, σ, θ2

0}, (25)

and
%11(x0, x1) = ξ2

1 + ψ11(x1), (26)

we further get

|ξ1||φ̄d1(·)| ≤ ϕ2
11(η) + ξ2

1%11(x0, x1)Θ

+ξ2
1ω1(x0, θ̂0). (27)

Define the smooth function as follows

%11(x0, ξ1, θ̂0) = ξ2
1 + ψ11(x1) + γ̂0(u0, ξ1),

%12(x0, θ̂0) = ω1(x0, θ̂0), (28)

then, we get

V̇1 ≤ −(1− ε)ρ ◦ αη(‖η‖)α0(‖η‖) + d1(t)ξ1ξ2

+d1(t)ξ1α1 + ϕ2
11(η) + ξ2

1%11(x0, ξ1, θ̂0)Θ

+ξ2
1%12(x0, ξ1) . (29)

We introduce Θ̂(·) to estimate Θ, and Θ̃(·) = Θ − Θ̂(·)
is the estimation error. Then, we augment the function (22)
with Θ̃2 in the form of

V 1(ξ1) = V1 +
1

2
Θ̃2. (30)

After some simple calculations, we have

V̇ 1 ≤ −(1− ε)ρ ◦ αη(‖η‖)α0(‖η‖) + d1(t)ξ1ξ2

+d1(t)ξ1α1 + ϕ2
11(η) + ξ2

1%11(x0, ξ1, θ̂0)Θ̂

+ξ2
1%12(x0, ξ1) + Θ̃(ξ2

1%11(·)− ˙̂
Θ). (31)

We choose the virtual control input α1 as follows

α1(x0, θ̂0, Θ̂, z1) = −λ1ξ1 −
1

c11
ξ1%11(x0, θ̂0, z1)Θ̂

− 1

c11
ξ1%12(x0, ξ1), (32)

and
τ1 = ξ2

1%11(x0, θ̂0, z1), (33)

where λ1 > 0 is a design parameter determined later. A
direct substitution leads to

V̇ 1 ≤ −(1− ε)ρ ◦ αη(‖η‖)α0(‖η‖) + ϕ2
11(η)

−c11λ1ξ
2
1 + d1(t)ξ1ξ2 + Θ̃(τ1 −

˙̂
Θ). (34)

Step i (2 ≤ i ≤ n−1): In Step i, we denote ξi+1 = zi+1−
αi, where αi is the virtual control input, i = 2, · · · , n−1. In
this step, we provide a Proposition 3, which can be verified
using a recursive manner, and its proof is omitted due to the
space limits.

Proposition 3: For each i = 2, · · · , n − 1, there exist s-
mooth functions αi and τi in the form of

αi = −λi ξi −
1

ci1
ξi%i1(x0, θ̂0, Θ̂, z[i])Θ̂ (35)

− 1

ci1
ξi%i2(x0, θ̂0, Θ̂, z[i]),

τi = τi−1 + ξ2
i %i1(x0, θ̂0, Θ̂, z[i]) (36)

with the design parameter λi > 0 and smooth nonnegative
functions %i1(x0, θ̂0, Θ̂, z[i]), %i2(x0, θ̂0, Θ̂, z[i]), such that
the time-derivative of Lyapunov function candidate

Vi = Vi−1 +
1

2
ξ2
i (37)

satisfies

V̇i ≤ −(1− ε)ρ ◦ αη(‖η‖)α0(‖η‖)

−
i∑

j=1

(
λjcj1 − (i− j)

)
ξ2
j

+

i∑
j=1

j∑
k=1

(i+ 1− j)ϕ2
jk(η) + di(t)ξiξi+1

+
(
Θ̃ +

i∑
j=2

ξj
∂αj−1

∂Θ̂

)(
τi −

˙̂
Θ
)
. (38)

Step n: In this step, we deal with the exogenous periodic
disturbance. To this end, we choose Lyapunov function

Vn = Vn−1 +
1

2
ξ2
n +

1

2

∫ t

t−T

(
satµ

(
d(s)

)
(39)

−satµ
(
d̂(s)

))2

ds.

where d̂(t) ∈ R is a disturbance estimate that is updated
according to the following iterative learning law

d̂(t) =

{
0, t < 0,

satµ
(
d̂(t− T )

)
+ ξn, t ≥ 0,

(40)
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and function satµ(·) ∈ R is defined as

satµ(s) =

{
s, |s| ≤ µ,

µ sign(s), |s| ≥ µ, (41)

and µ was defined in (A5).
After some simple and direct calculations, the time-

derivative of Vn is given

V̇n ≤ −(1− ε)ρ ◦ αη(‖η‖)α0(‖η‖)

−
n−1∑
j=1

(
λjcj1 − (n− j)

)
ξ2
j

+

n∑
j=1

j∑
k=1

(n+ 1− j)ϕ2
jk(η)

+ξndn(t)(u+ d̂(t)) + ξ2
n%n1(x0, θ̂0, Θ̂, z[n])Θ̂

+ξ2
i %i2(x0, θ̂0, Θ̂, z[i])−

1

2
ξ2
n

+
(
Θ̃ +

i∑
j=2

ξj
∂αj−1

∂Θ̂

)(
τi −

˙̂
Θ
)
. (42)

As a result, we choose the the control law u in the form of

u = −λn ξn −
1

cn1
ξn%n1(x0, θ̂0, Θ̂, z)Θ̂

− 1

cn1
ξn%n2(x0, θ̂0, Θ̂, z)− d̂(t) (43)

˙̂
Θ = τn =

n∑
i=1

ξ2
i %i1(x0, θ̂0, Θ̂, z[i]), (44)

then, we gain

V̇n ≤ −(1− ε)ρ ◦ αη(‖η‖)α0(‖η‖)

−
n∑
j=1

(
λjcj1 − (n− j)

)
ξ2
j

+

n∑
j=1

j∑
k=1

(n+ 1− j)ϕ2
jk(η)− 1

2
ξ2
n. (45)

This completes the control design when x0(0) 6= 0.
While x0(0) = 0, we use the following switching control

strategy. To this end, we consider the adaptive control law

u0 = x0β0(x0, θ̂0) + ū0,
˙̂
θ0 = x2

0ϕ0(x0), (46)

where β0(x0, θ̂0) and θ̂0 are designed in (11), and ū0 > 0 is
a constant.

Select the Lyapunov function in (13), by means of the
adaptive control law in (46), it can be verified that the time
derivative satisfies

V̇0 ≤ −λ0x
2
0 + ū0x0. (47)

Then, we can conclude that x0 and θ̂0 are bounded since
λ0 > 0 and ū0 is a constant.

Additionally, we know from the following equation

ẋ0 = d0(t)β(x0, θ̂0)x0 + x0φ0(u0, x0, η, θ) + ū0 (48)

that the solution is

x0(t) = x0(0)e
−
∫ t
0
χ(τ)dτ

+ū0e
−
∫ t
0
χ(τ)dτ

∫ t

0

e

∫ τ
0
χ(s)ds

dτ. (49)

Therefore, x0 is known not to escape in finite time, and for
any t∗ > 0, x0(t∗) 6= 0. Thus, the input state scaling of the
control design can be resorted, and the control inputs u0 and
u are switched into to (11) and (43), respectively.

4 MAIN RESULTS

In this section, we analyze the behavior of the uncertain
nonholonomic systems.

Theorem 1: If Assumptions 1-4 are true, then the state-
feedback laws (11) and (43) with a switching control strategy
are used so that all signals in a nonholonomic system are
bounded at [0,∞), and

lim
t→∞

(
|η(t)|+ |x0(t)|+ |x(t)|+ |ξ(t)|

)
= 0. (50)

Proof: Using Lemma 2 and the local conditions (9), the
expected function ρ satisfies the following formulathe

1− ε
2

ρ ◦ αη(‖η‖)α0(‖η‖) ≥
n∑
j=1

j∑
k=1

(n+ 1− j)ϕ2
jk(η).

(51)
Choose the constants (λ1, · · · , λn) satisfies

λjcj1 − n+ j ≥ 1, j = 1, · · · , n. (52)

Then, we can obtain that

V̇n ≤ −
n∑
j=1

ξ2
j −

1− ε
2

ρ ◦ αη(‖η‖)α0(‖η‖)− 1

2
ξ2
n, (53)

which implies that all signals in the closed-loop system are
bounded. It follows that the closed-loop system has a unique
solution that is defined for all t > 0, thus Tf = ∞. In addi-
tion, according to LaSalle’s Theorem [11], it can be obtained
that as t approaches infinity, the signals

(
η(t), x0(t), ξ(t)

)
converge to zero. In view of ξi and αi in (35), we know that
the variables zi(t)(i = 1, · · · , n) are bounded, and using a
recursive way, we can further prove that zi(t)(i = 1, · · · , n)
asymptotically converges to zero. Then, it can be obtained

lim
t→∞

ξi(t) = 0, i = 1, · · · , n. (54)

Furthermore, we from xi = zi u
n−i
0 (i = 1, · · · , n) in (18)

that
lim
t→∞

xi(t) = 0, i = 1, · · · , n. (55)

This shows that the property (50) holds true.

5 SIMULATION

In this section, we will illustrate the presented control
scheme using numerical simulation. Consider the system

η̇ = −k η + σx1, k > 0,
ẋ0 = u0 + x0,
ẋ1 = x2u0 + η x2

1,
ẋ2 = u+ sin(2πt),

(56)
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where σ > 0 is an unknown constant, and d(t) = sin(2πt)
denotes the periodic disturbance.

Using the control scheme proposed in Section 3, we can
design the learning controller as follows. When x0(0) 6= 0,
we take

u = −λ2ξ2 − d̂(t)− ξ2%21(x0, Θ̂, z)Θ̂

−ξ2%22(x0, Θ̂, z), (57)
˙̂
Θ = ξ2

1%11(x0, Θ̂, z[1]) + ξ2
2%21(x0, Θ̂, z[2]), (58)

with z1 = x1

u0
, z2 = x2, ξ1 = z1, ξ2 = z2 − α1, α1 =

−λ1ξ1−ξ2
1Θ̂−ξ2

1 , %21(·) = 1
4

(
∂α1

∂z1

)2(
1+x2

1+z2
1

)
, %22(·) =

1
4

(
∂α1

∂Θ̂

)2

ξ4
1 + 1

4ξ
2
2

(
∂α1

∂Θ̂

)2

%2
21(·), and

d̂(t) =

{
0, t < 0,

satµ
(
d̂(t− T )

)
+ ξ2, t ≥ 0.

(59)

The simulations are performed by MATLAB with the fol-
lowing initial conditions: η(0) = 0, x0(0) = 1, x1(0) =
1, x2(0) = 0.5, Θ̂(0) = 0.5, system parameters: σ = 1, and
design parameters: λ1 = 2, λ2 = 1. Fig.1 shows that the
closed-loop responses by use of the proposed methodology
in the paper.
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Fig.1 The responses in closed-loop system (56)-(58)

6 CONCLUSION

In this paper, we study the global robust stabilization prob-
lem for a class of nonholonomic systems with ISS dynamic
uncertainties and non-zero periodic perturbations in the in-
put channels. The iterative learning control is used to com-
pensate the periodic disturbance, and the changing supply
rate technique is used to deal with the unmeasured state. A
switching adaptive control strategy is proposed to overcome
the smooth stabilization burden associated with the nonholo-
nomic systems. Finally, a numerical example is given to il-
lustrate the performance of the proposed control method.
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Adaptive Fixed-time Fault-tolerant Control of
Nonstrict-Feedback Nonlinear Systems
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Abstract: In this paper, a fixed-time fault-tolerant tracking control method for nonstrict-feedback nonlinear systems is proposed.
Firstly, fuzzy logic systems are employed to approximate unknown nonlinear functions and handle nonstrict-feedback structures.
Additionally, the command filter technique is utilized to address the issue of “complexity explosion”. Furthermore, a novel
adaptive estimation law is developed to effectively compensate for actuator faults. It is proved that the proposed fixed-time
control method ensures a known and independent upper bound of dwell time and the boundedness of all signals in the closed-
loop system can be ensured. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed control
method.

Key Words: Fixed-time Control, Fault-tolerant Control, Nonstrict-feedback Nonlinear System, Command Filter.

1 Introduction

In recent years, there has been significant attention devot-
ed to the control of nonlinear systems. Compared to linear
systems, the structure of nonlinear systems is more intricate,
posing great challenges in controller design. Therefore, it is
imperative in-depth research on designing effective control
schemes for nonlinear systems [1–3]. In response to such is-
sues, a range of nonlinear control algorithms have been pro-
posed, including fuzzy control [4], sliding mode control [5]
and adaptive backstepping control [6].

The study of nonstrict-feedback nonlinear systems is ex-
tensive due to their ability to describe a wide range of practi-
cal systems, such as electromechanical systems [7], aircraft
systems [8]. Notably, the standard backstepping technique is
not applicable to nonstrict-feedback nonlinear systems. For-
tunately, Tong et al. [9] successfully addressed the track-
ing control problem of single-input single-output nonstrict-
feedback nonlinear systems by leveraging the unique prop-
erty of fuzzy logic systems (FLSs). Building upon this foun-
dation, numerous adaptive backstepping control strategies
have been developed for nonlinear systems with nonstrict-
feedback structures, as evidenced in [10–12] and related ref-
erences.

The above-mentioned references should be noted as being
considered under ideal conditions. However, in practice s-
cenarios, the actuator is susceptible to malfunctions due to
various disturbing factors. In order to mitigate the adverse
effects of actuator faults, fault-tolerant control has been e-
merged [13–16]. For instance, a solution for adaptive fault-
tolerant control of nonlinear multiagent systems with inter-
mittent actuator faults is presented in [15]. In [16], a robust
output feedback fault-tolerant control of a Lipschitz nonlin-
ear system is developed.

In addition, the rapid advancement of industry has re-
sulted in increasingly stringent demands for system stabil-
ity. Finite-time stabilization was proposed by S P Bhat et al.
in [17], and since then, finite-time control has garnered sig-

This work was supported in part by the National Natural Science Foun-
dation of China (Grant Number: 62203270, 20221017-10, 62188101), in
part by the National Natural Science Foundation of Shandong Province
(Grant Number: ZR2022MF227).

nificant attention due to its appealing transient performance
and tracking capabilities. However, in the case of finite-time
control, the upper bound of dwell time is often influenced
by the initial state of the system [18–20]. To overcome this
limitation, Polyakov et al. further introduced fixed-time sta-
bilization in [21], where the upper bound of dwell time is no
longer dependent on the initial state. Subsequently, numer-
ous scholars have conducted research on fixed-time control
of nonlinear systems [22–25].

Motivated by the aforementioned discussions, this study
focuses on addressing the fixed-time fault-tolerant control
problem of nonstrict-feedback nonlinear systems. The main
contributions are outlined as follows:

(1) The system considered in this paper adopts a nonstrict-
feedback form, which is effectively managed by the inher-
ent properties of FLSs. Additionally, the utilization of com-
mand filter prevents repeated derivation of virtual controller-
s, while compensatory signals containing redundant terms
are incorporated into nonlinear functions for approximation.

(2) The issue of actuator faults is properly resolved by
introducing a novel adaptive parameter to define the low-
er bound of multiplicative fault. This incorporation results
in the utilization of two adaptive laws throughout the en-
tire control design process, thereby alleviating computation-
al burden.

The remaining sections of the paper are structured as fol-
lows: Section II presents the system model and provides
preliminary information. Section III introduces a fixed-time
fault-tolerant control method, encompassing controller de-
sign and stability analysis of the closed-loop system. Section
IV presents simulation result, while conclusions are drawn in
Section V.

2 Problem Statement and Preliminaries

2.1 Problem Statement
In this paper, the following nonstrict-feedback nonlinear

system is considered
ξ̇i(t) = ξi+1(t) + Fi(ξ̄(t)) + Λi(t),

i = 1, · · · , n− 1,

ξ̇n(t) = ua(t) + Fn(ξ̄(t)) + Λn(t),
y(t) = ξ1(t),

(1)
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where ξ̄(t) = [ξ1, · · · , ξn]T ∈ Rn stands for the state vec-
tor. y(t) denotes the system output. Fi(ξ̄) is an unknown
continuous function. Λi(t) represents bounded time-varying
interference with an upper bound Λ

∗

i . ua(t) is the control
input that suffers actuator fault, and the fault model is given
as [26]

ua = ϖ(t, tϖ)us + σ(t, tσ), (2)

where us is the control input signal that is actually designed.
ϖ(t, tϖ) ∈ (0, 1] and σ(t, tσ) are multiplicative and addi-
tive faults, respectively. Correspondingly, tϖ and tσ repre-
sent the instants when the multiplicative and additive faults
happen.

The control goal is to construct an adaptive fault-tolerant
controller such that the system output y can track the giv-
en signal y∗ in a fixed time. In addition, all signals of the
closed-loop system are bounded. To achieve this goal, two
reasonable assumptions are provided.

Assumption 1. The reference trajectory y∗(t) and its first
order derivative ẏ∗(t) are bounded.

Assumption 2. There exist unknown constant lower
bound ϖ and upper bound σ∗ such that 0 < ϖ < ϖ ≤ 1
and |σ(t, tσ)| ≤ σ∗.

2.2 Preliminaries
1) Fixed-time control
The present section introduces a crucial definition and

several indispensable lemmas.
Definition 1. [24] The origin of the system

ẋ = f(t, x), x(0) = x0 (3)

is practically fixed-time stable if it is finite-time stable and
the setting time T is bounded, i.e., ∃ Tmax, such that T ≤
Tmax.

Lemma 1. [24] If a positive definite and radially un-
bounded function U(x) : Rn → R such that U(x) = 0 ⇒
x = 0 and

U̇(x) ≤ −λ1Up1(x)− λ2U
p2(x) + ∆, (4)

where λ1 > 0, λ2 > 0, p1 > 1 and 0 < p2 < 1, then system
(3) is practical fixed-time stable. Moreover, it holds that

x ∈
{
U(x) ≤ min

{( ∆

(1− π)λ1

) 1
p1
,
( ∆

(1− π)λ2

) 1
p2
}}

,

and the settling time T ≤ Tmax = 1
λ1π(p1−1) +

1
λ2π(1−p2)

with 0 < π < 1.
2) Fuzzy logic systems
The utilization of FLSs in subsequent control design is

introduced for the purpose of approximating unknown non-
linear functions.

IF-THEN Rules: Ri: If ζ1 is F i
1 and · · · and ζn is F i

n, then
Υ is Γi, i = 1, · · · , n.

The following expression about FLS is given

Υ(ζ) =

N∑
i=1

si
n∏
j=1

φFi
j
(ζj)

N∑
i=1

[
n∏
j=1

φFi
j
(ζj)]

,

with si = max
Υ∈R

φFi
j
(ζj). Denote S = [s1, · · · , sn]T , Ψ(ζ) =

[ϕ1(ζ), · · · , ϕn(ζ)]T , ϕi(ζ) =

n∏
j=1

φFi
j
(ζj)

N∑
i=1

[
n∏

j=1

φFi
j
(ζj)]

, then one has

Υ(ζ) = STΨ(ζ).

Lemma 2. [10] Let Υ(ζ) be a continuous function defined
on the compact set Ω, there exists a FLS STΨ(ζ) such that

sup
ζ∈Ω

|Υ(ζ)− STΨ(ζ)| ≤ ε̌

with ε̌ > 0 being a constant.
Lemma 3. [24] For oi ∈ R, if 0 < q ≤ 1, the following

inequalities hold( n∑
i=1

|oi|
)q

≤
n∑
i=1

|oi|q,( n∑
i=1

|oi|
)2

≤ n

n∑
i=1

|oi|2. (5)

3 Fixed-time Fault-tolerant Control Scheme

The first step involves defining the subsequent transforma-
tion {

ς1 = ξ1 − y∗,
ςi = ξi − β̄i, i = 2, · · · , n, (6)

the output of the first-order command filter τi ˙̄βi + β̄i = βi,
denoted as β̄i, serves as the input for the virtual controller
βi. Here, τi represents a parameter and β̄i(0) = βi(0) de-
notes its initial value. Subsequently, the compensating sig-
nals ϱi, (i = 1, · · · , n) are designed as

ϱ̇1 = −ℓ1ϱ31 + ϱ2 + β̄2 − β2 − l1sgn(ϱ1),
ϱ̇i = −ℓiϱ3i − ϱi−1 + ϱi+1 + β̄i+1 − βi+1

− lisgn(ϱi),
ϱ̇n = −ℓnϱ3n − ϱn−1 − lnsgn(ϱn),

(7)

where ϱi(0) = 0, ℓi and li are positive constants. Next, the
compensated tracking errors χi are given as

χi = ςi − ϱi, i = 1, · · · , n. (8)

Taking advantage of backstepping technique, the virtual
controllers and actual controller are constructed as

β2 = −
(
W11(

1
2 )

3
4Ξ1(χ1) +

W12

4 χ3
1 +

χ1

2

+ χ1η̂
2a21Ψ

T
1 (X̄1)Ψ1(X̄1)

)
,

βi+1 = −
(
Wi1(

1
2 )

3
4Ξi(χi) +

Wi2

4 χ3
i + ςi−1

+ χi

2 + χiη̂
2a2

i
ΨT

i
(X̄i)Ψi(X̄i)

)
,

i = 2, · · · , n− 2,

βn =Wn1(
1
2 )

3
4Ξn(χn) +

Wn2

4 χ3
n + ςn−1

+ χn

2 + χnη̂
2a2nΨ

T
n (X̄n)Ψn(X̄n)

,

us = − χnκ̂
2β2

n√
χ2
nκ̂

2β2
n+ϵ

2
,

(9)

where Wi1, Wi2, ai, ϵ are positive parameters, and Ξi(χi) is
a piecewise function. If χi ≥ 0, Ξi(χi) =

√
χi; otherwise
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Ξi(χi) = −
√
|χi|. Define a constant η = max{∥Si∥2, i =

1, · · · , n} with η̃ = η̂ − η, where η̂ is the estimate of η.
From 0 < ϖ < ϖ, we further define the unknown parameter
κ = 1

ϖ . Moreover, adaptive laws ˙̂η and ˙̂κ are constructed as ˙̂η =
n∑
i=1

r1χ
2
i

2a2
i
ΨT

i
(X̄i)Ψi(X̄i)

− b1η̂ − b2
r1
η̂3,

˙̂κ = r2χnβn − b3κ̂− b4
r2
κ̂3

(10)

with r1, r2, b1, b2, b3, b4 being known positive constants.

3.1 Control Design
Step 1: From (1) and (6), ς̇1 is rewritten as ς̇1 = ς2+ β̄2+

F1 + Λ1 − ẏ∗. Then, the combination of (7) yields

χ̇1 = ς2 + β2 + F1 + Λ1 − ẏ∗ − ϱ2 + l1sgn(ϱ1) + ℓ1ϱ
3
1.

Let U1 = 1
2χ

2
1 +

1
2r1
η̃2, its derivative is

U̇1 ≤ χ1β2 + χ1F̄1 + ℓ1χ1(ϱ
3
1 − ς31 ) + 3ℓ1χ1ϱ1ς

2
1

− χ1ẏ
∗ − 3ℓ1χ1ϱ

2
1ς1 +

l21 + Λ∗
1
2

2
+
χ2
1ϱ

2
1

2

+ ℓ1χ
4
1 + χ1χ2 +

η̃ ˙̂η

r1
,

where F̄1(X1) = F1 +
χ1ϱ

2
1

2 + ℓ1ς
3
1 − ẏ∗ − 3ℓ1ϱ1ς

2
1 +

3ℓ1ϱ
2
1ς1 − ℓ1χ

3
1 +

χ1

2 denotes the unknown term and X1 =
[ξT , y∗, ẏ∗, ϱ1]

T , which can be approached by FLSs, i.e.,
F̄1(X1) = ST1 Ψ1(X1) + δ1(X1) and |δ1(X1)| ≤ δ̄1 with
δ̄1 being the upper bound.

Applying the property 0 < ΨT1 (·)Ψ1(·) ≤ 1 of FLSs, the
following inequality is valid

χ1(S
T
1 Ψ1(X1) + δ1(X1))

≤ χ2
1ηΨ

T
1 (X1)Ψ1(X1)

2a21
+
a21
2

+
χ2
1

2
+
δ̄21
2

≤ χ2
1η

2a21Ψ
T
1 (X̄1)Ψ1(X̄1)

+
a21
2

+
χ2
1

2
+
δ̄21
2
, (11)

where X̄1 = [ξ1, y
∗, ẏ∗, ϱ1]

T .
It is worth noting that ℓ1χ1ϱ

3
1 − ℓ1χ1ς

3
1 + 3ℓ1χ1ϱ1ς

2
1 −

3ℓ1χ1ϱ
2
1ς1+ℓ1χ

4
1 = χ1(ℓ1ϱ

3
1−ℓ1ς31 +3ℓ1ϱ1ς

2
1 −3ℓ1ϱ

2
1ς1)+

ℓ1χ
4
1 = ℓ1χ1(ϱ1 − ς1)

3 + ℓ1χ
4
1 = −ℓ1χ4

1 + ℓ1χ
4
1 = 0, then

the term ℓ1χ
3
1 can be handled. Taking (9) and (11) into U̇1,

one obtains

U̇1 ≤ −W11

(1
2
χ2
1

) 3
4 −W12

(1
2
χ2
1

)2
+ χ1χ2 +Π1

+
η̃

r1

(
˙̂η − r1χ

2
1

2a21Ψ
T
1 (X̄1)Ψ1(X̄1)

)
, (12)

where Π1 =
Λ∗

1
2

2 +
a21
2 +

δ̄21
2 +

l21
2 > 0 is a constant term.

Step i (i = 2, · · · , n− 1): Taking (7) into χ̇i, it is natural
to obtain

χ̇i = χi+1 + Fi + Λi − ˙̄βi + ℓiϱ
3
i + βi+1

+ ϱi−1 + lisgn(ϱi).

Define Ui = Ui−1 +
1
2χ

2
i , differentiating Ui with respect

to time yields

U̇i ≤ −
i−1∑
j=1

Wj1

(χ2
j

2

) 3
4 −

i−1∑
j=1

Wj2

(χ2
j

2

)2
− 3ℓiχiϱ

2
i ςi

+
η̃

r1

(
˙̂η −

i−1∑
j=1

r1χ
2
j

2a2jΨ
T
j (X̄j)Ψj(X̄j)

)
+ χiςi−1

+ χiF̄i +
Λ∗
i
2

2
+ ℓiχiϱ

3
i + χiβi+1 + χiχi+1

+ 3ℓiχiϱiς
2
i − ℓiχiς

3
i +

l2i
2
+ ℓiχ

4
i +Πi−1,

where χiϱi−1 + χi−1χi = χi(ςi−1 − χi−1) + χi−1χi =

χiςi−1, F̄i(Xi) = Fi +
χiϱ

2
i

2 + ℓiς
3
i − ˙̄βi − 3ℓiϱiς

2
i +

3ℓiϱ
2
i ςi − ℓiχ

3
i +

χi

2 represents the unknown function and
Xi = [ξT , y∗, ẏ∗, ϱ1, · · · , ϱi, η̂]T . STi Ψi(Xi) can be utilized
to approach the unknown term F̄i and |δi(Xi)| ≤ δ̄i with δ̄i
being an error upper bound of δi(Xi). Similar to step 1, one
has

χiS
T
i (Xi)Ψi(Xi) + χiδi(Xi)

≤ ηχ2
i

2a2iΨ
T
i (X̄i)Ψi(X̄i)

+
a2i
2

+
χ2
i

2
+
δ̄2i
2
, (13)

where X̄i = [ξi
T , y∗, ẏ∗, ϱ1, · · · , ϱi, η̂]T . By calculation,

one gets ℓiχiϱ3i − ℓiχiς
3
i +3ℓiχiϱiς

2
i − 3ℓiχiϱ

2
i ςi+ ℓiχ

4
i =

χi(ℓiϱ
3
i −ℓiς3i +3ℓiϱiς

2
i −3ℓiϱ

2
i ςi)+ℓiχ

4
i = 0. Considering

(9) and (13) yields

U̇i ≤ −
i∑

j=1

Wj1

(1
2
χ2
j

) 3
4 −

i∑
j=1

Wj2

(1
2
χ2
j

)2
+ χiχi+1

+
η̃

r1

(
˙̂η −

i∑
j=1

r1χ
2
j

2a2jΨ
T
j (X̄j)Ψj(X̄j)

)
+Πi

with Πi = Πi−1 +
a2i
2 +

l2i
2 +

Λ∗
i
2

2 +
δ̄2i
2 .

Step n: As before, the time derivative of 1
2χ

2
n is given as

χnχ̇n = χn(ϖus + σ) + χnFn + χnΛn − χn
˙̄βn

+ ℓnχnϱ
3
n + χnϱn−1 + lnχnsgn(ϱn).

Define the Lyapunov function candidate as Un = Un−1 +
1
2χ

2
n +

ϖ
2r2
κ̃2, where κ̂ is the estimate of κ with κ̃ = κ̂− κ.

In conjunction with the previous step, there holds

U̇n ≤ −
n−1∑
j=1

Wj1

(χ2
j

2

) 3
4 −

n−1∑
j=1

Wj2

(χ2
j

2

)2
+ χnϖus

+
σ∗2

2
+ χnFn + χ2

n +
ℓ̄2n
2

− χn
˙̄βn +ϖ

κ̃ ˙̂κ

r2

+
η̃

r1

(
˙̂η −

n−1∑
j=1

r1χ
2
j

2a2jΨ
T
j (X̄j)Ψj(X̄j)

)
+ χn−1χn

+ ℓnχnϱ
3
n +

χ2
nϱ

2
n

2
+
l2n
2

+ Πn−1 + χnϱn−1.

Let F̄n(Xn) = Fn +
χnϱ

2
n

2 + ℓnς
3
n − ˙̄βn −

3ℓnϱnς
2
n + 3ℓnϱ

2
nςn − ℓnχ

3
n + χn, and Xn =

[ξT , y∗, ẏ∗, ϱ1, · · · , ϱn, η̂]T . F̄n can be utilized to ap-
proximate STnΨn(Xn), and the below formula always
holds

χnS
T
n (Xn)Ψn(Xn) + χnδn

≤ ηχ2
n

2a2nΨ
T
n (X̄n)Ψn(X̄n)

+
a2n
2

+
χ2
n

2
+
δ̄2n
2
, (14)

1136  



where X̄n = Xn. Taking into account us in (9), χnϖus can
be rewritten as

χnϖus ≤ − ϖχ2
nκ̂

2β2
n√

χ2
nκ̂

2β2
n + ϵ2

≤ ϖϵ−ϖχnκ̂βn.

Consider ˙̂κ in (10), U̇n has the following form

U̇n ≤ −
n−1∑
j=1

Wj1

(χ2
j

2

) 3
4 −

n−1∑
j=1

Wj2

(χ2
j

2

)2
− b3
r2
κ̃κ̂

− b4κ̃

r22
κ̂3 +

Λ∗
n
2

2
+ ςn−1χn +Πn−1 +

σ∗2

2

+
η̃

r1

(
˙̂η −

n−1∑
j=1

r1χ
2
j

2a2jΨ
T
j (X̄j)Ψj(X̄j)

)
+ϖϵ

+
l2n
2

+ χnF̄n − χnβn, (15)

where −χnβn = −ϖχnκ̂βn + ϖχnκ̃βn. Combining (9),
(10), (14) and (15), one has

U̇n ≤ −
n∑
j=1

Wj1

(χ2
j

2

) 3
4 −

n∑
j=1

Wj2

(χ2
j

2

)2
− b1
r1
η̃η̂

− b2
r21
η̃η̂3 − b3

r2
κ̃κ̂− b4

r22
κ̃κ̂3 +Πn, (16)

where Πn = Πn−1+
Λ∗

n
2

2 +
a2n
2 +

l2n
2 +

δ̄2n
2 + σ∗2

2 is a positive
constant.

3.2 Stability Analysis
Theorem 1. The adaptive fault-tolerant controller de-

signed in (9) ensures the boundedness of all signals in sys-
tem (1), while achieving fixed-time stability for the output
tracking error ς1.

Proof. The processing of certain terms is necessary in or-
der to reach fixed-time stability. Take − b1

r1
η̃η̂ in (16) for

example, one can observe that

− b1
r1
η̃η̂ ≤ − b1

2r1
η̃2 +

b1
2r1

η2

≤ h̄
( η̃2
2r1

) 3
4

+
b1
2r1

η2 +
h̄4

4b31
(17)

with h̄ > 0 being a constant. The reason for obtaining the
above inequality is that the term − b1

2r1
η̃2 satisfies the follow-

ing formula

− b1
2r1

η̃2 = − b1
4r1

η̃2 − h̄
( η̃2
2r1

) 3
4

+
h̄2

2
√
2r1b1

|η̃|

− 1

4r1

(√
b1|η̃| − h̄(2r1)

1
4

√
|η̃|
b1

)2
≤ − b1

4r1
η̃2 − h̄

( η̃2
2r1

) 3
4

+
b1
8r1

η̃2 +
h̄4

4b31
.

Similarly, it is easy to get − b3
r2
κ̃κ̂ ≤ h̄

(
κ̃2

2r2

) 3
4

+ b3
2r2
κ2 +

h̄4

4b33
. The term − b2

r21
η̃η̂3 can be rewritten as

− b2
r21
η̃η̂3 = − b2

r21
η̃4 − 3b2

r21
η̃3η − 3b2

r21
η̃2η2 − b2

r21
η̃η3. (18)

Letting δ1 = η̃3

ι , δ2 = ιη, θ1 = 4
3 , and θ2 = 4, one imme-

diately has δ1δ2 ≤ δ
θ1
1

θ1
+
δ
θ2
2

θ2
, i.e., − 3b2

r21
η̃3η ≤ 9b2

4r21ι
4
3
|η̃3| 43 +

3b2ι
4η4

4r21
. In addition, − b2

r21
η̃η3 ≤ 3b2

r21
η̃2η2 + b2

12r21
η4 always

holds. Thus, (18) becomes

− b2
r21
η̃η̂3 ≤ − b2

r21
η̃4 +

9b2

4r21ι
4
3

|η̃3| 43 +
b2

12r21
η4

+
3b2
r21
η̃2η2 +

3b2ι
4η4

4r21
. (19)

Choose ι
4
3 = 3, (19) is changed to

− b2
r21
η̃η̂3 ≤ −b2

( η̃2
2r1

)2
+

61b2
3r21

η4. (20)

The identical computation yields

− b4
r22
κ̃κ̂3 ≤ −b4

( κ̃2
2r2

)2
+

61b4
3r22

κ4. (21)

The above deflations can be substituted into (16) to yield
the following result

U̇n ≤ −ᾱ1

n∑
j=1

(χ2
j

2

) 3
4 − ᾱ2

n∑
j=1

(χ2
j

2

)2
− h̄
( η̃2
2r1

) 3
4

− h̄
( κ̃2
2r2

) 3
4 − b2

( η̃2
2r1

)2
− b4

( κ̃2
2r2

)2
+ Π̄n,

where ᾱ1 = min{Wj1}, ᾱ2 = 1
n min{Wj2} and Π̄n =

Πn+
61b2
3r21

η4++ 61b4
3r22

κ4+ h̄4

4b31
++ h̄4

4b33
+ b1

2r1
η2+ b3

2r2
κ2. Com-

bining Lemma 3 comes to −
n∑
j=1

(
χ2
j

2

) 3
4 ≤ −

( n∑
j=1

χ2
j

2

) 3
4

and −
n∑
j=1

(
χ2
j

2

)2
≤ −

( n∑
j=1

χ2
j

2

)2
, Then, U̇n can be rewrit-

ten as

U̇n ≤ −ν1U
3
4
n − ν2U

2
n + Π̄n (22)

with ν1 = min{ᾱ1, h̄} and ν2 = min{ᾱ2, b2, b4}. In a fixed
time T ≤ Tmax = 4

ν1π
+ 1

ν2π
, it can be concluded that

|χ1| ≤ min
{√

2
(

Π̄n

(1−π)ν2

) 1
2

,

√
2
(

Π̄n

(1−π)ν1

) 4
3
}

. Then, the

fixed-time convergence of χi can be obtained. Construct the
following Lyapunov function

Un+1 =
n∑
i=1

1

2
ϱ2i . (23)

The derivative can be computed by combining (7)

U̇n+1 = −
n∑
i=1

ℓiϱ
4
i +

n∑
i=2

ϱi(β̄i − βi)−
n∑
i=1

liϱisgn(ϱi)

≤ −
n∑
i=1

ℓiϱ
4
i +

n∑
i=2

|ϱi||β̄i − βi| −
n∑
i=1

li|ϱi|.

By the aid of |β̄i − βi| ≤ ci with ci < li being a known
constant, U̇n+1 can be shown as

U̇n+1 ≤ −
n∑
i=1

ℓiϱ
4
i −

n∑
i=1

(li − ci)|ϱi|
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≤ −d̄1U2
n+1 − d̄2U

1
2
n+1, (24)

where d̄1 = min{4ℓi}, d̄2 = min{
√
2(li − ci)} for i =

1, · · · , n. Applying Lemma 1, the fixed-time convergence of
ϱi can be certified. The stability of ςi is guaranteed due to
the relationship ςi = χi + ϱi. When U2

n > Π̄n

ς2
, it follows

from U̇n ≤ −ς1U
3
4
n −ς2U2

n+Π̄n that U̇n < 0, which implies
that Un is bounded. Furthermore, the variables χi, η̂ and η̃
are also bounded. Similarly, we can verify the boundedness
of ϱi and ςi. Consider the designed controllers, we establish
the boundedness of βi and us by combining Assumption 1,
indicating that all signals remain within bounds.
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Fig. 1: System output y and tracking signal y∗

0 5 10 15
Time(sec)

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 2: System states ξ1 and ξ2
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Fig. 3: Adaptive parameters η̂ and κ̂

4 Simulation Result

The above theoretical results are verified through a nu-
merical example presented in this section. The system under
consideration is a second-order nonstrict-feedback nonlinear
system with actuator faults ξ̇1 = ξ2 + F1(ξ1, ξ2) + Λ1(t),

ξ̇2 = ua + F2(ξ1, ξ2) + Λ2(t),
y(t) = ξ1(t),

(25)
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Fig. 4: System input us

where F1(ξ1, ξ2) = 0.05ξ1 sin ξ2, F2(ξ1, ξ2) =
0.025ξ2 sin ξ1, Λ1(t) = 0.95 cos t, Λ2(t) = 0.01 sin t.
The multiplicative fault and additive fault are given as
ϖ = 0.75e−0.05t and σ = 0.04 sin t, respectively. The
reference signal is y∗ = sin t.

The design parameters are chosen as W11 = 1, W12 = 1,
W21 = 10, W22 = 10, a1 = 10, a2 = 10, b1 = 1, b2 =
1, b3 = 1, b4 = 5, l1 = 1, l2 = 1, ϵ = 0.1, r1 = 10,
τ1 = −1, ℓ1 = 1, ℓ2 = 1, and r2 = 0.1. The initial values
are ξ1(0) = −0.1, ξ2(0) = 0.1, η̂(0) = 0.2, κ̂(0) = −0.1,
ϱ1(0) = 0, ϱ2(0) = 0. It can be seen from Fig. 1 that y can
track y∗ well. Figs. 2-4 illustrate the boundedness of all the
closed-loop signals.

5 Conclusions

This paper investigates adaptive fault-tolerant tracking
control for nonstrict-feedback nonlinear systems with actua-
tor faults. Based on the approximation of unknown nonlinear
functions, FLSs are combined with command filtering to e-
liminate the redundant compensation signals. Additionally,
efficient estimation of actuator fault parameters enable fault-
tolerant control. The proposed control method guarantees
convergence of the system output to the origin’s neighbor-
hood within a fixed time. The numerical example verifies
the feasibility of this control method.
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Abstract: In this paper, the bias-policy iteration based optimal control of fully actuated systems is further reconsidered. With the
help of the fully actuated property, a more neat bias-PI method for the fully actuated cases is established with the convergence
proof. The data-driven implementation for the proposed algorithm is introduced accordingly. A numerical example verifies the
effectiveness of the proposed results.
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1 Introduction

Optimal control is a powerful mathematical and compu-
tational technique employed in control theory that ascertain
the optimal way to manipulate the controlled dynamic sys-
tems and to ensure the achievement of desired performance
metrics while minimizing associated costs or maximizing
specific objectives [5]. Since in 1950s when the Pontrya-
gin’s Minimum Principle and Bellman’s Dynamic Program-
ming were formally established, the optimal control theory
has attracted lots of interests from scientists and engineers
in control community, and has soon been applied to numer-
ous practical occasions, for example, aerospace, economics,
electrical engineering, and robotics [7, 8].

While optimal control offers a powerful toolset for effi-
ciently managing complex systems, its implementation such
as dynamic programming can be challenging due to the
“curse of dimensionality” problem [1]. In addition, the tra-
ditional optimal control techniques usually require the exact
information of the parameters of the controlled systems dur-
ing the full design process, while in practical engineering
applications, the system information is not always available.
Therefore, the design of data-driven based optimal control
technique has become a hot topic in control community and
been broadly studied in these years [6].

The adaptive dynamic programming (ADP) technique, as
one of the typical data-driven optimal control methods, ap-
proximates the optimal controllers using the input and output
data of the controlled systems, such that the need for sys-
tem dynamics information during the controller design pro-
cess is eliminated by imitating the learning behavior from
biological systems, which allows the “curse of dimensional-
ity” problem to be overcome. In recent years, scientists and
engineers have paid close attention to the ADP technique,

This work was supported in part by the National Natural Sci-
ence Foundation of China under grant number 62303132, the Funda-
mental Research Funds for the Central Universities under grant number
No.HIT.OCEF.2023007, in part by the Science Center Program of National
Natural Science Foundation of China under Grant 62188101, and in part by
the Heilongjiang Touyan Team Program. Corresponding author: Huaiyuan
Jiang.

and fruitful results were proposed to solve optimal control
issues for uncertain systems. For example, the nonlinear op-
timal control problem with constraint inputs [4], the H∞ op-
timal control problem was solved by using ADP technique
[9, 10], the optimal regulation problem [11], and many other
occasions such as game problems [14], event-trigger control
[13], optimal control for multi-agent systems [12], and so on
[15, 16].

Usually there are two components that make up the iter-
ative scheme of the ADP technique: the policy evaluation
component, which assesses the performance index value un-
der the specified control policy, and the policy improvement
component, which enhances the control policy in light of the
assessed estimated performance index [6]. With different ex-
ecution order of these two components, the ADP methods
may provides different benefits and inconvenience. For ex-
ample, by initiating the algorithm with an admissible policy,
the policy iteration based ADP method possesses a fast con-
vergence speed, while the initial control policy is required
to be admissible. Meanwhile, by using an initial semidef-
inite performance index value function, the value iteration
based ADP method is easier to be initiated while the con-
vergence may be slow. Over the past 15 years, lots of ef-
forts was paid to remove the constraints and inconvenience
in the ADP method, and fruitful results was proposed, for
example, homotopic iteration method [20], the hybrid it-
eration method [21] and the bias-policy iteration (bias-PI)
method [22]. However, all the method mentioned above have
more complicated structure compared to the traditional ADP
method, which will increase the computational burden more
or less.

Recently, the analysis and control of fully actuated sys-
tems (FAS), has gained lots of attentions from control com-
munity [17–19]. As argued in [17], the FAS model can bring
lots of benefit in cancelling the known nonlinearities in the
system and hence to convert, to an extent, a nonlinear prob-
lem into a linear one. In [17], a nonlinear optimal controller
in a state feedback form is obtained by effectively converting
the nonlinear optimal control issue into a linear quadratic op-
timal control problem and the infinite-time output regulation
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problem is also resolved after addressing the finite-time op-
timal tracking control problem. Interestingly, it is found that
the fully actuated property may have potential advantage in
simplifying the existing ADP method.

In this paper, the ADP method for FAS is further studied
and the bias-PI algorithm for FAS is redesigned for solv-
ing the optimal control problem of FAS. First the traditional
bias-PI method is briefly recalled, then by using the fully ac-
tuation property, a more neat bias-PI method for the fully ac-
tuated cases is then established with the convergence proof.
The data-driven implementation for the proposed algorithm
is introduced accordingly. A numerical example is finally in-
troduced to verify the effectiveness of the proposed results.

The rest of this paper is organized as follows. The problem
formation and related preliminaries for the controller design
of linear optimal control problem are briefly introduced in
Section 2. In Section 3, the existing result on bias-policy
method and its generalization for the FAS case with con-
vergence proof and data-driven implementation is given. A
numerical example is introduced out in Section 4 to illus-
trate the effectiveness of the proposed algorithms. Finally,
Section 5 concludes this paper.

2 Problem Formulation and Preliminaries

the following linear system

ẋ = Ax+Bu, (1)

where x ∈ Rn denotes the state of the system, u ∈ Rm is
the control input, and y the output of the system. In addition
it is assumed that (A,B) is controllable. The design objec-
tive of the optimal control is to stabilizing system (13) while
minimizing the following index function

J(x, u) =

∫ ∞

0

(
xTQx+ uTRu

)
dt, (2)

It is well known that by linear optimal control theory, the
desired controller has the following form

u∗ = −BTP ∗x, (3)

where P ∗ is the positive definite solution of the following
Riccati equation

ATP + PA− PBR−1BTP +Q = 0. (4)

On the other hand, due to the nonlinearity of the Riccati
equation, the solution to (4) is usually hard to obtain ana-
lytically. So far many scholars have put their efforts on the
numerical approximation methods for solving (4) and fruit-
ful results were proposed. One of such methods known as
the Kleinman iteration or the Policy Iteration method, is in-
troduced as follows.

Lemma 1 [3] Let K0 be such that A0 = A− BK0 is Hur-
witz, and Pk be the solution to the following Lyapunov equa-
tion, for k ∈ Z+,

0 = AT
k−1Pk + PkAk−1 +Kk−1RKT

k−1 +Q, (5)

with Ak−1 = A − BR−1BTPk−1 for k ≥ 2. Then there
hold:

• Ak is Hurwitz for k ∈ Z+;

• Pk ≥ Pk+1 ≥ P ∗ for k ∈ Z+;
• lim

k→∞
Pk = P ∗.

It is believed that to initiate the PI method, one needs
to choose a stabilizing control gain K0 which may be hard
to obtain in practical usage. Recently several different ap-
proaches were emerged to further relax this condition, such
as homotopic iteration method [20], the hybrid iteration
method [21] and the bias-PI method [22]. However, all the
method mentioned above have more complicated structure
compared to the traditional PI method, which will increase
the computational burden. Recently a novel system analy-
sis approach called the full actuated system approach [17–
19] was established and now attracts lots of attentions from
control community. Interestingly, it is found that the fully
actuated property may have potential advantage in simplify
the above mentioned method. In the following, the bias-PI
method for first-order fully actuated systems is considered
and the following assumption is made.

Assumption 1 B is of full rank with m = n.

3 Bias-PI method for fully actuated systems

In this section, the bias-PI method for fully actuated sys-
tems is further studied, and a more neat result is proposed.
First, the model based bias-PI method is recalled, and the
convergence of the bias-PI method for the fully actuated
systems is detailed analysed. Then the correspondent data-
driven implementation for the proposed method is intro-
duced accordingly.

3.1 Traditional Bias-PI method
By introducing the matrix operator F γ

P (M) as

F γ
P (M) =

(
A−BR−1BTP − γ

2
In

)T
M

+M
(
A−BR−1BTP − γ

2
In

)
,

and the following iteration scheme

Pi+1 = Pi − (F γ
Pi
)−1 (F (Pi)) , (6)

the traditional PI method is modified as

A
T

i Pi+1 + Pi+1Ai + PiBR−1BTPi +Q+ γPi = 0, (7)

with
Ai = A−BR−1BTPi −

γ

2
In.

Notice that the existence of (F γ
Pi
)−1 can be guaranteed if

Ai keeps being Hurwitz during the iteration, which is a
weaker condition compared to the traditional PI method that
A − BR−1BTPi is Hurwitz. By introducing an auxiliary
iteration

AT
j P j+1 + P j+1Aj +Q+ P jBR−1BTP j = 0, (8)

where Aj = A− BR−1BTP j −
γ
2 In, and a correspondent

parameter
βi = λmax(PiP

−1
i−1), i ∈ Z+, (9)

the following results can be easily obtained.
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Algorithm 1 Model-based Bias-PI Algorithm
1: Choose P0 > 0 and γ0 > 0 such that A − BR−1BTP0 −

γ0
2
In is Hurwitz. Set the approximation threshold ε such that

λmin(Q)
γ0

> ε > 0 and let γ = γ0. Set n2 large enough such
that n2 > λmax(P0) and n2 > λmax(P

∗), where P ∗ is the
positive definite solution to (4). Let n1 > λmax(Q)

λmin(Q)
n2 and set

i = 0.
2: repeat
3: if λmax(Pi) > n1, then
4: Let γi = γi−1

βi−1
βi

, where βi is defined by (9) and
Pi,0 = Pi. Set j = 0.

5: repeat
6: Solve (8) with γ = γi to get Pi,j+1. Let j = j + 1.
7: until λmax(Pi,j) < n2.
8: Let Pi = Pi,j .
9: end if

10: Let γi+1 = γi, and solve (7) with γ = γi+1 to get Pi+1.
Let i = i+ 1.

11: until ∥Pi − Pi−1∥ ≤ ε.

Lemma 2 Consider the matrix series {Pi} generated by (7).
If P0 > 0 and γ > 0 are such that A− BR−1BTP0 − γ

2 In
is Hurwitz, then the following two properties hold:

1) A−BR−1BTPi − γ
2 In is Hurwitz for i ∈ Z+;

2) Pi+1 ≤ Pi, if Pi ≤ Pi−1;
3) the series {Pi} is convergent to the positive definite so-

lution to (4) if it is bounded.

Lemma 3 The matrix series {Pi} generated by Algorithm
1 converges to the positive solution P ∗ to the ARE (4) as
i → ∞.

Lemma 4 By choosing ε and γ0 properly such that εγ0In <
Q, the approximation of P ∗ denoted by P̂ obtained by Algo-
rithm 1 ensures that A−BR−1BTP̂ is Hurwitz.

Notice that in Algorithm 1 an extra iteration scheme (8),
which, however, adds some unnecessary computational bur-
den to the algorithm. On the other hand, by taking the fully
actuated property into consideration, the following result can
be directly obtained.

Corollary 1 Let P0 > 0 and γ > 0 be such that A −
BR−1BTP0 − γ

2 In is Hurwitz, and consider the matrix se-
ries {Pi} generated by (7). If B is full of row rank, then the
series {Pi} is bounded.

Proof. First, for any P0 > 0 which satisfies that A −
BR−1BTP0 − γ

2 In is Hurwitz, by

ATP ∗ + P ∗A+Q− P ∗BR−1BTP ∗ = 0,

we have

0 =
(
A−BR−1BTP0 −

γ

2
In

)T
P ∗

+ P ∗
(
A−BR−1BTP0 −

γ

2
In

)
+Q− P ∗BR−1BTP ∗

+ γP ∗ + P ∗BR−1BTP0 + P0BR−1BTP ∗. (10)

Denote β
0

as β
0
= λmin(P0 (P

∗)
−1

), where P ∗ is the pos-
itive definite solution to (4). Then we can easily obtain by

λmin(P0 (P
∗)

−1
= λmin

(
(P ∗)−

1
2P0 (P

∗)−
1
2

)
that

P0 − β
0
P ∗

=(P ∗)
1
2

(
(P ∗)

− 1
2P0(P

∗)
− 1

2 − β
0
In

)
(P ∗)

1
2

≥0. (11)

Then similar to the proof of (11), we have

P0 − β
0
P ∗ ≥ 0.

Therefore, it follows from (7) and (10) that

AT
0 (P1 − β

0
P ∗) + (P1 − β

0
P ∗)A0

=− (Q+ P0BR−1BTP0 + γP0)

+ β
0
(Q− P ∗BR−1BTP ∗ + γP ∗

+ P ∗BR−1BTP0 + P0BR−1BTP ∗). (12)

where A0 = A−BR−1BTP0− γ
2 In. If β

0
≥ 1, then by (4)

and (7) we directly obtain

AT
0 (P1 − P ∗) + (P1 − P ∗)A0

=− γ (P0 − P ∗)− (P0 − P ∗)BR−1BT (P0 − P ∗)

≤0,

which further indicates that P1 ≥ P ∗.
If β

0
< 1, then by (12) we have

AT
0 (P1 − β

0
P ∗) + (P1 − β

0
P ∗)A0

=− ((1− β
0
)Q+ (1− β

0
)P0BR−1BTP0

+ (γP0 − β
0
P ∗) + β

0
(P0 − P ∗)BR−1BT(P0 − P ∗))

<0,

which implies (P1 − β
0
P ∗) > 0. Therefore, by denoting

β∗
0
= min

{
1, β

0

}
and repeating the above calculation re-

cursively for i ∈ Z+, we have Pi ≥ β∗
0
P ∗,∀i ∈ Z+.

If there exists an im such that βim ≤ 1, then by Lemma
2, we have that Pi ≤ Pi−1 for i ≥ im, which indicates
that Pi is bounded. Now we assume that βi defined by
(9) satisfies that βi > 1 for i ∈ Z+. It follows from
Pi ≥ β∗

0
P ∗ that P−1

i ≤ 1
β∗
0

(P ∗)−1. Since B is full of row

rank, we have BR−1BT > 0. Therefore, by defining βb =
λmin(BR−1BTP ∗) we have BR−1BT ≥ βb(P

∗)−1 ≥
βbβ

∗
0
P−1
i . Since we have assumed that βi > 1 for i ∈ Z+,

by choosing βi+1 such that

γ
βi − βi+1

βi+1 − 1
= βbβ

∗
0
,

we have

(βi+1 − 1)PiBR−1BTPi − γ
(βi − βi+1)

βi
Pi

=(βi+1 − 1)Pi

(
BR−1BT − γ

(βi − βi+1)

βi(βi+1 − 1)
P−1
i

)
Pi

≥(βi+1 − 1)Pi

(
BR−1BT − γ

(βi − βi+1)

(βi+1 − 1)
P−1
i

)
Pi

≥0.
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Therefore, it follows from (7) that

A
T

i Pi + PiAi

=PiBR−1BTPi −Q− γPi−1

− (Pi − Pi−1)BR−1BT (Pi − Pi−1) . (13)

By (7) and (13)

A
T

i (Pi+1 − βi+1Pi) + (Pi+1 − βi+1Pi)Ai

=(βi+1 − 1)Q+ γ(βi+1Pi−1 − Pi)

+ βi+1(Pi − Pi−1)BR−1BT(Pi − Pi−1)

+ (βi+1 − 1)PiBR−1BTPi

>βi+1(Pi − Pi−1)BR−1BT(Pi − Pi−1)

+ γ
βi+1

βi
(βiPi−1 − Pi)− γ

(βi − βi+1)

βi
Pi

>0, (14)

where Ai = A − BR−1BTPi − γ
2 In. Since in Lemma 2 it

is proved that Ai is Hurwitz for i ∈ Z+, by (14) we have

Pi+1 − βi+1Pi < 0,

which implies that

βi+1 > λmax(Pi+1P
−1
i ) = βi+1. (15)

Let βR
1 = β1 > 1 and define

{
βR
i

}
for i > 1 according to

γ
βR
i − βR

i+1

βR
i+1 − 1

= βbβ
∗
0
. (16)

Similar to the proof of (15) we can show that for i ∈ Z+,

βi ≤ βR
i .

Notice that (16) is equal to

c(βR
i − βR

i+1) = βR
i+1 − 1,

where c = γ
βbβ∗

0

. Then direct computation gives

βR
i+1 =

cβR
i + 1

c+ 1

=1 +
c

c+ 1

(
βR
i − 1

)
...

=1 +

(
c

c+ 1

)i

(β1 − 1) .

By noticing βi ≤ βR
i , there holds

Pi ≤
i∏

n=1

βnP0 ≤
i∏

n=1

βR
n P0.

In the meanwhile, by the fact that ln(1 + x) < x holds for

Algorithm 2 Bias-PI Algorithm for Fully Actuated Systems
1: Choose P0 = 0 and γ > 0 such that A− γ

2
In is Hurwitz. Set

the approximation threshold ε properly.
2: repeat
3: Solve (7) with to get Pi+1. Let i = i+ 1.
4: until ∥Pi − Pi−1∥ ≤ ε.

x > 0, for i ∈ Z+, we have

ln

(
i∏

n=1

βR
n

)

=

i∑
n=1

lnβR
n

=

i∑
n=1

ln

(
1 +

(
c

c+ 1

)n−1

(β1 − 1)

)

<

i∑
n=1

(
c

c+ 1

)n−1

(β1 − 1)

=
1−

(
c

c+1

)i
1− c

c+1

(β1 − 1)

<
1

1− c
c+1

(β1 − 1)

= (c+ 1) (β1 − 1). (17)

Therefore,
∏i

n=1βn <
∏i

n=1β
R
n < e(β1−1)(c+1), which im-

plies that
∏i

n=1βn is bounded. By the definition of βi, we
have

Pi ≤
i∏

n=1

βnP0,

which implies that
{
P i
}

is bounded. The proof is thus fin-
ished.

Theorem 1 The matrix series {Pi} generated by Algorithm
2 converges to the positive solution P ∗ to the ARE (4) as
i → ∞.

The proof of Theorem 1 can be directly obtained by
Lemma 2 and Corollary 1 and is thus omit here. Compared
to the existing bias-PI algorithms such as Algorithm 1, it
is obvious that Algorithm 2 has a more neat formation and
is easier to be implemented. Similar to the existing bias-PI
method based algorithm, Algorithm 2 only generates an ap-
proximation of the solution to (4), denoted by P̂ = Pi. How-
ever, the corresponding control gain K̂ = −R−1BTP̂ may
not be able to ensure that A−BK̂ is Hurwitz. Following the
idea of Lemma 4, the following corollary is proposed.

Corollary 2 By choosing ε and γ properly such that εγIn <
Q, the approximation of P ∗ denoted by P̂ obtained by Algo-
rithm 1 ensures that A−BR−1BTP̂ is Hurwitz.

Remark 1 The parameter γ in the proposed algorithm
serves as an damping term that helps relaxing the conver-
gence condition of the traditional PI method. Intuitively, a
large γ slows the convergence speed of the proposed algo-
rithm. For this concern, one may decrease γ during the iter-
ation, only to ensuring that A−BK − 1

2γIn is Hurwitz.
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3.2 Data-driven implementation for Algorithm 2
In the following, the traditional data-driven implementa-

tion for Algorithm 2 is introduced. By noting (7) and letting
Ki = R−1BTPi, the linear system described by (1) with the
control input u can be formed as

xT (t+∆t)Pi+1x (t+∆t)− xT (t)Pi+1x (t)

=−
∫ t+∆t

t

xT(Q+KT
i RKi + γ (Pi − Pi+1))xds

+ 2

∫ t+δt

t

(u+Kix)
T
RKi+1xds, i ≥ 0,

with Ai = A−BKi. Therefore, one obtains

xT (t+ δt)Pi+1x (t+ δt)− xT (t)Pi+1x (t)

=−
∫ t+δt

t

xT (Qi + γPi)xds− γ

∫ t+δt

t

xTPi+1xds

+ 2

∫ t+δt

t

(u+Kix)
T
RKi+1xds, (18)

where Qi = Q+KT
i RKi. By letting

x̄ = [x2
1, 2x1x2, · · · , x2

2, 2x2x3, · · · , x2
n],

P̄ = [p11, p12, p13, · · · , P22, p23, · · · , pnn]T.

we have by (18) that(
(x̄(t+ δt)− x̄(t))− γ

∫ t+δt

t

x̄ds

)
P̄i+1

=

∫ t+δt

t

(xT ⊗ xT)dsvec(Qγ
i )

+ 2

∫ t+δt

t

xT ⊗
(
(u+Kix)

T
R
)
dsvec(Ki+1),

with Qγ
i = Qi + γPi. For the time series t0 < t1 < t2 <

t3 < · · · < tl, Define

Ξx =
[
Ξ1,x Ξ2,x · · · Ξl,x

]T
,

Ξi,x =

(
(x̄(ti)− x̄(ti−1))− γ

∫ ti

ti−1

x̄ds

)T

, i = 1, ..., l,

Ix =
[ ∫ t1

t0
x⊗ xds · · ·

∫ tl
tl−1

x⊗ xds
]T

,

Iu =
[ ∫ t1

t0
x⊗ uds · · ·

∫ tl
tl−1

x⊗ uds
]T

,

and notice

xT ⊗
(
(u+Kix)

T
R
)

=
(
xT ⊗ xT

) (
In ⊗KT

i R
)
+
(
xT ⊗ uT

)
(In ⊗R) .

Then there holds

Θi

[
P̄i+1

vec(Ki+1)

]
= −Ixvec(Qγ

i ), i ≥ 0, (19)

with Θi = [Ξx,−2Ix
(
In ⊗KT

i R
)
− 2Iu (In ⊗R)].

To ensure that the solution to (19) is unique, the following
lemma is introduced.

Algorithm 3 Data-Driven Bias-PI Algorithm for Fully Ac-
tuated Systems

Choose P0 = 0,K0 and γ > 0 such that A − BK0 − γ
2
In is

Hurwitz. Set l large enough. During the time interval [t0, tl],
employ u = −K0x+ e as the input on the time interval [t0, tl],
where e is the exploration noise. Compute Ξx, Ix and Iu until
the rank condition in (20) is satisfied.
Set the approximation threshold ε which satisfies that λmin(Q)

γ
>

ε > 0 and set i = 0.
repeat

Solve (19) to get (Pi+1,Ki+1), and let i = i+ 1.
until ∥Pi − Pi−1∥ ≤ ε.
Use u(t) = −Kix(t) as the approximated optimal control pol-
icy.

Lemma 5 [2] If the following condition is satisfied

rank(Ix, Iu) =
n(n+ 1)

2
+mn, (20)

then the matrix Θi is of full column rank.

4 Simulation

A numerical example is presented to illustrate the effec-
tiveness of the proposed allocation strategies. The plant
model has dimensions n = 4 and m = 4 with the matri-
ces used for the simulation being randomly generated and B
being of full rank. The weight matrix is simplify chosen as
Q = R = I4 only for illustrative purpose. The traditional PI
method and the proposed bias-PI method are separately used
for solving the optimal control problem, the initial control
gain is simply chosen as K0 = 0. The input u(t) is chosen
such that

u(t) = 30

30∑
i=1

sin(ωit),

where ωi are randomly chosen from [−50, 50]. The approxi-
mate error ε are set as ε = 10−4. In addition, for the bias-PI
method we choose P0 = 0 and different values of γ for the
algorithm. Then the system data on the time interval [0, 1]
are collected to generate the matrices Ix, Iu and ∆x. After
the data collection, the algorithms are executed and then the
obtained control policy is applied to the system at t = 1s.
The iteration convergence of different algorithm and the tra-
jectories of the norm of system state by the controllers gen-
erated by different algorithms are given in Fig. 1.

Table 1: Convergence of Algorithm 3 with different γ.

γ 0 (PI) γ∗ 5γ∗ 10γ∗

∥P̂−P ∗∥ 13.596 0.0002 0.002 0.00004

Iterations 7 (FAIL) 26 29 74

To further show the influence of γ in Algorithm 3. We
set γ∗ = max{2λmax(A), 0} and re-execute Algorithm 3
with different γ. From Table 1, it can be seen that choos-
ing a larger γ may increase the approximation error and the
number of iterations. In the meanwhile, a small γ makes
the condition A − BK0 − γ

2 In being Hurwitz hard to sat-
isfy. Therefore, the trade off should be taken into considera-
tion when choosing γ for the bias-PI algorithm, which is the
same with the result in [22].
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Fig. 1: Trajectories of the convergence error and the norm of
the closed-loop system state

5 Conclusion

In this paper, the bias-policy iteration based optimal con-
trol of fully actuated linear systems is further reconsidered.
With the help of the fully actuation property, a more neat
bias-PI method for the fully actuated cases is established
with the convergence proof. The data-driven implementa-
tion for the proposed algorithm is introduced accordingly. A
numerical example verifies the effectiveness of the proposed
results. In future, the authors will focus on the generalization
of the proposed method to the practical complex systems.
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Abstract: Aiming at the problem of Unmanned Underwater Vehicle (UUV) trajectory tracking control in three-dimension (3D) 

underwater environment, a trajectory tracking control method based on Gaussian Process Model Predictive Control (GP-MPC) 

method is proposed. By integrating the theory and methods of Gaussian Process (GP) with the framework of model predictive 

control to achieve modelling predictions of system uncertainty. Firstly, the mathematical model of UUV under five degrees of 

freedom is established and linearly discretized; Then, the model predictive controller is designed to achieve the tracking control 

of the desired trajectory and predict the unmodelled part of the UUV by using GP; Finally, the three-dimensional trajectory 

tracking simulation experiments are conducted to validate that the method has a better controlling effect compared with the 

traditional MPC method during the tracking process with uncertain model parameters. 

Key Words: UUV, Model Predictive Control, Gaussian Process, Tracking Control 

 

 
1  

 

1 Introduction 

With the advantages of flexibility and low cost, UUV has 

a wide application prospect in ocean exploration, seabed 

resource exploitation and seabed operation[1-2]. UUV 

trajectory tracking is the ability of a UUV, driven by a 

control system, to start from an initial position and 

accurately follow a desired trajectory to its destination. 

Currently, the main trajectory tracking control algorithms 

include: PID control, fuzzy control, neural network control, 

robust control, sliding mode control, backstepping control, 

model predictive control[3]. 

However, due to the highly non-linear UUV model and 

the complex underwater environment, a single control 

algorithm has certain limitations and is difficult to achieve 

accurate and stable tracking control of UUV[4]. In order to 

solve this problem, many scholars have carried out research 

on combining the advantages of different algorithms, and 

are committed to constructing a more integrated and highly 

robust hybrid control strategy, aiming at overcoming the 

shortcomings of a single algorithm and improving the 

performance of UUV trajectory tracking systems in complex 

underwater environments[5-7]. 

[8] designed fuzzy position and bow controllers based on 

the relative state error between the navigator and the 

reference trajectory by using the T-S fuzzy framework to 

cope with marine environment disturbances. [9] designed a 

global finite time control method by combining PID and 

sliding mode control, which ensures the global stability of 

all trajectory tracking errors in finite time under model 

parameter perturbation and unknown ocean current 

conditions. [10] proposes a 3D underwater trajectory 

tracking method for navigators based on model predictive 

                                                           
*This work is supported by the Natural Science Foundation of Shandong 

Province under Grant ZR2022QE056; Natural Science Foundation of 
Heilongjiang Province under Grant LH2023F025; Research Fund from 

National Key Laboratory of Autonomous Marine Vehicle Technology 

2023-SXJQR-SYSJJ04. 

control, which considers system inputs and state constraints, 

and employs a rolling time-domain implementation to 

improve robustness. 

MPC is an advanced control strategy and widely used in 

automatic control systems. To effectively reduce the 

computational complexity of the algorithm, the [11] uses the 

Laguerre function to introduce the rolling optimization 

process of MPC, which reduces the computation time by 

transforming multiple control inputs of UUV into a small 

number of Laguerre coefficients for optimization. [12] 

combines nonlinear model predictive control with an 

event-triggered mechanism for 3D trajectory tracking, 

reducing the number of controller iterations while ensuring 

the tracking performance of the UUV. 

In addition to this, serial control strategies are also widely 

used in this field. [13] solved the velocity jump problem 

during UUV motion by combining the kinematic control 

based on quantum particle swarm model predictive control 

and the dynamics control based on sliding mode control in 

series to satisfy the propeller constraints while solving the 

velocity jump problem during UUV motion. [14] based on 

adaptive dynamic sliding mode control algorithm for 

dynamics controller design, in series with MPC-based 

kinematics controller, effectively reduces the effect of wave 

disturbances and improves the robustness of the system. 

Compared with the serial control, the approach using the 

dual closed-loop control framework requires two optimal 

control problems to be solved in each control cycle, which 

increases the amount of computation but provides a more 

flexible and precise control for the system and improves the 

robustness of the tracking control. [15] employs a 

dual-closed-loop model-based predictive control approach 

that transforms trajectory tracking control into a design 

problem of an outer-loop position controller and an 

inner-loop velocity controller, reducing algorithmic 

complexity and improving the convergence of the AUV 

trajectory. [16] proposes a dual closed-loop robust model 

predictive control method by incorporating state and input 
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constraints, designing a nonlinear auxiliary control law in 

the dynamic controller, using the velocity increment as an 

input to make the velocity change smoother, and 

incorporating a finite time extended state observer to 

compensate for the model uncertainty problem. 

Gaussian process model predictive control is an advanced 

control method that combines Gaussian process and model 

predictive control to effectively deal with nonlinearity, 

uncertainty and complexity [17]. By integrating the theory 

and methods of Gaussian processes with the framework of 

model predictive control to improve the accuracy of 

modelling system dynamics and uncertainty. [18] used 

effective sampling data to design a Gaussian process model 

based predictive control method to solve the problem of 

difficult modelling of sailboats, designed an adaptive weight 

term in the objective function and designed a heading 

compensated control method based on the deviation distance 

to improve the tracking accuracy. In the [19], by considering 

the residual uncertainty provided by the Gaussian process 

model, it was combined with the MPC to achieve a cautious 

control of a racing car, with significant improvements in 

performance and safety compared to the nominal controller. 

[20] transforms a nonlinear nonconvex problem into a 

convex one by deriving a GP-based local dynamics model, 

which achieves constraints on the control inputs and higher 

computational efficiency while ensuring trajectory tracking 

performance. 

Based on the above discussion, to overcome the model 

uncertainty caused by the hydrodynamic effect and the 

ocean current during the high-speed movement of UUV, this 

paper presents a UUV 3D underwater trajectory tracking 

controller design based on a Gaussian process model 

predictive control method. The remainder of the paper is 

structured as follows: section 2 introduces the UUV 

mathematical model and its linear discretization; section 3 

describes the model predictive controller design and the 

training of the Gaussian model for prediction of the 

unmodelled dynamics; section 4 conducts simulation 

experiments to numerically simulate the designed controller; 

and section 5 concludes the paper. 

2 UUV Model 

The UUV is assumed to be a rigid body, the origin of the 

inertial system coincides with the center of gravity of the 

UUV, and the UUV is symmetric left-right and up-down. At 

this point, the heeling angle is very small and can be ignored, 

so only five-degree-of-freedom mathematical model of 

UUV is considered. Based on the kinematics and dynamics 

equations of the UUV the model can be obtained as follows: 

( )
( ) ( ) ( )

J V

MV D V V C V V g

η η

η τ

=


+ + + =

&

&
 (1) 

where [ ]Tx y zη θ ψ=  denotes the position and 

attitude of the UUV, [ ]TV u v w q r=  denotes the 

velocity and angular velocity of the UUV, 

[ ]T

u v w q rτ τ τ τ τ τ=  denotes the forces and 

moments on the UUV, 
RB AM M M= +  denotes the sum of 

the inertia matrix of the UUV itself and the additional inertia 

matrix of the hydrodynamics, ( ) ( ) ( )RB AC V C V C V= +  

represents the Coriolis inertial force matrix generated by the 

interaction between rigid body motion and fluid, ( )D V  

denotes the fluid damping matrix, and ( )g η  denotes the 

restoring forces and moments. 

Let [ ]TX Vη= ，U τ= , a transformation of the above 

equation yields 

( )
( )

( ) ( ) ( )( )1,
v

X f X
M

J v
U

D v v C v g

η

τ η− −



−
= =

−





&  

 (2) 

Due to the limited resources of the controller on board the 

UUV, the nonlinear model in Eq.(2) is rewritten as a linear 

model to improve its computational efficiency. The 

first-order term is retained at the reference point ( ),r rX U  

by Taylor series expansion. 

( ),
r rr

X f X U=&  (3) 
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,

( , )

r

r

r

r

r r r

r

X X
U U

X X
U U

f X U
X f X U X X

X

f X U
U U

U

=
=

=
=

∂
= + −

∂

∂
+ −

∂

&

 (4) 

The UUV linear error model can be obtained by 

subtracting equation (3) from equation (4) 

( ) ( )
( , ) ( , )

r r

r r

r r

U

r
X X X X
U U U

f X U f X U
X X X X U U

X U= =
= =

∂ ∂
− = − + −

∂ ∂
& &

 (5) 

Let 
e r

X X X= −& & & ,
e rU U U= − ,

( , )

r

r

X X
U U

A
f X U

X =
=

∂
=

∂
，

( , )

r

r

X X
U U

B
f X U

U =
=

∂
=

∂
, Then equation (5) can be rewritten as 

e e e
X AX BU= +&  (6) 

Then the model is discretized in terms of sampling time 

st  and rewritten into state space method representation by 

the forward Eulerian method to provide a predictive model 

for subsequent linear model predictive controllers with the 

following expression 

( ) ( ) ( ) ( ) ( )1e e eX k A k X k B k U k+ = +   (7) 

where ( ) sA k I t A= + ， ( ) sB k t B= . 

3 Trajectory Tracking Controller Design 

3.1 MPC Controller Design 

The model predictive control consists of three main 

components, namely the predictive model, roll optimization 

and feedback correction. The design of the model predictive 

controller is based on the predictive model developed in the 
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previous section. Let the prediction time domain of MPC be 

pN , and the control time domain be 
cN . 

This leads to the expression of the prediction equation at 

time k  

( ) ( ) ( ) ( ) ( )1X k A k X k B k U k+ = +    (8) 

where， ( )

( )

( 1 )

( 2 )

( )1 3

p

X

X k k

X k k
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X k N k
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+ 
 +=
 
 
 


+
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M

∣
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 + 
 +
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Construct the cost function according to the set desired 

trajectory as 

( ) ( )( 1) ( 1) ( 1) ( 1)

( ) ( )

T

r r

T

J X k X k Q X k X k

U k RU k

= + − + + − +

+

 (9) 

where Q , R  is the weight matrix; the first term represents 

the accumulation value of the error, the smaller the value the 

faster the convergence; the second term represents the 

accumulation value of the input, the smaller the value the 

less control energy consumption. 

Considering the control input constraints 

min maxU U U≤ ≤ in the actual operation process, the convex 

quadratic programming method that can effectively deal 

with the constraints is selected as the optimization algorithm 

for solving the problem, and its expression form after 

derivation is: 

( ) ( ) ( )( )

*

( )

min max

1
( ) arg min ( ) ( ) ( ) ( ) ( ) 

2

s.t. 1 , 

( )

T T

U k

X k

U k U k H k U k f k U k

f X k U k

U U k U

= +

≤

+ =

≤

(10) 

where 
*
( )U k  denotes the optimal control input at the 

current moment, ( )( ) 2 ( ) ( )TH k B k QB k R= + ， 

( )( ) 2 ( ) ( ) ( ) ( )T

rf k B k Q A k X k X k= − . 

During each control cycle, the MPC uses the system state 

and model at the current moment to predict the system 

behavior at a future time, and by solving this optimization 

problem, the optimal sequence of control inputs is found and 

only the control inputs at the current moment are applied, 

allowing the UUV to better track the predefined desired 

trajectory. 

3.2 GP-MPC Controller Design 

The real model of the UUV system is assumed to be: 

( ) ( ) ( )( )1 ,tX k f X k U k+ =  (11) 

For the part of the unmodelled dynamics caused by 

factors such as nonlinearities and disturbances in the 

system's own dynamics during practical applications, 

predictions are made by using GP, and the specific 

expressions of the constructed model are as follows: 

( ) ( ) ( )( )

( ) ( )( ) ( )( )

1 ,

,
d

X k f X k U k

B d X k U k w k

+ =

+ +
 (12) 

where ( ) ( )( ),f X k U k  is the nominal model based on the 

mechanism; ( ) ( )( ),d X k U k  is the unmodelled part to be 

predicted; ( )w k  denotes gaussian noise with zero mean 

and diagonal matrix of variances, ( ) ( )2~ 0,w k σN ; 

[ ]5*5 5*50 ;dB I= . 

To obtain the gaussian model, it is necessary to acquire 

valid sampled data for training. The control quantities 

generated by introducing the MPC controller of the nominal 

model are collected and acted on the real system to get the 

state output of the system. 

The collected UUV state and control input data are used 

as training inputs S , and the deviation between the real 

model output and the nominal model output is calculated as 

the training output Ω , which can be described by the mean 

and covariance functions according to the definition of 

Gaussian Process. 

2~ (0, ( , ) )K S S σΩ +N  (13) 

where ( , )K S S  is kernel function. 

The choice of the kernel function of GP has a significant 

impact on the model performance. The kernel function 

defines the correlation between data points in the input 

space and influences the predictive and generalization 

ability of the gaussian process model, the square exponential 

kernel function is chosen with the following expression: 

( ) ( ) ( )2 11
, exp

2

T

fK s s s s L s sσ − 
= − − − 

 
% % %  (14) 

where ,s s%  denotes the two sampled data; the orthogonal 

diagonal length scale matrix L  and the noise variance fσ  

are hyperparameters of the Gaussian model. 

The joint distribution of the training data and its output 

values for a given input 
*s  can be expressed as follows: 

( )

( ) ( )*

2

*

*

* *

( , ) ,
~ ,

, ,

K S

s

S

K

s

s s

K S

f S K

σ  +Ω            

0N  (15) 

The performance of the Gaussian Process is highly 

dependent on the choice of hyperparameters. Maximum 
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likelihood estimation with the increase of the sample size, 

the estimated value will gradually converge to the real 

parameters and the derivation process is relatively simple to 

ensure the accuracy of the estimation, compared with the 

Bayesian optimization of the computational cost is low, so 

the choice of maximum likelihood estimation of 

hyperparameters for optimization processing, the likelihood 

function is 

* * * *

11 1
log ( , ) log

2 2

log(2 )
2

s s s s

T

fp L K K

N

σ

π

−Ω = − Ω Ω −

−

∣

 (16) 

where the first term is the data term denoting the information 

provided through the observed data, which is used to adjust 

the fit of the Gaussian  Process model to the observed data; 

the second term is the parameter term of the kernel function, 

which is used to describe the correlation between the 

observed data; the third term is the constant term. 

Based on the above results, the mean and covariance 

functions can be obtained as: 

( )

( )

* * *

* * * *

*

* 2

-1
2

-1

( )

( ) -

ss s s

ss s s s sss

K K I

s K

s

K K I K

µ σ

σ

= + Ω

Σ = +
 (17) 

The unmodelled part can therefore be approximated by a 

Gaussian process of the following form 

( ) ( )( ) * * )( ) (~ ( , ),d X k U k s sµ ΣN  (18) 

The predictive model is introduced into the nominal 

model and the model predictive control controller is applied 

for underwater 3D trajectory tracking with the following 

new expression.  

( ) ( ) ( )( )

( ) ( )( ) ( )( )

*

( )

min max

1
( ) arg min ( ) ( ) ( ) ( ) ( ) 

2

s  1.t.  

,

( )

,

T T

d

U k

X k f X k U k

U

k

B d X k U

k

k w k

k U k H k U f k U k

U U U

= +

≤ ≤

+ =

+ +

(19) 

4 Simulation Results and Analysis 

Based on the analysis of the UUV trajectory tracking and 

the study of the controller, the Gaussian Process model 

predictive controller is simulated and designed. The 

parameters provided in the [11] are chosen for the nominal 

UUV model and a random offset between %50±  is 

introduced to the parameters in the real model. 

Simulation time 350t s= , set the desired 3D trajectory 

as: 

( )
( )

10sin 0.04

10cos 0.04

0.05

r

r

r

x t

y t

z t

 =


=
 = −

 (20) 

Sampling time 0.5st = ， 50* (1,1,1,1,1,1,1,1,1,1)Q diag= ，

0.001* (1,1,1,1,1)R diag= ， 20pN = ， 20cN = ， it is 

applied to the designed controller for simulation 

experiments. The controller simulation using the nominal 

model prediction was used to collect training data at 0~200s 

and the Gaussian Process model was added after 200s. 

 

Fig. 1: 3D tracking trajectory 
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Fig. 2: UUV location comparison 

 
Fig. 3: Velocity profiles for each degree of freedom 
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Fig. 4: Force and moment variation curves 
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Figure. 5: Total error curve 

 
Figure. 6: Position error curve 

 

The blue curve in the figure represents the controller 

control effect in the case of using the nominal model, and the 

red curve represents the control effect of using the nominal 

model output for the real system. 

From Fig. 1 and Fig. 2, it can be intuitively seen that at 

0~200s, due to the modelling error between the nominal 

model and the real system, when the controller output is 

applied to the real system, although the controller can still 

track the desired trajectory, but at this time, the control 

effect will be affected; at 200~350s, it can be seen that with 

the introduction of the Gaussian Process model, the 

trajectory of the UUV motion can be gradually 

approximated to the desired trajectory, and a better control 

effect can be achieved; 

From Fig. 3 and Fig. 4, it can be seen that when the 

Gaussian Process is introduced in the 200s, the speed and 

control output will change suddenly due to the change of the 

prediction model, but after that, it can keep relatively stable 

change; from Fig. 5, it can be seen that after the introduction 

of the Gaussian process in the 200s, the maximal tracking 

error by the UUV will be 0.9 m from 1.3 m; From Fig. 6, it 

can be seen that the fluctuation of the change of the error in 

all directions is obvious after joining the Gaussian model 

become smaller, and the controller can achieve better 

stability. 

5 Conclusion 

1) In this paper, a five-degree-of-freedom mathematical 

model of UUV is established and linearly discretized, and 

then the model predictive control method is used to design 

the UUV trajectory tracking controller. 

2) A Gaussian process is introduced to predict the 

uncertainty of the model parameters when the UUV is 

moving at high speed, and it is proved through simulation 

experiments that it can better achieve the underwater 

three-trajectory tracking task of the UUV compared with the 

traditional model predictive controller. 

3) In the subsequent research, the problem of reduced 

computational efficiency due to the large amount of 

collected data as the task proceeds should also be 

considered. 
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Abstract: This paper studies quadcopters’ obstacle avoidance trajectory control (OATC) problem for express delivery. A new
nonlinear adaptive learning controller that is low-cost and portable to different wheelbase sizes is proposed to adapt to large-angle
maneuvers and load changes in UAV delivery missions. The controller consists of a nonlinear variable gain (NLVG) function
and an extreme value search (ES) algorithm to reduce overshoot and settling time. Finally, simulations were conducted on a
quadcopter to verify the effectiveness of the proposed control scheme under two typical collision-free trajectories.

Key Words: Adaptive Learning Control, Delivery Drone, Obstacle Avoidance

1 Introduction

The obstacle avoidance trajectory control (OATC) prob-
lem of the uncrewed aerial vehicle (UAV) has received sig-
nificant attention recently in the real world (indoor and out-
door) as illustrated in [1]. In these scenarios, the drones that
can avoid obstacles have more application value for many
missions, such as exploration, swarms flight, and prevention-
control of new coronavirus (see [2], [3], and references
therein). Since drones are not limited by infrastructure such
as light poles, streams, and walls, they can lower labor costs
and reduce package delivery time [4]. Significantly, the de-
mand for drone delivery tasks is increasing sharply, and it
is vital to realize obstacle avoidance flight control in 3D air-
lines [5]. Hence, in the future scenario of dense air flight traf-
fic, OATC between UAVs-UAVs and UAVs-MAVs (Manned
Vehicle) will be sensitive.

In the last decades, several classical methodologies have
been presented for OATC to achieve the flight control of
quadcopters, such as detection and image processing in [6].
Also, for such UAV obstacle avoidance problems, some re-
searchers have done some exciting work in the fields of mo-
tion planning for drones. Besides, some others focus on the
controller problems, as our former work in [7] and W. Bao
described in [8]. However, due to the varied layout and mo-
tors, quadcopters’ parameters are different in practical sce-
narios. Hence, the controller transplant cost must be low-
ered to adapt to another flight platform. Thus, the NN con-
trollers have yet to be used on a large scale in recent years.
In recent years, some methods have been proposed to solve
the problem (such as PID, ESC [9]). Some others designed
the control system combined PID/MPC with robust control
and learning-based adaptive control in [10] and [11]. Moti-
vated by the observation above, this paper proposes NLVG-
PID, which could reduce the overshoot of fixed-gains PID
controllers. The main contributions of this work lie in: 1)
The structure of the fixed-gain PID controller and the non-

This work was supported in part by the National Natural Science
Foundation of China for the Near Space Research Program under Grant
U20B2007 and Grant 12002306. The first author of this paper (Yan-
hui Zhang) gratefully acknowledges the support by the China Scholarship
Council (grant number 202306320387).

linear dynamics and kinematics models are analyzed in this
work. 2) The NLVG-PID controller of a delivery quadcopter
is designed, and the extremum seeking is introduced to learn
the optimal nonlinear PID parameter under boundary condi-
tions. To our knowledge, this is the first NLVG-PID obsta-
cle avoidance controller to be used in delivery drones. 3) A
simulation was performed on a quadcopter to verify the ef-
fectiveness of the proposed control scheme under two typical
collision-free trajectories.

The Scheme of quadcopter control system is described in
Fig. 1.

Fig. 1: Scheme of NLVG-PID 3D delivery drone system.

The remainder of this paper is organized as follows: Sec-
tion 2, the mathematical model of dynamics, kinematics, and
obstacle detection pipeline of the quadcopter are described
in detail. In Section 3, the NLVG-PID framework and an
ES method for boundary optimal parameter determination
are developed. The stability analysis of the closed-loop sys-
tem is also provided in this section. In Section 4, the quad-
copter’s NLVG-PID controller system has been verified in
four-side route, 8-character route, and scenic spiral position
tracking, respectively. Section 5 concludes this work.
2 Problem formulation

This paper assumes that the structure of the express de-
livery drone, an X-type quadcopter from [6], is known, but
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the specific load weight and the precise model of the drone
are unknown. Obstacle avoidance is performed in three-
dimensional space. First, the threat area is circled in the top
view, as shown in Fig.2. Avoid obstacles, and then choose
whether to fly upward or downward according to the distance
cost in Euclidean space.

Fig. 2: Delivery drone 3D obstacle avoidance process.

To facilitate the analysis of the rotation and translation of
the UAV, a coordinate system is depicted as shown in our
former work [12], theB = (XB , YB , ZB) denotes the body-
fixed coordinate system (B-frame), E = (XE , YE , ZE) is
the earth inertial frame (E-frame), VE = (vex, vey, vez) indi-
cates the velocity of quadcopter in E-frame. The schematic
diagram of the quadcopter control system includes the fol-
lowing components, as displayed in Fig. 1.

3 Controller design

In this paper, we defined basic PID controller as follows:

U(t)PID
j = Kj

p · e(t) +Kj
d · ė(t) +Kj

i ·
∫ t

0

e(τ)dτ, (1)

with j ∈ [x, y, z, ψ] and{
e(t) = ζdesire − ζreal,

ė(t) = ζ̇desire − ζ̇real,
(2)

ζdesire, ζreal are the desired value and the real value of ζ.

Remark 1 It can be observed that the quadcopter system is
highly nonlinear and strongly coupled.

Remark 2 It can be seen that the quadcopter system is
highly nonlinear and strongly coupled. Usually, in order
to reduce the complexity of control system design, channel
decoupling is used to decouple the three-axis position and
attitude control.

3.1 NLVG-PID controller
Defining nonlinear variable gains fKp(e) of P controller

in channle j. Besides, δ2 impact on fKp(e). In order to im-
prove the PID controller’s fast control capability for errors
of different sizes, nonlinear gain terms are used instead of
the fixed terms Kp,Ki,Kd in (1). When the small error is
close to zero, the value of the NLVG parameter reaches the
lower limit kmin = [kp1, ki1, kd1]. In the case of large errors,

Fig. 3: The change process of NLVG-PID.

the upper limit kmax = [kp2, ki2, kd2] is reached, as shown
in Fig. 3. Hence, we design the control law as follows:

U(t)NLVG-PID
j = f jKp

·e(t)+f jKi
·ė(t)+f jKd

·
∫ t

0

e(τ) dτ, (3)

where

f jKp
=


kjp1, |e(t)| ∈ [0, δp1) ,

kjp1 + ηjp, |e(t)| ∈ [δp1, δp2] ,

kjp1 + 2AjP , |e(t)| ∈ (δp2,+∞) ,

(4)

and

ηjp = −AjP · cos
(

2π

δp2 − δp1
|e(t)| − δp1

)
+AjP , (5)

where δ1, δ2 ∈ R+, which based on the performance metrics
(13), as shown in Fig. 3. Likewise, the integral item is

f jKi
=


kji1, |ė(t)| ∈ [0, δi1) ,

kji1 + ηji , |ė(t)| ∈ [δi1, δi2] ,

kji1 + 2AjI , |ė(t)| ∈ (δi2,+∞) ,

(6)

where

ηji = −AjI · cos
(

2π

δi2 − δi1
|ė(t)| − δi1

)
+AjI , (7)

and the differential item is

f jKd
=


kjd1, |

∫ t
0
e(τ)dτ | ∈ [0, δd1) ,

kjd1 + ηjd, |
∫ t
0
e(τ)dτ | ∈ [δd1, δd2] ,

kjd1 + 2AjD, |
∫ t
0
e(τ)dτ | ∈ (δd2,+∞) ,

(8)

where

ηjd = −AjD ·cos
(

2π

δd2 − δd1

∣∣∣ ∫ t

0

e(τ)dτ
∣∣∣−δd1)+AjD. (9)

Remark 3 The variables k1 and k2 = k1 + 2Aj in (8) are
learning through the ES method [13].

Defining the state vector of the quadcopter as:

X =
[
ϕ ϕ̇ θ θ̇ ψ ψ̇ x ẋ y ẏ z ż

]⊤
,

(10)
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and the input vector of controller can be formulated as

U = [Ux, Uy, Uz, Uϕ, Uθ, Uψ]

= [ẍreal, ÿreal, Ft,Γx,Γy,Γz] ,
(11)

where U ∈ R6, and

Ux = ẍdesire + fxKp
(ex) + fxKi

(∫
exdt

)
+ fxKd

(ėx)

Uy = ÿdesire + fyKp
(ey) + fyKi

(∫
eydt

)
+ fyKd

(ėy)

Uz = fzKp
(ez) + fzKi

(∫
ezdt

)
+ fzKd

(ėz)

Uϕ = fϕKp
(eϕ) + fϕKi

(ėϕ) + fϕKd

(∫
eϕdt

)
Uθ = fθ1 (eθ) + fθ2 (ėθ) + fθ3

(∫
eθdt

)
Uψ = fψ1 (eψ) + fψ2 (ėψ) + fψ3

(∫
eψdt

)
.

(12)
where ei = ei,desire − ei,real, andi ∈ {x, y, z, ϕ, θ, ψ}. In
(12), ei,real is the real value of ei, and ei,desire is the desire
value of ei.

3.2 ES in NLVG-PID
In ES, disturbance driving is used to find and maintain an

extremum value for dynamic systems. This approach was
first proposed by Leblanc, and the stability analysis of ES
was first generally implemented by Krstic in [14]. We used
the ES method to calculate the local optimal PID gain for
the controller. The input is the step signal (e.g., maximum
desired angle or position), while the output is the boundary
of variable gains, where K⃗1 = (kp1, ki1, kd1) and K⃗2 =

(kp2, ki2, kd2). K⃗ = (kp, ki, kd). The cost function of drone
performance during the time t ∈ [t0, tf ] can be defined as

J (K⃗) =
1

tf − to

∫ tf

t0

e2(t, K⃗)dt, (13)

where e(t, K⃗) denotes the error in following the desired path
with initial disturbance using parameters K⃗. Suppose the
cost function gradient, ∇J (K⃗), is available and could iter-
atively improve the parameter of the NLVG-PID controller.
The parameter iterate rule can be defined as

K⃗(t) = K⃗(t− 1)− α∇J ( ⃗K(t− 1)), (14)

where α denotes the step size of the parameter of the quad-
copter at each step of the iteration, and K⃗(t− 1) denotes the
parameter vector after t − 1 times iterations. Then the key
point is to estimate ∇J (K⃗(t− 1)). That is

∇J (K⃗) =

(
∂

∂Kp
J (K⃗),

∂

∂Ki
J (K⃗),

∂

∂Kd
J (K⃗)

)
.

(15)
From (13), the derivative to the gains numerically can be
computed as

2
∂

∂K
J(K⃗) ≈

J
(
K⃗ + δ · ÛK

)
− J

(
K⃗ − δ · ÛK

)
δ

,

(16)
whereUK is the unit vector in theK direction. When δ → 0,
this approximation can minimize the cost function and opti-
mize the local boundary PID parameters. The parameters are
randomly initialized to positive numbers, and the periodic
perturbation function is evaluated to evaluate the varying
PID parameters and gradients of J (K⃗). To avoid the cost

function falling into a local optimum, the initial value of the
optimization value needs to be randomly reset multiple times
and compared to find the best result. By plotting the func-
tional relationship between the cost function and the number
of iterations, we can observe the convergence of the system
and verify the working principle of this learning method.

3.3 Strategy planning of obstacle avoidance
The stereo cameras are used to detect the largest threat

in the visual range of the cameras, which fuse with dis-
tance from the ultrasonic sensor to the obstacles Objjrisky
front at the visual risk assessment models. The relative po-
sition of the quadcopter is p = (x, y, z) and the direction
is v = (vx, vy, vz). The ls denotes the distance of the
current position and the boundary safety position of quad-
copter P isafe, and the safety radius Rsafe of the generated
3D sphere Ω in intersecting line on the direction of the ve-
locity vector, Bessel curve fitting is carried out by setting the
trajectory of UAV that meets the dynamic constraints.

Fig. 4: Quadcopter path planning of free-collision in 3D
space.

4 Simulation and results

A simulation experiment was established to verify the ef-
ficiency of the NLVG-PID controller. The specific test pa-
rameters are set as [12]. The rate inner loop controller is the
lowest-level controller of the quadcopter. Aiming at the in-
ternal loop angle control’s step response, PID control and
NLVG-PID plus ES control simulation experiments were
conducted. The results and analysis are shown in Fig. 5
and Table 4. It should be noted that the performance of the
NLVG-PID controller uses three cost functions (IAE: inte-
grated absolute error, ITAE: integration time and absolute
error, ITSE: integrated time-weighted squared error), as set
tanglepeak1 = 0.15s, tpositionpeak2 = 0.37s.

The initial parameters of the quadcopter can be deter-
mined as [6]. First, the inner loop controller parame-
ters Kϕ

PID = (8, 0.1, 5), Kθ
PID = (8, 0.1, 5), Kψ

PID =
(8, 0.1, 5), and the outter loop position controller initial pa-
rameters are Kϕ

PID = (5, 0.2, 5), Kθ
PID = (5, 0.2, 5),

Kψ
PID = (5, 0.2, 5). Second, the scaler gains δ1 = 0.01,

δ2 = 0.838, then the controller parameters are learned by
ES in subsection 3.2. Moreover, the step size of this simula-
tion is ∆t = 0.01s; the total time is Ttotal = 140s.

1154  



Table 1: Results for fixed-PID and NLVG controller in step singal of quadcopter

Channel PID NLVG-PID (Ours) Function

IAE ITAE ITSE IAE ITAE ITSE -

ϕ 1025.01 5.10 185.75 933.8 4.71 156.42 attitude in x axis (o)
θ 1015.29 5.03 172.42 910.0 4.33 140.90 attitude in y axis (o)
x 94.82 0.47 0.92 86.32 0.43 0.78 position x
y 91.82 0.41 0.89 82.66 0.36 0.70 position y

∗ IAE = 1
tpeak

∫ tpeak

0 |e|dt; ITAE = 1
tpeak

∫ tpeak

0 t|e|dt; ITSE = 1
tpeak

∫ tpeak

0 te2dt.
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Fig. 5: Attitude controller step-response of PID and NLVG-
PID

4.1 Example 1: Storm path following
To verify the effect of large-angle turning and small-angle

adjustment of aircraft under the disturbance of obstacles, a
storm airline is a continuous arc of increasing radius and
height, designed as Fig. 7.

As shown in the Fig. 7-10, when the aircraft executes
the takeoff command at t=20s, the attitude angle error is
significant at this time. Then, PID and dynamic adaptive
control algorithms are used for individual control. Dur-
ing the execution of the storm path, the attitude angle er-
ror decreases, and the control optimization effect is signifi-
cantly improved. The Euler angle (ϕ, θ, ψ), the angle error
(ϕerr, θerr, ψerr), the position (X,Y, Z), and the position
error (Xerr, Yerr, Zerr) in OATC are described in Fig. 7-10,
respectively. From these figures, it can be observed that the
angle and position errors can lead to a fast convergence into
the local neighborhood areas in both the fixed-gain PID con-
troller and NLVG-PID. However, the proposed NLVG-PID
with ES control systems can perform well in OATC mis-
sions. It should be noted that the altitude of these missions
is to keep the same value as 10m.

The desired trajectory path (Lissajous-type) of the quad-
copter is depicted in Fig. 12, and the Euler angle and the
position error in OATC are described in Fig. 12-16, respec-
tively. As can be seen from these figures, using NLVG is bet-
ter than PID in calculating a fast and smooth control output,
thereby quickly tracking the desired command. It is worth
noting that the height of this mission dynamically changes
with the Lissajous-type path, which can verify that the pro-
posed NLVG-PID performs well in periodic 3D path track-
ing.

Fig. 6: Storm-type obstacle avoidance routes in 3D view.
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Fig. 7: b) Storm-type obstacle avoidance routes in X-Y view.
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Fig. 9: NLVG-PID: angle error of Storm-type path.
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4.2 Example 2: Lissajous curve following
This work designed a 3D-Lissajous curve to conduct flight

simulation verification of the quadcopter’s control perfor-
mance under periodic disturbances.

As can be seen in Fig. 14, when the aircraft executes the
takeoff command at t=0s, the position and attitude angle er-
rors at the moment of takeoff are significant. Then, PID and
dynamic adaptive control algorithms are used for control, re-
spectively. During the execution of the Lissajous path, the
attitude angle error is gradually reduced by about 50%, the
position error is reduced by about 15%, and the control opti-
mization effect is partially improved. Compared with Exam-
ple 4.1, the path of Example 4.2 is more complex, and there
are significant changes in height and position, so the effect
improvement is slightly reduced.

5 Conclusion

This paper studies the active motion control problem of
quadcopter obstacle avoidance. A new design scheme for
adaptive learning control of flight controllers based on low-
cost dynamic linear optimization under uncertain conditions
with obstacles is proposed. First, an NLVG-PID controller
is presented for the formulated UAV model. Furthermore,
ES is used to learn optimal NLVG-PID parameters in offline

Fig. 11: Lissajous-type path in 3D view.
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Fig. 14: NLVG-PID: attitude angle error in Lissajous-type
path.
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Fig. 16: NLVGPID: position errors in Lissajous-type path.

maximum or minimum error step signals. Numerical simu-
lations were performed based on this design, and the results
show that the proposed adaptive learning controller can re-
duce response overshoot and settling time in typical 3D path
curves (such as storm paths).
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Adaptive Dynamic Programming-based Self-triggered Optimal
Control for Nonzero-sum Games of Nonlinear Systems with

Constrained State
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Abstract: Taking into account multiple control inputs problem in constrained states systems, based on the adaptive dynamic
programming (ADP) approach, a sort of self-triggered control (STC) method has been proposed. The constraint boundary of
the state constrained system is released by introducing a potential barrier function. Then, on the basis of event-triggered control
(ETC) law, the STC strategy was obtained. The STC strategy was updated, if the time reached the triggering time calculated
by the self-triggered mechanism. Next, the neural networks (NNs) are used to approach the optimal value function, and then an
approximate self-triggered optimal policy is designed. To solve the problem of the persistence of excitation (PE) conditions, the
experience replay (ER) method is combined with the weight updating rule, and the validity of the proposed method is proved by
a example.

Key Words: Constrained states, adaptive dynamic programming (ADP), self-triggered control (STC), event-triggered control
(ETC), neural networks (NNs).

1 Introduction

In recent decades, with the rapid development of mod-
ern industry, more transmission and computing resources
required for control systems are needed. In many modern
industry, the control target can be achieved by using lim-
ited acquiring and computing resources. This seriously re-
stricts the performance of control systems. In the traditional
control systems, most controllers require system information
is transmitted through periodically sampled signals. Gener-
ally speaking, gathering more system information can con-
tribute to correct control inputs, and controlled systems are
improved promptly, which achieve better control effects. To
achieve this, it is necessary to increase the sampling fre-
quency. However, under limited transmission and computing
resources, higher sampling frequency may exacerbate com-
munication network congestion and occupy more computing
resources. Therefore, how to balance system performance
with transmission and computing resources has become an
urgent problem of modern industry[1].

Event triggered control (ETC) methods[2] are considered
to be an effective way to address the above issues. Under
the ETC method, the control inputs will only be updated
when the triggered condition is broken. ETC method greatly
reduces trigger interval, thereby effectively alleviating the
pressure of acquiring and computing resources. In previous
work[1–3], it has been proven that the ETC method can re-
duce the system resource consumption with almost no im-
pact on system performance.

Along with the widespread development of ETC, the so-
called self-triggered control (STC) methods [4] have been
proposed as an alternative solution to save the system re-
sources. The fundamental difference between STC and ETC
is that ETC is passive while STC is active[5]. In the STC, it
is possible to pre-calculate the next triggering time accord-
ing to the current triggering time and the relevant parameters
of the system at this moment[6]. Between the two triggering

moments, the sensors can be shut down for data collection,
thereby further releasing the communication resources[6].

For many complex systems, multiple controllers are of-
ten needed to regulate system performance. In these opti-
mal problems, multiple participants compete or cooperate
to meet control objectives. This type of problem usually
considered as a non-zero-sum (NZS) games[1], whose opti-
mal solution can be obtained by solving the coupled Hamil-
ton–Jacobi (HJ) equations to approach a set of Nash equi-
librium. However, due to the high complexity of such prob-
lems, it’s hard-pressed to calculate the coupled HJ equation
solutions. Adaptive dynamic programming (ADP) algorithm
has been widely applied in solving the HJ equations and has
been proven to be an effective approach[7].

In the actual industrial process, due to the influence of ac-
tuator structure or system internal structure, the control in-
puts and system states are limited[7]. Once the system states
are prevented from reaching the controller’s design goal due
to the system inherent constraints, the control effect will be
severely affected[8].

To address the aforementioned issues, an ADP-based STC
method is designed for getting the approximate Nash equi-
libriums in this paper. Moreover, in practical engineering,
serious consequences are caused by adding random detec-
tion noise to the control inputs. In this paper, for eliminating
the persistence of excitation (PE) conditions, we adopt expe-
rience replay (ER) method [9, 10].

The structure of the paper is introduced as follows. In
Section 2, the controlled system with constrained states is
introduced and we completes the system transition through
the defined barrier function. In Section 3, the self-triggered
rule and the optimal control policy are derived. After that,
the realization of NNs is presented. In Section 4 , a simula-
tion analysis is given on the basis of the proposed algorithm.
The conclusions are set out in Section 5.
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2 Statement of Problem and Transformation

Take into account the affine system with multiple con-
trollers and state constraints with the form of

ẋ(t) = f(x(t)) +

N∑
j=1

gj(x(t))uj(t), (1)

where x(t) ∈ Rn is the system state, uj ∈ Rmj , j ∈ N is
the control input of the jth controller. f(x) : Rn → Rn and
gi(x) : Rn → Rn×mj are the drift dynamics and the control
input dynamics, respectively. According to[8], the transition
between state constrained and unconstrained system through
the defined barrier function is completed.

Definition 1 ([7, 8, 11]) The interval reversible barrier
function is defined as follows:

ρ(r) = ln

(
z

y

y − r

z − r

)
,∀r ∈ (y, z), (2)

where r is system state, y and z are the two boundaries of
state r. The interval (y, z) is the reversible interval of the
defined function.

Performing inverse operations on the potential barrier
function (2) to obtain the inverse function

ρ−1(s) = yz
e

s
2 − e−

s
2

ye
s
2 − ze−

s
2
, ∀s ∈ R. (3)

The partial derivative of function (3) relative to the trans-
formed variable s is

dρ(s)−1

ds
=

zy2 − yz2

y2es − 2yz + z2e−s
. (4)

Definition 1 describes the basic relationship between the
potential barrier function and its inverse function. The above
functions can be used to achieve the conversion between
constrained and unconstrained functions through coordinate
inversion. Then, the undermentioned assumptions are pre-
requisites to explain the relevant properties of the conversion
process.

Assumption 1 When a constrained system (1) is in a stable
state, the barrier function should satisfy

ρ(0; y, z) = 0. (5)

If the state x of the restricted function (1) approaches the
limit boundary (y, z), the barrier function will approach in-
finity, which means that the barrier function satisfies

lim
x→y+

ρ(x; y, z) → −∞,

lim
x→z−

ρ(x; y, z) → +∞.
(6)

Using the barrier function and its related assumptions, the
process of converting the state constrained system to the un-
constrained system will be shown as follows:

ph = ρ(xh; yh, zh)

xh = ρ−1(ph; yh, zh)
, (7)

where ph is the h-th transformed state and its corresponding
xh are inverse functions of each other.

The converted system can be derived from ph, this is

ṗh =
ẋh

dρ−1(ph;yh,zh)
dph

= Fh(p) +

N∑
j=1

Gj,h(p)uj(t),

(8)

where

ẋh = fh(x) +

N∑
j=1

gj,h(x)uj(t),

Fh (p) = ρphfh
([
ρ−1
1 (p1) · · · ρ−1

pn (pn)
])

,

Gj,h(p) = ρphgj,h
([
ρ−1
1 (p1) · · · ρ−1

pn (pn)
])

,

ρph =
z2he

−ph − 2yhzh + y2he
ph

zhy2h − yhz2h
,

Then, the unconstrained system is constructed as

ṗ = F (p) +

N∑
j=1

Gj(p)uj(t), (9)

where p = [p1, . . . , pn]
T is the unconstrained sys-

tem state, F (p) = [F1(p), . . . , Fn(p)]
T , and G(p) =

[Gj,1(p), . . . , Gj,n(p)]
T .

For the unconstrained system (9), the performance index
is defined as

Ji
(
p(0)

)
=

∫ ∞

0

(
pTQip+

N∑
j=1

uT
j Rijuj

)
dτ

≜
∫ ∞

0

ρi(p, u1, . . . , uN )dτ,

(10)

where ∀i ∈ N and ∀j ∈ N , ρi(p, u1, . . . , uN ) is the utility
function of the ith player, with Qi ∈ Rn×n a positive definite
matrix and Rij ∈ Rmj×mj a symmetric positive definite
matrix. Define the value function as

Vi(p(t)) =

∫ ∞

t

pTQip+

N∑
j=1

uT
j Rijuj

 dτ. (11)

Definition 2 ([1, 12]) The Nash equilibrium is defined as an
optimal control policies {u∗

1, . . . , u
∗
N}. The the Nash equi-

librium is met

V ∗
i ≜ Vi(p, u

∗
1, . . . , u

∗
i , . . . , u

∗
N )

≤ Vi(p, u
∗
1, . . . , ui, . . . , u

∗
N ), i ∈ N.

(12)

Based on Definition 2, suppose the value function Vi(x)
is continuously differential, The following equation can be
obtained by differentiating formula (11):

0 = pTQip+

N∑
j=1

uT
j Rijuj+(∇Vi)

T

F (p) +

N∑
j=1

Gjuj


(13)

with Vi(0) = 0. According to (13), define the system Hamil-
tonian function as
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Hi(p, u1, . . . , uN )

=pTQip+

N∑
i=1

uT
j Rijuj

+ (∇Vi)
T

F (p) +

N∑
j=1

Gjuj

 .

(14)

It is necessary that the Hamiltonian function satisfies
∂Hi

∂ui
= 0 to make the system stable. Then, the optimal con-

trol policy is obtain as

u∗
i = −1

2
R−1

ii GT
i (p)∇V ∗

i . (15)

According to (14) and (15), we can obtain

Hi(p, u
∗
1, ..., u

∗
N , V ∗

i )

=pTQip+

N∑
j=1

u∗T
j Riju

∗
j

+ (∇V ∗
i )

T

F (p) +
N∑
j=1

Gj(p)u
∗
j

 = 0,

V ∗
i (0) = 0.

(16)

3 Self-Triggered Approximator Design

3.1 Event-Triggered Controller Design
In order to alleviate system communication congestion

and reduce computing resources, an event triggered method
has been introduced in this section. The method de-
fines the triggering time as a monotonically increasing
sequence{τk}∞k=0. Here τk also represents the k-th sampling
time and satisfies τ0 = 0, τk ∈ R+, k ∈ N. The sampling
state remains unchanged between two sampling moments.
The event-triggered error is

e(t) = pk − p(t), t ∈ [τk, τk+1), (17)

where pk = p(τk).
In addition, due to the correlation between control law and

sampling state, the control input should also stay the same
until the next sampling time arrives. The ETC method is
introduced into (15) for the event-triggered optimal control
law

u∗
i (pk) = −1

2
R−1

ii GT
i (pk)∇V ∗

i (pk), t ∈ [τk, τk+1).

(18)

3.2 Critic Neural Adaptive Design
In order to solve the HJ function, adaptive optimal con-

troller and the optimal value function V ∗
i (p) is designed

through NNs. The design process is as follows:
The optimal value function V ∗

i (p) is represented through
NNs as

V ∗
i (p) = WT

ciϕc(p) + εci(p), (19)

where Wci ∈ RL is the ideal weight vector, ϕc(p) ∈ RL is
the activation function, εci(p) ∈ R is the NN approximation

error. Furthermore, we can obtain the partial derivative of
optimal value function, this is

∇V ∗
i (p) = ∇ϕT

c (p)Wci +∇εci(p). (20)

Due to the unknown ideal weight, the estimation weight
Ŵci is designed to replace the ideal weight Wci. We have

∇V̂i(p) = ∇ϕT
c (p)Ŵci. (21)

According to (18) and (21), the optimal control law is re-
constructed as

ûi(pk) = −1

2
R−1

ii GT
i (pk)∇ϕT

c (pk)Ŵci, t ∈ [τk, τk+1).

(22)
According to above equations, the approximate Hamilto-

nian error is constructed as follows:

Ĥi(p, û1(p̄k), ..., ûN (p̄k), Ŵci)

= pTQip+

N∑
j=1

ûT
j (p̄k)Rij ûj(p̄k)

+ ŴT
ci∇ϕc(p)[F (p) +

N∑
j=1

Gj ûj(p̄k)]
∆
= eci.

(23)

Minimizing the approximate Hamiltonian error (23) is
considered the goal of the critic weight Ŵci updating. The
objective function is defined as Eci = (1/2)eTcieci. ER tech-
nique is the effectual way for relaxation of PE. Inspired by
the excellent achievements in[12], historical data is intro-
duced into the updating rule of the critic weight. Based on
the gradient descent algorithm, the updating law of the critic
NN weight is designed as

˙̂
Wci =

αcΥi(
1 + ΥT

i Υi

)2
ŴT

ciΥi + pTQip+

N∑
j=1

ûT
j Rij ûj


−

ND∑
d=1

αcΥid(
1 + ΥT

idΥid

)2 (ŴT
ciΥid + pT(td)Qip(td)

+

N∑
j=1

ûT
j (pk(td))Rij ûj(pk(td))

 ,

td ∈ [τk, τk+1),
(24)

where αc is positive constant and represent the learning
rate, d ∈ ND respect the index for storing historical
data, Υi = ∇ϕc(p)(F (p) +

∑N
j=1 Gj(p)ûj(pk)), Υid =

∇ϕc(p(td))(F (p(td)) +
∑N

j=1 Gj(p(td))ûj(pk(td))).
The weight estimation error of the critic NN is defined as

W̃ci = Wci − Ŵci. Inspired by [14], based on (24), we can
find the dynamics of the critic network weight estimation
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error is

˙̃Wci =− ˙̂
Wci

=− αc(ΦiΦ
T
i +

Nr∑
d=1

ΦidΦ
T
id)W̃ci +

αcΦi

1 + ΥT
i Υi

εHi

+

Nr∑
d=1

αcΦid

1 + ΥT
idΥid

εHid, t, td ∈ [τk, τk+1),

(25)
where
Φi =

Υi

1+ΥT
iΥi

,

Φid = Υid

1+ΥT
idΥid

,

εHi = −∇εTci(p)(F (p) +
N∑
Gj(p)ûj(pk)),

εHid = ∇εTci(p(td))

(
F (p(td))+

∑N
j=1 Gj(p(td))ûj(pk)

)
,

here εHi and εHid are the residual errors.

3.3 Stability Analysis
According to [12–14], the undermentioned assumptions

are prerequisites to conduct stability analysis.

Assumption 2 Without loss of generality, for any p ∈ Ω and
the corresponding i-th critic NN, Gj(p), ∇V∗

i (p), Wci, ϕc,
εci, ∇ϕc, ∇εci are bounded. This is,

∥ Gj(p) ∥≤ B̄Gj
, ∥ ∇V∗

i (p) ∥≤ B̄Vi
,

∥Wci∥ ≤ B̄Wci
, ∥∇ϕc(p)∥ ≤ B̄ϕc

,
∥∇εci(x)∥ ≤ B̄εci , ∥∇εHi(x)∥ ≤ B̄εHi

,

where B̄Gj
, B̄Vi

, B̄Wci
, B̄ϕc

, B̄εci and B̄εHi
are the bound-

ary tangent of the relevant parameters that needs to be taken
as positive value.

Assumption 3 F (p) is Lipschitz function, and ∥F (p)∥ ≤
LF ∥p∥ with F (0) = 0, where LF > 0.

Assumption 4 u(p) is Lipschitz function. Specifically, it’s
means there exists a positive number Lu that makes

u∗(p)− u∗(p̄k) ≤ Lu ∥ p− p̄k ∥ .

Theorem 1 Consider the system that needs to be adjusted as
(9), for any i-th player and their corresponding NNs. Rele-
vant Assumptions 2-4 are all met. The update pattern of opti-
mal control law is set as (22), the critic NN weights adaptive
laws are (24). The system state p of the transformed system
(9) and the critic weight estimation error W̃c are met UUB,
if the triggering condition is constructed as

∥ e(t) ∥2≤
∑N

i=1 β(1− α)λmin(Qi) ∥ pk ∥2

NL2
u +

∑N
i=1 β

(
1
α − 1

)
λmax(Qi)

= eT ,

(26)
where α ∈ (0, 1) and eT is the triggered threshold.

Due to space limitations, the proofs are omitted herein. The
similar proof can be referenced[12].

3.4 Self-Triggered Rule
In this section, inspired by work [5], self-triggered rule

is derived based on the above event triggering method. The
system state p of the transformed system (9) will be proved
to be UUB, under the self-triggered rule. The design process

is as follows:
For any t ∈ [τk, τk+1), from the the event-triggered er-

ror (17), the time derivative of the event-triggered error is
obtained as

∥ė(t)∥ = ∥ṗ∥. (27)

According to (9) and (28), we have

∥ė(t)∥ =∥ ṗ ∥

≤∥ F (p) ∥ +

N∑
i=1

Gi ∥ ûi(p̄k) ∥

≤ LF ∥ p ∥ +

N∑
i=1

Gi ∥ ûi(p̄k) ∥

≤ LF ∥p̄k + e(t)∥+ Lgu

≤ LF ∥p̄k∥+ LF ∥e(t)∥+ Lgu,

(28)

where Lgu =
∑N

i=1 Ḡiūi. Then, utilizing comparing lemma
[15], we have

∥ e(t) ∥≤ LF ∥ p̄k ∥ +Lgu

LF
(eLF (t−τk) − 1). (29)

When t = τk+1, the event-triggered condition (26) is vio-
lated, we obtain

LF ∥ pk ∥ +Lgu

LF
(eLF (τk+1−τk) − 1) >

√
eT . (30)

This indicates that the two sampling time intervals satisfy

τk+1 − τk >
ln(1 + (

LF
√
eT

LF ∥pk∥+Lgu
))

LF
. (31)

Theorem 2 Based on the above derivation and event-
triggering rule (26). Relevant Assumptions 2-4 are all met.
The update pattern of optimal control law is set as (22), the
critic NN weights adaptive laws are (24). Then, the system
state p of the transformed system (9) and the critic weight
estimation error W̃c are met UUB, if the triggering law is
constructed as

tk+1 = tk +
ln(1 + (

LF
√
eT

LF ∥pk∥+Lgu
))

LF
. (32)

Theorem 3 Consider system (9) that have undergone bar-
rier function transformation. Let the self-triggering condi-
tion is (32), the lower bound of sampled time interval ∆tmin

is given by

∆tmin ≥ 1

LF
ln(1 + (

LFE

LF +
Lgu

Ξ

)) > 0, (33)

where Ξ and E are positive constants.

Due to space limitations, the proofs are omitted herein.

1161  



Fig. 1: Simulation results for the state.

4 Simulation

One simulation examples is employed to prove the effec-
tiveness of the theoretical analysis provided above. Consid-
ering the two-order nonlinear system with three controllers.
The system dynamics is formulated as

ẋ = f(x) + g1(x)u1 + g2(x)u2 + g3(x)u3, (34)

where

f(x) =

[
−1.2x1 + 1.5x2 sin(x2)

0.6x1 − x2

]
,

g1(x) =

[
0

0.85 sin(x2)cos(x2)

]
,

g2(x) =

[
0

0.8 sin(x1)cos(x2)

]
,

g3(x) =

[
0

0.5 sin(x2)

]
,

the system state vector is x = [x1, x2]
T ∈ R2,and the two

dimensional control input vector is written as u1 ∈ R, u2 ∈
R and u3 ∈ R. Corresponding parameter matrix in value
function are picked as Q1 = 2I2×2, Q2 = 1.8I2×2, Q3 =
0.3I2×2, R11 = 2I2×2, R12 = I2×2, R13 = 2I2×2, R21 =
I2×2, R22 = 3I2×2, R23 = 2I2×2, R31 = 2I2×2, R32 =
2I2×2 and R33 = 2I2×2. The upper and lower bounds of
two state variables are set as y1 = −0.1, z1 = 1, y2 = −2
and z2 = 0.2, respectively.

The activation function is selected as ϕc(p) =
[p21, p1p2, p

2
2]

T to approximate the HJB equa-
tions. Then, the initial weights correspond-
ing to the input vectors controlled by two con-
trollers are Ŵc1 = [−0.1087, 0.9035, 1.1240]T ,
Ŵc2 = [−0.4240,−0.1375, 0.6420]T and Ŵc3 =
[−0.2040, 0.1375, 0.0620]T , respectively. The learning
rates of critic NN and the index of stored data are picked as
α1 = 0.4, α2 = 0.45, α2 = 0.5 and ND = 24.

The system state in Fig.1 converges to 0 in about 7 sec-
onds Fig.1-2 collectively present the effectiveness of the
state constrained method. The system state x1 is limited
within the set state limit range by the algorithm in this
paper at about 0.5 seconds. Fig.3 (a) present the evo-
lution of control strategies based on STC and the con-
trol inputs ui ∈ R are piecewise continuous signals. In
Fig.3 (b)-(d), the update trajectories of the critic weights

Fig. 2: The state trajectory and restricted scope.

Fig. 3: The evolutionary trajectory of (a) controlled inputs;
(b) the critic NN weight Ŵ1; (c) the critic NN weight Ŵ2;
(b) the critic NN weight Ŵ3.

Fig. 4: The time interval of (a) the sampling period; (b) the
cumulative number of the sampling.

Ŵ1, Ŵ2 and Ŵ3 are obtained. The critic weight vec-
tors converge to Ŵc1 = [−25.7793,−6.5604, 0.3565]T ,
Ŵc2 = [−36.8728,−11.1066,−0.5157]T and Ŵc3 =
[−26.3069,−8.1104,−0.9385]T , respectively. Fig.4(a)
present the inter-event time. Because dead zone was set up,
when the system states approach 0, the controller strategies
are no longer updated and event triggering is no longer per-
formed. Moreover, Fig.4(b) indicates that the number of the
comulative events of self-triggered method greatly decreases
the number of updating times. Consequently, the acquiring
and computing resources can be saved.
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5 Conclusion

In this work, the system with multiple control inputs and
limited states are considered. An adaptive optimal self-
triggered control method has been developed based on the
ADP algorithm. Then, the approximate self-triggered opti-
mal control is designed by approximating the optimal value
function through the critic NN. The ER technology is com-
bined with the weight updating law, in order to address the
PE condition, Moreover, the effectiveness of the ADP based
STC method was verified through the simulation example.
Next, we will attempt to apply the algorithm to practical in-
dustrial processes in the future.
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Abstract: This paper focuses on the control problem for a two-degree-of-freedom flight simulator experimental setup, proposing
a reinforcement learning-based flight attitude controller. The flight simulator aims to simulate the aircraft attitude control system,
requiring consideration of its nonlinearity, model uncertainty, and the impact of external disturbances when designing the con-
troller. Proximal Policy Optimization (PPO), as a policy gradient-based deep reinforcement learning algorithm, autonomously
learns an approximately optimal controller based on a given objective function without the need for a mathematical model of
the controlled object. Thanks to the application of the Actor-Critic framework and neural networks, the training of the two-
degree-of-freedom flight simulator controller can rapidly converge within a short period. Simulations validate the generalization
capability of the trained PPO controller and its robustness to external disturbances.

Key Words: Aircraft Control, Reinforcement Learning, Proximal Policy Optimization, Attitude Stabilization

1 Introduction

Rotary-wing aircrafts, due to their simple structure, low
cost, and convenient usage, have gained widespread recog-
nition and are extensively employed in various industries [1–
3]. Due to the vertical takeoff and landing capabilities, ease
of fabrication, remote control feasibility, and relatively low
cost, rotary-wing small aircrafts find widespread applica-
tions in entertainment, aerial surveillance, search and rescue
operations, as well as studies in control theory [4, 5]. Re-
search on the control methods for their attitude is essential.

Flight attitude simulators serve as excellent experimen-
tal platforms to validate attitude control algorithms [6–8].
They enable convenient adjustments of the system’s center
of mass, thereby altering the parameters in the controlled
object’s dynamic equations, which serve as excellent experi-
mental platforms for investigating strong robustness, adap-
tive attitude stability, and large-angle attitude adjustment
control issues [9–11]. The flight attitude simulators possess
characteristics such as inherent instability and nonlinearity,
so that effective and feasible control strategies are required
to ensure its stable operation.

In recent years, with the surge in artificial intelligence
(AI), there has been extensive cross-disciplinary integration
between the field of artificial intelligence and traditional con-
trol theory [12]. One particularly promising research direc-
tion is the application of reinforcement learning (RL) the-
ory to the control systems of rotary-wing aircrafts. As a
significant branch of machine learning, reinforcement learn-
ing plays a crucial role in various theoretical and technical
domains, including control theory, industrial control, intelli-
gent decision-making and financial management [13]. The
foundational theory of reinforcement learning is based on
Markov theory, where the problems of control and optimiza-
tion are modeled and solved by introducing the concepts
of ”reward” and ”action” using Markov decision processes.
Built upon the framework of Markov decision processes,
the fundamental principle of reinforcement learning involves
optimizing the current agent’s strategy through interaction
with the environment, ultimately maximizing the expecta-

tion of cumulative rewards [14].
Thanks to the rapid development of computer hardware

and software, researchers have extensively applied reinforce-
ment learning and deep neural networks to approximate op-
timal controller solutions for complex nonlinear control sys-
tems. In [15], a dueling-double DQN algorithm is pro-
posed, successfully achieving stable control of the magnetic
levitation ball system. Reference [16] applies DDPG and
RDPG algorithms to the vehicle’s autonomous driving sys-
tem, achieving good control performance. [17] utilizes the
TD3 algorithm to guide PID controller parameter optimiza-
tion, completing the design of a model-free controller for
the aircraft’s attitude system. Addressing the vibration con-
trol problem of a semi-driven suspension system in vehicles,
[18] extensively utilizes the PPO algorithm for system con-
trol and tuning.

This paper focuses on a small 2-DOF flight attitude simu-
lator suitable for studying the attitude control of rotor-type
micro UAVs in a laboratory environment. Regarding the
close-loop control system of the simulator, this paper first
establishes the nonlinear dynamic model of its pitch chan-
nel. Subsequently, a PPO algorithm based on the Actor-
Critic framework is employed for training and iteration of
the stabilizing controller for the flight simulator system. Fi-
nally, simulations validate that the designed reinforcement
learning controller exhibits good generalization capability
and robustness to external disturbances.

The rest of this article is organized as follows: Section
2 sets up the nonlinear dynamic model of the 2-DOF flight
attitude simulator. Controller design of the simulator based
on PPO algorithm is introduced in Section 3 and simulation
results are presented in Section 4. Finally, Section 5 summa-
rizes the conclusion.
2 System Modeling

The mechanical structure of the two-degree-of-freedom
flight attitude simulator mainly consists of a base, U-shaped
frame, a swing arm, propellers, and other parts. Its simpli-
fied structural diagram is shown in Fig. 1. There is a motor
at each end of the swing arm, with the directions of the two
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Fig. 1: Simplified diagram of the flight attitude simulator.

motors perpendicular to each other, each equipped with a
propeller. These propellers drive the swing arm to perform
pitch and yaw movements around the base. F1 represents
the lift of the propeller in the pitch direction, directed up-
ward along the vertical swing rod, and F2 represents the lift
of the propeller in the yaw direction, pointing vertically out-
ward from the paper. If only pitch motion is considered, the
yaw direction needs to be kept stationary. The origin O of
the coordinate system is chosen at the coincident position of
the vertical rod and the swing arm, with the x-axis as hori-
zontal, the z-axis as vertical, and the y-axis determined by
the right-hand rule. The y-axis is defined as the zero posi-
tion for pitch, and the pitch angle is considered positive in
the counterclockwise direction (upward in the figure) in this
paper.

In this research, we only consider the controller design for
the pitch channel of the flight simulator, thus simplifying the
spatial motion of the entire system to planar motion. Based
on the force analysis of the simplified diagram and Newton’s
second law, the nonlinear dynamic model for the pitch chan-
nel of the flight simulator can be derived as

(J +Ml2)ϕ̈ = −kϕ̇−Mgl cosϕ+ F1L+ d, (1)

where ϕ is the pitch angle of swinging arm, J denotes the
moment of inertia of the entire swinging arm relative to O,
k is the rotational angular velocity damping coefficient, M
represents the mass of the clump weight and g is the gravity
acceleration, the distance from the counterweight block to O
is denoted by l and the length of the swinging arm is denoted
by L, d is regarded as the external disturbance. Table 1 illus-
trates the physical parameter values of the flight simulator.

Table 1: Physical Parameter Values of 2-DOF Flight Attitude
Simulator

Parameter Value
M 0.3kg

g 9.8kg ·m2

k 0.14N ·m · s/rad
J 0.082kg ·m2

l 0.051m

L 0.36m

Choosing the state variables of the system as x = [ϕ ϕ̇]⊤

and the control input as u = F1, the affine nonlinear state-
space model of the flight simulator is given by

ẋ = f(x) + g(x)u+ d′, (2)

where

f(x) =

[
ẋ2

−kx2+Mgl cos(x1)
J+Ml2

]
,

g(x) =

[
0
L

J+Ml2

]
,

d′ =

[
0
d

J+Ml2

]
.

The control objective is that given the flight attitude sim-
ulator system (1) with time-varying external disturbances d,
design a controller that stabilizes the state of close-loop sys-
tem, which is

lim
t→∞

ϕ = 0, lim
t→∞

ϕ̇ = 0 (3)

with an arbitrary initial pitch angle ϕ0.

3 Controller Design

3.1 Reinforcement Learning and PPO Algorithm
The optimal control problem of the 2-DOF flight atti-

tude simulator can be formulated as a Markov Decision Pro-
cess (MDP). A MDP is generally defined by a quadruple
consisting of (S,A,R,P), where S is a set of state space, A
is a set of action space, R denotes the reward function space
and P denotes the transition probability distribution [19].
Reinforcement learning (RL) is a method focusing on devel-
oping algorithms and models to enable machines or agents
to learn and make decisions in a dynamic environment of
MDP. The goal of reinforcement learning is to train the agent
to learn a policy, which is a mapping from states st to ac-
tions at, that maximizes the expected cumulative reward
over time. It can be particularly useful in scenarios where
explicit mathematical solutions may be difficult to derive,
and an agent needs to explore and learn optimal strategies
through trial and error.

The expected cumulative reward function that RL aims to
optimize can be described as [20]

J
(
πθp

)
= E

[
T∑

t=0

γtR (st, at, st+1)

]
, (4)

where πθp is the control policy parameterized by θp, T de-
notes the time horizon of the trajectory and γ is the discount
factor. Based on the objective (4), the optimal policy for RL
can be expressed by

π∗
θp = argmax

θp
J(πθp). (5)

The Proximal Policy Optimization (PPO) algorithm [21],
which is commonly used in several research and applica-
tions, is a type of policy optimization algorithm based on
gradient ascent, seeking the optimal gradient of the policy.
PPO operates within the Actor-Critic framework, where the
Actor learns decision actions, and the Critic learns the state
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value function. This algorithm integrates the core ideas of
Trust Region Policy Optimization (TRPO) [22], updating the
policy within a trust region to ensure the safety of policy
performance. PPO algorithm, as a reinforcement learning
approach designed to handle continuous states and actions,
is prone to be highly suitable for the controller training of
the 2-DOF flight simulator.

Unlike TRPO and value-based RL algorithms, the sim-
plicity of PPO lies in its novel clipped objective function,
which can be formulated by

J(θp) = E
[
min(r(θp), c(r(θp), 1− ε, 1 + ε))Âπ(st, at)

]
,

(6)
where

r(θp) =
πθp(at|st)
πθ′

p
(at|st)

(7)

denotes the ratio of action probabilities between the new and
old policies, c(·) is the clip function which restricts the ad-
justed probability ratio to the range of (1 − ε, 1 + ε), pre-
venting rapid updates of θp that could result in a significant
difference between the new and old policies and Âπ denotes
the advantage function using the policy π. Implementing
with the simple objective (6), solution to the PPO algorithm
can be approached using most first-order optimization meth-
ods, such as Stochastic Gradient Descent (SGD), Momen-
tum and Adam, which is particularly suitable for the utiliza-
tion of neural network approximators.

According to [23], for the sake of reducing estimation
variance, the advantage function Âπ can be calculated us-
ing the Generalized Advantage Estimation (GAE) method.
In this manner, the advantage function can be expressed by

Ât = δt + (λγ)δt+1 + · · ·+ (λγ)kδt+k, (8)

where
δt = rt + γV (st+1)− V (st) (9)

represents the Temporal Difference (TD) error [24], V (st)
denotes the state value function output by the critic network
and λ is a hyperparameter. Overall, the pseudocode of PPO
algorithm is detailed in Algorithm 1.

3.2 RL Controller Design
According to the described PPO algorithm in Algorithm 1,

the training of the controller involves multiple interactions
between the agent and the control system environment. The
agent takes action at based on the current state st, and then
receives feedback from the flight simulator system in the
form of reward rt and the next state st+1. The GAE (8)
is calculated using the collected transitions, and weight up-
dates are performed on the Actor and Critic networks based
on the objective function. The controller training diagram of
the 2-DOF flight attitude simulator is depicted in Fig. 2.

In the RL concept, the Actor network takes the observed
state vectors as input and outputs the action vectors as con-
trol signals. Specifically, in the controller training of the 2-
DOF flight attitude simulator, we define the state vector as
st = [ϕ ϕ̇]⊤ for observation, and the action vector is chosen
as at = F1. As a result, the structures of the Actor network
and the Critic network are designed as the same fully con-
nected neural network structure, which has two inputs and

Algorithm 1 PPO algorithm using Actor-Critic framework
1: Initialize actor network πθp0 and critic network Vθv0
2: Initialize learning rates of the actor and the critic αp, αv

3: Initialize buffer B with size D, and γ, ϵ, λ
4: for i ≤N do
5: for t = 0, 1, 2, . . . , T do
6: Choose action at ∼ πϑ(a|st);
7: Execute at into environment and get rt, st+1;
8: Store transition (st, at, rt, st+1) into buffer B;
9: i← i+ 1

10: t← t+ 1
11: if i%D = 0 then
12: Compute The discounted reward Rt =

∑M
j=0 γ

jrj
13: for k = 0, 1, 2, . . . ,K do
14: Estimate the advantage Âpi using (8);
15: Compute the ratio rθp using (7);
16: Update the actor network using (4) and (5);
17: Update the critic network by

θvk+1 = argminθvk
δ2t .

18: end for
19: end if
20: end for
21: end for

ActorActor

CriticCritic

Transitions
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Transitions
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Fig. 2: Controller training block diagram of 2-DOF flight
attitude simulator.

one output with two hidden layers of 64 units. According to
the optimal control theory [25–27], the control objective or
index should be a combination of quadratic forms of system
states and control inputs. Consequently, the essential reward
function is designed as the negative form of the optimal con-
trol index, which is expressed by

rt = −c1ϕ
2 − c2ϕ̇

2 − c3F
2
1 , (10)

where ci, i = 1, 2, 3 are positive constants which can be ma-
nipulated according to the required controller performance.
The values of parameters involved in the controller and train-
ing process are collected in Table 2.

4 Simulation

The hardware used in the simulation is mainly a per-
sonal computer with an Intel i7-12700H CPU and a NVIDIA
GeForce RTX3060 GPU. The simulation programs are run-
ning based on Python 3.10 and Pytorch 1.13.1.
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Table 2: Training Parameter Values of PPO Controller
Parameter Value Parameter Value

γ 0.99 N 250

λ 0.95 T 500

αp 5e−5 K 100

αv 5e−4 c1 1

D 1000 c2 0.1

ε 0.2 c3 0.01

4.1 Controller Training
The time horizon of each training episode is 10s with a

sample interval of 0.02s, which is, 500 timesteps in total. It
should be noted that the model used in controller training
is the nominal system without any external disturbances and
model uncertainties, namely d = 0. Moreover, the pitch an-
gle is limited by ϕ ∈ [−60◦, 60◦] and the episode is desired
to be terminated if the angle is observed beyond the limita-
tion during training. At the beginning of each episode, the
pitch angle ϕ is set randomly in the range of [−60◦, 60◦] and
the angular velocity is set ϕ̇ = 0. The agent is designed to
choose actions within F1 ∈ [−1.5N, 4N ] due to the restric-
tion of actuator saturation.

The whole training process of the PPO controller lasts
about half an hour, and the training curve is illustrated in
Fig. 3. According to Fig. 3, the curve indicates that the per-
formance of the controller fluctuates dramatically during the
first 50 training epochs because PPO algorithm needs plenty
of explorations at the beginning of training. However, the re-
ward begins to converge after about 100 training epochs and
stays steadily around -20 until the end of training process,
which showcases the prominent stability of PPO algorithm
in policy improvement after finding a relatively effective pol-
icy.
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Fig. 3: Controller training curve.

4.2 Controller Test
After the controller of the 2-DOF flight attitude simulator

is well-trained by PPO algorithm, the generation ability of
the PPO controller is desired to be tested first. We design 10
independent tests, in which the initial pitch angle of the at-
titude simulator is chosen evenly between [−85◦, 85◦]. It is
noteworthy that the angles ranged in ±[60◦, 85◦] have never

been observed by the agent during training process. The ex-
ternal disturbances d is not involved in these tests as well.
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Fig. 4: Angular position responses with different initial an-
gles.
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Fig. 5: Angular velocity responses with different initial an-
gles.

The angular position and velocity responses of pitch tun-
nel of the flight attitude simulator are depicted in Fig. 4 and
Fig. 5. It is shown that the trained PPO controller, regard-
less of whether the observed state is one encountered dur-
ing the agent’s training, demonstrates the ability to rapidly,
smoothly, and stably achieve attitude stabilization control for
the 2-DOF flight simulator. Only in one test, there is a little
overshooting in the angle and angular velocity responses due
to an excessively large initial angle (85◦) and the influence
of the gravity on the clump weight. Nevertheless, such a ex-
treme scenario is unlikely to occur in practical applications,
so it has a minimal impact on the overall performance of the
PPO controller.

4.3 Comparative Simulation
In order to show the effectiveness of our proposed con-

troller, another two controllers for the 2-DOF flight attitude
simulator are trained under the same conditions, including a
PPO controller without GAE and a DDPG controller. The
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initial state of the simulator is set as ϕ = −60◦, ϕ̇ = 0,
the angular position and velocity responses of systems con-
trolled by the three different controllers are collected in
Fig. 6 and Fig. 7.
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Fig. 6: Angular position responses using three different RL
controllers.
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Fig. 7: Angular velocity responses using three different RL
controllers.

According to Fig. 6, the DDPG controller is not well-
trained under the same training epochs and other conditions,
with a control error of −4◦. In contrast, the PPO controllers
do a relatively good job in stabilizing the closed-up systems.
Although having a tiny overshoot at 1.7s, the PPO controller
with GAE (8) reaches a control error of about −0.2◦, while
that of the PPO controller without GAE is around 1◦. In
Fig. 7, the PPO controller without GAE witnesses a consid-
erable velocity response at roughly 110◦/s in the first second
of the episode, which is not rational to achieve in real-world
flight experiments. By comparison, the velocity response of
PPO controller with GAE is much smoother, in line with the
actual operating conditions of the simulator. Therefore, the
proposed PPO controller equipped with GAE demonstrates
a higher level of control accuracy and rationality in the flight
attitude simulator system.

4.4 Robustness Assessment
Eventually, time-varying external disturbances are intro-

duced to assess the robustness of the proposed PPO con-
troller for the 2-DOF flight attitude simulator. The external
disturbance d in (1) can be modeled as the sum of a slow
time-varying signal and some noise, which can be expressed
by

d = 0.2 sin (0.4πt) + w0, (11)

where w0 ∼ N (0, σ) is the zero-mean Gaussian white
noise and σ is the standard deviation of the noise.

In this test, we set the initial state of the flight attitude
simulator as ϕ = −60◦, ϕ̇ = 0. In comparison, the standard
deviation of the disturbance signal introduced in the mech-
anism is designed to switch from σ = 1 to σ = 5, aiming
to evaluating the PPO controller’s tolerance to variations in
disturbances. The angular position and velocity responses
of the flight attitude simulator in presence of Gaussian white
noise disturbances are illustrated in Fig. 8 and Fig. 9.
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Fig. 8: Angular position responses with different Gaussian
white noises.
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Fig. 9: Angular velocity responses with different Gaussian
white noises.

The simulation results indicate that the introduction of ex-
ternal disturbances does indeed have a certain impact on the
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controller’s performance. This results in some overshoot-
ing in the angular position and introduces oscillations in the
angular velocity of the flight simulator which increase with
the growing standard deviation σ of the noise w0. Neverthe-
less, the PPO controller can still stabilize the flight attitude
simulator near the origin under the influence of noise with
varying variances, with the maximum control angle error of
around 1.8◦. Consequently, the simulation demonstrates the
robustness and effectiveness of the model-free flight attitude
simulator controller trained using PPO algorithm.
5 Conclusion

This paper addresses the control issue of a 2-DOF flight
attitude simulator system and achieves the design and train-
ing of a model-free approximate optimal controller based
on the PPO algorithm. Due to the sensibility of the simu-
lator’s pitch channel to the gravitational effect of the clump
weight, we initially establish a nonlinear dynamic model and
introduce external disturbances. Subsequently, utilizing the
Actor-Critic framework and neural networks, we devise a
PPO controller training framework tailored to the dynamic
model of flight attitude simulator and implement it. Finally,
through sufficient simulations in different aspects, the pro-
posed controller is validated to exhibit good generalization
ability and robustness.

Our future work is to investigate robust approaches in re-
sponse to disturbances of more complex forms, and then
apply the controller to our real-world 2-DOF flight attitude
simulator system to assess its effectiveness.
References
[1] S. A. Bortoff, “The university of toronto rc helicopter: a test

bed for nonlinear control,” in Proceedings of the 1999 IEEE
International Conference on Control Applications (Cat. No.
99CH36328), vol. 1. IEEE, 1999, pp. 333–338.

[2] Z. Zhou, G. Hu, C. Hu, C. Wen, and L. Chang, “A survey of
belief rule-base expert system,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 51, no. 8, pp. 4944–4958,
2019.

[3] J. Lin, X. Wang, and X. Ban, “An unbiased pseudo-linear
kalman filter based on three-dimensional angle of arrival,” Nav-
igation Positioning and Timing, vol. 10, pp. 77–85, 2023.

[4] T. Oktay and C. Sultan, “Simultaneous helicopter and control-
system design,” Journal of Aircraft, vol. 50, no. 3, pp. 911–925,
2013.

[5] K. Yu, X. Wang, and H. Lu, “Active-passive station tracking
algorithm based on interactive multi-model,” Navigation Posi-
tioning and Timing, vol. 10, pp. 72–80, 2023.

[6] L. Ren, X. Ban, F. Wu, and X. Huang, “Fuzzy learning con-
troller design of 2-dof flight attitude simulator,” Electric Ma-
chines and Control, vol. 23, pp. 127–134, 2019.

[7] Y. Yang, K. Deng, Y. Zuo, X. Ban, and X. Huang, “Parameter
design and optimization of a flight attitude simulator system
based on pilco framework,” Optics and Precision Engineering,
vol. 27, pp. 2365–2373, 2019.

[8] H. Yin, Y. Yang, Y. Zhao, Y. Liang, and X. Ban, “Self-tuning
controller design for a 2-dof flight attitude simulator,” Electric
Machines and Control, vol. 22, pp. 105–112, 2018.

[9] G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin,
“Quadrotor helicopter flight dynamics and control: Theory and
experiment,” in AIAA guidance, navigation and control confer-
ence and exhibit, 2007, p. 6461.

[10] H. Shim, T. J. Koo, F. Hoffmann, and S. Sastry, “A compre-
hensive study of control design for an autonomous helicopter,”

in Proceedings of the 37th IEEE conference on decision and
control (Cat. No. 98CH36171), vol. 4. IEEE, 1998, pp. 3653–
3658.

[11] H. Hung, H. Hsu, and T. Cheng, “Ieeeexample: Bstcontrol
optimal sensing for tracking task by heterogeneous multi-uav
systems,” IEEE Transactions on Control Systems Technology,
2023.

[12] Z. Wang and T. Hong, “Reinforcement learning for building
controls: The opportunities and challenges,” Applied Energy,
vol. 269, p. 115036, 2020.

[13] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L.
Lewis, “Optimal and autonomous control using reinforcement
learning: A survey,” IEEE transactions on neural networks and
learning systems, vol. 29, no. 6, pp. 2042–2062, 2017.

[14] L. Buşoniu, T. De Bruin, D. Tolić, J. Kober, and I. Palunko,
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Abstract: This work investigates the adaptive iterative learning control (AILC) problem for a class of underactuated systems
with unknown input distribution matrices. By introducing a newly designed control gain matrix, a novel AILC algorithm is
proposed, which is able to deal with the unknown nonsquare control gain matrix effectively. Additionally, an auxiliary system is
adopted to deal with the input saturation. The convergence of the proposed control algorithm is rigorously analyzed by using the
composite energy function (CEF) method. The effectiveness is demonstrated through a numerical example.

Key Words: Adaptive iterative learning control, Underactuated systems, Unknown control gains, Input saturation, Input conti-
nuity.

1 Introduction

Since iterative learning control (ILC) was initially pro-
posed by Arimoto et al. in 1984, it has become a research
hotspot. ILC is one of the most effective control methods for
dealing with control problems of systems that repeat oper-
ation within a finite interval. In the past four decades, ILC
has formed a relatively complete theoretical framework [1–
3]. Moreover, it has been widely applied in various fields,
including robotics [4], intelligent manufacturing [5], etc. In
the field of iterative learning control (ILC), there are two
main design frameworks, namely conventional ILC (CILC)
and adaptive ILC (AILC). For the former, both the controller
design and convergence analysis are based on contraction
mapping methods, which are usually applicable to globally
Lipschitz continuous systems. For the latter, the control law
is designed based on a Lyapunov-like theory, which is effec-
tive in dealing with locally Lipschitz continuous systems.

In the past two decades, the development of AILC theory
has been the pursuit of many researchers, who have devoted
themselves to its deepening and improvement. For example,
in [6], researchers developed an AILC scheme considering
the updating law of parameters on the time axis, aiming to
connect the theories of ILC and adaptive control, and as-
suming that the unknown parameters remain constant. In
addition, a new AILC algorithm was proposed in [2] and
[7], where a parameter estimation mechanism was intro-
duced along the iteration axis to cope with the uncertainty
of time-varying parameters. A novel AILC method was de-
signed based on the Barrier CEF method in [8] to handle
state constraints and non-parametric uncertainties. A gen-
eralization of AILC to handle norm-bounded uncertainties
was presented in [9]. However, it should be noted that the
existing AILC research mainly focuses on Single Input Sin-
gle Output (SISO) systems or Fully Actuated MIMO sys-

This work is supported by the National Natural Science Founda-
tion of China (Grant No. 62373385), the Natural Science Foundation
of Guangdong Province (Grant No. 2022A1515010881), and the Shen-
zhen Science and Technology Program (Grant No. 202305063000008,
20231121093427001)

*Corresponding author

tems with known and invertible control gain matrices. The
problem becomes highly challenging when the control gain
matrix is unknown or the controlled system is underactuated.

In the field of AILC research, there is relatively little liter-
ature on the treatment of underactuated systems. For exam-
ple, the pioneering study in [7] investigated ordinary nonlin-
ear systems with non-square input distribution matrices and
proposed an AILC design based on the Composite Energy
Function (CEF) framework, where the input distribution ma-
trix needs to satisfy the known and left invertible condition.
The applicability of AILC was extended to nonlinear sys-
tems with non-parametric uncertainties in [10], also requir-
ing the left invertibility of the input distribution matrix as a
key prerequisite. In fact, similar assumptions, such as the
invertibility or left invertibility of the input distribution ma-
trix, have also appeared in other research reports, including
[8, 11–14] and related citations. Due to the existence of a
large number of underactuated systems in reality, most of
them do not satisfy these assumptions, which significantly
narrows down the applicability of AILC, limited to only a
few nonlinear systems.

In practical applications, the input distribution matrix of
many underactuated systems is either partially known or
completely unknown. In the case of an unknown input distri-
bution matrix, researchers in [15] developed an adaptive es-
timation algorithm for handling unknown input distribution
matrices in discrete-time systems, which was later applied
to continuous-time systems in [16], covering the case of un-
known input distribution matrices. Additionally, an AILC
method using fuzzy logic techniques was introduced in [17]
to deal with the issue of unknown input distribution matrices
in nonlinear systems, where fuzzy logic was used to approx-
imate the uncertainties associated with the unknown input
distribution matrix. However, in the existing literature, only
a few studies have addressed the AILC design for nonlinear
systems with unknown input distribution matrices. When
faced with underactuated systems with unknown input dis-
tribution matrices, the AILC design becomes more challeng-
ing.

In this work, we focus on the AILC design for underactu-
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ated systems with unknown input distribution matrices and
ensure the convergence of tracking error considering input
saturation. Furthermore, although the controller in [18] ad-
dresses the issue of non-square control gain matrices, it may
suffer from switching problems, which can lead to the dis-
continuity of the controller. In this research, we avoid the
switching problem by introducing specially designed control
gain matrices.

The structure of this paper is as follows. Section II in-
troduces the problem formulation. Section III presents the
AILC design and convergence analysis for underactuated
systems with unknown input distribution matrices. Section
IV provides a simulation example. Finally, Section V con-
cludes the paper.

2 Problem Formulation

Consider the following MIMO nonlinear system

ẋk = f (xk, t)Θ +A (xk, t) sat (uk(t)) +wr, (1)

where k ∈ N denotes the iteration index, t ∈ [0, T ],
T > 0 represents the trial length, xk is the measur-
able system state, f (xk, t) : Rn × R+ → Rn×p is
a known function, wr is a known vector valued func-
tion, Θ ∈ Rp is the unknown parametric uncertainties,
A (xk, t) ∈ Rn×m is the unknown control gain matrix,
uk(t) = [u1,k(t), . . . ,um,k(t)]

T ∈ Rm is the control in-
put, and sat (uk(t)) = [sat (u1,k(t)) , . . . , sat (um,k(t))]

T

is the saturation function that is defined as follows:

sat (uj,k(t)) ≜

{
sign (uj,k(t))uj,max, |uj,k(t)| ≥ uj,max

uj,k(t), |uj,k(t)| ≤ uj,max,

(2)
with uj,max > 0 being the upper bound of the j th con-
trol input component uj,k(t) imposed by either physical
constraints or artificial limitations. For simplicity, we de-
note uk(t) ≜ sat (uk(t)) with ūj,k(t) ≜ sat (uj,k(t)) , j =

1, 2, · · · ,m, namely, ūk(t) = [ū1,k(t), . . . , ūm,k(t)]
T .For

simplicity, let us denote fk ≜ f (xk, t), Ak ≜ A (xk, t),
ūk ≜ ūk(t).

The reference trajectory xr ∈ Rn is generated by the fol-
lowing reference model:

ẋr = wr, (3)

with wr being continuous with respect to both xr and t. The
control objective of the present work is summarized as fol-
lows.

The control objective: For the system (1), the control ob-
jective is to determine a sequence of the control input uk that
are able to drive the system state xk to accurately track a pre-
defined reference trajectory xr, ∀t ∈ [0, T ] as the iteration
index k goes to infinity.

To facilitate the controller design and analysis, the follow-
ing assumptions are imposed to the system (1).

Assumption 1: The control gain matrixAk is unknown but
norm-bounded.

Assumption 2: The initial states of the system (1) can
be aligned with the initial value of the desired trajectory,
namely, xk(0) = xr(0),∀k ∈ Z.

Remark 1: The identical initialization condition (i.i.c.) is a
common assumption in ILC area, which is imposed to guar-
antee the perfect tracking performance. In literature, there
have been many works showing that the i.i.c. can be removed
by sacrificing the tracking performance to some extent, while
extra system information or additional control mechanisms
are required [19, 20]. For the present work, the i.i.c. may
be removed by combining the initial state learning or rec-
tification techniques in [19, 20] with the proposed control
approach.

Let ek ≜ xk−xr be the tracking error. The corresponding
error dynamics can be derived as follows:

ėk =ẋk − ẋr

=fkΘ+Akūk.
(4)

Considering the fact that the control gain matrix Ak is un-
known, the conventional design principle that involves Ak

explicitly in the control algorithms is no longer applicable.
In this work, inspired by this issue, the error dynamics are
reformulated as follows:

ėk =ẋk − ẋr

=fkΘ+Būk + [Akūk −Būk],
(5)

where the term Būk is added and subtracted. Here, B =
E1jG ∈ Rn×m,E1j represents the elementary row transfor-

mation matrix for swapping row 1 and row j, G =

[
Im
0

]
∈

Rn×m with Im being the m-dimensional identity matrix. In
this case, the matrix B can be regarded as a newly defined
control gain matrix, while the originally unknown control
gain matrix Ak is treated as a norm-bounded system uncer-
tainty. Thus, the AILC design for systems with unknown
control gain matrices is transformed into a design for sys-
tems with known but non-square control gain matrices. For
the error dynamics in equation (5), based on Assumption 1
and the boundedness of ūk, it can be shown that the uncer-
tainties satisfy the following inequality:

∥Akūk −Būk∥ ⩽ φ, (6)

where φ > 0 is an unknown quantity. For simplicity, we
denote ωk ≜ Akūk −Būk.

3 Controller Design and Convergence Analysis

To compensate for the impact of the input saturation, we
introduce an auxiliary variable λk, which is generated by the
following auxiliary system:

λ̇k =− νλk +B∆uk,

λk(0) =0,
(7)

where ν > 0 is a tunable parameter to be designed, and
∆uk = ūk − uk represents the difference between the ac-
tual input and the unsaturated input. After introducing the
auxiliary system, we incorporate tracking error by defining a
new virtual tracking error as follows:

ẽk = ek − λk. (8)
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The dynamics of the corresponding virtual tracking error can
be derived as follows:

˙̃ek =ėk − λ̇k

=fkΘ+Būk + ωk + νλk −B∆uk

=fkΘ+Buk + ωk + νλk.

(9)

Based on the virtual tracking error dynamics (9) and the
inequality (6),we can develop an novel AILC algorithm as
follows:

uk(t) =

{
u1,k + u2,k + u3,k, ∥ẽk∥ ≠ 0

uk(t
−), ∥ẽk∥ = 0,

(10)

where

u1,k =
BT

∥BBT ∥

(
−νek − fkΘ̂k

)
, (11)

u2,k = −PkB
T ẽk∥∥ẽTkB∥∥2 ∥ẽk∥

∥∥∥νek + fkΘ̂k

∥∥∥ , (12)

u3,k = − BT ẽk∥∥ẽTkB∥∥2 φ̂kẽ
T
k sign(ẽk), (13)

Pk =
∥B∥2

∥BBT ∥
+ 1. (14)

We define ẽk = [ẽ1,k, . . . , ẽn,k]
T . When ∥ẽk∥ ≠ 0, let

j denote the index of the first non-zero component in ẽk.
This condition guarantees that the product ẽTkB forms a
non-zero vector, which can be represented as [ẽj,k(t), ∗],
where the first component is non-zero, ensuring that the
norm

∥∥ẽTkB∥∥ ̸= 0. The asterisk (*) represents any values
that are not of concern in this analysis, as our focus is solely
on demonstrating that the first element is non-zero to avoid
singularity. Therefore, the corresponding controller will not
encounter singularity issues in this case. Additionally, since
∥E1j∥ = 1 and G is norm-bounded, it follows that B is also
norm-bounded.

Remark 2: For the proposed control law (10), when the
condition ∥ẽk∥ = 0 is satisfied, the value of the control input
uk(t) is equal to the left limit value at time t. This design
aims to eliminate the discontinuity effects caused by control
input switching in [18] and ensures the left continuity and
stability of the control system. By maintaining the left limit
value of the control input, we can avoid sudden changes in
the control input, thereby improving the performance and
robustness of the control system.

Θ̂k ∈ Rp is the estimate of Θ generated by (15):

Θ̂k(t) =Θ̂k−1(t) + ΓfTk ẽk,

Θ̂−1(t) =0, t ∈ [0, T ],
(15)

with Γ being a positive definite learning gain matrix to be
designed. φ̂k is the estimate of the unknown quantity φ gen-
erated by (16):

φ̂k =φ̂k−1 + γẽTk sign(ẽk),
φ̂−1(t) =0, t ∈ [0, T ],

(16)

with γ > 0 being the learning gain to be determined.

With the proposed AILC law (10)- (16), we can obtain
the following result.

Theorem 1: For the system (1) with the Assumptions 1-
2, the proposed AILC algorithm (10)- (16) together with
the auxiliary system (7) ensure that the tracking error ek(t)
converges to a neighborhood of the origin as the iteration
number approaches to infinity.

To carry out the convergence analysis, the following CEF
is developed:

Ek(t) =
1

2
ẽTk ẽk+

1

2

∫ t

0

ΦT
k Γ

−1Φkdτ+
1

2γ

∫ t

0

ψ2
kdτ, (17)

where Φk = Θ̂k − Θ and ψk = φ̂k − φ represent the esti-
mation errors.

According to the reference [18], the inverse image of
the set

{
τ ∈ [0, t] |

∥∥ẽTk (τ)∥∥ ̸= 0, t ∈ [0, T ]
}

is an open
set over [0, t], which can be divided into countable disjoint
open intervals. Thus, there have only countable closed
intervals on [0, t] such that

∥∥ẽTk (τ)∥∥ = 0. we denote Q ≜{
τ ∈ [0, t] |

∥∥ẽTk (τ)∥∥ = 0, t ∈ [0, T ]
}

≜
⋃∞

i=1[ai,k, bi,k]

and S ≜
{
τ ∈ [0, t] |

∥∥ẽTk (τ)∥∥ ̸= 0, t ∈ [0, T ]
}

≜⋃∞
i=1(ci,k, di,k). Therefore, we can conclude that

Q ∪ S = [0, t].
Proof of Theorem 1: The proof can be divided into three

parts, each addressing a different aspect. The first part
demonstrates the nonincreasing property of the CEF along
the iteration axis. The second part establishes the conver-
gence of the virtual tracking error. Finally, the third part
shows the convergence of the tracking error.

Part I. The difference of CEF: For a given t ∈ [0, T ], the
difference of the CEF at two consecutive iterations is

∆Ek = Ek − Ek−1

=
1

2
ẽTk ẽk − 1

2
ẽTk−1ẽk−1

+
1

2

∫ t

0

(
ΦT

k Γ
−1Φk − ΦT

k−1Γ
−1Φk−1

)
dτ

+
1

2γ

∫ t

0

(
ψ2
k − ψ2

k−1

)
dτ.

(18)

For the first term on the right hand side of (18), we have

1

2
ẽTk ẽk =

∫ t

0

ẽTk ˙̃ekdτ

=

∫
S

ẽTk ˙̃ekdτ +

∫
Q

ẽTk ˙̃ekdτ

=

∫
S

ẽTk ˙̃ekdτ,

(19)

where the i.i.c. in the Assumption 2 and (7) is
adopted. We denote

∫
S
ẽTk

˙̃ekdτ =
∑∞

i=1

∫ di,k

ci,k
ẽTk

˙̃ekdτ and∫
Q
ẽTk

˙̃ekdτ =
∑∞

i=1

∫ bi,k
ai,k

ẽTk
˙̃ekdτ .
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By substituting the controller (10) into (9), it gives

ẽTk ˙̃ek = ẽTk fkΘ+ ẽTk ωk + νẽTk λk

+
ẽTkBB

T

||BBT ||

[
−νek − fkΘ̂k

]
− ẽTkBPkB

T ẽk
||ẽTkB||2

||ẽk||||νek + fkΘ̂k||

− ẽTkBB
T ẽk

||ẽTkB||2
φ̂kẽ

T
k sign(ẽk).

(20)

Due to the equation BBT

||BBT || =
BBT

||BBT ||−I+I , we can obtain
the following inequality:

ẽTk
BBT

||BBT ||
[−νek − fkΘ̂k]

= ẽTk (
BBT

||BBT ||
− I + I)[−νek − fkΘ̂k]

≤ −νẽTk ek − ẽTk fkΘ̂k

+ ||ẽk||
(

||B||2

||BBT ||
+ 1

)
||νek + fkΘ̂k||

= −νẽTk ek − ẽTk fkΘ̂k + Pk||ẽk||||νek + fkΘ̂k||.

(21)

Moreover, the following equality holds:

− ẽTkBB
T ẽk

||ẽTkB||2
= −1, (22)

νẽTk λk = νẽTk (ek − ẽk) = νẽTk ek − νẽTk ẽk. (23)

And the following inequality holds:

ẽTk ωk ≤ ||ẽk||φ = φẽTk sign(ẽk), (24)

where ∥ωk∥ ⩽ φ presented in (6) is used. Consequently, by
substituting (21)- (24) into (20), it yields

ẽTk ˙̃ek ≤− νẽTk ẽk + νẽTk ek + φẽTk sign(ẽk)

− νẽTk ek − ẽTk fk(Θ̂k −Θ)

+ Pk||ẽk||||νek + fkΘ̂k||
− Pk||ẽk||||νek + fkΘ̂k||
− φ̂kẽ

T
k sign(ẽk)

= −νẽTk ẽk − ψkẽ
T
k sign(ẽk)− ẽTk fkΦk.

(25)

According to (25) and (19), we have

1

2
ẽTk ẽk =

∫
S

ẽTk ˙̃ekdτ

≤
∫
S

[−νẽTk ẽk − ψkẽ
T
k sign(ẽk)− ẽTk fkΦk]dτ.

(26)
In terms of the third term of (18), we have that

ΦT
k Γ

−1Φk − ΦT
k−1Γ

−1Φk−1

= −
(
Θ̂k − Θ̂k−1

)T
Γ−1

(
Θ̂k − Θ̂k−1

)
− 2

(
Θ̂k−1 − Θ̂k

)T
Γ−1Φk

= −ẽTk fkΓf
T (xk) ẽk + 2ẽTk fkΦk

≤ 2ẽTk fkΦk,

(27)

where the updating law (15) is applied. Therefore, the third
term on the right hand side of (18) becomes

1

2

∫ t

0

(
ΦT

k Γ
−1Φk − ΦT

k−1Γ
−1Φk−1

)
dτ

≤
∫ t

0

ẽTk fkΦkdτ

=

∫
S

ẽTk fkΦkdτ +

∫
Q

ẽTk fkΦkdτ

=

∫
S

ẽTk fkΦkdτ.

(28)

In addition, for the last term of (18), we have

1

2γ

∫ t

0

(ψ2
k − ψ2

k−1)dτ

≤ 1

2γ

∫ t

0

2ψk(φ̂k − φ̂k−1)dτ

≤ 1

2γ

∫ t

0

2ψkγẽ
T
k sign(ẽk)dτ

=

∫ t

0

ψkẽ
T
k sign(ẽk)dτ

=

∫
S

ψkẽ
T
k sign(ẽk)dτ +

∫
Q

ψkẽ
T
k sign(ẽk)dτ

=

∫
S

ψkẽ
T
k sign(ẽk)dτ,

(29)

where the updating law (16) is applied. Finally, combining
(26), (28), (29) with (18), we have

∆Ek(t) ≤ −1

2
ẽTk−1(t)ẽk−1(t)−

∫
S

νẽTk (τ)ẽk(τ)dτ

≤ −1

2
∥ẽk−1(t)∥2 .

(30)
Part II. Convergence of virtual tracking error: From (30),

we can obtain the following inequality:

Ek (t) ≤ E0 (t)−
1

2

k∑
j=1

∥ẽj−1∥2. (31)

Note that Ek (t) is positive. If E0 (t) is bounded, we can
obtain immediately from (31) that limk→∞ ẽk (t) = 0, t ∈
[0, T ].

The boundedness of E0 (t) can be derived as follows:

E0 =
1

2
ẽT0 ẽ0 +

1

2

∫ t

0

ΦT
0 Γ

−1Φ0dτ +
1

2γ

∫ t

0

ψ2
0dτ. (32)

If
∥∥ẽT0 (t)∥∥ = 0, we have that Θ̂0(t) = ΓfTk ẽk(t) = 0 and

φ̂0(t) = γẽT0 (t)sign(ẽ0(t)) = 0. Thus, Φ0 = −Θ and
ψ0 = −φ. We can obtain the following equality:

E0 =
1

2
ẽT0 ẽ0 +

1

2

∫ t

0

ΦT
0 Γ

−1Φ0dτ +
1

2γ

∫ t

0

ψ2
0dτ

=
1

2

∫ t

0

ΘTΓ−1Θdτ +
1

2γ

∫ t

0

φ2dτ.

(33)

This implies that E0(t) is bounded. If
∥∥ẽT0 (t)∥∥ ̸= 0, by

utilizing the result shown in(25), the derivative ofE0 (t) with
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respect to t can be calculated as

Ė0(t) = ẽ0(t)
T ˙̃e0(t) +

1

2
Φ0(t)

TΓ−1Φ0(t) +
1

2γ
ψ2
0(t)

≤ −νẽ0(t)T ẽ0(t)− ẽ0(t)
T f0Φ0(t) +

1

2
Φ0(t)

TΓ−1Φ0(t)

− ψ0(t)ẽ
T
0 (t)sign(ẽ0(t)) +

1

2γ
ψ2
0(t).

(34)
According to the fact that Θ̂−1(t) = 0, we have that Θ̂0(t) =
ΓfTk ẽk(t), namely, ẽTk (t)fk = Θ̂T

0 (t)Γ
−1. By applying the

Young’s inequality, we have that

−ΘT (t)Γ−1Φ0(t)

≤ 1

2
(ΘT (t)Γ−1Θ(t) + ΦT

0 (t)Γ
−1Φ0(t)).

(35)

Therefore, we can obtain the following inequality:

− ẽT0 (t)fkΦ0(t) +
1

2
ΦT

0 (t)Γ
−1Φ0(t) = −Θ̂0(t)Γ

−1Φ0(t)

− 1

2
ΦT

0 (t)Γ
−1Φ0(t) + ΦT

0 (t)Γ
−1Φ0(t)

= −1

2
ΦT

0 (t)Γ
−1Φ0(t)−ΘT (t)Γ−1Φ0(t)

≤ −1

2
ΦT

0 (t)Γ
−1Φ0(t)

+
1

2
(ΘT (t)Γ−1Θ(t) + ΦT

0 (t)Γ
−1Φ0(t))

=
1

2
ΘT (t)Γ−1Θ(t).

(36)
According to the fact that φ̂−1(t) = 0, we have that φ̂0(t) =
γẽT0 (t)sign(ẽ0(t)). Therefore, we can obtain the following
inequality:

− ψ0(t)ẽ
T
0 (t)sign(ẽ0(t)) +

1

2γ
ψ2
0(t)

= − 1

γ
ψ0(t)φ̂0(t) +

1

2γ
ψ2
0(t)

=
1

2γ
ψ0(t)(−φ(t)− φ̂0(t))

=
φ2(t)− φ̂2

0(t)

2γ

≤ φ2(t)

2γ
.

(37)

Finally, combining (36), (37) with (34), we have

Ė0(t) ≤ −νẽ0(t)T ẽ0(t) +
1

2
Θ(t)TΓ−1Θ(t) +

1

2γ
φ2(t).

(38)
As a result, Ė0(t) is negative whenever the condition
νẽ0(t)

T ẽ0(t) >
1
2Θ(t)TΓ−1Θ(t) + 1

2γφ
2(t) holds, which

implies that E0 (t) is bounded if
∥∥ẽT0 (t)∥∥ ̸= 0. Therefore,

E0(t) is bounded over the entire time interval [0, T ].
Part III. Convergence of actual tracking error: We have

already analyzed the convergence of the virtual tracking er-
ror, and our objective is to achieve convergence of the actual
tracking error. Therefore, it is necessary to analyze the prop-
erties of the auxiliary system. The Lyapunov function for the
auxiliary system is defined as follows:

Vλ =
1

2
∥λk∥2. (39)

Taking the derivative of the Lyapunov function, we can ob-
tain the following inequality:

V̇λ = λTk λ̇k

= −ν∥λk∥2 + λTkB∆uk

≤ −ν∥λk∥2 +
1

2
∥λk∥2 +

1

2
∥B∆uk∥2

≤
(
−ν + 1

2

)
∥λk∥2 +

1

2
∥B∆uk∥2,

(40)

where the Young’s inequality (41) is used. The Young’s
inequality is given by:

λTkB∆uk ≤ 1

2
∥λk∥2 +

1

2
∥B∆uk∥2. (41)

Integrating both sides of inequality (40), we can obtain

Vλ (T )− Vλ (0)

≤
∫ T

0

(
−ν + 1

2

)
∥λk∥2dτ +

∫ T

0

1

2
∥B∆uk∥2dτ.

(42)

Based on the fact that λk(0) = 0, we have Vλ(0) = 0.
Therefore, we can obtain∫ T

0

∥λk∥2dτ ≤ 1

2cλ

∫ T

0

∥B∆uk∥2dτ, (43)

where cλ = ν − 1
2 > 0. According to (30), we can obtain

∆Ek ≤ −
∫
S

νẽTk ẽkdτ. (44)

Furthermore, we can obtain∫
S

νẽTk ẽkdτ ≤ Ek−1 − Ek ≤ Ek−1. (45)

That is ∫
S

∥ẽk∥2dτ ≤ 1

ν
Ek−1. (46)

Since ek = ẽk + λk, we can obtain∫ T

0

∥ek∥2dτ

≤ 2

(∫ T

0

∥λk∥2dτ +
∫ T

0

∥ẽk∥2dτ

)

= 2

(∫ T

0

∥λk∥2dτ +
∫
S

∥ẽk∥2dτ +
∫
Q

∥ẽk∥2dτ

)

= 2

(∫ T

0

∥λk∥2dτ +
∫
S

∥ẽk∥2dτ

)

≤ 1

cλ

∫ T

0

∥B∆uk∥2dτ +
2

ν
Ek−1.

(47)

As k approaches infinity, we can obtain

lim
k→∞

∫ T

0

∥ek∥2dτ ≤ 1

cλ
lim
k→∞

∫ T

0

∥B∆uk∥2dτ. (48)

Since ∆Ek ≤ 0 and E0 is bounded, Ek is also bounded.
Based on the boundedness of Ek and the controller (10),
we can conclude the boundedness of the control input uk.
Therefore, the boundedness of ∆uk can be derived from the
fact that ūk is bounded. As a result, we can conclude that
the actual tracking error ek converges to a neighborhood of
the origin. ■
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4 Simulation

In order to verify the effectiveness of the proposed AILC
algorithm, this section presents a numerical example involv-
ing a nonlinear system. In this example, the control gain ma-
trix for the system is unknown. Let us consider a nonlinear
system, which is governed by the system (1) with

fk =

[
sin (x1,k)
2 sin (x2,k)

]
, Θ = 1,

wr =

[
sin(t)
cos(t)

]
, Ak =

[
1.2 0.3
0 0.5

]
,

where xk = [x1,k,x2,k]
T , and the upper bounds for the two

control input components are set to u1,max = u2,max = 0.5.
The control gain matrix Ak is assumed to be unknown but
norm-bounded, satisfying the Assumption 1. The reference
trajectory is assumed to be xr(t) = [0.6 − cos(t), sin(t) +
0.5]T .

For the proposed controller (10) together with the up-
dating laws (15) and (16), let us set the feedback gain
ν = 0.9, Γ = 0.7 and γ = 0.7. The convergence of
the maximal tracking error emax,k = maxt∈[0,T ] |e1,k(t)| +
maxt∈[0,T ] |e2,k(t)| is presented in Fig. 1. It is evident that
with the proposed control method, even though the control
gain matrix Ak is unknown, the maximal tracking error de-
creases significantly as the iteration number increases, drop-
ping by 99.4% within 10 iterations.
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Fig. 1: The maximal tracking error profile along the iteration
axis.

5 Conclusion

This paper investigates the design of adaptive iterative
learning control (AILC) for underactuated systems with un-
known input distribution matrices. A new AILC algorithm is
proposed, which addresses the challenge of unknown input
distribution matrices by introducing specially designed con-
trol gain matrices. These matrices transform the unknown
input distribution matrices into system disturbances, and ro-
bust terms are incorporated into the controller to eliminate
the unknownness of the input distribution matrices. Addi-
tionally, an auxiliary system related to the input is intro-
duced to handle input saturation, enabling the system to track

reference trajectories even in the presence of input satura-
tion constraints. The convergence of the tracking error to
a neighborhood of the origin is theoretically analyzed and
proven through mathematical derivations. Finally, the ef-
fectiveness and performance of the proposed algorithm are
validated through a simulation example.
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Adaptive Neural Network Sliding Mode Vibration Control for
Clamped Beam Systems with Input Saturation and Model

Uncertainties
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Abstract: This paper presents a novel adaptive neural network nonsingular fast terminal sliding mode control method for flexible
double-clamped beam systems with input saturation and distributed disturbance. Firstly, the ordinary differential equations of the
beam system are provided. Secondly, a novel auxiliary function is employed to design a nonsingular fast terminal sliding mode
controller, ensuring the stability of the closed-loop system under state constraints. Additionally, an adaptive neural network is
proposed to handle possible unknown parts of the model parameters. It is demonstrated that the proposed control method can
simultaneously address input saturation and distributed disturbance without requiring precise knowledge of the model. Finally,
numerical simulation results illustrate the effectiveness of the proposed control approach.

Key Words: vibration control, nonsingular fast terminal sliding mode control, adaptive neuro-network control

1 Introduction

With the surge in aerospace advancements, heavy space-
craft and aircraft have garnered significant attention. How-
ever, vibrations caused by various factors during their op-
eration pose a significant threat to their structural integrity.
Active vibration control, due to its superior vibration sup-
pression efficiency compared to passive methods, has be-
come a key research focus. Given the high costs involved in
research and experimental development, scientists are par-
ticularly interested in developing active vibration control
techniques tailored for fundamental structural elements like
beams and plates, as they form the backbone of complex
aerospace structures and their stability is crucial for overall
performance and safety [1–4].

Extensive research has been conducted on the control de-
sign and stability analysis of flexible mechanical systems
leveraging partial differential equations (PDEs). In [5] an
adaptive barrier control law is introduced to mitigate vibra-
tions in Euler-Bernoulli beams with boundary output con-
straints. Additionally, [6] presents a restrained adaptive
boundary iterative learning control approach utilizing a time-
weighted composite energy function to address vibration
control in the presence of aperiodic disturbances. However,
these methods are limited in addressing nonlinearity aris-
ing from mid-plane stretching and actuator characteristics,
crucial factors in practical applications [7–10]. Piezoelec-
tric (PZT) actuators, known for their lightweight, low cost,
and combined sensing and actuation capabilities, are widely
employed and thus deserve consideration in modeling [11–
13]. In [14–16], PDEs mathematical models for micro-scale
beams are developed, incorporating both mid-plane stretch-
ing and PZT actuators based on the Hamiltonian principle.
To simplify these models, the Galerkin projection method
is employed, reducing the complexity of the PDEs to ordi-
nary differential equations (ODEs), thereby facilitating fur-

This work was partially supported by Shanghai Science and Technol-
ogy Development Funds (Grant No.23YF1411100).

ther analysis and control design.
The sliding mode control (SMC) approach has garnered

significant attention in vibration control systems due to its
robust characteristics against model errors, parameter uncer-
tainties, and external disturbances. However, the linear na-
ture of the sliding mode design in SMC results in asymptotic
convergence, limiting its performance. To enhance this con-
vergence property, Terminal Sliding Mode Control (TSMC)
has been proposed, incorporating a nonlinear sliding mode
manifold to facilitate finite-time convergence to the equilib-
rium point [17]. In the realm of second-order sliding mode
(SOSM) control, a novel approach has been introduced to
address disturbances bounded by positive functions and slid-
ing mode dynamics with mismatched terms [18]. Addition-
ally, an advanced SOSM controller incorporating a satura-
tion level has been developed to ensure global convergence
and optimize dynamic performance [19]. Furthermore, re-
search has focused on developing improved terminal slid-
ing mode tracking controllers for third-order chained-form
nonholonomic systems with unknown external disturbances
[20]. These controllers aim to achieve finite-time conver-
gence, enhancing the system’s response. However, certain
modified control laws still suffer from the singularity prob-
lem, particularly near the equilibrium point. To address this
issue, a nonsingular fast terminal sliding mode control ap-
proach has been explored, aiming to eliminate potential sin-
gularities in uncertain nonlinear systems [21]. This method
offers a promising solution to the singularity problem, but it
may not guarantee constrained vibration amplitudes, poten-
tially posing a risk of structural damage.

To mitigate this concern, alternative control design
methodologies have been investigated. These approaches
aim to incorporate constraints and safety considerations into
the control framework, ensuring that the system operates
within prescribed limits. While these methods may vary in
their specific implementation, they generally focus on pre-
venting state variables from violating predefined constraints
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and enhancing the overall performance and safety of the vi-
bration system.

In this paper, a novel vibration control strategy is pro-
posed for a nonlinear double-clamped beam with a piezo-
electric actuator. The control approach addresses model un-
certainties, input saturation, and distributed disturbances. By
utilizing the Galerkin projection method, the motion equa-
tions of the beam are transformed into nonlinear ordinary
differential equations, enabling the design of tailored con-
trol laws. A fast nonsingular terminal sliding mode con-
trol law is introduced to ensure finite-time stability of the
system. Additionally, an auxiliary system is designed to
mitigate the saturation effects of the piezoelectric actuator.
Furthermore, an adaptive radial basis function (RBF) neural
network is integrated into the sliding mode control law to ap-
proximate unknown nonlinearities in the system model. This
approach enhances the controller’s adaptive capabilities and
robustness. The proposed control laws guarantee finite-time
convergence of system state variables and improve vibration
suppression performance, making it suitable for practical ap-
plications with complex nonlinear dynamics.

The organization of the paper proceeds as follows: Sec-
tion 2 delves into the background of the nonlinear flexible
double-clamped beam system, laying the foundation for sub-
sequent discussions. Section 3 presents the proposed con-
trol laws and their stability analysis, providing a rigorous
mathematical framework for the control strategy. Section 4
presents simulation results that demonstrate the practical ef-
fectiveness of the proposed control laws. Finally, Section 5
summarizes the key findings and contributions of the paper,
drawing conclusions on the overall performance and impli-
cations of the proposed approach.

2 Backgrounds and preliminaries

In this section, we present the mathematical formula-
tion of the model for the nonlinear flexible doubly clamped
beam system, along with assumptions that facilitate simpli-
fied analysis. Subsequently, we introduce relevant lemmas
to support the subsequent controller design.

Figure 1 presents a typical nonlinear flexible beam struc-
ture with fixed ends and an overall length of L. Taking into
account the unknown vibration disturbances that the beam
may encounter in practical applications, we specifically de-
signed and installed a layer of piezoelectric actuator on a
specific region of the upper surface of the beam to achieve
efficient vibration suppression. Furthermore, this paper fo-
cuses on discussing the distributed disturbance d(x, t) along
the length of the beam (the X-axis). This disturbance ex-
hibits significant time-varying characteristics and has a con-
siderable impact on the steady-state behavior and deforma-
tion of the beam.

Defining state variable x1(t) as the displacement of the
piezoelectric actuator and x2(t) as the velocity of the piezo-
electric actuator, we can approximately express the nonlinear
differential equation for a doubly-clamped beam system that
takes into account input saturation and disturbances.

ẋ1(t) = x2(t)

ẋ2(t) = A(x1, δ1) +B(δ1)τsat(t) + C(δ1) ˜dx1
(, t)

(1)

where

A(x1(t), δ1) =
−EIx1

∫ L

0
δ1

′′′′(lp)dx

ρA
∫ L

0
δ1(lp)dx

+
EA
2L x3

1(t)
∫ L

0
(δ1

′(lp))
2δ1

′′(lp)dx

ρA
∫ L

0
δ1(lp)dx

B(δ1) =
ϱ(δ′1(lp)(a)− δ′1(b))

ρA
∫ L

0
(δ1(lp))2dx

C(δ1) =

∫ L

0
δd(lp)dx

ρA
∫ L

0
δ1(lp)dx

(2)

where, E, A, and I represent the Young’s modulus, cross-
sectional area, and moment of inertia of the doubly-clamped
beam, respectively. The coefficient ϱ denotes the input co-
efficient of the piezoelectric actuator, while lp signifies the
distance from the left end of the beam to the location where
the piezoelectric actuator is installed, a and b represent the
distances from the piezoelectric actuator to the left and right
ends of the beam, respectively. δ1 represents the first-order
mode shape of the structure. δd represents the main shape
of the spatially distributed disturbance. ˜dx1(t) represents the
disturbance at location lp. Moreover, τsat(t) represents the
control input that accounts for input saturation.

In practical applications, the control voltage applied to
the piezoelectric actuator is constrained due to limitations
inherent in the piezoelectric layer. Consequently, this pa-
per presents an input function that incorporates saturation
effects, expressed as follows.

τsat(t) =


τlim, τ(t) > τlim

τ(t), |τ(t)| ≤ τlim

− τlim, τ(t) < −τlim

(3)

where, τsat(t) represents the control input, τ(t) stands for
the designed control command, and τlim denotes the satura-
tion limit. The control input is constrained within the bounds
of −τ lim and τlim, ensuring that τsat(t) does not exceed the
saturation limit.

Assumption 1. Concerning the unknown distributed dis-
turbance ˜dx1

(t) that varies both spatially and temporally, we
make the reasonable assumption that there exists a positive
constant dmax ∈ R+ such that the magnitude of this distur-
bance is always bounded by dmax, | ˜dx1(, t)| ≤ dmax. This
assumption is well-founded because the time-varying nature
of ˜dx1

(t) is constrained by its finite energy content.
Lemma 1. Assuming the existence of continuously dif-

ferentiable and positive definite functions V (z) : Z → R+

that satisfy the condition:

V (z) → ∞ as |z| → kb (4)

Given an initial condition z(0) ∈ Z , if the following in-
equality is fulfilled:

V̇ =
∂V

∂z
≤ −µV + C (5)

where µ and C are positive constants, then z(t) remains
bounded and belongs to the set Z can be concluded.
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Fig. 1: Diagram of the object under control

3 Control law design

3.1 The nonsingular fast terminal sliding mode control
law

In this subsection, a novel control law for the nonsingular
fast terminal sliding mode is introduced, leveraging the ca-
pabilities of the RBF neural network. The selection of the
nonsingular fast terminal sliding mode surface is formulated
as follows:

s = x1 + q1|x1|ιsign(x1) + q2|x2|m/nsign(x2) (6)

where q1, q2 are positive constants, the coefficients in the
sliding mode surface satisfying 1 < m/n < 2, ι > m/n.

To address the issue of approximating the unknown com-
ponent A(x1, δ1) within the double-clamped beam system,
which poses challenges in practical measurements, we uti-
lize an adaptive radial basis function (RBF) neural network.
The choice of RBF neural network stems from its excep-
tional universal approximation capabilities and resilience
against environmental noise, making it a suitable candidate
for tackling this complex problem.

Figure 2 illustrates the architecture of the radial basis
function (RBF) neural network, comprising three distinct
layers: the input layer, the hidden layer, and the output layer.

Let x = [x1, x2, .., xn] represent the input vector. The
activation function for the i-th node in the hidden layer is
selected as a Gaussian function, which can be formally ex-
pressed as follows:

ϖAi(lp) = exp
(
−∥x− bi∥2

2g2i

)
, i = 1, 2, · · · , n (7)

where, the approximation properties of the RBF neural net-
work are harnessed to estimate and compensate for the

1x

2x

1h

2h

1y

2y

Input layer

Hidden layer

Output layer

Fig. 2: The RBF neural network

unknown nonlinear elements in the system. Specifically,
A(x1, δ1) is chosen as the approximating function, where
bi and g2i represent the center and spread of the radial basis
function, respectively. The mathematical representation of
A(x1, δ1) is detailed below:

A(x1, δ1) = HTϖA(lp) + ξA (8)

where, H represents the optimal weighting matrix, while ξA
stands for the approximation error associated with the RBF
neural network. This error is bounded by ξm for both i=1
and i=2. The estimation of A(x1, δ1) can be expressed as
follows:

Â(x1, δ1) = ĤTϖA(lp) (9)

where Ĥ denotes the estimation of H . Taking into ac-
count the flexible double-clamped beam system outlined in
(1), which incorporates model uncertainties, unknown dis-
tributed disturbances, and input saturation, the control law
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can be formulated as follows:

τ =− 1

C
[Â(lp) +

1

q2

n

m
|x2|1−m/n(ẋ1 + q1ι|x1|ι−1ẋ1

− kϑ) + q3|s|θsign(s) + q4|s|ηsign(s)]
(10)

where

˙̂
H = p1q2

m

n
|x2|m/n−1sϖA(lp) − p1p2Ĥ (11)

Furthermore, p1 and p2 are positive constants that contribute
to the control law’s performance. Assuming the validity of
Assumption 1 for any given initial conditions, the proposed
control strategy (10), coupled with the adaptive laws govern-
ing the RBF neural network, ensures that the system states
asymptotically converge to a region close to zero. This con-
vergence region can be made arbitrarily small by suitably
adjusting the parameters q3, q4 and p1, p2

3.2 Stability analysis
The estimation error of the weighting vector can be de-

fined as H̃ = H − Ĥ . The estimation error of A(x1, δ1)
can be defined as Ã(x1, δ1) = A(x1, δ1)− Â(x1, δ1). Then,
choose the Lyapunov function as follows, The estimation er-
ror for the weighting vector can alternatively be expressed as
H̃ = H − Ĥ . Similarly, the estimation error for Ã(x1, δ1)
can be represented as Ã(x1, δ1) = A(x1, δ1) − Â(x1, δ1).
Subsequently, the Lyapunov function can be selected in the
following manner:

ℓ(t) =
1

2
s2 +

1

2p1
H̃TH̃ +

1

2
ϑ2 (12)

where ϑ̇ = −kaϑ + kb∆τ , ka > 0, kb > 0, ϑ represents
the state of the system responsible for compensating for in-
put saturation. ∆τ = τsat − τ . The time derivative of the
Lyapunov function (12) can be formulated as follows:

ℓ̇(t) = sṡ+ ϑϑ̇+
1

p1
H̃T ˙̃H

= q2
m

n
|x2|m/n−1(B(δ1)∆τ + Ã(x1, δ1) + d̃

− q3|s|θsign(s)− q4|s|ηsign(s)) + kϑ

+ ϑ(−kaϑ+ kb∆τ)− 1

p1
H̃T ˙̂

H

(13)

Then, the proposed control law (10) and (11) are incorpo-
rated into (13). Utilizing the Young’s inequality, By applying
the Young’s inequality, (13) can be reformulated as follows,

ℓ̇(t) ≤ q2
m

n
|x2|m/n−1(B(δ1)∆τ · s+ sÃ(x1, δ1) + |s|Dm

− q3|s|θ+1 − q4|s|η+1) +
1

2
k2 +

1

2
ϑ2 − kaϑ

2 +
1

2
kbϑ

2

+
1

2
∆τ2 + p2H̃

TĤ − q2
m

n
|x2|m/n−1sH̃TϖA(lp)

= −1

2
(2ka − k2b − 1)ϑ2 + p2H̃

T(H − H̃) +
1

2
∆τ2

− q2
m

n
|x2|m/n−1sξA +

1

2
k2 + cs2 + q2

m

n
|x2|m/n−1·

(B(δ1)∆τ · s+ |s|Dm − q3|s|θ+1 − q4|s|η+1)

(14)

Assuming the existence of a positive constant Φ such that
|Dm − ξA| ≤ Φ holds, we proceed to define µ and Z as
detailed below.

µ = min(c, (2ka − k2b − 1), 2p1p2)

Z1 =
1

2
k2 +

1

2
∆τ2 + q2

m

n
|x2|m/n−1(B|s∆τ |

+ |s|Γ− q3|s|θ+1 − q4|s|η+1)

Z2 = q2
m

n
|x2|m/n−1(q3|s|θ+1 + q4|s|η+1)

Then we have,

ℓ̇(t) = −µℓ(t) + Z1 − Z2 (15)

Based on Assumption 1, choose parameters ka, p1, p2 and
kb satisfying p1 > 0, p2 > 0 and 2ka − k2b > 1, then we
have ℓ̇ ≤ −µℓ + Z1 from (15), then, based on lemma 1,
the system states asymptotically converge to a region close
to zero. Relying on Assumption 1, we select parameters ka,
p1, p2 and kb that fulfill the conditions p1 > 0, p2 > 0 and
2ka − k2b > 1. As a result, from (15), we obtain ℓ̇ ≤ −µℓ+
Z1. Utilizing Lemma 1, the system states asymptotically
converge to a region near zero can be concluded.
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Fig. 3: The deflection of the double-clamped beam without
control
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Fig. 4: The deflection of the beam with Adaptive NN
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Fig. 5: The displacement of the beam at actuator position

4 Simulation analysis

To demonstrate the efficacy of the adaptive neural
network-based nonsingular fast terminal sliding mode con-
trol law (Adaptive NN NFTSMC) (10), numerical simula-
tions are conducted for a double-clamped beam actuated by
a piezoelectric actuator, considering input saturation and un-
known distributed disturbances.

By selecting appropriate temporal and spatial step sizes
for approximating the solution of the PDE system, the finite
difference method is employed to demonstrate the effective-
ness of the proposed control law (10).

To highlight the superiority of the proposed control laws,
we compare their performance under two distinct scenar-
ios. In the first scenario, the double-clamped beam vibrates
freely, exposed to distributed disturbances without any con-
trol voltage τsat(t) = 0. The displacement x1 at the actuator
position is presented in Figure 5, while the deflection output
ω(x, t) of the beam system is displayed in Figure 3. No-
tably, there are prominent periodic vibrations with multiple
frequencies along the beam, indicating the significant impact
of distributed disturbances.

The deflections of the double-clamped beam, controlled
by the proposed law (10), are depicted in Figures 4 to 6. As
evident from Figures 3 to 6, the proposed control law (10) ef-
fectively suppresses vibrations. By leveraging the adaptive
neural network NFTSMC law (10), we overcome the chal-
lenges posed by unknown dynamics in the double-clamped
beam system. Despite potential estimation errors associated
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Fig. 6: The state response of the beam at actuator position

with the adaptive neural network, the proposed control law
(10) demonstrates impressive performance in vibration sup-
pression. Furthermore, with the assistance of the compen-
sation system, the control law (10) introduced in this paper
adeptly manages input saturation in the piezoelectric actua-
tor.

5 Conclusion

This paper delves into the vibration control challenges en-
countered in a flexible double-clamped beam system. To
address these challenges, an adaptive neural network-based
nonsingular fast terminal sliding mode control scheme is
proposed specifically tailored for the double-clamped beam.
This approach effectively compensates for unknown dynam-
ics within the system model, thereby suppressing vibrations
in the beam. Simulation results demonstrate the exceptional
performance of our proposed control in mitigating beam vi-
brations. Given the complexities associated with the control
laws proposed, future work will focus on their practical im-
plementation.
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Dynamic SLAM Based on Neural Network and Depth
Information
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Abstract: In the current Simultaneous Localization and Mapping (SLAM) framework, it is assumed that the environment remains
static, meaning no changes in objects are detected. However, in real-world scenarios, encountering a dynamic environment where
objects exhibit movement is inevitable. To address this issue, and we incorporate real-time object detection network You Only
Look Once (YOLO) into our system to detect dynamic objects and mitigate their impact. Our approach utilizes an RGBD camera
and develops an algorithm based on depth information to effectively distinguish between background and dynamic objects.
By integrating an object detection thread into ORB-SLAM3, our system identifies dynamic objects within the environment
while proposing a novel depth weight selection algorithm to maximize the number of static feature points for improved data
associations. Finally, we evaluate tracking accuracy using publicly available TUM and BONN datasets.

Key Words: SLAM, YOLOV5, Depth Information

1 Introduction

SLAM (Simultaneous Localization and Mapping) is a
widely adopted robotics and autonomous vehicle system to
facilitate self-navigation and map creation in unfamiliar en-
vironments. The primary application areas of SLAM tech-
nology encompass AR/VR equipment, unmanned machines,
and autonomous driving. Consequently, SLAM has garnered
significant attention due to its immense value in enhanc-
ing the accuracy of the SLAM system. In the current vS-
LAM system, most detection scenarios assume static envi-
ronments where no objects move within the scene. However,
real-world environments predominantly consist of non-static
elements or dynamic surroundings. Within dynamic envi-
ronments, we categorize them into high-dynamic and low-
dynamic settings. While existing vSLAM systems combined
with target detection perform well in low-dynamic environ-
ments, they encounter substantial trajectory errors in high-
dynamic settings.

To address this issue, researchers propose tracking only
static feature points while disregarding dynamic feature
points for dynamic problems. Even with dynamic feature
points, there needs to be more data association for pose
estimation within high-dynamic scenarios, resulting in
significant trajectory errors. In object detection networks,
instance segmentation has high accuracy. However, achiev-
ing a balance between detection accuracy and speed proves
challenging with instance segmentation techniques such as
Mask-RCNN and SegNet. In light of this challenge, we
present a real-time approach that leverages RGB-D camera
characteristics along with depth information provided by
it to achieve an equivalent performance level as instance
segmentation within a SLAM system. We propose an
algorithm that separates background regions from dynamic
targets by assigning each detection box a depth weight,
ensuring the removal of only the feature points belonging
to dynamic targets while retaining those associated with
the background region. This ensures that sufficient feature

This work was supported by the National Natural Science Foundation
of China (61973002), and the Anhui Provincial Natural Science Foundation
(2008085J32).

points are available for matching purposes.
The main contributions of this paper are as follows:

• We propose a real-time visual SLAM system that
operates effectively in high dynamic environments.

• We introduce a algorithm for utilizing depth values, en-
abling the distinction between background points and
dynamic objects, the tracking accuracy can be improved
by increasing the utilization of feature points.

2 Related Work

2.1 VSLAM
The first visual slam system for a monocular camera was

developed by Davison et al[1].The first visual slam system
based on keyframe bundle adjustment was developed by
Klein et al. Mur-Artal et al.[2]. proposed a system with
three threads called ORB-SLAM [3], subsequent versions of
ORB-SLAM2[4],ORB-SLAM3 [5], and our system was de-
veloped on the basis of ORB-SLAM3. The ORB-SLAM3
adds two major innovations: a feature-based, tightly inte-
grated visual-inertial SLAM that relies entirely on maximum
a posteriori probability estimation. The second is the multi-
map system, which depends on a new location identification
method and improves recall rates.

2.2 Dynamic Object Recognition
Dynamic object recognition is vital in a highly dynamic

environment in the SLAM system. The recognition of dy-
namic objects is divided into two stages and one-stage meth-
ods. Compared with the two-stage method, the one-stage
method predicts the mask directly without region suggestion.
Compared with the two methods, the two-stage method has
higher detection and segmentation accuracy, but the speed is
slower. The one-stage method is faster than the two-stage
method, but the detection accuracy has an inevitable loss.

2.3 Dynamic SLAM
In the two-phase approach, both Mask-RCNN and

Blend-Mask[6–13] demonstrate excellent performance.
DynaSLAM[14], proposed by Berta Bescos et al., utilizes
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the Mask-RCNN network for semantic segmentation and
achieves remarkable accuracy. DynaSLAM II[15] employs
instance semantic segmentation, and ORB features to track
dynamic objects. The optimization of static scenes and
dynamic objects is carried out in conjunction with the
camera and moving agent’s trajectory through a novel
beam adjustment proposal. However, including multiple
view geometry stages introduces additional deceleration
primarily due to the region growth algorithm. Background
repair also introduces delays. The drawback of employing a
two-stage approach is its inability to operate in real-time. In
contrast, within the one-stage approach, Crowd-SLAM[16]
demonstrates that an object detection-based method out-
performs a semantic segmentation-based method when
dealing with moving objects without predefined informa-
tion. Nevertheless, feature points are abundant within the
bounding box, which poses challenges; erasing all these
points would result in insufficient data association for atti-
tude estimation, leading to the failure of the SLAM system.
To balance real-time system performance and detection
accuracy, we selected YOLOV5 as our one-stage method
for dynamic object recognition. Combining it with depth
information provided by RGBD cameras, we retain feature
points belonging to background regions within the detection
box while eliminating only those associated with dynamic
objects to establish the maximum data associations possi-
ble. Our system has been evaluated on TUM and BONN
datasets, where results indicate comparable performance to
instance segmentation methods.

3 Methodology

3.1 System Framework Overview
The framework of our proposed method is illustrated in

Figure 1, which comprises four threads: Object detection,
tracking, local mapping, and loop closing. The RGB-D im-
age is initially inputted into the system and processed by
object detection and tracking threads. The tracking thread
initially extracts ORB feature points from the image. These
points are combined with depth information from the RGB-
D image and target detection information provided by the
target detection thread. By doing so, dynamic objects within
the image can be effectively separated from their background
counterparts while ensuring that feature points belonging to
these dynamic objects are eliminated to establish more ro-
bust data associations.

3.2 Dynamic Object Recognition
3.2.1 Depth Image

Depth image, also known as range image, refers to the
image that takes the distance (depth) from the image col-
lector to each point in the scene as the pixel value, which
directly reflects the geometry of the visible surface of the
scene. In the image frame provided by the depth data stream,
each pixel represents the distance from the object closest to
the camera plane to the object at the specified (x, y) coor-
dinate in the depth sensor’s field of view.The depth maps in
the TUM dataset are stored in PNG format as 640x480 16-
bit monochrome images. The depth images are scaled by a
factor of 5000, i.e., a pixel value of 5000 in the depth image
corresponds to a distance of 1 meter from the camera.For the

place where the pixel value of the center point of the detec-
tion box is 0, the pixel value is supplemented.The pixel value
supplement method is shown in the Figure 2:

P1 P2 P3

P4 0 P6

P7 P8 P9

P1 P2 P3

P4 min P6

P7 P8 P9

P1 P2 P3

P4 0 P6

P7 P8 P9

0 0 0

0 0 0

0 0 0

Fig. 2: The pixel value of the center point of the detection
box is 0, and there are two cases. The first case is that the
surrounding pixel value is not 0, and the pixel value is the
minimum value of the surrounding pixel value except 0. In
the second case, the surrounding pixel values are all 0, then
the center point is 0

Where min is expressed as:

min = min {P1,P2,P3,P4,P6,P7,P8,P9}

3.2.2 Depth Weight

When there are moving objects in the environment, it can
cause errors in our SLAM system, specifically in the match-
ing of ORB feature points. We must identify and remove
the feature points extracted from these objects to address
this issue to reduce mismatches. However, using a Mask-
RCNN network, such as DynaSLAM segmentation, can be
time-consuming and affect real-time performance. There-
fore, we use YOLOV5 as our target detection network and
train it using the coco dataset. This allows the trained net-
work to identify 80 categories, including people designated
as dynamic objects. In some cases, relying solely on ob-
ject detection algorithms to remove feature points can result
in fewer remaining features or even an inability to extract
them altogether, especially in highly dynamic environments
where dynamic objects occupy a significant portion of the
image. To address this issue, we use depth maps provided by
RGBD cameras to jointly assess and assign a depth weight
d̄w to each detected area of a dynamic object. This effec-
tively distinguishes the dynamic object from the background.
The formula for d̄w is as follows:

1188  



RGB 
image

Depth 
image

Dynamic 
object 

recognitio
n

Extract 
ORB

Prior 
dynamic

Depth 
weight

Dynamic 
Keypoint 

Filter

Track 
Local Map

New 
Keyframe 
Decision

LOCAL MAPPING

LOOP CLOSING

Fig. 1: This represents the framework of our system, where four primary threads operate concurrently. The object detection
thread supplies dynamic target information from the image, while the Tracking thread incorporates depth data to eliminate
dynamic feature points.

dw =



if dm > 0, dc > 0, dm − dc > σ
0.3 ∗ dm + 0.7 ∗ dc

if dm > 0, dc > 0, dm − dc < σ
1.1 ∗ dc

if dm > 0, dc = 0
dmax

if dc = 0, dc = 0
max

(1)

where d̄w is the depth weight of the bounding box, dm is
the maximum boundary depth, and dc is the center depth.
The physical meaning refers to the establishment of depth
between a dynamic object and the background when there is
a significant distance between them. A weighted average is
then used to indicate that the dynamic object is closer to the
background feature points, while retaining as many back-
ground feature points as possible. In cases where the dy-
namic object has a strong connection with the background,
a depth weight of 1.1 times the depth value of the dynamic
object is employed. However, in practical situations, there
are points with invalid depth values which make it inconve-
nient for us to distinguish their significance. During con-
servative periods, when an invalid depth value occurs, it is
represented using an invalid depth value. Specifically, if
the central point’s depth value is invalid, we search for and
replace it with the minimum value among its surrounding
points’ depths; only if this substitution proves invalid will we
consider the central point’s own depth invalid. When both
maximum and center depths represent potential background
points due to close connectivity between a dynamic object
and its background (with small differences in their depths),
it becomes necessary to determine whether or not the cen-
ter point represents a dynamic object and whether or not its
corresponding depth matches that of its minimum bounding

box; in such cases, we use this minimum bounding box’s
depth value instead of that of the center point itself. When
the center depth and corner depth are not effective, the max-
imum depth is used for conservative reasons. These pro-
cessing above steps ensure robustness in determining depth
weights while adapting effectively within various dynamic
environments.

4 Experiments and Results

To compare the proposed methodologies, we assess our
system’s performance using RGB-D and BONN datasets and
evaluate the tracking capabilities of different SLAM systems
through publicly available TUM datasets and Bonn datasets
to quantify our system’s effectiveness in highly dynamic sce-
narios.

4.1 Evaluation Metrics
In the experiment, we use absolute trajectory error (ATE)

for comparison, which is very suitable for measuring the
performance of VSLAM. ATE [43] is used to evaluate the
global consistency of the estimated trajectory and compare
the absolute distance between the translation component of
the estimated trajectory and the real trajectory on the ground.
Formula 2 writes the calculation of ATE at time step i:

ATEi = E−1
i TGi (2)

where E is the estimated trajectory, G represents the ground
truth, and T is the transformation that aligns the two trajec-
tories.

By comparing root mean square error (RMSE), standard
deviation (STD), mean and median in ATE.

For a sequence of N postures, the RMSE of ATE is given
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Fig. 3: TUM datasets absolute trajectory error

by equation 3

RMSE (ATE1:N ) =

√√√√ 1

N

N∑
i=1

∥trans (ATEi)∥2 (3)

The calculation of each sequence is performed through
multiple iterations, as dynamic objects tend to amplify the
uncertainty effect. Our method is compared against ORB-
SLAM3, DynaSLAM, and Crowd-SLAM.

4.2 TUM Dataset
The TUM RGB-D dataset[17] comprises sequences of

images captured by an RGB-D camera in a dynamic envi-
ronment, accompanied by precise, accurate trajectories and
camera parameters. Dynamic SLAM primarily serves to as-
sess the performance in dynamic environments. We have
selected data from static, low-dynamic, and high-dynamic
environments to evaluate and test the system’s capabilities.
In the fr3/walking-halfspare sequence, two individuals tra-
verse an office scene while manually moving the Asus Xtion
sensor along three directions (xyz) while maintaining a con-
sistent direction. This sequence was designed to gauge the
robustness of visual SLAM and mileage computing methods
when dealing with fast-moving dynamic objects across sig-
nificant portions of the visible scene. We compared the mo-
tion trajectories of ORB-SLAM3, DynaSLAM, and Crowd-

Table 1: TUM Dataset Absolute Trajectory

Sequence fr2/d/w/p fr3/s/h fr3/s/s fr3/w/half fr3/s/xyz fr3/w/xyz

O
ur

s

RMSE 0.0767 0.0522 0.0068 0.0286 0.0144 0.0151

Mean 0.0750 0.0306 0.0060 0.0237 0.0127 0.0133

Median 0.0755 0.0196 0.0053 0.0200 0.0114 0.0121

S.D. 0.0162 0.0422 0.0032 0.0165 0.0067 0.0075

O
R

B
-S

L
A

M
3 RMSE 0.0753 0.0188 0.0094 0.1974 0.0093 0.2774

Mean 0.0734 0.0157 0.0081 0.1850 0.0080 0.2158

Median 0.0734 0.0137 0.0072 0.1753 0.0071 0.2065

S.D. 0.0166 0.0103 0.0048 0.0688 0.0048 0.1742

D
yn

aS
L

A
M

RMSE 0.0709 0.0208 / 0.0289 0.0141 0.0153

Mean 0.0690 0.0183 / 0.0242 0.0124 0.0131

Median 0.0671 0.0163 / 0.0205 0.0112 0.0117

S.D. 0.0166 0.0099 / 0.0154 0.0067 0.0075

C
ro

w
d-

SL
A

M RMSE 0.0741 0.0263 0.0119 0.0354 0.0185 0.0177

Mean 0.0718 0.0243 0.0101 0.0307 0.0157 0.0153

Median 0.0682 0.0244 0.0088 0.0275 0.0140 0.0136

S.D. 0.0185 0.0100 0.006 0.0175 0.0097 0.0089
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Fig. 4: Bonn datasets absolute trajectory error

SLAM. Figure 3 shows the motion of four different SLAM
systems in fr3/w/half. TABLE 1 shows the running ef-
fects of different data sets on different SLAM systems. In
fr3/s/h, and fr3/s/xyz, where static scenes are the majority,
ORB-SLAM3 works best. For the high dynamic sequences
fr2/d/w/p,fr3/s/s,fr3/w/half, and fr3/w/xyz, our method and
DynaSLAM have good results, but our system is real-time.

4.3 Bonn RGB-D Dynamic Dataset
The Bonn dataset[18] is a highly dynamic sequence of in-

dividuals walking and performing various tasks, surpassing
the TUM dataset in terms of challenging scenarios. It was
recorded using an Asus Xtion Pro Live Sensor and an Op-
titrack Prime 13 motion capture system to provide accurate
groundtruth data.

Moreover, it shares the same evaluation metrics as the
TUM dataset. Among them, Figure 4 shows the trajectory
errors of different SLAM in the bolloon/bolloon2 data set,
and Table 2 shows the operation effects in three different
sequences of bolloon, bolloon2, and crowd. In the crowd se-
quence, Crowd-SLAM handles crowded scenes better than
our method, and in the balloon, balloon2 sequence, a man
shooting a balloon scene, our method has a good effect with
DynaSLAM.

Table 2: BONN Dataset Absolute Trajectory

Sequence balloon2 crowd balloon

O
ur

s

RMSE 0.0282 0.0222 0.0255

Mean 0.0248 0.0180 0.0227

Median 0.0211 0.0149 0.0225

S.D. 0.0131 0.0122 0.0101

O
R

B
-S

L
A

M
3 RMSE 0.2126 0.8557 0.0554

Mean 0.1649 0.7321 0.0414

Median 0.1289 0.7278 0.0329

S.D. 0.1342 0.4431 0.0368

D
yn

aS
L

A
M

RMSE 0.0292 0.0207 0.0271

Mean 0.0243 0.0197 0.0252

Median 0.0219 0.0166 0.0236

S.D. 0.0162 0.0096 0.0099

C
ro

w
d-

SL
A

M RMSE 0.0308 0.0181 0.0303

Mean 0.0256 0.0153 0.0268

Median 0.0213 0.0149 0.0246

S.D. 0.0149 0.0079 0.0128
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5 Conclusions

We propose a visual SLAM system. Based on ORB-
SLAM3, we add a method of target detection network com-
bined with deep information, which makes the system ro-
bust in a highly dynamic environment. Compared with
the existing SLAM system, our system has relatively high
accuracy compared with the DynaSLAM system on TUM
dataset. However, compared with DynaSLAM, our sys-
tem has higher real-time performance. On BONN data set,
crowd-SLAM achieves better results in Crowd environment,
but our SLAM system achieves good accuracy in other se-
quences.
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Abstract: This paper proposes a high-order fully actuated (HOFA) control approach for the output position control of two-
mass systems (TMSs) based on extended state observer (ESO). TMSs belongs to a class of underactuated mechanical systems, 
which can be converted into an HOFA model using variable elimination. Based on the feature of HOFA model, it is extremely 
simple to solve the position control law such that a desired tracking error system can be achieved. To handle the control issues 
of high-order derivatives and unknown disturbances, a linear ESO is employed for state estimation and active disturbance re-
jection control, where the lumped disturbance is treated as an extended system state. The theoretical stability of control system 
is analyzed with the help of sliding manifold. Comparative simulations are performed to demonstrate the effectiveness of the 
proposed approach. 
Key Words: Extended state observer (ESO), High-order fully actuated (HOFA) approach, Output position control, Two-mass 
system (TMS) 
 

 
 

1 Introduction 
With the rapid development of high-end automation 

equipment such as CNC machine tools, intelligent robots 
and aerospace vehicles, the performance requirement of 
motion control systems becomes higher and higher [1-3]. 
In industrial applications, servo motors have been widely 
applied for better dynamical properties due to their various 
advantages including fast response, low noise, low cost, 
high efficiency and torque to inertia ratio [4-6]. From the 
practical viewpoint, transmission parts, e.g., gear reducer, 
belt and ball screw are always applied in servo systems to 
facilitate the driving control, in which the motion axes 
should be connected by elastic couplings. These elastic 
elements in transmission system yield the so-called flexible 
servo (FS) system [7]. Two-mass system (TMS) is a popu-
lar model for the investigation of FS systems. In the pres-
ence of uncertainties and disturbances, high-gain control is 
one of the simplest and most effective ways to achieve the 
high control accuracy. However, applying high control 
gains is more likely to excite the mechanical resonance of 
TMS, which may deteriorate the achieved control perfor-
mance, and even lead to instability. The high-performance 
controller design of TMSs is still a challenge task for con-
trol engineering practice.  

 
*This work was supported in part by the National Natural Science 

Foundation of China (62203206, 61333003, 62163012); in part by the 
Major Program of the National Natural Science Foundation of China 
(61690210, 61690212); in part by the Shenzhen Key Laboratory of Con-
trol Theory and Intelligent Systems under Grant 
ZDSYS20220330161800001; in partly by Shenzhen Science and Tech-
nology Innovation Commission (JSGG20220831110605009); and in part 
by the Science Center Program of the National Natural Science Founda-
tion of China under Grant 62188101. 

There is no doubt that the cascaded P/PI controller plays 
a dominant place in industrial servo systems, which is 
composed of current, velocity and position control loops 
[8]. The cascaded control possesses many advantages such 
as simple structure, intuitive parameter tuning and accepta-
ble control performance, but it is difficult to directly handle 
the mechanical resonance in the FS systems. Notch filter is 
the most applied technique to suppress the system vibra-
tions at the resonant frequency in practice, which is a pas-
sive approach without an additional sensor. However, it is 
very difficult to obtain exact resonance frequency in actual 
systems due to the parameter uncertainties with environ-
ment change. The deviation between the notch frequency 
and the actual resonant frequency may induce serious sys-
tem oscillations or even result in unstable system [9].  

Different from the classical frequency-domain control 
design method, modern control theory based on state-space 
equation is a time-domain technique, which focuses on the 
system state analysis and response. State-space approach 
has stayed in an absolutely dominant place in the field of 
systems and control [10]. Based on the state-space frame-
work, a variety of advanced methods have been investigat-
ed for the control design of TMSs, such as model predic-
tive control (MPC) [11], sliding model control (SMC) [12], 
active disturbance rejection control (ADRC) [13], robust 
adaptive control [14]. Besides, artificial intelligent tech-
nologies like fuzzy logic and neural network have also 
been applied for the high-performance control of TMSs 
[15], [16]. It is worth noting that TMS is a classical under-
actuated mechanical systems, in which the number of con-
trol inputs is less than the motion degrees of freedom 
(DOFs). State-space approach transforms the original sys-
tem into an augmented first-order system, which is quite 
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suitable for the solution of state observation and response, 
but does not provide much convenience for the controller 
design. 

To overcome the drawbacks of first-order state-space 
method, a novel high-order fully actuated (HOFA) ap-
proach is proposed by Duan and has rapidly attracted wide-
spread attention in researches [17-21]. The full-actuation 
feature of HOFA models ensures a more direct control 
strategy for a desired closed-loop response, rendering them 
particularly favorable in fields like mechanical engineering, 
aerospace, and electrical systems. As a practical numerical 
example, HOFA approach has been used to synthesize the 
control law of a compliant robot system in which the me-
chanical subsystem is formulated as a TMS model [18]. 
Furthermore, comparative experiments on an FS system 
driven by servo motor have been carried out to the effec-
tiveness and superiority of HOFA approach [7], [22]. 
HOFA approach possesses many advantages such as sim-
plicity, straightforward and effectiveness, but suffers from 
some practical issues since the direct derivatives of signals 
cannot be realized in physics. It seems that the high-order 
derivatives of signals can be obtained by using the entire 
system information based on the model transformation. 
However, the full-state feedback requires the additional
sensor at the end effector, which may encounter the cost
increase and assembly problems.

Motivated by the aforementioned difficulties, this article
presents an HOFA approach for the output position control 
of TMSs based on extended state observer (ESO). Firstly, 
the dynamics of TMS is transformed into an HOFA model 
via variable elimination method. Then, the control law for 
trajectory tracking can be synthesized in a quite simple way
for a desired tracking error system, in which the control 
gains are explicitly solve by using a bandwidth parametric 
method. To overcome the control issues of “differential 
explosion” and unknown disturbances, a linear ESO is 
constructed for online state estimation and disturbance 
compensation to improve the tracking control accuracy in 
the presence of uncertainties and disturbances. Furthermore, 
the theoretical stability is analyzed to ensure the practical 
exponential stability of the control system. Finally, com-
parative simulations have been carried out to verify the 
effectiveness of the proposed control approach.

2 Problem Formulation
Fig. 1 shows the schematic diagram of TMS. As present-

ed in [22], the dynamical differential equation of TMS can 
be described as + + = ( ), (1)+ + ( ) = , (2)
where and denote the angular position of motor and 
load, respectively, and are the moment of inertia of 
motor side and load side, respectively, and represent
the viscous coefficient of motor side and load side, respec-
tively, is the transmission stiffness, is the output 
torque of motor, denotes the disturbance. 

The control goal of this paper is to design a control law 
such that the system output can accurately track a given 

smooth reference trajectory . For the consideration of 
practical use, the proposed control scheme is expected to 
have simple structure and reliable control performance, 
with intuitive parameter tuning and easy implementation.

It should be noted that there inevitably exist various un-
certainties and disturbances in actual systems. To facilitate 
the control system design and analysis, it is assumed that 
the plant parameters are bounded constants and the system 
disturbances is differential-bounded. Only the system out-
put is the measured. The desired trajectory is smooth 
enough and its -order derivatives are known in prior. In 
addition, the dynamics of internal current control loop can 
be ignored due to its much faster response than the me-
chanical subsystem [8], leading to that . (3)
3 Controller Design

3.1 HOFA control approach

According to the variable elimination method in [22], it 
can be obtained from (1) that the variable and its first-
order and second-order derivatives can be respectively 
expressed as = + + + / , (4)= ( + + + )/ , (5)
and = ( ) + + + / . (6)

Applying the expressions (4)-(6) to eliminate the varia-
bles , and in (2), yields the HOFA model of TMS 
as ( ) + + + = (7)
where , , , and are respectively given by= ( + )/( ),= ( + + )/( ),= ( + )/( ),= /( ),= + + /( ). (8)

With the fully actuated control property of HOFA model,
the control law for the trajectory tracking of TMS in (1) 
and (2) can be designed as follows:

Fig. 1.  The schematic diagram of TMS.
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= 1 ( ) ( ) + ( ) , (9) 

where  is the tracking error,  ( = 0, 1, 2, 3) 
are the positive control gains. 

Substituting (9) into (7), yields the following tracking 
error system: 

( ) + ( ) = . (10) 

In this paper, the bandwidth parameterization method is 
used to design the control gains. We can prescribe the 
characteristic polynomial of (10) as ( ) = ( + ) , (11) 

where  is the bandwidth parameter of the closed-loop 
system.  

According to the relationship between (10) and (11), the 
control gains can be directly obtained as  = 4!! (4 )! , = 0,1, 2, 3. (12) 

Remark 1: The controller (9) is a composite control 
scheme for trajectory tracking, which is constituted by two 
parts: one is the compensation control to remove the origi-
nal dynamics, and the other is the control effort to yield the 
desired tracking error dynamics. Owing to the control 
property of the HOFA model (7), an explicit solution can 
be obtained in a quite simple way for the controller design 
of TMSs, in which the control gains are directly obtained 
via the bandwidth parametric method with only one param-
eter ( ) required to be tuned. That provides a great con-
venience for control engineering practice.  

It is well-known that the ideal derivatives of signals are 
physically unrealizable and the numerical differentiation 
easily results in the “differential explosion” problem. 
Therefore, the high-order derivatives of system output  
cannot be directly obtained. The differential signals seem 
to be obtained via the model transformation. However, 
actual systems are inevitably subject to parameter uncer-
tainties and unknown disturbances, which may have a sig-
nificant impact on the state estimation, as well as the track-
ing accuracy.  

3.2 HOFA control approach  

Let [    ] =     be the state vec-
tor. The HOFA model (7) of TMS can be transformed into 
a state-space equation given by  = ,= ,= ,= + , (13) 

where  is the estimation value of ,  denotes 
the estimation error, ( + + )

 is the lumped disturbance. 
Let  be the extended system state, and define 

( ) = . Then, the system (13) can be written in an 
augmented state-space form as = ,= ,= ,= + ,= ( ), (14) 

and the linear ESO can be constructed as = + ( ),= + ( ),= + ( ),= + + ( ),= ( ),
(15) 

where  denote the observed values of ,  are the posi-
tive observer gains, = 1, 2, 3, 4, 5. 

Let  ( = 1, 2, 3, 4, 5) be the state estimation 
errors. Subtracting (15) from (14) yields the state estima-
tion error dynamics as  = ,= ,= ,= ,= ( ) .

(16) 

Applying the variable elimination method, the system 
(16) can be transformed into  

( ) + ( ) = ( ). (17) 

Similar to the closed-loop controller design, the band-
width method is employed to design the observer gains. We 
can specify the characteristic polynomial of (17) as ( ) = ( + ) , (18) 

where  represents the observer bandwidth parameter.  
Combining (17) and (18), the observer gains can be ex-

plicitly solved as  = 5!! (5 )! , = 1, 2, 3, 4, 5. (19) 

Lemma 1 [23]: Given that h(t) is bounded, there exist 
some constants > 0 and a finite time  > 0 such that | | , = ( 1 ), = 1, 2, 3, 4, 5   , (20) 

where ( ) denotes an infinitesimal amount, c is a positive 
integer. 

Remark 2: The result in Lemma 1 shows that the estima-
tion errors of system states are finally bounded by the ob-
server bandwidth . For the bounded h(t), the estimation 
errors are guaranteed to satisfy that 0 ( = 1, 2, 3, 4, 5) 
as 0  and . Applying the estimated states for 
the controller design can effectively relieve the “differen-
tial explosion” problem in the HOFA approach. Besides, 
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the estimated value of the extended system state  can 
serve as an adaptive law to bridge the gap between the 
nominal model and actual systems, which actively rejects 
the lumped disturbances such that an improve tracking 
control accuracy can be achieved. 

3.3 HOFA control based on linear ESO  

According to the variable elimination method in [22], it 
can be obtained from (1) that the variable  and its first-
order and second-order derivatives can be respectively 
expressed as  

With the estimated values of system states and the 
lumped disturbance, the control law for trajectory tracking 
can be re-designed as  

= 1 ( ) + + ( ) , (21) 

where ( ) ( ), = 1, 2, 3. 
To facilitate the control system analysis, we can design 

the following sliding manifold. = + 3 + 3 + (22) 

Based on the Laplace transformation, the expression (22) 
can be rewritten as  ( ) = 1( + ) ( ). (23) 

It is clear from (23) that  is the low-pass filtered value 
of  satisfying | | | | overall the frequency ranges.  

Theorem 1: Assume that h(t) is bounded, the control law 
 (21) based on the linear ESO (15), with the control gains 

given by (12) and the observer gains given by (19), guaran-
tees that the TMS in (1) and (2) has practical exponential 
stability. Furthermore, after the finite time , there exists a 
constant +  such that  ( ) < ( ) + (1 ), (24) 

where .  
Proof: Substituting (21) into (14) yields the tracking er-

ror system as 

( ) + ( ) = + . (25) 

Taking the derivative of  yields  = ( ) + 3 + 3 + , (26) 

Substituting (25) into (26) and applying the control gains 
in (12), yields  

= + + . (27) 

Applying the result in Lemma 1, after the finite time , 
one has  

+ + . (28) 

Integrating (28) over [  ], yields  

( ) < ( ) + + ( ) ,  (29) 

which implies the inequality (24) is satisfied. According to 
the definition in [13], it is easy to ensure that the control 
system has practical exponential stability. The proof is 
completed. 

Remark 3: The result in Theorem 1 suggests that under 
the proposed controller (21), the sliding manifold  expo-
nentially converges to a region around the origin at the 
convergence rate of , and its upper bound is determined 
by the controller bandwidth  and the observer bandwidth 

 simultaneously. It can be known from (20), (23) and (24) 
that applying larger  and  can significantly reduce the 
tracking error. Unfortunately, too large  and  will 
induce the ignored current-loop dynamics and discretiza-
tion errors, which may deteriorate the achieved control 
performance and even damage the system stability. In prac-
tice, the parameters  and  should be carefully tuned 
with a trade-off between the tracking accuracy and the 
robust stability property.  

4 Simulation Validation 
In the section, the comparative simulations have been 

conducted to demonstrate the effectiveness of the proposed 
approach. The simulation program of control system is 
implemented via MATLAB/Simulink software on a com-
puter with Intel i7-13700K CPU and 32 GB of RAM. The 
parameter values of TMS presented in (1) and (2) are 
shown in Table 1. Based on the normal parameters, it can 
be easily obtained that = 2.0 × 10 , = 2.67 × 10 ,  = 20 and = 1.67 × 10 . 

Table 1  Parameter values of TMS 

Parameters Values 
 0.4 10-4 kg m2 

 6.0 10-4 Nm/(rad/s) 
 1.2 10-4 kg m2 
 6.0 10-4 Nm/(rad/s) 
 8 Nm/rad 

 
We design the following two controller for comparison.  

1) C1: This is the tracking control law (9) via the HOFA 
approach. In this control scheme, the derivatives of out-
put position are estimated via a numerical method, in 
which a low-pass filter with a time constant 0.001 is 
applied for each derivative to attenuate the high-
frequency noise and discretization errors. The closed-
loop bandwidth parameter is set as = 160 by trial-
and-error tuning. It is clear from (12) that the control 
gains are set as = 6.55 × 10 , = 1.64 × 10 , = 1.54 × 10  and = 640.  
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2) C2: This is the proposed tracking control law (21) 
based on HOFA approach, where the system states and 
the lumped disturbance are estimated via the linear ESO 
(15). For fairness, the closed-loop bandwidth in this 
control scheme is chosen as the same to C1, i.e., =160. The observer bandwidth parameter is selected as = 1500. By using the bandwidth parameterization 
method, it is easy to obtain the observer gains from (19).

4.1 Trajectory tracking with uncertainties

Shown in Fig. 2, a smooth trajectory designed as =10(1 )(1 cos(2 )) rad is applied in this trajecto-
ry tracking control test. Two types of parameter uncertain-
ties are tested: one is the uncertain in which the load 
inertia is changed from 1.2 × 10 kg m to 2.4 ×10 kg m , and the other is the uncertain by injecting 
a damping force of 4.0 × 10 Nm/(rad/s) into the sys-
tem.

Figs. 3 and 4 presents the tracking errors and control in-
puts of C1 and C2 under the uncertain and , respec-
tively. It’s can be seen that C2 has achieved a much better 
tracking accuracy than C1 under the two parameter uncer-
tainties. The comparative trajectory tracking control test 
demonstrates the superiority of the proposed HOFA ap-
proach based on ESO.

4.2 Output regulation under disturbances

In the subsection, the output regulation test of C1 and C2 
is carried out under two time-varying disturbances: one is 
the trapezoidal disturbance with a slope of 0.4 Nm/s; the 
other is the sinusoidal disturbance given by =0.1 sin(2 ) Nm. 

The simulation results under the two added disturbances
are shown in Figs. 5~6, respectively. It can be known that
C2 has a much better control accuracy than C1 in the pres-
ence of both trapezoidal and sinusoidal disturbances, which 
demonstrates that C2 obtains a much better disturbance 
rejection performance. The reason can be attributed to that 
the linear ESO can accurately estimate the time-varying 
disturbances. When the estimated valued is employed for 
compensation control, the impact of disturbances can be 
significantly attenuated. As a result, C2 obviously im-
proves the control accuracy under time-varying disturb-
ances.

Fig. 2.  Desired trajectory.

Fig. 3.  Trajectory tracking under uncertain .

Fig. 4.  Trajectory tracking under uncertain .

Fig. 5.  Output regulation under trapezoidal disturbance.

Fig. 6.  Output regulation under sinusoidal disturbance.

1197  



  

5 Conclusion 

This paper proposes an HOFA approach for the output 
tracking control of TMSs based on ESO. The dynamics of 
TMS is a class of under-actuation mechanical systems, 
which can be transformed into an HOFA model via varia-
ble elimination method. Based on the full-actuation feature 
of HOFA model, the tracking control law can be synthe-
sized in a very simple way to achieve a desired tracking 
error system, where the control gains are explicitly solved 
via the bandwidth parameterization method. To handle the 
signal differential problem, a linear ESO is constructed 
online state estimation and real-time disturbance compen-
sation. The stability analysis has ensured the practical ex-
ponential stability of the control system. Comparative sim-
ulation results have demonstrated that the proposed HOFA 
approach based on ESO can achieve a much higher track-
ing accuracy than the standard one in the presence of pa-
rameter uncertainties and unknown disturbances.  
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Tracking control of motion control systems with disturbance
observer based on high-order fully actuated system approach
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Abstract: This paper investigates the tracking problem of motion control systems driven by permanent magnet synchronous
motors (PMSMs) in the presence of unknown disturbances. In contrast to using the model of state space methods, this study
adopts a different method by initially transforming the model of a motion control system driven by PMSM into a high-order fully
actuated (HOFA) system. Subsequently, a controller is designed based on the HOFA system approach, and a closed-loop linear
system with disturbances is obtained. To handle the impact of disturbances, a disturbance observer is employed to estimate the
disturbance. The validity of the proposed algorithm is assessed through theoretical analysis, and a numerical simulation is also
conducted to further support the findings, thereby underscoring the effectiveness of the proposed approach.

Key Words: Disturbance observer, High-order fully actuated system approach, Motion control systems, Tracking control

1 Introduction

In recent years, with the development of power electronic
devices, alternating current (AC) drive systems have gradu-
ally gained attention due to their performance being compa-
rable to direct current (DC) drive systems. As a driving force
in AC drive systems, permanent magnet synchronous mo-
tors (PMSMs) have been widely applied in industrial drive
systems [1], and electric vehicles [2] due to their high effi-
ciency, high power density, and excellent dynamic response
characteristics. However, due to factors such as the motor’s
inherent structure, the ripple torque is inevitably present. The
ripple torque significantly affects the speed stability and po-
sition tracking accuracy of PMSM. Therefore, rejecting dis-
turbances is essential to achieve high-precision control of the
motor.
For time-periodic disturbances, learning control methods

such as repetitive control [3, 4] and iterative learning [5, 6]
have been used for disturbance parameter identification and
rejection. The steady-state speed ripple periodic disturbance
problem of servo system was investigated in [3]. Different
from the fuzzy theory for mitigating periodic disturbances
in [3], a novel method called the input matching least mean
square (LMS) adaptive filter (IMLMS-AF)was introduced to
address the challenges posed by spatially cyclic disturbances
in [4]. The study conducted by Steinberg et al. in [5] was fo-
cused on investigating the effectiveness of iterative learning
active flow control in mitigating the effects caused by peri-
odic disturbances. In a related study, Wu and his collabo-
rators [6] proposed a novel circularly orthogonal projection-
based iterative learning control method to address spatially
cyclic disturbances. Their method aims to tackle the chal-
lenges posed by such disturbances and enhance the control
performance in the presence of spatial variations.

This work was partially supported by the National Natural Science
Foundation of China under Grant 62373128, the Science Center Program of
National Natural Science Foundation of China under Grant 62188101, the
Natural Science Foundation of Heilongjiang Province of China under Grant
LH2021F025, the Basic Research Plan of Shenzhen of China under Grant
JCYJ20200109113429208, and the Heilongjiang Touyan Team Program.

Although the learning control methods obtain accurate in-
formation about the interference amplitude and location, it
is not straightforward. For time-periodic disturbance, the
control signal opposite to the disturbance is generally intro-
duced into the traditional method of disturbance rejection and
superimposed to counteract the effects of disturbance. For
example, a novel composite controller was presented to im-
prove the disturbance rejection property of the PMSM in the
speed regulation problem in [7], and the estimated value of
the designed extended state observer (ESO) was used in the
feed-forward compensation. Furthermore, a composite ter-
minal sliding mode control method based on disturbance ob-
server was proposed in [8] to investigate the speed regulation
problem of PMSM. A smaller value for the switching gain
without sacrificing disturbance rejection performance was
obtained by disturbance estimation for feed-forward com-
pensation. For a high-order descriptor linear system, a con-
troller composed of a decoupling controller and a disturbance
observer was proposed in [9].
It is noteworthy that the majority of advanced control tech-

niques developed for servo system rely on the utilization of
first-order state-space models. The state-space approach pri-
marily focuses on the state vector, making it highly suitable
for response analysis. However, it does not offer significant
convenience in deriving control laws [10–13]. Moreover,
motion control systems are typically represented through
physical laws such as Newton’s law or Lagrange’s equation.
The inclusion of background information on system dynam-
ics facilitates clear and straightforward control design and
analysis. Nevertheless, when adopting the first-order system
approach, all the relevant background information is omitted
from the original model. In contrast to the conventional ap-
proach of employing first-order state space equations, Duan
has put forth a pioneering method called the HOFA system
approach. This novel approach offers a promising solution
for addressing a wide range of control problems, such as
fault-tolerant control [14, 15], predictive control [16, 17],
event-triggered control [18] and so on. In addition to theo-
retical advancements, the practical application of the HOFA
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system approach has also witnessed significant progress in
the field of engineering. A HOFA control approach was pro-
posed for flexible servo systems and the singular perturbation
method was investigated to deal with the high-order deriva-
tive problem of signals in [19].
Motivated by the aforementioned researches, this article

focuses on investigating the HOFA system approach to tackle
the tracking control issue encountered in PMSM in the pres-
ence of unknown disturbances. The basic theory of HOFA
system approach is introduced in Section 2. Then, the main
results are detailed in Section 3. After designing the HOFA
controller and the disturbance observer, the stability of the
system is analysed. The numerical simulation is provided
under the influence of disturbances in Section 4. Finally,
Section 5 summarizes the whole paper.

2 Preliminaries of HOFA system approach
Consider a linear system based on the state-space form

ẋ = Ax+Bu. (1)

where x ∈ Rn is the state vector, u ∈ Rr is the control input,
A ∈ Rn×n and B ∈ Rn×r are the coefficient matrix. Ac-
cording to Theorem 2 in [11], the system (1) can be converted
into the following linear HOFA system,

Aµz
µ +Aµ−1z

µ−1 + . . .+A1ż +A0z = B̃u. (2)

where z is a vector of r dimension, Ai ∈ Rr×r, i =
0, 1, . . . , µ are the coefficient matrices. Besides

B̃ =


1 b12 b13 · · · b1r
0 1 b23 · · · b2r
0 0 1 · · · b3r
...

...
...

. . .
...

0 0 0 · · · 1

 .

Once (2) is obtained and detB̃ ̸= 0, a controller u =

−B̃−1

[
µ−1∑
i=0

Liz
(i) − v

]
can be directly given to get a

closed-loop system as follows
µ∑
i=0

(Li +Ai)z
(i) = v, (3)

where Li, i = 0, 1, . . . , µ is the matrix that needs to be de-
signed, v is external signal. The flexibility of the series of
matrices Li allows for the attainment of closed-loop systems
exhibiting desired performance characteristics by selecting
appropriate matrices. It becomes evident that employing
full-actuation in the control of a HOFA system offers sig-
nificant advantages and convenience.

3 Main Results
3.1 HOFA controller design
This paper aims at addressing the tracking problem of mo-

tion control system driven by a PMSM. The vector control
structure of system model is illustrated in Fig. 1. Iq is the
cross axis currents in the coordinate d− q axis, ω is the con-
trolled angular velocity, L is the motor inductance, J is the
moment of inertia, D is the frictional coefficient, Pm is the

Fig. 1: Vector control system of PMSM.

number of motor poles, R is the equivalent resistance, kps is
the driver amplification factor, kv is the current amplification
factor, and uq = kpskvVin − kpsIq , Vin is represented as u
as the control input in Fig. 1.
Taking θ̇ = ω, θ is the angular position. Then, the follow-

ing HOFA system can be obtained.
...
θ + a2θ̈ + a1θ̇ = ku+ a3, (4)

with 
a1 =

R+kps
JL D + 3

2JLPm
2ψf

2

a2 = D
J +

R+kps
L

a3 = − ṪL

J − R+kps
L

TL

J
k = 3√

2JL
Pmψfkpskv

By employing the output regulation theory, the state output
controller uf can be designed as follows.

uf = −1

k

(
3∑
i=0

liθ
(i) + a3

)
, (5)

where l2, l1, and l0 are the designed parameters.
Let u = uf and substituting (5) into (4), it can be con-

cluded that

...
θ +

2∑
i=1

(ai + li)θ
(i) + l0θ = 0. (6)

Considering θd is the designated position signal, and the
controller u0 is designed as

u0 =
1

k

(
...
θ d +

2∑
i=1

(ai + li)θ
(i) −

3∑
i=0

liθ
(i) − a3

)
.

(7)
Let u = u0 and substituting (7) into (4), one has

...
e +

2∑
i=1

(ai + li)e
(i) + l0e = 0, (8)

where e = θ− θd is the tracking error. For ease of represen-

tation, let E(e(0∼3)) =
...
e +

2∑
i=1

(ai + li)e
(i) + l0e.

The characteristic equation of tracking error of the closed-
loop system (8) can be expressed as

s3 +
2∑
i=1

(ai + li)s
i + l0 = 0. (9)
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It is worth noting that the HOFA system approach provides
a straightforward approach for the controller design and anal-
ysis of motion control systems. The full-actuation property
allows compensating for all original dynamics and facilitates
arbitrary placement of closed-loop poles, thereby achieving
the desired closed-loop dynamics. That is, l0, l1, and l2 are
chosen under the guarantee all the roots of (9) have nega-
tive real part. However, this simple method requires high-
order derivatives of the measured signals and desired trajec-
tory, which can be challenging in practical applications due
to discretization errors and measurement noise. Taking the
derivative of the system’s state ω̇ yields ω̈, it can avoid the
straight need for high-order signal derivatives.

3.2 Disturbance observer design
The attainment of these ideal results in Section 3.1 is con-

tingent upon the accuracy of the system model. In general,
it is not feasible to obtain complete information about the
system in practical settings. Internal uncertainties and ex-
ternal disturbances can significantly impact estimation accu-
racy and control precision. Considering the disturbance in
this paper, (4) can be rewritten as

...
θ + a2θ̈ + a1θ̇ = ku+ a3 + d. (10)

If the estimation of disturbance d̂ can be estimated by dis-
turbance observer, the controller can be designed as follows
to realize disturbance rejection.

u = u0 −
1

k
d̂. (11)

The disturbance observer is designed in Theorem 1.
Theorem 1. If the disturbance d in (10) satisfies the fol-

lowing equation

d̈+ α1ḋ+ α0d = 0, (12)

where α1 and α0 are parameters, then the disturbance ob-
server can be designed as

¨̂
d+ α1

˙̂
d+ α0d̂ =

(
β1

d

dt
+ β0

)
E(e(0∼3)), (13)

to make the error of the observer converge to zero where the
designed parameters β1 and β0 need to make all the roots of
the following equation have negative real parts

s2 + (α1 + β1) s+ (α0 + β0) = 0. (14)

Proof. Substituting (11) into (10), one has

E(e(0∼3)) = d̃, (15)

where d̃ = d− d̂ is the error of disturbance observer.
From (12), (13) and (15), it can be got that

¨̃
d+ (α1 + β1)

˙̃
d+ (α0 + β0) d̃ = 0. (16)

Obviously, (14) is the characteristic equation of (16). The
error of the observer d̃ converges to zero when the parame-
ter β1 and β0 are chosen to guarantee the roots of (14) have
negative part. To enhance the clarity and comprehensibility
of the designed controller, the control structure diagram is

provided, as shown in Fig. 2, from which it can be seen that
the controller (11) consists of three parts. The first part repre-
sents tracking performance, the second part removes tracking
error when the disturbance is zero, and the third part compen-
sates for the disturbance received. The parameters l0, l1 and
l2 that ensure the stability of the closed-loop system obtained
by the HOFA system approach are used to design disturbance
observers.

Fig. 2: Control structure of HOFA system approach with dis-
turbance observer.

3.3 Stability analysis
Theorem 2. Under the controller (11) and the disturbance

observer (13), the closed-loop system (6) with the distur-
bance satisfying (12) is stable and the tracking error is zero.
Proof. From (13), one has

d̂ =

(
β1

d
dt + β0

d2

dt2 + α1
d
dt + α0

)
E(e(0∼3)). (17)

Considering d = 0 and substitution of (11) into (4) yields

E(e(0∼3)) + d̂ = 0. (18)

Substitution of (17) into (18) yields(
1 +

β1
d
dt + β0

d2

dt2 + α1
d
dt + α0

)
E(e(0∼3)) = 0. (19)

Next, it can be derived that(
d2

dt2
+ (α1 + β1)

d

dt
+ (α0 + β0)

)
E(e(0∼3)) = 0.

(20)
Thus the characteristic equation of (20) is(

s3 +

2∑
i=1

(ai + li)s
i + l0

)
×
(
s2 + (α1 + β1) s+ (α0 + β0)

)
= 0.

(21)

According to the selection of parameter l0, l1, l2, β0 and
β1, all roots of (21) have negative real parts, and the system
is asymptotically stable.
Next, considering d ̸= 0, one has(

1 +
β1

d
dt + β0

d2

dt2 + α1
d
dt + α0

)
E(e(0∼3)) = d. (22)

From (22), the transfer function from d to e can be obtained
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as
E(s)

D(s)
=
(
s2 + α1s+ α0

)
×
(
s2 + (α1 + β1) s+ (α0 + β0)

)−1

×

(
s3 +

2∑
i=1

(ai + li)s
i + l0

)−1

.

(23)

According to [9], the following equation yields

e(∞) = lim
s→0

s
E(s)

D(s)
D(s)

= lim
s→0

s
(
s2 + α1s+ α0

)
D(s)

×
(
s2 + (α1 + β1) s+ (α0 + β0)

)−1

×

(
s3 +

2∑
i=1

(ai + li)s
i + l0

)−1

.

(24)

Since the poles of D(s) and the zeros of the polynomial
s2 + α1s+ α0 are equal, then e(∞) = 0 from (24).
4 Simulation
A numerical simulation is conducted to validate the effec-

tiveness of the proposed scheme. The simulation is struc-
tured into two primary components. Firstly, it is demon-
strated that the HOFA controller can achieve tracking er-
rors converge to zero under the disturbance, similar to PID
controller. Secondly, the simulation focuses on evaluating
the observation performance of the disturbance observer de-
signed based on the HOFA system approach.

4.1 Simulation Set-up
Through system identification in this paper, the plant

model P (s) is obtained, providing a comprehensive under-
standing of the turntable system dynamics. The model can
be represented as

P (s) =
92224

s2 + 514.5s+ 781.1
(25)

In order to facilitate a comparative analysis with the clas-
sical PID controller, the following PID controller K(s) is
employed for the system.

K(s) = 16.2279× 0.2756s+ 1

0.0919s+ 1
×
(
0.083s+ 1

0.049s+ 1

)5

(26)

The parameters of the proposed HOFA system approach
with disturbance observer in this paper during the numerical
simulation are presented in Table 1.

Table 1: Parameters for Proposed Approach
Parameter Setting Value Parameter Setting Value

k 92224 l2 1
l0 0.3× 107 α0 (π/180)2

a1 845.4125 α1 1
a2 514.625 α0 + β0 400
l1 7.5 ×104 α1 + β1 40

According to [6], the spatially cyclic disturbance, which
can be obtained by linear transformation of time and fre-
quency, is considered in simulation. The frequencies of

major disturbance harmonics are obtained as f1 = 1
360◦ ,

f2 = 1
24◦ and f3 = 1

10◦ , with corresponding amplitudes of
1.8 Nm, 0.12 Nm and 0.05 Nm.

4.2 Results and Comparisons
First, this simulation aims to validate the effectiveness of

the proposed HOFA approach by comparing it with PID con-
trol schemes under disturbance without disturbance observer.
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Fig. 3: The designated angular velocity signal ω.
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The designated sign ω is shown in Fig. 3. The track-
ing errors e of two distinct scenarios under PID controller
and HOFA-based controller are shown in Fig. 4, from which
it can be seen that using the HOFA system approach to de-
sign the controller can achieve tracking control like PID con-
trol. Furthermore, considering the flexibility provided by the
HOFA system approach, the poles of the closed-loop system
can be configured arbitrarily. This allows for the adjustment
of parameter values l0, l1 and l2, resulting in improved track-
ing performance.
Next, the controller with the disturbance observer is con-

sidered. Fig. 5 shows the tracking error under HOFA ap-
proach with disturbance. The blue line shows the tracking
error under the controller (11) with the disturbance observer
(13). From Fig. 5, the controllers with disturbance observers
can better achieve tracking performance. That is, the dis-
turbance observer can compensate for the errors caused by
disturbances. The estimation of disturbance is shown in Fig.
6, and it can be concluded that the designed observer can es-
timate the disturbances by choosing appropriate parameters.
5 Conclusion
In this paper, the tracking problem has been investigated

for a motion control system driven by PMSM under the un-
known disturbance. This paper begins by presenting the
modeling of the PMSM, employing a HOFA system model.
Subsequently, by leveraging the HOFA system approach,
a closed-loop linear system is derived, encompassing both
tracking error and disturbance error. Then, a controller
grounded in the HOFA system approach is proposed. The de-
signed disturbance observer can estimate disturbances well.
And the efficacy of the control algorithm is then substanti-
ated through comprehensive simulation. Furthermore, con-
sidering the intricate nature of disturbances in actual systems,
coupled with the existence of multiple unknown parameters,
the design of controllers utilizing the HOFA system approach
to achieve disturbance parameter identification emerges as a
noteworthy topic for future study.
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Abstract: This paper investigates the gait stability control problem of the quadruped robot body. Due to the lack of action
prediction in advance and effective adjustment of the motion state, it is difficult to enhance the body stability of the quadruped
robot during its locomotion. A new control framework based on composite nonlinear feedback (CNF) is proposed, which is
able to adjust the input torque of the system based on its current motion state. The controller consists of a model predictive
control (MPC) and a nonlinear feedback part, which establishes a closed-loop system by state feedback. The error between the
target state and the actual state is introduced to construct a nonlinear input compensation term, and the optimal input is solved,
so as to form a composite nonlinear feedback control. The algorithm is also on the basis of the state estimation and the use of
inertial measurement unit (IMU). The simulation results show that the performance on the body stability of the quadruped robot
is improved and the robot appears adapt to more complex terrain during motion. The results illustrate the effectiveness of the
proposed approach.
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1 Introduction

The body stability of a quadruped robot during its motion
is an essential issue, and the realization of various complex
actions is based on the premise that the robot can steadily
move. Motion control of quadruped robots must take into
account the kinematics and dynamics of the robot, and the
motion constraints of the robotic system should be consid-
ered. Thus, it is necessary to find a suitable control method to
make the robot complete the specified task. For motion con-
trol, optimization methods for motion trajectory were pro-
posed in [1, 2]. The optimization method developed in [1]
combines with the estimation of sensors, and the method can
achieve efficient and flexible motion control. Meanwhile, to
address the uncertainty of robot motion, an approach that
utilizes deep neural networks for motion control was intro-
duced in [3].

However, the aforementioned works require accurate
models and the parameters in the system need to be ac-
curately calculated, which will increase the complexity of
the calculation and reduce the practicability. In this con-
text, model predictive control (MPC) is introduced into the
motion control of quadruped robots [4]. Current MPC al-
gorithms for quadruped robots facilitate high-level motion
planning and trajectory generation for the robots, which can
generate an optimal policy taking into account the dynamics
and constraints [5]. Nevertheless, in terms of robot control
alone, the stability of the robot body needs improvement.
The idea of hierarchical control was presented in [6–8]. The
robot dynamical model was hierarchically divided into mul-
tiple levels in [6], and the MPC method was used. The effec-
tiveness of hierarchical model predictive control was verified
by experiments in [7]. In [8], the authors proposed to employ
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deep reinforcement learning under the MPC framework to
realize conversion between different modalities. Naturally,
the learning method used in [9–11] were also feasible. A
novel approach was presented that combines the robot dy-
namical model with machine learning techniques to optimize
the MPC controller. The objective is to enhance the ability
to adapt and perform effectively on slippery ground condi-
tions [9]. The effectiveness of this learning-based approach
was further confirmed in related studies [10, 11], where the
control strategies and model parameters were optimized to
improve performance.

For practical robotic control systems, the nonlinear dy-
namics of the system model cannot be neglected. In [12],
a nonlinear optimization approach was proposed for opti-
mizing the parameters of a quadruped robot. In addition, in
[13] and [14], the composite nonlinear control methods con-
tributed to improving the transient performance and main-
taining the stability of the closed-loop system. The linear
part of the controller is used to achieve the purpose of ac-
curate tracking of the desired position. The nonlinear part
can well compensate for the hysteresis and instability of the
predicted output.

In this paper, a control framework of which is different
from [14], is proposed. Our control scheme is based on MPC
control algorithm, adding nonlinear input compensation to
form a composite nonlinear feedback (CNF) control. In this
way, the robot use the error between the current actual atti-
tude information and the expected attitude information when
it is moving, and adjust the input torque of the system. In
the experiments on the Unitree A1 robot, the motion of the
robot body stays in the range of 0.02 rad, while the motion
by the MPC control scheme only can stay in the range of
0.07 rad. This demonstrates the improvement by our pro-
posed approach.

The remainder of this paper is organized as follows. In
Section 2, aiming at the existing problems, we propose a
new control method to improve the robot’s motion control
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Fig. 1: Configuration of quadruped robot.

effect under limited conditions. Section 3 describes the de-
sign process of our specific control method. In Section 4, a
simulation example is given. Section 5 concludes the paper.

2 Preliminaries

2.1 Lumped Mass Model of Bionic Quadruped Robot
The bionic quadruped robot needs high-frequency control

input information for control, and the robot’s control effect
can be affected by the input generated by different control
algorithms. We use the simplified model to construct the
control algorithm in order to deal with an issue of the control
algorithm’s complexity. The bionic quadruped robot’s limb
weight is quite less than its body weight, so when it moves,
its general moment of inertia and barycenter will not change
greatly. We consider the bionic quadruped robot as a lumped
mass model, since the following assumption is made.

Assumption 2.1 The gimbal lock issue will not arise while
the robot is moving.

When an external force applies on a rigid body, theoretical
mechanics states that the barycenter momentum (1) and an-
gular momentum (2) both change.

mp̈ =

nc∑
i=1

fi − cg (1)

d

dt
(Iω) =

nc∑
i=1

vi × fi (2)

wherem is the robot’s mass and nc is the number of contacts.
p, fi and cg are the 3D robot position in the global coordinate
system, the foot reaction force and the external force caused
by gravity. (1) represents the influence of the resulting force
of different points on the rigid body on the motion sense state
of the rigid body. I ∈ R3×3 is the rotational inertia tensor,
ω is the angular velocity of the body in the world coordinate
system, and vi is the vector from the center of mass to the
point of action.

The speed and rotation angle of the body are often the
main state variables of bionic quadruple robots. Therefore,
the Euler angle of the robot body Θ ∈ R3, the position infor-
mation of the body in the world coordinate system p ∈ R3,
the euler angular velocity ω ∈ R3 and the velocity of the
center of mass ṗ ∈ R3 are selected to form a 12-dimensional

vector
[
Θ,p,ω, ṗ

]⊤
. The desired state information is used

to control the size of the given input through the handle, and
the actual state information is calculated through the IMU.
In particular, the following assumption on IMU is required.

Assumption 2.2 There is no error between the measured in-
formation of IMU and the actual information.

2.2 Problem Statement
This problem can be formally stated as follows. Consider

a bionic quadruped robot controlled by a handle and moving
on structured terrain. The IMU is placed at the barycenter
of the robot, and the IMU is used to measure the angle, an-
gular velocity, and linear velocity information of the robot.
Encoders are included into the 12 joint motors, allowing for
the measurement of the motor’s speed and rotation angle.

The trajectory of the foot movement is set as a 5th or-
der Bezier curve. Setting the control parameters of the han-
dle, the desired motion state information can be generated
by swinging the rocker forward.

The objective is to improve the performance of the ac-
tual motion states x when it tracks the desired motion states
xref . That is, during the motion, the error ∥xref − x∥ can
be reduced. We aim to design an appropriate motor input
torque uin such that, within a certain period of time, the vari-
ation amplitude of |θmax − θmin| and |ϕmax − ϕmin| during
the motion of the robot can be reduced.

3 Method

The design of the control law is divided into two parts:
the model predictive control part and the nonlinear feedback
control part. In this paper, the main role of MPC is to calcu-
late the optimal input torques for the linear part. The nonlin-
ear part mainly computes the compensated input torques.

The overall control scheme is described in Fig. 2.

3.1 Model Predictive Control
In order to precisely measure the robot’s attitude change

information in 3D space, we decompose the attitude change
information in accordance with the sequence of first rotating
ϕ angle around the x-axis, then rotating θ angle around the
y-axis, and then rotating ψ angle around the z-axis, coun-
terclockwise to the positive direction. The angle of rotation
can be expressed as

[
ϕ, θ, ψ

]⊤ ∈ R3. The transition from
the world coordinate system to the body coordinate system
is represented by the rotation matrix R.

R = Rz(ψ)Ry(θ)Rx(ϕ) (3)

After inputting the parameters, the rotation matrix R is
shown as follows.

R =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


(4)

According to [15] and [16], since the bionic quadruple
robot’s roll angle ϕ and pitch angle θ during motion are
small, they merely affect the computation and are thus ig-
nored. Then, R becomes

R = Rz(ψ) =

 cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 (5)
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When the rotation matrix R is nonsingular, the link be-
tween the attitude angle of the body and the angular velocity
in the world coordinate system can be found. ϕ̇

θ̇

ψ̇

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

ω = R⊤
z (ψ)ω (6)

The bionic quadruped robot’s moment of inertia IB in the
body coordinate system may be calculated using SolidWorks
3D software. In the world coordinate system, the moment of
inertia can be expressed as

I = RIBR
⊤ (7)

Use the simplified rotation matrix R

Î ≈ Rz(ψ)IBR
⊤
z (ψ) (8)

The moment of inertia Î times the angular velocity ω has
the following differential term

d

dt
(Îω) = Îω̇ + ω × (Îω) ≈ Îω̇ (9)

where ω × (Îω) can be deleted because it is quadratic.
Refer to the method of [17], the dymamics system can be

expressed as

d

dt


Θ
p
ω
.
p

 =


03×3 03×3 R⊤

z (ψ) 03×3

03×3 03×3 03×3 13×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3


︸ ︷︷ ︸

A


Θ
p
ω
.
p



+


03×3 ... 03×3

03×3 ... 03×3

Î−1[v1] ... Î−1[vn]
13×3

m ... 13×3

m


︸ ︷︷ ︸

B

 f1
...
fn

+


0
...
...
g


(10)

To facilitate computation, g is included in the state vari-
ables

d

dt


Θ
p
ω
.
p

g

=


03×3 03×3 R⊤

z (ψ) 03×3 03×1

03×3 03×3 03×3 13×3 03×1

03×3 03×3 03×3 03×3 03×1

03×3 03×3 03×3 03×3 d3×1

01×3 01×3 01×3 01×3 01×1


︸ ︷︷ ︸

Ac(ψ)

×


Θ
p
ω
.
p

g

+


03×3 ... 03×3

03×3 ... 03×3

Î−1[v1] ... Î−1[vn]
13×3

m ... 13×3

m
01×3 ... 01×3


︸ ︷︷ ︸

Bc(v1,···,vn,ψ)

 f1
...
fn

 (11)

where d3×1 =
[
0 0 1

]⊤
.

Simplify (11) yields

ẋ = Ac(ψ)x(t) +Bc(v1, · · ·, vn, ψ)f̂(t) (12)

The discrete dynamics of the system can be expressed as

x(p+ 1)− x(p)

δt
= Acx(p) +Bcf̂(p) (13)

Write (13) in recursive form

x(p+ 1) = (δtAc + E)x(p) + δtBcf̂(p) (14)

Let: δtAc + E = Ã, δtBc = B̃. Iterating n times, we
can get

x(p+1) = Ãx(p) + B̃f̂(p)

x(p+2) = Ã
2
x(p)+ÃB̃f̂(p)+B̃f̂(p+ 1)

x(p+3) = Ã
3
x(p)+Ã

2
B̃f̂(p)+ÃB̃f̂(p+1)+B̃f̂(p+2)

x(p+n) = Ã
n
x(p)+Ã

n−1
B̃f̂(p)+· · ·+B̃f̂(p+n− 1)

(15)
Set p = 0, summarizing (15) as
x(1)
x(2)
· · ·
x(n)

=

Ã

1

Ã
2

· · ·
Ã
n

x(0)

+


B̃ 0 0 · · · 0

ÃB̃ B̃ 0 · · · 0

Ã
2
B̃ ÃB̃ B̃ · · · 0

· · · · · · · · · · · · · · ·
Ã
n−1

B̃ Ã
n−2

B̃ Ã
n−3

B̃ · · · B̃




f̂(0)

f̂(1)

f̂(2)
· · ·

f̂(n− 1)


(16)

Simplify (16) as

X = Aqpx(0) +BqpF (17)

In order to effectively manage the bionic quadriplegic
robot, there should be as little difference as possible between
the desired state xref (k + 1) and real states x(k + 1) of the
system, along with as little energy waste and system input
f̂(k) that fits the motor’s actual input. From these two per-
spectives, the cost function Y is defined as follows

Y =

n−1∑
k=0

||x(k + 1)− xref (k + 1)||2Q + ||f̂(k)||2S (18)

where Q and S are weight matrices. Because the state vari-
ables x are not equivalent to the input force f̂(k), and the
important coefficient in the actual control is not the same,
the weight can be adjusted to match the control parameters
in different environments.

Arrange (17) to the cost function Y as

Y =(X−Xref )
⊤Q(X−Xref ) + F⊤SF

=[Aqpx(0)+BqpF−Xref ]⊤Q[Aqpx(0)+BqpF

−Xref ] +F⊤SF

=[Aqpx(0)]
⊤QAqpx(0) + (BqpF)

⊤QBqpF

+ 2[Aqpx(0)]
⊤QBqpF− 2[Aqpx(0)]

⊤QXref

+X⊤
refQXref − 2(BqpF)

⊤QXref + F⊤SF (19)
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Fig. 2: Overall control scheme.

The current state x(0) can be obtained by IMU. The
weight matrix Q and S are constant matrices, so three con-
stant terms can be discarded and the remaining four terms
can be reformulated for quadratic programming.

Y ′ =(BqpF)
⊤QBqpF+ 2[Aqpx(0)]

⊤QBqpF

− 2(BqpF)
⊤QXref + F⊤SF (20)

Formulate into quadratic programming form

Y ′ =
1

2
F⊤HF+ F⊤z (21)

where

H =2(B⊤
qpQBqp + S)

z =2B⊤
qpQ(Aqpx(0)−Xref ) (22)

Let n denote the total number of prediction time steps,
Aqp is a 13n × 13 matrix; Bqp is a 13n × 12n matrix; Q
is a 13n × 13n matrix; S is a 12n × 12n matrix; H is a
12n× 12n matrix; z is a 13n× 1 matrix; Xref is a 13n× 1
matrix.

In practical applications, considering the constraints of
quadratic programming, it is required that the force exerted
by the robot in the x-axis and y-axis directions must exceed
the static friction force on the ground, while the force ex-
erted in the z-axis direction must be less than the torque that
the motors can provide. −µfz ≤ fx ≤ µfz

−µfz ≤ fy ≤ µfz
fmin ≤ fz ≤ fmax

(23)

The final result can be obtained through a quadratic pro-
gramming solver. The values obtained by quadratic pro-
gramming solver represent the optimal values for the next
n steps, where F contains n sets of solutions. Therefore, the
first set of solutions f̂(0) is chosen as the optimal linear input
uL for the system, i.e., f̂(0) = uL. Subsequently, this pro-
cess is repeated to continually calculate the current optimal
input torques.

3.2 Composite Nonlinear Feedback Control
In theory, MPC can provide globally optimal solutions,

but this requires an accurate model and convex optimiza-
tion problems. However, achieving this in practical appli-
cations is challenging, especially for complex systems like
bionic quadruped robots. CNF can mitigate the impact force
at the foot-ground contact by adjusting the system’s damp-
ing, even when the model is not precise. As a result, CNF
achieves smoother motion during locomotion compared to
MPC alone.

The final performance of bionic quadruped robot control
is influenced by two factors: firstly, the difference between
the actual output torque and the input torque, and secondly,
the difference between the desired motion state and the ac-
tual motion state. According to [18–20], nonlinear terms can
be constructed for different cases. In our experiment, the
nonlinear feedback control law is given by

uN = ρ[f̂(k),y]B⊤P [x(k)− xref (k)] (24)

where f̂(k) represents the desired torque, y denotes the joint
torque, which is the actual output in each control cycle, x(k)
represents the current actual state of the robot, and xref (k)
represents the desired robot state. P is a positive definite
matrix, which is the solution of

(A+BG)⊤P + P (A+BG) = −W (25)

where W is a positive definite matrix, G is the feedback gain
matrix, which is obtained by solving for the desired poles
of the system set at (−1, j) and (−1,−j). The selection
of poles can be adjusted based on different desired states,
and its value will affect the magnitude of the feedback gain
matrix.

The non-linear coefficient ρ[f̂(k),y] is related to the dif-
ference between the actual output torque and the desired
torque. By the property of the exponential function, as the
difference between the actual torque and the desired torque
increases, the absolute value of ρ[f̂(k),y] becomes larger; as
the difference decreases, the absolute value of ρ[f̂(k),y] be-
comes smaller. α and β are used to control the magnitude of
the non-linear input term, and different values can be chosen
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Fig. 3: Quadruped robot movement posture.

according to different situations.

ρ[f̂(k),y] = −βe−α|y−f̂(k)| (26)

Combine (24) and (26), we obtain:

uN = −βe−α|y−f̂(k)|B⊤P [x(k)− xref (k)] (27)

At this point, the input uin of the quadruped robot system is

uin = uL + uN (28)

Algorithm 1: CNF and MPC control algorithm
Input :

Direction cmd, Speed cmd
Output:

Optimal torque uin

1 Establish the simple lumped mass model;
2 while within physical limits do
3 Calculate the system rotation matrix R;
4 Figure out Ac(ψ), Bc(v1, · · ·, vn, ψ);
5 Discretize the system and combine the system

equations for the next n steps;
6 Set the constraints of the solution;
7 Solve for uL with quadratic programming;
8 Solve P ;
9 Gets the current status x(k) from the IMU;

10 Solve uN ;
11 uin = uL + uN

12 end

The proposed approach is summarized in Alogrithm 1. To
improve the performance when the robot tracks the desired
state, i.e., to minimize ∥xref − x∥, the following two steps
are taken: the MPC algorithm solves for the optimal input
uL, and the CNF is used to calculate uN by introducing the
error between the expected and actual values. These steps
together form uin, which reduces the variation of pitch angle
|θmax − θmin| and the variation of roll angle |ϕmax − ϕmin|
within a certain time period, thereby improve the stability of
the robot during motion.

4 Experiment

To illustrate the effectiveness of the proposed method, we
simulated the transformation of the roll angle and pitch angle
of the body of the quadruped robot under the control of MPC
and CNF-MPC in the ROS environment.

Table 1: Motor Parameters
Joint Kp Kd Rotatable Angle(rad)
Hip 150 20 [-1.57,1.57]
Thight 150 20 [-1.57,1.57]
Calf 100 10 [-3.14,3.14]

Table 2: Comparison Between CNF-MPC and MPC
Euler Angle MPC CNF-MPC
Roll(rad) [-0.034, 0.071] [-0.014, 0.006]
Pitch(rad) [-0.063, 0.056] [-0.021, -0.007]

The strategy used in this work is illustrated in Algorithm
1. The effectiveness of the control is verified through the
comparison between MPC and CNF-MPC algorithms. The
quadruped robot is set to move at a speed of 0.5m/s using a
trot gait for straight-line and the motion period is set to 0.5 s.
The foot trajectory follows a 5th order Bezier curve. The
prediction horizon is set to n = 10. At the beginning of con-
trol, the joint torque is 0, and the robot lies on the ground. It
is necessary to complete some settings of the motor param-
eters of the robot’s thighs, calves and hip joints, including
gain coefficient Kp, differential coefficient Kd, motor mo-
tion angle limit protection, the specific motion parameters
are listed in Table 1. Increasing the coefficients Kp and Kd

will increase the motion speed and torque.
In order to make the experimental results more reliable,

we make the environment of the robot consistent, receive the
command at the same time, and compare the control effect
of different control algorithms. Fig.3 shows the action of
the robot in motion. The pitch angle and roll angle of the
quadruped robot are calculated by the IMU sensor mounted
on the body and only need to be read at any time when in
use. Fig.4 shows the comparison of the roll angle of the
original MPC algorithm with that of the CNF control under
the same circumstances. Fig.5 shows the comparison of the
pitch angle under the control of the original MPC algorithm
and the CNF control in the same case.

Under the control of MPC algorithm and CNF-MPC algo-
rithm, the changes of pitch angle and roll angle during the
movement of the quadruped robot are shown in Table 2. It
can be seen from the experimental results that under the con-
trol of MPC algorithm, the variation range of the roll angle
of the robot is close to 0.1 rad, but with the introduction of
CNF control method, the stability of the robot body during
movement has been significantly improved, and the motion
range of the robot can be controlled within 0.02 rad. Sim-
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Fig. 4: Variation of roll angle under MPC and CNF-MPC.

Fig. 5: Variation of pitch angle under MPC and CNF-MPC.

ilarly, under the control of MPC algorithm, the pitch angle
of the quadruped robot changes at 0.12 rad, but after the in-
troduction of CNF control, the robot changes obviously be-
come steady, and the stability of the body is well controlled,
the change is within 0.02 rad. This is also the improvement
of the stability of the robotic system after using the CNF
control.

5 Conclusions

Addressing the challenge of stability control for
quadruped robots during motion, this paper proposes a
controller capable of adjusting the optimal input torque of
the system in different motion states to achieve better sta-
bility. To tackle the lack of motion prediction and effective
adjustment of motion states during motion, an algorithm is
proposed under the scheme of MPC that introduces CNF. By
incorporating the deviation between the target state and the
actual state, a nonlinear input compensation is constructed,
and parameters are solved to form a composite nonlinear
feedback control. Experimental results demonstrate that
this method can improve the adaptability of quadruped
robots to stable terrain during motion. In the future, we will
validate the effectiveness of the controller through physical
experiments.
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Abstract: The purpose of this paper is to propose a kinematic attitude control method for the support system of wind tunnel full-
mode flutter experiments. The support system discussed in this paper is a two-spring-three-Cable-driven parallel robot system
(2S-3CDPRs). The paper utilizes the PID control strategy to achieve the desired attitude control. To begin, the paper establishes
the kinematics and dynamics model of the aircraft model using the vector closure principle and Newton-Euler method. The
mechanical system is then modeled using ADAMS software. The next step involves performing joint Simulink simulations with
PID control to evaluate the effectiveness of the proposed method. Finally, the paper conducts experiments using a motion control
card and applies Attitude and Heading Reference Systems (AHRS) to monitor the real-time attitude of the model. This step aims
to further validate the practicality and excellent performance of the PID control method in adjusting the attitude of the support
system. In summary, this paper presents a PID control-based kinematic attitude control method for the wind tunnel support
system. The proposed method is evaluated through simulations and experiments, demonstrating its effectiveness and practical
application in the context of the 2S-3CDPRs.

Key Words: Full-mode chattering, Under-constrained cable-driven parallel robot, Dynamic analysis, PID control

1 Introduction

Flutter is an aerodynamic phenomenon that can lead to
serious damage to the structure of a vehicle. It is one of
the key problems that must be solved in the process of air-
craft design and development. In order to simulate the flut-
ter phenomenon during the real flight of the aircraft in the
wind tunnel, it is necessary to make the support system re-
lease five degrees of freedom to the whole aircraft model,
and only constrain the degrees of freedom in the direction of
the incoming flow from the wind tunnel. At the same time,
the rigid body modal frequency of the support should be as
low as possible to ensure that it is in the range of 1/10 to 1/3
of the model’s intrinsic frequency [1]. This will effectively
minimize the structural dynamic disturbances to the model
itself and reduce the aerodynamic disturbances to the model.
Therefore, it is necessary to use soft elastic support meth-
ods as much as possible, so cable traction parallel support
techniques are widely used [2, 3].

The Cable-driven parallel robot system utilizes a cable to
connect the mobile platform to the fixed base, and the posi-
tion of the mobile platform is controlled through cable wind-
ing [4, 5]. This mechanism offers several advantages over
other support systems, including high load capacity, low in-
ertia, and a large working space. Furthermore, it boasts a
low construction cost and easy installation in an open en-
vironment. By incorporating springs, the system undergoes
significant changes in its static and dynamic characteristics,
thereby improving the rigid body modal frequencies to meet
the support requirements [6].

In the field of under-constrained Cable-driven parallel
robot system, various control strategies have been proposed.
Some of these include PI plus fuzzy control [7], active
fault-tolerant control [8], partial-feedback linearized control

This work was supported in part by the National Natural Science Foun-
dation of China under Grants 62273285 and 12072304.

combined with online trajectory planning [9], feedback lin-
earized control [10, 11], and stationary-to-stationary trajec-
tory planning control[12].

The outline of the article is as follows. Section II pro-
vides an explanation of the two-spring-three- Cable-driven
parallel robot system (2S-3CDPRs) problem description and
research methodology. Section III establishes the kinematic
and dynamic models of the cable-driven parallel robot, com-
pensating for the deformation length of the spring within the
model. This compensation accounts for the deformation of
the spring in the model. In Section IV, the mechanical model
of the test mechanism is established in ADAMS, the model
interface is set up, and co-simulation with Simulink is con-
ducted to verify the excellent effect and practicability of the
PID control method in the attitude control of 2S-3CDPRs.
Finally, experimental validation is carried out. Section V
provides the paper’s conclusion.
2 Problem Description

In wind tunnel full-mode flutter experiments, there is a
lack of data and control strategy studies regarding the appli-
cation of two-spring-three-cable-driven parallel robots (2S-
3CDPRs). To bridge this gap, this study proposes the utiliza-
tion of PID controllers to precisely control the roll and pitch
angles of the aircraft model. The objective is to enhance
experimental stability and accuracy, while offering a novel
solution for investigating the dynamic characteristics of air-
craft in wind tunnel tests. In this paper, a PID controller is
designed and optimized to regulate the roll and pitch angles
of the aircraft model using a joint simulation of ADAMS
and Simulink. Subsequently, the effectiveness and accuracy
of the control strategy are experimentally validated.
3 Dynamic Model

The demand for support systems in wind tunnel full-mode
flutter experiments has created a need for relevant exper-
imental data and control experiments of support systems
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Fig. 1: Schematic diagram of 2S-3CDPRs

incorporating two-spring-three- Cable-driven parallel robot
system (2S-3CDPRs). In this paper, we present a design for
a two-spring-three- Cable-driven parallel robot system (2S-
3CDPRs), as shown in Fig. 1. The system mainly consists
of one vertical cable (B3B4), two horizontal cables (B1P1,
B2P2) equipped with series springs, the support frame, the
transmission, the drive, the attitude detection module, and
the control module. One end of the horizontal cables (B1P1,
B2P2) is fixed on the horizontal pulley set at the rear end of
the fuselage, while the other end is fixed on the slider of the
transmission device on the frame. Vertical cables (B3B4)
pass around the vertical pulley set at the front end of the
fuselage and are fixed to the slider of the transmission de-
vice after passing around the fixed pulley on the frame. The
motor drives the slider in the same direction or the oppo-
site direction to control pitch and roll attitude. The spring
is introduced to provide passive force to keep the cable in a
certain tension [6].

3.1 Kinematic Model
To describe the kinematic modeling of the unconstrained

cable traction parallel system, a dynamic coordinate system
(fuselage coordinate system) and a static coordinate system
(ground coordinate system) were established, as depicted in
Fig. 2. The two short black rods on the airplane model in
the figure represent the vertical pulley block at the front end
of the fuselage and the horizontal pulley block at the rear
end of the fuselage, respectively. Fig. 2 illustrates the fuse-
lage coordinate system established on the aircraft model as
ObXbYbZb, with the origin Ob coinciding with the center of
mass P of the aircraft model. The Xb axis aligns with the
main axis of the fuselage, and its positive direction points
towards the front end of the fuselage. The Zb axis lies in the
plane of symmetry of the aircraft model, perpendicular to
the Xb axis, and its positive direction is directed towards the
lower part of the aircraft model. The Yb axis is perpendicular
to the plane of symmetry of the aircraft model, and its posi-
tive direction follows the right-hand rule. The ground coor-
dinate system OgXgYgZg is established with the geometric
center of the bottom surface of the support frame as the ori-
gin. The positive direction of the Zg axis corresponds to the
direction of gravity, i.e., vertically downward; the positive
direction of the Xg axis points towards the incoming flow
from the wind tunnel; and the positive direction of theYg

axis hangs down from the Xg axis in accordance with the

Fig. 2: Kinematics of an under-constrained CDPRs

right-hand rule.
Assuming that all cables are under tension and consider-

ing that one cable at the front end of the fuselage is equiv-
alent to two cables, we define Li as the vector between the
hinge point Pi of the ith cable, connecting the end-effector
(i.e., the airplane model), and the fixed hinge point Bi (i.e.,
the fixed pulley) on the support frame. In the ground coordi-
nate system, the cable vector Li can be expressed as

Li = Bi − (XP +Rxpi) (1)

where i ∈ R , Bi is the position vector of point Bi in the
ground coordinate system, Xp is the position vector of point
Ob(P ) in the ground coordinate system, xpi is the position
vector of point Pi in the fuselage coordinate system, and R
is the rotation matrix from the fuselage coordinate system
to the ground coordinate system. The rotation matrix R is
denoted as:

R =

 cθcφ sϕsθcφ− cϕsφ cϕsθcφ+ sϕsφ
cθsφ sϕsθsφ+ cϕcφ cϕsθsφ− sϕcφ
−sθ sϕcθ cϕcθ

 (2)

where in the rotation matrix R, c represents the cos trigono-
metric function and s represents the sin trigonometric func-
tion ϕ, θ, and φ represent the roll angle, pitch angle, and
yaw angle, respectively. These angles correspond to the in-
dependent rotations of the fuselage coordinate system rela-
tive to the positive directions of the Xg ,Yg ,and Zg axes in the
ground coordinate system. The rotation order of matrix R is
specified as Z-Y-X, indicating that the rotation occurs around
the Z-axis first (yaw), followed by the Y-axis (pitch), and fi-
nally the X-axis (roll). This particular order of rotations de-
termines the sequential application of rotations to determine
the final orientation of the fuselage coordinate system with
respect to the ground coordinate system.

Then, the length Li of the ith cable can be expressed as:

Li =

√
LT

i Li (3)

It follows from (1) and (3) that

L2
i = (Li)

T (Bi −XP −Rxpi) (4)

Derivating both sides of (4) with respect to time, simplifying
can be obtained:

LiL̇i = (Li)
T
(
−ẊP − Ṙxpi

)
(5)
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Ṙ is the time derivative of the rotation matrix R from the
fuselage coordinate system to the ground coordinate system.

Ṙ = R◦R (6)

R◦ = ω× =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (7)

ω =
[
ωx ωy ωz

]T
(8)

ω is the angular velocity of the aircraft model in the
ground coordinate system, and ω× is the antisymmetric ma-
trix of ω.

Substituting (6) into (5), and then using R◦ = ω× , we
can get:

LiL̇i = (Li)
T
(
−ẊP − ω ×Rxpi

)
(9)

Let Rxpi = ri, then

LiL̇i = (Li)
T
(
−ẊP − ω × ri

)
(10)

Simplifying (10), then

LiL̇i = − (Li)
T
ẊP − (ri ×Li)

T
ω (11)

Write (11) in matrix form

L̃L̇ = −J̃Ẋω (12)

In (12), each matrix is defined in turn as

L̇ =
[
L̇1 L̇2 L̇3 L̇4

]T
L̃ = diag

[
L1 L2 L3 L4

]
Ẋω =

[
ẊP ω

]T
=

[
v ω

]T
J̃ =

[
L1 L2 L3 L4

r1 ×L1 r2 ×L2 r3 ×L3 r4 ×L4

]T
(13)

where Ẋω is the velocity vector of the aircraft model, which
contains the linear and angular velocities of the aircraft
model with respect to the ground coordinate system, v and
ω. Then, (12) can be written as

L̇ = −L̃
−1

J̃Ẋω = −JẊω (14)

where J is the Jacobi matrix (4 × 6) of the 2S-3CDPRs or-
ganization with the expression:

J =

[
u1 u2 u3 u4

r1 × u1 r2 × u2 r3 × u3 r4 × u4

]T
(15)

Where ui is the unit vector of the cable. Equation (14) re-
lates the motion of the cable to the aircraft model through the
Jacobi matrix. In the modeling of a spring that is equivalent
to a cable, the Jacobi matrix does not include the rotation of
the spring on the aircraft model. During the movement of
the cable, the tension is transmitted to the spring, resulting
in displacement in the direction of BiPi. To compensate for
this displacement, ∆Li is introduced, which is defined as the
difference between the lengths of the ith spring in its initial
state and after deformation due to the tension, given by ∆Li

= (tsi- ts0)/ks, where tsi is the force generated by the defor-
mation of the ith spring, ts0 is the initial preload of the ith
spring, and ks is the spring stiffness coefficient.

3.2 Dynamical Model
Number section and subsection headings consecutively in

Arabic numbers and type them in bold. Avoid using too
many capital letters. If any further subdivision of a subsec-
tion is needed the titles should be 10 point and flushed left.

The approach for modeling the dynamics of the two-
spring-three-cable support system is outlined as follows:

1)The two cables connected to the tandem spring are
treated as cables with lower stiffness.

2)Both the cable and the spring are assumed to be in a taut
state and can be approximated as straight line segments.

3)In order to focus on the motion characteristics of the
airplane model, the masses of the Kevlar cable and the spring
are neglected, and the airplane model is simplified as a rigid
body.

The dynamic equations of the airplane model are derived
using the Newton-Euler method. The matrix form of these
equations is presented as[
mI3×3 03×3

03×3 Ip

][
Ẍp

ω̇

]
+

[
03×1

ω × Ipω

]
−
[

mg
03×1

]
=JTT

(16)
where the variables and matrices are defined as

m: Mass of the aircraft model,
I3×3: Unit matrix of size 3× 3,
Ip: Inertia matrix of the center of mass of the aircraft

model,
Xp: Position vector of the aircraft model,
ω: Angular velocity vector of the aircraft model,
T : Vector of tension values of the cables,
JT : Structural matrix of the mechanism of the two-

spring-three-cable support system.
It is stated that treating the two cables of the tandem

springs as cables with lower stiffness does not affect the
structural matrix JT . This implies that the assumption of
lower stiffness for the cables does not alter the overall struc-
ture or arrangement of the system, and the matrix JT re-
mains unchanged.

The attitude vector of the airplane model, denoted as
X = [XpΦ]

T
= [x y z ϕ θ φ]T , where Φ represents the

Euler angles [ϕ θ φ] for roll, pitch, and yaw respectively. In
accordance with the principle of rigid body rotation around a
fixed point, the angular velocity vector of the airplane model
can be expressed as:

ω =
[
ωx ωy ωz

]T
= EΦ̇ (17)

ω represents the angular velocity vector and E denotes the
mapping matrix that relates the time derivative of Φ to the
angular velocity vector, where

E =

 cos θ cosφ − sinφ 0
cos θ sinφ cosφ 0
− sin θ 0 1

 (18)

Combining (17) with (16), we can express (16) in terms of
the attitude vector of the airplane model as

M(X)Ẍ +C(X,X)Ẋ −G(X) = JTT (19)

This equation establishes the relationship between the cable
tension and the kinematics of the model, where
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Fig. 3: System simulation structure

Fig. 4: Schematic diagram of ADMAS data exchange with
Simulink



G(X) =

[
mg
03×1

]
M(X) =

[
mI3×3 03×3

03×3 IpE

]
C(X, Ẋ) =

[
03×3 03×3

03×3 IpĖ + (EΦ̇)× IpE

] (20)

4 Simulation and Experiment

4.1 Simulation Settings
ADAMS is especially suitable for simulating complex

mechanical structures in robotic systems. On the other hand,
Simulink is a dynamic system modeling and simulation tool
within the MATLAB environment. It excels in the design,
analysis, and implementation of control system algorithms.
By combining these two engineering software programs, dif-
ferent modeling techniques that do not require mathematical
models can be implemented [13].

The MSC Sofeware module is configured within the
adams sub module. After completing the setup, a PID con-
trol system module is constructed, and simulation parame-
ters are defined in Simulink. Finally, the entire system is co-
simulated to observe its performance. The system’s response
curve is analyzed to verify the controller’s performance, in-
cluding aspects such as stability, speed, overshoot, and set-
tling time. Based on the simulation results, PID parameters
are adjusted iteratively until a satisfactory control effect is
achieved. The system simulation structure is shown in Fig.
3.

The construction of the control system module and the
setting of the simulation parameters are implemented in the
”adams sub” module, as illustrated in Fig. 4.

The PID control principle is based on three fundamental
mathematical operations on the system output error: propor-

Fig. 5: Schematic diagram of PID system

Fig. 6: Pitch dynamics simulation in ADAMS

tional (P), integral (I), and derivative (D), which are used
to dynamically adjust the output of the controller for pre-
cise control of the controlled process. The PID parame-
ters, namely Kp (proportional gain), Ki (integral gain), and
Kd (derivative gain), can be tuned manually using empir-
ical methods, theoretical calculations (such as the Ziegler-
Nichols method), trial-and-error techniques, fuzzy control
rule self-tuning, or other methods [13, 14]. The schematic
diagram of the system is illustrated in Fig. 5.

The controller output can be expressed as:

u(t) = Kpe(t) +Ki

∫
e(t)dt+Kd

de(t)

dt
(21)

4.2 Pitching Attitude Simulation
After repeated analysis and adjustment of the simulation

results, the values of the PID controller parameters are fi-
nally determined as follows: the proportional gain Kp is set
to 200, the integral gain Ki is set to 300, and the differential
gain Kd is set to 0.0001, which achieves the ideal control ef-
fect. The pitch angle of the airplane model can be controlled
by adjusting the same direction movement of the slider. The
ADAMS simulation model of 2S-3CDPRs with a pitch angle
ranging from 0° to +10° is depicted in Fig. 6, while the vari-
ation and expected values of the pitch angle are presented in
Fig. 7.

Regarding the regulation of the roll attitude, the unidirec-
tional pitch angle can reach 10°, allowing for an adjustment
range of the pitch attitude angle between -10° and +10°.

4.3 Rolling Attitude Simulation
After repeated analysis and adjustment of the simulation

results, the values of the PID controller parameters are fi-
nally determined as follows: the proportional gain Kp is set
to 100, the integral gain Ki is set to 500, and the differential
gain Kd is set to 0.001, which achieves the ideal control ef-
fect. The roll angle of the airplane model can be controlled
by adjusting the opposite direction movement of the slider.
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Fig. 7: PID control of pitch attitude angle response

Fig. 8: Roll dynamics simulation in ADAMS

The ADAMS simulation model of 2S-3CDPRs with a roll
angle ranging from 0° to +20° is depicted in Fig. 8, while
the variation and expected values of the roll angle are pre-
sented in Fig. 9.

Regarding the regulation of the roll attitude, the unidirec-
tional pitch angle can reach 20°, allowing for an adjustment
range of the roll attitude angle between -20° and +20°.

4.4 Experimental Verification
The ground prototype built in the laboratory is shown in

Fig. 10. The prototype uses a horizontal cable reconfigura-
tion module firstly the cable is fixed to the slider of the ball
screw, the upper computer inputs the motor control com-
mand, through the control card, the driver, and finally the
motor drives the screw to drive the slider movement. During
the movement, AHRS is used to measure the attitude.

To configure the motor driver before the experiment, fol-
low these steps:

1)Set the servo motor to position control mode: Configure
the servo motor to operate in position control mode. This
mode allows for precise control of the motor’s position and
facilitates accurate positioning of the slider on the ball screw.

2)Adjust the electronic gears: Fine-tune the electronic

Fig. 9: PID control of roll attitude angle response

Fig. 10: 2S-3CDPRs test mechanism

Fig. 11: Real-time monitoring of pitch attitude

gearing mechanism to achieve the desired motion character-
istics.

Next, configure the control card parameters:
1)Set the closed-loop mode: Configure the control card to

operate in closed-loop mode.
2)Adjust the PID parameters: Set the PID parameters on

the control card to optimize the control system’s perfor-
mance.

The AHRS system is employed to monitor the attitude
of the model. The control subsystem utilizes the AHRS
measurements to make necessary adjustments to the model’s
attitude. The PID control algorithm, operating in position
control mode, can effectively eliminate positional errors and
maintain stability, ensuring that the slider accurately reaches
the target position for adjusting the model’s attitude.

4.5 Pitching Control
The method described involves controlling the isotropic

motion of the slider to adjust the pitch angle of the aircraft
model. At the initial moment, the model has a zero atti-
tude, and commands are sent from the upper computer of the
control system to the servo drive. The motor then operates
according to these commands, propelling the slider in the
same direction and at the same speed. As the slider moves,
the pulleys adjust the spatial configuration of the horizontal
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Fig. 12: Attitude of pitching

Fig. 13: Real-time monitoring of roll attitude

rope, thereby modifying the attitude of the aircraft model.
The Attitude and Heading Reference System (AHRS)

monitors the model attitude in real time, and the pitch an-
gle of the model after stabilization is shown in Fig. 11. Take
Fig. 12 as an example, when looking from the back of the
horizontal rope, the motion displacement of the left and right
sliders away from the initial position is equal in size and di-
rection.

4.6 Rolling Control
By controlling the isotropic motion of the slider, the pitch

angle of the aircraft model can be controlled. Initially, the
model is in a zero-attitude state. The upper computer of the
control system sends commands to the servo drive, which
in turn instructs the motor to move the slider in the desired
direction and at a consistent speed. As the slider moves,
the pulleys adjust the spatial configuration of the horizontal
rope, thereby modifying the attitude of the aircraft model.

Fig. 14: Attitude of rolling

The Attitude and Heading Reference System (AHRS)
monitors the model attitude in real time, and the roll angle
of the model after stabilization is shown in Fig. 13. Taking
Fig. 14 as an example, the left slider moves downward while
the right slider moves upward.

5 Conclusion

The PID control strategy employed in the experiments has
effectively achieved precise control of the attitude of the air-
craft model within the cable-driven parallel robot mecha-
nism. Furthermore, all attitudes reached the desired values
and exhibited rapid stabilization. This demonstrates the po-
tential for practical application and further development of
this approach in controlling the attitude of aircraft models
using rope-traction parallel robot mechanisms.
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Modeling, simulation and experiment of an origami robot with a
coupled bar-hinge mechanism
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Abstract: This paper aims to analyze the motion behavior of an origami robot with a coupled bar-hinge mechanism. By
disassembling the planar six-hinge mechanism into two planar four-hinge mechanisms with coupled motion, this paper derives
the kinematics of the planar six-hinge mechanism based on the algebraic differential kinematics of the planar four-hinge motions.
The rotational angle change and the moving step length of the origami robot are further calculated. Finally, the theoretical
motion model is verified with the motion simulation data of the planar six-hinge mechanism origami robot in SolidWorks and
the experimental data of the physical model. This verification proves the feasibility of the theoretical analysis, simulation model,
and physical model.

Key Words: Origami robot, kinematics, modeling and simulation, bar-hinge mechanism, angle change

1 Introduction

Origami, an ancient art form from the East, has evolved
over thousands of years. Initially, it served as a decorative
paper folding technique. However, today, origami has tran-
scended artistic boundaries to revolutionize engineering and
design. The unique appeal of origami structures lies in their
ability to transform two-dimensional materials into complex
three-dimensional shapes while maintaining lightness and
foldability. This transformative capability of origami struc-
tures has unveiled immense potential in various engineering
applications, particularly robotics.

In robotic engineering, origami structures are favored
for their flexibility, lightweight, and high reconfigurability.
These properties streamline and economize robot designs
and enhance robots’ adaptability to diverse environments
and tasks. A notable example is the modular robot named
Pneumagami, powered by soft pneumatic actuators and in-
corporating construction principles inspired by origami[1].
This design approach results in a lightweight, robust robot
that is particularly suitable for wearable robotics applica-
tions.

The application of origami structures in robotic leg de-
sign mainly showcases their advantages. Origami-inspired
designs enable robotic legs that are lightweight yet robust,
offering enhanced adaptability and mobility. For instance,
using a self-locking foldable mechanism in robotic arms
allows them to be folded flat and maintain high stiffness
when deployed[2], facilitating mobile robots and uncrewed
aerial vehicles (UAVs) to access confined spaces. This
origami-inspired design balances being lightweight, com-
pact, and scalable while maintaining kinematic behavior.
Additionally, the design of deformable wheels based on

This work is supported by Shenzhen Key Laboratory of Control The-
ory and Intelligent Systems under Grant ZDSYS20220330161800001 and
College Students’ Innovative and Entrepreneurial Training Program under
Grant 2023X31.

origami structures, as showcased by Lee et al.[3], exempli-
fies the adaptability of origami in robotic locomotion, en-
abling robots to navigate through small gaps by altering the
shape or size of their wheels.

This paper aims to analyze the motion state of a planar
origami robot with a six-hinge mechanism according to the
design given in [4]. The planar six-hinge mechanism is dis-
assembled into a four-hinge mechanism, and constraint con-
ditions are added. This paper focuses on the angle change
and the moving step length of the six-hinge origami robot.
Finally, the motion model is mutually verified based on theo-
retical analysis with the motion simulation data of the planar
six-hinge mechanism origami robot in SolidWorks and the
experimental data of the physical model.

Subsequently, the crank-rocker mechanism within the
four-hinge setup is deliberated upon for selection as the
robot’s leg structure. This decision perfectly aligns with the
objectives of achieving efficient, controlled movement in the
robot’s design. The crank facilitates effective rotation, while
the rocker enables the robot’s legs to achieve motion through
its rotation.
2 Design

2.1 Mechanical Structure Analysis and Selection
The experimental plan involves using a steering motor to

manipulate the folding and unfolding of an origami struc-
ture, which is crucial for the robot’s movement. Inspiration
for selecting an appropriate mechanical structure was drawn
from the existing origami robot designed in [4]. The chosen
structure is a planar six-hinge mechanism, evolving from the
planar four-hinge mechanism.

This framework begins by analyzing the four-hinge mech-
anism using the Freudenstein equation. This analysis yields
the input-output equation, laying the foundation for compre-
hending the motion behavior of the planar origami robot.

Subsequently, the crank-rocker mechanism within the
four-hinge setup is deliberated upon for selection as the
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robot’s leg structure. This decision perfectly aligns with the
objectives of achieving efficient, controlled movement in the
robot’s design. The crank facilitates effective rotation, while
the rocker enables the robot’s legs to achieve motion through
its rotation.

2.2 Planar Six-hinge Mechanism Analysis and Model-
ing

An in-depth analysis and modeling of the planar six-hinge
mechanism, a pivotal component of the experimental model,
is undertaken. This mechanism, abstracted from the steer-
ing motor, swinging arms, and moving cardboard, embod-
ies a crank-rocker mechanism within the hinge mechanism
framework.

A comprehensive overview of the planar six-hinge mech-
anism has been commenced, elucidating its composition and
categorization within the hinge mechanism domain. The
model used in the experiment is depicted in Fig. 1. The
top hinge, serving as the frame, intricately connects two flat
four-hinge mechanisms on the left and right, resulting in a
unified flat six-hinge mechanism.

Following this overview, a detailed symmetry analysis
and derivation of kinematic equations are undertaken for the
symmetrical planar four-hinge mechanism on both the left
and right sides.

The kinematic equations are simplified to enhance mod-
eling efficiency by introducing the tangent of half-angle
parameters. This simplification strategy transforms com-
plex trigonometric equations into more manageable alge-
braic forms, streamlining the analysis and simulation pro-
cesses.

Fig. 1: The prototype of the designed origami robot

3 Modeling

3.1 Planar four-hinge mechanism
A conventional planar four-hinge structure is depicted in

Fig. 2. Initially, the Freudenstein equation is employed to
examine the planar four-hinge structure, where θ1 serves as
the input, and θ4 as the output, resulting in an input-output
equation:

k1cos(θ4)− k2cos(θ1) + k3 = cos(θ1 − θ4) (1)

where

k1 =
a4
a1

k2 =
a4
a3

k3 =
a21 − a22 + a23 + a24

2a1a3

Fig. 2: Planar four-hinge mechanism

However, equations involving trigonometric functions can
be challenging to manipulate. To address this, the tangent of
half-angle parameter vi is introduced to represent the four
angles θi, i.e., vi = tan

(
θi
2

)
. This transformation renders

the equation purely algebraic, simplifying the solving pro-
cess.

Let a1, a2, a3, and a4 denote the lengths of the hinges
in the four-hinge mechanism in Fig. 2, with θ1 as the input
angle and θ4 as the output angle. The input-output equation,
as presented in [5], is

A1A2v
2
1v

2
4 +B1B2v

2
1 +C1C2v

2
4 − 8a1a3v1v4+D1D2 = 0

(2)
where

A1 = a1 − a2 − a3 + a4, A2 = a1 + a2 − a3 + a4

B1 = a1 − a2 + a3 + a4, B2 = a1 + a2 + a3 + a4

C1 = a1 − a2 + a3 − a4, C2 = a1 + a2 + a3 − a4

D1 = a1 + a2 − a3 − a4, D2 = a1 − a2 − a3 − a4

Similarly, according to [5], the input-output equations for
θ1-θ2 and θ1-θ3 are derived by considering θ1 as the input
angle.

A2B1v
2
1v

2
3 +A1B2v

2
1 + C1D1v

2
3 + C2D2 = 0 (3)

A1B1v
2
1v

2
2 +A2B2v

2
1 +C1D2v

2
2 +8a2a4v1v2+C2D1 = 0

(4)
The equations of the planar four-hinge motion can be ob-

tained by establishing the relationships among angles θ1, θ2,
θ3, and θ4. Assuming that rod a1 acts as the driver with an
angular velocity of θ̇1, variations in angles θ2, θ3, and θ4 over
time can be explored based on the time-dependent changes
in θ1. This elucidates the dynamic behavior of the system.

3.2 Planar six-hinge mechanism
The prototype utilized in our experiment, illustrated in

Fig. 1, is an origami robot. In this design, the steering mo-
tor, which is the power source, is situated within a box at the
top. The dynamic components of the hinge mechanism con-
sist of two swinging arms connected to the steering motor.
As the steering motor initiates rotation, it moves the swing-
ing arms, propelling the cardboard structure to move. The
in-motion cardboard effectively functions as the legs of the
origami robot, resulting in the robot advancing with each ro-
tation of the steering motor.
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The structure can be abstracted as a planar six-hinge
mechanism, as illustrated in Fig. 3. In this abstraction, the
cardboard loaded with the steering motor serves as the frame
in the hinge mechanism, while the swing arm of the steer-
ing motor functions as the connecting rod within the hinge
mechanism. The movement of the cardboard, driven by the
rotation of the steering motor swing arm, assumes the role
of the connecting rod. This mechanism falls under the crank
rocker mechanism within the hinge mechanism.

Fig. 3: Planar six-hinge mechanism in the origami robot

According to Fig. 3, it is evident that the planar six-hinge
mechanism can be segmented into two planar four-hinge
mechanisms on the left and right sides. The upper hinge
functions as the frame, uniting the two symmetrical flat four-
hinge mechanisms on the left and right, forming a cohesive
flat six-hinge mechanism.

Based on the analysis of the motion equations of the four
hinge mechanisms on the left and right sides of the sym-
metric plane, the motion state of one mechanism can be ob-
tained by obtaining the motion state of the other mechanism
because of its inherent symmetry.

Equations (1), (2), and (3) intricately capture the posi-
tional relationships involving link lengths and joint angles
for both the left and right sides of the symmetrical four-hinge
mechanism. The resolution of these equations facilitates the
analysis and prediction of motion states and positions based
on specified link lengths and initial conditions, leveraging
the inherent symmetry between the left and proper planar
four-hinge mechanisms.

As depicted in Fig. 3, a1, a2, a3, a4, a5, a6, and a7 repre-
sent the lengths of the planar six-hinge connecting rod, with
θ1 denoting the input angle and θ6, θ7, θ8 signifying the out-
put angles. Then the deduced relationships are

A1A2v
2
5v

2
7 +B1B2v

2
5 +C1C2v

2
7 − 8a1a3v5v7+D1D2 = 0

(5)

A2B1v
2
5v

2
6 +A1B2v

2
5 + C1D1v

2
6 + C2D2 = 0 (6)

A1B1v
2
5v

2
5 +A2B2v

2
5 +C1D2v

2
5 +8a2a4v5v5+C2D1 = 0

(7)

v5 = tan(
π − θ1

2
) (8)

The above equations are the overall kinematic equations
of the six-hinge origami robot.

4 Simulation

4.1 Setup
To ensure the composition of our flat six-hinge struc-

ture, which consists of two symmetrical crank-rocker mech-
anisms, and to verify our model’s proper functionality, a
Matlab simulation was initially conducted, and a SolidWorks
model was created for validation. The construction of the
model in SolidWorks facilitates the observation of motion
animations. Leveraging the model motion animation feature
allows for a more intuitive understanding of the effects re-
sulting from parameter adjustments.

Using one of the planar four-hinge structures as an illus-
tration, the rod length parameters we designate must satisfy
the following conditions:

• The size should be convenient for creating a physical
model, striking a balance between not being excessively
large or small while accommodating the steering motor.

• The sum of the longest and shortest sides of the four
hinges must be less than the sum of the other two sides
to ensure the rotation of the planar four-hinge structure.

• a2-a1, a3, a4 must collectively form an acute triangle.
The robot’s legs can only move when a2-a1, a3, and a4
form an acute triangle.

Finally, the rod length parameters are set as shown in the
following table:

Table 1: hinge Parameters

Parameter Symbol Value (cm)

Link 1 a1 4
Link 2 a2, a5 10
Link 3 a3, a6 10
Link 4 a4, a7 9

4.2 MATLAB Simulation
In the mathematical modeling section, Equations (2)-(7)

are analyzed using MATLAB.
Assuming the motor’s angular velocity is 111 rad/s, the

time required for the driving member a1 to complete one
rotation round is investigated. The variation in angles θ2, θ3,
and θ4 over time is examined with the change in θ1 as the
input.

In Equation (2), a value is assigned to v1 at specific time
points, allowing us to determine the corresponding value of
v4. However, as this equation is quadratic with one variable,
two solutions for v4 arise. This implies that, in certain in-
stances, a specific value of v1 corresponds to two distinct
values of v4. As v1 progresses through time, two sets of v2,
v3, and v4 pairs associated with it exist, signifying that each
time point corresponds to two distinct states of motion for
the planar six-hinge structure.

Taking angle θ2 as an example, as illustrated in Fig. 4, the
red and blue lines represent the two solutions of v2 derived
from Equation (3), respectively.

When considered individually, the red and blue lines do
not represent continuous curves of v2 changes. Recognizing
that the two solutions of v2 correspond to the two distinct
states of motion for the planar six hinges, it becomes evi-
dent that there must be two continuous curves of v2 changes.
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Fig. 4: Two solutions of angle θ2 in a quadratic equation
with one variable

Consequently, the red and blue lines are combined to form
two continuous curves, each corresponding to a distinct mo-
tion state of the six-hinge. Similarly, the variations of v3 and
v4 with time were obtained using MATLAB. The subsequent
challenge involved determining which of the two solutions
of the equation would be utilized as the data for the experi-
ment.

The resolution involved a pragmatic approach. The mo-
tion of the two-dimensional six-hinge model was scruti-
nized, and the angle changes between the hinges during mo-
tion were recorded. Ultimately, the solution aligned with
the actual motion state was selected based on the observed
changes in angles between the hinges during the process.

The changes of v2, v3, v4 with v1 are depicted in Fig. 5,
Fig. 6, Fig. 7.
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Fig. 5: Change of angle θ2 over time
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Fig. 6: Change of angle θ3 over time

As the above image shows, the flat four-hinge structure
conforms to a crank-rocker mechanism, where a1 serves as
the crank, a2, and a3 function as the rocker.

0 200 400 600 800 1000 1200 1400

t/ms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
n
g
le

 4
/r

a
d

Angle 4

Fig. 7: Change of angle θ4 over time

In Fig. 8, point A is designated as the origin of the coordi-
nate system, and the model’s displacement is computed for
each revolution of the steering motor.

Fig. 8: Geometric relationship of the bars and hinges

Subsequently, the extent of forward movement for our
model with each rotation of the steering motor can be de-
termined, as illustrated in Fig. 9 and Fig. 10.
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Fig. 9: Distance of point A and point D

4.3 SolidWorks Simulation
SolidWorks was chosen to simulate the planar six-hinge

model. Following a successful model simulation, the data
exported from SolidWorks was compared with those ob-
tained from MATLAB modeling. The comparative results
are presented in Fig. 11, Fig. 12, Fig. 13, and Fig. 14.

As evident from Fig. 11, Fig. 12, Fig. 13, and Fig. 14, the
data acquired from SolidWorks simulation exhibits a high
degree of consistency with the data obtained from MATLAB
modeling, thereby mutually verifying their correctness. Nev-
ertheless, owing to the constraints of SolidWorks exported
data points, fewer data points from SolidWorks do not per-
fectly align with the data from MATLAB.

In the subsequent section, a physical model will be con-
structed for experiments, and data will be recorded to vali-
date the accuracy of our modeling and simulation.
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Fig. 10: Distance traveled by the robot
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Fig. 11: Comparison of angle θ2 in Matlab simulation and
Solidworks
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Fig. 12: Comparison of angle θ3 in Matlab simulation and
Solidworks
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Fig. 13: Comparison of angle θ4 in Matlab simulation and
Solidworks
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Fig. 14: Comparison of distance of point A and point D

5 Physical Experiment

5.1 Material selection of the robot’s components
Specialized materials and laser-cutting machines were uti-

lized to fabricate our prototype, ensuring strength and flexi-
bility.

For the power source of our robot, we selected the 360-
degree MG995 steering motor. The adoption of the MG995
steering motor as the robot’s power supply offers three no-
table advantages: it enables a complete 360-degree rota-
tion, facilitating the realization of a crank-rocker mechanism
within the planar six-hinge; it provides robust torque, effort-
lessly propelling the movement of the robot’s leg structure;
and it does so at a low cost, ensuring sufficient performance
for experimental purposes.

A suitable robotic arm was crafted using 3D printing to
complement this choice and then affixed to the steering mo-
tor, as depicted in Fig. 15. This design ensures the arm’s re-
silience, mitigating the risk of breakage or dislodgment dur-
ing the rotation of the steering motor.

Fig. 15: Steering motor used in the design of the robot

In selecting the robot’s framework, carbon fiber plates
were used as the robot’s skeleton, and 3D printing plates
were used as the carrier of the steering motor. Carbon fiber
plate and 3D printing board each have advantages: carbon
fiber plate is thinner and lighter than 3D printing board, mak-
ing the robot lighter and more accessible for the steering mo-
tor to drive the leg rotation; 3D printing plate is more rigid
than carbon fiber plate, as the carrier of the steering motor is
not easy to be bent by the steering motor.

The prototype is shown in Fig. 1. The robot skeleton is di-
vided according to the location of the crease, and the carbon
fiber plate is divided into individual parts using laser cutting.
Use tape to splice parts where they need to be folded. This
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splicing method dramatically reduces the resistance of the
robot’s joint parts during rotation. The experimental video is
given in [6].

5.2 Physical experimental data
Recording the robot’s movement in a video [6], images

of the robot at different moments were presented for com-
parison in Fig. 16. The first and third pictures showcase the
maximum and minimum distance between the robot’s legs.

(a) t=0 s (b) t=0.5s (c) t=1.0s (d) t=1.5s

Fig. 16: Comparison of robots at different timese

With each rotation of the steering motor, the distance cov-
ered by the robot was meticulously recorded. The recording
process was repeated 25 times, and the distances were aver-
aged every five repetitions to obtain the average distance of
the robot, as illustrated in Fig. 17.
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Fig. 17: Robot travel distance per steering motor rotation

Compared with Fig. 10, it is evident that the distance cov-
ered by the robot in the experiment is shorter than the dis-
tance calculated in the simulation. This discrepancy is pri-
marily attributed to insufficient friction between the robot’s
legs and the ground. The friction deficiency causes the
robot’s front legs to slide backward as it moves forward, re-
sulting in the actual distance of the robot’s advance being
less than anticipated.

6 Conclusion

In this paper, the design of a simple robot utilizing the
planar six-hinge structure derived from origami-inspired
robotics is presented. The modeling of the planar six-hinge
structure is delved into, employing MATLAB and Solid-
Works for simulation. The investigation focuses on the six-
hinge origami robot’s angle changes and step sizes. Subse-
quently, a prototype was fabricated using a steering motor,
carbon fiber plate, and 3D printing plate, and the distance
the robot covered with each forward step was recorded.

The data acquired from the experiment indicates consis-
tency between our MATLAB and SolidWorks models, fur-
ther validated by the real-world experiment. Ultimately, our
motion model, grounded in theoretical analysis, is corrobo-
rated by motion simulation data and experimental data from

the physical model in SolidWorks. This comprehensive val-
idation process underscores the feasibility of our theoretical
analysis, simulation, and physical models.
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Abstract: This paper presents the design of an innovative adaptive observer method tailored specifically for unmanned surface
vessels (USVs). The proposed method addresses several challenges inherent in the operation of USVs, including unknown sensor
faults, unknown stuck actuator faults, and external disturbances. These issues, if left unaddressed, could significantly impact the
performance and safety of USVs. The cornerstone of the proposed method is an online iterative adaptive mechanism, which
is employed to reconstruct the states and faults of the USV. This mechanism leverages real-time data and iterative processes
to adaptively update the state estimates and fault predictions, thereby enabling more accurate and timely fault detection and
mitigation. In the final part of the article, we provide a comprehensive verification of the proposed design method. This is
achieved through a detailed simulation analysis of the USVs model. The simulation results not only demonstrate the feasibility
of the proposed method but also attest to its effectiveness in enhancing the reliability and safety of USVs.

Key Words: Sensor fault, actuator fault, adaptive observer, unmanned surface vessel

1 Introduction

As technology continues to advance at an unprecedented
pace, unmanned surface vessels (USVs) are finding increas-
ingly diverse applications, ranging from maritime safety pa-
trols and marine observation to radar monitoring and be-
yond. However, the practical deployment of these vessels is
not without its challenges. In particular, the failure of certain
control components is an inevitability that can have serious
implications for the safe operation of the vessel, potentially
leading to severe accidents [1–6].

In light of these challenges, the primary focus of the re-
search community has shifted towards the development and
implementation of robust identification and estimation tech-
niques for potential faults. The ultimate goal of these efforts
is to enhance the dependability and stability of the USV sys-
tems [7–9]. One technique that has garnered significant at-
tention is Fault Estimation (FE), owing to its ability to ac-
curately report the relevant details of unidentified faults that
have occurred [10–14]. For instance, one study provided an
estimation of system faults with unknown actuator efficiency
factors. However, it is important to note that unidentified
faults in USVs are typically not static, but rather exhibit tem-
poral variations, representing an open research direction that
warrants further investigation.

On the other hand, the adaptive observer technique, de-
spite its effectiveness in fault estimation, has seen limited
application in USVs. The fault approximation of an adaptive
observer relies on the difference of direct outputs. By utiliz-
ing an online updating adaptive mechanism for fault estima-
tion, it is possible to obtain accurate observation results. As
such, there is a clear and pressing need to design an adaptive
strategy specifically tailored for USVs.

This work was supported in part by the National Natural Science Foun-
dation of China ( No. 62273114), in part by the Macao Young Scholars
Program (No. AM2022004), in part by the China Postdoctoral Science
Foundation (No. 2019M661255, No. 2021T140149). Corresponding au-
thor: Liheng Chen

In response to these challenges, this article proposes the
design of an adaptive observer for USVs to address the FE
problem. The study will investigate the FE problem of USVs
with time-varying actuators and sensor faults, as well as ex-
ternal disturbances, within a unified system framework. The
proposed observer will rely on an online adaptive mecha-
nism for reconstructing faults, offering a promising solution
to enhance the safety and reliability of USVs. This work
is expected to contribute to the ongoing efforts to improve
fault detection and handling in USVs, and hopefully, inspire
further research in this critical area.

The structure of the paper is as follows. Section II intro-
duces the model of unmanned surface vessels considered in
this work. The main derivations are presented in The third
part. Part IV provides a imitation validation of the recom-
mended solution using an unmanned surface vessel model.
Finally, the last section concludes the work conducted in this
paper.

2 Model Conditions And Analysis

Considering a system of unmanned watercraft including
sensors, actuators, and external interference failures as,


ẋ (t) = Alx (t) +Blu (t) +Blafc (t)+

Elw (t)

y (t) = Gx (t) +Dlsfm (t)

(1)

where x(t) ∈ Rm is the unmanned surface vessel system
state, u(t) ∈ Rn is the control part, y(t) ∈ Rc is the output,
fc (t) ∈ Rc is the actuator fault, fm (t) ∈ Rq is the sensor
fault, w(t) ∈ Ra is the interference vector.

In the unmanned surface vessel, the system matrices
Al, Bl, G,Dls, El are given by
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Al =


− 1

Ta
0 0 0 0

−Ka

Tb
− 1

Tb
0 0 0

0 1 0 0 0
ω2Ke 0 0 −2ζω −ω2

0 0 0 1 0


El =

[
0 1

Tb
0 0 0

0 0 0 ω2 0

]T
Bl =

[
Kb

Ta

Kc

Tb
0 ω2Kd 0

]T
G = I5

Dls =
[
0 0 1 0 1

]T
where Ta and Tb are time constants; Ka, Kb, Kc, Kd, Ke

are known gains; ω and ζ are frequency and damping ratio.
Hence, we have m = 5, n = 1, a = 2 in the unmanned
surface vessel system.

In this article, the following hypotheses are considered:
Assumption 1: For each i = 1, 2, ..., N , The provided
equation is correct,

rank

([
γIn −Al Bl Bla 0 El

C 0 0 Dls 0

])
= n+q+m+s+a

(2)
3 Major Processes

3.1 System augmentation method
We will design a new augmentation method in this content

that is used to analyze a novel vector constructed from the
sensor fault and state vector. This method will help us gain
a deeper understanding of the vector and may provide new
perspectives and methods for addressing related issues.

The augmentation method is as follows:{
Ē ˙̄x (t) = Ālx̄ (t) +Blu (t) +Blafa (t) + Elw (t)

y (t) = Ḡx̄ (t)

(3)
where

Ē =
[
In 0m×q

]
∈ Rm×(m+q)

Āl =
[
Al 0m×q

]
∈ Rm×(m+q)

Ḡ =
[
G Dls

]
∈ Rc×(m+q)

x̄ (t) =
[
xT (t) fm

T (t)
]T ∈ Rm+q (4)

Then, a matrix Ml ∈ R(m+q)×m is defined as,

Ml =

[
In

−D†
lsG+ Zl

(
Ip −DlsDls

†
)
G

]
(5)

where Zl ∈ Rq+c is an random matrix,Dls
† ∈ Rq+c is the

generalized inverse of Dls. We opt for the specific format
thatDls

† =
(
Dls

TDs

)−1
Dls

T and Zl = 0q×c, then Ml =[
In

−
(
Dls

TDls

)−1
Dls

TG

]
.

Multiplication of M to both sides of the first equation in
(3),{
Ēg ˙̄x (t) = Ālgx̄ (t) + B̄lgu (t) + B̄lagfa (t) + Ēlw (t)

y (t) = Ḡx̄ (t)

(6)

where

Ēg =

[
In 0m×q

−
(
DT

lsDls

)−1
DT

lsG 0q×q

]
∈ R(m+q)×(m+q),

Ālg =

[
Al 0m×q

−
(
DT

lsDls

)−1
DT

lsG 0q×q

]
∈ R(m+q)×(m+q),

B̄lg =

[
Bl

−
(
DT

lsDls

)−1
DT

lsGBl

]
∈ R(m+q)×n,

B̄lag =

[
Bla

−
(
DT

lsDls

)−1
DT

lsGBla

]
∈ R(n+s)×s.

Ēl =

[
El

−
(
DT

lsDls

)−1
DT

lsGEl

]
∈ R(m+q)×a

(7)
It is given that B̄ld =

[
B̄lg B̄lag

]
∈ R(m+q)×(n+s).

3.2 Adaptive observer design
Assumption 2: The input u(t) remains bounded and

continuous for all time t,

µ11 ⩽
∮ t+∆t

t

uT (ρ)u (ρ) dρ ⩽ µ12 (8)

where ∆t, µ11 and µ12 are positive value.
According to the system augmentation scheme, the adap-

tive observer system is as follows.{
θ̇ (t) = Ālsθ (t) + L̄lpy (t) + B̄lgu (t) + B̄lag f̂c (t) + Ēlŵ (t)

ˆ̄x (t) = θ (t) + L̄ldy (t)

(9)
where θ (t) ∈ Rm+q is the temporary variable;ˆ̄x (t) ∈
Rm+q is the evaluation of x̄ (t);f̂c (t) ∈ Rs is the eval-
uation of the actuator fault;Āls ∈ R(m+q)×(m+q), L̄lp ∈
R(m+q)×c, L̄ld ∈ R(m+q)×c are the parameters that are de-
signed.

The adaptive laws of f̂cl (t) for l = 1, 2, ..., s are as fol-
lows,

˙̂
fcl (t) = −µ1lS2l

(
Ḡˆ̄x (t)− y (t)

)
− µ2lf̂cl (t) (10)

where S2l is the lth row of the matrix S2 ∈ Rs×c.
The adaptive laws of ŵh (t) for h = 1, 2, ..., a are as fol-

lows,
˙̂wh (t) = −ω1hS1h

(
Ḡˆ̄x (t)− y (t)

)
− ω2hŵh (t) (11)

where S1h is the hth row of the matrix S1 ∈ Ra×c.
According toAssumption 2, the adaptive rates (11) and

(12) are bounded.The error variables are defined as follows,

ēx (t) = ˆ̄x (t)− x̄ (t) ,

ef (t) = f̂c (t)− fc (t) ,

ew (t) = ŵ (t)− w (t)

(12)

where ef (t) =
[
ef1 (t) ef2 (t) ... efs (t)

]T ∈
Rs, ew (t) =

[
ew1 (t) ew2 (t) ... ewa (t)

]T ∈
Ra.Then,we have,

˙̄ex (t) =
˙̄̂x (t)− ˙̄x (t)

= θ̇ (t) + L̄ldẏ (t)− ˙̄x (t)

= Āls ˆ̄x (t) +
(
L̄lp − ĀlsL̄ld

)
Ḡx̄ (t) + B̄lgu (t) + B̄lag f̂c (t)

+ Ēlŵ (t) +
(
L̄ldḠ− Im+q

)
˙̄x (t)

(13)
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We make L̄ld as,

L̄ld =

[
0(

Dls
TDls

)−1
Dls

T

]
(14)

From (6) we know that,(
L̄ldḠ− Im+q

)
˙̄x (t)

=

[
−In 0(

Dls
TDls

)−1
Dls

T 0

]
˙̄x (t)

= −Ālgx̄ (t)− B̄lgu (t)− B̄lagfc (t)− Ēlw (t)

(15)

Substituting (14) into (16),

˙̄ex (t) =
˙̄̂x (t)− ˙̄x (t)

= θ̇ (t) + L̄ldẏ (t)− ˙̄x (t)

= Āls ˆ̄x (t) +
(
L̄lp − ĀlsL̄ld

)
Ḡx̄ (t) + B̄lgu (t) + B̄lag f̂c (t)

+ Ēlŵ (t)− Ālgx̄ (t)− B̄lgu (t)− B̄lagfc (t)− Ēlw (t)

= Āls ˆ̄x (t) +
(
L̄lpḠ− ĀlsL̄ldḠ− Ālg

)
x̄ (t)

+ B̄lagef (t) + Ēlew (t)

(16)

We make Āls and L̄lp as,

Āls = Ālg − LlC̄, L̄lp = Ll + ĀlsL̄lw (17)

where L ∈ Rc×(m+q) is the gain matrix.Then we have,

˙̄ex (t) = Āls ˆ̄x (t) +
(
L̄lpḠ− ĀlsL̄ldḠ− Ālg

)
x̄ (t)

+ B̄lagef (t) + Ēlew (t)

=
(
Ālg − LlḠ

)
ēx + B̄lagef (t) + Ēlew (t)

(18)

Theorem 1:Under the adaptive laws (11) and (12), If
there are positive definite matrices Pl ∈ R(m+q)×(m+q)

and Ql ∈ R(m+q)×(m+q),matrices S =
[
S1

T S2
T
]T ∈

R(a+s)×c and Ȳl ∈ R(m+q)×c, the following conditions
hold,

PlĀlg + ĀlgPl − ȲlḠ− ḠT Ȳ T
l +Ql < 0,[

Ēl B̄lag

]T
Pl = SḠ

(19)

then the system (19) is almost surely asymptotically stable.
Besides, it is chosen that Ll = Pl

−1Ȳl.
Proof . Design the following Lyapunov function,

V (t) = V1 (t) + V2 (t) + V3 (t) (20)

where

V1 (t) = ēTx (t)P ēx (t) ,

V2 (t) =

s∑
l=1

e2fl (t)

µ1l
,

V3 (t) =

a∑
h=1

e2wh (t)

ω1h

(21)

Then, we have

V̇1 (t) = ēTx (t)
[
Pl

(
Ālg − LlḠ

)
+
(
Ālg − LlḠ

)T
Pl

]
ēx (t)

+ 2ēTx (t)PlB̄lagef (t) + 2ēTx (t)PlĒlew (t)

V̇2 (t) =

s∑
l=1

2efl (t) ėfl (t)

µ1l
, V̇3 (t) =

a∑
h=1

2ewh (t) ėwh (t)

ω1h

(22)

Noted at,

V̇2 (t) + 2ēTx (t)PlB̄lagef (t)

=

s∑
l=1

2efl (t) ėfl (t)

µ1l
+ 2

s∑
l=1

efl
(
B̄T

lagP
T
l ēx (t)

)
l

=

s∑
l=1

2

[
efl (t)

µ1l

(
˙̂
fcl (t)− ḟcl (t)

)
+ efl (t)

(
B̄T

lagP
T
l ēx (t)

)
l

]
(23)

where
(
B̄T

lagP
T
l ēx (t)

)
l

denotes the lth row of the vectri

B̄T
lagP

T
l ēx (t).Consider (11) into (24),

V̇2 (t) + 2ēTx (t)PlB̄lagef (t)

=

s∑
l=1

2

[
−efl (t)

(
S2Ḡēx (t)

)
l
+ efl (t)

(
B̄T

lagP
T
l ēx (t)

)
l

−µ2l

µ1l
efl (t) f̂cl (t)− 1

µ1l
efl (t) ḟcl (t)

]

=

s∑
l=1

2

[
−µ2l

µ1l
efl (t) (fcl (t) + efl (t))−

1

µ1l
efl (t) ḟcl (t)

]
(24)

Now consider the term −
∑s

l=1 2
µ2l

µ1l
efl (t) (fcl (t) + efl (t)),

−
s∑

l=1

2
µ2l

µ1l
efl (t) (fcl (t) + efl (t))

⩽
s∑

l=1

[
µ2l

µ1l
e2fl (t) +

µ2l

µ1l
f2
cl (t)−

2µ2l

µ1l
e2fl (t)

]

⩽
s∑

l=1

[
−µ2l

µ1l
e2fl (t) +

µ2l

µ1l
f2
cl (t)

]
(25)

Another term −
∑s

l=1
2

µ1l
efl (t) ḟcl (t), there exists a con-

stant 0 < ε1 < µ2l,

−
s∑

l=1

2

µ1l
efl (t) ḟcl (t)

⩽
s∑

l=1

[
ε1
µ1l

e2fl (t) +
1

µ1lε1
ḟ2
cl (t)

]

⩽
s∑

l=1

[
ε1
µ1l

e2fl (t) +
1

µ1lε1
¯̄f2
cl

]
(26)

where f̄cl means the maximum of fcl (t),
¯̄fcl means the max-

imum of ḟcl (t). Then, we have,

V̇2 (t) + 2ēTx (t)PlB̄lagef (t)

⩽
s∑

l=1

[
−µ2l

µ1l
e2fl (t) +

µ2l

µ1l
f2
cl (t) +

ε1
µ1l

e2fl (t) +
1

µ1lε1
¯̄f2
cl

]

⩽
s∑

l=1

[
−µ2l − ε1

µ1l
e2fl (t) +

µ2l

µ1l
f̄2
cl +

1

µ1lε1
¯̄f2
cl

]
(27)

Considering term V3 (t) and 2ēTx (t)PlĒlew (t) in (23),

V̇3 (t) + 2ēTx (t)PlĒlew (t)

=

a∑
h=1

2

[
ewh (t)

ω1h

(
˙̂
dw (t)− ḋw (t)

)
+ ewh (t)

(
ĒT

l P
T
l ēx (t)

)
h

]
(28)

1224  



where
(
ĒTPl

T ēx (t)
)
h

represents the hth row of the vector

Ēl
T
Pl

T ēx (t).With the adaptive law (12), we have,

V̇3 (t) + 2ēTx (t)PlĒlew (t)

=

a∑
h=1

2

[
−ω2h

ω1h
ewh (t) (wh (t) + ewh (t))−

1

ω1h
ewh (t) ẇh (t)

]
(29)

Now consider the term −
∑a

h=1
2ω2h

ω1h
ewh (t) (wh (t) + ewh (t)),

that,

−
a∑

h=1

2ω2h

ω1h
ewh (t) (wh (t) + ewh (t))

⩽
a=1∑
h=1

[
−ω2h

ω1h
e2wh (t) +

ω2h

ω1h
w2

h (t)

] (30)

For the term −
∑a

h=1
2

ω1h
ewh (t) ẇh (t), there exists a con-

stant 0 < ε2 < ω2h,

−
a∑

h=1

2

ω1h
ewh (t) ẇh (t)

⩽
a∑

h=1

[
ε2
ω1h

e2wh (t) +
1

ω1hε2
¯̄w2
h

] (31)

where w̄h means the maximum of wh (t), ¯̄wh means the
maximum of ẇh (t). Therefore, we have,

V̇3 (t) + 2ēTx (t)PlĒlew (t)

⩽
a∑

h=1

[
−ω2h

ω1h
e2wh (t) +

ω2h

ω1h
w2

h (t) +
ε2
ω1h

e2wh (t) +
1

ω1hε2
¯̄w2
h

]

⩽
a∑

h=1

[
−ω2h − ε2

ω1h
e2wh (t)

ω2h

ω1h
w̄h +

1

ω1hε2
¯̄w2
h

]
(32)

Consider equations (20), (28), and (33),

V̇1 (t) + V̇2 (t) + V̇3 (t)

⩽ −ēTx (t)Qlēx (t) +

s∑
l=1

[
−µ2l − ε1

µ1l
e2fl (t) +

µ2l

µ1l
f̄2
al +

1

µ1lε1
¯̄f2
cl

]

+

a∑
h=1

[
−ω2h − ε2

ω1h
e2wh (t)

ω2h

ω1h
w̄h +

1

ω1hε2
¯̄w2
h

]
⩽ −α0V (t) + β

(33)

where α0 = min
{
λmin

{
QlP

−1
l

}
, µ2l − ε1, ω2h − ε2

}
,

and β =
∑s

l=1

[
−µ2l−ε1

µ1l
e2fl (t) +

µ2l

µ1l
f̄2
cl +

1
µ1lε1

¯̄f2
cl

]
+∑a

h=1

[
−ω2h−ε2

ω1h
e2wh (t)

ω2h

ω1h
d̄w + 1

ω1hε2
¯̄d2w

]
.

Thus, the error system (32) is asymptotically stable almost
surely.

Remark 1:Please note that the matrix equality in Equa-
tion (33) cannot be solved directly using the MATLAB tool-
box. The condition of the matrix equation can be formulated
as the following LMI problem: minι, subject to[

−ιIm+q

(
B̄T

ldPl − SḠ
)T

∗ −Ia+s

]
< 0

PlĀlg + ĀT
lgPl − ȲlḠ− ḠT Ȳ T

l +Ql < 0

(34)

where Ll = Pl
−1Ȳl.

Remark 2:In Theorem 1, alternatively, it has been deter-
mined that the evaluated errors are confined within a spe-
cific proximity to zero, which is influenced by the limits
of the faults and the derivatives of the faults. However,
based on (34), we can only make adjustments to the adap-
tive gains µ1l, µ2l, ω1h, ω2h to reduce the set of fault er-
rors.Nevertheless, due to the sensitivity of the aforemen-
tioned scalars to system parameters, it becomes challenging
to attain the desired estimated performance.

4 SIMULATION RESULTS

In this section, a model of an unmanned surface vessel is
selected to validate the effectiveness of the design method.
The model is as follows:

Al =


−0.1000 0 0 0 0
−0.2760 −0.6000 0 0 0

0 1.0000 0 0 0
0.6501 0 0 −0.1180 −0.3969

0 0 0 1.0000 0

 ,

Bl =


0.0078
−0.0126

0
−0.0338

0

 , Bla =


1
0
0
0
0

 , G = I5, Dls =


0
0
1
0
1

 ,

El =


0 0
0.6 0
0 0
0 0.3969
0 0


(35)

The input, unknown actuator, sensor faults and external
interference are considered as,

u (t) = 0.1 sin t,

fm(t) =

{
0.05t, 0 ⩽ t ⩽ 10

0.2 sin (0.9 (t− 10)) + 0.5, t > 10

fc (t) = 0.2 sin (1.2t)

w1 (t) = 0.6 sin (1.5t)

w2 (t) = 0.5 sin (1.2t)

The matrix M in (5) is made as,

Ml =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 −0.5000 0 −0.5000

 (36)

Based on equation (20), the observer parameters are de-
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signed as follows,

Ll =


1.0998 −0.0893 −0.0474 0.4126 0.0292
−0.2028 0.6783 0.2437 0.0412 −0.2044
−0.0790 0.6852 1.0261 −0.0577 0.4722
0.4199 −0.1473 −0.3137 1.0997 0.1757
0.1668 0.3048 −0.2746 0.2557 0.8180
−0.0938 −0.4215 0.4942 −0.1490 0.5816

 ,

S =

 −0.0008 −0.0011 −0.0008 −0.0006 0.0013
−0.0009 −0.0004 −0.0013 −0.0008 −0.0002
0.0018 0.0011 −0.0001 −0.0011 −0.0012


(37)

The adaptive gains are as follows:µ1 = 10000, µ2 =
1, ω1 = 70000, ω2 = 1.The results are shown in the fol-
lowing figures.
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Fig. 1: State x1(t) and its estimation x̂1(t)
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Fig. 2: State x2(t) and its estimation x̂2(t)

5 Conclusions

In this paper, we present a novel adaptive feedforward ob-
server Fault Estimation (FE) approach, specifically designed
for unmanned surface vessel systems that are prone to actu-
ator and sensor faults. This adaptive mechanism is capable
of adjusting its parameters based on the real-time data it re-
ceives, thereby enhancing the accuracy and reliability of the
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Fig. 3: State x3(t) and its estimation x̂3(t)

0 50 100 150 200 250 300

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x4(t)
x̂4(t)

Fig. 4: State x4(t) and its estimation x̂4(t)
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Fig. 5: State x5(t) and its estimation x̂5(t)

fault estimation process. The proposed mehtod significantly
enhances the safety, reliability, and operational efficiency of
unmanned surface vessel systems.
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Abstract: This paper focuses on the scenario where unmanned vessels (UAVs) from the red team need to break through the 

interception of unmanned vessels from the blue team, utilizing deep reinforcement learning technology to accomplish the 

intrusion evasion task. The study proposes a strategy with Multi-Agent Deep Deterministic Policy Gradient (MADDPG) 

reinforcement learning framework at its core. The paper presents a method for designing the state space based on the relative 

positions between the blue team's unmanned vessel and each red team's unmanned vessel. The speed of red team's unmanned 

vessels is considered as the action space for each agent. Additionally, reward functions are designed based on the goals of the 

intrusion evasion task to incentivize the red team's unmanned vessels to adopt expected behaviors. This ensures that the red 

team's unmanned vessels, while avoiding interception by the blue team's unmanned vessels, can successfully carry out the task of 
striking the target. 

Key Words: Unmanned Surface Vessel, Deep Learning, Reinforcement Learning, Path Planning 

 

 
  

1 Introduction 

With the rapid development of new-generation 

technologies such as artificial intelligence, information 

networks, cloud computing, communication, and navigation, 

unmanned surface vessels (USVs) are undergoing a 

systematic, intelligent, and unmanned transformation as an 

emerging form of future maritime vessels. In various fields 

such as marine surveying, rescue operations, environmental 

monitoring, and military applications, the widespread use of 

USVs calls for in-depth research on their fully autonomous 

navigation and task execution capabilities. The complexity 

of maritime missions makes the intrusion evasion capability 

of  USVs crucial[1]. 

Traditional path planning algorithms perform poorly 

when faced with the dynamic maritime environment and 

diverse mission requirements. Therefore, the introduction of 

intelligent algorithms, especially deep reinforcement 

learning, becomes an ideal choice[2]. The Multi-Agent Deep 

Deterministic Policy Gradient (MADDPG) algorithm, as a 

deep reinforcement learning framework for multi-agent 

environments, provides powerful intrusion evasion 

capabilities for USVs. Through MADDPG, USVs can 

perceive the environment in real-time and learn intrusion 

evasion strategies that adapt to dynamic conditions using 

deep neural networks. 

This approach enables USVs not only to make real-time 

decisions based on changes in the maritime environment but 

also, through learning and iteration, automatically acquire 

optimal intrusion evasion strategies. This reduces 

redundancy, optimizes resource utilization, and enhances 

the accuracy of intrusion evasion and task execution 

efficiency. Research on USVs based on dynamic intrusion 

evasion and the MADDPG algorithm is significant in 

improving the intelligence, adaptability, and efficiency of 
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intrusion evasion. This not only helps meet the demands of 

complex maritime missions but also drives the development 

of USV technology, providing unprecedented opportunities 

for the effective utilization of marine resources and 

environmental protection. 

The study of dynamic intrusion evasion for multiple 

USVs is at the forefront of development, with researchers 

dedicated to addressing the challenges of collaborative work 

among multiple intelligent agents. Deep reinforcement 

learning is an internationally and domestically acclaimed 

research direction in the field of artificial intelligence. 

Internationally, researchers are committed to advancing 

algorithmic innovation, focusing on generalization 

capabilities and practical applications, particularly in areas 

such as robot control and autonomous driving. 

Domestically, research emphasizes theoretical 

exploration, domain applications, and the integration of 

industry, academia, and research. Simultaneously, efforts 

are being made to promote open-source frameworks for 

deep reinforcement learning technology, supporting its 

widespread application in practical problem-solving. This 

global research trend indicates that deep reinforcement 

learning has immense potential in solving complex tasks and 

practical applications, contributing significant innovations 

and practical applications to the development of artificial 

intelligence technology[3]. 

The adoption of multi-agent reinforcement learning 

algorithms, such as MADDPG, aims to achieve distributed 

intrusion evasion of intelligent agents, with a focus on 

real-time perception, collaborative control, conflict 

avoidance, and collaborative task execution. Through 

simulation and field validation, the research aims to enhance 

the adaptability and efficiency of multi-USV systems in 

dynamic, complex maritime environments, laying a solid 

foundation for the future application of USV technology. 

2 Design of Multi-Unmanned Surface Vessel 

Intrusion Evasion Methods 

This chapter is designed for the scenario of multiple 

unmanned surface vehicles in breach missions, establishing 
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basic settings for the application environment of multiple 

agents. Additionally, it involves designing the state space, 

action space, reward system, and essential functions for 

learning in the scenario that the multiple agents face.  

2.1 Multiple-Agent Deep Deterministic Policy 

Gradient Algorithm 

The Deep Deterministic Policy Gradient (DDPG) 

algorithm has achieved significant success in addressing the 

challenge of continuous action in unmanned surface vehicle 

(USV) missions. However, traditional DDPG algorithms 

face limitations when dealing with breach missions 

involving multiple USVs. In a multi-agent context, where 

each USV's strategy is constantly changing, the perception 

of the environment by each agent evolves, violating the 

fundamental assumption of deep reinforcement learning that 

assumes the environment is a Markovian environment[4]. 

This makes it challenging to effectively train the agents. 

The utilization of the MADDPG (Multi-Agent Deep 

Deterministic Policy Gradient) algorithm in the study of 

unmanned surface vessel intrusion avoidance strategies is 

motivated by its advantageous characteristics within this 

context. MADDPG excels in facilitating multi-agent 

collaboration, adapting to dynamic environmental 

conditions inherent to maritime settings, and demonstrating 

scalability to accommodate varying numbers of agents. 

Moreover, drawing from the robustness of deep 

deterministic policy gradient algorithms, MADDPG ensures 

stability in multi-agent environments while leveraging the 

representational power of deep learning to effectively 

navigate complex state and action spaces. As such, 

MADDPG stands as a prominent choice for addressing the 

intricacies of unmanned surface vessel intrusion avoidance 

scenarios. 

To address this issue, researchers have proposed the 

multi-Agent deep deterministic policy Gradient (MADDPG) 

algorithm, specifically tailored for breach applications 

involving multiple USVs. MADDPG introduces 

improvements suitable for multi-agent learning on top of 

DDPG. In MADDPG, if there are n USVs, each USV is 

equipped with a policy network and a target network. The 

critical aspect of MADDPG lies in its unique Critic 

component, which evaluates not only the actions of 

individual agents but also requires global information, 

including the actions of other USVs. Each USV can enhance 

the training of its actions based on its respective Critic, thus 

improving training effectiveness in a multi-agent 

environment. This innovation holds promise for achieving 

better performance in complex scenarios involving 

coordinated breach actions by unmanned surface vehicles. 

MADDPG (Multi-Agent Deep Deterministic Policy 

Gradient) is a multi-agent reinforcement learning algorithm 

that extends the single-agent DDPG algorithm to address 

collaborative breach problems in a multi-agent environment. 

The Actor network for each USV i estimates its policy, 

selecting actions based on observed states. The formula is as 

follows, where �� represents the observed state of the i-th 

USV, �� is the parameter of the i-th agent's policy network, 

and the output of the Actor network is the action[5]. 

 ( ; )=
i i i

a sµ θ                              (1) 

The Critic network is employed to estimate the value 

function for state-action pairs. Each agent has its own Critic 

network, and global information, including the actions of 

other agents, is taken into account. The Critic network for 

each USV i estimates the value function for state-action 

pairs, considering global information, which includes the 

actions of other USVs denoted by "o." The formula is as 

follows, where ��  represents the parameters of the Critic 

network. 

( , , ; )
i i

Q s a o τ                             (1) 

The formula for calculating the target value of the Critic 

network is as follows, where ��  represents the immediate 

reward and � is the discount factor. 

( , ( ; ), ; )′ ′ ′ ′ ′ ′ ′= +
i

i i i i i
y r Q s s oγ µ θ τ                 (3) 

The parameters �� of the Critic network are updated by 

minimizing the mean squared error loss function, as shown 

in the following formula. 

( )( )
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1 1
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=
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τ
τ              (4) 

The parameters �� of the Actor network are updated using 

the policy gradient method, as shown in the following 

formula, where ��	

 represents the gradient of the Actor. 

 ( )
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= =
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θ θ

µ θ
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In this formula framework, each unmanned ship selects 

actions based on its own Actor network, while the Critic 

network considers global information to evaluate the value 

function. Through collaborative learning, the MADDPG 

algorithm optimizes the multi-unmanned ship system. This 

integrated approach is expected to achieve better 

performance in tasks such as collaborative actions and path 

planning in unmanned ship scenarios. 

2.2 Markov Decision Process (MDP) Modeling 

In the deep reinforcement learning for unmanned ship 

breach missions, we consider the environment in which 

multiple agents operate as a Markov Decision Process. This 

process involves a set of interactive entities, namely the 

unmanned ship agents and the environment. The unmanned 

ship agents can make decisions based on the state of the 

environment and change the environment's state through 

corresponding actions. The environment in this 

decision-making process encompasses everything outside 

the unmanned ship agents, and its state changes with the 

actions of the unmanned ship agents. Simultaneously, 

unmanned ship agents can perceive changes in the 

environment's state and receive corresponding rewards 

based on these changes. 

In the context of breach missions, we establish a Markov 

process-based unmanned ship breach model for each 

multi-agent. The strategy network of each unmanned ship 

agent, representing its path planning model, can make 

breach decisions based on the current environmental state. 

These decisions lead to changes in the environment's state, 

and the agents can perceive these changes and receive 

rewards accordingly, guiding them to perform breach tasks 

more effectively in complex scenarios. Such modeling 

facilitates the application of deep reinforcement learning 

algorithms in multi-agent collaborative breach 

1229  



  

environments, enhancing the overall performance of 

unmanned ship teams[6]. 

Typically, this Markov Decision Process can be described 

using a quintuple, where the interpretation of each element 

is as follows: 

State space ��: Represents the set of environmental states 

where unmanned ship agent i of the red team is located. 

Considering the scenario with multiple agents, the state 

space is the collective set of states for all unmanned ship 

agents. 

Action space �� : Represents the set of actions for 

unmanned ship agent i of the red team. In the case of 

multiple agents, the action space is the collective set of 

actions for all unmanned ship agents. 

Transition function � : This function describes the 

probability of transitioning from one state to another when 

agent  i takes a certain action in a given state. 

Reward function ��: Provides rewards to agent i based on 

the actions it takes in different states. 

Discount factor � : Its value ranges between 0 and 1, 

representing the importance of future rewards in the current 

value. A smaller value indicates a greater emphasis on 

rewards in the current state, while a larger value indicates a 

greater emphasis on future rewards. 

This quintuple provides a comprehensive framework, 

enabling deep reinforcement learning algorithms to learn 

and optimize the decision-making strategies of agents in 

complex unmanned ship breach scenarios[7]. This, in turn, 

enhances the overall performance and efficiency of the 

entire system. 

2.3 State space design 

In the context of unmanned ship breach missions, 

considering practicality and modeling convenience, we 

choose a spherical coordinate system as the environmental 

model, using only latitude and longitude for location and 

disregarding height. In this breach task environment, we 

have multiple unmanned ships, each of which needs to plan 

its own path to effectively complete the mission[8]. 

To simplify the model, we define the state space for each 

unmanned ship as the set of states for that particular ship, 

where the state format is the same for each unmanned ship. 

We use the term "Unmanned Ship Learning Robot" (USL) 

to refer to the collection of unmanned ship intelligent agents, 

with each unmanned ship agent belonging to this set. 

For each unmanned ship agent belonging to the USL, 

assuming there are m blue team unmanned ships for 

interception, we define its state space as a 

2+2+4*m-dimensional vector. 
1

1 1

i1 ij

i
[ , , , , , ..., , , ...,

, ..., , ..., , , ..., ]

,..., ,...,

,..., ,...,

=

x x x y y y

i ij im

x y x x x y y

im i ij im i ij im

y v v v v v v

S x y v v d d d d d

d d d d d d d
 (6) 

In this definition, x represents the horizontal coordinate 

relative to the destination, y represents the vertical 

coordinate relative to the destination, ��  represents the 

horizontal velocity of the current red team unmanned ship, 

and ��  represents the vertical velocity of the current red 

team unmanned ship. Simultaneously, ��
��

 represents the 

horizontal distance between the i-th red team unmanned ship 

agent and the j-th blue team unmanned ship, while ��
ij
 

represents the vertical distance. ���

��
 represents the 

horizontal velocity difference between the i-th red team 

unmanned ship agent and the j-th blue team unmanned ship, 

and ���

��
 represents the vertical velocity difference. 

2.4 Action space design 

Given the practical considerations and the requirements 

of model simulation, we define the actions of the red team 

unmanned ship agents as changes in their direction. In this 

breach mission, we assume that the velocity of the red team 

unmanned ships remains constant and moves at a 

predetermined speed. Therefore, we simplify the action 

setting for the red team unmanned ship agents to only 

involve changes in direction[9]. Specifically, we define the 

actions of the red team unmanned ship agents as follows: 

                       [ , ]=
i x y

A v v                               (2) 

According to the strategy learned during training, make 

corresponding changes to the direction of the red team 

unmanned ships at different times. This action definition, 

while remaining concise, meets the requirements of the red 

team unmanned ship breach mission. It allows the agents to 

flexibly make appropriate decisions based on the 

environmental state and the learned strategy, optimizing the 

effectiveness of the breach mission. 

By adjusting the direction while maintaining a 

predetermined speed, the red team unmanned ship agents 

can effectively evade interception by blue team unmanned 

ships and maintain the continuity of movement during the 

breach process. The implementation of this action definition 

contributes to improving the adaptability and success rate of 

the red team unmanned ship agents in breach missions[10]. 

2.5 Reward function design 

In the research on red team unmanned ship breach 

missions, a series of reward functions must be defined to 

guide the agent's learning towards the desired behavior. 

These functions should assign different rewards to the agent 

based on indicators such as the state of the red team 

unmanned ship, the distance to the target, and whether it is 

intercepted by the blue team unmanned ship, encouraging 

the agent to learn the expected behavior[11]. 

In the context of red team unmanned ship breach missions 

based on deep reinforcement learning, in addition to 

designing reward functions for the distance and direction of 

the red team unmanned ship to the target, it is also necessary 

to consider a reward function for avoiding the blue team 

unmanned ships. In the scenario, there are scenarios where 

blue team unmanned ships collide with red team unmanned 

ships, requiring the design of a reward function to guide the 

red team unmanned ship agent to successfully avoid the blue 

team unmanned ships and reach the target point. 

Specifically, the following reward functions are defined: 

a penalty (reward = -1) is given when the red team 

unmanned ship collides with the blue team unmanned ship, 

and a reward (reward = 5) is given when the distance 

between the red team unmanned ship and the target is less 

than 50 km, considering the mission accomplished. 

Through this reward function, when the distance from the 

red team unmanned ship to the target is greater than one 

hundred kilometers, it checks if the unmanned ship deviates 

too far from the target, deducting a certain reward if it is too 
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far. When the distance to the target is less than 100 km, it is 

considered that the red team unmanned ship has entered a 

relatively close range to the target, providing corresponding 

rewards and marking the distance as 1. In this close range to 

the target, if the red team unmanned ship collides with the 

blue team unmanned ship, a reward deduction is applied. If 

the status of the red team unmanned ship indicates no 

collision with the blue team unmanned ship and it has not 

entered the close range, but the distance to the target is 

reduced, it is considered that the red team unmanned ship is 

advancing towards the target, and a reward is given[12]. 

When the red team unmanned ship is close to the target, 

another set of reward functions is designed to reward the red 

team unmanned ship. When the distance from the red team 

unmanned ship to the target is less than 50 km, it is 

considered that the mission is accomplished, providing a 

relatively large reward. The construction of these reward 

functions effectively guides the learning of the red team 

unmanned ship agent, enabling it to form effective breach 

strategies in complex environments. 

2.6 Training process of MADDPG algorithm. 

M In the research on intrusion missions of unmanned 

surface vehicles (USVs) in the red team, traditional 

single-agent algorithms fail to effectively utilize the states 

and information of other agents, leading to suboptimal 

training outcomes. To address this issue, the Multi-Agent 

Deep Deterministic Policy Gradient (MADDPG) algorithm 

is introduced. 

The MADDPG algorithm shares structural similarities 

with the traditional Deep Deterministic Policy Gradient 

(DDPG) algorithm. In the actor component, each red team 

USV agent outputs corresponding actions based on its local 

observations. However, in the critic component, MADDPG 

differs from traditional algorithms by requiring global 

information for evaluation. This enables better collaboration 

among red team USV agents. The application of MADDPG 

algorithm in the training process for intrusion missions of 

red team USVs is outlined as follows: 

(1) Initialize the policy network and target network 

parameters for red team USV agents. 

(2) Initialize the experience pool to store experiences 

during the training process. 

(3) Scene initialization to obtain the initial state of red 

team USV agents. 

(4) Use the MADDPG algorithm to select actions for red 

team USV agents corresponding to their states. 

(5) Interact with the environment to receive rewards and 

obtain the next state. 

(6) Repeat steps 4 and 5 until completing one training 

episode. 

(7) Store samples in the experience pool. 

(8) Select multiple samples from the experience pool, 

calculate, and update the target and policy networks. 

(9) Repeat steps 1-8 until the training of red team USV 

agents is completed. 

In the practical application of dynamic path planning for 

unmanned surface vehicles, the MADDPG algorithm 

enables USV agents to plan paths more efficiently in 

complex marine environments. By adapting to 

environmental changes and enhancing the accuracy and 

efficiency of path planning through the sharing and 

coordination of global information, USV agents can 

intelligently accomplish tasks, contributing to the 

development of unmanned surface vehicle technology. 

Table 1: Experimental parameter settings 

Parameters Values 

Number of unmanned 

vessels on the red side 
2 

Number of unmanned 

vessels on the blue 

side 

4 

Safe distance between 

unmanned vessels on 

the red side and those 

on the blue side 

10Km 

Speed of unmanned 

vessels on the red side 
10Kn 

Speed of unmanned 

vessels on the blue 

side 

5Kn 

Size of the experience 

pool 
500000 

Objective function 

updating coefficient 
0.95 

Learning rate of the 

actor network 
0.0002 

Learning rate of the 

critic network. 
0.001 

 

(1) Early Stage of Training: 

In the initial training phase of the red team's unmanned 

boat assault mission, by observing the trajectory of the blue 

team's unmanned boat agents (as shown in the figure below), 

it is evident that the training level of the red team's 

unmanned boat trajectory is not yet sufficient at this stage. 

During this phase, guided by its strategy, the red team's 

unmanned boat agents maintain a relatively distant distance 

from the target, resulting in a relatively poor task completion. 

This indicates that the red team's unmanned boat agents 

have not fully mastered the complex interception strategy of 

the blue team's unmanned boat in the early stages, and their 

decision-making is limited by training data and experience. 

In the figure, the trajectory of the red team's unmanned 

boat agents exhibits relatively conservative behavior. This 

may be attributed to the fact that the red team's unmanned 

boat agents have not fully adapted to the complexity of the 

assault mission in the early stages of training, leading to 

relatively conservative decision-making. 

To enhance the effectiveness of assault, further training is 

needed to optimize the strategy. As training progresses, the 

red team's unmanned boat agents will gradually improve 

their route planning, adapt to more complex scenarios, and 

achieve a more effective assault effect. This highlights the 

importance of the training process and provides valuable 

insights for optimizing the dynamic path planning of the red 

team's unmanned boat. 
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Fig. 1: Early stage of training 

(2) Mid-Stage of Training: 

In the mid-training phase of the red team's unmanned boat 

assault mission, as observed in the figure below, it is evident 

that the red team's unmanned boat assault algorithm has 

made significant progress after a certain degree of training. 

During this mid-training phase, the red team's unmanned 

boat agents, guided by the algorithm, demonstrate 

preliminary capabilities to make decisions based on the 

current state. Their trajectory shows a more flexible and 

proactive trend. 

At this stage, the red team's unmanned boat agents 

successfully avoided the blue team's unmanned boats shown 

in the figure, approaching the red team's target more closely, 

and the effectiveness of path planning has significantly 

improved. The figure clearly illustrates that the red team's 

unmanned boat agents have acquired the ability to make 

decisions based on the current state in the mid-training 

phase, providing a beneficial foundation for subsequent 

training and path planning optimization. The learning 

performance of the red team's unmanned boat agents 

exhibits characteristics of adaptation to complex 

environments, laying a solid foundation for improving 

assault effectiveness and avoiding interception by the blue 

team's unmanned boats in more complex scenarios. This 

highlights the potential of deep reinforcement learning in the 

red team's unmanned boat assault mission and the gradual 

optimization process. 

 
Fig. 2: Mid-stage of training 

(3) Late Stage of Training: 

In the late stage of training for the red team's unmanned 

boat assault mission, as observed in the figure below, it is 

evident that dynamic assault by unmanned boats has been 

thoroughly trained and is displaying a significant assault 

effect. At this stage, the red team's unmanned boat agents 

can make optimized action decisions in complex 

environments, successfully avoiding the blue team's 

unmanned boats and directly reaching the target. In the 

figure, the trajectory of the red team's unmanned boat agents 

exhibits more precise and focused assault behavior. At this 

point, the unmanned boat agents have successfully adapted 

to the complex dynamic assault task, and their 

decision-making has become more flexible and efficient. 

The results in the late stage of training highlight the 

significant progress in dynamic assault by the red team's 

unmanned boats. With the deepening of training, the assault 

effectiveness of the red team's unmanned boat agents 

gradually improves, providing strong support for the 

research and practical application of unmanned boat 

dynamic path planning. This also demonstrates the potential 

of deep reinforcement learning in addressing multi-agent 

path planning problems. Through optimization in the late 

stage of training, the red team's unmanned boat agents can 

better adapt to environmental changes and achieve a higher 

level of assault effectiveness. 

 
Fig. 3: Late stage of training 

(4) Training Completion: 

By observing the figure below, we can see that after 

training completion, the red team's unmanned boat dynamic 

assault algorithm has successfully formulated corresponding 

actions for unmanned boat agents based on the 

environmental state. Guided by this algorithm, the red 

team's unmanned boat agents have successfully completed 

the task of navigating through all the blue team's unmanned 

boats and reaching the target point. 

1232  



  

 
Fig. 4: Training completed. 

The performance differences observed in different 

training stages reflect the gradual optimization of training 

effectiveness. In the early stages, due to the immaturity of 

the red team's unmanned boat dynamic assault algorithm, 

the unmanned boat agents struggled to accurately formulate 

action decisions based on the state, resulting in situations 

where they were distant from or deviated from the target. As 

training progressed, the algorithm gradually guided the red 

team's unmanned boat agents closer to the target, but the 

assault effectiveness remained moderate, making it difficult 

to reach the target point. Convergence in MADDPG means 

stable agent policies. It's checked by tracking policy changes 

over training. Factors like hyperparameters affect it. 

In the late stages of training, the algorithm successfully 

guided two red team's unmanned boat agents to complete the 

assault task, but some red team's unmanned boat agents still 

faced interception by the blue team's unmanned boats. 

Ultimately, after training completion, the model could 

effectively guide multiple red team's unmanned boat agents 

to overcome blue team interception and reach the target 

point in the specified environment. This indicates that the 

application of deep reinforcement learning in dynamic path 

planning for the red team's unmanned boats provides an 

effective solution for enhancing dynamic assault 

effectiveness. 

3 Conclusion  

This paper focuses on the topic of dynamic assault by red 

team's unmanned boats. Through the idealized modeling of 

the red team's unmanned boat assault scenario, the paper 

successfully designs the state space and action space. On 

this basis, a reward function associated with the state space 

and action space is constructed to guide the training of the 

red team's unmanned boat agents. Simultaneously, a series 

of functions are defined to implement the perception of the 

environment by the red team's unmanned boat agents. The 

paper completes the training model for the red team's 

unmanned boat multi-agent dynamic assault scenario. 

Through idealized modeling and training, this paper 

provides a beneficial research foundation for the dynamic 

path planning of red team's unmanned boats. The defined 

state space, action space, and reward function construct a 

complete training framework, enabling the red team's 

unmanned boat agents to learn effective path planning 

strategies in complex dynamic assault scenarios. This 

research holds significant importance for the application of 

deep reinforcement learning in unmanned boat technology, 

offering robust support for enhancing the performance of 

red team's unmanned boats in practical assault missions. 
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Abstract: Intelligent tugs with high autonomy are becoming a worldwide research focus, particularly for the needs of automated
port operations. The path-following control of tug is an important part of intelligent tugs research. This paper proposes a path-
following control method that combines Gaussian Process Regression (GPR) and Arithmetic Optimization Algorithm (AOA) for
autonomous tugs. A GPR model is constructed to identify the correlation between the heading angle and the rotation angle of
the azimuth thrusters, which acts as the prediction model in the path-following controller. The AOA is utilized to determine the
optimal control inputs for each sampling interval, adopting the sine-cosine search strategy instead of addition and subtraction
operations and introduces an inertia factor to improve the computational efficiency of AOA. A Line-of-Sight (LOS) algorithm
is used as the guidance law to transform reference waypoints into reference heading angles, and the path-following controller
is designed based on the GPR model and AOA. Simulation results show that the proposed method performs well in the path-
following task without having prior knowledge regarding the hydrodynamic coefficients and ship parameters.

Key Words: Autonomous surface ships, path-following control, Gaussian process regression, arithmetic optimization algorithm

1 Introduction

A tug is a special type of vessel used mainly near the har-
bor and ports to assist the docking, towing, hauling, escort-
ing, emergency rescue, and other assistance maneuvers for
large cargo ships. It is usually equipped with two azimuth
thrusters to provide propulsive forces and moments that re-
sult in surge, sway, and yaw motion. Unlike underactuated
cargo ships that are equipped with propellers and rudders, a
tug can be considered a fully-actuated system because the
thrusters can provide forces in three Degrees-Of-Freedom
(D-O-F) in the horizontal plane. Intelligent tugs with high
autonomy are a growing area of research around the world,
especially for the needs of automated port operations. Path
following, as a basic task of ship motion control, is crucial
for achieving autonomous navigation of intelligent tugs.

Researchers have made significant progress in path fol-
lowing control. Various control algorithms have been uti-
lized by researchers for ship path following control, in-
cluding PID [1], adaptive control [2], sliding mode control
[3], model predictive control [4], and combination with ma-
chine learning techniques [5]. However, current research
still needs to address some issues. On one hand, the effec-
tiveness of commonly used model-based controller design is
limited in nonlinear and uncertain navigation environments
due to the inaccuracy of the system model. On the other
hand, accurate mathematical models are difficult to obtain

This work was supported by National Key R&D Program of China
(2022YFE0125200) , National Natural Science Foundation of China
(52272425) and Natural Science Foundation of Hubei Province, China
(2023AFB064).

*Corresponding author.

due to the coupled effects of hydrodynamic forces acting on
the ship’s hull and propulsion forces generated by its control
actuators. Commonly used mathematical models for design-
ing ship motion controllers include the Nomoto model [6],
which only describes yaw movements, and the Maneuvering
Modeling Group (MMG) model [7], which usually ignores
the coupled effects between the ship’s sway and yaw move-
ments. It is important to strike a balance between model
accuracy and controller design needs to allow for wider ap-
plication of the models to different scenarios.

With the advancement of machine learning, researchers
have proposed several data-driven modeling methods to deal
with the difficulties in constructing mechanism mathemat-
ical models for ship movements. Gaussian Process Re-
gression (GPR) is a nonparametric probabilistic modeling
method suitable for small datasets [8]. It enables direct
modeling of systems with unknown dynamics and can be
integrated into a Model Predictive Control (MPC) frame-
work to address various control problems [9, 10]. This
also brings the problem of difficulty in solving the opti-
mization problems formulated in MPC based on nonpara-
metric models. Therefore, heuristic strategies offer a fea-
sible solution. Metaheuristic optimization algorithms such
as genetic algorithm (GA) [11], particle swarm optimization
(PSO) algorithm [12], adaptive-mutation beetle swarm pre-
diction ((AMBS-P) algorithm [5, 13] have been widely used
in controller design of ships. These algorithms are useful for
tuning controller parameters, identifying model parameters,
and searching for feasible solutions for optimal controllers.

The Arithmetic Optimization Algorithm (AOA) [14] has
received increased attention in recent years due to its promis-
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ing results in solving challenging optimization problems.
It shows great potential in solving single-objective, multi-
objective, discrete problems. In this paper, the AOA al-
gorithm is incorporated with the model predictive control
framework to search for optimal solutions for the rotation
angles of thrusters.

This paper proposes a path-following control method that
combines Gaussian Process Regression (GPR) and Arith-
metic Optimization Algorithm (AOA) for autonomous tugs.
A GPR model is constructed to identify the correlation be-
tween the heading angle and the rotation angle of the az-
imuth thrusters, which acts as the prediction model in the
path-following controller. The arithmetic optimization algo-
rithm is utilized to determine the optimal control inputs for
each sampling interval. A Line-of-Sight (LOS) algorithm is
used as the guidance law to transform reference waypoints
into reference heading angles, and the path-following con-
troller is designed based on the GPR model and AOA. Sim-
ulation results show that the proposed method performs well
in the path-following task without having prior knowledge
regarding the hydrodynamic coefficients and ship parame-
ters.

The structure of this paper is as follows. Section 2 de-
scribes the characteristics of ship dynamics, LOS guidance
strategy and the path following control problem. Section
3 gives the steps of model recognition based on Gaussian
process regression. Section 4 introduces the design steps of
the arithmetic optimization algorithm controller based on the
GPR model. Section 5 presents the simulation results regard-
ing the accuracy of the Gaussian process regression model
and the path-following control performance. Section 6 gives
conclusions and future research directions.

2 Preliminaries and problem description

2.1 Ship Dynamics
Fig. 1 gives the configuration of the tug and its coordinate

system. It is equipped with two twin-screw azimuth thrusters
located at the stern below the hull to provide propulsion and
torque. This paper mainly considers its 3-DOF movements
in surge, sway and yaw directions in a North-East-Down
(NED) reference frame fixed to the ocean surface with its x-
axis pointing North, y-axis pointing East, and z-axis point-
ing downwards. The position of the tug can be described
as a vector η = [x, y, ψ]T ∈ R3, in which ψ represents
the heading angle relative to North in the horizontal plane.
The velocity of the ship includes its surge speed u towards
the x-axis and the sway speed v towards the y-axis, as well
as its yaw rate r. Therefore, the generated velocity vector
v = [u, v, r]T ∈ R3. The evolution of the movements of the
tug can be described as [15]:

η̇ =

 cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

v
Mv̇ = −C(v)v −D(v)v + τ + d

(1)

in which matrices M , C(v) and D(v) represent ship in-
ertia coefficients, the Coriolis and centripetal matrix, and
the damping matrix, respectively. The control forces and
moments are expressed as τ = [τu, τv, τr]

T ∈ R3, which

are generated by its twin azimuth thrusters. Vector d =
[dx, dy, dψ]T ∈ R3 represents the external disturbances.

Fig. 1: Ship coordinate system

According to [15], the control forces and moments are
generated by azimuth thruster rotation angles and speeds as
follows:

τ =

 cos(δ1) cos(δ2)
sin(δ1) sin(δ2)

lx sin(δ1)− ly cos(δ1) lx sin(δ2) + ly cos(δ2)

T
(2)

where δ1 and δ2 represent the rotation angles of the starboard
and port side thrusters, respectively. T represent the forces
generated by each thruster. It can be seen that the changes
of the heading angle of the tug is dependent on the coupled
effects of rotation angles δ1 and δ2.

2.2 Problem description
Due to practical limitations, there are many coupled terms

that cannot be directly measured to identify model param-
eters in (1). This paper utilizes GPR to exploit experimen-
tal data to build models for predicting the heading angle of
the tug, given the prior knowledge that the its heading angle
is determined by both thruster rotation angles. The design
of a path-following controller requires a guidance strategy
to generate suitable references as control objectives. The
Line-Of-Sight (LOS) guidance strategy has been commonly
used in path-following control problems, turning the refer-
ence path into a series of reference heading angles. This pa-
per uses the LOS guidance strategy and transforms the path-
following control into a heading control problem.

As illustrated in Fig.1, assuming that Pk+1 is the current
following path point and Pk is the previous path point, draw
a circle with the current position (x, y) of the ship as the
center and RLOS = n × Lpp. Parameter Lpp represents
the length of the ship, and RLOS represents the radius to
intersect with the desired path, and select the point closer
to Pk+1 as the LOS point. The angle between the direction
vector of the current ship’s coordinates to the LOS point and
north is the reference LOS angle ψLOS . θ is the yaw angle,
and d is the shortest distance from the current ship position
to the desired path. ψLOS can be calculated by:

tan (ψLOS(t)) =
∆y(t)

∆x(t)
=
yLOS(t)− y(t)

xLOS(t)− x(t)
(3)

The LOS point coordinates are represented by xLOS and
yLOS , while the current ship coordinates are represented by
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x and y. Then θ can be calculated from the error between
the ship’s current heading angle ψ and the reference angle
ψLOS . The ship should continuously adjust its yaw angle to-
wards 0, allowing it to automatically navigate along the cal-
culated reference heading and follow the desired route indef-
initely, achieving the goal of path-following. In other words,
the objective of the path-following control is to ensure that
the tug always follows the reference heading angle ψLOS by
adjusting its rotation angles δ1 and δ2. The GPR are used to
predict the ship’s heading angle at time k+ 1 given its states
and control inputs at time k which is expressed as follows:

ψ(k + 1) = Gψ(ψ(k), δ1(k), δ2(k)) (4)

An optimization problem can be formulated based on the
GPR model. The objective of this problem is to minimize
the deviations of the predicted heading angles from the ref-
erence angle ψLOS. The AOA is incorporated to solve the
formulated optimization problem.

3 Gaussian process regression

The GPR initially assumes that the the unknown function
f follows a prior Gaussian process:

f(z) ∼ GP (0, k(z, z′)) (5)

in which,z ∈ Rs,k(z, z′) is a symmetric and positively def-
inite kernel function. This paper chooses the Radial Basis
Function (RBF):

k(z, z′) = A exp(−‖z−z
′‖2

2l2 ) (6)

in which A and l are hyperparameters that represent ampli-
tude and length scales, respectively.

Assume that Z = {zi ∈ Rs, i = 1, 2, · · · , N} is the
input training set, and Y = {yi ∈ R, i = 1, 2, · · · , N} is
the corresponding set of observations. fN is the real output
set. z∗ ∈ Rs is test point, f∗ = f(z∗). GPR uses Bayesian
formula for posterior inference :

p(fN , f∗ | Y ) = p(Y |fN )p(fN ,f∗)∫∫
p(Y |fN )p(fN ,f∗)dfNdf∗

(7)

in which p(fN , f∗) is the Gaussian prior distribution,
p(Y |fN ) is the likelihood function, which is used to de-
scribe the observation noise. It is assumed that the observa-
tion noise in the environment is Gaussian white noise. Then
p(Y | fN ) = N (f

N
, σ2I), where p(Y | fN ) is a Gaussian

distribution, with the mean being the function value corre-
sponding to the real output fN and the variance being the
noise variance, σ represents the standard deviation of the
noise.I is the identity matrix.

The above results are integrated to obtain a prediction
model :

p(f∗ | Y ) =
∫
p(fN , f∗ | Y )dfN = N (m∗,Σ∗)

m∗ = K∗N (KNN + σ2I)−1y

Σ∗ = k (z∗, z∗)−K∗N (KNN + σ2I)−1KN∗

(8)
in which KN∗ = [k(z∗, z1), k(z∗, z2), · · · , k(z∗, zN )]>

is the covariance vector. K∗N = K>N∗ , and y =
[y1, y2, · · · , yN ]> is the observation vector. m∗ is predicted

value at z∗ with function f . Σ∗ is is the predictive variance
of f in z∗.

A GPR model can be constructed using data collected
from simulated or real-world experiments. By setting rea-
sonable excitation signal inputs, ship data can be collected
more comprehensively, which can help establish a more ac-
curate model. To establish the correlation between the head-
ing angle ψ and rotation angles δ1 and δ2, it is essential to
design two azimuth rotation angle commands δ1 and δ2 ex-
citation signals to ensure they cover a broader input space.
According to the physical limits of the actual ship, the δ1
is randomly selected from a range of 0◦ to +35◦,the δ2 is
randomly selected form a range of −35◦ to 0◦. The reason
for this configuration is to prevent interference between the
forces generated by the two azimuth thrusters, which could
complicate the determination of the torque produced by each
individual thruster. To account for the nonlinear, large time
delay and large inertia characteristics of the ship’s motion,
the excitation signals are provided in a 5-second cycle with
a 1-second sampling interval.

The dataset for GPR model identification is con-
structed as XInput =

[
{δ1(i)Mi=1}, {δ2(i)Mi=1}, {ψ(i)Mi=1}

]
and XOutput =

[
{{ψ(t+ 1)Mi=1}

]
. Therefore, the GPR

model Gψ is a 3-input-1-output model. After sufficient data
has been collected, the GPR model for yaw movements is
represented as a function whose values are determined by
a prior distribution. This function follows a prior Gaussian
process (5) and use (7) for posterior inference. Finally, the
prediction model Gψ can be obtained based on (8).

4 Design steps of path-following controller

4.1 Arithmetic optimization algorithm
The AOA is a metaheuristic optimization algorithm, in-

spired by the use of arithmetic operators in solving arith-
metic problems [14]. The process is divided into two stages:
exploration and exploitation. During the exploration phase,
the search is conducted using highly dispersed multiplica-
tion (M“×”) or division (D“÷”) operators to ensure exten-
sive coverage of search space. In the exploitation phase, the
search is conducted using high-density subtraction (S“−”) or
addition (A“+”) operators to improve accuracy of obtained
solutions. This paper uses the model Gψ to predict head-
ing angles when given different candidate thruster rotation
angles. The AOA is utilized to search for the optimal ro-
tation angles that minimize the deviations between the pre-
dicted and reference heading angles. Fig. 2 shows the how
the operators used converges to the optimal region. Param-
eters r1,r2 and r3 are three random numbers in [0, 1], r1 is
used to choose between the exploration phase and the ex-
ploitation phase, r2 and r3 play a role in selecting which
operator to use. µ is a control parameter to adjust the search
process. Through exploration phase and exploitation phase,
operators D, M, S, and A continuously approach the feasi-
ble positions of the optimal solution. In AOA, the optimiza-
tion process begins with a set of candidate solutions consists
of a number of azimuth rotation angles. This assumes that
δ1 ∈ [0◦,+35◦] and δ2 ∈ [−35◦, 0◦], each with a set of can-
didate solutions selected from their respective ranges.N is
the number of candidate solutions in each group.

The transition between exploration phase and exploitation
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phase is determined by r1 and MOA (Math Optimizer Ac-
celerated Function), when r1 > MOA, AOA enters the
exploration phase.Otherwise, AOA enters the exploitation
phase.The mathematical expression of MOA is as follows:

MOA(t) = Min+ t×
(
Max−Min
Tmax

)
(9)

Among them, t is the current iteration number, T is the
maximum iteration number, Max and Min are the maximum
and minimum values of MOA which are set as 1 and 0.2,
respectively.

In the exploration phase , mathematical calculations are
performed by division (D) and multiplication (M) operators
can yield high distribution values or decisions that conform
to the exploration mechanism. The equation for updating the
position during the exploration phase is as follow:

Xi,j(t+ 1) =


Xbest(tj)÷ (MOP + ε)

×((UBj − LBj)× µ+ LBj), r2 < 0.5

Xbest(tj)×MOP

×((UBj − LBj)× µ+ LBj), r2 ≥ 0.5
(10)

Among them, ε represents a minimum value (ε > 0) .
Xi,j(t+ 1) is the j-th position of i-th solution in the next it-
eration. UBj and LBj represent the upper and lower bounds
of the j-th position, respectively. Xbest(tj) is the j-th posi-
tion in the best-obtained solution so far. The MOP (Math
Optimizer Probability) is a coefficient and calculated as fol-
lows:

MOP (t) = 1− t
1
α

T
1
α

(11)

in which α is a sensitive parameter that represents the
exploitation phase accuracy during the iteration process.
MOP (t) represents the function value at the t-th iteration.
For the first operator (D), if r2 < 0.5, the other operators
will not explore until operator (D) reaches the optimal value
for the current task. Otherwise, the second operator (M) will
perform the current solving calculation task first.

Fig. 2: Model for updating mathematical operators positions
to the optimum area in AOA

In the exploitation phase, the algorithm uses subtraction
(S) and addition (A) operators to get high-dense results ex-

pressed as follows:

Xi,j(t+ 1) =


Xbest(tj)−MOP

×((UBj − LBj)× µ+ LBj), r3 < 0.5

Xbest(tj) +MOP

×((UBj − LBj)× µ+ LBj), r3 ≥ 0.5
(12)

4.2 Sine-cosine strategy and inertia factor
To enhance the search performance and convergence

speed of AOA during later stages of algorithm iteration, this
paper proposes replacing the addition and subtraction oper-
ation strategy with the sine cosine search strategy. Using
the periodicity of sine and cosine functions to approximate
the optimal solution is a more stable and accurate method
than using addition (A) and subtraction (S) operators. This
method also converges faster to obtain the global optimal so-
lution.

As introduced in Section 4.1, the strategy for updating an
individual’s position is determined by the size of random val-
ues and the current individual. The optimal individual is
guided by this position update mechanism, which is based
on iterative updates of the current population and does not
rely on historical information. Therefore, this paper intro-
duces inertia factor inspired by the PSO algorithm, which
allows the algorithm to learn from historical information of
the previous generation during the iteration process. The in-
ertia factor w is calculated as follows:

w = 1− ( t
Tmax

)2 (13)

Consequently, the exploitation results are calculated as:

Xi,j(t+ 1) =


w ×Xi,j(t) + µ× sin(r4)

×|r5 ×Xbest(tj)−Xi,j(t)|, r3 < 0.5

w ×Xi,j(t) + µ× cos(r4)

×|r5 ×Xbest(tj)−Xi,j(t)|, r3 ≥ 0.5
(14)

in which r4 ∈ [0, 2π], r5 ∈ [0, 2] and that they take random
values. Xi,j(t) is the j-th position of i-th solution at the
current iteration count.

4.3 Path-following controller design
Based on the LOS guidance strategy that transforms a ref-

erence path into a series of reference heading angles, the
AOA needs to calculate the required rotation angles in each
sampling interval to ensure that the tug follows the reference
heading angles to track the reference path.

Fig. 3 illustrates the control scheme of the proposed GPR-
AOA path-following controller. Given the reference path,
the tracking objectives of desired heading angles are de-
termined based on the LOS guidance strategy. A predic-
tive controller is formulated for heading control using the
model Gψ as the prediction model. An optimization prob-
lem is therefore formulated based on the current and refer-
ence states of the ship at each sampling interval. The AOA
is employed to calculate the optimal control inputs for rota-
tion angles. Algorithm 1 outlines the steps involved in the
algorithmic process.

Firstly, initialize AOA parameters including α and µ,
lower bound LBj , upper bound UBj ,the number of candi-
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Fig. 3: Control scheme of GPR-AOA controller

date solutions N and maximum number of iterations T . At
sampling interval k, given the current ship states including
its current heading angle ψ(k) and positions x(k), y(k) and
its deviations from the reference path, use (3) to calculate
the LOS angle ψLOS(k). Randomly generated a number
of candidate rotation angles are used as δ1 and δ2, the δ1
is randomly selected from a range of [0◦,35◦],the δ2 is ran-
domly selected form a range of [−35◦,0◦].The initial can-
didate solution sequence and ψLOS(k) are substituted into
the model Gψ to calculate and predict the heading angle
ψ̂(k) = Gψ(δ1(k), δ2(k), ψ(k)) for the next sampling in-
terval k + 1. The AOA is used to minimize the error be-
tween the predicted heading angle ψ̂(k+ 1) and LOS angles
ψLOS(k + 1). Therefore, the fitness function can be con-
structed as follows:

f(t) = |Gψ(δ1, δ2, ψ(t))− ψLOS | (15)

Then the AOA optimization procedure initiates. While the
maximum iteration T has not been reached, update the val-
ues of MOA ,MOP and w according to (9) ,(11)and (13)
respectively, In each iteration, 5 random numbers are gen-
erated, and the value ranges of (r1, r2, r3, r4, r5) are as
described above, r1, r2, r3 ∈ [0, 1],r4 ∈ [0, 2π], r5 ∈ [0, 2].
Guided by these random numbers, the operators D, M, sine
function, and cosine function continuously update the posi-
tions of candidate solutions until they approach the current
optimal solution based on (10)and (14). The AOA continu-
ously calculates the fitness of each updated candidate solu-
tion and terminates when it satisfies the end criterion, which
is exceeding the maximum number of iterations. It outputs
the optimal solution δ∗1(k) and δ∗2(k) with the minimum fit-
ness as the optimal control command for the rotation angles.

5 Simulation results

5.1 Simulation setup
A model-scaled tug is chosen as the target ship and its

parameters can be found in Appendix A.We use a modular
ship maneuvering model that have been validated in [16] as
the simulation model.The relevant parameters of AOA used
are given as N = 5, δ1 ∈ [0◦,+35◦], δ2 ∈ [−35◦, 0◦], α =

Algorithm 1 The algorithmic steps of ship path-follow con-
trol method

1: Initialize AOA parameters: α,µ,LBj ,UBj ,N and T
2: Randomly given initial sequence δ1 and δ2
3: while Within the simulation duration do
4: while t < T do
5: Calculate the LOS angle use (3) based on the current ship

status and target path
6: Calculate fitness function values based on initial δ1,δ2

and model Gψ use (15)
7: Determine the optimal rotation angle (determine the cur-

rent optimal value)
8: Update the value of MOA according to (9)
9: Updata the value of MOP according to (11)

10: Updata the value of w according to (13)
11: for i=1 to Solutions do
12: for j=1 to Solutions do
13: Generate random values (r1,r2,r3,r4,r5)
14: if r1 > MOA then
15: Exploration phase
16: if r2 < 0.5 then
17: Apply the Division math operator (D“÷”).

Update the ith solutions’ positions using the
first rule in(10)

18: else
19: Apply the Multiplication math operator

(M“×”). Update the ith solutions’ positions
using the second rule in (10)

20: end if
21: else
22: Exploitation phase
23: if r3 < 0.5 then
24: Apply the sine function. Update the ith solu-

tions’ positions using the first rule in (14)
25: else
26: Apply the cosine function. Update the ith so-

lutions’ positions using the second rule in (14)
27: end if
28: end if
29: end for
30: end for
31: end while
32: t=t+1
33: Return the best solution (X): δ∗1(k) , δ∗2(k)
34: end while

5, µ = 0.499, T = 5. And initialize ship status,including
initial heading angle ψ = 0◦ and initial angle of the azimuth
thrusters δ1 = 0◦ and δ2 = 0◦.The initial position of the ship
is the starting point of each path.The range of heading angle
is [0◦, 360◦].

5.2 Prediction model evaluation
The paper uses excitation signals for thruster rotation an-

gle, as introduced in Section 3, to conduct simulations with a
time length of 10,000 seconds. A number of 7595 valid sam-
ples is chosen to create the dataset for identifying the model
Gψ .

The training set and test set were divided in a 7:3 ratio.
Fig.4 shows the performance ofGψ on the test set that 97.7%
of the sample points have an error range of [−4◦, 4◦]. In
this paper, RMSE(Root Mean Square Error), MAPE(Mean
Absolute Percentage Error), and R2(Coefficient of deter-
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mination) are used as identification accuracy evaluation in-
dicators. The model accuracy meets the requirements of
controller design, as indicated by RMSE=1.399(heading er-
ror(deg)), MAPE=0.0379(heading error(deg)), and R2 =
0.9998.The results show Gψ has good accuracy.

Fig. 4: Prediction error of Gψ

5.3 Convergence of AOA
The AOA needs to calculate the optimal rotation angles

at each sampling interval to ensure that the tugs follows the
reference LOS angle to track the reference path. Fig. 5 gives
the convergence of the fitness function over iterations in one
sampling interval of the heading control simulations. It can
be seen that the algorithm converges rapidly within 10 sec-
onds, demonstrating its fast convergence speed and good so-
lution accuracy.

Fig. 5: Convergence of AOA

5.4 Straight path-following effect
A regular hexagon is set as the desired path which consists

of a series of way points as :

[x(t), y(t)] = [(60, 60), (110, 60), (160, 60),
(185, 103.3), (210, 146.6), (185, 189.9),
(160, 233.3), (110, 233.3), (60, 233.3),
(35, 189.9), (10, 146.6), (35, 103.3), (60, 60)]

(16)

In order to highlight the superiority of the controller de-
signed in this paper in terms of control performance, simu-
lation experiments were conducted to compare and verify it
with the PID algorithm. Fig. 6 shows the simulated paths
of the tug. The red line represents the desired path, while

the blue and green lines represent the actual path. Under
the control of GPR-AOA algorithm, ships can follow the ex-
pected path well, and its control effect is better than PID
algorithm. Fig. 7 gives the changes of rotation angles over
time. Fig. 8 illustrates the changes of heading angles and
LOS angles. Under the control of GPR-AOA algorithm,it
can be seen that the heading error converges quickly within
20 seconds. Among them, the maximum error of the heading
angle and LOS angle is 19.91◦, the minimum error is 0◦, and
the average error is 1.48◦. However, when using the PID al-
gorithm, it still has significant errors,the maximum error of
the heading angle and LOS angle is 21.91◦, the minimum
error is 0◦, and the average error is 4.79◦. Fig. 9 shows the
average computation times in each sampling interval. It is
far less than the 1 seconds sampling interval, which is ac-
ceptable for practical implementations.

Fig. 6: Simulated path of tug in straight path-following

Fig. 7: Rotation angle of azimuth thrusters in straight path-
following

5.5 Curved path-following effect
The reference curve path is set to a sine function path de-

fined as: {
x(t) = 30 + 30× t

y(t) = 30 + 30× sin(t)
(17)
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Fig. 8: Changes of heading angle in straight path-following

Fig. 9: Computation time in each sampling interval in
straight path-following

Fig. 12: Changes of heading angle in curved path-following

Fig. 10 gives the simulated paths of the tug when it fol-
lows a curved reference path. It can be seen that the ships
controlled by GPR-AOA algorithm can better track and en-
ter the reference path than ships controlled by PID algorithm.
Fig. 11 gives the changes of rotation angles over time. Fig.
12 illustrates the changes of heading angles and LOS angles.
The actual heading angle of a ship controlled by the GPR-
AOA algorithm can maintain synchronous changes with the
LOS angle. When the ship follows the reference path, the
maximum error of the heading angle and LOS angle is 6.79◦,
the minimum error is 0◦, and the average error is 1.78◦. The
actual heading angle of the ship under PID algorithm con-

Fig. 10: Simulated path of tug in curved path-following

Fig. 11: Rotation angles of azimuth thrusters in curved path-
following

trol is not synchronized with the change of LOS angle, and
there is a large error, the maximum error of the heading an-
gle and LOS angle is 30.91◦, the minimum error is 0◦, and
the average error is 4.59◦. Fig.13 shows the average compu-
tation times in each sampling interval. It is far less than the 1
seconds sampling interval, which is acceptable for practical
implementations.

6 Conclusions and future work

This paper proposes an autonomous tug path tracking con-
trol method that combines GPR and AOA. Using the LOS
algorithm as the guidance law, the path-following control
problem is transformed into a heading control problem. A
GPR model is constructed to identify the correlation be-
tween the heading angle and the rotation angle of the az-
imuth thrusters, which acts as the prediction model in the
path-following controller.The AOA is utilized to determine
the optimal control inputs. Compared with other control al-
gorithms that require a large amount of parameter tuning, the
proposed GPR-AOA controller has the characteristics of fast
convergence speed and accuracy, and has good application
value.

Future work will expand this research in several direc-
tions. Firstly, model-scaled ship experiments will be con-
ducted in a real environment to further validate the effective-
ness. Secondly, the potential of changing offline GPR identi-
fication to online identification will be investigated to further
improve the control performance and data utilization. In ad-
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Fig. 13: Computation time in each sampling interval in
curved path-following

dition, further improving the convergence speed and solution
accuracy of the AOA.
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A Appendix A

Table 1: The dynamics parameter values of Qiuxin No.5 tug
[16].

m11 138.057 kg
m22 106.600 kg
m33 15.648 kgm2

Xu -8.986 kg/s
X|u|u -31.429 kg/s
Xuuu -6.895 kg/s
Yv -71.904 kg/s
Y|v|v -77.643 kg/s
Yvvv -27.139 kg/s
Y|r|v -43.221 kg/s
Nr -26.712 kg/s
N|r|r -9.828 kg/s
Nrrr -9.232 kg/s
N|v|r -2.347 kg/s
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Abstract: As a fully actuated system, the harsh sea condition floating body salvage equipment has been widely used in marine 
engineering and has become an important guaranteed equipment for marine development. Most of the current wave compensation 
control strategies of the salvage equipment ignore characteristics such as nonlinearity and time-delay, and most of them are 
verified by numerical simulation, which cannot effectively prove the effectiveness of the proposed control strategy in the actual 
situation. In view of the above problems, this paper develops a semi-physical in-loop real-time control experimental platform for 
harsh sea condition floating body salvage. Specifically, a harsh sea condition floating body salvage test-bed based on a 6-degree-
of-freedom wave simulation platform is built. In the MATLAB/Simulink environment, a rapid control prototype host computer 
including is built to realize real-time control of semi-physical in-loop. The experimental results show that the developed platform 
fully considers the nonlinearity and time-delay, which can be used to develop and verify the control algorithm of harsh sea 
condition floating body salvage equipment quickly and accurately. 
Key Words: Floating body salvage, wave compensation, nonlinear, time-delay, rapid control prototype 
 

 

1 Introduction 
The further development of marine resources makes the 

application of harsh sea condition floating body salvage 
equipment in marine engineering more and more extensive, 
shown in Fig.1, and it is one of the most important support 
equipment for marine development [1, 2]. Different from the 
ground operation, the ship will produce sway, surge, heave 
and roll, pitch, yaw six degrees of freedom motion under the 
action of waves, which seriously affects the stability of the 
floating body salvage equipment operation and may lead to 
a major accident of salvage failure, lifting cargo damage and 
even casualties [3, 4]. To ensure the safe operation of 
floating salvage equipment, the influence of waves must be 
suppressed [5, 6]. 

 

 
 

Fig. 1: Harsh sea condition floating body salvage equipment 
 

In view of the above problems, domestic and foreign 
scholars have proposed wave compensation technology for 
harsh sea condition floating salvage equipment. Zhang [7] 
trained a neural network based on multivariate long-term 
and short-term memory to predict the heave and pitch 
motion of ships to achieve advanced compensation for wave 
interference. The simulation results show that the proposed 
method significantly reduces the standard deviation of heave 
and pitch of floating crane. Chen [8] proposed a heave 
prediction and control method of floating crane based on 
model predictive control, which predicts the heave 

displacement of the crane load in advance and takes it as the 
input of the position loop of the compensator. The 
simulation results show that the proposed controller has 
good predictive ability and control accuracy. Zinag [9] 
proposed a controller based on reinforcement learning, 
which uses a deep deterministic strategy gradient algorithm 
for active heave compensation. The simulation results show 
that the heave compensation performance of the proposed 
controller is about 10 % higher than that of the tuned servo 
differential controller. Liu [10] designed an adaptive wave 
compensation algorithm based on beetle antennae search 
algorithm and radial basis function neural network. The 
experimental results show that the designed algorithm can 
reduce the compensation error by about 40 % compared with 
the traditional method. 

Although the above research results have achieved good 
wave compensation effect, most scholars use numerical 
simulation to verify the effectiveness of the proposed 
method, and only a few scholars have carried out sea wave 
compensation experiments. The numerical simulation is 
efficient and simple, but the simulation environment is too 
idealized to simulate the high nonlinearity, time-delay and 
strong coupling of the harsh sea condition floating body 
salvage equipment, and the control effect is not intuitive and 
reliable. The offshore experiment is intuitive and real, but 
the experiment cost and the risk are high. To ensure the 
stability and reliability of the equipment, industrial 
controllers such as PLC are often used. However, it is 
difficult to apply intelligent control technology based on 
computer science and artificial intelligence to solve the 
control problem of complex nonlinear equipment [11]. 

Semi-physical in-loop real-time control is between 
numerical simulation and physical experiment, which not 
only retains some physical characteristics in physical 
experiment, but also has the characteristics of high 
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efficiency and simplicity of numerical simulation. In 
principle, semi-physical in-loop real-time control can be 
divided into Rapid Control Prototype (RCP) and Hardware-
in-the-loop (HIL) [12]. RCP helps users quickly build a 
virtual prototype controller to control the real controlled 
object. Correspondingly, HIL uses real controller hardware 
to control virtual controlled objects. At present, semi-
physical in-loop real-time control has been widely studied 
and applied in aerospace [13], automobile [14], electric 
power [15] and other fields. 

The mathematical model of harsh sea condition floating 
body salvage equipment is relatively complex, but the 
hardware structure is relatively simple. The difficulty lies in 
the algorithm design of the controller. Therefore, it is 
necessary to develop an experimental platform that can 
quickly verify the control algorithm. Based on the principle 
of RCP, this paper develops a semi-physical in-loop real-
time control experimental platform for harsh sea condition 
floating body salvage. The specific work is to build a harsh 
sea condition floating body salvage experimental equipment 
based on a 6-degree-of-freedom wave simulation platform. 
In the MATLAB/Simulink environment, a rapid control 
prototype host computer including operation control and 
program design is built to realize the real-time control of the 
semi-physical in-loop. A series of experiments are carried 
out based on the experimental platform. The results show 
that the developed experimental platform for harsh sea 
condition floating body salvage can be used to develop and 
verify the control algorithm quickly and accurately. 

The rest of this paper is as follows: section 2 introduces 
the design of the overall framework; section 3 introduces the 
construction of the hardware platform from two aspects of 
principle and physical object. In section 4, the construction 
of the software platform is introduced, and the complete use 
process is given. In section 5, a series of comparative 
experiments are carried out based on the developed 
experimental platform, which shows the superiority of the 
platform. Section 6 is a conclusion. 

2 Overall Framework Design 
The overall framework of the experimental platform, 

which consists of hardware including floating body salvage 
equipment and software developed in MATLAB/Simulink 
environment, as shown in Fig.2. 

 

 
 

Fig. 2: Overall framework 
 

Hardware platform includes actuator and sensor in the 
block diagram, which is composed of harsh sea condition 

floating body salvage equipment, servo valve, angle sensor 
and swing table. 

Software platform includes the controller in the block 
diagram, which is composed of upper computer developed 
in MATLAB/Simulink environment.  

Hardware as the real controlled object, software as the 
virtual controller, together constitute the semi-physical in-
loop real-time control experimental platform based on rapid 
control prototype. The user can design the controller on 
software platform, to control the hardware of the harsh sea 
condition floating body salvage equipment in real time. In 
this way, the control algorithm can be verified accurately 
and intuitively. 

3 Hardware Platform Design 
Hardware principle of the experimental platform is shown 

in Fig.3. The Industrial Personal Computer (IPC) runs 
Windows operating system, which has rich hardware 
interfaces and high software compatibility. The Data 
Acquisition (DAQ) card is installed on the PCI slot of the 
IPC, which can receive control instruction and generate 
voltage signal to control the servo valve in real time. The 
servo valve receives the control signal to control the oil inlet 
and outlet of the hydraulic cylinder of the salvage equipment. 
The angle sensor can feedback the inclination data to IPC in 
real time and it is connected to the IPC through the COM 
port.  

 

 
 

Fig. 3: Hardware principle of the experimental platform 
 

DAQ card can be obtained from the IPC and provides a 
12 V power supply to devices. The input and output of DAQ 
card is a 37-pin trapezoidal interface, which is connected to 
the wiring board in IPC. The board provides 12 V and 5 V 
power supply, power supply grounding and digital, analog, 
counter input and output interfaces. The servo valve is 11 ~ 
32 V wide voltage input and the maximum current is 570 
mA at 12 V voltage, which can be obtained from the 12 V 
power supply of DAQ card. Reference voltage control line 
is connected to the analog voltage output terminal of DAQ 
card. The tilt sensor has a wide voltage input of 9 ~ 36 V and 
the maximum co-group current is 40mA, which can directly 
obtain 12V power supply from DAQ card. 

According to the hardware schematic diagram, the 
hardware platform is built in the laboratory, as shown in 
Fig.4.  

The floating body salvage equipment is placed on a swing 
table supported by four hydraulic rods. By controlling the 
frequency and speed of the four hydraulic rods, the swing 
table can simulate the swing of the ship under different sea 
conditions. The angle sensor is installed behind the boom of 
the floating salvage equipment to detect and feedback the 
boom inclination angle in real time. 
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Fig. 4: Experimental equipment 
 

4 Software Platform Development 
Software platform is built in MATLAB/Simulink 

environment, including operation control, program design, 
communication, and result display functions. The software 
architecture is shown in Fig.5.  

 

 
 

Fig. 5: Software architecture 
 

Software interface is shown in Fig.6. The control panel is 
composed of a three-stage knob switch, a state indicator light, 
a slider control, and a dashboard, which integrates device 
start-stop, mode switching, manual operation and state 
indication functions. Using the three-stage knob switch can 
switch the device mode to Off, Manual and Auto. Different 
color of the indicator light indicates the current control state, 
which is gray when Off, green when Manual, and orange 
when Auto. In the manual mode, the control quantity can be 
adjusted by manually dragging the slider control. The 
dashboard indicates the current control quantity. 

 

 
 

Fig. 6: Software interface 
 

The core function block of the controller design part is 
DriveUnit, which can receive control quantity of the 
controller and output the boom inclination angle. The 
controller can be built based on Simulink. The output port 
and angle input port of the controller can be connected to 
DriveUnit. The program of the control panel is also 

associated to the block. The core function block of 
DriveUnit is composed of servo valve drive module and 
angle sensor drive module. 

Considering the safety and hardware performance of the 
equipment operation, the operation process of the 
experimental platform is designed as shown in Fig.7. 

 

 
 

Fig. 7: Operation process 
 

5 Experimental Verification 
To verify the experimental platform developed in this 

paper, experiments under different working conditions were 
carried out on the swing table. The control goal of the harsh 
sea condition floating body salvage equipment is to always 
maintain the level of the boom when the swing table 
simulates the ship's rolling. 

The swing platform is set to roll at a frequency of 0.2 Hz. 
The swing amplitude of working condition 1 is 5 °, and the 
swing amplitude of working condition 2 is 10 °. The swing 
curve of the swing table is shown in Fig.8. 

 

 
 

Fig. 8: Rocking table simulates ship rolling 
 

5.1 Verification Experiment Based on PID Control 

PID controller is built in the upper computer, and the 
experiment is carried out under working condition 1 and 
working condition 2 respectively. The experimental results 
are shown in Fig.9 and Fig.10. 

The experimental results show that the vibration 
amplitude reaches ±7 ° and ±10 ° respectively under the two 
working conditions, and the oscillation is large during the 
adjustment process. The reason is that the hydraulic system 
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has problems such as high nonlinearity and dead zone 
characteristics, so the PID controller is difficult to stabilize 
the system. 

 

 

 
 

Fig. 9: PID control experiment under working condition 1 
 

 

 
 

Fig. 10: PID control experiment under working condition 2 
 

5.2 The Verification Experiment of Improved PID 
Control Based on Semi-physical In-loop Real-time 
Control Experimental Platform 

Based on semi-physical in-loop real-time control 
experimental platform, the control algorithm can be simply 
improved and verified. Considering the dead zone 
characteristics of the servo valve, it can be identified and 
compensated by the experimental platform simply. The dead 
zone compensation principle of servo valve is shown in 
Fig.11. 

 

 
 

Fig. 11: Servo valve dead zone compensation principle 

Where u  is the input signal of the servo valve, y  is the 
output flow of the servo valve, 1( )f u  and 2( )f u  are the 
input and output relationship of the servo valve before 
compensation, 1b  is the positive dead zone of the servo 
valve, 2b  is the reverse dead zone, 3( )f u  is the expected 
input and output relationship of the servo valve after 
compensation. 

Based on the above principle, the dead zone compensation 
function is: 

1
0 1 0

1 0

2
0 2 0

100          ( 0)
100

0                               ( 0)
100          ( 0)

100

b
u b u

u u

b
u b u

  


 
   


             (1) 

where 0u  is the original control quantity, 1u  is the actual 
control quantity after compensation. 

The dead zone compensation function is written into the 
S-Function module in Simulink, and the experiment is carried 
out under condition 1 and condition 2 respectively. The 
experiment results are shown in Fig.12 and Fig.13. 

 

 

 
 

Fig. 12: Improved PID control under condition 1 
 

 

 
 

Fig. 13: Improved PID control under condition 2 
 

The experimental results show that the vibration 
amplitude under the two working conditions is ±1 ° and ±2 ° 
respectively, and the oscillation during the adjustment 
process is small. The experimental results show that the 
control algorithm can be improved and verified by the 
experimental platform simply and quickly. 

1245  



  

6 Conclusion 
Based on rapid control prototype, this paper develops a 

semi-physical in-loop real-time control experimental 
platform for harsh sea condition floating body salvage. In 
terms of hardware, the harsh sea condition floating body 
salvage test-bed based on a 6-degree-of-freedom wave 
simulation platform is built. In terms of software, the upper 
computer software is developed in Simulink environment, 
which can facilitate the developers to build the control 
algorithm with rich module resources. In experiment, with 
the help of the semi-physical real-time control experimental 
platform for harsh sea condition floating body salvage, the 
control algorithm is simply improved. Compared with PID 
control, the improved PID control effect is significantly 
improved, which shows the superiority of the developed 
experimental platform. In the future, the experimental 
platform can be widely used in the research of active control 
algorithm of harsh sea condition floating body salvage 
equipment, such as neural network, genetic algorithm, and 
other intelligent control algorithms. The experimental 
platform will greatly improve the work efficiency and 
reliability in algorithm verification and parameter 
optimization. 

References 
[1] X. Liu, W. Li, W. Wang, and Z. Xu, “Control for the New 

Harsh Sea Conditions Salvage Crane Based on Modified 
Fuzzy PID,” Asian Journal of Control, vol. 20, no. 4, pp. 
1582–1594, 2018. 

[2] Z. Ren, R. Skjetne, A. S. Verma, Z. Jiang, Z. Gao, and K. H. 
Halse, “Active heave compensation of floating wind turbine 
installation using a catamaran construction vessel,” Mar. 
Struct., vol. 75, p. 102868, Jan. 2021. 

[3] Z. Li, X. Ma, Y. Li, Q. Meng, and J. Li, “ADRC-ESMPC 
active heave compensation control strategy for offshore 
cranes,” Ships Offshore Struct., vol. 15, no. 10, pp. 1098–
1106, Nov. 2020. 

[4] J. K. Woodacre, R. J. Bauer, and R. Irani, “Hydraulic valve-
based active-heave compensation using a model-predictive 
controller with non-linear valve compensations,” Ocean Eng., 
vol. 152, pp. 47–56, Mar. 2018. 

[5] M. Li, P. Gao, J. Zhang, J. Gu, and Y. Zhang, “Study on the 
system design and control method of a semi-active heave 
compensation system,” Ships Offshore Struct., vol. 13, no. 1, 
pp. 43–55, Jan. 2018. 

[6] N. Xianliang, Z. Jiawen, and X. Jianan, “The heave motion 
estimation for active heave compensation system in offshore 
crane,” in 2016 IEEE International Conference on 
Mechatronics and Automation, Harbin, Heilongjiang, China: 
IEEE, Aug. 2016, pp. 1327–1332.  

[7] F. Zhang et al., “Semi-Active Heave Compensation for a 600-
Meter Hydraulic Salvaging Claw System with Ship Motion 
Prediction via LSTM Neural Networks,” J. Mar. Sci. Eng., vol. 
11, no. 5, p. 998, May 2023. 

[8] H. Chen, J. Xie, J. Han, W. Shi, J.-F. Charpentier, and M. 
Benbouzid, “Position Control of Heave Compensation for 
Offshore Cranes Based on a Particle Swarm Optimized Model 
Predictive Trajectory Path Controller,” J. Mar. Sci. Eng., vol. 
10, no. 10, Art. no. 10, Oct. 2022. 

[9] S. Zinage and A. Somayajula, “Deep Reinforcement Learning 
Based Controller for Active Heave Compensation,” IFAC-
Pap., vol. 54, no. 16, pp. 161–167, Jan. 2021. 

[10] J. Liu and X. Chen, “Adaptive Control Based on Neural 
Network and Beetle Antennae Search Algorithm for an Active 
Heave Compensation System,” Int. J. Control Autom. Syst., 
vol. 20, no. 2, pp. 515–525, Feb. 2022. 

[11] F. Zhang, J. Hou, D. Ning, W. Zhang, D. Wang, and Y. Gong, 
“Performance analysis of the passive heave compensator for 
hydraulic shipwreck lifting systems in twin-barge salvaging,” 
Ocean Eng., vol. 280, p. 114469, Jul. 2023. 

[12] A. Wu, J.-F. Mao, and X. Zhang, “An ADRC-Based 
Hardware-in-the-Loop System for Maximum Power Point 
Tracking of a Wind Power Generation System,” IEEE Access, 
vol. 8, pp. 226119–226130, 2020. 

[13] “Research of Rapid Control Prototyping for Flight Control 
System and Hardware-In-The Loop Test-All Databases.” 
Accessed: Feb. 06, 2024. 

[14] “Hardware-in-the-Loop Testing of a Hybrid Brake-by-Wire 
System for Electric Vehicles-Web of Science Core Collection.” 
Accessed: Feb. 06, 2024. 

[15] S. Dickler, T. Kallen, J. Zierath, and D. Abel, “Rapid control 
prototyping of model predictive wind turbine control toward 
field testing,” J. Phys. Conf. Ser., vol. 1618, p. 022068, Sep. 
2020. 

 

1246  



Trajectory Tracking of Differential Driven AGV Based on
Kalman Filter and Model Predictive Control

Zhihao Xu1, Yue Jiang1, Kai Peng2, Hongxia Wang1,∗,
1. College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, P. R. China

E-mail: 925441069@qq.com; whx1123@163.com; sdustjiangyue@163.com
2. School of Power and Energy, Northwestern Polytechnical University, Xi’an, 710072, P. R. China

E-mail: pengkai@nwpu.edu.cn

Abstract: Trajectory tracking is one of the key technologies of automated guided vehicles. However, the existing relevant
research seldom considers the influence of noise on tracking accuracy in the real environment. Considering the automated
guided vehicle model with additive noise, a new trajectory tracking algorithm is proposed in this paper. In the algorithm, the
initial state and control are first given. Then state estimation and optimal control are implemented alternatively. The former
is realized by the Kalman filter and the latter is resorted to model predictive control. The algorithm can effectively reduce the
influence of noises on trajectory tracking. Finally, the proposed algorithm is evaluated by simulation experiments.

Key Words: Kalman filter, model predictive control, trajectory tracking, Automatic Guided Vehicle

1 Introduction

The demand for modern automation equipment is increas-
ing. As a flexible and intelligent autonomous navigation ve-
hicle, AGV is crucial for optimizing production processes
and improving production efficiency [1]. Trajectory track-
ing is the foundation of AGV, and it plays an important role
in the study of AGV. Trajectory tracking not only ensures the
stable operation of AGVs in complex environments but also
improves the efficiency of their task execution. At present,
many control methods have been applied to the trajectory
tracking problem of AGV, including PID control, sliding
mode control(SMC), and MPC [2]-[7].

The PID algorithm is relatively simple. The algorithm
does not need the exact model of the system to realize the
trajectory tracking function [8]. However, the parameter ad-
justment of a traditional PID controller is complicated, and
the control parameters cannot be changed timely according
to the change of state. This can lead to less-than-ideal track-
ing [9]. Therefore, researchers often combine PID with other
algorithms to improve the control effect. For example, a PID
controller based on an improved genetic Algorithm (IGA)
was proposed by Yuan T et al. which adopted IGA to opti-
mize PID parameters, thus improving tracking performance
[10].

SMC is widely used in AGV systems for trajectory track-
ing because of its strong robustness and easy implementa-
tion [11]. A general rollover prevention control framework
for high-speed wheeled mobile robots was proposed by Yan
C et al., and an integral sliding mode wheel speed tracking
controller was designed, which successfully realized rollover
prevention in trajectory tracking and path following [12].
However, it is difficult to design a sliding mode control func-
tion and the system driven by SMC is susceptible to high-
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Funds of the National Natural Science Foundation of China (U23A20325),
the Major Basic Research of Natural Science Foundation of Shandong
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frequency perturbations [13].
MPC is an algorithm that obtains control inputs by solving

constrained optimization problems [14]-[16]. The algorithm
first predicts the output of the system, and then adjusts the
control strategy according to the designed performance in-
dex, to realize the effective control of the system. Therefore,
MPC has become one of the important methods to deal with
trajectory tracking problems. The controller can guarantee
the tracking accuracy and dynamic stability of the vehicle
simultaneously. An algorithm combining model predictive
control and delayed neural network was designed by Wang
D et al. to solve the omnidirectional robot trajectory tracking
problem under constraints [17]. A switched MPC framework
was given by [18]. By selecting appropriate vehicle models
and supervision schemes, the balance between MPC perfor-
mance and computational cost was achieved, and accurate
path tracking was realized.

However, the above trajectory tracking algorithms do
not account for high-frequency noise in a real environment
which can affect the accuracy of tracking. Therefore, this pa-
per presents a new algorithm for tracking trajectories, taking
into account the AGV model with additive Gaussian noise.
The algorithm first initializes the state and control. The state
and control after initialization are combined with the KF to
estimate the state of the next moment. Then the optimal con-
trol at the next moment is solved according to the MPC and
state estimated by the KF. The alternate execution of state
estimation and control optimization reduces noise influence
and improves trajectory tracking accuracy.

The rest of the paper is organized as follows: Section 2
presents the problem and kinematics equations of the system
to be solved in this paper. Section 3 describes the detailed
algorithm: the control strategy is adjusted by the method of
MPC and KF alternating operation, and the trajectory track-
ing is realized. In section 4, the algorithm is verified by sim-
ulation experiments. Finally, the algorithm is summarized in
Section 5. The trajectory tracking scheme of this paper is
shown in Fig. 1.
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Fig. 1: The scheme of trajectory tracking

Fig. 2: Kinematic model for differential drive AGV

2 Problem Formulation

When the operation of AGV is disturbed by noise, the
tracking will be biased. To deal with this problem, we con-
sider a kinematic model with additive Gaussian noise.

Based on the differential drive AGV shown in Figure 2,
the kinematic model established in this paper is as followsẋẏ

θ̇

 =

cosθ 0
sinθ 0
0 1

[
v
ω

]
+W, (1)

where x and y represent the abscissa and ordinate of the geo-
metric center of the AGV, θ is the heading angle of the AGV,
v is the velocity of the AGV, ω is the angular velocity of the
AGV, W denotes the Gaussian noise during AGV operation.

System (1) can be expressed in a concise form as

Ẋ = f(X,u) +W, (2)

where state variable X =
[
x y θ

]T
and control input

u =
[
v ω

]T
.

The state equation of the reference trajectory is set

Ẋr = f(Xr, ur), (3)

where state variable Xr =
[
xr yr θr

]T
and control input

ur =
[
vr ωr

]T
.

3 A New Trajectory Tracking Method

In order to reduce the influence of noise on trajectory
tracking accuracy, an alternate algorithm of MPC and KF
is proposed in this paper.

3.1 Linearization of the Error Model
The Taylor series expansion is performed at the reference

trajectory point

Ẋ =f(Xr, ur) +
∂f(Xr, ur)

∂X
(X −Xr)

+
∂f(Xr, ur)

∂u
(u− ur) +W.

(4)

The result of subtracting (3) from (4) is

˙̃X = Ẋ − Ẋr

=
∂f(Xr, ur)

∂X
X̃ +

∂f(Xr, ur)

∂u
ũ+W,

(5)

where X̃ = X −Xr, ũ = u− ur.
Discretize (5) using the forward Euler method

X̃(k + 1) = A(k)X̃(k) +B(k)ũ(k) +W (k), (6)

A(k) and B(k) are given as

A(k) =

1 0 −vr(k)sinθr(k)T
0 1 −vr(k)cosθr(k)T
0 0 1

 , (7)

B(k) =

cosθr(k)T 0
sinθr(k)T 0

0 T

 , (8)

where W (k) represents Gaussian white noise with a mean of
0 and a covariance matrix of Rw, T is the sampling period.

Then the observation equation of the system is

Z(k) = HX̃(k) + V (k), (9)

where Z(k) is the measured value, H is the measurement
matrix of the system, and V (k) represents Gaussian white
noise with a mean of 0 and a covariance matrix of Rv . In
addition, W (k) and V (k) are mutually independent.

3.2 Alternating Operation of MPC and KF
In this algorithm, we first initialize the state and control.

The state and control after initialization are X̂(k − 1) and
ũ(k − 1), respectively. Then we use the Kalman filter to
estimate the state at the next moment.

The state equation and observation equation of the system
are (6) and (9) respectively.

During the prediction phase of the Kalman filter, the for-
mulas for system state estimation and covariance estimation
are given by

X̄(k) = A(k − 1)X̂(k − 1) +B(k − 1)ũ(k − 1), (10)

P̄ (k) = A(k)P̂ (k − 1)A(k)T +Rw. (11)

where X̄ represents the prior state estimate, X̂ represents the
posterior state estimate, P̄ represents the prior error covari-
ance, P̂ represents the updated error covariance.

Subsequently, during the correction phase of the Kalman
filter, the Kalman gain, updated state estimation, and updated
error covariance are given by

K(k) = P̄ (k)HT [HP̄ (k)HT +Rv]
−1, (12)
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X̂(k) =X̄(k) +K(k)[HX̄(k)− Z(k)], (13)

P̂ (k) = [I −K(k)]P̄ (k), (14)

where X̂(k) is the next moment state estimated by KF. Ac-
cording to the estimated state X̂(k) and MPC, we can solve
the optimal control at the next moment.

In order to solve the optimal control using MPC, we need
to make a one-step prediction of the estimated state

X̄(k + 1) = A(k)X̂(k) +B(k)ũ(k). (15)

According to equation (15), we construct a new state vec-
tor as follows

ξ(k) =

[
X̂(k)

ũ(k − 1)

]
, (16)

and we can establish a new state-space representation

ξ(k + 1) =Ã(k)ξ(k) + B̃(k)∆u(k), (17)

η(k) = C̃(k)ξ(k), (18)

where

Ã(k) =

[
A(k) B(k)
0 I

]
, B̃(k) =

[
B(k)
I

]
, C̃(k) =

[
I 0

]
,

∆u(k) is the control increment at the moment k.And we de-
fine ∆u(k) as

∆u(k) = u(k)− u(k − 1), (19)

and we can obtain

∆u(k) = (u(k)− ur)− (u(k − 1)− ur)

= ũ(k)− ũ(k − 1).
(20)

State prediction based on (17) yields the following equa-
tion, Np is the forecast time horizon.

ξ(k + 1) =Ã(k)ξ(k) + B̃(k)∆u(k)

ξ(k + 2) =Ã(k + 1)Ã(k)ξ(k)

+ Ã(k + 1)B̃(k)∆u(k)

+ B̃(k + 1)∆u(k + 1)

ξ(k + 3) =Ã(k + 2)Ã(k + 1)Ã(k)ξ(k)

+ Ã(k + 2)Ã(k + 1)B̃(k)∆u(k)

+ Ã(k + 2)B̃(k + 1)∆u(k + 1)

+ B̃(k + 2)∆u(k + 2)

...

ξ(k +Np) =

0∏
i=Np−1

Ã(k + i)ξ(k)

+ [

Np−1∑
i=1

(

i∏
Np−1

Ã(k + i))B̃(k + i− 1)

×∆u(k + i− 1)] + B̃(k +Np − 1)

×∆u(k +Np − 1).

According to (18), the new system output can be calcu-
lated as follows

η(k + 1) =C̃(k)ξ(k + 1)

=C̃(k)Ã(k)ξ(k) + C̃(k)B̃(k)∆u(k)

η(k + 2) =C̃(k)ξ(k + 2)

=C̃(k)Ã(k + 1)Ã(k)ξ(k)

+ C̃(k)Ã(k + 1)B̃(k)∆u(k)

+ C̃(k)B̃(k)∆u(k + 1)

η(k + 3) =C̃(k)ξ(k + 3)

=C̃(k)Ã(k + 2)Ã(k + 1)Ã(k)ξ(k)

+ C̃(k)Ã(k + 2)Ã(k + 1)B̃(k)∆u(k)

+ C̃(k)Ã(k + 2)B̃(k + 1)∆u(k + 1)

+ C̃(k)B̃(k + 2)∆u(k + 2)

...

η(k +Np) =C̃(k)ξ(k +Np)

=

0∏
i=Np−1

C̃(k)Ã(k + i)ξ(k)

+ [

Np−1∑
i=1

(

i∏
Np−1

C̃(k)Ã(k + i))B̃(k + i− 1)

×∆u(k + i− 1)] + C̃(k)B̃(k +Np − 1)

×∆u(k +Np − 1).

To make the relationship more explicit, we express the
output of the system at future moments in the following form

Y (k) = Ψ(k)ξ(k) + Θ(k)∆U(k), (21)

where we set A1(k) = (
∏1

Np−1 Ã(k + i)), A2(k) =

(
∏2

Np−1 Ã(k + i)),

Θ(k) =

C̃(k)


B̃(k) 0 · · · 0

Ã(k)B̃(k) B̃(k + 1) · · · 0

· · · · · ·
. . . · · ·

A1(k)B̃(k) A2(k)B̃(k + 1) · · · B̃(k +Np − 1)

 ,

∆U(k) =


∆u(k)

∆u(k + 1)
· · ·

∆u(k +Nc − 1)

 , Y (k) =


η(k + 1)
η(k + 2)

· · ·
η(k +Np)

 ,

Ψ(k) =


C̃(k)Ã(k)

C̃(k)Ã(k + 1)Ã(k)
· · ·∏0

i=Np−1 C̃(k)Ã(k + i)

 .

In the process of AGV trajectory tracking, we obtain the
control sequence by solving the objective function, thus en-
suring that the AGV tracks the reference trajectory as accu-
rately as possible. We define the objective function as

J(k) =Y TQY +∆U(k)TR∆U(k). (22)
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Substituting (21) into (22) yields

J(k) =∆U(k)T (Θ(k)TQΘ(k) +R)∆U(k)

+ 2(Ψ(k)ξ(k))TQΘ(k)∆U(k) + E,
(23)

E =(Ψ(k)ξ(k))TQ(Ψ(k)ξ(k)), (24)

where Q and R are weighting matrices, E is a constant that
can be neglected during the simplification process.

In the actual control system, we consider the constraints of
control quantity and control increment to satisfy the require-
ments of AGV safety and stability. The constrained targets
are given as

umin ≤ u(k+t) ≤ umax,

t = 0, 1, · · ·, Nc − 1,
(25)

∆umin ≤ ∆u(k+t) ≤ ∆umax,

t = 0, 1, · · ·, Nc − 1,
(26)

where umin is the minimum control quantity, umax is the
maximum control quantity, ∆umin is the minimum control
increment and ∆umax is the maximum control increment.

Since the solution of the objective function is the control
increment, the constraint is written in the form of a control
increment. In addition, we know the control quantity at the
last moment. Therefore, the control quantity at the current
moment can be expressed in the following form

u(k + t) = u(k + t− 1) + ∆u(k + t). (27)

And we set

U(k − 1) = 1Nc ⊗ u(k − 1), (28)

Υ =


1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0

· · · · · · · · ·
. . . · · ·

1 1 1 · · · 1


Nc×Nc

⊗ I, (29)

where 1Nc
is an Nc-dimensional column vector with all ele-

ments equal to 1, ⊗ is Kronecker Product.
Therefore, (25) and (26) can be rewritten as

Umin ≤ Υ∆U(k) + U(k − 1) ≤ Umax, (30)

∆Umin ≤ ∆U(k) ≤ ∆Umax, (31)

where

Umin = 1Nc
⊗ umin, (32)

Umax = 1Nc
⊗ umax, (33)

∆Umin = 1Nc
⊗∆umin, (34)

∆Umax = 1Nc
⊗∆umax. (35)

We transform the objective function (22) into a QP prob-
lem and solve it in conjunction with constraints,

J = ∆U(k)TH(k)∆U(k) + g(k)∆U(k), (36)

s.t.Umin ≤ Υ∆U(k) + U(k − 1) ≤ Umax,

∆Umin ≤ ∆U(k) ≤ ∆Umax,

with

H(k) = Θ(k)TQΘ(k) +R, (37)

g(k) = 2(Ψ(k)ξ(k))TQΘ(k). (38)

By solving (36), a series of control increments in the con-
trol horizon can be obtained

∆U∗(k) =
[
∆u∗(k) · · · ∆u∗(k +Np − 1)

]T
. (39)

Apply the first element ∆u∗(k) in (38) to the system. We
can get the optimal control at k moment, that is

u∗(k) = u(k − 1) + ∆u∗(k). (40)

In addition, we can also obtain the optimal ũ∗ at the mo-
ment k, that is

ũ∗(k) = ũ(k − 1) + ∆u∗(k). (41)

and we can use ũ∗(k) and the Kalman filter to estimate the
state at the next moment.

Algorithm 1 Alternating Operation of MPC and KF
1: Define N as the maximum number of iterations
2: Initialize X̂(k − 1), ũ(k − 1)
3: while k ≤ N do
4: Estimate X̂(k) based on KF
5: Solving MPC based on X̂(k) yields ∆u∗(k)
6: u∗(k)← u∗(k − 1) + ∆u∗(k)
7: k ← k + 1
8: end while

4 Simulation

To demonstrate the effectiveness of the algorithm, we
consider tracking different trajectories and compare the al-
gorithm with the noise-disturbed MPC algorithm. We use
MATLAB to conduct simulation experiments.

4.1 Tracking a Circular Trajectory
In the experiment, we set the sampling period T = 0.1,

reference line velocity vr = 2, reference angular velocity
ωr = 0.033π, the initial state X =

[
−0.2 1 0.016π

]T
.

We consider tracking the circular trajectory in Fig.3.
Fig.3 shows the tracking results of the two algorithms for

the circular trajectory. It can be seen from the figure that
under the influence of noise, the algorithm designed in this
paper can successfully track the circular trajectory and is
closer to the reference trajectory than the MPC algorithm.
Fig.4 and Fig.5 show the circular trajectory tracking errors
of the two algorithms under the influence of noise. It can
be seen that the trajectory tracking error of this algorithm is
always kept in a small range, and the error of this algorithm
is smaller than that of the MPC algorithm.

4.2 Tracking a Straight Trajectory
In the experiment, we set the sampling period T = 0.1,

reference line velocity vr = 2.5, reference angular veloc-
ity ωr = 0, the initial state X =

[
0 0.5 0.016π

]T
.We

consider tracking the straight trajectory in Fig.6.
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Fig. 3: Circular trajectory tracking
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Fig. 4: Circular trajectory tracking error based on KF-MPC

0 100 200 300 400 500 600

step

-1

0

1

e
rr

o
r 

x

error x

0 100 200 300 400 500 600

step

-1

0

1

e
rr

o
r 

y

error y

tracking error

0 100 200 300 400 500 600

step

-1

0

1

Fig. 5: Circular trajectory tracking error based on MPC

Fig. 6: Straight trajectory tracking
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Fig. 7: Straight trajectory tracking error based on KF-MPC
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Fig. 8: Straight trajectory tracking error based on MPC
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As can be seen from Fig.6, due to the influence of noise,
only MPC can not accurately track the linear trajectory.
However, the algorithm designed in this paper can effec-
tively reduce the influence of noise, so that AGV can com-
plete the tracking more accurately. Fig.7 and Fig.8 show the
tracking errors of the two algorithms. It can be seen that the
accuracy of the proposed algorithm is higher.

In summary, it can be seen from the above two sets of
experiments that the algorithm can reduce the influence of
noise on AGV, enable it to accurately track the reference tra-
jectory, and control the error within a small range. Simula-
tion results further prove the effectiveness of the proposed
algorithm.

5 Conclusions

In this paper, an alternate algorithm of Kalman filter and
model predictive control is proposed to reduce the influ-
ence of noise and improve the accuracy of trajectory track-
ing for differential drive AGV systems with additive Gaus-
sian noise. The Kalman filter part of the algorithm can es-
timate the state and reduce the interference of noise. In the
model predictive control part of the algorithm, we can get
the optimal control at the current moment. In addition, the
effectiveness of the proposed algorithm can be evaluated by
the experimental results of tracking different trajectories. In
conclusion, the algorithm achieves good results in trajectory
tracking and provides an effective control strategy for prac-
tical application.
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Abstract: This paper delves into the robust H∞ synchronization for a type of networked re-entrant manufacturing systems
(ReMSs). The dynamics of the considered networked ReMSs are described by nonlinear hyperbolic partial differential equations.
Given the potential communication uncertainties and external disturbances in the production lines, a robust H∞ synchronization
criterion is derived for the networked ReMSs by utilizing an edge-dependent distributed adaptive strategy. A numerical simulation
is utilized to validate the effectiveness of the developed adaptive scheme and the obtained criterion.

Key Words: Re-entrant manufacturing systems (ReMSs), networked control, robust synchronization, distributed adaptive contol.

1 Introduction

In recent decades, re-entrant manufacturing systems
(ReMSs) have emerged as a prominent research focus,
driven by the increasing need for elevated reliability, en-
hanced performance, and sustainability of re-entry features
within work-in-progress across diverse highly automated in-
dustrial manufacturing processes, such as the chemical ma-
terial production, the semiconductor wafer fabrication and
the printed circuit board manufacturing [1–4].

Note that significant research results on discrete event-
based ReMSs, such as the queuing networks [5, 6] and the
Petri nets [7, 8], have been presented to date. However, the
escalating number of processing steps, machines, and mate-
rials may impose a substantial increase in computational bur-
dens and considerable time consumption on these discrete-
event system models. To address these limitations, an al-
ternative continuum approximation model characterized by
hyperbolic conservative equation has emerged and been ap-
plied to describe ReMSs [9–11], which could effectively
capture the re-entry feature and system dynamics with high
complexity. In [10], a continuum ReMS with high re-entry
feature was established by a nonlinear hyperbolic partial dif-
ferential equation, and an even-triggered strategy was de-
signed to guarantee the stability for such a highly ReMS by
utilizing the logarithmic norm of the state. In [11], a type
of highly ReMSs with local and nonlocal velocities was pre-
sented based on the conservation law, and the controllability
and the stabilization were further studied by means of the
Lyapunov function method.

In operational re-entrant manufacturing facilities, it is of-
ten essential to cooperatively synchronize production across
different manufacturing lines to meet practical market re-
quirements. This entails implementing a dynamic and highly
adaptable control system spanning various production lines.
The synthesis of synchronization control for networked con-
trol systems is directed towards attaining a shared consensus

This work was supported in part by the National Key Research and De-
velopment Program of China under Grant 2022YFF0902800 and in part by
the National Natural Science Foundation of China under Grant 92367204.

through a communication channel, which provides a feasi-
ble solution to reach this objective [12–15]. In [12], the au-
thors studied the synchronization regulation control problem
for networked distributed parameter systems by utilizing two
distinct type of liner synchronization controllers with con-
stant and adaptive edge-dependent feedback gains. In [13],
the authors investigated the synchronization tracking prob-
lem for networked agent systems under the denial-of-service
attacks, some synchronization criteria were derived for such
a networked control system based on the hybrid control the-
ory. In [14], the authors developed a distributed adaptive
control strategy to guarantee the synchronization for a class
of networked systems with unknown nonlinear dynamics. In
[15], the authors focused on the synchronization for directed
networked systems with heterogeneous nonlinear dynamics,
and derived the some synchronization conditions for the net-
worked control system based on the obtained robust stability
results. Therefore, the networked control can be regarded as
a viable method to guarantee synchronous production activ-
ities for the ReMSs. Furthermore, external disturbances are
unavoidable in networked control for ReMSs, often resulting
in compromised productivity or even complete disruption of
production. Although the initial exploration of some control
approaches, such as the event-triggered control [10] and the
fuzzy control [16, 17], for ReMSs, the robust H∞ synchro-
nization for networked ReMSs has not yet been investigated.

In this paper, we make the first attempt to networked con-
trol for ReMSs comprising a three-tiered architecture and
delve into the robust H∞ synchronization for the networked
ReMSs. The primary contributions of this paper are outlined
as follows. Firstly, in contrast to uncoupled ReMSs [9–11],
a three-tiered architecture for networked ReMSs with non-
linear dynamics and exogenous disturbances is established,
which contains the production line, the manufacturing layer
and the workshop layer. Secondly, given the communication
uncertainties in the networked control system, the synchro-
nization controllers with adaptive edge-dependent feedback
gains are designed to ensure the H∞ synchronization for the
ReMSs. Finally, a numerical example is utilized to validate
the effectiveness of the obtained results.

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
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Notations: φ1(U), φ2(U), . . . , φr(U) denote the eigen-
values in descending order of the real symmetric matrix
U ∈ Rr×r, where r is a positive integer.

2 System Modeling and Problem Formulation

In this paper, the networked ReMS is characterized by
a three-tiered architecture, as illustrated in Fig. 1, encom-
passing the production line, the manufacturing layer and the
workshop layer.

1) Production Line
The re-entrant manufacturing process implies that work-

in-process repeatedly passes through the same workstation
at different stages of the manufacturing flow. As illustrated
in (c) of Fig. 1, a straightforward re-entrant production line,
comprising multiple machines, buffers, and re-buffers, is de-
picted: the buffers hold work-in-process awaiting service at
each machine, while the re-buffers hold work-in-process that
are returned to each machine, awaiting subsequent service.
Then, based on the mass conservation law, the dynamics of
a re-entrant production line can be characterized by the fol-
lowing hyperbolic partial differential equation [9]:

∂p(t, s)

∂t
+ c

∂p(t, s)

∂s
= 0,

where s ∈ [0, 1] denotes the completion of products; the
state variable p(t, s) ∈ R describes the production density at
stage s ∈ [0, 1] and time t ∈ [0,+∞); 0 ⩽ c ∈ R represents
the velocity of a job moving in the production line.

2) Manufacturing Layer
To enhance production efficiency and mitigate the risk of

production interruptions caused by machine failures, a man-
ufacturing workshop is often equipped with multiple produc-
tion lines, as illustrated in (b) of Fig. 1. Then, the dynamics
of a workshop with n production lines can be characterized
by the following equation:

∂pi(t, s)

∂t
= −ci

∂pi(t, s)

∂s
+

n∑
j=1

eijhj(pj(t, s)),

where i, j = 1, 2, ..., n, n is a positive scalar representing the
number of production lines in a workshop; eij ∈ R denotes
the coupled weight between ith and jth production lines;
the nonlinear function hj(pj(t, s)) implies the coupling re-
lationship between ith and jth production lines and satisfies

|hj(ϑ1)− hj(ϑ2)| ⩽ dj |ϑ1 − ϑ2|, ∀ ϑ1, ϑ2 ∈ R, (1)

where dj is a positive scalar.
Take p(t, s) = (p1(t, s), p2(t, s), . . . , pn(t, s))

T ∈ Rn,
E = (eij)n×n ∈ Rn×n, 0 ⩽ C = diag(c1, c2, . . . , cn) ∈
Rn×n, h(p(t, s)) = (h1(p1(t, s)), . . . , hn(pn(t, s)))

T ∈
Rn, then the workshop dynamics can be reformulated as

∂p(t, s)

∂t
= −C

∂p(t, s)

∂s
+ Eh(p(t, s)).

3) Workshop Layer
To achieve process specialization and cater to larger-scale

production demands, a re-entrant manufacturing factory typ-
ically consists of multiple workshops, as illustrated in (a) of

Fig. 1. Then, the dynamics of a ReMS composed of r man-
ufacturing workshops, each of which equipped with n pro-
duction lines can be established as

∂ρk(t, s)

∂t
= −C

∂ρk(t, s)

∂s
+ Eh(ρk(t, s)), (2)

where k = 1, 2, . . . , r, r is a positive scalar represent-
ing the number of workshops; the state vector ρk(t, s) =
(ρk1(t, s), ρk2(t, s), . . . , ρkn(t, s))

T ∈ Rn denotes the
product density of the kth workshop equipped with n pro-
duction lines.

An undirected graph F(I,J , U) is assumed to character-
ize the communication topology for the networked ReMS
(2). The node set I = {1, 2, . . . , r} represents the work-
shops, the edge set J ⊂ I × I represents communication
links among the networked ReMS (2), and U(t) is the time-
varying adjacency matrix of F . The set of neighbors of the
lth workshop is denoted by Kl = {k ∈ I : (l, k) ∈ J }.
The element Ukl(t) of the weighted adjacent matrix U(t),
characterizing the underlying communication topology of all
workshops, satisfies the following condition:

Ukl(t) =


Ulk(t), if l ∈ Kk,

−
r∑

ϵ=1
ϵ̸=k

Ukϵ(t), if l = k,

0, otherwise.

The exogenous disturbances are inevitable in networked
control systems. Denote the bounded and square integrable
function βk(t, s) ∈ Rn as the external disturbance in the
temporal-spatial domain, i.e.,∫ t∗

0

∫ L

0

βT
k (t, s)βk(t, s)dsdt < ∞

for any 0 < t∗ ∈ R and 0 < L ⩽ 1. Then, a more general
model can be formulated as follows:

∂ρk(t, s)

∂t
= −C

∂ρk(t, s)

∂s
+ Eh(ρk(t, s)) + βk(t, s)

+uk(t, s), k = 1, 2, . . . , r, (3)

subject to the following initial and boundary conditions:

ρk(0, s) = ρ∗k(s), s ∈ [0, L],

ρk(t, 0) = 0, t ∈ [0,+∞),

where the uk(t, s) is the control input to be designed and the
function ρ∗k(s) is continuous.

Now, the robust H∞ synchronization problem of the net-
worked system (3) can be formulated. Taking ρ̄(t, s) =

1
r

r∑
ϵ=1

ρϵ(t, s), one obtains

∂ρ̄(t, s)

∂t
=−C

∂ρ̄(t, s)

∂s
+
1

r

r∑
ϵ=1

Eh(ρϵ(t, s))+
1

r

r∑
ϵ=1

βϵ(t, s)

+
1

r

r∑
ϵ=1

uϵ(t, s).

Define αk(t, s) = ρk(t, s)− ρ̄(t, s), k = 1, 2, . . . , r, then
the dynamics of synchronization error for the networked sys-
tem (3) are presented as follows:

∂αk(t, s)

∂t
= −C

∂αk(t, s)

∂s
+ Eh(ρk(t, s)) + βk(t, s)
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Fig. 1: Hierarchical architecture of ReMS.

+uk(t, s)−
1

r

r∑
ϵ=1

Eh(ρϵ(t, s))

−1

r

r∑
ϵ=1

βϵ(t, s)−
1

r

r∑
ϵ=1

uϵ(t, s). (4)

For notational brevity, one denotes

α(t, s) = (αT
1 (t, s), α

T
2 (t, s), . . . , α

T
r (t, s))

T ,

β(t, s) = (βT
1 (t, s), β

T
2 (t, s), . . . , β

T
r (t, s))

T .

Then the H∞ disturbance attenuation for the error dynam-
ics (4) is given by∫ t∗

0

∫ L

0

αT (t, s)α(t, s)dsdt

⩽ γ2

∫ t∗

0

∫ L

0

βT (t, s)β(t, s)dsdt+ V(α(0, ·)) (5)

for the time t∗ ∈ R, the attenuation index 0 < γ ∈ R and
the positive functions V(α(0, ·)) > 0.

The purpose of this study is to formulate appropriate con-
trol inputs uk(t, s) for every workshop such that the errors
αk(t, s) in networked manufacturing system (4) reach the
disturbance attenuation condition (5).

3 Main Results

Considering that the communication uncertainties caused
by unreliable transmission or limited communication range,
the following synchronization control schemes, which con-
tain adaptive laws tuning coupling gains among workshops,
are designed to guarantee the H∞ synchronization for the
ReMS (3):

uk(t, s) =
∑
l∈Kk

Ukl(t)B[ρl(t, s)− ρk(t, s)], (6)

where adaptive edge-dependent synchronization gains Ukl

are given by

U̇kl(t)=vkl

∫ L

0

[ρk(t, s)−ρl(t, s)]
THB[ρk(t, s)−ρl(t, s)]ds,

where 0 < vkl = vlk ∈ R are used to regulate the adap-
tive rates; 0 < H = diag(H1,H2, . . . ,Hn) ∈ Rn×n;
B = diag(b1, b2, . . . , bn) ∈ Rn×n is a positive matrix in-
dicating the interaction among production lines of different
workshops.

To obtain the main results, a lemma is first introduced.
Lemma 3.1. [18] The following inequality holds:

αT (U ⊗B)α ⩽ φ2(U)αT (Ir ⊗B)α,

where α = (αT
1 , α

T
2 , . . . , α

T
r )

T ∈ Rrn, 0 < B ∈ Rn×n,

αk ∈ Rn,
r∑

k=1

αk = 0, and U = (Ukl)r×r ∈ Rr×r is an

irreducible matrix satisfying Ukl = Ulk ⩾ 0 if k ̸= l, and
Ukl = −

∑r
l=1
l ̸=k

Ukl if l = k.
Then, the following result can be obtained.
Theorem 3.1. By utilizing the synchronization controller

(6), the ReMS (3) can attain the robust H∞ synchronization
if the following condition holds:

HEETH +D +
1

γ2
H2 + In + 2φ2(U

∗)(HB) ⩽ 0, (7)

where U∗ = (U∗
kl)r×r ∈ Rr×r is defined similar to U(t).

Proof. The closed-loop networked control system, consti-
tuted by (4) and (6), is formulated as follows:

∂αk(t, s)

∂t
= −C

∂αk(t, s)

∂s
+Eh(ρk(t, s)) + βk(t, s)

+

r∑
l=1

Ukl(t)B

[
αl(t, s)+

1

r

r∑
ϵ=1

ρϵ(t, s)

]
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−1

r

r∑
ϵ=1

Eh(ρϵ(t, s))−
1

r

r∑
ϵ=1

uϵ(t, s)

−1

r

r∑
ϵ=1

βϵ(t, s)

= −C
∂αk(t, s)

∂s
+Eh(ρk(t, s)) + βk(t, s)

−1

r

r∑
ϵ=1

Eh(ρϵ(t, s))−
1

r

r∑
ϵ=1

uϵ(t, s)

−1

r

r∑
ϵ=1

βϵ(t, s) +

r∑
l=1

Ukl(t)Bαl(t, s). (8)

Further, the following Lyapunov function for the system
(8) is selected:

V(t) =
r∑

k=1

∫ L

0

αT
k (t, s)Hαk(t, s)ds

+

r∑
k=1

∑
l∈Kk

(Ukl(t)− U∗
kl)

2

2vkl
. (9)

Calculating the time derivative of (9), one derives

V̇(t) = 2

r∑
k=1

∫ L

0

αT
k (t, s)H

[
− C

∂αk(t, s)

∂s
+Eh(ρk(t, s))

−Eh(ρ̄(t, s)) + Eh(ρ̄(t, s))− 1

r

r∑
ϵ=1

Eh(ρϵ(t, s))

+βk(t, s)−
1

r

r∑
ϵ=1

βϵ(t, s)−
1

r

r∑
ϵ=1

uϵ(t, s)

+

r∑
l=1

Ukl(t)Bαl(t, s)

]
ds

+

r∑
k=1

∑
l∈Kk

(Ukl(t)− U∗
kl)U̇kl(t)

vkl

= 2

r∑
k=1

∫ L

0

αT
k (t, s)HE

[
h(ρ̄(t, s))− 1

r

r∑
ϵ=1

h(ρϵ(t, s))

]
ds

+2

r∑
k=1

∫ L

0

αT
k (t, s)HE

[
h(ρk(t, s))−h(ρ̄(t, s))

]
ds

−2

r

r∑
k=1

r∑
ϵ=1

∫ L

0

αT
k (t, s)H[βϵ(t, s) + uϵ(t, s)]ds

+2

r∑
k=1

r∑
l=1

Ukl(t)

∫ L

0

αT
k (t, s)HBαl(t, s)ds

−2

r∑
k=1

∫ L

0

αT
k (t, s)HC

∂αk(t, s)

∂s
ds

+2

r∑
k=1

∫ L

0

αT
k (t, s)Hβk(t, s)ds

+

r∑
k=1

∑
l∈Kk

(Ukl(t)− U∗
kl)

∫ L

0

[ρk(t, s)− ρl(t, s)]
T

×HB[ρk(t, s)− ρl(t, s)]ds. (10)

According to the boundary condition, one obtains

−2

r∑
k=1

∫ L

0

αT
k (t, s)HC

∂αk(t, s)

∂s
ds

= 2

r∑
k=1

∫ L

0

∂αT
k (t, s)

∂s
HCαk(t, s)ds

−2

r∑
k=1

αT
k (t, s)HCαk(t, s)|s=L

s=0

= 2

r∑
k=1

∫ L

0

∂αT
k (t, s)

∂s
HCαk(t, s)ds

−2

r∑
k=1

αT
k (t, L)HCαk(t, L)

⩽ 2

r∑
k=1

∫ L

0

αT
k (t, s)HC

∂αk(t, s)

∂s
ds. (11)

Additionally, since

r∑
k=1

αk(t, s) =

r∑
k=1

[
ρk(t, s)−

1

r

r∑
ϵ=1

ρϵ(t, s)

]
= 0,

one derives

r∑
k=1

αT
k (t, s)HE

[
h(ρ̄(t, s))− 1

r

r∑
ϵ=1

h(ρϵ(t, s))

]
= 0,

2

r

r∑
k=1

r∑
ϵ=1

αT
k (t, s)H[βϵ(t, s) + uϵ(t, s)] = 0. (12)

From (1), one infers

2

r∑
k=1

∫ L

0

αT
k (t, s)HE [h(ρk(t, x))− h(ρ̄(t, s))] ds

⩽
r∑

k=1

∫ L

0

αT
k (t, s)(HEETH +D)αk(t, s)ds, (13)

where D = diag(d21, d
2
2, . . . , d

2
n).

Further, according to (10)-(13), one has

V̇(t) ⩽ −2

r∑
k=1

r∑
l=1
l ̸=k

(
Ukl(t)−U∗

kl

)∫ L

0

αT
k (t, s)HBαl(t, s)ds

+

r∑
k=1

r∑
l=1
l ̸=k

(
Ukl(t)−U∗

kl

)∫ L

0

αT
k (t, s)HBαk(t, s)ds

+

r∑
l=1

r∑
k=1
k ̸=l

(
Ukl(t)−U∗

kl

)∫ L

0

αT
l (t, s)HBαl(t, s)ds

+

r∑
k=1

∫ L

0

αT
k (t, s)(HEETH +D)αk(t, s)ds

+2

r∑
k=1

r∑
l=1

Ukl(t)

∫ L

0

αT
k (t, s)HBαl(t, s)ds

+2

r∑
k=1

∫ L

0

αT
k (t, s)Hβk(t, s)ds
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Fig. 2: Trajectories of αk1(t, s), αk2(t, s) and αk3(t, s), k = 1, 2, . . . , 6 under the synchronization controller (6).

= −2

r∑
k=1

r∑
l=1

(
Ukl(t)−U∗

kl

)∫ L

0

αT
k (t, s)HBαl(t, s)ds

+

r∑
k=1

∫ L

0

αT
k (t, s)(HEETH +D)αk(t, s)ds

+2

r∑
k=1

r∑
l=1

Ukl(t)

∫ L

0

αT
k (t, s)HBαl(t, s)ds

+2

r∑
k=1

∫ L

0

αT
k (t, s)Hβk(t, s)ds

=

r∑
k=1

∫ L

0

αT
k (t, s)(HEETH +D)αk(t, s)ds

+2

r∑
k=1

r∑
l=1

U∗
kl

∫ L

0

αT
k (t, s)HBαl(t, s)ds

+2

r∑
k=1

∫ L

0

αT
k (t, s)Hβk(t, s)ds. (14)

Based on (14) and Lemma 3.1, one obtains∫ L

0

αT (t, s)α(t, s)ds−γ2

∫ L

0

βT (t, s)β(t, s)ds+V̇(t)

⩽
∫ L

0

αT (t, s)α(t, s)ds− γ2

∫ L

0

βT (t, s)β(t, s)ds

+

∫ L

0

αT (t, s)[Ir ⊗ (HEETH +D)]α(t, s)ds

+2

∫ L

0

αT (t, s)[U∗ ⊗ (HB)]α(t, s)ds

+2

∫ L

0

αT (t, s)(Ir ⊗H)β(t, s)ds

⩽
∫ L

0

αT (t, s)[Ir ⊗ (HEETH +D)]α(t, s)ds

+2φ2(U
∗)

∫ L

0

αT (t, s)[Ir ⊗ (HB)]α(t, s)ds

+
1

γ2

∫ L

0

αT (t, s)(Ir ⊗H2)α(t, s)ds

+

∫ L

0

αT (t, s)α(t, s)ds

⩽
∫ L

0

αT (t, s)
{
Ir⊗

[
HEETH +D +

1

γ2
H2 + In

+2φ2(U
∗)(HB)

]}
α(t, s)ds. (15)

It follows from (7) and (15) that∫ L

0

αT (t, s)α(t, s)ds ⩽ γ2

∫ L

0

βT (t, s)β(t, s)ds− V̇(t),

which indicates that∫ t∗

0

∫ L

0

αT (t, s)α(t, s)dsdt

⩽ γ2

∫ t∗

0

∫ L

0

βT (t, s)β(t, s)dsdt+ V(α(0, ·)). (16)

Therefore, the proof of Theorem 3.1 is completed.

4 Numerical Illustration

In this section, the effectiveness of the developed synchro-
nization control approach is demonstrated through an illus-
trative example of a networked ReMS comprising six work-
shops, each of which equipped with three production lines.
The corresponding parameters of the networked system are
given as follows.

E =

 0.45 0.35 0.15
0.35 0.55 0.25
0.15 0.25 0.65

, βk(t, s)=

 0.4sin(4kπs)t
0.4sin(4kπs)t
0.4sin(4kπs)t

,
C =

 0.5 0 0
0 0.6 0
0 0 0.4

, h(ρk) =
 0.25tanh(ρk1)

0.45tanh(ρk2)
0.35tanh(ρk3)

.
Note that the functions h1(ρk), h2(ρk), h3(ρk) meet condi-
tion (1) with d1 = 0.25, d2 = 0.45, d3 = 0.35, respectively.
Taking
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Fig. 3: Trajectories of Ukl(t), k = 1, 2, . . . , 6, l ∈ Kk.

U(0)=


−0.3 0.2 0 0 0 0.1
0.2 −0.25 0.05 0 0 0
0 0.05 −0.15 0.1 0 0
0 0 0.1 −0.25 0.15 0
0 0 0 0.15 −0.28 0.13
0.1 0 0 0 0.13 −0.23

 ,

one can obtain that B = diag(11.0078, 11.0216, 11.0679)
and φ2(U

∗) ⩽ −4.0833 satisfying (7) by utilizing the MAT-
LAB. Letting

U∗ =


−11 5 0 0 0 6
5 −13 8 0 0 0
0 8 −12 4 0 0
0 0 4 −10 6 0
0 0 0 6 −11 5
6 0 0 0 5 −11

,

one has φ2(U
∗) = −4.9818 < −4.0833. Based on Theo-

rem 3.1, the H∞ synchronization is realized with the aid of
the adaptive synchronization controller (6). Fig. 2 exhibits
the trajectories of αk1(t, s), αk2(t, s) and αk3(t, s), k =
1, 2, . . . , 6 subject to the unanticipated disturbances βk(t, s)
under the adaptive synchronization controller (6). Fig. 3
reveals the gradual convergence of Ukl(t), k = 1, 2, . . . , 6,
l ∈ Kr to steady-state values, which indicates that the pa-
rameter adjustment laws are successfully implemented as the
system achieves H∞ synchronization.

5 Conclusion

The control of manufacturing systems is becoming in-
creasingly critical in modern industry. In this paper, the ro-
bust H∞ synchronization for the networked ReMSs com-
prising a three-tiered architecture has been investigated.
Considering the potential communication uncertainties and
external disturbances in the production lines, an edge-
dependent distributed adaptive strategy has been utilized
to address the robust H∞ synchronization for networked
ReMSs. A numerical simulation has been employed to vali-
date the effectiveness of the obtained criterion and the devel-
oped adaptive strategy.
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Abstract: In order to enhance the material handling efficiency and intelligent capabilities of warehouse logistics environments,
this article focuses on the research of fully automated material handling robots. The design principles and motion structure
of the robot are introduced, with a particular emphasis on establishing the kinematic model of its upper structure based on an
improved Denavit-Hartenberg (D-H) approach. Kinematic analysis, including both forward and inverse solutions, is performed
by incorporating joint parameters, and the results are validated. This research provides a foundational basis for the control of
fully automated material handling robots, contributing to advancements in the field of intelligent warehouse logistics.

Key Words: Warehouse Logistics, Fully Automated Material Handling Robots, Denavit-Hartenberg Method, Kinematic Analy-
sis

1 Introduction

With the continuous progress and development of tech-
nology, robots have found extensive applications across var-
ious industries[1–5]. In today’s diverse and complex indus-
trial scenarios, such as manufacturing production plants, nu-
merous situations require material handling, including the
storage of raw materials, components, and finished products
in warehouses. In such storage environments, traditional
manual operations incur high costs, exhibit low efficiency,
and pose potential risks, particularly when handling heavy
loads. Consequently, substituting machines for manual la-
bor is emerging as the predominant solution for the future.

In contemporary automated factories, common solutions
for material handling include belt conveyors and guided
vehicles[6]. Belt conveyors are frequently employed for
small-item and low-speed transportation, yet they suffer
from large spatial requirements and limited flexibility as they
can only operate along fixed routes. In contrast, guided ve-
hicles, while more agile and lightweight, lack autonomous
path planning and obstacle avoidance capabilities. They re-
quire the pre-installation of tracks or magnetic strips, involv-
ing significant engineering efforts. Once deployed, altering
the route necessitates substantial adjustments, resulting in
significant resource wastage. Therefore, in modern flexi-
ble manufacturing environments, there is a pressing need for
highly efficient, flexible, and autonomous intelligent mate-
rial handling equipment.

Numerous studies have been conducted on automated
handling devices. Lin Yuxin et al. designed an intelli-
gent vehicle with a six-axis robotic arm and an automatic
sorting cargo box based on the application of AGV (Au-
tomated Guided Vehicle) in small and medium-sized en-
terprises. This vehicle is capable of selectively gripping
and loading goods using the robotic arm, achieving automa-
tion in the functions of loading, transporting, and unloading
cargo [7]. Wei Liang et al. focused on automotive bodies and
mapped the transport body, the operating mechanism of the
transport body, and the entire transported vehicle into paral-
lel mechanisms of dynamic and static platforms. Through

This work was supported by the National Natural Science Foundation
of China under Grants No.62073113, No.62003122.

structural synthesis, they devised a transport robot with a
parallel transport mechanism, presenting a novel approach
for the transport mechanism of transport robots [8]. Deng
Yuxin et al. designed a wheeled line-following robot for
intelligent logistics based on the STM32 chip. The com-
pact and lightweight mechanical structure of the vehicle en-
ables self-detection of cargo positions for pick-up and un-
loading, precise fixation of items, and autonomous recogni-
tion and guidance following predefined paths. The system
achieves stable line-following control of the AGV (Auto-
mated Guided Vehicle) with differential drive, adjusting the
path in real-time based on feedback information from sen-
sors [9].

This paper presents a fully automated material handling
robot that utilizes a two-stage telescopic structure to facili-
tate the handling and transfer of boxed materials stored on
shelves in warehousing environments. The study employs
an improved Denavit-Hartenberg (D-H) parameter method
to establish the kinematic model of the fully automated ma-
terial handling robot[10–13]. The kinematic forward and in-
verse solutions are obtained and validated for accuracy.

2 STRUCTURAL DESIGN

The mechanical structure of the fully automated material
handling robot is illustrated in Fig. 1. The robot’s main body
comprises three components: the transfer mechanism, lifting
mechanism, and the chassis of the vehicle body.

2.1 Transfer Mechanism
The robot’s transfer mechanism incorporates commonly

used mechanical transmission components such as chain
wheel drive, belt wheel drive, slider guides, and rotary bear-
ings, as shown in Fig. 2. During operation, the transfer arm
is initially driven to extend a sufficient distance to the rear
of the cargo box. At this point, the claws at the ends of the
two arms rotate to a closed position, and the transfer mech-
anism as a whole adopts a clamping configuration to move
the cargo box back onto the loading tray. Subsequently, the
transfer mechanism rotates, orienting the entire structure to-
wards the robot’s own cargo tray. The transfer arm is then
once again driven to place the cargo box onto the robot’s
cargo tray, and finally, the claws are rotated to an open posi-
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Fig. 1: Main Structure of Robot

tion, completing the transfer motion for a single cargo box.

Fig. 2: Transfer Mechanism

The design of the two-stage telescopic mechanism is cru-
cial for the transfer mechanism throughout the entire mo-
tion process. When the robot chassis is parked at a dis-
tance of 50mm from the shelf’s side, in order to smoothly
retrieve the cargo, the claws need to extend at least 520mm.
When a servo motor serves as the driving source, conven-
tional rotational-to-linear mechanisms like screw slides, gear
racks, and others can be employed to fulfill the transmis-
sion requirements. Although these mechanisms can meet
the travel distance requirement, their structural length ex-
ceeds 520mm, resulting in a larger volume for the transfer
mechanism. Considering that the transfer mechanism needs
to rotate as well, a larger volume would increase the distance
from the rotation center to the lifting mechanism. This has a
significant impact on the width and length design of the vehi-
cle body chassis. In the case of a linear motor as the driving
source, volume-related issues similarly arise. Hence, a two-
stage telescopic design is necessary. The designed two-stage
telescopic mechanism in this study is composed of a com-
bination of belt pulleys and slide rails, utilizing chain drive
to achieve the two-stage telescopic motion, as illustrated in
Fig. 3.

2.2 Lifting Mechanism
The lifting mechanism of the robot adopts linear screw

drive, connecting two screw modules together through a sin-
gle servo motor, optical shaft, and coupling components.
This mechanical arrangement achieves synchronization at
the mechanical level, facilitating control. This design choice
helps prevent coding errors and potential risks associated
with occasional malfunctions in dual-motor drive configu-

Fig. 3: Principle of Two-Stage Telescoping

rations, as illustrated in Fig. 4.

Fig. 4: Lifting Mechanism

2.3 Chassis Design
Analysis of the Motion Requirements for the Fully Auto-

mated Material Handling Robot reveals several key function-
alities: achieving forward and turning capabilities, accom-
plishing in-place rotation, and traversing smoothly on mildly
uneven surfaces. Common mobile robot chassis wheel sys-
tems are classified into three-wheel, four-wheel, and six-
wheel structures, with wheels categorized as drive wheels
and omnidirectional wheels. Due to the substantial overall
load of the fully automated material handling robot, three-
wheel or four-wheel structures often struggle to meet the
load requirements. Therefore, the six-wheel structure is em-
ployed to ensure stability of the upper structure under heavy
loads, thereby enhancing the overall mechanical lifespan.
The wheel system, composed of the aforementioned drive
wheels and omnidirectional wheels, is depicted in Fig. 5,
where black shapes represent drive wheels and gray shapes
represent omnidirectional wheels.

Fig. 5: Six-Wheel Chassis Structure

After opting for a six-wheel structure, the fully automated
material handling robot requires the design of a locomo-
tion system to fulfill its motion functionalities. The loco-
motion system chosen for the fully automated material han-
dling robot in this study is the differential drive system. This
system achieves the required motion functionalities by con-
trolling the motion direction and speed of two drive wheels.
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2.4 Analysis of Robot Motion Structure
Apart from the vehicle chassis, all other mechanisms are

collectively referred to as the upper structure. In warehous-
ing environments, cargo boxes, which bear materials, are
typically placed on square-shaped shelves. Each shelf is di-
vided into multiple layers. When the robot is tasked with
handling and transferring items on the shelves, to maintain
stable and coherent motions, it first needs to dock at one
side of the shelf. Subsequently, the upper structure is con-
trolled to execute the corresponding actions, as illustrated
in Fig. 6. At this point, the motion of the fully automated
material handling robot involves four degrees of freedom:
the translational degree of freedom for lifting up and down,
the rotational degree of freedom for the transfer mechanism,
the translational degree of freedom for the extension of the
transfer mechanism’s loading arm, and the rotational degree
of freedom for the gripper at the end of the arm. By control-
ling the rotation and movement of each axis, the effective
handling of transferred goods can be achieved.

(a) Docking at the Target Posi-
tion

(b) Facing the Cargo Box

(c) Gripping the Cargo Box (d) Transferring the Cargo Box

Fig. 6: Material Retrieval Process of the Robot

During automatic control, the fully automated material
handling robot docks at the target point based on a pre-set
trajectory. To pick up a cargo box from the second shelf,
as shown in Fig.6(a), the lifting mechanism first lowers the
transfer mechanism and rotates it to align with the cargo
box’s position, as depicted in Fig.6(b). The pick-up arm then
moves to lift and transport the cargo, as shown in Fig.6(c).
After picking up the cargo box, the transfer mechanism ro-
tates, coordinated with the lifting mechanism, to position the
box directly over the robot’s loading platform, as illustrated
in Fig.6(d). This entire process requires the inverse kine-
matics of the various joint motions at the specified position
points.

3 Kinematic Analysis and Simulation

3.1 Establishment of the Robot Denavit-Hartenberg
Model

Based on the previous analysis of the motion structure of
the fully automated material handling robot, when the robot
is handling cargo, the chassis remains stationary. Therefore,
the kinematic analysis of the robot can be simplified to focus
on the upper structure. Since the robot has two arms, but
the end rotation angles are opposite when gripping cargo,
for the purpose of kinematic modeling and analysis, they are
considered as a whole. The kinematic model of the robot
is established using an improved Denavit-Hartenberg (D-H)
method, as illustrated in Fig. 7.

Fig. 7: Kinematic Model of the Robot

Based on the joint coordinate systems established in the
figure, the Denavit-Hartenberg parameter table for each joint
of the upper structure of the robot is presented in Table 1.

Table 1: Robot Denavit-Hartenberg Parameters
Joint Twist Angle Link Length Joint Offset Joint Angle
i αi−1(◦) ai−1(m) di(m) θi(◦)
1 0 0 d1 0
2 0 0 l2 θ2
3 0 -90 d3 0
4 0 0 l4 θ4

Where l2 and l4 are constants determined by the mechan-
ical design parameters of the robot, with specific values l2 =
0.17m and l4 = 0.01m. The movement range for each joint
is determined based on the structural characteristics and di-
mensional parameters of the robot, as presented in Table 2.

Table 2: Joint Range of Motion

Parameter d1(m) θ2(◦) d3(m) θ4(◦)

Upper Limit 0.4 -90 0.225 0

Lower Limit 1.6 90 0.825 90

3.2 Forward Kinematic Analysis
The Denavit-Hartenberg parameter table for the robot ef-

fectively defines the relative pose relationships of the various
joints in three-dimensional space.Using coordinate system
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X0-Y0-Z0 as the base coordinate system, it is possible to
calculate the coordinate transformation matrix for the end-
effector coordinate system relative to the base coordinate
system. The coordinate transformation matrix between ad-
jacent coordinate systems {Oi−1} and {Oi} can be obtained
through four consecutive transformations based on the D-H
parameters:

i−1
i T = RX(αi−1)DX(ai−1)RZ(θi)DZ(di) (1)

The general expression for i−1
i T is:

i−1
i T =


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di
sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1


(2)

Where cα is an abbreviation for cosα, and sα is an abbre-
viation for sinα.

Substituting the joint parameters from the Denavit-
Hartenberg parameter table into the expression yields the co-
ordinate transformation matrix between adjacent joints:

0
1T =


1 0 0 0
0 1 0 0
0 0 1 d1
0 0 0 1

 (3)

1
2T =


cθ2 −sθ2 0 0
sθ2 cθ2 0 0
0 0 1 l2
0 0 0 1

 (4)

2
3T =


1 0 0 0
0 0 1 d3
0 −1 0 0
0 0 0 1

 (5)

3
4T =


cθ4 −sθ4 0 0
sθ4 cθ4 0 0
0 0 1 l4
0 0 0 1

 (6)

The homogeneous transformation matrix 0
4T for the robot

end-effector relative to its base coordinate system can be ob-
tained by multiplying 0

1T , 12T , 2
3T , 34T together:

0
4T =


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 (7)

Where:

r11 = cθ2cθ4, r12 = −cθ2sθ4, r13 = −sθ2,

r21 = sθ2cθ4, r22 = −sθ2sθ4, r23 = cθ2,

r31 = −sθ4, r32 = −cθ4, r33 = 0,

px = −l4sθ2 − d3sθ2, py = l4cθ2 + d3cθ2,

pz = d1 + l2,

(8)

Formulas (3) - (8) constitute the forward kinematics equa-
tions for the fully automated material handling robot.

3.3 Inverse Kinematic Analysis
This subsection focuses on solving the inverse kinematics

equations for the fully automated material handling robot.
Assuming the desired end-effector pose is given by Tend, it
is represented as:

Tend =


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 (9)

Simultaneously, according to the forward kinematics
equations, it can be noted that:

Tend = 0
4T = 0

1T
1
2T

2
3T

3
4T (10)

After joint computation, the result is:

d1 = pz − l2,

θ2 = arccos(
py√

p2x + p2y

),

d3 =
√
p2x + p2y − l4,

θ4 = arccos(−r32)

(11)

Where l2 is a constant determined by the mechanical de-
sign parameters of the robot, with l2 = 0.17 m. The above
equation represents the solution to the inverse kinematics
equations for the fully automated material handling robot.

3.4 Validation of Forward Kinematics
The method for validating forward kinematics involves

comparing the results obtained from the homogeneous
transformation matrices calculated based on the Denavit-
Hartenberg modeling method with those obtained using the
MATLAB Robotics Toolbox. The MATLAB Robotics Tool-
box provides a robot teaching interface (as shown in Fig. 8)
that allows for adjustments to the displacement of each joint
of the robot.

Fig. 8: MATLAB Robotics Teaching Interface

During the validation of the results obtained from forward
kinematics analysis, joint displacement values for each joint
of the robot were provided. These values were first substi-
tuted into the formulas to calculate the expected end-effector
pose. The MATLAB Robotics Toolbox, on the other hand,
provided results through the robot teaching interface after
inputting the joint displacements. For ease of comparison,
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this subsection presents only the comparison results for the
end-effector position, as shown in Table 3.

From the table, it can be observed that, by providing
four sets of different joint displacement variables, the end-
effector positions obtained from the two methods are con-
sistent. The slight differences in data are attributed to the
limited precision of the MATLAB teaching interface. This
confirms the accuracy of the forward kinematics analysis for
the fully automated material handling robot in this study.

Table 3: Validation of Forward Kinematics Analysis Results

Joint Variables Calculated position Taught position
[d1,θ2,d3,θ4] [x,y,z] [x,y,z]

[0.60,-90,0.30,0] [0.3100,0.0000,0.7700] [0.3098,0.0000,0.7694]

[0.80,-60,0.40,60] [0.3551,0.2050,0.9700] [0.3548,0.2032,0.9674]

[1.00,-45,0.50,45] [0.3606,0.3606,1.1700] [0.3612,0.3575,1.1660]

[1.20,0,0.60,90] [0.0000,0.6100,1.3700] [0.0000,0.6088,1.3670]

3.5 Validation of Inverse Kinematics
In this section, the correctness of the inverse kinematics

analysis for the fully automated material handling robot is
validated through motion planning. Utilizing the straight-
line trajectory planning function in the MATLAB Robotics
Toolbox, the motion planning is carried out based on the
actual joint motion patterns for gripping cargo. The in-
verse solution algorithm used is the one derived from the
inverse kinematics equations for the fully automated ma-
terial handling robot as presented earlier. The correctness
of the inverse kinematics analysis is demonstrated through
the results of motion planning. Motion planning is di-
vided into two processes: picking and delivering. For
the picking process,the starting point coordinates are set as
Pstart1[0.235, 0.000, 1.770], and the target point coordinates
are set as Pend1[0.000, 0.235, 1.370]. The selection of target
point coordinates is such that they are positioned at the cen-
ter coordinates of the actual rear face of the cargo box on
the shelf. The robot moves from the initial position to the
target position after a given step length. The displacement
variation curves of each joint with respect to the step length
during the robot’s motion planning process are shown in Fig.
9. The actual motion effects of the joints after every hundred
steps are illustrated in Fig. 10.

For the delivery motion, the starting point coordinates are
set as Pstart2[0.000, 0.235, 1.370], and the target point coor-
dinates are set as Pend2[−0.235, 0.000, 1.570]. The selection
of target point coordinates is positioned at the center coordi-
nates of the actual rear face of the cargo box on the robot’s
loading platform. The displacement variation curves of each
joint with respect to the step length are depicted in Fig. 11.
The actual motion effects of the joints after every hundred
steps are illustrated in Fig. 12.

In summary, the inverse kinematics solution developed for
the fully automated material handling robot in Section C can
assist the motion planner in MATLAB to generate displace-
ment variation curves for each joint of the robot during the
motion processes. This validates that the inverse kinematics
equations derived in this paper are applicable to the opera-
tional phase of the fully automated material handling robot.

Fig. 9: Picking Movement

(a) Initial position (b) Sample points
from 0 to 100

(c) Sample points
from 100 to 200

(d) Sample points
from 200 to 300

(e) Sample points
from 300 to 400

Fig. 10: Picking Movement Results

Fig. 11: Delivery Movement
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(a) Initial position (b) Sample points
from 0 to 100

(c) Sample points
from 100 to 200

(d) Sample points
from 200 to 300

(e) Sample points
from 300 to 400

Fig. 12: Delivering Movement Results

4 CONCLUSION

This paper focuses on the warehouse environment, us-
ing a fully automated material handling robot as the re-
search subject. Initially, the robot underwent mechanical
design, and an introduction to the motion structure was pro-
vided, including the transfer mechanism, lifting mechanism,
and vehicle chassis. Subsequently, the robot’s kinematic
forward and inverse solutions were obtained based on an
improved Denavit-Hartenberg parameter method. The cor-
rectness of both forward and inverse solutions was verified
through MATLAB calculations, providing a foundation for
the automatic control of the fully automated material han-
dling robot.

References
[1] W. Qizhi and X. De, On the kinematics analysis and motion

planning of the manipulator of a mobile robot, in Proceedings
of 23th Chinese Control and Decision Conference, 2011: 4033-
4037.

[2] Fang Yi, Wang Shuai, Bi Qiushi, Design and Technical of
Wall-Climbing Robots, in Journal of Bionic Engineering,
2022, 19(4): 877-901.

[3] Mingliang zhang, Zhixin shi, Yufeng luo, Structural design
and analysis of end-effector of Traditional Chinese medicine
massage robot, in Journal of Mechanical Transmission, 2020,
44(6):6.

[4] Marc Raibert, Kevin Blankespoor, Gabriel Nelson, BigDog,
the Rough-Terrain Quadruped Robot, in The 17th World
Congress of the International Federation of Automatic Control,
2008:10822-10824.

[5] Yanjun Cao, An entanglement-clearing robot for power trans-
mission line with composite clearing tool, in Cyber Technology
in Automation, Control, and Intelligent Systems, 2015.

[6] Bingkun Zheng, Yizong Nai, Feng Ye, Design and Realization
of AGV Control System Based on Magnetic Guidance , in Au-
tomation and Instrumentation, 2014,29(03):6-10.

[7] Yuxin Lin, Junhui Dai, Design of An Intelligent Vehicle for
Automatic Manufacture System, in Mechanical & Electrical
Engineering Technology,2018,47(02):7-10.

[8] Liang Wei, Lubin Hang, Xiaobo Huang, Weizhong Guo, An
AGV Parallel Mechanism Unloading Device Constructed by

Position and Orientation Characteristics(POC)Theory, in Ma-
chinery Design & Manufacture,2022,381(11):58-61.

[9] Yuxin Deng, Hongfang Chen, Shuang Zhang, Yu Wang,
Chaowei Liang, Ruoshui Sun, Design of Wheeled Track-
ing Robot System for Intelligent Logistics, in Tool
Engineering,2022,56(06):57-60.

[10] X. Jian, B. Huang, Y. Zhang, J. Li, X. Chen and S. Xu, Dig-
ital Control Method of Bucket Truck Based on DH Parameter
Modeling, in Proceedings of 5th International Conference on
Mechatronics, Robotics and Automation, 2022: 74-78.

[11] M. L. Strydom, A. Banach, J. Roberts, R. Crawford and A.
T. Jaiprakash, Kinematic Model of the Human Leg Using DH
Parameters, in IEEE Access, vol. 8, pp. 191737-191750, 2020.

[12] S. Pan, S. Guan and X. Li, Research on the Design and Con-
trol Scheme of Engineering Excavator Robot, in Proceedings
of 35th Chinese Control and Decision Conference, 2023: 4948-
4952.

[13] N. Xu, X. Peng, L. Peng, Z. Hou and M. Gui, Modeling and
Kinematics Analysis of a Novel 5-DOF Upper Limb Exoskele-
ton Rehabilitation Robot,in Proceedings of 39th Chinese Con-
trol Conference, 2020: 1052-1057.

1264  



Identification Algorithm of the Industrial Dryers Based on Subspace 
Ning Ding, Jianwei Ma*, Jiangrong Li 

Yan’an University, Yan’an716000, China 
E-mail: majianwei@yau.edu.cn  

 
Abstract: In order to improve the product quality and reduce energy consumption, various modeling and control methods of the 
Industrial Dryers in drying process have been concepted according to complexity and nonlinearity. These methods usually 
dedicate to optimizing drying parameters, temperature controlling, system model identification, and neural network predictive 
control. This paper suggests a subspace identification method of Industrial Dryers system, which is based on the MOESP 
algorithm and the TN-MOESP algorithm. The paper conducted simulation experiments on two identification algorithms and 
tested the algorithms on an industrial drying machine dataset. Simulation results show that the MOESP algorithm is more 
accuracy, while the TN-MOESP algorithm has a faster identification speed. 
Keywords: Industrial Dryer; Subspace Identification; MOESP Algorithm 
 

1 Introduction 
Industrial Dryers are important equipment, which is 

widely used in various fields such as food processing, 
metallurgy, chemical industry, and textile. However, how to 
reduce losses during the drying process and control the 
drying process remains a topic so that contemporary scholars 
need to explore further [1]. AS Mujumdar et al. proposed a 
method for determining the optimal drying parameters using 
two models. One model is used to model the moisture 
migration during isothermal drying, while the other model is 
applied to the process of temperature increase in roof tiles. 
By simultaneously using these two models, the drying 
process can be comprehensively characterized [2]. 
Abdenouri N et al. introduced a study of the thermal 
behavior and temperature control methods within a mixed 
solar drying machine. They established a state-space model 
based on the nonlinear least squares method and developed 
a fuzzy logic controller (FLC). Through simulation 
verification compared with traditional PI temperature 
controllers, the fuzzy logic controller exhibited good 
performance [3]. Platon R et al. applied a subtraction 
clustering algorithm to identify the target system model. 
They represented the industrial drying process as a first-
order Sugeno system model with three inputs and one output, 
and evaluated its performance by comparing parameter 
searches using different step lengths [4]. Cubillos F A et al. 
explored the use of the Grey-Box Neural Model (GNM) in a 
Nonlinear Model Predictive Control (NMPC) scheme for a 
direct rotary dyeing machine. By combining the mass and 
energy balances of the rotary dryer with a feedforward 
neural network (FFNN), they constructed a neural network 
to estimate the drying rate and volumetric heat transfer 
coefficient. The results demonstrated that the GNM method 
accurately captured the dynamic behavior of the rotary dryer 
[5]. Abdel-Jabbar N M et al. presented a dynamic model of 
a fluidized bed dryer based on fundamental process 
principles. They introduced step changes in manipulated and 
load variables into a rigorous model and utilized the 
resulting data for offline model identification. Simulation 
results indicated that the model effectively reflected the 
dynamic characteristics of the fluidized bed drying process 
[6]. Berrada M et al. proposed a state variable model for the 
drying section of a paper machine. Based on the mass and 
energy balances of steam, paper, cylindrical heater walls, 

and moisture,  this paper established six nonlinear partial 
differential equations. Through this model, operational 
parameters required to achieve the desired steam 
temperature and achieve effective drying can be determined 
[7]. Shahhosseini S et al. proposed an adaptive model for 
describing the dynamic behavior of a rotary sugar drying 
process by integrating online variable estimation and 
parameter identification techniques with physical laws. This 
model uses online measurements to estimate heat and mass 
transfer rates, thus accurately tracking the dynamic behavior 
of the rotary drying process [8]. These studies provide 
valuable references for the optimization design and control 
of industrial dryers, contributing to improving product 
quality, reducing energy consumption, and promoting the 
sustainable development of industrial production. 

The main objective of this paper is to model and control 
the industrial drying process using subspace algorithms. 
This algorithm utilizes input-output data to identify the 
system model, moreover need not to understand the inherent 
relationships and logical connections between parameters, 
thus more easy to realize [9]. 

2 Problem Statement 
The drying process of Industrial Dryers is characterized 

by complexity and nonlinearity, making the control of the 
drying process difficult. It is necessary to choose appropriate 
identification methods and techniques to obtain an accurate 
model that supports the optimization design and control of 
the system. 

This paper chooses to extend the discrete-time state-space 
model and expands the general state-space model into a 
nonlinear state-space model: 

            ( )1t t tx f x ,u ,+ =               (1) 

             ( )t t ty g x ,u ,=               (2) 

Where ( ) ( )f ,g• •   is a nonlinear vector function. For 
nonlinear functions, this paper chooses to represent them 
using multivariate polynomials. The following polynomial 
state-space model was proposed in reference [10]: 
                ( )1t t tx Ax f u ,+ = +            (3) 

             ( )t t ty Cx g u .= +            (4) 

In which, ( ) ( )f ,g• •   are multivariate polynomials of 
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total degree d. As this model satisfies input-output equations, 
any subspace method can be adopted to identify system 
parameters. In this paper, the MOESP algorithm and the 
tensor-network-based MOESP algorithm are employed for 
the identification of the Industrial Dryers [11]. 

3 Algorithm Introduction  
3.1 MOESP Algorithm  

Consider the following discrete-time state-space model: 
     ( 1) ( ) ( ) ( ),x k Ax k Bu k w k+ = + +      (5) 
     ( ) ( ) ( ) ( ),y k Cx k Du k v k= + +        (6) 

Assuming the current time is k, the past time is denoted as p, 
and the future time is denoted as f. By repeatedly applying 
the above equation, the following equation can be obtained: 

   ( ) ,f f f f f f fy x k H u G w v= Γ + + +      (7) 

The vector , , ,f f f fu w v y  has the same stacking method. 
For the past time p, the input-output equation of the past time 
can be obtained in the same way: 

  ( ) ,p p p p p p py x k p H u G w v= Γ − + + +    (8) 
Other vectors and matrices are defined similarly to before. 
Then the past and future output equations are written in the 
Hankel matrix form, giving the following expression: 

    
,

.
f f f f f f f f

p p p p p p p p

Y X H U G W V
Y X H U G W V

= Γ + + +

= Γ + + +
    (9) 

For nonlinear extended state-space models, modifications 
need to be made to the traditional MOESP algorithm to adapt 
to the extended model. The following steps are the specific 
implementation process of the modified MOESP algorithm 
[11]: 
Step1: Construct input-output Hankel matrices with a given 

number of blocks k. 
Step2: Perform an LQ decomposition on the Hankel 

matrices. 

11 1

21 22 2

0 T

T

LU Q
L LY Q

   
=    

    
 

Step3: Perform SVD decomposition on L22: 

( ) 1 1
22 1 2

2

0
0 0

T

T

S V
L U U

V
  

=   
  

 

Step4: Determine the order of the system ( )22n rank L=  
Step5: Construct the extended observability matrix 

1/2
1 1kO U S=   and determine the value of 

( )1kC O p,= : : . 

Step6: Calculate A from ( ) ( )1 1kO kp p, A O p kp,: − : = + : : . 

Step7: Divide ( )2 1:T
kU L L=   into k blocks of size 

( )kp n p− × . 

Step8: Divide ( )1
2 21 11 1:T

kU L L M M− =    into k 

blocks of size ( ) dkp n m− × . 

Step9: Definition ( ): 2i i kL L L ,i , k= =   
Step10: Calculate the matrices B and D from the following 

equation: 

    

11 2 1

22 3 2

11 1

0

k

k

kk k

kk

ML L O
ML L O

D
B

ML L O
ML

−

−

−−

   
   
       =     
   

     


 

       (10) 

3.2 TN-MOESP Algorithm 

The difference between tensor network subspace 
identification and traditional subspace identification lies in 
the representation of the input part of the polynomial state-
space model using tensor networks. The specific form is as 
follows: 

           1
d

t t tx Ax u ,+ = +             (11) 

           d
t t ty Cx u ,= +              (12) 

Where ,    are 1d +  -way tensors with dimensions 
n m m m× × ×  and p m m m× × × . Another form 
of tensor representation is as follows: 
               1t t tx Ax Bu ,+ = + ⓓ             (13)  

               t t ty Cx Du ,= + ⓓ              (14) 

Where B and D are matrices reshaped from tensor  ，

into dimensions of dn m×   and dp m×  , respectively, 

and tuⓓis defined as the d-th Kronecker product: 

         
d

d
m

t t t tu u u u R= ⊗ ⊗ ⊗ ∈




ⓓ         (15) 
Similar to traditional subspace identification, the 

following tensor-based input-output equation can be 
obtained through iterative recursion: 
           0 1 0 1|k k k |kY O X PU ,− −= +            (16) 

Where X is the state vector, kO   is the extended 

observability matrix, kP is the Toeplitz matrix, 0 1|kY −  and 

0 1|kU −  are block Hankel matrices. The difference between 
the TN-MOESP algorithm and the MOESP algorithm lies in 
the representation of the polynomial input using tensor 
networks. Therefore, the implementation process of the two 
algorithms is similar. Thus, the TN-MOESP (Tensor 
Network MOESP) algorithm based on tensor networks is 
implemented as follows, and detailed implementation 
procedures can be found in reference [11]. 

3.2.1 Construct a tensor network for matrix 0 1|kU −  

Matrix 0 1|kU − has dimensions dkm N× , so it needs to 
be stored as a tensor network. The main idea behind 
constructing a tensor network is reshaping: 

0| 1: ( ,[ , ]).d
kU reshape U m kN−=  

The reshaped matrix U consists of kN columns, each of 
which is a repeated left Kronecker product. Perform SVD 
decomposition on the reshaped matrix, where the resulting 
U is reshaped as ( )i  and SV is reshaped as ( 1)i+ , with 
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i  ranging from 1 to d-1.The tensor network is constructed 
starting from (1)  and building up to ( )d  .The matrix 

0 1|kU −   is ultimately constructed into a tensor network 
through the following reshaping process: 

( )( ,[ , , ,1])d
dreshape r mk N  

3.2.2 Compute 11 21 22, ,L L L  

Since the LQ decomposition in the MOESP algorithm 
cannot be computed in tensor network form, a more efficient 
SVD is used to decompose 0| 1kU − : 

  ( ) 1 1
0| 1 1 2

2

0
,

0 0

T
T

k T

T Q
U WTQ W W

Q−

  
= =   

  
  (17) 

Where matrices dW km N∈ ×  , T, Q are respectively 
N N×   diagonal and orthogonal matrices. Let 

(1) ( )d
    represent the tensor network of 0| 1kU −  .  

Tensor network 0| 1kU − is shaped into a matrix , then SVD 

decomposition is performed. The orthogonal factor W  
from equation (17) is shaped into the tensor network 

(1) ( )d
   . The orthogonal factor W  is calcuated in 

tensor network form , and finally, the required matrix factor 

11 21 22, ,L L L  can be computed as: 

              11 1 1 ,
dkm rL W T R ×= ∈             (18) 

             21 0| 1 1 ,kp r
kL Y Q R ×
−= ∈            (19) 

            22 0| 1 2 ,kp kp
kL Y Q R ×
−= ∈            (20) 

The tensor network of 11L  can be easily found, as the first 
d-1 tensors are identical to the tensors of W, while the d-th 
tensor of 11L  is the same as ( )

3 1( 0)d TT× . 

3.2.3 Compute matrices A and C 

Once the matrix factor 11 21 22, ,L L L   is computed, the 
traditional MOESP algorithm can be used to find matrices A 
and C. Matrix 22L   reveals the system order n and the 

extended observability matrix kO  as 1/2
1 1U S , from which 

the first p rows are taken as the matrix C. Using the shift 
property of the extended observability matrix, matrix A can 
be obtained. 

3.2.4 Compute 1
2 21 11
TU L L−  

In the MOESP algorithm, it is necessary to compute the 
matrix 1

2 21 11
TU L L−  , which represents the tensor network 

form of the left inverse of 11L  . From equation (18), we 

know that 1 1
11 1 1

TL T W− −=  exists and 1 1
T

rW W I= , where 

1W  ’s transpose is obtained by permuting the second and 
third dimensions of each tensor in the network. Therefore, 
the tensor network of 1

11L−   is obtained by replacing each 

tensor ( )i   with ( )i
   and computing 

( ) 1
2 1( 0)d T −× , where 1

1T −  is obtained by reversing 

the diagonal elements. The tensor network of 1
11L−  is then 

multiplied with 2 21
TU L   on the d-th tensor. In fact, the 

multiplication with 1
1T −   can be combined with 2 21

TU L  . 
This leads to the following theorem. 

Theorem 1: Let ( ) ( 1, , )i i d=

   be the tensor 
obtained by rearranging the two-dimensional and three-
dimensional indices of the tensor ( ) ( 1, , )i i d=   after 
SVD decomposition. Then, the tensor network 

(1) ( ), , d
   corresponding to the matrix 1

2 21 11
TU L L−  

is: 
11 ( 1, , 1)( ) ( ): ,i ir m r i di i R +× × × = −= ∈ 

   
( ) 1( ) ( ) 1

2 2 21 1: ( 0) ,dr kp n kmd d T TU L T R × − × ×−= × ∈   

The matrix 1
2 21 11
TU L L−   is reshaped and divided into k 

blocks of size ( ) dkp n m− ×  as follows: 
( )( ,[ , ( ), , ,1]),d

dreshape r kp n m k−  
( )( ,[1, 2, 4,3,5]),dpermute   

( )( ,[ , ( ) , ,1]).d
dreshape r kp n k m−  

3.2.5 Compute the tensor networks of B,D 

To estimate the matrices B and D, it is necessary to solve 
the linear system (10). In the process, we need to compute 
the pseudo-inverse of a ( ) ( )k kp n p n− × +   matrix. If 

we denote this matrix pseudo-inverse as 1L−  , then 
combining D and B yields: 

               

1

2
1

1k

k

M
M

D
L

B
M
M

−

−

 
 
    =    
 
 
 

            (21) 

In the equation, M represents the partitioning of 
1

2 21 11
TU L L−   into k blocks of size ( ) dkp n m− ×  . The 

tensor network representation of partitioning the 
1

2 21 11
TU L L−  matrix has been obtained in the previous section. 

Therefore, contracting ( ) 1
2

d L−×   yields the tensor 
network representing the connection between D and B. 

The above algorithm does not return separate tensor 
networks for B and D, which is not strictly required for 
simulating the model. In fact, using the connection of B and 
D within a single tensor network simplifies the simulation. 
There is no need to form repeated Kronecker products tuⓓ, 

and only to contract tu  with each tensor in the network. 
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4 Simulation Verification  
In this section, the source and purpose of each dataset will 

be introduced in turn, and the identification performance of 
the algorithm for the Industrial Dryers system will be 
validated by using two different datasets. 

Dataset 1: This data set uses a known linear system state-
space model, with random white noise as input, to generate 
1000 sets of simulated input-output data. Its main purpose is 
to verify the performance and accuracy of the algorithm. The 
system matrix A, B, C, D of the state-space model used to 
generate this data set are: 

0.2128 0.1360
0.3279 0.2344

0.5182 0.1728 0.5448 0.3083
0.2252 0.0541 0.46

0.1979 0.0836
0.18 2

79 0.8290

08 0.44 0
A

− 
 
 =
 
 


−
−



− −
− −

0.0101 0.0317 0.9347
0.0600 0.5621 0.1657
0.3310 0.3712 0.5846
0.2655 0.4255 0.2204

B

 
 
 =
 
 −

− −
−
− − −


0.6557 0.2502 0.5188 0.1229
0.6532 0.1583 0.0550 0.2497

C  
=  

− − −

 − − −
0.4326 0.1253 1.1465
1.6656 0.2877 1.1909

D  
=  


− −

−
 

Dataset 2: This dataset contains data from Industrial 
Dryers and has a size of 867*7. The first column represents 
the index, columns 2-4 represent the inputs, and columns 5-
7 represent the outputs. The purpose of this dataset is to 
verify the identification performance and accuracy of the 
subspace identification algorithm for the Industrial Dryers 
system. This dataset is sourced from the STADIUS’s 
Identification Database and can be downloaded from the 
following website: 
https://homes.esat.kuleuven.be/~smc/daisy/daisydata.html 

4.1 Stability Analysis 

Before conducting system simulation, it is important to 
analyze the stability of the system. The poles of the system 
for Dataset 1 and Dataset 2 separately are analyzed to 
understand the stability of the system. 

From Figure 1 and Figure 2, it can be observed that both 
Data Set 1 and Data Set 2 have stable systems. However, the 
system identified from Data Set 2 in Figure 2 has more poles 
and they are closer to the unit circle. This is because the 
dynamic characteristics of the industrial dryer system are 
more complex, with multiple factors affecting system 
stability. In this study, a polynomial input model was chosen. 
As the polynomial degree (d) increases, more terms are 
included in the polynomial, providing more degrees of 
freedom to fit the dynamic characteristics of the real system, 
thus introducing more poles.  

 

Fig. 1 :System Stability Plot of Dataset 1 

 

Fig. 2 :System Stability Plot of Dataset 2 

4.2 System Simulation Analysis 

Firstly, two algorithms were applied to identify dataset 1, 
and two indicators, running time and relative error were used 
to evaluate the performance and accuracy of the algorithms. 
The specific results are as follows: 

Table 1: Performance comparison of the two algorithms based on 
dataset 1 

d MOESP TN-MOESP 

Running 

Time(s) 

Relative 

Error 

Running 

Time(s) 

Relative 

Error 

2 0.217486 2.8105e-14 0.165534 4.8409e-14 

3 0.397300 4.5932e-14 0.232924 1.8994e-13 

4 0.832095 6.7944e-14 0.315318 9.8961e-14 

5 1.928801 1.4565e-13 0.349356 3.2373e-13 

6 6.699844 5.2727e-13 0.401874 4.7239e-13 

7 85.227359 6.4392e-12 0.497911 1.8134e-12 

According to the results in the table, it can be observed 
that both algorithms can identify the system model with 
extremely small errors, indicating good data fitting 
performance and the ability to simulate the behavior of the 
system. However, there is a significant difference in running 
time between them. When the maximum nonlinearity order 
is set to d=7, the difference in running time is 171 times. 

Next, two algorithms are used to simulate and verify the 
operation of Industrial Dryers. Before the simulation 
verification, it is necessary to analyze the outliers in the 
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Industrial Dryers data using the box plot method. 

 

Fig. 3 :Boxplot of dataset 2 

The box plot shows that the outliers mainly appear in the 
third variable. However, since the third variable is an input 
variable, retaining the outliers not only doesn’t have 
negative impact on the system’s performance and expected 
results but may also have a positive impact. These outliers 
are important for understanding the system or data 
distribution and keeping them can provide a more 
comprehensive data perspective. Therefore, it is reasonable 
not to perform outlier processing based on these 
considerations , and the data containing outliers continues to 
be used for analysis and research. 

Next, dataset 2 is identified. Average relative error, 
runtime, and matching degree as evaluation metrics are used 
to assess the simulation of the drying process by two 
algorithms. The identification results are as follows: 

Table 2 : Performance comparison of the two algorithms based on 
dataset 2 

d MOESP TN-MOESP 

Running 

Time(s) 

MRE Matching 

Degree 

Running 

Time(s) 

MRE Matching 

Degree 

1 0.1871 7.4654 0.88541    

2 0.2258 7.7029 0.85107 0.1418 7.7029 0.85107 

3 0.3176 10.7943 0.39125 0.1375 10.7943 0.39125 

4 0.6007 15.6412 0.05821 0.1791 22.7148 0.47733 

5       

6 3.7978 3.4959 0.61282 0.2162 131.5653 0.3549 

7 21.4062 10.5463 0.21013 0.2819 136.4194 0.11657 

8 73.7989 2.0274 0.36121    

The blank spaces in the table are due to the inability to 
find a stable A matrix during identification, making the 
algorithm unfeasible. When d=1, the MOESP algorithm 
achieves the highest matching degree in simulating output, 
and when d=2, both algorithms reach a matching degree of 
85% in simulating output. The figure below shows the 
simulation output plots of the two algorithms for d=1 and 
d=2, indicating a better match between the simulated output 
of the first two values of the system and the actual output. 
As the maximum non-linear order d increases, the 
simulation output of both algorithms deteriorates, but the 
TN-MOESP algorithm demonstrates stronger performance 
in identification speed. 

 
Fig. 4 :Simulated Output Plot based on MOESP Algorithm with 

d=1 

 
Fig. 5 :Simulated Output Plot based on MOESP Algorithm with 

d=2 

 
Fig. 6 :Simulated Output Plot based on TN-MOESP Algorithm 

with d=2 

5 Conclusion 
In view of the complexity and nonlinear characteristics of 

the drying process of Industrial Dryers and the difficulty of 
accurate control, this paper presents the simulation and 
control of Industrial Dryers based on subspace identification 
algorithm. Simulation results show that both MOESP 
algorithm and TN-MOESP algorithm have good 
performance and accuracy, and can simulate the behavior of 
Industrial Dryer system well. The matching degree and 
average relative error of the system are also within the 
acceptable range. MOESP algorithm has the highest 
matching degree, while TN-MOESP algorithm shows a 
faster speed in identification. The results provide strong 
support for improving the efficiency and accuracy of 
industrial production, and provide important reference 
significance for the control of complex systems. 
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Abstract: Several non-isothermal dispersion reactions accounting for energy and mass transport in a recycle stream are carried
out in tubular reactor with recycle. These processes often have spatiotemporal distribution, stochastic disturbances, and recycle
loop dead-time characteristics, described by nonlinear parabolic partial differential equations (PDEs). This paper is devoted to the
design of a model predictive path integral (MPPI) controller to stabilize the axial temperature profile control in tubular reactor.
An array of reduced-order approximations by virtue of Karhunen-Loève decomposition (KLD), and then a nonlinear model
suitable for control purposes is developed. Subsequently, the reduction model is embedded into the design of MPPI controller.
Finally, the simulation results demonstrate that the MPPI controller presented a good behavior to eliminate the oscillations of the
temperature profile in tubular reactor.

Key Words: Model Predictive Path Integral Control, Temperature Control, Model Reduction, Tubular Reactor with Recycle,
Hopf Bifurcation Phenomenon

1 Introduction

Tubular reactors with recycle are extensively employed in
a mass of chemical production process, such as fermenta-
tion process, hydrogenation process, and wastewater treat-
ment [1]. The diverse product requirements bring the hetero-
geneous reaction mechanisms. The mathematical modeling
of the transport-reaction processes, are commonly described
by a calss of nonlinear partial differential equations (PDEs).
The accurate model parameters are difficult to be derived via
the first principle mechanism [2]. The inlet temperature and
concentration disturbance caused by the recycle steams bring
additional uncertainty and randomness [3–5]. The investiga-
tion of tubular reactors with recycle is particularly practi-
cal and meaningful and the correlative modeling and control
techniques have been developed by leaps and bounds.

Model predictive control (MPC) has the ability to explic-
itly handle constraints and uncertainties. This intrinsic fea-
ture is especially beneficial for managing complicated chem-
ical processes [6–8]. The model predictive output controller
design with a discrete Luenberger observer is proposed to
achieve optimal closed-loop system stabilization of a non-
isothermal axial dispersion tubular reactor [9] and a coupled
continuous stirred-tank reactor (CSTR) example is discussed
later [10]. Furthermore, the spatiotemporal variables con-
taining system characteristics are collected by sensors in-
stalled in the axial direction of the reactor. A batch of data-
driven MPC algorithms have been studied through the anal-
ysis of spatiotemporal data-streams [11, 12]. Aim at the sta-
bilisation issue of the oscillatory behaviour of a tubular re-
actor with recycle, a framework for linear MPC algorithm
based on the Proper Orthogonal Decomposition (POD) and

This work is supported by National Natural Science Foundation
(NNSF) of China under Grant 61806060.

Trajectory Piecewise-Linear (TPWL) technique [13] and its
adaptive linearization version [14] is proposed. Afterwards,
they further developed a nonlinear MPC (NMPC) with a
data-driven model reduction-based approach by POD and
artificial neural networks (ANNs) techniques [15]. A ro-
bust multi-model NMPC for nonlinear convection-diffusion-
reaction systems is presented, which is applied to the re-
actant concentration control issue of a tubular reactor with
recycle[16].

In recent years, the innovative nonlinear identification
techniques emerge in an endless stream, and some of which
have been applied to the modeling issue of tubular reactors
[17, 18]. Extreme learning machines (ELM) [23], one of the
important procedures, has been employed for modeling non-
linear spatiotemporal distribution systems (SDSs) with the
potential to be applied in the tubular reactors [19–21]. Be-
sides, there have been reports of the design of NMPC with
the use of ELM [22].

In this paper, a novel Model Predictive Path Integral
(MPPI) controller is presented to regulate the temperature
profile in a non-isothermal tubular reactor with recycle. The
exothermic diffusion reaction described by a parabolic PDE
is considered. Under the influence of recycle stream, the
open-loop system may cause unstable oscillations, which are
called hopf bifurcation phenomenon. The control objective
is to stabilize the temperature profile to achieve optimal pro-
duction output. The reduction model via Karhunen-Loève
decomposition (KLD) and ELM techniques is constructed
to meet the requirement of the control. The Path Integral
Optimal Control (PIOC) is embedded to solve the nonlinear
optimal problem.

In the following paper, the tubular reactor with recycle to-
gether with its dynamical models, including the nonlinear
parabolic PDEs model is briefly described in section 2. Sec-
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tion 3 is devoted to develop a MPPI controller to solve the
temperature control problem, including providing KL-ELM
based model reduction. In Section 4, simulation studies have
been performed to reveal the controller performances. The
conclusions are presented in Section 5.

2 Tubular reactor with recycle

The tubular reactors are widely used in continuous large-
scale chemical processes, usually composed of several slen-
der series or parallel pipes, resulting in axial lengths far
greater than radial lengths [4]. A tubular reactor considered
in this article is shown in Fig. 1. A first-order irreversible
exothermic reaction of the form A → B, the reactant A con-
ducts an exothermic reaction to generate product B. The sur-
plus reactant A is separated, and then fed back to the inlet.
A co-current cooling jacket that covers the exterior of the
tubular reactor removes the reaction heat.

A→B

Cooling jacket

Reactant A Product B

Recycle

Fig. 1: The tubular reactor with recycle.

The principles of mass and energy conservation can be
used to create the reaction process model, the normalization
dynamic model described by partial differential equations
(PDEs) is expressed as follows.

∂C

∂t
=

1

PeC

∂2C

∂x2
− ∂C

∂x
−BCCexp

(
γT

1 + T

)
∂T

∂t
=

1

PeT

∂2T

∂x2
− ∂T

∂x
−BTBCCexp

(
γT

1 + T

)
+ βT (Tc − T )

(1)

with the Danckwerts boundary conditions:

∂C

∂x

∣∣∣∣
x=0

= PeC [C(t, 0)− (1− r)Cin − rC(t, 1)]

∂C

∂x

∣∣∣∣
x=1

= 0

∂T

∂x

∣∣∣∣
x=0

= PeT [T (t, 0)− (1− r)Tin − rT (t, 1)]

∂T

∂x

∣∣∣∣
x=1

= 0

(2)

where the dimensionless axial concentration C(x, t) of reac-
tor A and temperature T (x, t) depend on time t ∈ [0,+∞)
and position x ∈ [0, 1]. Cin and Tin represent the input
concentration and input temperature, respectively. The other
process parameters of the tubular reactor are summarized in
Table 1.

Table 1: The dimensionless parameters
Symbol Definition Value
PeC Peclet mass number 7.0
PeT Peclet energy number 7.0
BC pre-exponential factor 0.1
BT heat of reaction 2.5
γ activation energy 10.0
βT heat transfer coefficient 2.0
r recycle ratio 0.5

Assume m temperature sensors are arranged uniformly
along the axial direction of the tubular reactor, and the con-
centration can only be measured at the inlet and outlet po-
sitions. The m zones cooling jacket Tc can be independent
manipulated, let

T k
c (t) = b(x) · u(t) (3)

where the control variables u(t) = [u1(t), . . . ,um(t)]
T,

b(x) = [b1(x), . . . ,bm(x)]
T, and bk(x) =

H (x− (k − 1)/m) − H (x− k/m), H(·) represents
the standard Heaviside function.

The recirculating steam may occur Hopf bifurcation phe-
nomenon in the open-loop system. Fig 2 displays the open-
loop temperature profiles at zero inputs for a recycle ratio of
r = 0.5. The investigation of how the recycle ratio affects
the reaction process can be found in [4]. To stabilize the
system, a genuine controller’s design is necessary.

Fig. 2: The open-loop temperature profiles at zero inputs.

3 MPPI controller design

In this section, we synthesize and implement a MPPI con-
troller on the tubular reactor with recycle. The original PDE
model of the system might not feasible for direct controller
development for the reason of its high dimensionality. Fortu-
nately, model reduction via KLD can be employed to obtain
the low-dimensional representation for parabolic systems.
Subsequently, the nonlinear dynamics of the nominal sys-
tem can be identified by ELM. On the basis of maintaining
the accuracy of the original PDE model, the PIOC algorithm
is utilized in conjunction with the development of a model
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predictive controller to streamline the solution process of the
rolling optimization problem.

3.1 Model reduction by KLD
According to the theory of spatiotemporal decomposition,

the spatiotemporal variables T (x, t) can be expanded into

T (x, t) =

+∞∑
i=1

ϕi(x)Yi(t) (4)

where ϕi(x) and Yi(t) represents the ith spatial basis func-
tion and the corresponding time-series, respectively. For
parabolic systems with dominant modes, a limited class of
spatial basis functions sloved by KLD are only required. Pre-
serve the first n dominant modes that can maintain 99% en-
ergy of the system, then

Tn(x, t) ≈ Φn(x)Y(t), (5)

Y(t) ≈ ΦT
n (x)T(x, t), (6)

where Tn(x, t) represents the n-order approximation of
T (x, t), Φn(x) = [ϕ1(x), · · · , ϕn(x)] and Y(t) =
[Y1(t), · · · ,Yn(t)]

T represents the set of spatial basis
function and the corresponding time-series,

3.2 KL-ELM modelling
Among numerous different nonlinear identification tech-

niques, ELM is one type of highly efficient single hidden
layer neural network (SLNN) algorithm. With the capac-
ity to establish weights by Moore Penrose generalized in-
verse instead of gradient based backpropagation, ELM is
capable of identifying nonlinearity more quickly. ELM al-
gorithm conjunction with KLD can impactfully convert the
high-dimensional system model into an appropriate low-
dimensional control model. The reduced model by KLD can
be written as

Ŷt=f (Xt)) (7)

where Ŷt = [Ŷ1(t), ..., Ŷn(t)], Ŷ
(i)
t = Ŷi(t), X

(i)
t =[

Y
(i)
t−1, . . . ,Y

(i)
t−ny

,u
(1)
t−1, . . . ,u

(1)
t−nu

, . . . ,u
(Na)
t−1 , . . . ,u

(Na)
t−nu

]
.

The ith state variables X
(i)
t at time t by ELM algorithm

are expressed as

Ŷ
(i)
t =GT

(
α(i)X

(i)T
t + η(i)

)
β(i) (8)

where α(i) is the ith corresponding input weight coefficient
matrix, η(i) is the ith corresponding bias term, β(i) is the ith

corresponding output weight coefficient matrix, G(·) is the
activation function.

An appropriate dataset is utilized as training data, and fea-
ture mapping and linear parameterization are applied to de-
termine the time-seriesl’s primary parameters, and finally the
output of the associated time-series estimation is obtained.
The network structure of ELM is fully connected, and the
estimated value of each output layer node can be approxi-
mated by different model parameters. First, the hidden layer
parameters α and η are randomly set, and then the hidden
layer’s output is obtain via mapping the training data to the
feature space, let the number of the hidden layer nodes is

Nh. The generated hidden layer parameters have a [0, 1]
uniform distribution, the ith input weight coefficient matrix
α(i) = fα(rand(Nh, ny + Na × nu)), the ith bias term
η(i) = fη(rand(Nh, 1)), where rand(p, q) represents p× q-
dimensional scalar matrix obeying by standard uniform dis-
tribution. the function fα and fη represent the relationship
between the input weight matrix, bias vector and scalar ma-
trix, respectively. Let the ith output of the hidden layer Hi,
the random parameters α(i) and η(i), then

H(i) = G
(
α(i)X̄

(i)T
t + η(i)

)
(9)

The purpose of linear parameterization is to solve for the
output weight coefficients β. By minimizing the square of
the fitting error, the optimal solution for the output weight
coefficient is obtained, and the performance indicators are
expressed as follows.

min
β

J =
∥∥∥H(i)Tβ(i) − Ȳ

(i)
t

∥∥∥2
2

(10)

where E = H(i)Tβ(i) − Ȳ
(i)
t represents ith fitting error.

According to the theory of unconditional optimization and
the concept of matrix analysis, the optimal solution to the
problem is obtained as

β̂(i) = H(i)∗Ȳ
(i)
t (11)

where H(i)∗ represents the Moore Penrose generalized in-
verse of the ith hidden layer output. When H(i)TH(i) is an
invertible matrix, the optimal solution obtained by the pro-
jection method can be expressed as

β̂(i) = (H(i)TH(i))−1H(i)T Ȳ
(i)
t (12)

3.3 Controller design
Along these lines, we will design a Model Predictive Path

Integral (MPPI) controller of the nominal system. The MPPI
algorithm was initially produced for an aggressive driving
task [24] and recently was incorporated to the chemical pro-
cess [25]. The control action is implemented on the cooling
jacket to stabilize the temperature field in the tubular reactor.
The stochastic optimum control challenge is to obtain the
optimal control sequence U∗ that minimizes the cost func-
tion of the expected trajectory S. Consider the following
stochastic optimal control problem.

min J = E(S) = E

1

2

Np∑
p=1

∥∥∥Ŷ(t+ p)−w(t+ p)
∥∥∥2
2


(13)

subject to

Ŷ
(i)
t =GT

(
α(i)X

(i)T
t + η(i)

)
β(i)

and

umin ≤ u(t+ c) ≤ umax

∆umin ≤ ∆u(t+ c) ≤ ∆umax, c = 1, · · · , Nc

where Np and Nc represent the prediction horizon and the
control horizon, umin, umax, and ∆umin, ∆umax represent
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the minimum and maximum values of the input and input
increments, respectively. U∗ = [u∗(t + 1), · · · ,u∗(t +
Nc)]. Consider a random input vector û = u + δu, and
define

δu =
1
√
ρ

ϵ√
∆t

(14)

where δu is iterative control vector, ρ is the perturbation
hyperparameter, ϵ is the standard normal Gaussian random
variable, ∆t is the discrete time interval.

3 5 7 9 11 13 15
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Fig. 3: The 4th random excitation input.

Fig. 4: The corresponding temperature profiles.

According to the importance sampling theorem [24, 25],
several trajectories can be generated using forward sampling
of the random diffusion process, and the operating costs of
each trajectory at various time steps are evaluated to pro-
duce an ideal control rule based on Monte Carlo approxi-
mation. Therefore, the linear inverse Chapman-Kolmogorov
equations derived from the stochastic Hamiltonian-Jacobi-
Bellman (HJB) equations of system dynamics and cost func-
tions can be converted into different modified trajectory cost
functions via the generalized likelihood ratio between dis-
crete diffusion processes by applying the Feynman-Kac the-

orem to the linear equations in conjunction with the gener-
alized importance sampling theorem. The optimal control
sequence U∗ can be updated via the reward weighted mean
of random variables, and then only the first input u∗(t + 1)
is applied on the actual system. The control sequence scroll
to the next time step in sequence, and enable the final control
input to fill in the final part to achieve a hot start from portion
that wasn’t carried out in the previous round for the subse-
quent optimization. In light of the aforementioned theory,
the iteration control sequence at time t+ p can be expressed
as

u∗(t+ p) = u(t+ p) +
E
[
exp(− S̃(t+p)

λ ) · δu(t+ p)
]

E
[
exp(− S̃(t+p)

λ )
]

(15)
where S̃ represents the correction trajectory cost function,
λ is the weighting coefficient. Let

q(t+ p) =
1

2
∥ŷ(t+ p)−w(t+ p)∥22 (16)

where q(t+p) is the operation cost function at time t+p, the
relationship between the operation cost function q(t+p) and
the correction trajectory cost function S̃ can be expressed as

S̃(t+ p) =

Np∑
j=p

q(t+ j) (17)

so that

u∗(t+ p) = u(t+ p) +

K∑
k=1

exp(− S̃k(t+p)
λ ) · δuk(t+ p)

K∑
k=1

exp(− S̃k(t+p)
λ )

(18)
where K is the number of random sampling, S̃k(t + p) is

the Kth forward cost starting from time t + p, and then the
control input u∗(t+ 1) is implemented to the system.

4 Simulation results

Consider 16 temperature sensors and 8 zones cooling
jacket uniformly distributed along the axial direction in the
tubular reactor in the simulation, and the chemical parameter
values are shown in Table 1. The process data are sloved by
Matlab PDE toolbox. the sampling period ∆t = 0.01, and
total simulation period ts = 15.

Three elements make up the random training incentive
signal. There is no excitation signal present before t = 3,
the excitation signal is set a random value in the interval [0,1]
from t = 3 to 4, the excitation signal is set to meet the re-
quirements uk(t+1) = uk(t)+0.1τN , 0 ≤ uk(t) ≤ 1 for the
remaining time, where τN is standard normal random num-
ber. The 4th random excitation input and the corresponding
temperature profiles are shown in Fig 3 and Fig 4.

We pick the 900 temperature snapshots with the range of
[3, 12] as the training data-set, and other 300 temperature
snapshots with the range of [12, 15] as the test data-set. By
adopting the first three dominant modes, the system’s energy
can be preserved to a maximum of 99%. The corresponding
first three basis functions are shown in Fig 5.
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Fig. 5: The first three basis functions.
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Fig. 6: The time-series of low-dimensional representation

Fig. 7: The reconstruction error.

Subsequently, the corresponding low-dimensional time-
series representations are identified by ELM with Sigmoid

activation function. The high-dimensional temperature pro-
files can also be restored through inverse transformation of
KLD. The time-series of low-dimensional representation and
the reconstruction error are shown in Fig 6 and Fig 7.

Consider the following optimization problem

[min J =
1

2

NP∑
p=1

∥∥∥T̂ (x, tn + p)− Tref(x, tn + p)
∥∥∥2
2

(19)

subject to
0 ≤ uk ≤ 1 |∆uk| ≤ 0.1

Let recycle ratio r = 0.5, perturbation hyperparameter
1/
√
ρ = 0.15, weighting coefficient λ = 0.01, prediction

horizon Np = 4, control horizon Nc = 1, number of sam-
pling trajectories Nk = 2000. Give the temperature refer-
ence trajectory Tref . Solving the aforementioned optimiza-
tion problem with the proposed algroithm to obtain the U∗.
The closed-loop control input and temperature profile are
shown in Fig 8 and Fig 9.

From Fig 8 and Fig 9, the hopf bifurcation phenomenon
has vanished, and the temperature field tends to asymptoti-
cally stabilize in t = 5, and converges in t = 8. The sim-
ulation results show that the developed MPPI controller has
good control performance for the temperture control in tubu-
lar reactor with recycle.
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Fig. 8: The closed-loop control input.

5 Conclusions

In this paper, the results of applying Model Predictive Path
Integral (MPPI) control techniques to the control of the tem-
perature profile in tubular chemical reactor with recycle have
been presented. The model reduction of state dimension
via the Karhunen-Loève decomposition (KLD) and Extreme
Learning Machine (ELM) technique was demonstrated to be
simple and efficient. The reduced-order model is integrated
into a nonlinear predictive control architecture. The simula-
tion results indicate that the MPPI controller is able to sta-
bilize the axial temperature profile control in tubular reac-
tor, and eliminate the hopf bifurcation phenomenon. Mean-
while, the control constraints and disturbances can conve-
niently handled.
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Fig. 9: The closed-loop temperature profile

Even if the presented MPPI controller show great poten-
tial and performance for dissipation reaction in tubular reac-
tor, the convection dominated reactions can’t yet be handled
gracefully by the provided strategy. In a subsequent publica-
tion, we intend to incorporate a model reduction technique
that can handle the convection dominated reactions into the
MPPI control algorithms that are already in operation.
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Abstract: This paper investigates distributed fault detection for snake robot platoons in zero-trust environments, employing a 
scheme based on ℒ2 observers to enhance reliability through secure information transmission. The approach defines relative 
output estimation errors based on communication topologies, then designs a fault detection scheme based on ℒ2 observers and 
verifies its stability and conditions for existence. Simulation results confirm the effectiveness of the scheme, demonstrating its 
potential to improve fault detection accuracy and security in complex robotic systems. 
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1 Introduction 
With the development of technology, people’s 

comprehensive demand for various intelligent terminals is 
soaring, including smart cars, aircraft, etc. Among them, 
snake robots are a kind of flexible robots with multiple 
degrees of freedom, which can play the role of detection, 
rescue, maintenance, etc. in special work scenarios. Snake 
robots are a special kind of mobile robots, which rely on the 
friction between their own modules and the ground to 
generate motion. Snake robots have super-redundant 
degrees of freedom, compared with traditional mobile robots, 
their motion has strong flexibility, high environmental 
adaptability, and incomparable advantages. Compared with 
legged mobile robots and wheeled mobile robots, snake 
robots have a slender shape, which can enter narrow pipes 
and gaps; snake robots are also suitable for exploring 
unknown and harsh areas, and can enter disaster-stricken 
ruins for search and rescue; snake robots can also complete 
the extravehicular maintenance and repair of space stations 
and satellites, acting as mechanical arms [1]. In the field of 
multi-robot collaboration [2], the complex structure of snake 
robots also brings challenges to fault detection. Since there 
are multiple nodes in snake robots, how to timely detect and 
locate abnormal joints in the formation system, and how to 
identify different joints of the same robot, are the problems 
concerned in this paper. The prototype of the multi-snake 
robot in this article is shown in Figure 1. 

 
Fig. 1: Prototype of Multi-Snake Robot 

 
*This work was supported by Department of Education of Anhui 

Province under Grant KJ2021A0050 and Anhui Provincial Natural Science 
Foundation under Grant 2308085QF210. 

As information science advances, an increasing number 
of entities can interact within their environment. 
Nonetheless, diverse forms of information exchange carry 
the risk of network attacks and data breaches, underscoring 
the critical importance of assessing information reliability. 
In 2011, Forrester et al. [3] introduced the concept of “zero 
trust”, which is a security paradigm based on distrust and 
continuous verification. Based on this concept, in [4], an 
intelligent zero trust architecture is designed to meet the 
security needs of untrusted infrastructure networks. In [5], 
the author further improved the integrated process of trust 
establishment, and proposed a standardized trust evaluation 
method by comparing and evaluating trust assumptions and 
zero trust assumptions, laying the foundation for subsequent 
research. Reference [6] proposed an innovative information 
sharing solution based on blockchain for IoT devices in 
zero-trust environments, aiming to achieve anonymity and 
entity authentication, data privacy and data trustworthiness, 
participant incentives and fairness. Reference [7] proposed 
an innovative two-layer access control architecture based on 
the zero-trust model, which combines with the risk-driven 
process, supports the migration of existing infrastructure, 
and prioritizes the identification of network security risk 
changes. Reference [8] proposed a zero-trust security 
framework based on the Rich model, which is used for trust 
verification of SaaS (Software as a Service), and uses 
machine learning to analyze the multimedia data of service 
processing behavior, to improve the visibility of service 
operation and risk. The framework relies on federated 
learning, extracting features from artificial intelligence 
processing data of different cloud service users. It can be 
seen that there is more and more research on zero-trust, 
especially for ensuring the reliability of information 
transmission.  

Fault detection refers to the process of monitoring the 
input and output signals of the system during system 
operation, judging whether there is a fault in the system, and 
determining the type, location and degree of the fault. The 
purpose of fault detection is to ensure the safe, reliable and 
efficient operation of the system, and to provide the basis for 
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fault diagnosis and fault recovery. For fault detection, there 
are already some research works, mainly divided into two 
categories: data-based methods and model-based methods. 
For example, for the distributed consensus problem of multi-
agent systems (MAS) with non-identical unknown nonlinear 
dynamics and undetectable actuator failures, a robust 
adaptive fault-tolerant consensus protocol was developed, 
which can simultaneously compensate for uncertain 
dynamics/disturbances and time-varying but unpredictable 
actuator failures [9]. In [10], based on data-driven and 
statistical framework, two distributed optimal fault detection 
schemes for large-scale systems were developed. These two 
are data-driven methods. Reference [11] proposed a 
distributed fault detection and isolation (FDI) method, which 
is applicable to heterogeneous multi-agent system networks 
with different dynamics and orders. In [12], a potential fault 
diagnosis method based on ADRC was proposed, which 
effectively separated the potential fault from the interference 
by treating it as a new state variable. These two are model-
based method. These two methods have their own 
advantages and disadvantages. Data-based methods require 
a large number of data samples, using machine learning or 
deep learning techniques, to identify the features or patterns 
of faults by analyzing the sensor data or image data of the 
robot. Model-based methods require accurate model 
information. In [13], a data-driven design for distributed 
fault detection of dynamic systems using measurements in 
complex sensor networks was developed, using subspace 
techniques and average consensus algorithms. Gain 
scheduling methods were also studied for the analysis and 
integrated design of different types of complex systems, 
such as, for the FD system based on observers, an integrated 
design scheme for affine nonlinear systems combining ℒ2 
stability theory was proposed and applied to study the FD 
problem of ℒ2  stable systems [14]. For discrete-time 
switched systems with uncertainties, FD system design 
schemes for matching and mismatching periods were 
proposed respectively [15]. This paper also uses ℒ2 stability 
theory to design fault observers. 

This paper explores the analysis and design of distributed 
fault detection for snake robots in zero-trust environments 
using ℒ2 observer-based methods. The model-based method 
is adopted, which models the dynamic model of the snake-
like robot, and compares the difference between the actual 
output and the expected output, to judge whether there is a 
fault. The subsequent sections of this paper are structured as 
follows. Section 2 presents the system description. In 
Section 3, a fault detection scheme utilizing an ℒ2 observer 
in a zero-trust environment is elaborated. Section 4 provides 
an example simulation result to demonstrate the feasibility 
and effectiveness of the proposed distributed fault detection 
scheme. Finally, Section 5 presents the conclusions of this 
paper. 

Notations：In this paper, the notations utilized adhere to 
standard conventions. ‖⋅‖denotes the Euclidean norm of a 
vector. ℝ+ = [0,∞). A function 𝛾𝛾:ℝ+ → ℝ− is considered 
to be in class 𝒦𝒦  if it is strictly increasing and satisfies 
𝛾𝛾(0) = 0 ; it belongs to class 𝒦𝒦∞  if lim

𝑘𝑘→∞
𝛾𝛾(𝑘𝑘) = ∞ . The 

ℒ2,[0,𝜏𝜏] -norm of 𝑢𝑢(𝑘𝑘)  is defined as ‖𝑢𝑢𝜏𝜏‖2 =
(∑ ‖𝑢𝑢(𝑘𝑘)‖2𝜏𝜏

𝑘𝑘=0 )1/2. The set of real matrices with dimension 
𝑚𝑚 × 𝑛𝑛  is denoted by ℝ𝑚𝑚×𝑛𝑛 . For a matrix 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛 , its 

transpose is denoted by 𝐴𝐴𝑇𝑇 . The symbol ⊗ represents the 
Kronecker product. In a symmetric matrix, ∗ denotes the 
symmetric elements. 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  indicates that the matrix is 
diagonal. 

2 Preliminaries and problem formulation 

2.1 System Description 

A snake robot consists of 𝑁𝑁  rigid links of length 2𝑙𝑙 , 
connected by 𝑁𝑁 − 1  motor joints. The model does not 
consider the width of each link. All 𝑁𝑁 links have the same 
mass 𝑚𝑚 and moment of inertia 𝐽𝐽 = 1

3
𝑚𝑚𝑙𝑙2. The total mass of 

the snake robot is 𝑁𝑁𝑚𝑚. The mass of each link is uniformly 
distributed, so the center of mass of the link is located at the 
center point (i.e., the point at a distance of 𝑙𝑙 from both ends 
of the joint). All wheels are passive, all joints are active, 
passive wheels do not slide sideways, wheels are mounted at 
the midpoint of the link. 𝑙𝑙 is half the length of each link. 𝜃𝜃𝑖𝑖 
is the direction of link 𝑑𝑑 . 𝜙𝜙𝑖𝑖  is the yaw angle of joint 𝑑𝑑 , 
defined as 𝜙𝜙𝑖𝑖 = 𝜃𝜃𝑖𝑖+1 − 𝜃𝜃𝑖𝑖. Let (𝑥𝑥ℎ,𝑦𝑦ℎ) be the head position. 
Let 𝒙𝒙𝒊𝒊  be the position vector of the center of link 𝑑𝑑 , 
expressed as 𝒙𝒙𝒊𝒊 = [𝑥𝑥ℎ,𝑦𝑦ℎ ]𝑇𝑇. Define 𝒙𝒙,𝒚𝒚 : 𝒙𝒙 = [𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛]𝑇𝑇, 
𝒚𝒚 = [𝑦𝑦1,⋯ ,𝑦𝑦𝑛𝑛]𝑇𝑇 , 𝜽𝜽,𝝓𝝓 : 𝜽𝜽 = [𝜃𝜃1,⋯ ,𝜃𝜃𝑛𝑛]𝑇𝑇 , 𝝓𝝓 =
[𝜙𝜙1,⋯ ,𝜙𝜙𝑛𝑛−1]𝑇𝑇 .  

After applying local feedback linearization to the snake 
robot model, the model is transformed into the standard form 
of a control affine system [16]. 

By defining 𝒙𝒙1 = 𝒒𝒒𝑎𝑎，𝒙𝒙2 = 𝒒𝒒𝑢𝑢，𝒙𝒙3 = �̇�𝒒𝑎𝑎，𝒙𝒙4 = �̇�𝒒𝑢𝑢 
and 𝒙𝒙 = [𝒙𝒙1𝑇𝑇 ,𝒙𝒙2𝑇𝑇 ,𝒙𝒙3𝑇𝑇 ,𝒙𝒙4𝑇𝑇]𝑇𝑇 ∈ ℝ2𝑁𝑁+4 , where 𝒒𝒒𝑎𝑎 =
[𝜙𝜙1,⋯ ,𝜙𝜙𝑁𝑁−1]𝑇𝑇 ∈ ℝ𝑁𝑁−1  represents the driven degrees of 
freedom,𝒒𝒒𝑢𝑢 = [𝜃𝜃𝑁𝑁,𝑝𝑝𝑥𝑥 ,𝑝𝑝𝑦𝑦]𝑇𝑇 ∈ ℝ3  represents the undriven 
degrees of freedom, 𝒖𝒖� = [𝑢𝑢�1,⋯ ,𝑢𝑢�𝑁𝑁−1]𝑇𝑇 ∈ ℝ𝑁𝑁−1 is a set of 
new control inputs, rewrite the model into the following 
standard form of control affine system. 

�̇�𝒙 = �

�̇�𝒙1
�̇�𝒙2
�̇�𝒙3
�̇�𝒙4

� = �

𝒙𝒙3
𝒙𝒙4
𝒖𝒖�

𝑨𝑨(𝒙𝒙) + 𝑩𝑩(𝒙𝒙1)𝒖𝒖�
� 

= 𝒇𝒇(𝒙𝒙) + ∑ (𝒈𝒈𝑗𝑗(𝒙𝒙1)𝑢𝑢�𝑗𝑗)𝑁𝑁−1
𝑗𝑗=1     (1) 

where 

𝒇𝒇(𝒙𝒙) = �

𝒙𝒙3
𝒙𝒙4

𝟎𝟎(𝑁𝑁−1)×1

𝑨𝑨(𝒙𝒙)

�，𝒈𝒈𝑗𝑗(𝒙𝒙1) =

⎣
⎢
⎢
⎡
𝟎𝟎(𝑁𝑁−1)×1
𝟎𝟎3×1
𝒆𝒆𝑗𝑗

𝑩𝑩𝑗𝑗(𝒙𝒙1) ⎦
⎥
⎥
⎤
   (2) 

In the formula, 𝑗𝑗 ∈ {1，…，𝑁𝑁 − 1} , 𝒆𝒆𝑗𝑗  denotes the 𝑗𝑗th 
standard basis vector in ℝ𝑁𝑁−1   (the 𝑗𝑗th column of 𝑰𝑰𝑁𝑁−1  ), 
𝑩𝑩𝑗𝑗(𝒙𝒙1) denotes the 𝑗𝑗th column of 𝑩𝑩(𝒙𝒙1). Where 

𝑨𝑨(𝒙𝒙) = 𝑨𝑨�𝒒𝒒𝜙𝜙, �̇�𝒒𝜙𝜙� = −𝑴𝑴� 22
−1(𝑾𝑾���2 + 𝑮𝑮�2𝒇𝒇𝑅𝑅) ∈ ℝ3   

𝑩𝑩(𝒙𝒙1) = 𝑩𝑩(𝒒𝒒𝑎𝑎) = −𝑴𝑴� 22
−1𝑴𝑴� 21 ∈ ℝ3×(𝑁𝑁−1)    (3) 

where 𝑴𝑴� (𝝓𝝓�) = �𝑯𝑯
𝑇𝑇𝑴𝑴𝜃𝜃(𝝓𝝓�)𝑯𝑯 𝟎𝟎𝑁𝑁×2
𝟎𝟎2×𝑁𝑁 𝑁𝑁𝑚𝑚𝑰𝑰𝟐𝟐

�  , 𝑾𝑾��� �𝝓𝝓� ,𝝓𝝓�̇� =

�𝑯𝑯
𝑇𝑇𝑾𝑾(𝝓𝝓�)diag(𝑯𝑯𝝓𝝓�̇)𝑯𝑯𝝓𝝓�̇

𝟎𝟎2×1
�  , 𝑮𝑮�(𝝓𝝓) =

�
−𝑙𝑙𝑯𝑯𝑇𝑇𝑺𝑺𝑯𝑯𝝓𝝓�𝑲𝑲 𝑙𝑙𝑯𝑯𝑇𝑇𝑪𝑪𝑯𝑯𝝓𝝓�𝑲𝑲

−𝒆𝒆𝑇𝑇 𝟎𝟎1×𝑁𝑁
𝟎𝟎1×𝑁𝑁 −𝒆𝒆𝑇𝑇

� , 𝒒𝒒𝜙𝜙 = �𝝓𝝓
�
𝒑𝒑� , 𝝓𝝓� =
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[𝜙𝜙1,⋯ ,𝜙𝜙𝑁𝑁−1,𝜃𝜃𝑁𝑁]𝑇𝑇 ∈ ℝ𝑁𝑁  contains the 𝑁𝑁 − 1  joint angles 
and the absolute link angle 𝜃𝜃𝑁𝑁 ∈ ℝ of the head link of the 
snake robot. 

By applying local linearization to �̇�𝒙4 = 𝑨𝑨(𝒙𝒙) + 𝑩𝑩(𝒙𝒙1)𝒖𝒖�, 
we have 

𝑨𝑨(𝒙𝒙) + 𝑩𝑩(𝒙𝒙1)𝒖𝒖� = 𝑨𝑨�𝒙𝒙 + 𝑩𝑩�𝒖𝒖� 

where 𝑩𝑩� = 𝑩𝑩(𝒙𝒙1), 𝐴𝐴𝑖𝑖(𝑥𝑥) = 𝑑𝑑�𝑖𝑖𝑇𝑇𝑥𝑥, 𝑑𝑑 = 1,2, … ,𝑛𝑛. 
After a series of transformations, we obtain 

𝑑𝑑�𝑖𝑖 = �̇�𝐴𝑖𝑖(𝑥𝑥0) + 𝐴𝐴𝑖𝑖(𝑥𝑥)−𝑥𝑥0𝑇𝑇�̇�𝐴𝑖𝑖(𝑥𝑥0)
‖𝑥𝑥0‖2

𝑥𝑥0, 𝑥𝑥0 ≠ 0     (4) 

where 𝑑𝑑�𝑖𝑖𝑇𝑇 represents the 𝑑𝑑th row of the matrix 𝑨𝑨�.  
Represent the state vector of the snake robot as 𝒙𝒙𝑖𝑖(𝑘𝑘) =

�𝜃𝜃𝑁𝑁,𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦�
𝑇𝑇

, the state output equation as 𝒚𝒚𝑖𝑖(𝑘𝑘) =
[𝜃𝜃𝑁𝑁,𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦]𝑇𝑇 = 𝑪𝑪𝒙𝒙𝑖𝑖(𝑘𝑘) , then, the overall discrete-time 
dynamics of the array becomes 

�𝒙𝒙𝑖𝑖(𝑘𝑘 + 1) = 𝑨𝑨�𝒙𝒙𝑖𝑖(𝑘𝑘) + 𝑩𝑩�𝒖𝒖�𝑖𝑖(𝑘𝑘)
𝒚𝒚𝑖𝑖(𝑘𝑘) = 𝑪𝑪𝒙𝒙𝑖𝑖(𝑘𝑘)       (5) 

2.2 Graph Theory 

The usage of graph theory in the multi-snake robot system 
involves describing the communication relationships and 
topologies among the snake robot systems. A typical graph 
𝒢𝒢 = (𝒱𝒱,ℰ)  comprises a node set 𝒱𝒱 = {1,2,⋯ ,𝑛𝑛}  and an 
edge set ℰ = {𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑛𝑛} . Each edge 𝑒𝑒𝑖𝑖𝑗𝑗 = (𝑑𝑑, 𝑗𝑗)  links 
node 𝑑𝑑 𝜖𝜖 𝒱𝒱 with node 𝑗𝑗 𝜖𝜖 𝒱𝒱, making nodes 𝑑𝑑 and 𝑗𝑗 adjacent 
to one another. The edge 𝑒𝑒𝑖𝑖𝑗𝑗  and these nodes are 
interconnected. In a directed graph, connections between 
nodes are typically one-way, like 𝑑𝑑 → 𝑗𝑗, denoted as (𝑑𝑑, 𝑗𝑗). If 
connections in an algebraic graph are undirected, such as 
(𝑑𝑑, 𝑗𝑗)  =  (𝑗𝑗, 𝑑𝑑) , then the graph is termed undirected. 
Generally, connections between nodes in an undirected 
graph are bidirectional, resembling a special case of a 
directed graph. When an edge in graph 𝒢𝒢 identical points, 
i.e., 𝑒𝑒𝑗𝑗𝑗𝑗  =  (𝑗𝑗, 𝑗𝑗), it constitutes a self-loop. Since this paper 
delves into directed graphs, the subsequent section 
emphasizes directed graphs. 

We define 𝑑𝑑𝑖𝑖𝑗𝑗  as representing the transmission of a 
message from node 𝑑𝑑 to node 𝑗𝑗. When a message is delivered, 
𝑑𝑑𝑖𝑖𝑗𝑗 =  1 , otherwise 𝑑𝑑𝑖𝑖𝑗𝑗 =  0 . Therefore, the adjacency 
matrix 𝒜𝒜 = 𝑑𝑑𝑖𝑖𝑗𝑗 ∈ ℝ𝑛𝑛×𝑛𝑛, where its elements are either 0 or 
1. Furthermore, we define the out-degree of a node 𝑑𝑑 as 

𝑑𝑑(𝑑𝑑) = ∑ 𝑑𝑑𝑖𝑖𝑗𝑗𝑛𝑛
𝑗𝑗=1        (6) 

The degree matrix 𝒟𝒟 of the graph 𝒢𝒢 is defined as follows 

𝒟𝒟 = diag{𝑑𝑑(1),𝑑𝑑(2),⋯ ,𝑑𝑑(𝑛𝑛)}      (7) 

So the Laplacian matrix of the graph 𝒢𝒢 is defined as 

𝐿𝐿 = 𝒟𝒟 −𝒜𝒜         (8) 

And we define the self-loop matrix of the graph 𝒢𝒢 as 

𝒢𝒢 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝑑𝑑(1),𝑑𝑑(2),⋯ ,𝑑𝑑(𝑛𝑛)}      (9) 

where 𝑑𝑑(𝑑𝑑)  indicates whether node 𝑑𝑑  has a self-loop. If a 
node has a self-loop, then 𝑑𝑑(𝑑𝑑) = 1, and otherwise 𝑑𝑑(𝑑𝑑) = 0. 

 
Fig. 2: Leader-predecessor following (LPF) topology 

Illustrated in Fig. 2, every snake node functions as a 
separate entity within a zero-trust setting. Communication 
topologies in a zero-trust environment typically necessitate 
treating external nodes as untrusted entities, requiring real-
time authorization for all node interactions. The focus of this 
paper lies in parameterizing the Laplacian matrix under a 
zero-trust framework and characterizing it through the trust 
degree matrix 

𝐿𝐿𝑧𝑧𝑧𝑧 = 𝑑𝑑𝑖𝑖𝑗𝑗𝑓𝑓(𝑑𝑑𝑖𝑖𝑗𝑗) ∈ ℝ𝑛𝑛×𝑛𝑛      (10) 

this ensures that it integrates the trust level for each node's 
communication message. The trust level is determined by 
assessing all messages from that particular node, with values 
ranging between 0 and 1. A trust level of 0 signifies 
complete lack of trust in the node, whereas a level of 1 
indicates full trustworthiness. Nevertheless, the trust level is 
subject to fluctuations over time. 

2.3 Model-based Fault Detection Scheme 

In practical applications, real-time fault detection utilizes 
a moving window [𝑡𝑡1，𝑡𝑡2], where the evaluation function 
is defined as 

𝐽𝐽 = ∑ 𝑟𝑟𝑇𝑇(𝑘𝑘)𝑟𝑟(𝑘𝑘)𝑧𝑧2
𝑘𝑘=𝑧𝑧1        (11) 

and the threshold as 

𝐽𝐽𝑧𝑧ℎ = ∑ 𝛾𝛾2𝑢𝑢�𝑇𝑇(𝑘𝑘)𝑢𝑢�(𝑘𝑘) + 𝑉𝑉�0, 𝑥𝑥(0), 𝑥𝑥�(0)�𝑧𝑧2
𝑘𝑘=𝑧𝑧1  (12) 

When the snake robot system is functioning normally, the 
residual signal remains below the threshold. However, if a 
malfunction occurs within the snake robot system, the 
residual signal exceeds the threshold. The decision logic can 
be summarized as: 

� 𝐽𝐽 < 𝐽𝐽𝑧𝑧ℎ ⇒ fault-free
𝐽𝐽 ≥ 𝐽𝐽𝑧𝑧ℎ ⇒ alarm for fault      (13) 

3 Main Results  

3.1 Fault Observer With Zero Trust 

The focus of this research is on examining distributed 
fault detection for snake robots operating within a zero-trust 
environment. We analyze a specific category of systems that 
involve unknown disturbances. 

�𝑥𝑥𝑖𝑖
(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝐵𝐵𝑢𝑢𝑖𝑖(𝑘𝑘) + 𝐹𝐹ℎ𝑖𝑖(𝑘𝑘)

𝑦𝑦𝑖𝑖(𝑘𝑘) = 𝐶𝐶𝑥𝑥𝑖𝑖(𝑘𝑘)    (14) 

where 𝑥𝑥𝑖𝑖(𝑘𝑘 + 1) ∈ ℝ𝑛𝑛 , 𝑢𝑢𝑖𝑖(𝑘𝑘) ∈ ℝ𝑚𝑚 , and 𝑦𝑦𝑖𝑖(𝑘𝑘) ∈ ℝ𝑝𝑝 
represent the state, input, and output of the 𝑑𝑑 th agent, 
respectively. Additionally, ℎ𝑖𝑖(𝑘𝑘) ∈ ℝ𝑑𝑑  denotes the 
unknown input vector with an ℒ2 bounded condition, such 
that ‖ℎ(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑2 . Matrices 𝐴𝐴,𝐵𝐵  and 𝐹𝐹  are constant real 
matrices of suitable dimensions. It is assumed that all snake 
robots are isomorphic. Furthermore, the matrices 𝐹𝐹  are 
presumed to be full rank, and the pair (𝐴𝐴,𝐶𝐶) is observable. 
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The relative observer for the 𝑑𝑑th node in system (14) is 
formulated as follows 

�𝑥𝑥�
(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥�(𝑘𝑘) + 𝐵𝐵𝑢𝑢(𝑘𝑘) + 𝐾𝐾𝑦𝑦(𝑘𝑘) − 𝐾𝐾𝑦𝑦�(𝑘𝑘)

𝑦𝑦�(𝑘𝑘) = 𝐶𝐶𝑥𝑥�(𝑘𝑘)  (15) 

where 𝐾𝐾  denotes the observer gain. We define the error 
vectors for the 𝑑𝑑th node as follows 

𝑒𝑒𝑖𝑖(𝑘𝑘) = 𝑥𝑥𝑖𝑖(𝑘𝑘) − 𝑥𝑥�𝑖𝑖(𝑘𝑘)        (16) 
By introducing graph theory, we can obtain the following 
formula 

𝑒𝑒𝑖𝑖(𝑘𝑘 + 1) = 𝑥𝑥𝑖𝑖(𝑘𝑘 + 1) − 𝑥𝑥�𝑖𝑖(𝑘𝑘 + 1)          

= 𝐴𝐴𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝐵𝐵𝑢𝑢𝑖𝑖(𝑘𝑘) + 𝐹𝐹ℎ𝑖𝑖(𝑘𝑘) − 𝐴𝐴𝑥𝑥�𝑖𝑖(𝑘𝑘) − 𝐵𝐵𝑢𝑢𝑖𝑖(𝑘𝑘) 

−𝐾𝐾𝑑𝑑𝑖𝑖�𝑦𝑦𝑖𝑖(𝑘𝑘) − 𝑦𝑦�𝑖𝑖(𝑘𝑘)�            

= 𝐴𝐴𝑒𝑒𝑖𝑖(𝑘𝑘) + 𝐹𝐹ℎ𝑖𝑖(𝑘𝑘) − 𝐾𝐾∑ 𝑙𝑙𝑖𝑖𝑗𝑗�𝑦𝑦𝑖𝑖(𝑘𝑘) − 𝑦𝑦�𝑖𝑖(𝑘𝑘)�𝑗𝑗𝑗𝑗𝑁𝑁𝑖𝑖   

−�−𝐾𝐾∑ 𝑙𝑙𝑖𝑖𝑗𝑗 �𝑦𝑦𝑗𝑗(𝑘𝑘) − 𝑦𝑦�𝑗𝑗(𝑘𝑘)�𝑗𝑗𝑗𝑗𝑁𝑁𝑖𝑖 �       

−𝐾𝐾𝑑𝑑𝑖𝑖�𝑦𝑦𝑖𝑖(𝑘𝑘) − 𝑦𝑦�𝑖𝑖(𝑘𝑘)�            

= 𝐴𝐴𝑒𝑒𝑖𝑖(𝑘𝑘) + 𝐹𝐹ℎ𝑖𝑖(𝑘𝑘)              

−𝐾𝐾𝐶𝐶 �∑ 𝑑𝑑𝑖𝑖𝑗𝑗 �𝑒𝑒𝑖𝑖(𝑘𝑘) − 𝑒𝑒𝑗𝑗(𝑘𝑘)� + 𝑑𝑑𝑖𝑖𝑒𝑒𝑖𝑖(𝑘𝑘)𝑗𝑗𝑗𝑗𝑁𝑁𝑖𝑖 �(17) 

To devise a global fault estimation observer for snake robot 
system, it is essential to define the following global error 
vector as follows 

𝑒𝑒(𝑘𝑘) = [𝑒𝑒1𝑇𝑇(𝑘𝑘), 𝑒𝑒2𝑇𝑇(𝑘𝑘),⋯ , 𝑒𝑒𝑁𝑁𝑇𝑇(𝑘𝑘)]𝑇𝑇

ℎ(𝑘𝑘) = [ℎ1𝑇𝑇(𝑘𝑘),𝜃𝜃2𝑇𝑇(𝑘𝑘),⋯ ,𝜃𝜃𝑁𝑁𝑇𝑇(𝑘𝑘)]𝑇𝑇
    (18) 

Given that all snake robots are interconnected according to 
the communication topology, the fault estimation observer 
must take into account the information exchange among 
nodes. The relative residuals of the 𝑑𝑑th node are defined as 
follows 

𝑟𝑟(𝑘𝑘) = � 𝑙𝑙𝑖𝑖𝑗𝑗�𝑦𝑦𝑖𝑖(𝑘𝑘) − 𝑦𝑦�𝑖𝑖(𝑘𝑘)� − �𝑦𝑦𝑗𝑗(𝑘𝑘) − 𝑦𝑦�𝑗𝑗(𝑘𝑘)�
𝑗𝑗∈𝑁𝑁𝑖𝑖

 

+𝑑𝑑𝑖𝑖(𝑦𝑦𝑖𝑖(𝑘𝑘) − 𝑦𝑦�𝑖𝑖(𝑘𝑘))         (19) 

where 𝑙𝑙𝑖𝑖𝑗𝑗  and 𝑑𝑑𝑖𝑖 , respectively, are the element of trust 
degree matrix 𝐿𝐿𝑧𝑧𝑧𝑧 and loop-graph matrix 𝐺𝐺. 

So 𝑒𝑒(𝑘𝑘 + 1) can also be represented as 

⎩
⎪
⎨

⎪
⎧
𝑒𝑒(𝑘𝑘 + 1) = (𝐼𝐼𝑁𝑁 ⊗ 𝐴𝐴)𝑒𝑒(𝑘𝑘) + (𝐼𝐼𝑁𝑁 ⊗ 𝐹𝐹)ℎ(𝑘𝑘)
                       −(𝐼𝐼𝑁𝑁 ⊗ 𝐾𝐾)�(𝐿𝐿𝑧𝑧𝑧𝑧 + 𝐺𝐺) ⊗𝐶𝐶�𝑒𝑒(𝑘𝑘)
                  = (𝐼𝐼𝑁𝑁 ⊗ 𝐴𝐴 − (𝐿𝐿𝑧𝑧𝑧𝑧 + 𝐺𝐺) ⊗𝐾𝐾𝐶𝐶)𝑒𝑒(𝑘𝑘)
                       +(𝐼𝐼𝑁𝑁 ⊗ 𝐹𝐹)ℎ(𝑘𝑘)
𝑟𝑟(𝑘𝑘) = (𝐿𝐿𝑧𝑧𝑧𝑧 + 𝐺𝐺) ⊗𝐶𝐶𝑒𝑒(𝑘𝑘)

  (20) 

So the global error dynamic equation is 

�𝑒𝑒
(𝑘𝑘 + 1) = 𝐴𝐴𝑒𝑒(𝑘𝑘) + 𝐹𝐹ℎ(𝑘𝑘)

𝑟𝑟(𝑘𝑘) = 𝐶𝐶𝑒𝑒(𝑘𝑘)
       (21) 

where 

𝐴𝐴 = 𝐼𝐼𝑁𝑁 ⊗ 𝐴𝐴 − (𝐿𝐿𝑧𝑧𝑧𝑧 + 𝐺𝐺) ⊗𝐾𝐾𝐶𝐶 

𝐶𝐶 = (𝐿𝐿𝑧𝑧𝑧𝑧 + 𝐺𝐺) ⊗𝐶𝐶            

𝐹𝐹 = 𝐼𝐼𝑁𝑁 ⊗ 𝐹𝐹               

3.2 𝓛𝓛𝟐𝟐 Reconfigurability 

Definition 1[14]: System (14) is called ℒ2 reconstructible 
if there exists a system (19), such that ∀𝑥𝑥, 𝑥𝑥� 

�𝜑𝜑1(‖𝑟𝑟(𝑘𝑘)‖)
𝜏𝜏

𝑘𝑘=0

≤ �𝜑𝜑2(‖𝑢𝑢�(𝑘𝑘)‖) + 𝛾𝛾0(𝑥𝑥(0), 𝑥𝑥�(0))
𝜏𝜏

𝑘𝑘=0

 

where 𝑢𝑢�(𝑘𝑘) = [𝑢𝑢𝑇𝑇(𝑘𝑘)   ℎ𝑇𝑇(𝑘𝑘)]𝑇𝑇 . 𝜑𝜑1(⋅) ∈ 𝒦𝒦 , 𝜑𝜑2(⋅) ∈ 𝒦𝒦∞ , 
and 𝛾𝛾0(⋅) ≥ 0 is a finite constant for given 𝑥𝑥(0), 𝑥𝑥�(0). 

Theorem 1[14]: Given system (14) and observer-based 
residual generator (15), if there exist (i) a set of switched 
Lyapunov functions, 𝑉𝑉𝑖𝑖𝑗𝑗�𝑘𝑘, 𝑥𝑥(𝑘𝑘), 𝑥𝑥�(𝑘𝑘)�, 𝑑𝑑, 𝑗𝑗 ∈ Γ , (ii) 
functions 𝜑𝜑1(⋅) ∈ 𝒦𝒦, 𝜑𝜑2(⋅) ∈ 𝒦𝒦∞, such that ∀𝑑𝑑, 𝑗𝑗, 𝑙𝑙, 𝑞𝑞 ∈ Γ, 

𝑉𝑉𝑙𝑙𝑙𝑙�𝑘𝑘 + 1, 𝑥𝑥(𝑘𝑘 + 1), 𝑥𝑥�(𝑘𝑘 + 1)� − 𝑉𝑉𝑖𝑖𝑗𝑗�𝑘𝑘, 𝑥𝑥(𝑘𝑘), 𝑥𝑥�(𝑘𝑘)�
≤ −𝜑𝜑1(‖𝑟𝑟(𝑘𝑘)‖) + 𝜑𝜑2(‖𝑢𝑢�(𝑘𝑘)‖) 

then the system (14) is ℒ2 reconstructible. 
In this paper, ℒ2 reconfigurability is a sufficient condition 

for the existence and threshold setting of an ℒ2 
observerbased FD system. Then, we have 

�𝑒𝑒(𝑘𝑘)
ℎ(𝑘𝑘)�

𝑇𝑇
Ψ �𝑒𝑒(𝑘𝑘)

ℎ(𝑘𝑘)� ≤ 0        (22) 

where  

Ψ = �𝐴𝐴
𝑇𝑇

𝐹𝐹
𝑇𝑇� 𝑃𝑃�𝐴𝐴 𝐹𝐹� + �𝐶𝐶

𝑇𝑇
𝐶𝐶 0

0 0
� − �𝑃𝑃 0

0 𝛾𝛾2𝐼𝐼� ≤ 0     

= −�𝐴𝐴
𝑇𝑇

𝐹𝐹
𝑇𝑇� (−𝑃𝑃)�𝐴𝐴 𝐹𝐹� + �−𝑃𝑃 0

0 −𝛾𝛾2𝐼𝐼� + �𝐶𝐶
𝑇𝑇
𝐶𝐶 0

0 0
� ≤ 0 

 (23) 
where 𝛾𝛾2 is a positive constant. 
By applying Schur complement, we can get: 

⎣
⎢
⎢
⎢
⎡−𝑃𝑃 0 𝐴𝐴

𝑇𝑇
𝐶𝐶
𝑇𝑇

∗ −𝛾𝛾2𝐼𝐼 𝐹𝐹
𝑇𝑇

0
∗ ∗ −𝑃𝑃−1 0
∗ ∗ ∗ −𝐼𝐼⎦

⎥
⎥
⎥
⎤
≤ 0    (24) 

Note that the inverse of the Lyapunov function matrices 𝑃𝑃−1 
is in the third column of the matrix. It leads to the coupling 
between the system matrix and the Lyapunov function 
matrix. Consequently, adjusting the congruence of the 
matrix by 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝐼𝐼, 𝐼𝐼,𝑃𝑃, 𝐼𝐼} becomes essential in this context. 

Based on the congruence transformation, the system is 
feasible when and only when the following inequality holds 

⎣
⎢
⎢
⎢
⎡−𝑃𝑃 0 𝐴𝐴

𝑇𝑇
𝑃𝑃 𝐶𝐶

𝑇𝑇

∗ −𝛾𝛾2𝐼𝐼 𝐹𝐹
𝑇𝑇
𝑃𝑃 0

∗ ∗ −𝑃𝑃−1 0
∗ ∗ ∗ −𝐼𝐼⎦

⎥
⎥
⎥
⎤
≤ 0    (25) 

By solving the inequality matrix above, we can derive a 
solution that ensures the system meets the requirements for 
ℒ2 reconfigurability. This establishes the system as both an 
existential and threshold setting for an ℒ2  observer-based 
FD system. 
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4 An Illustrative Example 
This section takes the distributed system model composed 

of four snake robots as an example. 

4.1 System Description 

Suppose the communication topology of the snake robot 
distributed system is shown in Figure 3. According to the 
communication topology diagram, the adjacency matrix 𝒜𝒜 
and the degree matrix 𝒟𝒟 can be obtained as 

𝒜𝒜 = �

0 0 0 0
1 0 0 0
1 1 0 0
1 0 1 0

�, 𝒟𝒟 = �

0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

�. 

 

Fig. 3: The communication topology diagram 

The first snake robot in the directed graph topology 
contains a self-loop of the Laplacian matrix and the closed-
loop matrix: 

𝐿𝐿 = �

0 0 0 0
−1 1 0 0
−1 −1 2 0
−1 0 −1 2

�，𝐺𝐺 = �

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

�. 

This experiment assumes that the trustworthiness of snake 
2 is 0.8, and the trustworthiness of the rest of the snakes is 1, 
which means complete trust. The real-time update of 
trustworthiness will be the follow-up work. The 
trustworthiness matrix 𝐿𝐿𝑧𝑧𝑧𝑧  obtained from this can be 
obtained as 

𝐿𝐿𝑧𝑧𝑧𝑧 = �

0 0 0 0
−0.8 0.8 0 0
−1 −0.8 2 0
−1 0 −1 2

� 

The external disturbance input matrix of the system is set 
as follows 

𝐹𝐹 = �
0.5 0 0
0 0.5 0
0 0 0.5

� 

4.2 Existence Condition 

Use the LMI toolbox to solve the condition equation (25), 
and optimize 𝛾𝛾2. The normal number 𝛾𝛾2 is equal to 0.0036, 
then the fault diagnosis observer gain matrix K can be 
obtained as 

𝐾𝐾 = �
−0.0022 0.2784
0.2333 3.3892
−0.0777 −0.0131

� 

and the Lyapunov function matrices 𝑃𝑃 can be obtained as 

𝑃𝑃 = �
12.683 0.0027 −6.2978
0.0027 7.7218 −0.0109
−6.2978 −0.0109 7.9808

� 

So, it shows that the system is stable and 𝓛𝓛𝟐𝟐 reconstructible. 

4.3 Simulation 

A snake robot formation simulation diagram was built in 
Simulink. In the experiment, each snake robot was 
encapsulated, and each snake robot output the local output 
estimation error 𝑒𝑒𝑦𝑦𝑖𝑖(𝑡𝑡)(𝑑𝑑 =  1, . . . ,4). The Mux module is 
used to form the global output estimation error vector 𝑒𝑒𝑦𝑦(𝑡𝑡) 
according to the output of each snake robot, and then feed it 
to each snake robot module, forming a distributed fault 
diagnosis observer according to the given communication 
topology. 

 

Fig. 4: Simulation results of snake 1 

 

Fig. 5: Simulation results of snake 2 

Assuming disturbances occur in snake robot systems 1 
and 2 at the 1st and 2nd seconds, and in systems 3 and 4 at 
the 1st and 4th seconds, with failures occurring in systems 2 
and 4 at the 5th and 10th seconds respectively, the simulation 
results depicted in Figures 4-7 can be obtained. From 
Figures 4 and 6, it is evident that their systems remain fault-
free. Figure 5 demonstrates that the designed fault diagnosis 
observer accurately detects the fault in snake robot system 2. 
Likewise, Figure 7 shows that the designed fault diagnosis 
observer accurately detects the fault in snake robot system 4. 
Additionally, as the disturbances do not exceed the threshold, 
they do not affect the normal detection process. 
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Fig. 6: Simulation results of snake 3 

 

Fig. 7: Simulation results of snake 4 

Through the above simulation experiments, it can be seen 
that the fault can be effectively detected in a zero-trust 
environment. 

5 Conclusions and future works 
This paper considers the problem of distributed fault 

detection for snake robots in a zero-trust environment. It 
examines the impact of the zero-trust paradigm on fault 
diagnosis in detail, analyzes the stability and existence 
conditions of the ℒ2  observer, and finally verifies the 
validity of the model analysis results through numerical 
examples. This article proposes the following advantages for 
the method: First, adopting a zero-trust architecture 
enhances the security and defense capability against 
potential threats. Second, linearizing the nonlinear model of 
snake robots. If the article's topology can ensure sufficient 
information flow, the accuracy of fault detection will be 
improved; otherwise, it may affect the accurate diagnosis of 
faults. However, the computational burden of this paper is 
relatively heavy. It provides a detailed mathematical 
description of the dynamic model of snake robots, requiring 
complex mathematical derivations and stability analysis. 

Moreover, since it is targeted at fault detection in real-time 
systems, all computation and decision-making processes 
must be completed within a limited time, imposing higher 
demands on computational resources. Future research can 
use a more concise snake robot model. 
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Fully Actuated System Approach

Xiaoran Dai1, Guo-Ping Liu2, Wenshan Hu1, Zhongcheng Lei1. Hong Zhou1, Jun Zhang1

1. School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, P. R. China
2. Center for Control Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P. R. China

E-mail: liugp@sustech.edu.cn

Abstract: This paper explores the application of a Fully Actuated System (FAS) approach in the secondary control strategy
for DC microgrids. Through an in-depth analysis of the microgrid electrical and control architecture, we propose a large-signal
model that integrates circuitry and control, with a specific focus on addressing coupling issues among distributed generation
units (DGs). Based on this foundation, a distributed FAS-based secondary control strategy is designed, utilizing the FAS theory
to tackle coupling and control challenges in DC microgrids. Simulation results demonstrate the effectiveness of our proposed
secondary control method in maintaining system stability and economic efficiency.

Key Words: DC microgrids, fully actuated system approach, secondary control

1 Introduction

The escalating global demand for energy, coupled with the
imperative to transition towards sustainable solutions, has
propelled the significance of renewable energy sources to the
forefront of the energy landscape [1]. The conventional re-
liance on fossil fuels has led to environmental degradation
and raised concerns about the long-term viability of our en-
ergy systems. In this context, the exploration and integration
of new energy sources have become imperative for address-
ing both the environmental and economic challenges posed
by traditional energy models. Microgrids, particularly in the
form of DC systems, are emerging as pivotal players in fa-
cilitating the seamless assimilation of renewable energy into
existing power grids [2–4].

Current microgrid control architectures predominantly
employ hierarchical structures to manage the dynamic be-
havior of distributed energy resources, namely primary con-
trol, secondary control and tertiary control [5]. Primary con-
trol stabilizes voltage and oversees rough current sharing.
Secondary control compensates for voltage drops, ensuring
precise current allocation. Tertiary control, operating at the
highest level, optimizes performance based on economic or
stability considerations, guiding the actions of secondary
control. In recent years, several studies have integrated the
economic allocation aspect of tertiary control into secondary
control [6, 7]. This integration proves valuable as it reduces
the impact of temporal scales, allowing for a more seam-
less coordination between economic considerations and the
precision of current allocation facilitated by the secondary
control, which is the insterest of our work.

After defining the control objectives, the effective real-
ization of economic sharing in secondary control becomes
a focal point. For example, authors in [8] propose a dis-
tributed secondary control for voltage regulation and optimal
power sharing using the properties of cascade systems and
the input-to-state stability theory. Similarly, a distributed pe-
riodic optimal sharing control is proposed in [9] for DC mi-
crogrids with an event-triggered mechanism. For addressing

This work is supported by National Natural Science Foundation
(NNSF) of China under Grants 62173255 and 62103308.

the communication delay in the economic sharing problems,
a networked predictive control strategy is developed in [6].

Most of the aforementioned control approaches are based
on simplified multi-agent physical-network models. More-
over, it is well-known that achieving more effective control
performances requires accurate models. For addressing the
modeling challenges in DC microgrids, authors in [10] pro-
pose a generic reduced-order modeling method for DC mi-
crogrids under droop control methods. The large-signal sta-
bility in microgrids with constant power loads are studied
in [11]. Considering the control effect of converters in mi-
crogrids, a transient modeling technique is developed in [12]
for fault detection, location and isolation.

In recent years, the emerging High-Order Fully Actu-
ated (HOFA) theory has proven effective in addressing the
integration challenges between physical models and con-
trol [13–15]. It utilizes the derived HOFA model for con-
troller design, ensuring that the closed-loop system of the
controller becomes a constant linear system with a desired
eigenstructure. This theory’s effectiveness has been widely
validated in fields such as aerospace and microgrids [16, 17].

Inspired by these concepts, this paper proposes an FAS-
based secondary control strategy. Optimal secondary con-
troller design is achieved by establishing the FAS model of
the microgrid. This approach effectively addresses the phys-
ical coupling among multiple DGs in microgrids and ensures
the control performance of the whole system.

2 DC Microgrids Modeling Based on FAS Ap-
proach

In this paper, a typical islanded DC microgrid consisting
of distributed DGs and power lines is considered as shown
in Fig. 1. As seen, secondary control provides the volt-
age sepoint vni for primary control. Primary control sup-
plies the voltage reference value vrefi for the inner control of
each converter via a droop mechanism. The inner control,
a dual-loop control for voltage and current, directly outputs
duty cycles to drive the converters. As highlighted in [4],
existing works often design secondary controllers based on
first-order multi-agent models, potentially leading to inac-
curacies in controller design. In contrast, model-based con-
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Fig. 1: Typical islanded DC microgrid diagram

troller design offers better assurance of microgrids’ control
performance.

To address these challenges, it is essential to establish
a comprehensive large-signal model that integrates the cir-
cuitry and control aspects of the DC microgrid. Commenc-
ing with the converter model, leveraging energy storage
technologies enables us to regard fluctuating renewable en-
ergy generation as a DC voltage source. Through the appli-
cation of Quasi Stationary Line estimation techniques and
Kirchhoff’s laws, one can model the converter system in
Fig. 1 as follows.

v̇i =
ii
Ci

− vi
CiRi

+
∑

j∈Np
i

vj − vi
CiRij

,

i̇i = − vi
Li

− RLi

Li
ii +

Vdcdi
Li

,

(1)

where vi, ii are the output voltage and current of the ith
DG, vj is the voltage at the port connected to the ith DG,
Np

i is the set of physically adjacent DG units connected to
the ith DG, di ∈ (0, 1) represents the duty cycle, which
is the control input as well. In addition to the above vari-
ables, Ci, Li, Ri are the filter capacitance, the storage induc-
tance, and the local load, respectively, Rij represents the line
impedance. Here, we equivalently consider ii as the output
current of the ith DG cause the inductor current often equals
the output current under steady-state operation.

Subsequently, we model the hierarchical control strategy
based on the converter dynamics. The duty cycle di in equa-
tion (1) serves as the pivotal link between the circuit model
and the control model. It is directly generated by the inner
dual-loop PI control, where the specific voltage outer loop
and current inner loop control dynamics can be expressed as
follows.

θ̇ = vrefi − vi,
irefi = kpvi

(
vrefi − vi

)
+ kivi θ,

ϑ̇ = irefi − ii,

di = kpii
(
irefi − ii

)
+ kiii ϑ,

(2)

where kpvi , kivi and kpii , kiii are, respectively, the proportional
and integral gains for voltage and current PI controllers, vrefi

represents the reference voltage generated by droop control,
irefi is the reference value of the current loop, θ and ϑ are
auxiliary integral variables.

The typical droop mechanism is expressed as follows.

vrefi = vni − rviri ii, (3)

where vni is the rated voltage. Upon activation of secondary
control, vni in equation (3) is provided by the secondary con-
trol. Hence, in the following modeling process, we take
vni (t) as the control input, ui(t).

By combining equations (1)-(3), one can derive the large-
signal model of the ith DG in the DC microgrid as follows.

ẋi = Aiixi +
∑
j∈Np

i

Aijxj +Biui, (4)

where xi(t) =
[
vi(t) ii(t) θ(t) ϑ(t)

]T
and ui(t) =

vni (t). The system matrix Aii, Aij can be obtained from (1)-

(3), Bi =
[
0

kpv
i kpi

i Vdc

Li
1 kpvi

]T
.

For a DC microgrid, the output of each generation unit
is of interest. Therefore, selecting the output current as the
system output, denoted as yi (t) = hi (xi (t)) = Cix (t),
where Ci =

[
0 1 0 0

]
. From the structure of equa-

tion (4), it is evident that a single DG system is a multi-agent
system with physical coupling to other DGs. Controllers for
such multi-agent systems are often complex due to the need
to consider coupling factors. The recent emergence of FAS
methods can effectively address this issue.

From the FAS theory perspective, system (4) is consid-
ered as an under-actuated system. Deriving the large-signal
model (4), one can obtain the following dynamics.

i̇i = LFi
hi (xi) = Ci

Aiixi +
∑
j∈Np

i

Aijxj

+ biui, (5)

where Fi (t) = ẋi (t), LFi
hi (xi) represents the Lie deriva-

tive of hi(xi) along Fi, and bi = CiBi =
kpv
i kpi

i Vdc

Li
. There-

fore, according to the HOFA theory, the FA secondary con-
trol protocol can be expressed as

ui = b−1
i

−Ci

Aiixi +
∑
j∈Np

i

Aijxj

+ µi

 , (6)

where µi represents the auxiliary controller to be designed.
Substituting equation (6) into (5) yields the following DG

model.

i̇i = µi (7)

According to the dynamics (7), one can achieve the reg-
ulation of output currents for each DG through the design
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of the auxiliary controller µi. Compared to traditional first-
order multi-agent microgrid systems, the proposed model,
with the introduction of FAS system approach, can consider
more underlying circuit and control models, making it more
conducive to controller design.

3 Optimal Secondary Controller Design

After completing the modeling based on the FAS ap-
proach, this section focuses on achieving cooperative control
in DC microgrids with communication delays.

3.1 Control Obejectives under Communication Delays
As mentioned in the Introduction, some research has al-

ready discussed the economic dispatch problem of micro-
grids at a small time scale. This paper adopts a synergizing
incremental cost method to achieve economic load sharing.
Specifically, the generation cost Ji(i) for each DG can be
represented by a quadratic function, as shown below.

Ji(i) = aii
2
i + biii + ci (8)

where ai, bi, ci are the cost coefficients for the respective
DG. Using the Lagrange multiplier method, when the incre-
mental costs are equal, the total generation cost for all DGs
in the microgrid is minimized. The incremental cost eta can
be expressed as:

ηi = J̇i = 2aiii + bi. (9)

Therefore, the control objective of the secondary con-
troller in this paper is to ensure that the voltage remains
within an allowable range, i.e., vi ∈ [(1− ϵ) vni , (1 + ϵ) vni ],
where ϵ is the percentage of voltage deviation required by
the power grid (e.g., 7% for 220-V bus). Simultaneously, it
ensures uniform incremental costs for each DG, aiming to
achieve the minimum overall generation cost for the micro-
grid system. This requirement can be expressed as:

lim
t→∞

|ηi (t)− ηj (t)| = 0. (10)

3.2 FAS-Based Secondary Controller Design
Firstly, let us consider the critical threshold requirements

for the output voltage. According to the description in ref-
erence [18], it is reasonable to assume that vi = vrefi cause
the inner loop control exhibits a faster response compared
to secondary control. To meet the voltage constraints, de-
fine the upper and lower bounds of vrefi as (1 + ϵ) vni and
(1− ϵ) vni .

Subsequently, to meet the economic operational requisites
of the entire microgrid system, the consensus problem of in-
cremental costs must be addressed. For this purpose, trans-
mute the output of the system (4) from the output current
ii to the incremental cost ηi, specifically, yi (t) = ηi (t) =
2aiii (t) + bi. Therefore, the secondary control (6) can be
converted to the following equation.

ui = b−1
ηi

−Ci

Aiixi +
∑
j∈Np

i

Aijxj

+ ωi

 , (11)

where bηi = 2ai
kpv
i kpi

i Vdc

Li
, ωi represents the auxiliary con-

troller for economic sharing. Similar to (7), the dynamics of

Proposed FAS-based 

secondary cotrol

Primary control

DC

DC

DC

DC
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Droop control
Incremental cost 
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DG1 DG2

DGj

DGi

Neighbor error 

calculation (13)

Auxiliary control law 
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FAS-based secondary 
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ηi,ηj

ei

ωi

Fig. 2: FAS-based secondary control strategy implemented
in a DC microgrid

the incremental cost can be modeled as:

η̇i = ωi. (12)

Drawing from the graph theory, define the neighbor error
of the incremental cost as:

ei (t) =
∑
j∈Ni

aij (ηj (t)− ηi (t)). (13)

where aij and Ni are the communication weight and net-
worked neighbor set, respectively.

According to the FAS-based modeling shown in (12), one
can regulate the system response via the design of the con-
trol law ωi. In this paper, we employ the subsequent error
feedback control:

ωi(t) = ciei(t), (14)

where ci represents the coupling gain to be designed for ideal
control performance.

The actual output of the secondary control can thus be
derived from (11). As a result, the overall FAS-based sec-
ondary control diagram for each DG is shown in Fig. 2.
Specifically, DGs exchange incremental cost information
with their neighbors through the communication network.
Subsequently, auxiliary control variables ωi are computed
based on equations (13) and (14), and the actual secondary
control outputs are further obtained. Ultimately, the DC-DC
converters of each DG are controlled through the primary
control to regulate their operation.
4 Simulation Results

In order to verify the performance of the developed FAS-
based secondary control, a cyber-physical DC microgrid is
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Fig. 3: Performance of the proposed FAS-based secondary controller. (a) Output voltages. (b) Output currents. (c) Incremental
costs.

DG1 DG2

DG4 DG3

Loads

Switching 

Load

Fig. 4: Detailed schematic of the DC microgrid

built in the MATLAB/SimPowerSystems environment. The
electrical and cyber topology is shown in Fig. 4, and the
detailed parameters are given in Table 1.

To validate the effectiveness of the proposed FAS-Based
secondary control, our simulations primarily follow these
steps:

1) 0 to 8 seconds: Microgrid initialization phase with only
droop control activated;

Table 1: Parameters of The Test DC Microgrid
Parameters Value
Desired voltage 100 V
Required voltage deviation 7%
DC source voltage 160 V
Load resistance 4 Ω

Switching load resistance 20 Ω

Storage inductor 2 mH
Filter capacitor 1 mF
Communication weights aij = 1, j ∈ Ni

Virtual resistance [1, 1, 2, 2]
Voltage loop PI gains 0.008 + 1/s
Current loop PI gains 0.1 + 2/s
Coupling gain 2

Generation cost
a = [0.015, 0.02, 0.025, 0.035]
b = [1,1.2,0.8,0.9]
c = [1,1.5,1.2,0.9]

2) 8 to 20 seconds: Activation of the proposed secondary
control method;

3) 20 to 28 seconds: Addition of a switching load while
maintaining secondary control;

4) 28 to 35 seconds: Removal of the load.

The specific simulation results are depicted in Fig. 3.
From Fig. 3(a), during the initialization phase, the volt-
age do not reach the required 100 V due to the influence of
droop control. However, after activating our secondary con-
troller, the voltages can recover within the specified range.
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Additionally, one can see that the voltages can rapidly re-
cover when the load was switched. The current waveform
in Fig. 3(b) shows that, whether in the droop control or
secondary control phase, the current distribution cannot fol-
low the 1:1:2:2 ratio. This is attributed to the mechanism
of incremental cost, enabling global economic optimization.
Finally, from Fig. 3(c), it can be observed that after acti-
vating secondary control, the incremental costs for all DGs
tend to be consistent, implying global optimal generation
cost. Therefore, these results validate the effectiveness and
robustness of the proposed control method as presented in
this paper.

5 Conclusion

This paper introduces and validates the secondary con-
trol strategy for DC microgrids using the FAS approach.
By proposing a comprehensive large-signal model that in-
tegrates both circuitry and control, the coupling and con-
trol challenges among DGs within the microgrid architecture
can be addressed. The FAS-based secondary control strat-
egy is proposed using the achieved model for optimal eco-
nomic operation. Simulation results verify the efficacy of
our method, showcasing its ability to ensure system stabil-
ity and economic efficiency across various scenarios. As we
look ahead, the integration of FAS theory presents a promis-
ing avenue for advancing the control paradigms in DC mi-
crogrids, ensuring their resilience and optimal performance
in the face of evolving energy landscapes.
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Abstract: Snake-like robots are multi-degree-of-freedom, multi-mode unmanned intelligent robots suitable for complex 

and hazardous environments and research fields. The coordination of multiple snake-like robots expands their capabilities and 

spatial range for tasks. The paper introduces a method for controlling and coordinating multiple snake-like robots in formation 

and obstacle avoidance. Multiple snake-like robots are organized into a formation and move forward in a specific configuration 

or layout, while also coordinating to avoid obstacles. The leader-follower model is utilized for formation control, allowing the 

robot group to switch to suitable formation configurations based on different scenarios encountered, thereby enhancing the 

adaptability of the formation. In the context of cooperative obstacle avoidance, the artificial potential field method is employed. 

It creates repulsive potential fields between snake-like robots and obstacles or other robots, ensuring that the formation can 
effectively and stably navigate around obstacles while maintaining its overall structure. 

Key Words: Snake-like robot, Multiple agents, Formation control, Cooperative obstacle avoidance, Artificial potential 

field method 

 

 
  

 

1 Introduction 

Snake-like robots are a type of biomimetic robot inspired 

by the movement of snakes. They rely on friction generated 

by the relative movement between their bodies and the 

ground to propel themselves forward. Compared to 

traditional robots, snake-like robots possess greater 

flexibility and adaptability, enabling them to navigate and 

perform tasks in various complex environments[1]. In 

practical applications, compared to single snake-like robots, 

multiple snake-like robots operating in coordination offer 

higher task efficiency, stronger adaptability, and robustness. 

They can handle more complex tasks and environmental 

demands[2], making them highly promising and versatile in 

scenarios such as search and rescue, environmental 

monitoring, and exploration. In the realm of multi-robot 

cooperation[3], formation control is a complex and critical 

issue. Effective and rational formations enable multiple 

robots to achieve efficient collective behavior, adapting to 

various complex environments and task requirements. 

Numerous studies have made significant progress in this 

area, including but not limited to the following aspects: 1) 

Behavior-based formation control methods[4], which rely 

on specific behavior patterns or rules for each robot to 

achieve coordinated actions within the formation. This 

approach typically does not require global information but 

instead relies on local perception and decision-making for 

each robot. 2) Leader-follower methods designate certain 

robots as leaders within the formation, with the remaining 

robots following the leaders' movements. Leaders typically 

handle path planning and decision-making, while followers 

maintain appropriate distance and relative positions with the 

leaders through perception and control[5]. 3) Virtual 
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Province under Grant KJ2021A0050 and Anhui Provincial Natural Science 

Foundation under Grant 2308085QF210. 

structure-based methods organize multiple robots into a 

virtual structure, such as a grid, circle, or snake-like 

formation. By controlling the interactions between robots 

and the virtual structure, formation control can be 

achieved[6]. 4) Consensus-based methods involve adjusting 

the interactions among multiple robots to ensure they 

maintain consistency or coordination in their actions, aiming 

to achieve specific objectives[7]. 

When addressing the multi-robot formation control 

problem, it's crucial to consider the interaction between 

robot formations and the environment. This ensures that 

robots can maintain their formation during motion and adapt 

to external disturbances and environmental changes[8]. 

Indeed, multi-robot cooperative obstacle avoidance is 

another typical challenge, especially in complex 

environments. Currently, path planning-based obstacle 

avoidance algorithms are widely used in robot navigation. 

These algorithms plan obstacle-free paths in known 

environments, enabling robots to avoid obstacles and reach 

their destination points. Common path planning-based 

obstacle avoidance algorithms include Ant Colony 

Optimization (ACO), Artificial Potential Field (APF) 

method, A* algorithm, Rapidly-exploring Random Tree 

(RRT) algorithm, and others[9]. 

Given the significant importance of multi-snake-like 

robot coordination in addressing more complex task 

requirements and adapting to uncertain environments, this 

paper investigates the technology and methods of multi-

snake-like robot formation coordination and obstacle 

avoidance control. It proposes a method that combines the 

artificial potential field method with a leader-follower model 

for multi-snake-like robot formation control and cooperative 

obstacle avoidance. 

 

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China

1288  



  

Based on this, the structure of this article is as follows: 

The second part presents Preliminaries, introducing the 

dynamics equations of snake-like robots. The third part, 

titled Main Results, constructs formations based on the 

leader-follower model and employs the artificial potential 

field method to design dynamic obstacle avoidance schemes. 

The fourth part demonstrates the effectiveness of the 

proposed method through simulations. Finally, the fifth part 

includes Conclusion and outlines potential Future Work. 

2 Preliminaries and problem formulation 

2.1 problem formulation  

Based on this, the structure of this article is as follows: 

The second part presents Preliminaries, introducing the 

dynamics equations of snake-like robots. The third part, 

titled Main Results, constructs formations based on the 

leader-follower model and employs the artificial potential 

field method to design dynamic obstacle avoidance schemes. 

The fourth part demonstrates the effectiveness of the 

proposed method through simulations. Finally, the fifth part 

includes Conclusion and outlines potential Future Work. 

The design for cooperative obstacle avoidance among 

multiple snake-like robots is as follows: 

 Multiple snake-like robots depart from the same starting 

point, forming an appropriate formation, and proceed 

along a predetermined path towards the designated task 

point for operation. 

 The environment between the starting point and the task 

destination is complex, with obstacles present. When 

robots detect obstacles, they need to change their 

direction of movement to avoid collisions with obstacles 

or other robots. 

2.2 The gait pattern lateral undulation of snake-like 

robots. 

The lateral undulation of snakes is a unique locomotion 

method that enables them to move across various terrains, 

including flat surfaces, uneven terrain, and even in water. In 

1993, Hirose proposed the "serpenoid curve" based on 

research on biological snakes. He observed specific 

morphology and movement patterns in snakes during 

crawling, attempting to describe this motion using 

mathematical language[10]. Equation (1) gives the 

expression for the serpenoid curve. The characteristic of the 

serpenoid curve is that its curvature exhibits a sinusoidal 

variation during the snake's crawling process. In other words, 

as the snake crawls, the curvature of its body varies 

sinusoidally. This variation enables the snake to move 

efficiently across various terrains. 

����� �  �
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Fig. 1: Planar two-dimensional link snake-like robot 

As shown in Figure 1, for a planar two-dimensional 

snake-like robot consisting of N links and N-1 joints, the 

serpentine crawling gait pattern can be achieved through the 

joint movements of the planar snake-like robot represented 

by Equation (2). ��,��� � � ������ � ���  1�! � �" �2� 

which � ∈ %1, &&&, '  1( ; � and � represent the 

amplitude and angular frequency, respectively, of the 

sinusoidal joint motion; � denotes the phase shift of the joint 

angles, ensuring that the joint angles are always out of phase 

and never entirely equal; �" represents the joint angle offset, 

which can be utilized to control the direction of movement. 

This offset causes the direction of link motion to be 

asymmetrical with respect to the current orientation of the 

robot. 

2.3 The Line-of-Sight (LOS) guidance law 

The LOS guidance law can be used for both straight-line 

path tracking and curved path tracking. It is commonly 

employed in the tracking control of surface vessels[11]. The 

LOS guidance law converts the control of three degrees of 

freedom of snake-like robots position coordinates �)*  , )+� 

and forward direction ,̅ into the control of two degrees of 

freedom: forward velocity ./ and forward direction ,̅. The 

principle of the LOS (Line-of-Sight) algorithm is illustrated 

in Figure 2. By aligning the heading of the controlled object 

with the LOS angle, appropriate control can lead the object 

to its desired position, achieving path tracking. 

 

Fig. 2: The LOS algorithm principle  

In Figure 2, 01  represents the previously tracked path 

point, and 0123 represents the current path tracking point. 

When the snake-like robot approaches a certain range 

around the path point, it switches to tracking the next path 

point 0124. By dividing the tracking path into several path 

points, the robot can effectively track any desired path. 
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Define the reference direction angle according to the LOS 

guidance law: ,̅��� �  5
�� 6 )+∆  8 �3� 

where )+ represents the lateral tracking error, while ∆> 0 

stands for the forward distance. Further, design a joint angle 

offset controller: �" � <=�,̅  ,̅���! �4� 

where <=  denotes the controller gain and �"  represents 

the joint angle offset. 

3 Main results 

3.1 Formation control method for multi-snake-like 

robots based on leader-follower model 

The leader-follower model is a common control strategy 

in multi-robot formation control, used to coordinate and 

manage the movement of robot groups. In this model, robots 

are divided into two categories: leaders and followers. The 

leaders are typically part of the robot group and are 

responsible for devising the motion strategy and path 

planning for the entire formation system. The actions of the 

leaders have a decisive impact on the motion trajectory of 

the entire formation. The followers can adjust their speed, 

direction, and position based on the movements of the 

leaders to maintain a certain relationship with them, thereby 

forming the desired configuration of the entire formation 

system. In the leader-follower model, typically only one 

robot is designated as the leader, while the rest of the robots 

act as followers, as depicted in Figure 3. 

 

Fig. 3: Leader-follower method schematic diagram 

The leader-follower model is relatively simple, easy to 

understand, and deployable. It can be implemented through 

straightforward rules and algorithms. As long as the motion 

state of the leader is predefined, controlling the relative 

angle and distance of the followers relative to the leader 

suffices[12]. Considering the use of the LOS algorithm for 

path tracking in snake-like robots, the followers' path points 

are set as relative position points to the leader in the desired 

formation. As the leader continues to move, the followers' 

path points are continuously updated, thus achieving the 

goal of maintaining the desired formation. 

3.2 Multi-snake-like robot cooperative obstacle 

avoidance based on artificial potential field method 

In the artificial potential field method[13], robots are 

considered objects subject to two types of forces: attraction 

and repulsion. The attraction force generated by the target 

point draws the robot towards it, encouraging it to get as 

close to the target as possible. The repulsive force generated 

around obstacles prevents robots from approaching the 

obstacles, thereby avoiding collisions. The artificial 

potential field method can be utilized for local path planning 

of snake-like robots. The snake-like robot formation detects 

the surrounding environment, including the positions and 

shapes of obstacles, as well as the locations of other robots, 

through sensors or other devices. Based on the detected 

obstacle information, the local potential field around the 

snake-like robots is computed. The global potential field 

originates from the path points specified along the given 

mission path. The snake-like robots select the direction and 

speed of their next move based on the merged potential field 

information. It tends to move towards the target point but is 

influenced by the repulsive force of obstacles to avoid them. 

Through this approach, robots can intelligently navigate 

around obstacles in the local environment and move towards 

the target along the globally planned path, thus 

accomplishing the task of local path planning. 

The definitions of the attraction and repulsion field 

functions are as follows: ?@//�A� � 12 <@B4�A, AC"@D!
?��E�A� � F12 <�� 1B�A, A"G��  1B	�4, B�A, A"G�� ≤ B	0, B�A, A"G�� ≥ B	

�5� 

In equation (5), <@  and <�  represent the proportional 

constants, A represents the centroid coordinates �)* , )+� of 

the robot, while AC"@D  and A"G�  denote the centroid 

coordinates of the target point and the obstacle, respectively. B�A, A"G�� and B�A, AC"@D! represent the distance from the 

centroid coordinates of the current robot to the obstacle and 

the target, respectively. B	 represents the effective range of 

each obstacle potential field. 

In order to compute the attraction force K@// , repulsion 

force KLMN , and the combined force K  exerted on a single 

snake-like robot, we calculate the negative gradient of the 

attraction and repulsion fields, as depicted below: K@//�A� � <@�AC"@D  A!
K��E�A� � F<� O 1B�A, A"G��  1B	P 1B4�A, A"G�� , B�A, A"G�� ≤ 0

0, B�A, A"G�� ≥ 0
 

�6� K�A� � K@//�A� � K��E�A� �7� 
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Fig. 4: Diagram illustrating the forces acting on an individual 

snake-like robot 

The force situation of an individual snake-like robot in the 

potential field is depicted in Figure 4. Analyzing each snake-

like robot, the resultant force F obtained from the artificial 

potential field method is used for local path planning[14], 

guiding obstacle avoidance behavior. 

3.3 Formation shape transformation 

The formation transformation of a multi-snake-like robot 

formation refers to the adjustment of positions and 

orientations among multiple robots working in coordination 

to achieve specific formations or layouts. This enables better 

adaptation of multi-snake-like robots to complex 

environments and task requirements. Snake-like robots can 

adopt a wedge formation during environmental perception 

and detection, enabling comprehensive observation of 

obstacles from all directions[15]. Considering the geometric 

characteristics of snake-like robots, where the length in the 

direction of motion exceeds that in the normal direction, 

encountering large obstacles or narrow spaces can 

significantly disrupt the wedge formation. Therefore, 

adopting an l-shaped formation is necessary. 

Here, this paper introduces a formation transformation 

parameter S ∈ %S�|� � 0,1(  and an expression for the 

interference error: U �∥ current formation  desired formation ∥
� 1' d  e

fg3
∥ )�  )�h ∥ �8� 

Where N represents the number of snake-like robots, ∥&∥ 

denotes the Euclidean distance, )�  and )�h  represent the 

coordinates of the current position and the expected position 

point of individual snake-like robots, respectively. 

The magnitude of the expression U, which evaluates the 

interference error of the formation during the formation 

avoidance process, serves as the basis for formation 

transformation. Once the interference error U  exceeds a 

certain threshold Uj@*, the formation changes to an l-shaped 

formation. After completing the avoidance maneuver and 

moving a certain distance away from the obstacle, the 

original wedge formation is restored. 

The specific formation transformation mode is as follows: 

1) During operation, the formation system continuously 

monitors the interference error U between the current 

formation and the desired formation. If U is less than 

the threshold Uj@*, then S � 0, and the default wedge 

formation is maintained. 

2) If the interference error U exceeds the threshold Uj@*, 

then S � 1, triggering formation transformation. The 

formation is changed to an l-shape to address the 

presence of obstacles. 

3) After the formation completes obstacle avoidance and 

moves a distance k  away from the obstacle, the 

interference error U is checked again to see if it is less 

than Uj@*. 

4) If it is, then S � 0 to restore the original formation; 

otherwise, S � 1 to continue maintaining the l-shaped 

formation. 

After introducing formation transformation, the obstacle 

avoidance process for the entire snake-like robot formation 

is as follows: 

 

Fig. 5: Flowchart for multi-snake-like robot cooperative obstacle 

avoidance 

4 Simulation results and analysis 

4.1 Simulation of multi-snake-like robot formation 

To validate the feasibility of the multi-snake-like robot 

cooperative obstacle avoidance algorithm proposed in this 

paper, a simulation was conducted using the CoppeliaSim 

(V-REP) platform. A two-dimensional snake-like robot 

model was constructed for simulation. The parameters of the 

snake-like robot were configured as follows: 2l=0.3，�=0.5，�=1，�=50.4。 

Table 1: Initial state of the snake-like robot 

Snake �	�l� m	�l� ,̅(deg) 

Leader -0.5 0 0 

Follower 1 -1.9 0.6 35 

Follower 2 -2.2 -1 -15 
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Fig. 6: Initial state of the snake-like robot 

In order to enhance the visualization of the model, the 

results obtained from the CoppeliaSim simulation software 

(including the centroid coordinate trajectories of each snake-

like robot) will be plotted as a graph. Figure 7 shows the 

motion trajectory of the multi-snake-like robot formation in 

an ideal environment. 

 

Fig. 7: The motion trajectory of the snake-like robot formation 

under ideal conditions 

It can be observed that the adopted leader-following 

model effectively maintains the desired formation of the 

snake-like robot group. The wave-like pattern in the 

trajectory of the robots in the figure is due to the movement 

mechanism of the snake-like robots. Snake-like robots 

propel forward by generating friction with the ground 

through the back-and-forth twisting of their joints. 

4.2 Simulation of multi-snake-like robot formation 

with obstacle avoidance. 

Figure 8 illustrates the collaborative obstacle avoidance 

effect of the snake-like robot formation with the introduction 

of formation evaluation function. 

 

Fig. 8: Motion trajectory of the snake-like robot formation during 

obstacle avoidance. 

It can be observed that with the introduction of the 

formation evaluation function, the snake-like robot 

formation switches to a more flexible l-shaped formation 

when encountering obstacles that significantly affect the 

formation. The robots initially proceed with wedge 

formation. Upon detecting small obstacles, they rely on 

artificial potential field methods for local path planning and 

adjust the relative positions between robots. This allows 

them to achieve obstacle avoidance while maintaining the 

formation as much as possible. When encountering larger 

obstacles or narrow spaces, the formation evaluation 

function facilitates a switch to an l-shaped formation to 

navigate through obstacles, ultimately reaching the task 

operation point. 

5 Conclusion 

This paper presents a method for multi-snake-like robot 

formation coordination and obstacle avoidance, which 

combines artificial potential field methods and leader-

follower models. This method enables a group of multiple 

snake-like robots, including one leader and several followers, 

to advance towards the task point in an organized manner 

according to the desired formation. When obstacles are 

detected along the path, the snake-like robot group performs 

obstacle avoidance behavior based on artificial potential 

field methods while maintaining the formation. Furthermore, 

an additional formation evaluation function is introduced. 

During obstacle avoidance, this function can continuously 

detect the deviation between the current formation and the 

desired formation. When encountering large obstacles that 

significantly disrupt the formation, the current formation is 

disrupted. The robot group can rely on the formation 

evaluation function to transform the formation into a flexible 

l-shaped formation, ultimately reaching the task point. 

Finally, the effectiveness of the proposed method for multi-

snake-like robot formation control and obstacle avoidance 

was verified using CoppeliaSim simulation software. In 

future work, we plan to implement this method on actual 

snake-like robot groups. 
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1 Introduction 

In recent years, research in the shipping industry on 

intelligent energy efficiency optimization for vessels has 

gradually deepened, and there has been preliminary 

exploration of big data technology in the field of shipping 

optimization management[1-3]. Reference [1] explores the 

construction content of big data for inland vessels, providing 

methods for acquiring and analyzing vessel big data. 

Building on this, reference [2] designs a big data monitoring 

platform for energy efficiency optimization management in 

vessels, proposing corresponding technical indicators and 

experimental verification plans. Reference [3] investigates 

an intelligent optimization method for ship routes, providing 

optimal route decision-making through the analysis of 

historical big data on typical routes. Although there have 

been initial exploratory achievements in the application of 

big data technology to intelligent optimization management 

in shipping, the traditional energy efficiency management 

systems for trailing suction hopper dredgers, being biased 

toward data collection, currently lack comprehensive 

analysis and exploration of data features. This disparity 

results in uncertainty when correlating the energy efficiency 

of trailing suction hopper dredgers with the operational 

parameters of the vessels themselves. Therefore, exploring 

the underlying patterns in dredger operational data to predict 

energy efficiency more accurately is a worthwhile research 

question. 

With the rapid development of artificial intelligence 

technology, strategies for evaluating ship energy efficiency 

levels using intelligent optimization models and algorithms 

have garnered attention from scholars both domestically and 

internationally[4-9]. Reference [4] has developed an oil 

tanker decision-making system based on neural networks to 

predict energy efficiency during cruise voyages. 

                                                           
This work was supported in part by the National Natural Science 

Foundation of China (62273114), in part by the Macao Young Scholars 

Program (AM2022004), in part by the China Postdoctoral Science 
Foundation (No. 2019M661255, No. 2021T140149).  

Corresponding author: Liheng Chen 

Furthermore, reference [5] delves deeper into the entire 

process of fuel consumption, further enhancing prediction 

accuracy. Reference [6] has established ship performance 

models under various conditions, enabling accurate 

prediction of fuel consumption for cruise ships.However, 

due to the influence of multiple factors during the dredging 

process, the operation of  TSHD exhibits strong nonlinearity. 

Traditional energy efficiency modeling methods struggle to 

achieve accurate energy efficiency predictions for TSHDs. 

Currently, there is no definitive theoretical outcome for the 

assessment and optimization of TSHD efficiency. 

To address the aforementioned issues, this paper first 

preprocesses the data through clustering algorithms, mining 

implicit information in the dredger data and clustering the 

data. Subsequently, using correlation analysis, it selects 

features with significant correlations to trailing suction 

hopper dredger (TSHD) energy efficiency as the research 

focus. By integrating data from various clusters and 

employing a Backpropagation(BP) neural network, a TSHD 

energy efficiency prediction model has been established, 

resulting in accurate energy efficiency forecasts. 

2 Research Methods 

The dredging process of trailing suction hopper dredgers 

(TSHDs) exhibits typical characteristics of nonlinearity and 

time delay, making the relationship between energy 

efficiency and operational parameters complex and 

challenging to establish predictive models. Therefore, in this 

paper, non-working condition data is first removed based on 

the energy efficiency formula. Subsequently, clustering 

algorithms are applied to preprocess the data, uncovering 

hidden relationships within the data and further categorizing 

it. After dividing the data into different clusters, a 

correlation analysis is conducted to identify features with 

significant correlations to energy efficiency as the research 

focus. A predictive model for TSHD energy efficiency has 

been developed using BP neural networks, ensuring precise 

forecasts. The specific methodological process is illustrated 

in Fig. 1. 

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
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Fig. 1: Overall Process Diagram 

 

2.1 DBSCAN Based on Particle Swarm Optimization 

Algorithm 

The DBSCAN algorithm is a type of density-based 

clustering algorithm. It defines clusters as the maximal set of 

density-connected points, allowing the discovery of clusters 

of arbitrary shapes and identification of noise points in the 

dataset. Concepts such as Eps, MinPts, core objects, direct 

density reachability, density reachability, and density 

connectivity in the DBSCAN algorithm are detailed in 

reference [10]. The selection of Eps and MinPts parameters 

in the DBSCAN algorithm is crucial. To address this, the 

Particle Swarm Optimization (PSO) algorithm is employed 

to optimize the values of Eps and MinPts, as illustrated in 

the experimental process diagram in Fig. 2. 

 

Fig. 2: Clustering Process Diagram 

To enhance clustering effectiveness, this paper uses the 

silhouette coefficient as the evaluation metric for clustering 

results and employs it as the fitness function in the PSO 

algorithm. The formula for calculating the silhouette 

coefficient for all sample points is as follows: 

S =  1
N � b(i) −  a(i)

max�a(i), b(i)��
 

In the formula, N represents the total number of samples, 

a(i) denotes the average distance from sample point i to the 

other points within the same cluster. If a cluster contains 

only one sample, this value is 0, indicating the dissimilarity 

among samples within the cluster. Refer to the specific 

details in reference [11]. b(i) represents the minimum 

average distance from sample point i to the points in other 

clusters, describing the dissimilarity among samples from 

different clusters. The silhouette coefficient has a range of 

[-1,1], with values closer to 1 indicating better clustering 

effectiveness. 

2.2 Backpropagation Neural Network 

Neural networks can map complex relationships based on 

system input and output data, constructing intricate 

nonlinear models through layers of neurons and weighted 

connections. In this paper, we utilize the Backpropagation 

(BP) neural network to investigate the issue of predicting the 

energy efficiency of trailing suction hopper dredgers. The 

typical structure of a BP neural network is depicted in the 

diagram below, comprising an input layer, hidden layers, 

and an output layer reference [12-13]. 

 

Fig. 3: Diagram of the BP Neural Network Structure 

The BP neural network achieves continuous optimization 

of model parameters through forward signal propagation 

and backward error propagation. To reduce the complexity 

of the model and enhance prediction accuracy, prior to 

constructing and training the model, this paper performs 

feature selection for the neural network by calculating the 

correlation between various operational parameters of the 

trailing suction hopper dredger and its energy efficiency. 

The correlation calculation is as follows:" 

���  =  ���(�, �)
��(�) ∗ ��(�)  

In the formula, X and Y represent two distinct features, 

Cov(X, Y) denotes the covariance, and D(X) and D(Y) 

represent the variance of the features. 
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3 Experimental Analysis  

The dataset used in this paper consists of actual ship data 

from a specific trailing suction hopper dredger, totaling 

17,640 samples and including 35 features such as slurry 

pump concentration, displacement, speed, and flow rate. 

Due to the energy efficiency formula: 

Energy Efficiency = Power
(Concentration ∗ Density ∗ Flow Rate) 

In the subsequent data preprocessing, four related factors, 

namely slurry pump power, slurry pump concentration, 

slurry pump density, and slurry pump flow rate, cannot 

undergo correlation analysis. As per the formula, during the 

dredging process, the mud compartment capacity undergoes 

a significant increase, and the slurry pump speed is in a 

high-speed state, resulting in a higher slurry pump 

concentration. In non-working processes, the mud 

compartment capacity remains relatively stable, the slurry 

pump speed is close to zero, and the concentration is also 

close to zero. Therefore, based on the values of slurry pump 

concentration, the data is divided into two working 

conditions: working and non-working. 

3.1 Clustering 

Based on the distribution of slurry pump concentration 

data for the trailing suction hopper dredger, a concentration 

threshold of 0.64 is set to classify the dredger data into two 

working conditions: working and non-working. The focus of 

this study is on predicting efficiency in the working state. To 

address the influence of noise in the data, Gaussian filtering 

is employed for denoising, followed by normalization using 

the linear normalization method. 

By calculating the variance between different features, 

features with higher variance are selected as input features 

for clustering. Larger feature variances indicate greater 

differences among sample points in that feature, making it 

easier for clustering algorithms to separate samples of 

different categories. The calculated feature variances range 

from a minimum of 0.006807 to a maximum of 0.074087. 

Features with higher variances are selected, and the 

information is detailed in Table 1. 

Table 1: Cluster Feature Variance Table 

Feature Variance 

Average Draft 0.059311 

Bow Draft Calculation 0.059051 

Current Slurry Compartment 

Liquid Level 
0.055694 

Current Slurry Compartment 

Capacity 
0.058265 

Ship Displacement 0.059068 

Tide Level 0.074087 

The distribution of the original data is shown in the figure 

below: 

 

Fig. 4: Graph of the Distribution of Original Data 

In this paper, the KMeans clustering algorithm is initially 

employed, with a hyperparameter k ranging from 2 to 10. 

The silhouette coefficient is used as the evaluation metric. 

By iterating through all values of k, the best clustering 

performance is achieved when k=2, as shown in the 

clustering results in Fig. 5. 

 

Fig. 5: KMeans Clustering Result Graph 

From the distribution of sample data, it is evident that the 

data does not exhibit a spherical shape, and there are clear 

linear relationships between some features, causing the data 

to appear in a bar-like manner in certain feature dimensions. 

This makes KMeans less suitable. Therefore, in this paper, 

DBSCAN is used for clustering. The PSO optimization 

algorithm is applied to optimize the parameters Eps and 

MinPts in the DBSCAN clustering algorithm. Eps is set 

within the range of [0.1, 5], and MinPts within the range of 

[1, 8]. The optimal results are obtained when Eps=0.188 and 

MinPts=6, with a silhouette coefficient of 0.591. This result 
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is slightly better than KMeans. The clustering results are 

shown in Fig. 6. 

 

Fig. 6: DBSCAN Clustering Result Graph 

3.2 Energy Efficiency Prediction 

To improve the accuracy of the prediction model, separate 

training is conducted on the classified data. Data 

preprocessing, including Gaussian filtering and 

normalization, is performed. Feature selection is carried out 

through correlation analysis. By calculating the correlation 

coefficients between different features and energy 

efficiency, features with higher correlation are selected as 

input parameters for the neural network model. The 

correlation coefficient values range from -1 to 1, where 

values closer to 0 indicate lower correlation, values closer to 

1 indicate a positive correlation, and values closer to -1 

indicate a negative correlation. The results of feature 

selection are shown in Table 2. 

Table 2: Neural Network Input Feature Table 

Feature 
Correlation 

Coefficient 
Left High Pressure Flush Pump Discharge 

Pressure Pump Discharge Pressure 
0.300213 

Left High Pressure Flush Pump Speed 0.331820 

Slurry Pump 1 Speed 0.789902 

Slurry Pump 1 Flow Rate -0.368278 

Slurry Pump 1 Pressure 0.337156 

Slurry Pump 1 Motor Speed 0.789940 

The training results of the BP neural network on the 

training set are shown in Fig. 7, and the testing results on the 

testing set are presented in Fig. 8. Here, only the 

performance of the model on data from one cluster is 

displayed: 

 

Fig. 7: Training Set Model Prediction Results Graph 

 
Fig. 8: Testing Set Model Prediction Results Graph 

The Mean Absolute Error (MAE) of the BP neural 

network on the testing set is 0.00723, and the Root Mean 

Square Error (RMSE) is 0.00899. 

4 Conclusion 

This paper, initially through variance analysis, selected 

input features for the clustering algorithm. By observing the 

distribution of the dataset and comparing KMeans with 

DBSCAN clustering, the decision was made to use the 

DBSCAN algorithm for clustering the original dataset. 

Simultaneously, with the aid of the Particle Swarm 

Optimization (PSO) algorithm, it optimized the 

hyperparameters of the DBSCAN algorithm, achieving 

classification of trailing suction hopper dredger operational 

data. Subsequently, an analysis was conducted on the 

classified data. Through Gaussian filtering and correlation 

analysis, suitable features were selected. Leveraging the 

powerful nonlinear mapping capability of the BP neural 

network, a successful nonlinear model between the energy 

efficiency and operational parameters of the trailing suction 

hopper dredger was established. This enabled rapid and 

accurate prediction of the energy efficiency of the dredger. 

 

 

1297  



  

References 

 

 

[1] Cao, Mengmeng , and  C. Guo . "Key technologies of big data 

and its development in intelligent ship." International 

Conference 2017:61-65. 

[2] Erto, Pasquale , et al. "A procedure for predicting and 

controlling the ship fuel consumption: Its implementation and 

test." Quality and Reliability Engineering 

31.7(2015):1177-1184. 

[3] Wang, Kai , et al. "Study on route division for ship energy 

efficiency optimization based on big environment data." 

International Conference on Transportation Information & 

Safety IEEE, 2017. 

[4] Besikci, E. Bal , et al. "An artificial neural network based 

decision support system for energy efficient ship operations." 

Computers & Operations Research 66.FEB.(2016):393-401. 

[5] Tillig, Fabian , et al. "Analysis of uncertainties in the 

prediction of ships' fuel consumption – from early design to 

operation conditions." Ships and Offshore Structures 

13.S1(2018):S13-S24. 

[6] Lu, Ruihua ,  O. Turan , and  E. Boulougouris . "Voyage 

optimisation: Prediction of ship specific fuel consumption for 

energy efficient shipping." LCS 2013 - 3rd International 

Conference on Technologies, Operations, Logistics and 

Modelling for Low Carbon Shipping 2013. 

[7] Hou, Yuanhang , et al. "Vessel energy efficiency uncertainty 

optimization analysis in ice zone considering interval 

parameters." Ocean engineering 232-Jul.15(2021). 

[8] Christos, Spandonidis , et al. "Evaluation of ship energy 

efficiency predictive and optimization models based on noon 

reports and condition monitoring datasets." International 

Conference on Data Analytics 2018. 

[9] Theodoropoulos, Panayiotis , et al. "Evaluation of different 

deep-learning models for the prediction of a ship's propulsion 

power." Journal of Marine Science and Engineering 

9.2(2021):116. 

[10] Dafir, Zineb ,  Y. Lamari , and  S. Slaoui . "A survey on 

parallel clustering algorithms for big data." (2021). 

[11] Aranganayagi, S. , and  K. Thangavel . "Clustering 

categorical data using silhouette coefficient as a relocating 

measure." International Conference on Conference on 

Computational Intelligence & Multimedia Applications IEEE, 

2007:13-17. 

[12] Xue, Yang , et al. "Fault detection based on backpropagation 

neural network for liquid propellant rocket engine." 

International Symposium on Test and Measurement 2005. 

[13] Little, Gordon R. ,  S. C. Gustafson , and  R. A. Senn . 

"Generalization of the backpropagation neural network 

learning algorithm to permit complex weights." Applied 

Optics 29.11(1990):1591-2. 

 

 

1298  



Circular Phased Array Ultrasonic Transducer Design for
Internal Inspection of Natural Gas Pipeline

ZhongWei Qi1, Mingyan Liao1, Li Sheng ∗1, Zhongyu Chen1, Yichun Niu2

1. College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
E-mail: shengli@upc.edu.cn

2. College of Electrical Engineering and Automation, Shandong University of Science and Technology,Qingdao 266590, China
E-mail: niuyichun123@163.com

Abstract: In the paper, a 256-element circular array ultrasonic transducer is designed to create a controllable and focused
3D cylindrical ultrasound beam for pipeline inspection of natural gas pipelines. First, a localized three-dimensional acoustic
modeling of the considered 250-mm-caliber pipeline is constructed by using the k-Wave toolbox. Then, the layout manner of
the phased array is given previously, while the active aperture and input signal frequency of the phased array are determined
via the experimental method. Finally, the simulation results on the axial-radial and circumferential-radial planes are exhibited
to analysis the effectiveness of the proposed method. The results indicate that the piezoelectric transducer array can derive a
feasible focused beam, providing a basis for future transducer prototyping.

Key Words: Natural gas pipelines, Circular ultrasonic phased array, Pipeline inspection, K-Wave toolbox

1 Introduction

With the development of ultrasound technology in the
field of the non-destructive testing (NDT), there is a grow-
ing demand for ultrasound techniques used in the internal
inspection of pipes, and the requirements for focused ad-
justable beam profiles in three-dimensional cylindrical s-
paces are also increasing[1, 2]. In traditional detection meth-
ods, transducer arrays may need to move and deflect to de-
tect three-dimensional cylindrical sound fields. Additionally,
the detection sensitivity and resolution of traditional single-
element imaging devices are unsatisfactory, despite can de-
tect the circumferential cracks and pinholes[3].

To address the above drawbacks, in recent years, a phased
array technology is proposed and widely extended to the
field of NDT[4, 5]. Under the phased array technology, var-
ious steering or focusing sound beams can be formed by ap-
propriately exciting the phased array through focal law de-
lay elements[6, 7]. Furthermore, in ultrasound testing and
power ultrasound, scanning the entire space for NDT can be
achieved by controlling the phase of linear or planar phased
array excitation signals[8, 9]. Currently, the researches on
phased array beam control are mainly focused on linear, pla-
nar, spherical, and quasi-spherical focusing arrays, which are
well-suited for scanning spherical, sector-shaped, or square
spaces[10]. The literature[11] indicates that the scanning
sound fields in cylindrical three-dimensional spaces has a
certain degree of complexity. It is hoped that by manipulat-
ing the focus of the sound field through phased array technol-
ogy, the entire three-dimensional space of the pipeline can be
scanned, thereby addressing internal inspection challenges
in pipelines.

Inspired by the discussions above, this paper proposes a
circular array ultrasound transducer consisting of 256 rect-
angular piezoelectric elements for studying the acoustic field
distribution of phased array ultrasound in three-dimensional
cylindrical space, aiming to enhance internal detection in
pipelines. Firstly, by using the k-Wave toolbox, a localized

This work is supported by the Postdoctoral Program for Innovative Tal-
ents of Shandong Province of China under Grant SDBX2023021.

three-dimensional acoustic modeling of the considered 250-
mm-caliber pipeline is constructed where the circular array
ultrasound transducer concentric with the pipeline. Subse-
quently, based on the designed delay laws of the phased ar-
ray ultrasound, the expected focal positions of the ultrasound
waves in a non-uniform medium are calculated. An analy-
sis of the axial radial plane (ARP) and circumferential ra-
dial plane (CRP) acoustic pressure field distribution is con-
ducted based on the temporal simulation results of the ultra-
sound waves, determining parameters such as active aperture
size and operating frequency. Finally, considering the deter-
mined active aperture size and frequency, the impact of the
spacing between array elements and the width of array ele-
ments on the acoustic field is analyzed. To ensure successful
internal detection in pipelines, phase control techniques are
employed to manipulate the focal points of the acoustic field
and scan the entire pipeline. The main contributions of this
paper are as follows:

1) This paper, for the first time, proposes a 256-element
circular array ultrasonic transducer.The proposed trans-
ducer can create a controllable and focused 3D cylin-
drical ultrasound beam used for the internal inspection
of natural gas pipelines.

2) The proposed design scheme analyzes the arrangement
parameters of a circular array of sensors and provides
a method for the acoustic field analysis of circular ar-
ray ultrasound transducers, laying the foundation for
the next step in constructing a prototype based on the
transducer principles.

2 Sound Field Simulation Theory

When sound waves pass through a medium, some physi-
cal quantities may be changed such as pressure, density, tem-
perature, and particle velocity. These changes are explained
by a coupled first-order partial differential equations that are
based on the conservation of mass, momentum, and energy.
The propagation of an acoustic wave with high energy in a
non-uniform medium is nonlinear, which can be reflected in
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the following system equation[12]:


∂u
∂t = − 1

ρ0
∇p

∂ρ
∂t = − (2ρ+ ρ0)∇ · u− u · ∇ρ0

p = c20

(
ρ+ d · ∇ρ0 + B

2A
ρ2

ρ0
− Lρ

) (1)

where u is the acoustic particle velocity; ρ0 is the ambient
density; ρ is the acoustic density; d is the acoustic particle
displacement; p is the acoustic pressure; t is the time; c0
is the isentropic sound velocity; B/A is the nonlinearity pa-
rameter; L is a linear integral-differential operator which can
be expressed as:

L = τ
∂

∂t

(
−∇2

)y/2−1
+ η
(
−∇2

)(y+1)/2−1
(2)

in which τ is the absorption scaling factor, η is the dispersion
scaling factor and y is the power law exponent.

For solving partial differential equations, the tradition-
al finite element and finite difference methods need to em-
ploy a large number of grid points for each acoustic wave-
length, which makes it difficult to solve them using the reg-
ular computer. For this challenge, the spectrum of spatial
derivatives is computed by using the k-Wave toolbox, the
k-space pseudo-spectral method and fast Fourier transform.
In tests, the k-Wave is a effective toolbox on modeling non-
destructive experiment environment. To obtain accurate re-
sults, only two grid points per wavelength are theoretically
required since the basis functions are sinusoidal, which can
allow a quick calculation. After discretizing the coupled a-
coustic equations, we can obtain the following discretized
equation:
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∂ξp

n = F−1
{
ikξκe

−ikξ∇ξ/2F {pn}
}

u
n+ 1

2

ξ = u
n− 1

2

ξ − ∆t
ρ0

∂
∂ξp

n + ∆tSnFξ
∂
∂ξu

n+ 1
2

ξ = F−1
{
ikξκe

−ikξ∇ξ/2F
{
u
n+ 1

2

ξ

}}
ρn+1
ξ =

ρnξ−∆tρ0
∂
∂ξu

n+1
2

ξ

1+2∆t ∂∂ξu
n+1

2
ξ
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1
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(
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(3)

where F denotes the Fourier transform, i is the imaginary
unit, kξ denotes the number of waves in the ξ-direction, ∇ξ
denotes the grid spacing in the ξ-direction, F−1 denotes the
Fourier inverse transform, κ = sinc (crefk∆t/2) is the k-
space operator, cref is the reference speed of sound, and
ξ is described as ξ = x ∈ R, ξ = [x, y]

T ∈ R2 and
ξ = [x, y, z]

T ∈ R3 under one, two and three dimensional
vector spaces respectively. The density ρn+1

ξ is decomposed
into Cartesian components to introduce anisotropic perfectly
matched layer. At each time step, the source values are typ-
ically added to appropriate grid points in the computational
domain, which can contain a mass or force source. Similar-
ly, the experiment results can be obtained by recording the
acoustic variables at specific grid points at each time step.

3 Delay Law for Phased Array and Simulation
Model

3.1 Delay law for phased array
The transducer array is retrofitted to the pipe robot and

is coaxial with the pipe during pipe work. The schematic
diagram of the transducer array, pipeline robot, and pipeline
is shown in Fig. 1, N transducer elements are equidistantly
spaced at a center distance P , with width W and length l.
Ultrasonic waves with a center frequency f are emitted by
these elements. The spacing in the thickness of Dw is filled
with water. The speed of sound in the water is measured as
c1 = 1540m/s, and the speed of sound in the wall of the
natural gas pipe is measured as c2 = 5890m/s. The outer
diameter of the natural gas pipe is 2R0, and the radius of the
transducer array is RT . The thickness of the wall of the pipe
is Dtw. The specific parameters are shown in Table 1.

2R0

l

2RT

Dtw Radial

Axial

Circumferential

TransducerTube

p

Dw

Fig. 1: Schematic diagram of the transducer in the pipeline.

Table 1: Parameters of circular transducer
Symbol Parameter Value

N Element number 64
P Pitch 2.33mm
W Element width 2.0mm
l Element length 10.0mm

RT Transducer radius 95mm
f Central frequency 10MHz
Dw Coupling agent thickness 25mm
R0 Tube outer radius 125mm
Dtw Tube wall thickness 5.0mm

When designing the delay law, the following factors need
to be considered: (1) the difficulty of detecting defects on the
inner and outer walls of a pipeline increases with the acoustic
pressure difference between the inner and outer walls of the
pipeline; (2) if the sound beam becomes narrower the resolu-
tion increases, if the sound pressure increases the detection
sensitivity increases. (3) a suitable focusing point needs to
be selected to balance the sound beam, sound pressure and
acoustic pressure difference, achieving high accuracy, reso-
lution and sensitivity in internal pipe inspection. To verify
the delay law and analysis the performance of the acoustic
beam during the simulation, a rectangular area of 30 mm ×
35 mm is taken as the simulation area in the CRP, which is
shown in Fig. 2. The delay times ∆ti are computed by the
following equation:

∇ti =

(
Dw

cosαi
−Dw

)
1

c1
+

(
F

cosβi
− F

)
1

c2
(4)

where i = 1, 2, · · ·n, the number of array elements is n in
the active aperture, the thickness of the medium isDw in me-
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Fig. 2: Sketch of the simulation area.

ters, the angle of ultrasound incidence is αi at the medium-
steel interface in radians, the angle of ultrasound refraction
is βi in radians, the depth of focusing of the pipeline wall is
F in meters, c1 and c2 are the velocities of the ultrasound
waves in the medium and the steel, respectively. αi and βi
are given by the equations:

Dw tanαi + F tanβi = RT · ∠Oi (5)

sinαi
sinβi

=
c1
c2

(6)

where RT stands for the radius of the array in meters; ∠Oi
stands for the angle between the midpoint of the i-th array
element width and the centerline in radians.

3.2 Simulation model
Based on the selected simulation region, the construction

of the acoustic field is carried out in the k-Wave toolbox,
which is shown in Fig. 3 (8 elements). Furthermore, six cy-
cles of a 1MHz Gaussian plus windowed sine wave signal is
used as an input signal, as displayed in Fig. 4. The array el-
ement simulation calculation area for the three-dimensional
space(Nx ×Ny ×Nz) exists the following parameters: the
number of grids along the x-direction Nx = 150; the num-
ber of grids along the y-direction Ny = 300; the number of
grids along the z-direction Nz = 350 , dx = dy = dz =
0.1× 10−3m.

Fig. 3: Sensor array setup in the computational domain.

Fig. 4: 6-cycle Gaussian plus windowed 1MHz sine wave.

4 Numerical simulation

The focal point based on the k-Wave toolbox simulation
is located in the middle of the tube wall with a focal depth of
2.5 mm. The sound beam is set to fixed and transducers are
configured for each grid to record pressure. Considering on-
ly the area inside the tube wall is involved in the experiment,
the area outside the pipeline wall is set to 0 when displaying
the sound pressure distribution.

4.1 Active aperture analysis
The acoustic field is simulated in a designated simulation

area, and the ultrasonic acoustic fields are simulated for ac-
tive apertures with elements of four, six, eight, and ten. The
acoustic field in the CRP and ARP for various apertures can
be seen in Figs. 5 and 6, and the beam characteristics are
detailed in Table 2.

Table 2: Parameters of circular transducer
Element number 4 6 8 10

Maximum pressure Pa 3.60 4.19 4.11 4.38
Inner wall pressure Pa 3.60 4.19 4.01 3.67
Outer wall pressure Pa 2.08 2.97 3.73 4.26

∆P = |Pouter − Pinner| Pa 1.52 1.22 0.28 0.59
Focal point depth mm 0 0.1 2.1 3.5

Beam width(Circumferential) mm 4.8 4.6 4.8 4.4
Beam width(Axial) mm 6.4 6.2 7.4 8.6

The 4-element aperture, shown in Figs. 5(a) and 6(a), pro-
duces an unfocused acoustic beam. The 6-element apertures
shown in Figs. 5(b) and 6(b) are more uniformly distribut-
ed, but the focus remains near the inner wall of the pipe.
The 8-element and 10-element apertures have a focused a-
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(a) (b)

(c) (d)
Fig. 5: Normalized beam profile of different apertures
(CRP). (a)four-element. (b)six-element. (c)eight-element.
(d)ten-element.

(a) (b) (c) (d)
Fig. 6: Normalized beam profile of different apertures
(ARP). (a)four-element. (b)six-element. (c)eight-element.
(d)ten-element.

coustic field, with beam widths of 4.8 mm and 4.4 mm in
the CRP, and 7.4 mm and 8.6 mm in the ARP, respective-
ly, as surveyed by the full width at half maximum (FWHM)
method. According to the FWHM method, the 8-element
and 10-element apertures are presented as focused acoustic
fields, where the beamwidths of 4.8 mm and 4.4 mm for CR-
P and 7.4 mm and 8.6 mm for ARP, respectively. The results
show that the 8-element can derive a smaller side lobe and
that its sound field focus is located at a depth of 2.1 mm in
the tube wall, which is close to the ideal value. In all four
cases, the 8-element aperture possesses the optimal results
for the sound field distribution of CRP and ARP.

Analysis of both the CRP and ARP acoustic fields reveals
that an aperture size of 8 elements is the most suitable for the
detection of the pipe wall when a single array element with a
length of 10 mm, width of 2 mm, and an array element center
distance of 2.33 mm is used, and the input signal frequency
is 1 MHz.

4.2 Input signal analysis
The above simulation determines the optimal active aper-

ture size of the 8-element in the case of a single array ele-

ment with a length of 10 mm, a width of 2 mm, an array
element center distance of 2.33 mm, and a frequency of 1
MHz for the input signal. To determine the optimal frequen-
cy of the input signal, the size of the active aperture is set
to 8-element, while the rest of the transducer parameters re-
main unchanged. The acoustic field is simulated using the
k-Wave toolbox in the designed simulation area, and the ul-
trasonic acoustic field is simulated for the input signal with
frequencies of 0.8 MHz, 1 MHz, and 1.2 MHz. The results
of the simulation of the acoustic field of CRP and ARP at d-
ifferent frequencies are shown in Figs. 7 and 8, and the beam
characteristic parameters are listed in Table 3.

(a) (b) (c)
Fig. 7: Normalized beam profile of various frequency signals
(CRP). (a)0.8 MHz. (b)1 MHz. (c)1.2 MHz.

(a) (b) (c)
Fig. 8: Normalized beam profile of various frequency signals
(ARP). (a)0.8 MHz. (b)1 MHz. (c)1.2 MHz.

Table 3: Characteristic Parameters of Different Input Signal

Transducer operating frequency MHz 0.8 1 1.2

Maximum pressure Pa 3.75 4.11 4.18
Inner wall pressure Pa 3.75 4.01 3.59
Outer wall pressure Pa 3.08 3.73 4.14

∆P = |Pouter − Pinner| Pa 0.67 0.28 0.55
Focal point depth mm 0 2.1 3.9

Beam width(Circumferential) mm 8.6 4.8 4.6
Beam width(Axial) mm 6.8 7.4 7.6

The results of the simulation analysis for CRP and ARP
sound fields indicate that, when the input frequency is be-
low 1MHz, a downward shift in the acoustic field focus is
observed, leading to higher sound pressure near the inner
tube wall, smaller overall sound pressure, and a wider sound
beam width when measured with the FWHM. When the fre-
quency exceeds 1MHz, a smaller sound beam width is mea-
sured with the FWHM, but an upward shift in the focus of the
acoustic field occurs, resulting in higher sound pressure near
the outer pipe wall and a slight increase in overall acoustic
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pressure. At 1MHz, The overall sound pressure difference of
the pipe is minimized, and the focus is brought close to the
middle of the pipe wall. Consequently, with 8 active aperture
sizes, the best sound field distribution for the input signal is
achieved at 1 MHz.

4.3 Array spacing analysis
Maintaining the active aperture size of 8-element un-

changed, the spacing between the array elements from the
original 0.33 mm to 0 mm spacing and the rest of the trans-
ducer parameters constant, the use of the k-Wave toolbox in
the designed simulation area for the simulation of the acous-
tic field produces the CRP and ARP acoustic field simulation
results shown in Fig. 9, and the acoustic beam characteristic
parameters are listed in Table 4.

(a1) (a2)

(b1) (b2)
Fig. 9: Normalized beam profile of various array element
spacing. (a)P = 0mm. (b)P = 0.33mm.

Table 4: Characteristic Parameters of Different Input Signal

Array element spacing mm 0 1

Maximum pressure Pa 4.34 4.11
Inner wall pressure Pa 4.08 4.01
Outer wall pressure Pa 4.16 3.73

∆P = |Pouter − Pinner| Pa 0.08 0.28
Focal point depth mm 2.7 2.1

Beam width(Circumferential) mm 5.4 4.8
Beam width(Axial) mm 8.0 7.4

When the spacing between the array elements is reduced
to zero, the sound field shown in Fig. 9(a) exhibits an over-
all increase in sound pressure, which reduces the pressure
difference between the inside and outside of the pipe wall.
The focus is closer to the center of the tube wall at 2.7 mm.
The beam width on the CRP and ARP is 5.4mm and 8.0mm
respectively, slightly larger than before. The analysis shows
that reducing the spacing of the array elements increases the
effective length of the array, improving its beam focusing
ability, increasing the emission area, and resulting in more
acoustic energy being radiated and a stronger overall acous-
tic field.

4.4 Element width analysis
The width of the array element is reduced from 2 mm to

1 mm while keeping the size of the 8-element active aper-
ture unchanged. At the same time, the number of elements
is increased to 16. Keeping the rest of the parameters un-
changed, the designed simulation area is used to simulate
the sound field using k-Wave, and the results are shown in
Fig. 10. The acoustic beam characteristics of the parameter
are listed in Table 5.

(a1) (a2)

(b1) (b2)
Fig. 10: Normalized beam profile of various array elemen-
t width and number. (a)W = 1mm,N = 16. (b)W =
2mm,N = 8.

Table 5: Characteristic Parameters of Different Input Signal

Element number 16 8

Maximum pressure Pa 4.38 4.11
Inner wall pressure Pa 4.22 4.01
Outer wall pressure Pa 3.93 3.73

∆P = |Pouter − Pinner| Pa 0.29 0.28
Focal point depth mm 2.2 2.1

Beam width(Circumferential) mm 4.4 4.8
Beam width(Axial) mm 7.0 7.4

In the CRP and ARP sound field analysis, the width of
each array element is 1 mm. Therefore, the sound pressure
enhancement in the 16-element sound field is slightly larg-
er compared with the 8-element sound field shown in Fig.
12(a). The focus depth of 2.2mm is closer to the middle
of the pipe wall. The CRP and ARP sound fields have nar-
row beam widths. Reducing the width of the array element
and increasing the number of array elements can improve
the directionality of the ultrasonic beam, thereby resulting
in a narrower main lobe width and a more focused acoustic
beam.

5 Conclusion

The paper has presented the design of a 256-element cir-
cular array ultrasonic transducer aimed at generating a con-
trollable and focused 3D cylindrical ultrasound beam for
the inspection of natural gas pipelines. Initially, a localized
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three-dimensional acoustic model of the 250-mm-caliber
pipeline under consideration has been constructed using the
k-Wave toolbox. Subsequently, the layout of the phased ar-
ray, along with the determination of the active aperture and
input signal frequency, have been outlined earlier, relying on
experimental methods. In conclusion, the simulation result-
s on the axial-radial and circumferential-radial planes have
been presented to assess the effectiveness of the proposed
method. The findings have suggested that the piezoelec-
tric transducer array can be capable of producing a viable
focused beam, laying the groundwork for future transducer
prototyping.
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Abstract: The multi-robot intelligent dispatch system for warehouse means that in the warehouse system, order processing is 

carried out by each robot transporting a designated rack to the picking station, and the task allocation and path planning of the 

robot are particularly important to improve the system efficiency. In this paper, we choose a task allocation algorithm based on 

market auction, in which the robot combines the cost of the task itself with the associated cost between tasks to optimize the total 

distance of all robots and the longest running time of robots when bidding. And for multi-robot path planning, the grid method is 

used to model the map, and an improved A* algorithm is proposed, which combines the traditional A* algorithm with the traffic 

regulations and the reservation table to realize the optimal path from the start point to the target point. At the end of the paper, we 

make simulation experiments. The GUI interface is designed to show the task generation, distribution and robot working status in 

the warehousing environment and the feasibility and effectiveness of the proposed scheme are verified. 

Key Words:  Warehousing Environment, Multi-robot System, Task Allocation, Path Planning 

 

 
  

1 Introduction 

In recent years, there has been a significant 

development in information technology and industrial 

technology, leading to a global wave of technological 

advancement centered around artificial intelligence. 

E-commerce logistics, as one of the fastest-growing 

industries in China, faces challenges such as a high 

volume of platform business, diverse products, and high 

precision requirements. Relying solely on manual 

operations not only fails to meet efficiency requirements 

but also increases enterprise costs. Therefore, the 

complex operation and management of warehousing and 

logistics systems require greater automation, 

diversification, informatization and intelligentization. 

The introduction of a multi-robot system in 

warehousing can address problems such as repetitive and 

heavy workloads, as well as challenging environmental 

conditions. This can significantly reduce labor costs and 

improve enterprise efficiency. However, as a multi-agent 

system, it is crucial to address issues related to task 

allocation and path planning in such an environment. The 

primary concern in a warehousing environment is how to 

allocate tasks and plan paths for a robot cluster at the 

lowest cost within limited space. The rationality of task 

allocation algorithms determines the work efficiency of 

multiple robots—specifically, their ability to quickly and 

accurately obtain the optimal solution in an environment 

with few tasks or robots. Meanwhile, the path planning 

problem directly impacts the practical performance of the 

system and is closely linked to system robustness and 

speed[3].Consequently, when designing a multi-robot 

system, it is necessary to consider critical challenges such 

as collaboration schemes among robots, timing 

                                                           
 

arrangements for travel, congestion, and collision 

avoidance in the actual working environment. 

Currently, the path planning algorithms commonly 

utilized in warehousing environments can be categorized 

into three groups: traditional methods, intelligent 

methods, and other methods. Traditional methods 

typically involve finding paths through graph modeling, 

which can simplify the environment and make the 

algorithm more straightforward. However, their 

drawback lies in the difficulty of finding the optimum 

solution and their impracticality for dynamic 

environments. Intelligent algorithms primarily make use 

of environmental learning or heuristic search algorithms, 

such as the A* algorithm, ant colony algorithm, and 

genetic algorithm. Other methods include fuzzy control 

methods and optimal control methods. Among these, 

intelligent methods like the A* algorithm are relatively 

mature. Nevertheless, due to the numerous shelves within 

the warehouse and the narrow movement environment of 

the robot, using the traditional A* algorithm can lead to 

severe collisions and deadlocks. Hence, there is a need to 

enhance the A* algorithm to address these issues. 

This paper primarily focuses on the design of a 

large-scale warehousing multi-robot intelligent 

scheduling system based on an improved A* algorithm. 

For the task allocation problem in multi-robot systems, 

the market auction algorithm is employed to achieve the 

optimal allocation of tasks to multiple robots. For the path 

planning problem of multiple robots, an improved A* 

algorithm based on optimization methods such as traffic 

regulations and appointment table is proposed to solve 

congestion issues. Finally, the feasibility of the methods 

applied in this paper is verified through software 

simulation. 
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2 Multi-robot Task allocation in Warehouse 

Systems 

2.1 Overview of Task Allocation Problem 

The task allocation in multi-robot systems entails 

assigning distinct sub-tasks from the global task to 

individual robots within the system. Upon receiving a 

task, the robots possess the capability to autonomously 

conduct path planning and adjust the allocation scheme 

based on their objectives. They are responsible for 

orderly extracting goods and completing the task with 

minimal cost. The objective of task allocation is to 

effectively utilize resources and maximize resource 

utilization efficiency. In the context of warehousing, task 

allocation has the potential to minimize unnecessary costs 

in subsequent path planning, achieve global optimization, 

and enhance the operational efficiency of intelligent 

warehousing. 

Given its proficiency in handling dynamic task 

allocation and similar predicaments, this paper employs 

the market auction algorithm to tackle the dynamic task 

allocation problem in multi-robot intelligent warehousing 

systems. The ultimate aim is to strike a balance between 

efficiency and accuracy. 

2.2 Auction Algorithm 

Derived from auction trading, the auction algorithm 

is a straightforward approach employed for resource 

allocation in multi-robot systems. The algorithm 

determines the allocation of tasks based on the bidding 

prices, specifically the highest and lowest bids. In this 

context, the robots serve as bidders, while the tasks 

represent the items up for auction. Pursuant to the 

predefined objective, the robot with the lowest bid is 

designated as the winning bidder. 

Set performance indicators as follows: 

 ( ) ( ) ( )( )1 1 2 2min , , , , ,n nf c r L c r L c r LL  (1) 

In the formula, ri  represents the robot. {L1,L2,...,Ln} 

represents the sequence of tasks assigned to each robot,  

Li represents 1 2 ...i i ikt t t→ → → , specifically the 

sequence of tasks that needs to be completed. Function C 

represents the total cost for each robot to complete the 

assigned task, defined as: 

 ( ) ( ) ( )1

, ( 1)1 1
,

k k

i i ip ip i pp p
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−
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Function f represents the total cost of all robots to 

complete the task, and describes the total distance 

required for all robots to complete all the current tasks: 
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 Define the sequence of tasks assigned to each robot as 

{L1,L2,...,Ln}, the set of unassigned tasks is defined as 

Twait. At this time, the robot bids for each unassigned task 

one round after another. The system selects the smallest 

bidding price among all bidding prices and assigns tasks 

to the corresponding robot. For example, suppose that 

there are 4 robots to assign 5 tasks, the quotation of each 

robot is shown in Figure 1 below, find the minimum 

quotation of each robot, and then find the minimum 

quotation value 10 from these quotations, so the task is 

assigned to the robot, and then the task is deleted from the 

T to be assigned, and the next round of quotation is 

carried out. 

 

Fig. 1: The robot bidding diagram 

 

3 Multi-robot Path Planning in Warehouse 

Systems 

3.1 Overview of  Path Planning Problem 

The robot's path planning can be conceptualized as 

the identification of an optimal route based on predefined 

objectives, such as minimizing travel time, distance, or 

task completion. This task entails considering numerous 

factors, including environmental perception, positioning, 

and obstacle avoidance. These factors may involve 

known quantities, unknown variables, or dynamic 

elements. In complex and dynamic environments that 

feature obstacles, it becomes critical to efficiently 

generate obstacle-free paths from the origin to the 

intended destination while minimizing the overall path 

cost.Currently, the A* algorithm is widely employed for 

this purpose, although it necessitates customization and 

refinement to suit specific application scenarios. With the 

aim of enhancing its applicability within warehouse 

settings, this research endeavors to optimize and adapt the 

A* algorithm for integration into an intelligent 

scheduling system design. 

3.2 Grid-Based Modeling in Warehouse Systems 

To facilitate the path planning of multi-robot 

systems, a commonly used approach is to simplify the 

steps and express the movement path more intuitively 

through modeling.   A grid map divides the working 

environment of robots into a series of equally sized 

square grids, and each grid can be represented by a 

number indicating its occupancy state.   In a warehousing 

environment, path planning can consider only three 

modes: from the starting point to the task point, from the 

      Tasks 

Roborts 

1t  2t  3t  4t  5t  

1r  24 16 29 21 33 

2r  35 25 10 40 28 

3r  19 32 23 46 20 

4r  24 30 27 14 22 
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task point to the picking station, and from the picking 

station back to the task point. 

Figure 2 illustrates the use of grid-based modeling 

with the following specifications in a Cartesian 

coordinate system: 

1.  The mobile robot's movement direction is limited 

to up, down, left, and right, without diagonal driving. 

2.  The value assigned to each grid point signifies its 

current state: 0 for unoccupied, 1 for shelf position, 2 for 

occupied by a robot, and 3 for picking station position. 

3. The mobile robot maintains a constant speed 

while traversing the warehouse, moving one grid per unit 

of time. 

Utilizing a grid map to represent path planning not 

only simplifies the creation and maintenance processes 

but also allows for easy scalability.  Perhaps its most 

significant advantage lies in the map's simplification and 

accurate representation of pertinent information. 

Fig. 2: Grid-based modeling diagram 

 

3.3 Multi-robot Path Planning in Warehouse based on 

Improved A* Algorithm 

3.3.1 A* Algorithm 

The A* algorithm is based on the principle of 

heuristic search to guide the robot's movement in a given 

space.  Its objective is to calculate the shortest path cost 

from a specific starting node to the destination node.  The 

robot utilizes a heuristic function to estimate the cost 

required for each neighboring node from the initial node.  

Based on these estimates, the nodes are ranked, and the 

node with the lowest estimated cost is automatically 

chosen as the next move.  This process continues 

iteratively until the robot reaches the destination node. 

The heuristic function plays a crucial role in the 

traditional A* algorithm and is expressed as follows: 

 ( ) ( ) ( )f n g n h n= +  (4) 

The evaluation function includes the following 

parameters: n represents the path node to be estimated, 

g(n) signifies the actual cost from the starting point to the 

current position, encompassing factors such as the actual 

path length, required time, and energy consumption. On 

the other hand, h(n) denotes an estimation of the optimal 

distance from the current position to the destination. A 

more intricate h(n) indicates more stringent path 

conditions, leading to increased time requirements. 

Conversely, fewer constraints reduce the time needed, but 

the resulting route may not be optimal. F(n), which 

combines g(n) and h(n), represents the total estimated 

cost of reaching the goal node after traversing grid node n 

from the starting point. 

In a finite motion environment, the A* algorithm is 

guaranteed to discover the shortest path, thus exhibiting 

strong completeness. However, its limitation lies in its 

suitability for individual robots only. When multiple 

robots move simultaneously, issues such as collisions and 

blockages are prone to arise. 

In real warehousing environments where a multitude 

of robots form a multi-robot system, collisions are likely 

to occur due to the presence of various obstacles, such as 

shelves in the cargo hold, when employing the traditional 

A* algorithm. Therefore, this paper aims to enhance the 

traditional A* algorithm by implementing traffic and time 

regulation to bolster operational efficiency. 

3.3.2 A* Algorithm base on Traffic Regulations 

 
Fig. 3: Traffic regulation diagram 

 

In warehousing environment characterized by a 

multitude of robots and limited operational space, the 

occurrence of traffic congestion is highly probable. 

Adhering to the traditional strategy of waiting and 

passing for obstacle avoidance would undoubtedly lead to 

a reduction in actual operational efficiency. 

To rectify this problem, a novel rule table tailored 

specifically to the warehousing environment has been 

developed, drawing inspiration from real-world traffic 

regulations governing two-way roads. As illustrated in 

Figure 2, the previous one-way paths have been replaced 

with comprehensive two-way roads, each equipped with 

clearly specified directions of travel. This strategic 

implementation effectively mitigates the risk of head-on 

collisions among robots that may cause detrimental traffic 

blockages during operation. Additionally, predefined 

locations have been allocated for picking stations and 
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shelf areas, thereby streamlining the transportation of 

goods. These well-designed measures significantly 

reduce the occurrence of deadlock issues, thus optimizing 

overall workflow efficiency. 

3.3.3 A* Algorithm base on Reservation Table 

The implementation of traffic regulations serves to 

minimize the occurrence of collisions in space.  However, 

even with these regulations in place, collisions between 

robots can still happen when tasks overlap at the same 

location and execution time.  To overcome this, we can 

establish time rules that assign priorities to robot actions, 

enabling the implementation of a waiting mechanism to 

prevent collisions. 

 

Fig. 4: Reservation table diagram 

 

To illustrate this concept, Figure 4 demonstrates 

how the time rules correspond to the two-dimensional 

coordinates of each unit node within the grid map.  The 

figure displays a reservation table for a specific time .  

Each occupied grid node is marked with the robot ID 

currently in operation.  By utilizing this time rule table, 

we gain a clear understanding of the positions of all 

robots, which aids in making informed decisions for 

subsequent path planning steps. 

Hence, when a robot in motion is about to enter the 

next grid cell, it performs a check to verify if the 

corresponding cell position is already occupied.  If it is, 

the robot must wait until the corresponding node becomes 

unoccupied by other robots before proceeding to enter. 

When multiple moving robots want to enter the same 

node in the map simultaneously, coordination rules 

among the robots need to be established to ensure that 

they all pass through the node in a reasonable and orderly 

manner. Based on different robot states and departure 

times, different priorities are assigned to the robots to 

pass through the node in order of priority. The priority 

rules are as follows: 

1. Robots without a load have the lowest priority. 

2. When robots are simultaneously loaded, the priority 

is determined based on their departure time, with earlier 

departures having higher priority. 

3. For the same priority, robots with lower ID numbers 

pass through first. 

By following the above rules, high-priority robots 

can occupy nodes and pass through them first, achieving 

orderly collision avoidance. 

4 Simulation Experiment and Result Analysis 

Previous research has primarily addressed task 

allocation and path planning problems concerning 

multiple robots in a warehousing environment.   These 

studies have offered introductory insights and algorithmic 

designs from a theoretical standpoint. In order to assess 

the practical applicability of the aforementioned 

algorithms, our study involved software simulation 

experiments, accompanied by the development of a 

graphical user interface (GUI).   The GUI was 

instrumental in visualizing the robots' operational 

processes within the warehouse setting. 

4.1 Simulation Interface Design 

The simulated interface mainly includes three parts: 

storage environment, task pool and the state of the robot 

executing the task, and the button group. The specific 

functions are as follows: 

1.Warehouse Environment 

The warehousing environment consists of a 36×52 

grid-based map, including robots, shelves, picking 

stations, and navigable areas for robots. Among them, the 

initial positions of the robots are uniformly distributed 

both horizontally and vertically on the map, totaling 20 

robots, represented by pink circles. Shelves are evenly 

distributed in the central area of the map, represented by 

orange squares. Each shelf block has a size of 2×5 and 

contains 10 shelves. There are a total of 6×7 shelf blocks, 

which gives a total of 420 shelves. Picking stations are 

placed on the left and right sides of the map, totaling 6, 

represented by blue squares. The remaining white areas 

represent the navigable areas for robots. During the 

operation of the robots, if a robot has not received a task 

yet, it is represented by a blue outlined circle. When it 

receives a task but does not transport a shelf, it is 

represented by a black outlined circle. During the process 

of transporting a shelf, it is represented by a black 

outlined square. Shelves can be in two states during the 

entire operation: being transported or remaining 

stationary. When a shelf is stationary, it is represented by 

an orange square. If it is being transported by a robot, the 

original position is represented by a white space. 

2.Task Pool and Robot Task Status 

This part is located in the right half of the simulation 

interface. The task pool is displayed in the form of a list, 

including all tasks: unfinished and completed. The tasks 

are represented by coordinates on the map, which are 

adjacent to the shelves. The status of robots executing 

tasks is displayed in the list, with a total of 20 robots 

showing their task sequences. When a task is completed, 

it is removed from the list. When a new task is added, the 

task sequence in the list is updated in real-time. 
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3.Button group 

This part includes the functional buttons needed for 

the operation of the entire system, including the “Open 

Map” button to open/initialize the entire map, the 

“Generate Task” button to generate new tasks, and the 

“Task Assignment” button to allocate tasks. After task 

allocation is completed, the process of completing tasks 

will immediately begin. 

The GUI interface is shown in Figure 5 below: 

 

Fig. 5:  GUI simulation interface diagram 

 

4.2 Multi-robot System in Warehouse based on 

Improved A* Algorithm 

 In the previous section, the warehousing 

environment of the simulation experiment was modeled 

based on an improved A* algorithm. Double lanes were 

added to the original grid map, and the optimized A* 

algorithm was used for multi-robot path planning. The 

functional interface is shown in Figure 4. At the initial 

state, all robots are idle and located at their initial 

positions, and 20 tasks are randomly generated each time. 

Now, let's proceed with the simulation experiment:  

1.  Generating Task Set 

The "Generate Task" button can randomly generate 

20 tasks. 

2. Task Allocation 

The Task Allocation button performs a single 

allocation on the generated task set. 

3. Robot Path Planning 

After task allocation is completed, the functional 

interface looks like Figure 6. The robots that receive tasks 

perform path planning for the tasks in the task sequence 

in the order they received. The process of executing a task 

involves going to the task location, carrying the shelf to 

the picking station, and finally returning to the task 

location with the shelf. The following diagram shows the 

path planning of a robot reaching a task location: The 

initial position of the robot is (3,10), and the coordinates 

of the task location are (32,44). The length of the robot's 

path is 63, indicating that this path is the optimal path 

satisfying the set rules. 

 

Fig. 6:   A single robot's motion trajectory 

The above diagram demonstrates that the A* 

algorithm can achieve optimal path planning for a single 

robot.  However, in a multi-robot system, collisions may 

occur during robot operations.  To avoid such collisions, 

traffic rules and reservation tables are employed. Next, 

the collision avoidance capability of the improved system 

is validated by performing simultaneous path planning 

for two robots, as illustrated in Figures 7 to 9. 

 

Fig. 7:  Collision motion trajectory of  two robots 

 

Fig. 8:  Robot waiting for another robot to pass 

 

Fig. 9: Two robots resuming normal operation 

 

1309  



  

From Figure 7 to 9, it can be observed that the robots 

prioritize higher priority robots to pass first at locations 

where collisions may occur, to prevent collisions from 

happening. 

The following diagram shows the scenario of path 

planning when there are 20 robots. 

 

Fig. 10: When 20 robots are running at the same time 

 

4.3 Comparative Analysis of Different Path Planning 

Methods 

For this simulation, we used a combination of the 

random task sorting with auction algorithm, traditional 

A* algorithm (Algorithm 1), and optimized A* algorithm 

using rule table and reservation table (Algorithm 2) as 

two different path planning methods (as shown in Table 1) 

for comparison. 

        As shown in Figure 11, it presents the occurrence of 

congestion for robots using different path planning 

algorithms under different numbers of robots. It was 

observed that the congestion frequency significantly 

decreases when using Algorithm 2, compared to 

Algorithm 1, across different numbers of robots. 

Table 1: Algorithm correspondence table 

Title Algorithm type 

Algorithm 1 A* algorithm 

Algorithm 2 
Improved A* algorithm using rule 

table and reservation table 

 

 

Fig. 11:  Simulation results of different algorithm comparisons. 

 

Based on the above results, it can be seen that the 

proposed A* algorithm combining traffic regulations and 

reservation table can effectively reduce collisions and 

achieve the goal of saving travel time for multi-robot 

systems, thereby improving work efficiency. In this 

chapter, simulation experiments were conducted to 

integrate. 

5  Conclusion 

This paper presents the design of a multi-robot 

intelligent scheduling system for warehouse 

environments, which involves the redesign and 

optimization of conventional algorithms for multi-robot 

systems. Firstly, a hybrid control method combined with a 

market auction algorithm is employed to improve task 

allocation efficiency. Secondly, an innovative approach 

combining traffic rules and reservation tables is 

introduced to assist multi-robot systems in path planning, 

improving the A* algorithm. This fundamentally 

addresses the issue of traffic congestion in multi-robot 

systems and reduces the occurrence of collisions, 

deadlocks, and other problems, thereby enhancing system 

robustness and overall work efficiency. Finally, software 

simulation verification is conducted, with a GUI interface 

displaying task generation, allocation, robot work status, 

and other related information in the warehouse 

environment. The proposed solution is verified to 

effectively improve the work efficiency of multi-robot 

systems based on intelligent warehousing. 
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Abstract: Intention recognition for multiple agents is an important problem in multi-agent systems (MASs), and is widely used
in the field of autonomous driving, human-machine interaction and military. In order to improve the competitive ability in multi-
agent confrontation, an intention recognition algorithm for multi-agent systems based on high-order fully actuated (HOFA)
system approach is proposed. Due to the uncertainty of the closed-loop system of the agents, the HOFA system approach is
introduced to generate a data set with more extensive features, and an algorithm for the data set establishment is proposed. To
obtain the intention prediction results, an intention recognition model based on artificial neural networks is proposed. Structures
of both convolutional neural networks and recurrent neural networks are introduced to process the time features and spatial
features. The intention predictor is trained via the data set based on HOFA system approach and tested on the test set. The
simulation results shows that the proposed predictor has a better performance for intention recognition problem.

Key Words: high-order fully actuated system approach, multi-agent systems, intention recognition, artificial neural networks

1 Introduction

With the development of artificial intelligence these days,
multi-agent systems (MASs) theory has been widely used in
autonomous driving, human-machine interaction and mili-
tary field [1–3]. Intention recognition, as a popular research
topic of MASs, is an important procedure in decision making
[4]. The goal of intention recognition is to predict the inten-
tion of the rival MASs based on the agent states and other
observable information. The intention recognition model for
MASs can be applied to computer-assisted command and in-
telligent equipment, which will play a more important role in
the future battlefield environment.

The classic intention recognition models are based on
bayesian networks, and the recognition targets are mainly
single agent. This method depends on expert knowledge and
performs well on single agent problems. Hence the signif-
icant breakthrough of artificial neural networks, researches
about intention recognition based on deep learning model
are also conducted. In [5], a weighted contrastive predic-
tive coding model was proposed to solve complex scenarios
and deceptive data problems. In order to achieve intention
recognition via uncertain and incomplete information, an in-
formation fusion method based on deep learning and fuzzy
discount-weighting was proposed in [6]. What’s more, an
intention recognition method based on bidirectional gated
recurrent unit and conditional random field was proposed,
and has been verified to have a better performance and inter-
pretability [7].

However, most of the current work about MASs uti-
lizes the first-order state-space method for modeling, which
brings great challenges for control design and causes the loss

This work was partially supported by the National Natural Science
Foundation of China under Grant 62373128, the Science Center Program
of National Natural Science Foundation of China under Grant 62188101,
and the Heilongjiang Touyan Team Program.

of physical meaning of the system [8]. In order to solve
this problem, high-order fully actuated (HOFA) system ap-
proach, a novel methodology for control design, was pro-
posed by Duan in [9]. The HOFA model can take fully con-
sider of the physical information of the system and provide
a more convenient method for the control design, which has
become the focus of research.

With the idea of HOFA system approach, the relationship
between the controllability and the fully actuated features
was constructed and many correlational methods were pro-
posed [10–13]. As the immense potential of the HOFA sys-
tem approach, many applications of the HOFA system theory
in different fields have also been studied[14]. In [15–17], the
HOFA-based predictive control methods were proposed for
the cooperative control of the MASs.

In this paper, an intention recognition algorithm is de-
signed to recognize the intention of the rival MASs for the
multi-agent confrontation problem. In order to obtain a bet-
ter data set for model training, a HOFA-MASs model and the
corresponding controller are introduced to establish a data
set with more extensive features. The intention recognition
model is then constructed based on artificial neural networks.
In the proposed model, 1d-convolutional layers and gate re-
current unit (GRU) are utilized to process the time features
and spatial features separately. The intention predictor is
finally trained via the data set based on HOFA system ap-
proach.

The rest of the paper is organized as follows. In Section
2, the problems of intention recognition and high-order fully
actuated system approach are formulated. In Section 3, the
data set based on the HOFA model is established and the in-
tention recognition model based on artificial neural networks
is proposed. In Section 4, the HOFA model for the simula-
tion is introduced and the model is tested on the data set and
in some typical scenarios. In Section 5, the paper is con-
cluded and the direction of future work is given.

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China
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2 Problem Formulation

2.1 Intention Recognition for MASs
In the multi-agent confrontation problem, the intention of

the rival MASs is the important information for decision-
making. However, it is difficult to observe this information
directly in most conditions. Hence, the intention needs to be
predicted based on other observable information practically.

In the intention recognition problem, the observable in-
formation can be divided into environment characteristics,
agent attributes and agent states. The environment char-
acteristics include information that describes the environ-
ment, such as terrain information and obstacle information.
The agent attributes are the time-invariant information of the
agent, such as the model and parameters of the agent. The
agent states comprise the time-variant information, such as
position and velocity.

In this paper, the intention of rival MASs is divided into
“encircle”, “intercept”, “follow”, and “irrelevant”. The cor-
responding formations are shown in Fig 1. The formation of
“encircle” intention is a circle centered on self agent, which
is shown in Fig 1(a). The target of “intercept” intention is to
restrict the capacity of forward motion of self agent, and the
rival MASs need to distribute in the area ahead of the self
agent. The corresponding formation is shown in Fig 1(b).
The target of “follow” intention is to keep the distance be-
tween self agent and rival MASs, and the rival MASs need
to distribute behind the self agent. The specific formation
is shown in and Fig 1(c). The “irrelevant” intention denotes
that the motion of the rival MASs is independent from the
target, and an example of this intention is shown in Fig 1(d).

Then, the optimization goal of the intention recognition
problem is given as follows,

J1 =
1

T

T∑
t=0

∥Yt − Y ′
t ∥2 (1)

where J1 denotes the optimization index of the intention
recognition, Yt and Y ′

t denote the vectors related to true in-
tention and the prediction result on time t, T denotes the
time for intention recognition. The prediction results can be
obtained as follows,

Y ′
t = model(St, Pt, Ot;w) (2)

where model(·) denotes the intention recognition model, St,
Pt and Ot denote the agent states, agent attributes and envi-

(a) encircle (b) intercept

(d) irrelevant(c) follow

Fig. 1: Intentions of agents

ronment characteristics separately, w denotes the parameters
of the model, which can be obtained as follows,

W = arg
w

min J1(w) (3)

where W is the optimal parameters to be found.

2.2 Fully Actuated System Approach
High-order fully actuated system approach is a method-

ology which has great potential in multi-agent system con-
trol. In this paper, the intention recognition problem for
HOFA-MASs is discussed, and the corresponding HOFA-
based MASs can be described as follows.

The problem of intention recognition based on HOFA-
MASs is shown in Fig 2. The agents in the environment can
be divided into rival MASs and self MASs, and each of the
agents can be described based on HOFA model. The goal of
the intention recognition algorithm is to predict the intention
of the rival MASs based on observable information, and the
prediction results can be utilized for the plan making.

The interaction of the HOFA-MASs is considered by a di-
rected graph G = {N , E ,A}, where N = {1, 2, · · · , N}
represents the set of HOFA-MASs, E ⊂ N × N represents
the edge set of HOFA-MASs, A = {aij} is an adjacent ma-
trix with aij ≥ 0 and aii = 0. The mathematical model of
the ith HOFA-agent is given as follows,{

x
(m)
i = fi(x

(0∼m−1)
i , ζ) + gi(x

(0∼m−1)
i , ζi, ui),

yi = Cixi,
(4)

where xi, ui ∈ Rn denote the state vector and control in-
put of the agent, yi ∈ Rp denotes the output vector of
the agent, ζi denotes a parameters vector, fi(·, ·), gi(·, ·)
are given functions, Ci ∈ Rp×n is the output matrix, and
det(gi(x

(0∼m−1)
i , ζi, ui)) ̸= 0. Then the corresponding

HOFA controller can be obtained as follows,
wi = −

m−1∑
j=0

Aijx
(j)
i − fi(x

(0∼m−1)
i , ζi) + vi,

ui = g−1
i (wi, x

(0∼m−1)
i , ζi),

(5)

Intention 

recognition

Plan

making

The 1st 

HOFA agent

The 2nd 

HOFA agent

The Nth 

HOFA agent

..
.

Rival-MASs

Plan library

Self-MASs

HOFA 

MASs model

Obstacle 

information

Observable 

information
Agent states

Y(t)

v1(t)

v2(t)

vN(t)

Y´(t) vs(t)

Fig. 2: Problem of intention recognition on HOFA-MASs
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where vi is the external signal of the ith agent, Aij is the
parameter matrix, wi is an intermediate variable. The closed-
loop HOFA-agent is realized as follows,

x
(m)
i +

m−1∑
j=0

Aijx
(j)
i = vi (6)

This paper aims to obtain an intention recognition model
to predict the intention of the rival MASs. The agent in the
environment can be described by (4), and the optimal goal is
to minimize the target in (1).

3 Intention Recognition Algorithm Design

In this paper, an artificial neural network is utilized to pre-
dict the intention of the rival MASs, and HOFA-MASs is
used to generate corresponding data set for the model train-
ing. The main procedures of the intention recognition algo-
rithm design is shown in Fig 3.

3.1 Data Set
In order to obtain sufficient amount of data for the later

model training, the HOFA system approach is introduced for
the data generating. Hence the high degree of control de-
sign freedom of the HOFA system approach, HOFA-MASs
can be utilized to establish a data set with more extensive
features conveniently. Data with different features can be
obtained via choosing different controller parameters. The
selected controller parameters need to ensure the stability of
the closed-loop system, and the performance of the system
should also be considered, which is specifically discussed as
follows.

According to [9], the stability of each agent can be com-
mitted by selecting a stable matrix Fi ∈ Rr×r and a nonsin-
gular matrix Zi ∈ Rm×r, where r = mn and the matrices
Fi and Zi satisfy{

Ai(0∼m−1) = −ZiF
n
i V

−1(Zi, Fi)

detV (Zi, Fi) ̸= 0
(7)

where Ai(0∼m−1) = [Ai0, Ai1, · · · , Ai(m−1)] is the param-
eter matrix, V (Zi, Fi) is given by

V (Zi, Fi) =


Zi

ZiFi

...
ZiF

n−1
i

 (8)

HOFA-MASs 

model

Data set

Intention 

recognition 

model
Pre-processing

Predicted 

intention

Neural network

Rival 

HOFA-MASs

Self 

HOFA-MASs

Environment

Observable 

information

Fig. 3: Procedures of intention recognition model design

In order to ensure the performance of the system, a set
of point can be selected as the constraint of the poles of the
closed-loop system. Then the feasible parameters can be ob-
tained by solving the following optimal problem via intelli-
gent optimization algorithms,

min

n∑
i=0

m∑
k=0

J2(pk;Fi, Zi) (9)

s.t. detV (Zi, Fi) ̸= 0

where pk is the kth pole of the closed-loop system and can be
determined by Fi and Zi, J2(pk;Fi, Zi) is the optimization
function of the kth pole, which is given by

J2(pk;Fi, Zi) =

{
∥pk − p0∥ − r0 pk /∈ Q

0 pk ∈ Q
(10)

where Q = {p|∥p − p0∥ < r0} is the selected point set, p0
and r0 denote the center and radius of the set separately.

By solving the optimal problem via intelligent optimiza-
tion algorithm, a data set with more extensive features can
be established, and the data set establishing algorithm can
be derived as follows.

Algorithm 1 Establishment of Data Set
Given: nd: the number of the data to be generated

no: the maximum number of optimization iterations
Q: the selected point set
Tl: the length limit of the data

while q ≤ nd do
1. Randomly initial the parameters of the controllers.
while j ≤ no and pk ∈ Q do

2. Solve the optimization problem described by (10).
end while
3. Calculate controller parameters Ai(0∼m−1) for each
agents.
4. Randomly initial the obstacle information, states of the
agents and intention of the rival MASs.
while t ≤ Tl do

5. Run the plan making and path planning algorithms of
each agents in the environment.
6. Get the controller output of each agents based on HOFA
controller described by (5).

end while
7. Save the states of each agents and the obstacle information
in the simulation.

end while

3.2 Intention Predictor
In order to realize intention recognition without prior

knowledge, an intention recognition model based on artifi-
cial neural networks is proposed in this paper. The structure
of the model is shown in Fig 4.

The intention recognition model is mainly constructed by
data pre-processing and intention classification procedures.
The data pre-processing procedure needs to convert the input
data into a similar order of magnitude, which can improve
the iteration efficiency of model training and the generaliza-
tion ability of the model.

The data to be processed in this paper can be divided into
agents trajectories and obstacle information. The agents tra-
jectories include the positions and angles of each agents,

1313  



obstacles

Pre-processing

trajectory input obstacle input

trajectories

conv1d layers

pooling layer

GRU layer

GRU layer

dense layers

fusion features

dense layers

predicted results
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which can be processed as follows,

xi
t
′ =

xi
t − smin

smax − smin

yit
′ =

yit − smin

smax − smin

θit
′ =

θit
2π

+ π

(11)

where xi
t, y

i
t and θit denote the x, y coordinates and the fac-

ing angle of the ith agent on time t; xi
t
′, yit

′ and θit
′ denote

the corresponding data after processing; smin and smax de-
note the minimum and the maximum of the x, y coordinates.

The obstacle information includes the shape, position and
size of the obstacles, which can be processed as follows,

xi
o
′ =

xi
o − smin

smax − smin

yio
′ =

yio − smin

smax − smin

rio
′ =

rio
smax − smin

(12)

where xi
o, yio and rio denote the x, y coordinates and the size

of the ith obstacle; xi
o
′, yio

′ and rio
′ denote the corresponding

obstacle information after processing.
After data pre-processing, an intention classification

model based on artificial neural networks is constructed. The
input features can be divided into trajectory features and ob-
stacle features.

As the trajectory input contains both time and spatial fea-
tures, 1d-convolutional layers and pooling layers are intro-
duced to process the spatial features, and the recurrent neural
network layers are introduced to process the time features.
The recurrent unit of the model is selected as GRU [18].

The obstacle input contains only spatial features, but the
number of the obstacles is unknown. In order to solve this

problem, GRU layers are used to process the obstacle in-
formation and dense layers are used to obtain the obstacle
feature output. Finally, the feature outputs are fused and the
prediction results are obtained by further processing using
dense layers.

3.3 Model Training
In order to train the intention prediction model, the data

set is divided into three parts for the training and testing of
the networks - 60% for the training set, 20% for the valida-
tion set and 20% for the test set. The hyperparameters of the
model training are shown in Table 1.

Table 1: Hyperparameters for Network Training
Hyperparameters Value
Learning rate 0.0005
Batch size 16
Maximum epoch 1000
Activate function Relu
Optimizer Adam

The training results are shown in Fig 5. The accuracy of
the training set and the validation set converges to 97.62%
and 96.03%, and the loss values converge to 0.062 and 0.127
separately. The results show that the intention recognition
model has a good performance on the data set.
4 Numerical Simulation

4.1 Simulation Set-up
The physical model of the agent in this paper is chosen

as vehicle with Mecanum wheels [19], and the structure of
the chassis of the vehicle is shown in Fig 6. The coordinate
xgOyg is the ground coordinate; the coordinate xbOyb is
the body coordinate; la and lb are the distance between the
center of the vehicle and the wheels along the xb-axis and
yb-axis separately; and θ is the facing angle of the agent.

The input of the agent can be described as follows,
aw1 = aby − abx + α(la + lb)

aw2 = aby + abx − α(la + lb)

aw3 = aby − abx − α(la + lb)

aw4 = aby + abx + α(la + lb)

(13)

where aw1, aw2, aw3 and aw4 denote the accelerates of the
four wheels separately; abx and aby denote the accelerates
of the vehicle along the body coordinate; α denotes the an-
gular accelerate of the vehicle. Once the states of the vehi-
cle are determined, the control output of the wheels can be

(a) recognition accuracy (b) loss value
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Fig. 5: Training results of intention recognition model
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Fig. 6: Chassis of the vehicle with Mecanum wheels

correspondingly obtained. The model of the vehicle can be
described as follows,

ẋg = ẋb cos θ + ẏb sin θ

ẏg = ẋb sin θ + ẏb cos θ

ẍb = abx

ÿb = aby

θ̈ = α

(14)

which can be further transformed into the following HOFA
form, 

ẍg = −ẏg θ̇ + abx cos θ + aby sin θ

ÿg = ẋg θ̇ + abx sin θ − aby cos θ

θ̈ = α

(15)

where xg , yg are the coordinates of the vehicle on the ground
coordinate; xb, yb are the coordinates of the vehicle on the
body coordinate.

Then the HOFA controller can be obtained as follows,

ux = −A10[ẋg, ẏg, θ̇]
T −A00[xg, yg, θ]

T + rx

uy = −A11[ẋg, ẏg, θ̇]
T −A01[xg, yg, θ]

T + ry

α = −A12[ẋg, ẏg, θ̇]
T −A02[xg, yg, θ]

T + rθ

abx = ux cos θ + uy sin θ

aby = ux sin θ + uy cos θ

(16)

where A00, A01, A02, A10, A11 and A12 are adjustable pa-
rameter matrices, R = [rx, ry, rθ]

T are the references, ux

and uy are a part of the control outputs.
The simulation is conducted based on the model shown in

Fig 6, and the HOFA controller described by (16) is utilized.
The data set is established based on Algorithm 1, and the
intention predictor is trained based on the data set using the
hyperparameters in Table 1.

4.2 Simulation Results and Analysis
The proposed intention recognition model is tested in

some typical scenarios to show the performance. In these
scenarios, several obstacles with different shapes distribute
in the environment, and a model which can not utilize the
obstacle information is tested for comparison.

In the scenario shown in Fig 7(a), the motion of the rival
agents is not related to the self agent, and the intention is

defined as “irrelevant”. The prediction results are shown in
Fig 7(b). Both of the intention recognition models can obtain
the correct intention in the end, and the proposed model has
a lower false alarm rate.

In the scenario shown in Fig 8(a), the task of the rival
agents is to restrict the motion of the self agent in all direc-
tions, and the intention is defined as “encircle”. As the pre-
diction results shown in Fig 8(b), both of the models can cor-
rectly predict the intention before the formation forms and
have similar performance in this scenario.

In the scenario shown in Fig 9(a), the task of the rival
agents is to restrict the forward motion of the self agent, and
the intention is defined as “intercept”. It is shown in Fig 9(b)
that both of the models predict correctly in the end. With the
consideration of obstacle information, the proposed model
can realize the intention faster.

In the scenario shown in Fig 10(a), the task of the rival
agents is to restrict the backward motion of the self agent,
and the intention is defined as “follow”. The prediction re-
sults are shown in Fig 10(b), and the proposed model per-
forms well. However, the comparison model can not predict
correctly before the formation forms in this scenario.

The proposed predictor is further tested on the test set,
and the false alarm rate of the predictor is shown in Table
2. The results show that the model can predict the inten-
tion correctly when the features are adequate for intention
recognition. The false alarm at the beginning of the inten-
tion recognition is mainly caused by the ambiguity of the
information.

(a) trajectories of the agents (b) prediction results
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Fig. 7: Trajectory of multiple agents and corresponding out-
put of predictors when intention is “irrelevant”
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Fig. 8: Trajectory of multiple agents and corresponding out-
put of predictors when intention is “encircle”
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Fig. 9: Trajectory of multiple agents and corresponding out-
put of predictors when intention is “intercept”

(a) trajectories of the agents (b) prediction results
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Fig. 10: Trajectory of multiple agents and corresponding
output of predictors when intention is “follow”

Table 2: False Alarm Rate of the Proposed Model

Time/s
Intention

Encircle Intercept Follow Irrelevant
5 41.0% 72.5% 87.5% 8.0%
10 16.0% 40.0% 43.0% 5.0%
15 15.0% 3.0% 10.5% 0.0%
20 6.5% 0.0% 0.0% 0.0%

5 Conclusion and Future Work

In this paper, the intention recognition problem for rival
MASs is considered. The model of MASs is constructed
based on the theory of high-order fully actuated systems ap-
proach and a data set based on HOFA model with more ex-
tensive features is established. Utilizing the data set, an in-
tention recognition model based on artificial neural networks
is constructed and trained. In the model, 1d-convolutional
layers and recurrent neural networks are introduced to pro-
cess the time features and spatial features. In order to in-
crease the accuracy, both agent trajectories and obstacle in-
formation are utilized in the model training. The predictor
is tested on some typical scenarios, and the results show that
the proposed predictor has a better performance in the envi-
ronment with obstacles.

In the future, we will consider more kinds of intentions
and apply the HOFA system theory to more fields of the
MASs. In order to get better results, we will also further
adjust the parameters and the structure of the model.
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Optimization Strategy for Wind-Solar Complementary Energy
Storage Capacity Leveraging Photovoltaic Virtual Energy

Storage
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Abstract: In this study, we present an integrated optimization model for configuring energy storage capacities in wind-solar
energy systems, utilizing an innovative approach of Photovoltaic (PV) Virtual Energy Storage (PV-VES). This model aims to
mitigate the high costs associated with conventional electrochemical storage solutions by integrating cost-effective PV com-
ponents. The proposed optimization framework constructs a cost-minimization objective function, considering the operational
characteristics and constraints of wind turbines, PV arrays, and energy storage units. By calculating the optimal installation
capacities for both electrochemical and virtual energy storage, the model provides selective cost advantages in investment for re-
newable energy storage infrastructures. The results demonstrate that PV-VES can enhance the economic feasibility of wind-solar
complementary storage systems.

Key Words: capacity optimization, electrochemical storage, PV, virtual energy storage

1 Introduction

As the world strides towards a zero-carbon future, renew-
able energy emerges as a cornerstone in the global energy
transition [1–3]. This shift is not merely a trend but a neces-
sity, driven by the urgent need to mitigate climate change
and to establish sustainable energy systems. Within this
paradigm, wind turbine and photovoltaic (PV) generation
have become pivotal, owing to the abundant and clean na-
ture of wind and solar power [4–6]. According to the report
released by the international energy agency (IEA) in January
2024 [7], renewable electricity capacity additions reached
an estimated 507 GW in 2023, nearly 50% higher than in
2022, with PV and wind accounting for approximately 95%
of it. By 2028, PV and wind turbine capacity additions are
expected to more than double compared to 2022, reaching
nearly 710 GW.

The integration of a large number of wind turbine and PV
generation aids in the economic and social transition to a
low-carbon, green model, but it also presents two major chal-
lenges to the power grid [8, 9]. Firstly, the power generation
of wind turbine and PV generation is subject to environmen-
tal impacts, leading to uncertainty and intermittency, which
increases the pressure on the grid to mitigate the power fluc-
tuations. Secondly, wind turbine and PV generation are typi-
cally connected to the grid through power electronic convert-
ers. The influx of a large number of these power electronic
devices introduces problems of harmonics and low inertia,
gradually deteriorating the quality of electrical energy in the
grid. Energy Storage, characterized by its ability to store
more electrical energy and release less, becomes an ideal
choice to facilitate the absorption of wind turbine and PV
generation [10].

The deployment of energy storage faces two main issues:
type and capacity. Energy storage systems can be broadly
categorized based on their underlying principles: mechani-

This work is supported by National Key R&D of China
(2021YFB2400600) ) and Zhejiang Postdoctoral Preferential Funding
Project (2022011).

cal, chemical, electrical, and thermal [11, 12]. Mechanical
storage, exemplified by pumped hydro storage, compressed
air storage and flywheels, capitalizes on kinetic or potential
energy; it’s renowned for its large-scale capacity and long
life span but is limited by geographical constraints and high
initial costs. Chemical storage, primarily through batter-
ies like lithium-ion, lead-acid, and flow batteries, relies on
chemical reactions to store and release energy. While offer-
ing high energy density and efficiency, they often face chal-
lenges with lifespan, cost, and environmental impact. Elec-
trical storage, such as supercapacitors, stores energy in an
electric field. These systems boast rapid charging and dis-
charging capabilities, but their energy density is relatively
low compared to other forms. Lastly, thermal storage, in-
cluding molten salt and ice storage, retains heat or cold for
later use. This type is highly efficient and cost-effective for
large-scale applications, though its use is typically confined
to specific cases like district heating or cooling. However,
considering the aspects of technological maturity and safety
reliability, the types of storage currently widely applied are
still limited to pumped hydro storage and lithium battery
storage.

Capacity is closely related to economic viability. The
determination of optimal capacity configuration for diverse
types of storage systems across various scenarios currently
stands as a prominent subject of research interest [13, 14].
Literature [15] investigates the integration of Battery Energy
Storage Systems (BESS) with wind power generation, em-
phasizing the optimization of BESS component sizing to en-
hance efficiency and reduce costs. Literature [16] presents a
novel framework for optimizing the sizing of both thermal
and electrical energy storage systems in residential build-
ings with PV systems. The study demonstrates how com-
bining thermal storage and battery storage can significantly
reduce both daily electricity and life cycle costs. Literature
[17] introduces a methodology for the optimal design and de-
ployment of large-scale Gravity Energy Storage (GES) sys-
tems in hybrid PV-wind power plants. The study demon-
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strates that integrating GES with renewable energy sources
can effectively balance energy supply and demand, offering
a cost-effective and robust alternative to traditional energy
storage methods, with a significant advantage in terms of
depth of discharge and lifetime compared to battery energy
storage. Literature [18] explores the optimization of a hy-
brid photovoltaic-wind system with battery storage for Net
Zero Energy Buildings (NZEBs), focusing on minimizing
total energy transfer (TET) to the grid, loss of power supply
probability (LPSP), and system cost. This approach leads
to more efficient sizing of renewable energy generators and
battery storage, contributing to sustainable and reliable en-
ergy management in NZEBs. Literature [19] introduces an
enhanced methodology for optimally sizing small-scale mi-
crogrids, integrating PV systems with hybrid energy storage
(batteries and supercapacitors). The approach uniquely fac-
tors in battery aging and operational degradation, aiming to
improve system longevity and reduce costs, with success-
ful application in case studies from Puerto Carreño, Colom-
bia. In summary, as there are various types of storage, each
with different application scenarios, the key and challenge in
capacity optimization lies in constructing a reasonable opti-
mization model and solving it using appropriate tools.

Among the numerous types of storage, electrochemical
storage represented by lithium batteries is widely applied
due to its high energy density, rapid response capability,
and flexible, convenient installation. Especially in large-
scale storage configurations, lithium battery storage is of-
ten the preferred option. However, its drawbacks should
not be overlooked. The lifespan of lithium battery storage
is shorter compared to the service cycle of wind and PV
generation equipment, necessitating replacement during its
lifetime. Additionally, due to sustained high demand, the
lifecycle cost of lithium battery storage remains high.

1.1 Contribution
In this paper, we introduce a groundbreaking approach

to optimizing energy storage in wind-solar systems, notably
through the integration of Photovoltaic Virtual Energy Stor-
age (PV-VES). We develop a comprehensive optimization
model that intricately balances the cost minimization objec-
tive against the operational characteristics and constraints of
wind turbines, PV arrays, and energy storage units. Our
model is instrumental in demonstrating significant invest-
ment cost reductions by optimally configuring both electro-
chemical and virtual energy storage. Through a practical
case study, we validate the model’s real-world applicabil-
ity and its superiority in cost-effectiveness over conventional
energy storage methods.

1.2 Organization
The remainder of this paper is organized as follows. Sec-

tion 2 elaborates the core of the paper, the Optimization
Model. This section is subdivided into parts discussing the
Objective Function and Constraints, detailing the approach
to minimize the system’s costs while adhering to operational
limitations. Section 3 provides a Case Study, applying the
model in a practical scenario and contrasting the proposed
PV-VES strategy with traditional ECS methods. The paper
is concluded in Section 4.

2 Optimization Model

2.1 Objective function
The objective function generally aims to minimize the sys-

tem’s investment and operational costs. As the service life
of PV and electrochemical storage are not equal, the average
lifetime of a PV plant is 25 years [20] and a lithium-ion en-
ergy storage station is 10 years [21], to equate the costs of
PV-VES and ECS, we use the annualized cost of the system
to construct the objective function [18]:

min facs = Cacs,pvSves + Cacs,ecsSecs (1)

where Sves, Secs are rated capacity of PV-VES and ECS,
respectively; Cacs,pv, Cacs,ecs represent the annualized unit ca-
pacity costs of PV-VES and ECS, respectively.

The annualized unit capacity costs of PV-VES and ECS
are generally composed of three parts: annualized capital
cost, annualized replacement cost and annualized operation
and maintenance cost. The specific calculation methods for
the three are as follows [18]:

(1) Annualized capital cost
The calculation method for both PV and ECS is consistent

and can be unified by the following formula:

Ccap = Cc ·
r · (1 + r)Ycom

(1 + r)Ycom − 1
(2)

where Cc is the capital cost of the each component, Ycom is
the component lifespan in year, r is the annual interest rate.

(2) Annualized replacement cost
Since the lifespan of PV modules is longer than that of

ECS, this paper measures by the lifecycle of PV modules,
with the annualized replacement cost of PV modules being
0. Here, only the annualized replacement cost of ECS is
considered, and the calculation formula is as follows:

Crep,ecs = Cr ·
r

(1 + r)Yrep − 1
(3)

where Cr is the single replacement cost of ECS, Yrep is ser-
vice life of the ECS in year.

(3) Annualized operation and maintenance costs
The annual operation and maintenance cost per unit com-

ponent is generally a fixed expense, which can be specifi-
cally estimated based on local labor costs and other related
factors [22, 23].

(4) Annualized cost of system
Based on the above descriptions of annualized capital

cost, replacement costs, and operation and maintenance
costs, we can derive the annualized costs for PV-VES and
ECS as follows:

Cacs,pv = Ccap,pv + Com,pv
Cacs,ecs = Ccap,ecs + Crep,ecs + Com,ecs

(4)

where Ccap,pv,Ccap,ecs are the annualized capital cost of PV-
VES and ECS, calculated according to equation (2), respec-
tively; Com,pv,Com,ecs are the annualized operation and main-
tenance cost of PV-VES and ECS, respectively.

2.2 Constraints
The set of constraints ensures the operational feasibility

and the technical limits of the energy system components.
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These include output capacity limits for generation units, the
operational bounds for charging and discharging the electro-
chemical energy storage, maintaining power supply and de-
mand balance.

(1) Wind turbine, PV, Virtual storage output constraints
These constraints limit the active power output of wind

turbines, PV systems, and virtual energy storage units to
their respective maximum available power at any given mo-
ment. These limits are essential to prevent over-generation
and to match the power production with the variable nature
of renewable energy sources and storage capabilities.

0 ≤ pkwt ≤ P kmax,wt

0 ≤ pkpv ≤ P kmax,pv

0 ≤ pkves ≤ P kmax,ves

(5)

where pkwt, p
k
pv, and pkves represent the active power outputs of

the wind turbine, photovoltaic (PV), and virtual energy stor-
age at moment k, respectively; P kmax,wt, P

k
max,pv, and P kmax,ves

denote their respective maximum available powers at the
same moment, which are influenced by environmental fac-
tors such as wind speed and solar irradiance.

The maximum available power of a wind turbine can be
estimated based on the wind speed, and its estimation for-
mula is as follows [24]:

P kmax, wt =


0, (vk ≤ vci) ∨ (vk ≥ vco)

Swt
vk−vci
vr−vci

, vci ≤ vk ≤ vr

Swt, vr ≤ vk ≤ vco

(6)

where Swt is the installed capacity of the wind turbine; vk is
the wind speed at moment k; vci is the cut-in wind speed; vco
is the cut-out wind speed; vr is the rated wind speed.

The maximum available power of PV generations and vir-
tual storage can be estimated based on the solar irradiance
and ambient temperature, and the estimation formula is as
follows [25]:

P kpv = Spv ×
Gk

Gref

[
1 + β

(
(T kamb + (0.0256×Gk))− Tref

)]
(7)

where P kpv is the output power of the PV panels at moment
k, Spv is the installed capacity of the PV panels, Gk is the
solar irradiance (W/m2) at moment k, Gref is the reference
solar irradiance (1000 W/m2), Tref is the reference temper-
ature (25 ◦C), β is −3.7 × 10−3 (1/◦C) , and T kamb is the
ambient temperature at moment k.

(2) Electrochemical storage output constraints
These constraints define the permissible charging and dis-

charging activities of electrochemical storage systems. They
ensure that storage units do not charge and discharge simul-
taneously and that the charging and discharging power levels
do not exceed the system’s maximum capacity.

0 ≤ λkc + λkd ≤ 1

0 ≤ pkecs,c ≤ λkcPmax,ecs

0 ≤ pkecs,d ≤ λkdPmax,ecs

(8)

where λkd and λkc represent the binary states of discharging
and charging at moment k, respectively; pkecs,c and pkecs,d are

the respective charging and discharging powers; Pmax,ecs is
the rated power capacity of the electrochemical storage.

(3) Electrochemical storage state of charge constraint
This constraint governs the state of charge of the electro-

chemical storage system, accounting for the energy balance
over time. It ensures the energy content of the storage re-
mains within the specified bounds, considering the efficiency
of charging and discharging processes and the time interval
between the operational moments.

{
Ekecs = Ek−1

ecs + ηecs,cp
k
ecs,c∆T −

pkecs,d
ηecs,d

∆T

SecsSOC
min ≤ Ekecs ≤ SecsSOC

max
(9)

where Ekecs and Ek−1
ecs are the energy content of the storage

at the current and previous moments; ηecs,c and ηecs,d are the
charging and discharging efficiencies; ∆T is the time inter-
val; SOCmin and SOCmax are the minimum and maximum
state of charge limits.

(4) Power balance constraint
The power balance constraint ensures that the total power

generation matches the load demand at every moment. It
is a fundamental requirement for the stable operation of an
electrical grid, ensuring that all the power consumed by the
load is supplied by the generation units and storage systems.

pkload = pkpv + pkwt + λkdp
k
ecs,d − λkc pkecs,c + pkves (10)

where pkload is the load power at moment k.

3 Case Study

This section endeavors to employ the parameters of a
source-grid-load-storage system for the purpose of contrast-
ing the cost expenditures associated with the proposed PV-
VES configuration strategy against those of the conventional
ECS configuration method.

Table 1: Parameters of PV-VES and ECS
Types PV-VES ECS
Capital cost 3582 ¥/kW 1437 ¥/kWh
Replacement cost / 1060 ¥/kWh
Operation and maintenance cost 7.2 ¥/kW 12.4 ¥/kW
Service lifetime 25 years 10 years
Interest rate 4% 4%

Table 2: Constant Parameters in the Proposed Optimization
Model

Types Value
Cacs,pv 236.49
Cacs,wt 419.76
SOCmin 0.05
SOCmax 0.95
ηecs,c 0.95
ηecs,d 0.95

3.1 Data preparation
The installed capacity of PV and wind turbine are 200MW

and 150MW, respectively. Based on the historical data of ir-
radiance, temperature, and wind speed at the site location

1319  



for the entire year of 2023, measured on an hourly scale, and
according to equations (6) and (7), we obtained the maxi-
mum power data for the wind turbine and the PV stations,
as shown in Fig. 1 and 2. Moreover, the load power is also
based on the historical data of 2023, as plotted in the Fig. 3.

Fig. 1: Hourly maximum power curve of the wind turbine
station for the entire year.

Fig. 2: Hourly maximum power curve of the PV station for
the entire year.

Fig. 3: Hourly load curve for the entire year.

To visually present the monthly resource situation, we
have drawn a line graph showing the average monthly power
of PV, wind turbines, and load, as illustrated in Fig. 5. Wind
resources are more abundant in the spring, summer, and win-
ter seasons, and relatively less in autumn. The distribution
of solar resources is relatively even throughout the four sea-
sons, with somewhat lesser availability in winter. Addition-
ally, a distinct characteristic of solar resources is that they

Fig. 4: Monthly average power of PV, wind turbine and load.

drop to zero at night, whereas wind resources fluctuate ran-
domly throughout the day. The demand for load is quite sta-
ble, without significant fluctuations daily, although there is
an increase in demand during the autumn and winter sea-
sons.

Based on the current engineering construction data, we
can obtain the cost-related parameters for PV-VES and ECS,
as shown in Tab. 1. Here, the ECS is exemplified by the
most commonly used lithium-ion batteries. Then, we can ob-
tain the annualized costs of PV-VES and ECS according to
equations (2)-(4), which is 236.49 ¥/kW and 419.76 ¥/kW.
In addition, to prevent overcharging and over-discharging of
the ECS, we set the maximum and minimum values of SOC
to 0.05 and 0.95, respectively. The charge and discharge effi-
ciency can be set to 95% [26]. Thus, the constant parameters
in the proposed optimization model can be list in Tab. 2.

3.2 Result and discussion
Given that wind and PV resources display unique seasonal

traits, as illustrated in Fig. 1 and 2, our study aims to exhibit
the efficacy of the proposed PV-VES configuration approach
under varying resource endowments. This objective is pur-
sued by initially conducting monthly capacity optimization
solutions, subsequently extending to an annual capacity op-
timization. The outcomes of these solutions are then juxta-
posed with the conventional capacity configuration method,
which exclusively incorporates electrochemical storage, ex-
emplified by the use of lithium battery storage.

Fig. 5: Monthly annualized cost and cost reduction percent-
age of the proposed PV-VES method and the traditional ECS
method.
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Table 3: Results Comparison between Proposed PV-VES Method and Traditional ECS Method

Month Proposed PV-VES Method Traditional ECS Method Cost Reduction (%)

PV-VES Capacity (MW) ECS Capacity (MWh) Annualized Cost (×104) ECS Capacity (MWh) Annualized Cost (×104)

1 69.09 854.48 37 501.63 981.85 41 214.18 9.01
2 0.00 589.53 24 746.21 589.53 24 746.21 0.00
3 0.00 510.24 21 417.93 510.24 21 417.93 0.00
4 0.00 580.75 24 377.95 580.75 24 377.95 0.00
5 0.00 473.93 19 893.96 473.93 19 893.96 0.00
6 0.00 444.66 18 664.95 444.66 18 664.95 0.00
7 428.03 2516.12 115 739.28 3034.96 127 395.39 9.15
8 852.05 3406.84 163 155.84 4030.53 169 185.55 3.56
9 0.00 3107.03 130 421.08 3107.03 130 421.08 0.00
10 24.31 1106.71 47 030.06 1167.43 49 004.00 4.03
11 0.00 5474.80 229 810.17 5474.80 229 810.17 0.00
12 141.42 709.84 33 140.86 1107.94 46 507.07 28.74

1-12 24.31 1106.71 47 030.06 1167.43 49 004.00 4.03

Table 3 illustrates the energy storage capacity optimiza-
tion results comparison between the proposed PV-VES
method and the traditional ECS method. As shown, The
cost-reduction effect of the proposed PV-VES algorithm
varies monthly, mainly influenced by the relative availability
of sunlight resources. From February to June, wind and solar
resources are abundant, especially wind resources, which far
exceed the load demand. In this period, the proposed algo-
rithm sets the PV virtual storage capacity to zero, not show-
ing any cost reduction advantage. However, during July and
August, when wind resources are relatively scarce and solar
resources are relatively abundant, the proposed algorithm al-
locates a larger capacity for PV virtual storage, leading to a
significant cost reduction. Looking at the data configuration
for the entire year, the proposed PV virtual storage configu-
ration strategy can reduce costs by 4.03%.

4 Conclusion

This study introduces an innovative optimization strat-
egy for enhancing the cost-effectiveness of energy storage
in wind-solar energy systems, leveraging the concept of PV-
VES. By integrating PV-VES with traditional ECS solutions,
the model significantly reduces investment costs for renew-
able energy storage infrastructures. The optimization frame-
work, with its cost-minimization objective function, adeptly
addresses operational characteristics and constraints of wind
turbines, PV arrays, and storage units, demonstrating the
substantial economic benefits of PV-VES in a comprehen-
sive case study. The results underline the potential of PV-
VES in improving the economic feasibility of wind-solar
complementary storage systems, thereby contributing to the
advancement of sustainable and efficient renewable energy
integration into the power grid.
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Abstract: This paper presents an innovative approach to optimizing hybrid energy storage systems (HESS) in offshore wind
farms, with a particular focus on extending the storage’s lifetime. We introduce a novel optimization model that integrates
the complexities of offshore wind energy generation with the dynamic characteristics of multiple energy storage technologies.
The model aims to maximize the efficiency and reliability of energy storage by effectively balancing the load between different
storage units, thereby mitigating the degradation of storage components and prolonging their operational lifespan.The results
demonstrate that our optimized HESS not only improves the overall performance of offshore wind systems but also significantly
reduces the long-term operational and maintenance costs by extending the storage units’ lifetime.

Key Words: Hybrid Energy Storage Optimization, Offshore Wind Farms, Extending Storage Life

1 Introduction

Offshore wind farms are pivotal in the transition towards
sustainable and renewable energy sources[1, 2]. The incor-
poration of hybrid energy storage systems (HESS) is increas-
ingly recognized as a vital component in enhancing the oper-
ational efficiency and reliability of these farms. The variable
and unpredictable nature of wind energy necessitates inno-
vative and adaptable solutions in energy storage and man-
agement. This challenge has been the focus of numerous re-
cent research efforts, aiming to optimize energy use, reduce
waste, and improve system resilience[3–5].

HESS has gained widespread application in renewable en-
ergy systems for its versatility and efficiency. A notable con-
tribution by Suvitha et al. (2024) introduces a method for se-
lecting sustainable hydro-power renewable energy sources.
This method emphasizes the crucial aspect of choosing ef-
ficient and sustainable energy systems in renewable energy
projects, which is vital for long-term environmental and eco-
nomic viability[6]. Hou et al. (2015) extend this discussion
by exploring hybrid energy storage and generator control
monitoring systems. Their research underscores the need
for ongoing technological advancements and system inno-
vations to optimize the performance of renewable energy
farms, particularly in the face of evolving energy demands
and environmental concerns[7].

Furthermore, Nkwanyana et al. (2023) delve into the com-
plexities of optimizing HESS, addressing critical issues such
as durability, charging/discharging efficiency, temperature
management, cost-effectiveness, and overall lifespan of the
storage systems. Their comprehensive assessment of these
factors provides valuable insights into the multifaceted na-
ture of HESS optimization in renewable energy systems[8].
Behera et al. (2024) contribute to this discourse by highlight-
ing the role of hybrid energy storage in effectively managing
excess energy during peak generation periods and smooth-
ing out the fluctuations in power output, which is a critical
aspect of maintaining grid stability and ensuring consistent

energy supply[9].
In the specific context of wind farms, Choi et al. (2016) in-

vestigate the application of frequency regulation techniques
using pulse-width modulation. Their study offers a nu-
anced look at how HESS can be effectively integrated to
manage frequency variations and enhance the overall effi-
ciency of wind farm operations[10]. Wang et al. (2023)
propose the use of zero-phase CARIMA filtering as an inno-
vative approach to integrate hybrid energy storage systems
for smoothing wind power fluctuations. This technique rep-
resents a significant advancement in optimizing the balance
between energy generation and storage, ensuring a more re-
liable and steady power output from wind farms[11].

Zhang et al. (2023) focus on the strategic allocation
of HESS resources using a scenario clustering algorithm.
This approach allows for more informed decision-making in
the distribution and utilization of energy storage resources,
aligning with the dynamic and variable nature of wind en-
ergy generation[13]. Chen et al.(2022) propose an innova-
tive method for determining the target power in HESS. Their
approach leverages the capabilities of a low-pass filter algo-
rithm to make strategic decisions regarding the distribution
of energy within the HESS[12]. Finally, Li et al. (2023)
present a novel concept of hybrid electric-methanol energy
storage to improve the stability and reliability of power sys-
tems. Their research showcases the potential of combining
different energy storage technologies to create a more re-
silient and adaptable energy system, particularly in the con-
text of offshore wind energy generation [14].

These studies collectively emphasize the pivotal role and
progressive development of HESS in the realm of renewable
energy. The implementation of HESS is instrumental in sta-
bilizing the inherent fluctuations characteristic of renewable
energy sources, thereby enhancing the reliability and pre-
dictability of power supply. Additionally, integrating tech-
nologies such as super-capacitors into these systems can sig-
nificantly extend the life of batteries, thereby improving the

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China

1323  



overall efficiency and sustainability of the energy storage so-
lution.

In power generation systems, energy storage serves three
main functions: smoothing the output power curve of wind
and solar energy, tracking the load power curve, and peak
shaving and valley filling[15, 16]. Depending on the role of
energy storage, the system adopts different energy dispatch
strategies, and the configuration of energy storage capacity
also varies.

In this study, we unveil an innovative optimization algo-
rithm that masterfully integrates the intricacies of offshore
wind energy generation with the dynamic functionality of
various energy storage technologies. This algorithm is par-
ticularly geared towards exploring an effective combined
configuration approach for energy storage power stations,
tailored to align with the output characteristics of new en-
ergy field station clusters. The primary application of this
model is in refining the output power curve of wind power
generation.

Furthermore, we delve into the potential of advanced con-
trol strategies and smart grid technologies to further enhance
the performance of HESS. These strategies include real-time
monitoring and adaptive control mechanisms that respond
dynamically to mitigate the fluctuations of wind energy. By
incorporating these technologies, our model not only extends
the life of energy storage components but also paves the way
for more intelligent and autonomous renewable energy sys-
tems.

2 Wind Farm with HESS

Energy storage systems can be classified into two types
based on their charging and discharging characteristics:
energy-type storage and power-type storage[17]. Energy-
type storage, such as batteries, has a high energy density, but
frequent charging and discharging can affect its service life.
On the other hand, power-type storage, such as flywheels and
super-capacitors, has a high power density, short start-stop
response time, and minimal impact on lifespan. Currently,
using a single type of energy storage cannot cope with the
complex fluctuations in renewable energy output. Therefore,
a hybrid energy storage system combining energy-type and
power-type storage is considered to jointly mitigate these
fluctuations. In this paper, the HESS system is composed
with the battery and super-capacitor.

In the wind power farm with HESS, the total output of the
system can be depicted as

POut = PWind + PHESS (1)

Where POut is the total output of the system. PWind rep-
resents the power generated by the wind farm. PHESS is
the output of the storage system.In this equation, the energy
directed to the storage system is considered as negative (in-
dicating charging), whereas energy discharged from the stor-
age system is positive.

Since there are rigid standards for grid-connected power
fluctuations of offshore wind farm, the low-pass filter is ap-
plied in power distribution of the system. The first-order
lower pass filter is shown in 1.

In this filter, according to the relationship of the compo-

Fig. 1: A first-order lower pass filter

nents, we have

RC∗ dUo
dt

+ Uo = Ui (2)

Where τ = RC is the filter time constant, Ui is the input
signal, and Uo is the low-pass filter output signal. Similarly,
by applying this algorithm into mitigating the fluctuation, the
following equation can be acquired,

POut(t) = (1− a)POut(t− 1) + aPWind(t) (3)

t indicates the sampling time, a is the fluctuation coefficient.
Since a ∈ (0, 1), the bigger a shows deeper influence of the
wind fluctuations.

The wind power fluctuation is modelled as

a(t) =



min{POut(t−∆t) + γPr − POut(t− 1)}
PWind(t)− POut(t− 1)

,

PWind(t) > POut(t− 1)

max{POut(t−∆t)− γPr − POut(t− 1)}
PWind(t)− POut(t− 1)

,

PWind(t) < POut(t− 1)

1,

PWind(t) = POut(t− 1)
(4)

γ is the fluctuation rate of wind power, ∆t is the time scale,
Pr is the rated power of the wind farm.

With filter coefficient a, POut and PWind can be acquired.
With equation (1),the combined output of HESS can be cal-
culated.

3 Distribution Power Between Battery and Super-
capacitor

With the stabilizing policy proposed in section 2, after
incorporating the hybrid energy storage system, the over-
all real-time smoothing control strategy framework for wind
farm power fluctuations is depicted in fig.2 below.

In this figure, the flowchart of management system for
wind farm with HESS is depicted. The components and
their connections are as follows: ”Real-time Output of the
wind farm” is the starting point, indicating the immediate
energy production from the wind farm. This output goes
into a ”Fluctuation Stabilizing Policy” which represents the
set of procedures or technologies aimed at reducing the vari-
ability of the wind energy before it’s fed into the system.
The output from the fluctuation policy is then directed to the
”HESS Control Policy” which will be carefully discussed in
this section. Within the HESS, there are two types of stor-
age indicated: ”Super-capacitor” and ”Battery”. Thus how
to distribute energy between them is of great importance. Fi-
nally, the energy goes to the ”Grid-connected Output,” which
is the energy that is actually fed into the power grid.
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Fig. 2: Control strategy framework for wind farm power
fluctuations

During charging and discharging, the power of an energy
storage system is limited to ensure its normal operation and
prevent damage caused by overcharging or over-discharging.
One crucial parameter is the state of charge (SOC), which
refers to the ratio of the remaining capacity to the rated ca-
pacity of the energy storage system after charging or dis-
charging.

SOC =
Eini +

∫ t
0

(
ηchPch + 1

ηdis
Pdis

)
dt

Er
(5)

Where Eini represents the initial remaining capacity of
the energy storage device before charging or discharging,
ηch and ηdis are the charging and discharging efficiencies of
the battery respectively, Pch and Pdis are the charging and
discharging powers, t is the charging or discharging time,
Er and is the rated capacity of the energy storage device.
In this paper, the sampling time for wind power is 1 second,
the charging and discharging efficiency of the energy storage
battery ranges from 70% to 90%, and the charging and dis-
charging efficiency of the super-capacitor ranges from 90%
to 95%. The mathematical model for charging and discharg-
ing of the hybrid energy storage system is shown in eq.6.
To ensure that both the energy storage battery and the super-
capacitor operate under normal conditions and to minimize
charging and discharging losses, both should operate within
their respective state of charge (SOC) limits.

SOCB(t) = SOCB(t− 1) + PB(t)ηch/EBr

(PB(t) ≥ 0)
SOCB(t) = SOCB(t− 1) + PB(t)/ (EBr

ηdis )
(PB(t) < 0)

SOCSC(t) = SOCSC(t− 1) + PSC(t)ηch/ESCr

(PSC(t) ≥ 0)
SOCSC(t) = SOCSC(t− 1) + PSC(t)/

(
ESCrη

dis
)

(PSC(t) < 0){
SOCmin

B ≤ SOCB(t) ≤ SOCmax
B

SOCmin
SC ≤ SOCSC(t) ≤ SOCmax

SC
(6)

When PB and PSC are greater than zero, it indicates the
charging process of the storage. When PB and PSC are
smaller than zero, it indicates the discharging process of the
storage.

To enhance battery longevity by managing its State of
Charge (SOC) and extending its cycle life, we incorporate
a coefficient b into our energy distribution strategy. In con-
junction with this, an auxiliary variable k is introduced to
provide a more nuanced control over the battery’s charging
and discharging processes. At any specific sampling time,
we define k for the battery as the normalized difference be-
tween its maximum SOC and its current SOC, expressed
mathematically as:

k =
|SOCmaxB − SOCB |
SOCmaxB − SOCminB

(7)

This equation serves to scale the SOC within a normalized
range of 0 to 1, providing a relative measure of the battery’s
charge level with respect to its operational bounds.

When k falls below the threshold of 0.1, an indication that
the battery is near its maximum or minimum SOC, we de-
fine a quadratic relation for the coefficient b to modulate the
charging rate and avoid extreme states that could harm the
battery:

b = k2 (8)

This quadratic relationship reduces the energy allocated to
the battery, denoted as PB(t), to a fraction determined by
b, thereby conserving the battery’s health and extending its
useful life:

PB(t) = b · PCalB (9)

Conversely, if k exceeds 0.1, suggesting the SOC is within a
safer operational range, the coefficient b is set to 1, allowing
for normal energy allocation without additional modulation.

The variable PCalB represents the calculated power for the
battery derived from the HESS using a first-order filter algo-
rithm, which can be expressed as:

PCalB (t) = (1− c) · PB(t− 1) + c · PHESS (10)

Here, the filter coefficient c for the battery is initially defined
as 0.9 to prioritize recent data while still accounting for past
behaviour, ensuring a smooth response to changing energy
demands.

With the calculated value PB , the power allocated to the
super-capacitor PSC can be readily determined using the to-
tal power from the HESS completing the energy distribution
strategy for the integrated storage system.

PSC(t) = PHESS(t)− PB(t) (11)

To ensure the effective operation of the hybrid energy
storage system (HESS), it is crucial to monitor the State of
Charge (SOC) of the super-capacitor, denoted as SOCSC .
The SOC should remain within predefined normal ranges to
maintain system stability and integrity.

Upon confirmation that the SOC is within acceptable lim-
its, the energy distribution process for the HESS is deemed
complete. However, if the SOC deviates beyond these lim-
its, indicating a potential discrepancy in the current capacity
settings of the HESS, the energy distribution is considered
unsuccessful. In such instances, it becomes necessary to ad-
just the filter coefficient to realign the SOC with its desired
range. The adjustment is performed according to the follow-
ing equation:

c = (1− k) · c (12)

This modification of the filter coefficient c is directly in-
fluenced by the variable k, which serves as an indicator of
the SOC’s proximity to its boundaries. By dynamically tun-
ing c, the system can respond to fluctuations in energy stor-
age and demand, ensuring that the super-capacitor operates
within safe and efficient parameters.
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This methodical approach to energy management not only
stabilizes the energy output from variable renewable sources
but also preserves the health of the storage components, ul-
timately contributing to the resilience and efficiency of the
overall power system.

The whole procedure of the hybrid energy storage opti-
mization can be shown in fig.3.

Fig. 3: Procedure of the hybrid energy storage optimization

The flowchart outlines the sequence for managing the
power output from HESS. The process begins by captur-
ing the total energy from the HESS using a first-order fil-
ter. Next, a filter coefficient c is initialized and a calibrated
power value for the battery, denoted as PBcal, is obtained. Sub-
sequently, a coefficient k is calculated, which is pivotal in
determining the next steps.

If k < 0.1, the power at time t for the battery, expressed
as PB(t), is calculated directly by multiplying a constant b
with PBcal. However, if k ≥ 0.1, the constant b is adjusted to
the square of k before being used in the power calculation
for PB(t).

Following the computation of power for the battery, the
algorithm proceeds to calculate the energy and the State of
Charge SOC of the super-capacitor. The process reaches its
end if the SOC is within the predetermined acceptable lim-
its. If SOC of the super-capacitor is out of ranges, the filter
coefficient will be updated and re proceed the whole process.

4 Case Study

In a 100MW offshore wind farm, the configuration of pa-
rameters of HESS and wind farm are shown in table1.

The original and filtered wind power is shown in fig.4.
The illustration features two distinct areas: the grey region

represents the variability of wind power generation, while
the blue region indicates the output power that has been mod-
ulated by the incorporation of the HESS.

Table 1: Configuration of Parameters
Rated Power of Wind Farm 100MW
Sampling Time 1s
Time Scale 8000s
Fluctuation Rate 5%
Initial SOC Value of Battery 0.5
Initial SOC Value of Super-Capacitor 0.5
Battery SOC Maximum 0.9
Battery SOC Minimum 0.1
Super-capacitor SOC Maximum 0.95
Super-capacitor SOC Minimum 0.05
Charging and Discharging Efficiency of Battery 1
Charging and Discharging Efficiency of Super-capacitor 1
Minimum Charging and Discharging Initial Value of c 0.9

Fig. 4: The original and filtered wind power

The fluctuation rate of wind farm with HESS in one-
minute is shown in fig.5.

Fig. 5: The fluctuations of wind power in 1-minute

Examining fig.5, it is observable that the implementation
of the HESS significantly stabilizes the output of the wind
farm over an 8000-second interval, maintaining fluctuations
within a narrow margin of 5%. This demonstrates the effi-
cacy of the HESS in dampening the variability of wind en-
ergy production.

The requirement of HESS can be calculated with eq.1,
thus the total energy requirement from the storage is shown
in fig.6.

Fig. 6: The smoothed power difference

The smoothed power difference is the input of HESS op-
timization. With the proposed method and optimization pol-
icy, the charging and discharging processes of the battery and
super-capacitor are shown in fig.7.

The y label 0 means no charging and discharging of
HESS. When the value of y is below zero, it means the
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Fig. 7: The charging and discharging process of HESS

discharging process of the storage. When the value of y is
greater than zero, it means the charging process of the stor-
age.

The SOC change of battery and capacitor is shown in the
fig.8.

Fig. 8: The SOC change of HESS

As illustrated in fig.8, it is evident that the State of Charge
(SOC) for both the battery and the super-capacitor remains
within their respective operational limits. This observation
underscores the effectiveness of the proposed methodology
in managing the energy distribution. By implementing this
strategy, we can safeguard the battery against excessive cy-
cling, thereby enhancing its longevity and maintaining opti-
mal performance.

5 Conclusion

This paper presents a strategic optimization policy tailored
for the HESS of offshore wind farms. Central to our op-
timization approach is the meticulous consideration of the
SOC of the battery, with the explicit objective of prolonging
its life-cycle. We have introduced a coefficient that acts as a
regulatory mechanism, imposing strict limits on the battery’s
SOC to curtail the frequency of charge and discharge cycles.
By dynamically updating the filter coefficient in conjunction
with the battery’s energy levels, we can achieve a timely and
efficient distribution of stored energy, ensuring the system
operates within the desired parameters for enhanced sustain-
ability and reliability.
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Abstract: We derive a minimum principle for a class of partially observed optimal control model, where the system noise and the
observation noise are correlated and the performance index is in a form of an exponential of integral. An approximate formula is
derived and it allows us to approximate the original forward-backward stochastic partial differential equations appearing in the
minimum principle by a singular forward-backward stochastic ordinary differential equations.
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1 Introduction

Partially observed optimal control problem has attracted
lots of attention over the past half century, related work may
refer to Mortensen [1], Davis & Varaiya [2], Fleming & Par-
doux [3], Borkar [4], Beneš & Karatzas [5], Baras, Elliott &
Kohlmann [6], Bensoussan [7], Tang [8], Charalambous &
Elliott [9], and so on. In this work, we deal with a general
model whose signal system contains a system noise and the
observation noise, its cost criterion is in a form of an expo-
nential of integral. Our motivation on this model is that these
signal systems have been appeared in many works, see [10]
or the recent works [11] [12].

We employ the method proposed by Mortenson [1], but to
derive the minimum principle of the optimal control prob-
lem on the basis of Bensousan’s work [7]. The related in-
finite system corresponding with our model changes to be
more complex, reflected in the diffusion term appearing the
differential operator. In order to develop the approximate
procedure, an orthogonal direct sum decomposition method
of Hilbert space is proposed to deal with the estimate and
computation problem. Some interesting analysis can be car-
ried out using tools from projection theory of Hilbert space.
An approximation formula is obtained, it allows us to recast
the original problem as that of solving a singular forward-
backward stochastic ordinary differential equations. These
are our main innovation.

Notations Let V = H1(Rn), H = L2(Rn) and denote
by V ∗ the dual of V . We will denote by ‖ · ‖, | · | and |‖ · |‖
the norms in V , H and V ∗ respectively; by < ·, · > the du-
ality product between V and V ∗, and by ((·, ·)) and (·, ·) the
scalar product in V andH respectively. For a bounded linear
operator F ∈ L (V,H), we use F ∗ ∈ L (H,V ∗) to denote
its adjoint. Sometimes, M∗ also denote the transpose of ma-
trixM . In addition, 〈α, β〉 or α ·β denotes the scalar product
in Euclidean space. Letting X be a norm space, we define:
L∞([0, T ];X) denotes the class of essentially bounded X-
valued measurable functions; C([0, T ];X) denotes the space

This work is supported by Youth Foundation of Shandong Natural
Science Foundation under Grant ZR2023QF091, as well as the National
Natural Science Foundation of China under Grants No. U23A20325,
No.62173118 and No.62350710214.

of X-valued continuous functions with the uniformly norm;
L2(Ω,F , P ;X) denotes the space of X-valued random ob-
jects with the usual L2-norm of probability measure space
(Ω,F , P ).

2 Problem Formulation

2.1 A Partially Observed Optimal Control Problem
The dynamics of the object to be controlled is described

by

dx(t) =f(x(t), u(t), t)dt+ g(x(t), t)dv(t)

+ k(x(t), t)dw(t),
(1)

where x ∈ Rn is the state variable and u ∈ U ⊂ Rd
is the control variable. w, v are the standard Wiener pro-
cesses, independent from each other, on the measure space
(Ω,F , Pu).

The noisy observation of the state is given by

dy(t) = h(x(t), t)dt+ dv(t). (2)

We use Yt = σ(y(s), 0 ≤ s ≤ t) to denote the σ-field gen-
erated by the history path of y until instant t. The admissible
control set Uad is defined as all U -valued square-integrable
processes which are adapted to (Yt)t.

The cost functional to be minimized is

J(u(·)) =Eu[

∫ T

0

l(x(t), u(t), t)

× exp(

∫ t

0

−c(x(s), u(s), s)ds)dt

+m(x(T ), T )

× exp(−
∫ T

0

(c(x(t), u(t), t)dt))],

(3)

where Eu denotes the expectation operator defined by mea-
sure Pu.

Assumptions
(A1). All functions f, g, k, h, l, c,m are measurable in

their respect variables and bounded. f, g, k, h are Lipschitz
continuous in the spatial variable x.
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(A2) f, l, c have bounded first derivatives in x; g, k have
bounded second derivatives in x.

(A3) kk∗ is uniformly positive definite, i.e., for any ξ ∈
Rn, it holds ξ∗kk∗ξ ≥ εIn for ∀ (x, t) ∈ Rn× [0, T ], ε > 0.

(A4) The initial value x(0) is independent of system and
observation noises w, v and its density function is in H .

(A5). For any (u, t) ∈ U × [0, T ], l(·, u, t) ∈ H and
m(·, t) ∈ H . In particular, |l(·, u, t)| ≤ C, independent
of u.

(A6) f, c have bounded and continuous first deriva-
tives in u; l has continuous first derivative in u and
|∂l(x, u, t)/∂u| ≤ ζ(x), with ζ(·) ∈ H .

(P1). The partially observed optimal control problem is
to minimize the performance index (3) under the admissible
control set Uad, subject to the controlled dynamic system (1)
and the noisy observation (2).

2.2 Reduced to Fully Observed Case
Inserting (2) to (1), it leads to

dx(t) =[f(x(t), u(t), t)− g(x(t), t)h(x(t), t)]dt

+ g(x(t), t)dy(t) + k(x(t), t)dw(t),
(4)

Next, we look for a probability measure under which two
processes {y(t)}0≤t≤T and {w(t)}0≤t≤T behave like two
independent standard Wiener processes. This can be com-
pleted by Girsanov’s theorem. By defining

Λu(t) = exp{
∫ t

0

〈h(x(s), s), dy(s)〉

− 1

2

∫ t

0

〈h(x(s), s), h(x(s), s)〉ds},
(5)

then, the measure P defined by dPu = Λu(T )dP is the one
needed.

Furthermore, denote

Zu(t) = exp{
∫ t

0

−c(x(s), u(s), s)ds}, t ∈ [0, T ]. (6)

Then the cost functional can be written as

J(u(·)) =E[

∫ T

0

Λu(t)Zu(t)l(x(t), u(t), t)dt

+ Λu(T )Zu(T )m(x(T ), T )]

(7)

where the martingale property of {Λu(t)}0≤t≤T has been
used.

Let

q(x, t)dx = E
[
χx(t)∈dx(ω)Λu(t)Zu(t)|Yt

]
, (8)

Then

J(u(·)) =E

∫ T

0

E
[
Λu(t)Zu(t)l(x(t), u(t))

∣∣Yt] dt
+ E

[
Λu(T )Zu(T )m(x(T ), T )

∣∣YT ]
=E

∫ T

0

(l(u(t)), q(t))dt+ E(m(T ), q(T )).

(9)

We use the following notations throughout this paper.

Au(t)ψ =
∑
i

fi(x, u)
∂ψ

∂xi
+

1

2

∑
i,j

aij(x)
∂2ψ

∂xi∂xj
,

Bk(t)ψ =
∑
i

gik(x)
∂ψ

∂xi
+ hk(x)ψ;

Au,∗(t)ψ =
∑
i,j

∂

∂xi
(aij(x)

∂ψ

∂xj
) +

∑
i

∂

∂xi
(ai(x, u)ψ),

Bk,∗(t)ψ = gk(x)ψ −
∑
i

gik(x)
∂ψ

∂xi
; with

ai(x, u) = −fi(x, u) +
∑
j

∂

∂xj
aij(x),

gk(x) = hk(x)−
∑
i

∂

∂xi
gik(x),

a = (gg∗ + kk∗)/2.

Lemma 1 Suppose ϕ : Rn → R is C2 function with com-
pact support. Then

σt(ϕ) = E [ϕ(x(t))Λu(t)Zu(t)|Yt] (10)

satisfies

σt(ϕ) = +

∫ t

0

σs(A
u(s)(s)ϕ)ds−

∫ t

0

σs(c(u)ϕ)ds

+
∑
k

∫ t

0

σs(B
k(s)ϕ)dyk(s) + σ0(ϕ).

(11)

Proof. Use Itô’s rule to function t 7→ ϕ(x(t))Λu(t)φu(t),
and then condition each side on Yt. Q.E.D

Lemma 2 If the measure defined by σt(·) has a density
q(x, t) such that

σt(ϕ) = E[ϕ(x(t))Λu(t)Zu(t)|Yt]

=

∫
Rn

ϕ(x)q(x, t)dx,
(12)

then q(x, t) satisfies

q(t) = +

∫ t

0

Au(s),∗(s)q(s)ds−
∫ t

0

c(u(s))q(s)ds

+

K∑
k=1

∫ t

0

Bk,∗(s)q(s)dyk(s) + q(0),

q(0) = q0(x).

(13)

(P2). The fully observed optimal control problem is to
minimize the performance index (9) under the admissible
control set Uad, subject to the controlled dynamic system
(13).

3 Minimum Principle

3.1 Existence and Uniqueness of Solution
Let L2

Y ([0, T ];X) denote the space of the X-valued and
(Yt)t-adapted square integral processes. We have

Proposition 1 Suppose Assumptions 1-6 hold. Then
for any admissible control u(·) ∈ Uad, there exists
one and only one solution of (13) in L2

Y ([0, T ];V ) ∩
L2(Ω,F , P ;C([0, T ];H)).
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Proof. Its proof is omitted in the conference version.
Q.E.D.

3.2 Variation Calculation
We shall use the notations below until the end of this pa-

per.

A (u; t) = Au,∗(t)− c(x, u, t), ∀ u ∈ U, t ∈ [0, T ];

Bk(t) = Bk,∗(t), k = 1, 2, ..,K.

ψ
′

u(ǔ) =
∂ψ(u)

∂u

∣∣∣
u=(ǔ)

,

where the last derivative on u can be denoted similarly for
functions fi(·, u, ·), c(·, u, ·) and l(·, u, ·).

Lemma 3 Suppose Assumptions 1-6 hold. The Gâteaux
derivative of the cost functional exists and is

d

dθ
J(u?(·) + θu(·))

∣∣∣
θ=0

= + E

∫ T

0

(l(u?(t), t), ζ(t))dt+ E(m(T ), ζ(T ))

+ E

∫ T

0

(l
′

u(u?(t)) · u(t), q?(t))dt,

(14)

where q?(·) satisfies (13) corresponding to the control u?(·),
we write it in a differential form, i.e.,

dq? = A (u?(t); t)q?dt+

K∑
k=1

Bk(t)q?dyk(t),

q?(0) = q0.

(15)

The random process ζ(·) satisfies

ζ ∈ L2
Y ([0, T ];V ) ∩ L2(Ω,F , P ;C([0, T ];H)),

dζ = + A (u?(t); t)ζdt− c
′

u(u?(t)) · u(t)q?dt

−
n∑
i=1

∂

∂xi
(f

′

i,u(u?(t)) · u(t)q?)dt

+

K∑
k=1

Bk(t)ζdyk(t), ζ(0) = 0.

(16)

Proof. Its proof is omitted for the space limitation. Q.E.D.

3.3 Linear Functional Representation
Given two (Yt)t≥0-adapted random processes φ ∈

L2
Y ([0, T ];V ∗) and ψ ≡ (ψ1, .., ψK) ∈ (L2

Y ([0, T ];H))K ,
we define a stochastic PDE of the type (16) (called variation
equation)

dλ = + (A u(t)(t)λ+ φ(t))dt

+

K∑
k=1

(Bk(t)λ+ ψk(t))dyk(t), λ(0) = 0.
(17)

From the energy equality, it can be checked that for every
u(·) ∈ Uad, (17) defines a linear and continuous mapping

Fuφ,ψ : L2
Y ([0, T ];V ∗)× (L2

Y ([0, T ];H))K → L2
Y ([0, T ];V )

(φ(·), ψ(·)) 7→ λ(·)

In addition, for every u(·) ∈ Uad, it also can be verified that

Fuλ : L2
Y ([0, T ];V ) −→ R,

λ(·) 7→ E

∫ T

0

(l(u(t), t), λ(t))dt+ E(m(T ), λ(T ))

is linear and continuous.
Hence, the composite mapping Fuλ ◦ Fuφ,ψ is a continu-

ous linear functional on L2
Y ([0, T ];V ∗)×(L2

Y ([0, T ];H))K .
From Riesz representation theorem, there is a unique ele-
ment (p(·), γ(·)) ∈ L2

Y ([0, T ];V )× (L2
Y ([0, T ];H))K such

that

E

∫ T

0

< φ, p > dt+

K∑
k=1

E

∫ T

0

(ψk, γk)dt

=E

∫ T

0

(l(u(t)), λ(t))dt+ E(m(T ), λ(T )),

(18)

where γk is the k-th coordinate of γ.
In particular, take u?(·) ∈ Uad and

φ?(t) = −
∑
i

∂
∂xi

(
f

′

i,u(u?(t)) · u(t)q?
)

− c′u(u?(t)) · u(t)q?,

ψ?(t) = 0,

(19)

where the corresponding solution of (17) denoted by λ?.
In view of (14) and (16), the linear functional Fu

?

λ? ◦Fu
?

φ?,ψ?

has the following representation

− E
∫ T

0

<
∑
i

∂

∂xi
(f

′

i,u(u?(t)) · u(t)q?)

+ c
′

u(u?(t)) · u(t)q?, p?(t) > dt

=E

∫ T

0

(l(u?(t), t), ζ(t))dt+ E(m(T ), ζ(T )),

(20)

where (p?(·), γ?(·)) is the duality pair, found by Riesz rep-
resentation theorem, to (19).

Now, (14) can be rewritten as

d

dθ
J(u?(·) + θu(·))

∣∣∣
θ=0

=− E
∫ T

0

<
∑
i

∂

∂xi

(
f

′

i,u(u?(t)) · u(t)q?
)
, p?(t) > dt

− E
∫ T

0

< c
′

u(u?(t)) · u(t)q?, p?(t) > dt

+ E

∫ T

0

(l
′

u(u?(t)) · u(t), q?(t))dt.

(21)
Based on the above formula, we have the following result.

Theorem 1 Suppose Assumptions 1-6 hold and the control
set U is convex. Then, if u?(·) is an optimal control for prob-
lem (P2) and q? is the corresponding trajectory described
by (15). Then there exists (p?, γ?) ∈ L2

Y ([0, T ];V ) ×
(L2

Y ([0, T ];H))K founded by (20) (its equation will be given
later) such that

〈H
′

u(q?(x, t), p?(x, t), u?(t), t), µ− u?(t)〉 ≥ 0,

∀ µ ∈ U, a.e. t, a.s.,
(22)
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where

H(q, p, u, t) = +

∫
Rn

〈f(x, u, t), Dp(x, t)〉q(x, t)dx

+

∫
Rn

l(x, u, t)q(x, t)dx

−
∫
Rn

c(x, u, t)p(x, t)q(x, t)dx.

(23)

4 Adjoint Equation

4.1 Approximation for Variation Equation
Let Vm = span{h1, ..., hm} be a finite dimension linear

subspace of V spanned by {h1, ..., hm}, which is not nec-
essarily orthogonal. We also denoted by Hm the range of
the continuous embedding Vm ↪→ H and by V ∗m the normed
dual space of Vm.

Now approximate variation equation (17) by

dλm = + (A u(t)
m (t)λm + φm)dt+

K∑
k=1

(Bk
m(t)λm

+ ψmk )dyk(t), λm(0) = 0.

(24)

Here A u
m(t) ∈ L (Vm, Vm) and Bk

m(t) ∈ L (Vm, Hm),
k = 1, 2, ..,K, are defined by the restrictions of operators to
the subspaces marked

A u
m(t) = A u(t)|Vm×Vm

,

Bk
m(t) = Bk(t)|Hm×Hm

,
(25)

respectively. In addition, φm ∈ V ∗m and ψmk ∈ Hm, k =
1, 2, ..,K, are defined similarly as

φm = φ|Vm
,

ψmk = ψk|Hm
.

(26)

For each j ≤ m, we may multiply hj on both sides of
(24). By using (25) and (26), it yields another expression of
(24)

(dλm, hj) =+ < hj ,A
u(t)(t)λm + φ > dt

+
∑
k

(hj ,B
k(t)λm + ψk)dyk(t),

(λm(0), hj) =0.

(27)

We have the following results.

Lemma 4 Suppose Assumptions 1-6 hold. The following es-
timate holds

E

∫ t

0

‖λm(s)‖2ds ∨ E( sup
0≤s≤t

|λm(s)|2)

≤CE
∫ t

0

(|‖φm|‖2 +
∑
k

|ψmk |2)ds, ∀ t ∈ [0, T ].

(28)

Proof. Its proof needs a series inequalities and the property
of projective operator, we omit here. Q.E.D.

Lemma 5 Suppose Assumptions 1-6 hold. We have the
strong convergence

λm → λ in L2
Y ([0, T ];V ) ∩ L2(Ω,F , P ;C([0, T ];H)).

Proof. Let λm, λm
′

be the solutions of (24) correspond-
ing to (φm, ψm) and (φm

′
, ψm

′
) respectively. Denoted by

λ̃m,m
′ ≡ λm − λm

′
, φ̃m,m

′ ≡ φm − φm
′

and ψ̃m,m
′ ≡

ψm − ψm′
the deviations.

We may check that the state-“control” pair λ̃m,m
′

and
(φ̃m,m

′
, ψ̃m,m

′
) still satisfies (28), due to the linearity of

equation (24), i.e.,

E

∫ T

0

‖λ̃m,m
′
(t)‖2dt ∨ E( sup

0≤t≤T
|λ̃m,m

′
(t)|2)

≤CE
∫ T

0

(|‖φ̃m,m
′
|‖2 +

∑
k

|ψ̃m,m
′

k |2)dt.

(29)

Hence, (λm) is a Cauchy sequence in L2
Y ([0, T ];V ) ∩

L2(Ω,F , P ;C([0, T ];H)) under the strong topologies in-
duced by the norms on the left hand side of (29). Here,
Bessel’s inequality is used to show that the right hand side
of (29) tenders to zero, as m,m

′ → +∞. We only prove the
case of |‖φ̃m,m′ |‖. By the triangle inequality, |‖φ̃m,m′ |‖ ≤
|‖φm−φ|‖+ |‖φm

′

−φ|‖. Letting B be the closed unit ball
of V , we estimate

|‖φm − φ|‖ = sup
υ∈B
| < υ, φm − φ > |

= sup
υ∈B
| < PVm(υ) + υ̃m, φ

m − φ > |

= sup
υ∈B
| < υ̃m, φ

m − φ > |

≤ (|‖φm|‖+ |‖φ|‖)‖υ̃m‖,

where υ̃m ≡ υ − PVm
(υ) ∈ V ⊥m , with PVm

being the
orthogonal projective operator and V ⊥m being the orthog-
onal complement subspace of Vm. Choose an orthonor-
mal basis {e1, .., em; em+1, ..} of V , and represent υ̃m =∑
j>m((υ̃m, ej))ej . Then, ‖υ̃m‖2 =

∑
j>m |((υ̃m, ej))|2,

which is small for large m by Bessel’s inequality. Simi-
larly, |‖φm

′

− φ|‖ is small for large m
′
. Hence, the case

of |‖φ̃m,m′ |‖ is completed.
Suppose the strong limit of λm is λ̆, we next verify that

it satisfies (17). Due to E
∫ T

0
‖λm(t)‖2dt ≤ C, there is a

subsequence of λm, denoted still by λm, weakly converges.
From Hölder inequality, we have

E

∫ T

0

< λm − λ̆, ϕ > dt

≤(E

∫ T

0

‖λm − λ̆‖2dt) 1
2 (E

∫ T

0

‖|ϕ‖|2dt) 1
2 , ∀ ϕ ∈ V ∗.

The above estimate and the Hausdorff property of weak
topology imply that the weak limit coincides with the strong
one. We then concentrate on finding out the weak limit, this
can be finished by using (27).

To overcome passing to the limit of the stochastic integral
term, we employed the method mentioned in [7] by marking
it by a complex number tag. Let β ∈ L∞([0, T ],RK) be
deterministic and consider the complex valued martingale

γ(t) = exp

(
i

∫ t

0

〈β(s), dy(s)〉+
1

2

∫ t

0

|β(s)|2ds
)
.
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Applying Itô rule to the mapping t 7→ γ(t)(λm, hj), it
yields

E[γ(t)(λm(t), hj)]

= + E

∫ t

0

γ(s) < hj ,A
u(s)(s)λm + φ > ds

+

K∑
k=1

E

∫ t

0

iγ(s)βk(s)(hj ,B
k(t)λm + ψk)ds, ∀ t.

We can take the limit weakly in each term of the preceding
equality to get

E[γ(t)(λ̆(t), hj)]

= + E

∫ t

0

γ(s) < hj ,A
u(s)(s)λ̆+ φ > ds

+

K∑
k=1

E

∫ t

0

iγ(s)βk(s)(hj ,B
k(s)λ̆+ ψk)ds, ∀ t.

By the martingale property of γ, rewrite the above equality
as

E[γ(t)(λ̆(t), hj)]

= + E[γ(t)(

∫ t

0

< hj ,A
u(s)(s)λ̆+ φ > ds

+

K∑
k=1

∫ t

0

(hj ,B
k(s)λ̆+ ψk)dyk(s))].

Since β is arbitrary, it implies

(λ̆(t), hj) = +

∫ t

0

< hj ,A
u(s)(s)λ̆+ φ > ds

+

K∑
k=1

∫ t

0

(hj ,B
k(s)λ̆+ ψk)dyk(s).

Using the separability of V , it follows that λ̆ satisfies (17)
and necessarily λ̆ = λ.

Q.E.D

4.1.1 Approximation for Adjoint Equation

Be given (φm, ψm) ∈ L2
Y ([0, T ];V ∗m) ×

(L2
Y ([0, T ];Hm))K , we may consider the mapping de-

fined by (24)

Fm,uφm,ψm : L2
Y ([0, T ];V ∗m)× (L2

Y ([0, T ];Hm))K

→ L2
Y ([0, T ];Vm)

(φm, ψm) 7→ λm

and the functional

Fm,uλm : L2
Y ([0, T ];Vm)→ R

λm 7→ E[

∫ T

0

(l(u(t)), λm)dt+ (m(T ), λm(T ))].

As before, there is a unique pair

pm(t) ∈ L2
Y ([0, T ];Vm),

γmk (t) ∈ L2
Y ([0, T ];Hm), k = 1, 2, ..,K,

such that

E

∫ T

0

[< pm, φm > +
∑
k

(γmk , ψ
m
k )]dt

=E

∫ T

0

(l(u(t)), λm)dt+ E(m(T ), λm(T )).

(30)

Lemma 6 With assumptions as earlier, the strong conver-
gence holds

pm → p in L2
Y ([0, T ];V ),

γm → γ in (L2
Y ([0, T ];H))K , as m→ +∞.

4.1.2 Equation of Adjoint process

We give the following result but omit its proof.

Lemma 7 The processes pm and γm of (30) satisfy

(hj , dp
m) =− [< hj ,A

u(t),∗(t)pm >

+
∑
k

(hj ,B
k,∗(t)γmk )

+ (hj , l(u(t))]dt

+
∑
k

(hj , γ
m
k )dyk(t),

(hj , p
m(T )) = + (hj ,m(T )), j ≤ m.

(31)

From now on, we may take the limit in (31) in virtue of
Lemma 6 and check the limited state (p, γ) satisfies

dp(t) = −[Au(t)(t)p(t)− c(u(t))p(t) + l(u(t))]dt

+
∑
k

(γkdyk(t)−Bk(t)γkdt), p(T ) = m(T ).

The uniqueness of the solution holds by the uniqueness of
the representation of the functional Fuλ ◦Fuφ,ψ defined in (18).

In particular, evaluating (φ?, ψ?) as in (19) and taking
u?(·) ∈ Uad, the above backward stochastic pde is exactly
the one stated in Theorem 1. We state it as follows.

Proposition 2 The assumptions are those of Theorem 1.
The adjoint process (p?(·), γ?(·)) ∈ L2

Y ([0, T ];V ) ∩
L2(Ω,F , P ;C([0, T ];H)) × (L2

Y ([0, T ];H))K founded by
(20) satisfies

dp? = −[A u?(t),∗(t)p?(t) + l(u?(t))]dt

+
∑
k

(γ?k(t)dyk(t)−Bk(t)γ?k(t)dt),

p?(T ) = m(T ).

(32)

4.2 Approximation Formula
Notice that (15) has the same form as (17). We may ap-

proximate it as follows

(dq?,m, hj) =+ < hj ,A
u(t)(t)q?,m > dt

+
∑
k

(hj ,B
k(t)q?,m)dyk(t),

(q?,m(0), hj) =(q0, hj), j ≤ m.

(33)

Now, the forward-backward stochastic pdes (15) and (32),
involved in Theorem 1, can be approximated by (33) and
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(31) respectively. Lemma 5,6 imply that the strong conver-
gence holds.

Assume we approximate the solution of equation (15) and
(32) in the form (for brevity, we shall omit the mark ? below)

qm(x, t) =

m∑
i=1

αmi (t)hi(x),

pm(x, t) =

m∑
i=1

βmi (t)hi(x),

γmk (x, t) =

m∑
i=1

ηmk,i(t)hi(x), k = 1, 2, ..,K,

(34)

where αmi , βmi and ηmk,i are the Fourier coefficients to be
pinned down later.

Inserting the first equality into (33), we get∑
i

dαmi (t)(hi, hj) = +
∑
i

αmi (t) < hj ,A
u(t)(t)hi > dt

+
∑
k,i

αmi (t)(hj ,B
k(t)hi)dyk(t),

∑
i

αmi (0)(hi, hj) =(q0, hj).

Substituting the last two equalities to (31), we also have∑
i

dβmi (t)(hj , hi) =− [
∑
i

βmi (t) < hj ,A
u(t),∗(t)hi >

+
∑
k,i

ηmk,i(t)(hj ,B
k,∗(t)hi)

+ (hj , l(u(t)]dt

+
∑
k,i

ηmk,i(t)(hj , hi)dyk(t),

∑
i

βmi (T )(hj , hi) = + (hj ,m(T )).

Writing them in a compact form, we obtain the follow-
ing singular forward-backward stochastic ordinary differen-
tial system

~dαm(t) =A(t)αm(t)dt+

K∑
k=1

Bk(t)αm(t)dyk(t),

~dβm(t) =− [A∗(t)βm(t) +

K∑
k=1

Bk,∗(t)ηmk (t) + ιm(t)]dt

+

K∑
k=1

~ηmk (t)dyk(t),

with the boundary conditions

~αm(0) = qm0 , ~βm(T ) = (m(T ))m.

In the above, we have used the following matrices

~ =(hij)i,j , hij = (hj , hi) = hji,

A =(Aij)i,j , Aij =< hj ,A
u(t)hi >,

Bk =(Bkij)i,j , B
k
ij = (hj ,B

k(t)hi), k = 1, ..,K,

and vectors

ιm =(ιmj )j , ιmj =

∫
Rn

hj(x)l(u(t), x)dx,

qm0 =(qm0,j)j , q
m
0,j =

∫
Rn

hj(x)q(x, 0)dx,

(m(T ))m =((m(T ))mj )j , (m(T ))mj =

∫
Rn

hj(x)m(x, T )dx.

Remark 1 A set of complete basis of L2(Rn) to be chosen
is the Gaussian density functions

hj(x) = hj(x,mj ,Σj)

=
1√

(2π)n det(Σj)1/2
exp{−1

2
(x−mj)

∗Σ−1
j (x−mj)},

where mj is the mean and Σj is the covariance matrix.

5 Conclusion

We discuss a class of partially observed optimal control
problem and recast the original problem as that of solving
a singular forward-backward stochastic ordinary differential
equations. Based on it, one related fully observable optimal
control problem may be constructed. Then, finite element
computation can be carried out on the Hamilton-Jacobi-
Bellman equation involved in the optimal control problem
constructed and others.
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Adaptive Coverage Path Planning of Marine Vehicles with
Multi-Sensor
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Abstract: Recent advancements in autonomous underwater vehicles (AUV) have made ocean exploration a key future frontier.
This study addresses the complex challenge of adaptive coverage path planning with multi-sensors (ACPPMS) in marine envi-
ronments, aiming to optimize AUV’s area coverage under strict time and energy constraints. We propose a novel approach that
integrates considerations of energy consumption, information acquisition, and spatial coverage, assessing the intricate trade-offs
between extending area coverage and enhancing data collection. Our methodology extends traditional adaptive information path
planning by incorporating the decision-making dilemma of balancing coverage with information gain, which we tackle through
a tree-based sequential decision-making framework, specifically a partially observable Markov decision process. Utilizing an
online planning solution, we validate our approach through rigorous simulation in a search and rescue scenario. The results
affirm ACPPMS’s adaptability and its superior performance in environments with medium to low reward densities, although
it falls short in highly rewarding settings compared to conventional full-coverage strategies. Notably, employing multiple sen-
sors not only elevates path efficiency but also contributes to significant energy savings, showcasing the practical benefits of our
multi-sensor integration strategy in adaptive maritime exploration.

Key Words: Adaptive Coverage Path Planning, Area Coverage, Partially Observable Markov Decision Process.

1 Introduction

The regional exploration of marine robots equipped with
multi-sensors is mainly aimed at resource exploration,
search, rescue, and other application environments in un-
known deep-sea environments. Agents must collect infor-
mation in partially observable uncertain environments and
accept information about the world by carrying sensors with
different detection accuracy. Observation and its energy are
both limited. To carry out regional exploration as effectively
as possible, we also added the complexity of regional cover-
age. We call this problem adaptive coverage path planning
with multi-sensors (ACPPMS) that requires joint reasoning
for perception and motion in three aspects: energy consump-
tion, information acquisition, and area coverage. Amanda
et al.[1] presented a similar work—adaptive coverage path
planning, but this is an unknown environment for other peo-
ple to consider, and there are no sensory factors to consider.
However, the problem for us to think about is that we have
a sensor that covers the automatic passageway, which is par-
tially intelligible. Our goal is to obtain an adaptive strategy
that, starting from the starting point, covers all areas of in-
terest as fully as possible with limited energy.

Coverage path planning (CCPP) algorithm[2] is designed
to ensure that a robot or unmanned aerial vehicle covers all
areas of interest with minimal overlap, aiming to improve
efficiency in path length and execution time. These algo-
rithms are critical in applications such as precision agricul-
ture, search and rescue, and surveillance. Existing coverage
path planning algorithms are basically divided into three cat-
egories: 1. Behavioral coverage-random collision method.
The principle of this method is mainly that the robot tenta-
tively covers the work area based on simple movement be-

This work is supported in part by National Natural Science Foundation
of China under Grant 62188101, 62203302, 62273230 and the Oceanic In-
terdisciplinary Program of Shanghai Jiao Tong University (project number
SL2023MS011 and SL2022MS003).
Corresponding author: Peng Wang

haviors. If it encounters obstacles, Then execute the corre-
sponding steering command. The behavior full coverage al-
gorithm has low work efficiency and the path planning strat-
egy is simple. The comparative typical algorithm contains
comprehensive cattle arable algorithm[3], decomposing into
polygon algorithm [4] and traveling salesman problem based
on gird [5]. 2. Region segmentation method. To enable the
robot to reduce the calculation amount of the algorithm, Li
et al. [6] proposed a method to simplify the given work-
place into smaller sub-regions for coverage on the standard
map and extend it to special missions [7]. The algorithm that
combines navigation and local navigation divides the entire
area into several areas for coverage. 3. The neural network
method uses self-learning, parallelism, and other character-
istics of the neural network to enhance the ”intelligence” of
the robot and improve coverage efficiency. Inspired by the
similarity between the neural network structure and the grid
map unit, Canadian scholar Han et al. [8] proposed a neu-
ral network method to cover. The neurons of the network
correspond one to one, and the real-time path planning for
the robot to achieve full coverage is generated by the ac-
tivity value of the neurons and the previous position of the
robot. However, the calculation amount of this method will
be extremely large, and the parameters will change accord-
ing to different environments, so using this method to adapt
to different environments is difficult. The existing coverage
path planning algorithm may lead to inefficiency in large or
complex environments because it requires covering all areas,
even if some areas are not important or of low value, which
often means longer trips and more Energy consumption. In
addition, these methods usually lack the ability to adapt to
environmental changes. To this end, we propose an adaptive
coverage path planning algorithm that can adapt to most en-
vironments. By prioritizing those key areas with high value,
prioritizing resource allocation, and improving task perfor-
mance.

Our key idea is to jointly reason about multimodal per-
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ception and motion by formulating the problem as a partially
observable Markov decision process (POMDP) [9] and using
an online solver to accommodate states, observation spaces,
and globally visited nodes. We use an optimal greedy search
in an online solver to tailor the strategy while trying to con-
strain the energy. Through this online POMDP framework,
we use the POMCP [10] algorithm to solve the ACPPMS
problem online and maintain a global access status to avoid
repeated access as much as possible, penalize repeated ac-
cess, and improve global coverage. The main contributions
of this article are as follows:

• We propose an adaptive coverage path planning
method, which aims to cover all valuable areas quickly
and efficiently, and can be applied in environments with
large areas and low reward density such as oceans.

• We separate sensing and action to save energy con-
sumption, and perform joint reasoning from three as-
pects: information acquisition, energy consumption,
and area coverage.

• We have verified our algorithm in different environ-
ments, and experiments have proven that the proposed
algorithm can effectively solve problems similar to
ocean search. The algorithm has fast convergence
speed, low repetition rate, and low energy consumption.

The rest of the paper unfolds as follows: Section 2 pro-
vides essential background information on partially observ-
able Markov decision processes (POMDPs) and their rel-
evance to coverage path planning. Section 3 defines the
problem we aim to solve, setting the stage for our proposed
approach detailed in Section 4, which covers the POMDP
formulation and online planning tailored to adaptive cover-
age path planning with multi-sensors (ACPPMS). Section
5 presents a comprehensive set of experiments designed to
validate the effectiveness of our approach, including simu-
lations in various scenarios to demonstrate its adaptability
and performance. We conclude in Section 6 by summariz-
ing our findings, highlighting the significant advantages of
our approach in optimizing area coverage under strict energy
and time constraints, and suggesting directions for future re-
search.

2 Background

This part provides background on partially observable
Markov decision-making (POMDP), online POMDP solver,
and full coverage path planning(CCPP).

2.1 Overview of POMDP
Partially observable Markov decision processes[11]

(POMDP) serve as a fundamental framework for decision-
making processes where uncertainty is a key factor. These
processes are defined by a set of elements: state space
(S), action space (A), observation space (O), along with
transition (T ), observation (Z), and reward (R) functions,
and a discount factor γ. In POMDP, the agent’s actions are
based on a belief about the state, which is not directly ob-
servable but inferred from noisy observations. The transition
function T defines the probability of transitioning to a new
state given a current state and an action. The observation
function Z models the likelihood of observing a particular
outcome from a state after an action. The reward function R
assigns an expected reward for actions in given states, and

the discount factor γ is used for problems with an infinite
horizon to ensure bounded total expected rewards. The
primary goal of POMDP is to develop an optimal policy (π)
that maximizes cumulative rewards over time. While exact
solutions exist for both finite and infinite horizons, they are
generally impractical for complex problems, leading to a
focus on approximate solution strategies. Existing methods
to solve the POMDP problem are roughly divided into the
following categories: 1. Value iteration method: similar
to the value iteration in MDP, but uses observed values
instead of states to update the value function. This is very
computationally intensive. For example, the heuristic search
value iteration method of POMDP proposed by Smith et al
[12]. 2. Monte Carlo method: approximating the optimal
solution through simulation is often more efficient but
may not be accurate enough. 3. Approximation methods:
such as point-based value iteration [13] or using neural
networks to approximate value functions [14]. 4. Online
Planning: For example, partially observable Monte-Carlo
planning(POMCP) plans in real-time and re-plans every
time a decision needs to be made.

2.2 Online POMDP solver
In the context of online POMDP planning, the decision-

making process involves selecting actions based on a cur-
rent belief state and considering possible future belief states
within a limited horizon. This adaptive approach allows for
real-time decision-making in dynamic environments. Key
methodologies in this area include branch-and-bound and
forward search strategies. Two notable modern methods in
online POMDP planning are the partially observable Monte
Carlo planning (POMCP) [15] and the determinized sparse
partially observable tree (DESPOT) [16]. POMCP utilizes
Monte Carlo tree search combined with upper confidence
bounds to guide exploratory actions, while DESPOT em-
ploys a sparse approximation of the belief tree. In this re-
search, the simpler POMCP framework is adopted for its
adaptability and efficiency, with the potential for modifica-
tions to suit various scenarios, including those with contin-
uous action spaces. Recent advancements also include ap-
proaches like the Pareto-optimal Monte Carlo tree search,
which optimizes the balance between exploration and ex-
ploitation, though it does not inherently support multimodal
sensing capabilities.

3 Problem definition

We have a location graph G = (V,R), where node V
represents the location that all robots can visit, and R rep-
resents the reward at each node, that is, the reward that can
be generated immediately when the robot performs an action
to this node, repeated visits don’t get rewards twice. In the
initial state, we place the robot at the initial position Vs and
need to give the number of iterations, since when the depth
of the decision tree constructed by the POMCP algorithm
is given, the time required for each iteration can be roughly
considered to be the same, so we use the number of iterations
to approximate the task execution time. Our task goal is to
maximize coverage and reward under the constraints of task
time and energy.

There are two actions that an agent can choose: one
is movement, and the other is perception. Movement can
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Fig. 1: environment: different colors represent different re-
ward values, when agent arrives at the specified location, the
reward can be got immediately.

achieve state transfer and obtain immediate rewards, while
perception cannot. However, through perception, the proba-
bility of observation can be increased, and from the perspec-
tive of the entire historical sequence, Perhaps beneficially,
we can use it to make better control decisions for higher re-
turns. Below we will briefly explain this matter in a two-state
world.

Fig. 2: A two-state environment illustrating confidence
space value iteration.

As shown in Fig 2, it is a world with two states. The
states are denoted as x1 and x2. The robot can choose
two different actions u1 and u2. Observations are de-
noted as z1 and z2. When the action is performed,
they will immediately produce the following rewards:
r(x1, u1) = −100, r(x2, u1) = +100, r(x1, u2) = +100,
r(x2, u2) = −50. Without perception:

V1(b) = max{ − 100p1 + 100(1− p1),

100p1 − 50(1− p1)}.
(1)

In the case of perception: Our measurement model
is described by the following probability distribution:
p(z1 | x1) = 0.7, p(z2 | x1) = 0.3, p(z1 | x2) = 0.3,
p(z2 | x2) = 0.7. and p′1 after sensing z1:

p′1 = p(x1 | z) = p(z1 | x1)p(x1)

p(z1)
=

0.7p1
p(z1)

, (2)

p′2 =
0.3(1− p1)

p(z1)
, (3)

p(z1) = 0.7p1 + 0.3(1− p1) = 0.4p1 + 0.3, (4)

p̂1 =
0.7p1

0.4p1 + 0.3
, (5)

V1(b | z1) = max{−100 · 0.7p1
p(z1)

+ 100 · 0.3(1− p1)

p(z1)
,

100 · 0.7p1
p(z1)

− 50 · 0.3(1− p1)

p(z1)
},

(6)

V̄1(b) = Ez[V1(b | z)] =
2∑

i=1

p(zi)V1(b | zi), (7)

and

V̄1(b)

=max{70p1 + 30(1− p1), 70p1 − 15(1− p1)}+
max{−30p1 + 70(1− p1), 30p1 − 35(1− p1)}.

(8)

From the comparison between V1(b) and V̄1(b), percep-
tion ability improves the value function of the entire area to
a higher level, so although perception ability does not obtain
immediate rewards, it is very meaningful for future control
choices.

4 Approach

We inherit all the complexity of the previous IPP problem
[17] and add two levels of complexity: multi-modality and
coverage.

Our approach is to explicitly develop and solve the
ACPPMS challenge within the POMDP framework. This
strategy allows for a comprehensive consideration of both
movement and the use of various sensing modes. The de-
tails of this formulation are presented in Section 4.1, fol-
lowed by an explanation in Section 4.2 on the application
of a specialized online POMDP solver, designed specifically
for ACPPMS scenarios

4.1 POMDP FOrmulation
In this section, we redefine AIPPMS within the POMDP

framework, as referenced in Section 3. The structure of
ACPPMS is a discrete-time, limited-horizon POMDP with
constraints. For any given moment t, the state is articulated
as st = (vt, ξt,∆et, XV ). Here, vt indicates the agent’s
present location in the node network, ξt is the aggregate of
nodes traversed thus far, and ∆et = B −

∑t−1
i=1 C(psi , ai)

represents the residual budget after costs. These components
are all observable. The XV parameter, which describes the
state of the world, is specific to the given problem and re-
mains unobservable. Belief centers on the most likely world
state, predominantly within the belief space B ⊂ X |V |, al-
though it’s feasible to impose constraints on the joint distri-
bution to maintain computational feasibility; this model is
independent of the POMDP solver specifics.

The transition function T is deterministic. If at represents
a movement action to an adjacent node, then the ensuing
state is st+1 = (vt+1, ξt+1,∆et+1, XV ) where vt+1 = at,
ξt+1 = ξt ∪ {vt+1}, and ∆et+1 = ∆et − C(st, at+1).
For a sensing action, the only change from st to st+1 is in
∆et+1 = ∆et − C(st, at+1). The belief state about the
world is updated based on the sensor’s observation as fol-
lows:
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We define the belief state at the next time step bt+1 by
using the state transition function τ , which is based on the
current belief state bt, the observation ot, and the action σ.

bt+1 = τ(bt, ot, σ). (9)

This update reflects how the system adjusts its estimation of
the environmental state based on the latest observations and
actions.

Then, we consider the specific manner in which the be-
lief state is updated. Given the current observation ot and
the action σ, the new belief state bt+1(x

′
v) is proportional to

the probability of this observation and also depends on the
cumulative effect of all possible states xv .

bt+1(x
′
v) ∝ P (ot|x′

v, ot, bt)P (x′
v|ot, bt)

∝ Z(x′
v, σ, ot)

∑
xv

T (σ, xv, x
′
v)P (xv|bt), (10)

bt+1(x
′
v) ∝ Z(x′

v, σ, ot)bt(x
′
v). (11)

The computation of bt+1(x
′
v) reflects the conditional prob-

ability of the state x′
v occurring given the current observa-

tion ot and action σ. This probability is composed of two
parts: one is the observation model Z, which describes the
probability of observing ot given the state and action; the
other part is the cumulative calculation through the transi-
tion probabilities T from all possible previous states xv and
their probabilities in the previous belief state.

4.2 Online Planning for ACPPMS
In our approach, we adopt the partially observable Monte

Carlo planning (POMCP) method as our main online solver.
We specifically adapted POMCP to address the challenges
of ACPPMS by incorporating two key modifications. First,
we formulate a push-out strategy that works effectively with
a relevant subset of utility functions. Second, since sensing
does not gain immediate rewards, but it is effective in the
long run, we borrow the method of Shushman Choudhury et
al [18]. A utility function is added for sensing, and the infor-
mation gain obtained is also expressed as a reward, so that
movement and sensing can be considered comprehensively
during the simulation. Third, to improve the regional cover-
age, we maintain a set of exploration nodes. Not only will no
rewards be obtained for repeated exploration, but there will
also be a penalty for the number of repeated explorations.
This adaptive solver is designed to cope more efficiently with
the complexity of ACPPMS.

Firstly, since we have to comprehensively consider bud-
get, regional coverage, and reward value, so we design a new
utility function here.

F = action.V +C0× budget+C1×ucb(Nh, Nha). (12)

Among them, when the system uses the Monte Carlo tree
search for rollout, action.V represents the reward value,
budget represents the remaining energy and C0 represents
the weight of the budget. Nh is the total number of visits to
the parent node, Nha is the number of times a specific ac-
tion is selected, and C1 is the exploration parameter, which
encourages trying actions that have not been completely ex-
plored.

Secondly, We add a utility function which is borrowed
from the method of Shushman Choudhury et al. [18] to
sense, and express the obtained information gain as a reward,
so that movement and sensing can be considered compre-
hensively during the simulation process. This approach in-
tegrates an anticipated information gain technique[19] with
the understanding that distribution mode can serve as a sim-
plified representation of negative information entropy[20],
given that collapsed distributions inherently exhibit higher
density concentration.

IG(a|b) =
∑
o

P (o|b, a)
[
max

s
τ(b, o, a)(s)−max

s
b(s)

]
(13)

≈
∑
i

[
max

s
τ(b, oi, a)(s)−max

s
b(s)

]
.

Last but not least, we denote the set of all feasible states
as S. Then, for any feasible state s ∈ Ŝ , the set of feasible
actions comprises those that can only lead to another feasible
state, i.e. We also defined the global variable trajectory to
penalize nodes that are visited repeatedly.

A(s) = {a ∈ A | T (s, a, s′) > 0 → s′ ∈ S}. (4)

The complete POMCP algorithm is described in Algo-
rithm 1.

5 Experiments

We run all simulations in python language to verify our
POMCP customization strategy in the POMDP framework.
At the same time, since we introduced a new problem
ACPPMS (Adaptive Coverage Path Planning with Multi-
Sensors). Table 1 are the parameters we believe may affect
the experiment. Our experimental field is the field of search

Table 1: Parameters
γ Discount Factor
T The depth of the search tree constructed
density Bonus Density (Mainly depends on the map built)
σ sensor

and rescue. The agent is an aircraft with limited energy and
carries a variety of different sensors. Different sensors can
bring observations with different accuracy. The agent needs
to search and rescue a certain amount of information under
a certain number of instructions. area survivors. We model
the environment simply as a two-dimensional grid, and the
density of survivors as instant rewards in the grid.

Result 1 First, we compared the agent coverage when
building search trees of different depths, and the number of
iterations required for complete coverage.

We model the environment as a 10×10 grid. When the
tree depths are 3, 5, and 8 respectively, the coverage when
the number of iterations is 100 is as Fig.5.

At the same time, we counted the number of iterations
when the agent obtained all rewards in the environment and
achieved full coverage. Experimental results show that when
the tree is built deeper, it may consider the future more, and
can show higher coverage in a limited number of steps. This
also results in the loss of local optimality at higher depths,
and more iterations are required for complete coverage.
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Algorithm 1 POMCP with GCB Rollout for ACPPMS
1: Global Trajectory = []
2: Global R = []
3: Global Budget = []
4: procedure SIMULATE(s, u, depth)
5: if γdepth < ε then
6: return 0
7: end if
8: if h /∈ T then
9: for all a ∈ A(s) do

10: T (ha)← (Ninit(ha), Vinit(ha), ∅)
11: end for
12: return ROLLOUT(s, h, depth) ▷ This uses ACTION

internally
13: end if
14: a ← argmaxb∈A(s) V (hb) + C0 ∗ budget +

C1

√
(logN(h)/N(hb))

15: (s′, o, r) ∼ Gsim(s, a)
16: R← r + γ · SIMULATE(s′, u′, depth + 1)
17: B(h)← B(h) ∪ {s}
18: N(h)← N(h) + 1
19: N(ha)← N(ha) + 1
20: V (ha)← V (ha) + (R− V (ha))/N(ha)
21: Trajectory ← Trajectory ∪ {s′}
22: return R
23: end procedure
24: procedure ACTION(πrollout, s, h)
25: for all a ∈ A(s) do
26: if a ∈ V then ▷ a is for movement
27: U(a)← Eb(Xv)[∆F (a|s,Xv)]/C(s, a)
28: else
29: U(a)← IG(a|b(Xv))/C(a)
30: end if
31: end for
32: return a ∼ SoftMax(U)
33: end procedure
34: procedure ROLLOUT(s, h, depth) ▷ Modified for

exploration
snext ← s+ a ∈ A(s)

35: while not terminal state and depth < max depth do
36: if snext not in Trajectory then
37: Reward(a) = r
38: else
39: Reward(a) = num(Trajectory[a]) * (−1)
40: end if
41: end while
42: return Reward(a)
43: end procedure

Result 2 We compared the number of iterations required
for complete agent coverage in environments with different
reward densities. The Table 2 shows the number of iter-
ations required to build search trees of different depths to
achieve full coverage in environments of different densities.
Experimental results show that for low-density reward en-
vironments, the number of iterations required to construct
search trees of different depths is roughly the same, but also
shows a slight decreasing trend. This may be because when
the depth of the constructed search tree is shallower, its lo-
cal optimality is lost, and different actions lead to the same
reward, so the number of iterations to achieve full coverage
is slightly more. As the reward density increases, the advan-
tages of constructing a local optimum of a shallower search

Fig. 3: coverage rate in different T depth.

Fig. 4: Number of steps required to completely cover.

Fig. 5: Environments of different density.

tree begin to appear, and the number of iterations required
will become smaller than that of a deeper search tree.

Result 3 We compare the energy savings of carrying mul-
tiple sensors compared to a single sensor.

Using multiple sensors can result in significant energy
savings compared to using a single sensor. This result
demonstrates the efficacy of multi-sensor systems in improv-
ing the energy efficiency of autonomous agents in explo-
ration tasks.

These analyses collectively illustrate the robustness and
adaptability of the proposed adaptive coverage path plan-
ning strategy with multi-sensor integration in marine envi-
ronments, highlighting its potential for efficient exploration
and resource management.

6 Conclusion

In this study, we introduced an innovative approach for
adaptive coverage path planning of multi-sensor equipped
autonomous underwater vehicles (AUVs), aiming to opti-
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Table 2: the number of iterations required for complete agent
coverage in environments with different reward densities

T = 3 T = 5 T = 8

low density 35 33 30
medium density 77 87 98
high density 150 180 250

Fig. 6: Single sensor: 0.6 observation probability, 1 energy
cost; Double sensor: 0.8 observation probability, 1.2 energy
cost and 0.6 observation probability, 1 energy cost.

mize the marine environment under the constraints of limited
time and energy. area coverage. By formulating the problem
as a partially observable Markov decision process (POMDP)
and applying the online partially observable Monte-Carlo
planning (POMCP) algorithm, our approach achieved re-
markable performance in terms of efficiency and adaptabil-
ity. Our experiments confirmed that the proposed ACPPMS
method effectively balances the trade-off between explo-
ration depth and resource constraints, resulting in more in-
formed decisions in uncertain marine environments. By in-
tegrating multi-sensor data and dynamically adjusting plan-
ning strategies based on real-time observations, our system
achieved excellent area coverage and information acquisi-
tion, demonstrating the potential of multi-sensor integration
in enhancing AUV capabilities. As we continue to explore
the ocean depths, the flexibility and efficiency of our adap-
tive coverage path planning approach demonstrated the po-
tential of intelligent robotic systems to overcome the chal-
lenges of ocean exploration.

Future work will focus on improving the efficiency of the
algorithm, exploring the integration of additional sensory
modalities, and expanding the application areas of this re-
search to include more complex and diverse marine environ-
ments.
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Neural-Network-Based Nonlinear Model Predictive Control of
Suspension Gravity Offload System
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Abstract: To address the underactuation issue induced by passive dampers in a suspension Gravity offload(SGO) system, this
paper introduces the utilization of active control using Pneumatic Artificial Muscles(PAM) to transform it into a fully actuated
physical system. However, due to the inherent non-linear characteristics such as flexibility and hysteresis in PAM, achieving pre-
cise force control poses challenges. Therefore, this paper proposes a Neural Network-based Nonlinear Model Predictive Control
(NMPC) approach. We apply the proposed approach to the constant force control of the SGO system based on PAM. Simulation
results demonstrate a marked improvement in control accuracy when compared to the feedforward PID control method.

Key Words: Pneumatic Artificial Muscles, Nonlinear Model Predictive Control, suspension Gravity offload

1 Introduction

For space missions involving extraterrestrial sample col-

lection, survey exploration, astronaut landings, and similar

tasks, the complex surface and gravity environments neces-

sitate the use of ground-based micro/low-gravity experimen-

tal systems [1, 2]. These systems serve as crucial means

for overall mission design and performance testing, with a

primary focus on addressing the key challenge of gravity

offload [3, 4]. In current ground-based micro/low-gravity

experimental systems, the commonly employed setup is the

beam-cable structure Suspended Gravity Offload(SGO) plat-

form [5], as depicted in Figure 1. It comprises a two-

dimensional gimbal subsystem and a Suspended Constant

Force(SCF) subsystem. Due to the susceptibility of cable

tension to abrupt fluctuations and the inherent flexibility re-

sulting from relatively low spacecraft stiffness, existing sus-

pended constant-force systems commonly incorporate elas-

tic dampers (such as springs) to mitigate force spikes and

minimize force errors. However, the introduction of flexible

dampers reduces the system’s bandwidth, leading to a dimin-

ished disturbance suppression capability of torque motors.

Additionally, the incorporation of passive dampers renders

the cable-driven suspended system underactuated [6]. This

significantly amplifies the difficulty in controlling suspended

constant-force systems, posing challenges in simulating pre-

cise micro/low-gravity environments.

Currently, extensive research has yielded diverse out-

comes regarding the constant tension technique, particularly

in its application across different scenarios, involving the

combination of rigid driving and elastic buffering. Litera-

ture [7] addresses the issue of restricted stiffness in passive

elastic components by introducing an active driving source.

It employs an electric push rod combined with a buffering

spring to form an active elastic component. Literature [8]

employs a bypass tensioning constant force mechanism ca-

pable of maintaining a nearly constant output force within a

specific output stroke range. However, these approaches do

not fundamentally resolve the issue of under-driving intro-

duced by passive springs.

This work is supported by National Natural Science Foundation

(NNSF) of China under Grant 62203300.

In recent years, Pneumatic Artificial Muscles(PAM) have

been extensively applied in aerospace, industrial manufac-

turing, medical rehabilitation, and various other fields due

to their advantages of structural simplicity, lightweight ma-

terials, flexibility, and robust safety features [9]. Due to the

flexible nature of PAM, which can serve as dampers, and

their lightweight property that significantly mitigates issues

associated with system parasitic mass, there is potential for

them to replace passive springs in suspended constant-force

systems. However, the inherent characteristics of pneu-

matic artificial muscles, such as hysteresis, high nonlinearity,

and creep, pose challenges in achieving precise control over

them [10].

Some scholars have proposed corresponding control

methods to address the uncertainty issues in the PAM model.

Jonathon [11] proposed a combined approach of sliding

mode control with proportional and integral compensation to

endow the control system with sufficient robustness. Mahdi

Chavoshian [12] introduced a novel hybrid control approach

for PAM position control integrating Dynamic Neural Net-

works (DNN) and Proportional-Integral-Derivative (PID)

methods. These methods offer significant reference value

for subsequent research on PAM control, yet there are still

some shortcomings.

Model Predictive Control (MPC) empowers the anticipa-

tion of future system behaviors within the control frame-

work [13]. The predictive capability and the ability to ac-

commodate rigid constraints render this method highly ad-

vantageous in the control of real systems. With the ad-

vancement of computer technology and the increasing acces-

sibility of intricate process models across diverse systems,

control methods based on MPC are increasingly applied in

practical engineering [14, 15]. However, The precision of

MPC control highly depends on the accuracy of the predic-

tion model. Therefore, this paper proposes utilizing online

neural network models to predict the complex dynamics of

PAM, followed by MPC optimization solving to enhance the

precision of constant force control.

The main contributions of this paper can be summarized

as follows:

1) A control strategy based on PAM-driven buffering is

proposed, offering potential solutions to the underactu-
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ation issue in suspended gravity offload systems.

2) A complete Neural Network NMPC framework is in-

troduced for a SGO system. The stability of the closed-

loop system is guaranteed.

In this paper, Section 2 presents the dynamic model of the

SGO Platform and emphasize the issues addressed in this

paper. Section 3 illustrates the design process of the pro-

posed control method using the SCF system and its theo-

retical analysis. Section 4 presents the results of simulation

experiments. The conclusions of this paper is in Section 5.

2 System Modelling

2.1 Suspension Gravity offload Platform
The SGO system with commonly used beam structures

is an efficient gravity unloading technique, as depicted in

Figure 1. The SGO consists of a two-dimensional tracking

subsystem and a SCF subsystem.

Y-axis guide 
rail

Two-axis gimbal
platform

Experimental
objectives

Z

YX

X-axis guide 
rail

Passive
buffer
Force
sensor

Fig. 1: Structure of SGO system

The two-dimensional tracking subsystem is required to

achieve horizontal movement, while the SCF subsystem ap-

plies a counter force to the experimental target through sus-

pension, necessitating the maintenance of the stability of this

counter force. To suppress force impact and reduce errors in

cable tension, passive dampers were introduced. However,

this has simultaneously resulted in the issue of underactu-

ated, reducing the system’s bandwidth and posing challenges

to achieving precise force control.

This note focuses on investigating the SCF subsystem

within the SGO system. Figure 2 illustrates the schematic

diagram of the SCF subsystem based on PAM proposed by

us. Defining the upward retraction of the rope as the positive

direction and the downward extension as the negative direc-

tion, the initial position of the entire system is considered as

zero along the x-axis.

As depicted in Figure 2, The SCF subsystem comprises

two actuators: a torque motor and a PAM. The torque motor,

facilitated by a reducer, regulates the spatial position within

the load space, while the PAM replaces traditional passive

dampers and directly maintains constant force control with

the load. Additionally, the SCF system incorporates laser

displacement sensors and force sensors.

2.2 Mathematical Model
A.Dynamics Analysis of PAM

Several researchers have extensively investigated PAM

modeling and analysis. Particularly, the literature [16] in-

troduced a widely adopted three-element model consisting

pulley

PAM

Reducer

Force
sensor

Torque
motor

Load

+

+

mx

Laser
sensor 1x

2x

3x

Fig. 2: Structure of SCF

of the contraction force element, spring element, and damp-

ing element arranged in parallel. Therefore, our analysis of

the dynamics of the SCF system is also based on the three-

element model of PAM.

fF bF kF

mg
x

Fig. 3: The three-element model of PAM

The illustration of the PAM’s three-element model is de-

picted in Figure 3, showcasing the PAM oriented vertically,

its upper end immobilized, and its lower end affixed to a

functional payload. It is posited that the PAM consists of a

contraction element, a damping element, and a spring ele-

ment, configured in parallel. The dynamic representation of

the PAM is characterized as
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Fp =

n1∑
k=0

fkp+

n2∑
k=0

bkpẋ+

N∑
i=1

n3∑
k=0

kikpx
i, (1)

where p(t) represents the internal pressure, x denotes ex-

pansion displacement of PAM,
∑n1

k=0 fkp,
∑n2

k=0 bkp, and∑n3

k=0 kikp are the contractile force, the damping coefficient

and the spring constant, n1, n2, and n3 are the order of the

approximated polynomials, fk, bk, and kik are the polyno-

mial coefficients.

In general, larger values of n1, n2, and n3 tend to yield

more precise models, yet concurrently increase the complex-

ity of the model. In practical applications, simpler models

are often chosen for ease of control and management. For

example, the model with n1 = 1, n2 = 1, and n3 = 3 is

represented by Eq (2).

Fp = f(p) + b(p)ẋ+

N∑
i=1

ki(p)x
i + τ(x, ẋ), (2)

where f(p) = f0 + f1p, b(p) = b0 + b1p, and k(p) =
ki0 + ki1p represent the contraction force, damping coeffi-

cient, and elasticity coefficient, respectively, f0, f1, b0, b1,

ki0 and ki1 are all unknown constants, and τ denotes the un-

modeled characteristics introduced by the simplified model.

B.Dynamics Analysis of SCF
The angular velocity of the pulley can be determined as

α̇ =
1

2r
(ẍm + ẍ1), (3)

where α denotes the angular velocity of the pulley, r repre-

sents the radius of the pulley, xm signifies the displacement

at the motor output, and x1 signifies the spatial displacement

of the rope at the output end of the pulley.

In the scenario where there is no slippage in the rope, thus

x1 = xm, the dynamic equation governing the rotation of

the pulley can be derived as follows.

Tm − Fpr =
Jw
r
ẍ1, (4)

where Tm represents the torque output at the reducer, Fp

denotes the tensile force of the PAM (Pneumatic Artificial

Muscle), and Jw stands for the rotational inertia of the pul-

ley.

The motion equations for simulating the movement of a

micro-low-gravity unloading load are as follows.

Fp + Fd −mLg = mLẍ3 +Δ, (5)

where Fd represents the ground reaction force, mL signifies

the mass of the load, x3 denotes the displacement of the load,

and Δ represents an unknown disturbance.

Based on Eq. (4) and Eq. (5), the simplified dynamic

model of SCF can be derived as:

Tm − Fpr =
Jw
r
ẍ1

Fp + Fd −mLg = mLẍ3 +Δ.
(6)

The actuating components of the SCF system consist of a

torque motor and a PAM. The input control variables are

the torque signal um and the air pressure signal up, while

the output variable is the force Fp of the PAM, forming a

Multiple-Input Single-Output(MISO) system.

Remark 1 In the SCF system, achieving the goal of gravity
unloading involves two scenarios: contact with the ground
and suspended levitation above the ground. Taking the sim-
ulation of the moon as an example: 1) When in contact with
the ground, Fp + Fd − mLg = 0, where Fp = 5/6mg. 2)
While suspended above the ground, Fp − mLg = mLẍ3,
where Fp = 5/6mg. Therefore, the ultimate objective of
the constant force control within the SCF system is to attain
Fp = 5/6mg.

The output of the Pneumatic Artificial Muscle (PAM) in

the SCF system can be obtained from Equations (2) and (6)

as:

Fp = f0 + f1up + (b0 + b1up)Δẋ+ (k10 + k11up)Δx

+ (k20 + k21up)Δx2 + τ(Δx,Δẋ),

(7)

where up represents the air pressure control signal, Δx =
x1−x2, and x2 denotes the displacement of the force sensor.

Taking into account the presence of multiple unknown pa-

rameters in the PAM model within the SCF system, along-

side unmodeled characteristics, this paper proposes utilizing

a neural network model to predict the output of the PAM in

the SCF system.

3 Neural Network-based Model Predictive Con-
stant Force Control

3.1 Principle Diagram of SCF Control
The control block diagram of the SCF system is illustrated

in Figure 4, representing a MISO control system. The actu-

ating components consist of a torque motor and a PAM: the

torque motor operates in torque mode to achieve extensive

motion control, while the PAM accomplishes precise force-

tracking control.
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Fig. 4: Principle Diagram of SCF Control

As shown in Figure 4, the SCF control diagram comprises

a torque controller and an MPC Controller. The torque con-

troller outputs the control law um to govern the torque mo-

tor, while the MPC controller outputs the control law up to

regulate the PAM. The focal point of this study lies in the

MPC controller for regulating PAM. It forecasts the subse-

quent temporal tension force of PAM by utilizing the previ-

ous time-domain actual force Fp, actual pressure P (t), dis-

placement Δx, and velocity Δẋ. Subsequently, it optimizes

and solves for the control law up.
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3.2 Neural Network Prediction Model
According to Eq (7), we consider the predictive form of

the PAM model within the SCF system as a nonlinear differ-

ence equation.

ŷk+1 = f(yk, · · · , yk−ny
,Δxk, · · · ,Δxk−nx

,

Δẋk, · · · ,Δẋk−nv
, uk, · · · , uk−nu

),
(8)

where yk denotes the output of the PAM at time k, Δxk and

Δẋk represent the position and velocity of the PAM’s exten-

sion at time k, and uk signifies the control input of the PAM

at time k. ny , nx, nv , and nu respectively denote the orders

of consideration for the output, displacement, velocity, and

input delays of the PAM.

In pursuit of a more precise PAM model, we propose em-

ploying radial basis function neural networks to describe the

nonlinear PAM. A typical three-layer RBF structure is illus-

trated in Figure 5. The first layer serves as the input layer,

the middle layer acts as the hidden layer employing Gaussian

basis functions as activation functions, and the third layer

represents the output layer. RBF neural networks possess

the characteristics of a simple structure and strong general-

ization ability. Its universal approximation property enables

the network’s output to fit any nonlinear curve with a fast

convergence rate.

ky

1ip

2ip

iNp

1( , )ip c

2( , )ip c

( , )i jp c

Fig. 5: Single-hidden-layer RBF network

The basis function of a neuron and the complete approxi-

mation function is given by

ϕi(p, ci) = e
− ‖p−ci‖2

2σ2
i

θ = [ϕ1, ϕ2, · · · , ϕj ]
�

Y = W�θ(p) +B,

(9)

where p signifies the input to the RBF NN, and j indicates

the neuron count, the function ϕi(p, ci) is identified as the

i-th Gaussian kernel function, with ci marking the nucleus

of the i-th kernel, and σi specifying the Gaussian kernel’s

breadth. The term ‖p− ci‖ quantifies the Euclidean discrep-

ancy between p and ci, the kernel’s focal point. The neuronal

weight is expressed as W = [ω1, ω2, · · · , ωj ], θ is the out-

put of the Gaussian basis function, B is the bias of the neural

network, and Y denotes the network output.

In Eq. (8), the nonlinear difference equation for PAM pre-

diction, namely, ŷk+1 is approximated by an RBF Neural

Network. The input of the RBF Neural Network is defined

as

p =
[
yk · · · , yk−ny

,Δxk, · · · ,Δxk−nx

Δẋk, · · · ,Δẋk−nv
, uk, · · · , uk−nu

] .
(10)

The output of Neural Network Prediction model is

ŷk+1 = WT
k θk(p) + bk. (11)

The objective of the RBF training is to minimize

min
ci,σi

J =

N∑
j=1

(yj − ŷj)
2, (12)

where yj represents the actual measured data of the PAM’s

extension force.

To achieve multi-step prediction, we employed a cascaded

structure of neural network prediction models, as depicted in

Figure 6.
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Fig. 6: Cascaded multi-step prediction model

To implement online updating of the RBF neural network

prediction model, a buffer for storing input-output data is

employed in the control system. Once the buffer stores data

for 3000 control cycles, the network is trained to update

its parameters. After updating the network parameters, the

buffer is cleared to store new data, initiating the training pro-

cess for the next cycle.

3.3 Neural Network-based Model Predictive Control
The cost function in this paper is formulated as follows

min
uk

J =

Np∑
j=1

e2k+j + ρ

Nu−1∑
j=0

Δu2
k+j

s.t. ek+Np+j = 0, j = 1, 2, · · · , Nc

|Δu| ≤ Δumax

umin ≤ uk ≤ umax,

(13)

where Np represents the prediction horizon, Nu signifies the

control horizon, and it is essential to ensure that Nu ≤ Np,

ρ stands for the weighting factor, ek+j = rk − ŷk+j is the

tracking error, rk is the reference signal at time k, ŷk+j is the

prediction of future outputs, Δu(k+ j) = u(k+ j)−u(k+
j − 1), u(k) is the control signal at time k.ek+Np+j denotes

terminal constraints, and Nc stands for constraint horizon.

To improve the disturbance suppression capability of the

MPC controller and enhance the precision of constant force

control, we have introduced feedback correction. The cor-

rection error at time step k, denoted as ec,k, is calculated as

the difference between the predicted output ŷk and the mea-

sured output yk, expressed as ec,k = ŷk − yk.

Subsequently, utilizing ec,k, the reference trajectory is ad-

justed. In the context of Np step prediction, the reference
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output can be corrected to:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rc,k+1 = rk+1 + λec,k

rc,k+2 = rk+2 + λec,k

· · ·
rc,k+Np = rk+Np + λec,k,

(14)

where λ denotes correction coefficientsubstitute reference

trajectory rk+1 with rc,k+1 for optimization purposes.

3.4 Stability Analysis
Terminal cost functions and constraint regions constitute

a widely employed approach for ensuring the effectiveness

of MPC strategies [17]. This study examines the stability

of MPC in the presence of terminal constraints. Stability is

maintained by ensuring a monotonically nonincreasing cost

function J(·) [18].

In Eq. (13), we consider uk as the optimal control ob-

tained through the optimization process at time k. To illus-

trate monotonicity, we introduce a suboptimal control u∗
k+1

at time k + 1.

u∗
k+1 = [uk+1, · · · , uk+Nu−1]

�
. (15)

The control sequence u∗
k+1 is generated based on the con-

trol derived at time k. Assuming the external disturbance

remains constant within the prediction horizon, namely, the

prediction yk+i = yk+1+i. Consequently, for the suboptimal

control u∗k+1, the cost function can be defined as:

minJ∗
k+1 =

Np∑
j=1

e2k+j + ρ

Nu∑
j=2

Δu2
k+j . (16)

The difference between the cost functions J(k) and

J∗(k + 1) can be defined as:

J∗
k+1 − Jk = e2k+Np+1 − e2k − ρΔu2

k. (17)

Given the set of terminal constraint Eq. (13), it follows

that when ek+Np+1 = 0, this evidently leads to

J∗
k+1 − Jk = −e2k − ρΔu2

k ≤ 0. (18)

The analysis of Eq. (15) involves prediction errors beyond

the prediction time domain.

ek+Np+j = rk+Np+j − ŷk+Np+j (19)

ŷk+Np+j in Eq. (19) is given by Eq.( 8).

ŷk+Np+j = f(yk+Np+j−1, · · · , yk+Np+j−ny
,

Δxk+Np+j−1, · · · ,Δxk+Np+j−nx
,

Δẋk+Np+j−1, · · · ,Δẋk+Np+j−nv
,

uk+Np+j−1, · · · , uk+Np+j−1).

(20)

For all j ≥ 1, if the following conditions are met, the

equality constraint for tracking error holds.

1)if Nc ≥ ny + 1, then ny ≥ nu + 1 +Nu −Np

2)if Nc ≥ nu+1+Nu−Np, then ny ≥ nu+1+Nu−Np

Utilizing the above two results, temporal constraints can

be formulated

Nc = max[ny + 1, nu + 1 +Nu −Np]. (21)

A comprehensive analysis indicates that, given ρ �= 0 and

the condition for Nc being fulfilled as outlined in Eq. (21),

it is possible to derive the expression presented in Eq. (18).

Consequently, this substantiates the premise that the nonlin-

ear MPC system, as described by Eq. (13) and leveraging

Neural Network-based prediction, achieves asymptotic sta-

bility.

4 Simulation Results

4.1 RBF network prediction Experiment
Based on PyTorch, a radial basis function (RBF) was im-

plemented, and an RBF neural network was constructed.

The network was trained using the training dataset, and dur-

ing the training process, it was found that the hidden layer

had 32 nodes, resulting in good training performance. To

validate the predictive accuracy of the RBF Network Pre-

diction model, the input data from the testing set is utilized

as the model input. Subtracting the network model’s output

ŷk+1 from the testing set’s yk+1 yielded the force error as

shown in Figure 7.

1 1.5 2 2.5 3 3.5

-2

0

2
3

-3

F
N

2P )10( kPa

Fig. 7: The error of RBF Network prediction model

Comparing the predicted results of the neural network

model to the actual output of the PAM, it is evident that the

trained neural network prediction model accurately approxi-

mates the nonlinear PAM model.

4.2 Constant Force Experiment
To validate the disturbance-suppressing capability of the

PAM-based SCF system, we conducted a comparative anal-

ysis between the feed-forward PID controller and the con-

troller proposed in this paper. Two sets of comparative sim-

ulations are performed.

(1) To assess the ability of the PAM-based SCF system

to suppress step disturbances under constant force condi-

tions.Setting the system to track a 600N step signal, intro-

ducing a sustained 1-second step disturbance of 200N at 20

seconds.

(2) To assess the SCF system’s ability to suppress sinu-

soidal disturbances under constant force control. A contin-

uous Ff = 200sin2πt sinusoidal disturbance is applied to

a 600N constant force system for 1 seconds, starting at 20

seconds.

It is obvious that performance of the proposed Neural Net-

work MPC framework outperforms the feed-forward PID

control. From Figures 8 and 9, it can be observed that the

proposed control method not only exhibits faster response

speed but also suppresses the 200N disturbance to within

10%.
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5 Conclusion

This paper proposes the utilization of a flexible PAM ac-

tuator to address the underactuation issue in the current sus-

pension cable gravity unloading system. Due to the com-

plexity and unmodeled characteristics of the PAM model,

achieving precise force control has posed challenges, hence

the proposal of the RBF neural network-based predictive

control method. Firstly, we train the RBF neural network

model to predict the output force of the PAM. Subsequently,

we analyze the stability of the proposed neural network

model predictive controller presented in this paper.Finally,

we conducted simulation experiments. The experiments in-

dicate that the prediction error of the RBF network predic-

tive model is within 1N, and under constant force control,

it can suppress a 200N disturbance to within 10%. How-

ever, during the experimental process, we also identified cer-

tain issues: the MPC optimization solution needs improve-

ment, and there is a slow response phenomenon in driving

the PAM.
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Abstract: In this paper, an attitude tracking controller is proposed for lower-limb rehabilitation exoskeleton robots with param-
eter uncertainties and external disturbances using model predictive control (MPC). Firstly, the exoskeleton dynamics model is
converted into a fully-actuated (FA) system model. Then, the above system undergoes discretization through a zero-order hold
mechanism. Lastly, a MPC approach is performed to obtain the instantaneous optimal control signal inputs in the sense of FA
system with parameter uncertainties and external disturbances, aiming to minimize trajectory error. For comparison, a classical
PID controller is designed as the benchmark. A numerical simulation example is designed to evaluate the proposed controller.
The results show that the proposed MPC control method exhibits performance improvement, which is reflected in greater tracking
precision and tougher robustness compared with the benchmark controller.

Key Words: Fully-actuated system, Model predictive control, Lower-limb rehabilitation exoskeleton, Attitude tracking

1 Introduction

Balance dysfunction resulting from aging and neurologi-
cal disorders has attracted more and more attention. In the
USA, there are approximately 320,000 patients who experi-
ence serious falls within one year as a result of stroke [1].
This gives rise to a demand for rehabilitation services that
are high-level, high-quality, and diverse, which traditional
rehabilitation healthcare services are struggling to meet. As-
sisting patients with effective methods has become a realistic
problem, and lower-limb rehabilitation exoskeleton robots
have natural advantages in helping patients with rehabilita-
tion training [2–6].

With the advancements in robotics technology and deep
learning, the functionality of lower-limb rehabilitation ex-
oskeletons for rehabilitation training has been gradually im-
proving, leading to their application in the existing literature.
MINDWALKER is a lower-limb rehabilitation exoskeleton
rehabilitation robot developed by University of Twente in
Netherlands designed for paraplegics to regain locomotion
capability [7]. ReWalk, developed by an Israeli company, is
a powered exoskeleton that can restore independent walking
capabilities to patients with thoracic-level motor-complete
spinal cord injuries [8]. Twin is a powered exoskeleton de-
veloped by the Istituto Italiano di Tecnologia in Italy, which
can determine the patients’s intension by detecting trunk in-
clination [9]. However, there are still numerous challenges
that need to be addressed to ensure the clinical applicability
and viability of such technologies [10].

The design of a control strategy for lower-limb rehabil-
itation exoskeleton is a crucial factor in the successful im-
plementation of a robotic rehabilitation system. In [11], an
adaptive sliding mode variable admittance controller is de-
signed to deal with the attitude tracking problem of lower-
limb rehabilitation exoskeleton. The combination of the

This work is supported by National Natural Science Foundation of
China (No. 62303416) and Primary Research and Development Plan of
Zhejiang Province (No. 2022C03029).

∗Corresponding Author: bchen@zjut.edu.cn, bchen@aliyun.com

Kalman filter algorithm is utilized to estimate the patient’s
torques in [12]. In [13], an optimal impedance control is
presented based on the estimation of torque and impedance
parameters of the patient during the gait. Model predic-
tive control (MPC) is a model-based method, which can ex-
ploit knowledge of the dynamics model of the system [14].
Thanks to significant advancements in the field, MPC meth-
ods are now feasible for both linear and nonlinear systems,
as well as hybrid model formulations [15–18]. In [19], a
MPC method is designed to control an upper-limb rehabili-
tation robot under disturbance conditions. A feedback MPC
is designed to handle the slow update rate associated with
the computational restrictions of mobile platforms in [20].

In the literatures mentioned above, the majority of studies
deal with the exoskeleton attitude tracking control problem
using a linear system model. However, the linearized sys-
tem does not accurately represent the actual physical back-
ground. The fully-actuated (FA) system method is proposed
in [21], which can complete the attitude tracking control of
the lower-limb rehabilitation exoskeleton while avoiding the
linearization of the system.

In this paper, an exoskeleton attitude tracking controller is
proposed. The main contribution of the paper lies in 1) an
FA model for general dynamics model is firstly proposed; 2)
a MPC approach is designed based on the FA system, which
allows us to consider state limitations to ensure safety and
protect hardware, meanwhile, considering parameter uncer-
tainties and external disturbances in the modeling process;
3) a numerical simulation example is completed to signify
the applicability of the established controller. The results
show that the designed MPC control method exhibits su-
perior tracking precision and tougher robustness compared
with the benchmark PID controller.

The paper is organized as follows: Section 2 presents an
FA model for dynamics model of lower-limb rehabilitation
exoskeleton. In Section 3, the proposed MPC controller is
designed. Meanwhile, a classical PID controller is designed
as the benchmark for comparison. Section 4 presents the

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
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simulation results with parameter uncertainties and external
disturbances through MATLAB and Section 5 presents the
conclusion.

2 Modeling and Preliminaries

2.1 Attitude Dynamics Model
This paper considers the motion of human lower-limbs

in three-dimensional space as plane motion on the sagittal
plane [10]. As the legs exhibit symmetry on the sagittal
plane during exercise, this study focuses on a single swing-
ing lower-limb as the research subject. In the dynamics
model of the exoskeleton robot, the hip and knee joints are
considered as active joints, while the ankle joint is regarded
as passive [2].

A 2-Degree of Freedom lower-limb rehabilitation ex-
oskeleton shown in Fig. 1 is taken into consideration. The
parameter mi (i = 1, 2) is the mass of the thigh part or shank
segment; Ii (i = 1, 2) is the moment of inertia of the exoskele-
ton thigh part or shank segment; qi (i = 1, 2) is the angle of
the exoskeleton hip joint or knee joint; li (i = 1, 2) is the
length of the exoskeleton thigh part or shank segment; and
lci (i = 1, 2) is the distance from the pivotal axes to the cen-
troid of the thigh part or shank segment [2].

The dynamics model of the 2-Degree of Freedom lower-
limb rehabilitation exoskeleton is represented as [10]:

M(q(t))q̈(t)+C(q(t), q̇(t))q̇(t)+G(q(t)) = τ(t), (1)

where q(t) stands for the generalized position coordinate,
q̇(t) stands for velocity, q̈(t) stands for acceleration of
thigh part and shank segment, τ(t) stands for the vec-
tor of the torques. M(q(t)) represents the inertia matrix,
C(q(t), q̇(t)) represents the Coriolis and centrifugal force
matrix, G(q(t)) represents the gravitational torque vector.
M(q(t), C(q(t), q̇(t)), G(q(t)) are given as

M(q(t)) =
[

M11(q(t)) M12(q(t))
M21(q(t)) M22

]
,

C(q(t), q̇(t)) =
[

C11(q(t), q̇(t)) C12(q(t), q̇(t))
C21(q(t), q̇(t)) 0

]
,

G(q(t)) =
[

G1(q(t))
G2(q(t))

]
,

where

M11(q(t)) = I1 +m1l2
c1 +m2l2

1 + I2 +m2l2
c2

+2m2l1lc2 cosq2(t),

M12(q(t)) = M21(q(t)) = I2 +m2l2
c2 +m2l1lc2 cosq2(t),

M22 = I2 +m2l2
c2,

C11(q(t), q̇(t)) =−2m2l1lc2q̇2(t)sinq2(t),

C12(q(t), q̇(t)) =−m2l1lc2q̇2(t)sinq2(t),

C21(q(t), q̇(t)) = m2l1lc2q̇1(t)sinq2(t),

G1(q(t)) =−m1glc1 sinq1(t)−m2gl1 sinq1(t)

−m2glc2 sin(q1(t)+q2(t)),

G2(q(t)) =−m2glc2 sin(q1(t)+q2(t)).

Considering a lumped term ψ(q(t), q̇(t), q̈(t)) to denote
the existence of parameter uncertainties and external distur-

bances, which is given by

ψ(q(t), q̇(t), q̈(t)) = ∆M(q(t))q̈(t)+∆C(q(t), q̇(t))q̇(t)

+∆G(q(t))− τd(t), (2)

where ∆M(q(t)), ∆C(q(t), q̇(t)) and ∆G(q(t)) denote uncer-
tain parameters, and τd(t) ∈ R2×1 denotes the external dis-
turbance torque.

The final model can be represented as

M(q(t))q̈(t)+C(q(t), q̇(t))q̇(t)

+G(q(t))+ψ(q(t), q̇(t), q̈(t)) = τ(t). (3)

Hip joint

Ankle joint

y

x

Knee joint
 !

 "

1( )q t

2 ( )q t

Fig. 1: Schematic representation of the 2-Degree of Freedom
lower-limb rehabilitation exoskeleton [2].

2.2 FA System
On the basis of (3), the following uncertain FA system

model can be obtained [22, 23]:

q̈(t) = µ(q(t), q̇(t))−M−1(q(t))ψ(q(t), q̇(t), q̈(t))

+M−1(q(t))τ(t), (4)

where

µ(q(t), q̇(t)) =−M−1(q(t))(C(q(t), q̇(t))q̇(t)+G(q(t))).

For (4), the torque signals τ(t) is proposed as below:

τ(t) =−M(q(t))(µ(q(t), q̇(t))−u(t)), (5)

where u(t) =
[

u1(t)
u2(t)

]
is the control signal inputs vector.

Through (4) and (5), we obtain

q̈(t) = u(t)−M−1(q(t))ψ(q(t), q̇(t), q̈(t)). (6)

We define the state vector x(t) and the vector of parameter
uncertainties and external disturbances d(t). x(t), d(t) are
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Torque
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u*

Fig. 2: The block diagram of the MPC control scheme.

given as

x(t) =
[

q1(t) q2(t) q̇1(t) q̇2(t)
]T

,

d(t) =
[

02×1
M−1(q(t))ψ(q(t), q̇(t), q̈(t))

]
,

where qi (i = 1, 2) is the angle of the exoskeleton hip joint or
knee joint; q̇i (i = 1, 2) is the velocity of the exoskeleton hip
joint or knee joint; d(t) ∈R4×1 are the vector of parameter
uncertainties and external disturbances. Then, from (6), we
have

ẋ(t) = Ax(t)+Bu(t)+d(t), (7)

where

A =

[
02×2 I2
02×2 02×2

]
,B =

[
02×2

I2

]
.

The T is the sampling period. Then, discretizing (7) using
a zero-order holder, we have

x(k+1) = Acx(k)+Bcu(k)+Ccd(k), (8)

where

Ac = eAT ,

Bc =

∫ T

0
eA(T−η)Bdη ,

Cc =

∫ T

0
eA(T−η)dη .

3 Control Design

3.1 MPC controller
The general idea of the control is to accurately track the

reference trajectory of the exoskeleton. The general control
scheme is shown in Fig. 2. The controlled variables are the
joint angles and joint velocities. The control variables are
the control signal inputs.

The optimal control signal inputs u∗ is obtained through
solving an optimization problem by MPC controller. u∗ are

converted into torques applied at each joint through the for-
mula (5) and the actual joint angles and joint velocities are
fed back to the MPC controller.

Initially, we define the reference trajectory xr(k) as

xr(k) = [qr1(k) qr2(k) q̇r1(k) q̇r2(k)]
T ,

where qri(k) (i = 1, 2) is the reference angle of the exoskele-
ton hip joint or knee joint; q̇ri(k) (i = 1, 2) is the reference
velocity of the exoskeleton hip joint or knee joint.

The goal is to find u∗ to minimize the cost function J in
[10]. Therefore, we state the MPC problem as

min
u

J =

t+N−1∑
k=t

((x(k)−xr(k))T P(x(k)−xr(k))

+u(k)T Ru(k).

(9)

s.t. x(k+1) = Acx(k)+Bcu(k)+Ccd(k)
q1(k) ∈ [q1min, q1max], q2(k) ∈ [q2min, q2max]

q̇1(k) ∈ [q̇1min, q̇1max], q̇2(k) ∈ [q̇2min, q̇2max]

τ1(k) ∈ [τ1min, τ1max], τ2(k) ∈ [τ2min, τ2max]

u1(k) ∈ [u1min, u1max], u2(k) ∈ [u2min, u2max]

where

P =


p1 0 0 0
0 p2 0 0
0 0 p3 0
0 0 0 p4

 ,R =

[
r1 0
0 r2

]
.

The N shows the prediction horizon, and k denotes the kth
sample [24]. P is the tracking weight matrix, affecting joint
tracking error cost. And R is the control signal inputs weight
matrix, affecting the lower-limb rehabilitation exoskeleton
control signal inputs cost. The range of control signal inputs
can be calculated from the range of the torque inputs through
the formula (5).

The cost function is solved in real-time using convex pro-
gramming (CVX) toolkit in MATLAB mathematical simula-
tion platform. CVX based numerical algorithms are widely
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and freely available for solving convex optimization prob-
lems [25].

A benefit of employing the MPC approach is the ability to
seek optimal solutions while considering constraints on the
state variables and control signal inputs. Constrained opti-
mization inherently imposes limitations on the range and ve-
locity of joint motion, aiming to mitigate subject discomfort
and safeguard the integrity of the hardware system [26].

3.2 PID controller
In order to demonstrate the superiority of the proposed

controller, a classical PID control scheme is introduced as
the benchmark. Initially, we define the tracking error e(k) as

e(k) =


e1(k)
e2(k)
e3(k)
e4(k)

=


qr1(k)−q1(k)
qr2(k)−q2(k)
q̇r1(k)− q̇1(k)
q̇r2(k)− q̇2(k)

 .

The PID control method input is given as

∆τ(k) = Kp(e(k)− e(k−1))+Kie(k)

+Kd(e(k)−2e(k−1)+ e(k−2)),
τ(k) = ∆τ(k)+ τ(k−1), (10)

where Kp, Ki, Kd represent proportional, integral and deriva-
tive gains, respectively.
4 Simulation Result

The parameters required for the simulation are provided
in Tables 1.

Table 1: Parameter Setting
Name Value

Mass of thigh m1 6.099kg
Length of thigh l1 0.460m

Position of thigh centroid lc1 0.4046m
Inertia of thigh I1 0.0837kg · m2

Mass of shank m2 4.257kg
Length of shank l2 0.480m

Position of shank centroid lc2 0.2275m
Inertia of shank I2 0.5689kg · m2

Acceleration of gravity g 9.79m/s2

Prediction horizon N 100
Sampling period T 0.006s

The designed angle tracking weights are p1 = 7, p2 = 9,
p3 = 0.2, p4 = 0.4. The designed control signal inputs
weights are r1 = 0.0001, r2 = 0.0001. The designed PID
weights are Kp = 500, Ki = 1, Kd = 10.

The reference angle of the exoskeleton hip joint qr1(k) and
the reference angle of the exoskeleton knee joint qr2(k) are
given as

qr1(k) = 8.006+8.906sin(3.884k)−0.471sin(7.768k)

−1.373sin(11.652k)−18.74cos(3.884k)

−4.453cos(7.768k)−0.46cos(11.652k), (11)

qr2(k) =−15.89−22.96sin(3.863k)−9.482sin(7.726k)

+3.612sin(11.589k)−5.186cos(3.863k)

+12.68cos(7.726k)+1.214cos(11.589k). (12)
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Fig. 3: Lower-limb rehabilitation exoskeleton angle trajec-
tory. (a) Trajectory of hip joint. (b) Trajectory of knee joint.
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Fig. 4: Lower-limb rehabilitation exoskeleton velocity tra-
jectory. (a) Trajectory of hip joint. (b) Trajectory of knee
joint.

Fig. 3, Fig. 4 show that the attitude of lower-limb rehabil-
itation exoskeleton can track the reference trajectory fastly.
This illustrates that the lower-limb rehabilitation exoskeleton
can achieve attitude tracking control based on the proposed
controller. Fig. 5, Fig. 6 display the tracking errors of lower-
limb rehabilitation exoskeleton.

We can see that the actual angles of the hip joint and knee
joint can track the reference trajectories by using proposed
method with high precision in the whole process, while the
tracking accuracy under the PID control method is obviously
lower. In 10 steps, PID control method exhibits difficulty in
accurately tracking the reference trajectory, while proposed
method is almost unaffected.
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Fig. 5: Angle tracking errors. (a) Angle tracking error of hip
joint. (b) Angle tracking error of knee joint.
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Fig. 6: Velocity tracking errors. (a) Velocity tracking error
of hip joint. (b) Velocity tracking error of knee joint.

Therefore, we can conclude that the proposed method
owns superior tracking performance and tougher robust-
ness in dealing with the parameter uncertainties and exter-
nal disturbances in comparison with the benchmark control
method.

5 Conclusion

In this paper, a MPC controller based on an FA system
with parameter uncertainties and external disturbances is
proposed and investigated for the trajectory tracking con-
trol of lower-limb rehabilitation exoskeleton. The proposed
method allows us to consider state limitations to ensure
safety and protect hardware. Specially, in this paper, the
constraint range of the control signal inputs are calculated
by the constraint range of the torque signals through the de-

signed FA system. The effectiveness of the proposed method
is verified by a numerical simulation example. The results
demonstrate that the proposed method can track the given
reference trajectory more accurately and better cope with the
parameter uncertainties and external disturbances compared
with the benchmark controller.
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Abstract: The three-phase three-level T-type converters have been used in many industrial applications. However, the 
common-mode voltage (CMV) and neutral point (NP) voltage are a coupled issue. In this paper, an improved model predictive 
control (MPC) method is proposed to solve this problem. Firstly, the CMV is analyzed and vectors with smaller CMV are 
selected as the candidate vectors. Secondly, the space voltage vector diagram is divided into 12 sectors and in each sector two 
seven-segment sequences are adopted. By switching them, the NP voltage can be balanced actively and no addition switching 
occurs. Thirdly, the duty ratios are calculated through the cost function results. Finally, the steady-state and the dynamic 
simulations are conducted to verify the effectiveness of the proposed MPC method. 
Key Words: Three-level T-type converter, CMV suppression, NP voltage balancing, MPC 
 

 
  

1 Introduction 
Compared with conventional two-level converters, 

three-level topologies show many advantages in less device 
voltage stress, smaller dv/dt, higher quality output current, 
etc. [1]. They have been applied in many industrial 
applications such as Photovoltaic (PV) field, wind power 
generation, etc. Among many existing three-level topologies, 
the T-type structure has fewer switches and highest 
efficiency in medium switching frequencies [2]. Therefore, 
this paper focuses on the three-phase three-level T-type 
converter. 

It is necessary to balance the neutral point (NP) voltage 
for normally operating the T-type converter. When NP 
voltage is unbalanced, serious current distortions will occur 
and the lifespan of the dc-link capacitors will be reduced [3]. 
Therefore, the NP voltage should be balanced all the time. 
And when the imbalance NP voltage occur, the program 
should have the ability to recover it actively. In [4], a 
zero-voltage injection method is proposed to balance the NP 
voltage. However, it is difficult to calculate the zero-voltage 
value.  

The common-mode voltage (CMV) is harmful to the 
system and it will cause leakage currents, electromagnetic 
interference (EMI), etc. [5]. Therefore, suitable CMV 
suppression method should be considered and the modified 
modulation strategy can make it without adding any 
additional hardware. In [6], only zero and medium vectors 
are used to track the current. The medium and zero vectors 
have no CMV, thus it achieves zero CMV. However, using 
partial vectors will greatly reduce the max modulation index 
and the dc-link value has to be increased. Besides, the 
medium vectors can cause imbalanced NP voltage. 
Although the whole method can achieve the self-balancing 

                                                           
 

NP voltage, it lacks the ability of active recovering. In [7], 
an LMZSVM method using lager, medium and zero vectors 
is proposed. It can run within whole modulation index but 
the absence of small vectors cannot recover the unbalanced 
NP voltage actively. The conventional method using 
seven-segment sequences formed by four vectors can 
balance the NP voltage actively, but the CMV is impossible 
to be suppressed. Therefore, it is concluded that balancing 
the NP voltage actively and suppressing the CMV are a 
coupled issue.  

With the rapid development of microprocessors, the 
model predictive control (MPC) method shows many 
advantages in multiple objective control, strong robustness, 
etc. [8]. Compared with conventional proportional-integral 
(PI) controller, it shows fast response and does not require 
parameter tuning. The MPC applies a cost function to 
achieve the multiple objective control. All the variables are 
taken into the cost function and the smallest one corresponds 
to the optimal solution. Therefore, it requires weighting 
factors to achieve this. However, the selection of the 
weighting factors is a tedious work and there is no certain 
guideline [9]. Minor differences between the weighting 
factors may have a significant impact on the control 
objectives. For the T-type converter, it has to achieve 
current tracking, NP voltage balancing and CMV 
suppressing. The three control targets will mislead the 
selection of the weighting factors. 

In this paper, an MPC method is proposed to solve this 
issue. The proposed method uses four vectors to form a 
seven-segment sequence. The CMV is limited within the 
smallest values. The NP voltage can be balanced actively. 
Besides, when balancing the NP voltage and even switching 
the sectors, no addition switching occurs. During the whole 
program, there is no weighting factor which saves the 
tedious work for searching it. 
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The rest of the paper is organized as follows. In Section Ⅱ, 
the basic operating principle of the T-type converter and the 
mathematical model of the proposed MPC is built. In 
Section ⅡⅠ, the proposed MPC strategy is given in details. In 
Section Ⅳ, the simulation is conducted to verify the 
effectiveness of the proposed MPC method. In Section Ⅴ, a 
conclusion is drawn. 

2 Basic Principle of T-type Converters 

2.1 Operating Principle of T-type Converters 

The topology of the three-phase T-type converter is 
shown in Fig. 1. The dc link voltage is Vdc. The upper and 
lower capacitors on dc link are defined as Cp and Cn, and 
their voltages are Vp and Vn respectively. The neutral point 
(NP) is O and the current flows out of O is defined as io. The 
output currents are ia, ib and ic. L and R represent the filter 
and the load respectively. Point n is the common output 
point.  

 

Vdc

Cp

o

Cn

Sa1

Sa2 Sa3

Sa4

A
B

C

ia

ib

ic

L
Vp

Vn

R

io n

Fig. 1: Topology of the three-phase T-type converter. 
 

For phase A, there are four power devices named Sa1, Sa2, 
Sa3 and Sa4. Sa1, Sa3 and Sa2, Sa4 work in a complementary 
state, which means when Sa1 is on Sa3 is off. According to the 
different working states of the power switch, the T-type 
converter can generate three different output phase voltages. 
Their relationship is concluded in Table 1. Therefore, there 
are totally 27 (33) vectors in the space voltage vector 
diagram as shown in Fig. 2. They can be divided into four 
types: 12 small vectors, 6 medium vectors, 6 lager vectors 
and 3 zero vectors as listed in Table 2. 
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Fig. 2: Space voltage vector diagram of T-type converters. 

Table 1: Relationship Between Devices and Phase Voltage 

State         Phase voltage (Sx1, Sx2, Sx3, Sx4,) 

P +Vdc/2 (1,1,0,0) 
O 0 (0,1,1,0) 
N -Vdc/2 (0,0,1,1) 

Table 2: Classification of 27 Vectors 

Type         Name 

Large vector [PNN] [PPN] [NPN] 
[NPP] [NNP] [PNP] 

Medium 
vector 

[PON] [OPN] [NPO] 
[NOP] [ONP] [PNO] 

Small vector 

[POO] [PPO] [OPO] 
[ONN] [OON] [NON] 
[OPP] [OOP] [POP] 
[NOO] [NNO] [ONO] 

Zero vector [NNN] [OOO] [PPP] 
 

2.2 Mathematical Model of the MPC 

According to the Kirchhoff laws, the output voltage is 
defined as  

d
d
d
d
d
d

a
an a

b
bn b

c
cn c

iu L Ri
t
iu L Ri
t
iu L Ri
t

 = +

 = +

 = +

                          (1) 

Using forward- Euler principle, (1) in the discrete state is 
expressed as  
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*
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= + + −



= + + −


        (2) 

where ix(k) and uxn(k) are the output current and voltage at 
the k instant respectively, and i*

x(k+1) are the output current 
reference at the (k+1) instant (x=a, b, c). Ts is the sampling 
time.  

i*
x(k+1) can be calculated by  

* * * *( 1) 3 ( ) 3 ( 1) ( 2)  
                                            ( , , )
x x x xi k i k i k i k

x a b c
+ = − − + −

=
     (3) 

where i*
x(k-2), i*

x(k-1) and i*
x(k) are the output current 

reference at the (k-2), (k-1) and k instant respectively. 
Applying the voltage prediction instead of the current 

form can help reduce the computational burden. It has been 
verified that there is only one constant difference between 
the current form and the voltage form. Using current form 
will penalize 27 vectors per sampling time while only 19 are 
calculated in the voltage form.  

Except for current tracking, the NP voltage should also be 
considered for normally operating the converter. The 
voltage difference between the Vp and Vn in the discrete form 
is expressed as  

( 1)= ( 1) ( 1)pn p nV k V k V kΔ + + − +            (4) 
where Vp(k+1) and Vn(k+1) are the predicted voltages of Vp 
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and Vn at the (k+1) instant respectively. By specific turning 
off the power switches, the above predictive calculation can 
be achieved.  

Therefore, the final cost function is expressed as  
* 2 2

1 2( ( ) ( )) ( ( 1))

                                                ( , , )
xn xn pnj u k u k V k

x a b c

λ λ= − + Δ +

=
     (5) 

where u*
xn(k) are the output voltage reference (Vref) at the k 

instant and it can be obtained based on Table Ⅰ. λ1 and λ2 are 
the weighting factors for current tracking and NP voltage 
balancing respectively. As analyzed above, it is always a 
tedious task for selecting the suitable weighting factors and 
yet there are no selecting guidelines. They are usually 
determined through working experience.  

3 The Proposed MPC Strategy 

3.1 Decoupling of CMV and NP Voltage Balancing 

The common-mode voltage (CMV) of three phase 
topologies is define as  

3
ao bo cou u uCMV + +=                       (6) 

where uxo are the output phase voltage shown in Table 1 
(x=a, b, c).  

Therefore, the T-type three-level converter totally has 7 
different CMV values: ±1/6Vdc, ±2/6Vdc and 0. Different 
vectors may gain the different CMV values and they are 
concluded in Table 3. in order to suppress the CMV, the 
vectors with smaller CMV values should be considered. For 
example, only zero vectors consisted of medium and [OOO] 
vectors are applied in [6]. However, the modulation index is 
limited and the larger dc-link value is needed for the 
converter. Also, only large, medium, partial small vectors 
and [OOO] can be used to suppress the CMV. But the NP 
voltage cannot be recovered actively. 

 
Table 3: Vectors with Different CMV Values 

CMV value     Name 
-1/2Vdc  [NNN]  
-1/3Vdc [ONN] [NON] [NNO] 

-1/6Vdc [PNN] [NPN] [NNP] 
[OON] [NOO] [ONO] 

0 
 [OOO]  

[PON] [OPN] [NPO] 
[NOP] [ONP] [PNO] 

1/6Vdc [PPN] [NPP] [PNP] 
[POO] [OPO] [OOP] 

1/3Vdc [PPO] [OPP] [POP] 
1/2Vdc  [PPP]  

 
In fact, the common way to balance the NP voltage is 

using the small vectors, just like a seven-segment sequence 
formed by three nearest vectors (one redundant small vector 
is considered). However, as observed in Table 3, the CMV 
values of the small vectors are conflicted with their NP 
voltage balancing ability. In other words, they are coupled to 
a certain extent. Besides, the converter is supposed to 
operate in a lager modulation index. For the existing MPC 
strategies, few of them have been reported on that issue. 

As introduced before, the T-type three-level converters 
have four types of vectors. Take redundant vector [POO] 
and [ONN], medium vector [PON], lager vector [PNN] and 
zero vector [OOO] as an example. As shown in Fig. 3(a), 
none of the three legs of [PNN] are connected with the NP, 
thus it has no influence on NP voltage. Although three legs 
of [OOO] are connected to the NP, no other current are 
flown into or out of the NP as shown in Fig. 3(e). Therefore, 
[OOO] has no impact on NP voltage. As analyzed in Fig. 
3(b), the medium vector can increase or decrease the NP 
voltage. It is the reason causing the NP voltage unbalanced. 
As shown in Fig. 3 (c) and (d), the redundant small vectors 
have an opposite influence on NP voltages. In details, the 
P-type vector [POO] can increase the lower capacitor 
voltage and decrease the upper capacitor voltage, thus it can 
reduce the NP voltage, and the N-type vector [ONN] vise 
verse. However, as analyzed above, [ONN] can bring lager 
CMV values and it should be discarded. Therefore, in this 
paper, [ONN] is replaced by a different N-type vector and 
the sectors are redistributed.  

 

n

[PNN]

O

Cp

Cn

Vdc

[PON]

O

Cp

Cn

Vdc n

(a)                                                                (b)             

[POO]

O
Cp

Cn

Vdc n Vdc

[ONN]

O
Cp

Cn

n

(c)                                                                (d)                  

[OOO]

O
Cp

Cn

Vdc n

 
(e) 

Fig. 3: Impacts on NP voltage of different vectors. (a) Lager vector 
[PNN]. (b) Medium vector [PON]. (c) Small P-type vector [POO]. 

(d) Small N-type vector [ONN]. 
 
The space voltage vector diagram is divided into 12 

sectors as shown Fig. 4. The dividing method is based on the 
phase angle of the Vref. 
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NPP
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NNO
OOP

ONO
POP

PON

NOO
OPP

OOOPPP
NNN

Sector 1Sector 1

Sector 2

Sector 3Sector 4

Sector 5

Sector 6

Sector 7

Sector 8
Sector 9 Sector 10

Sector 11

Sector 12

 
Fig. 4: 12 sectors of the proposed method. 

 
Take sector 1(from 0 degree to 30 degree) as an example. 

In order to balance the NP voltage, a P-type and an N-type 
sequences are applied to cover this sector. Then, switching 
the sequence can actively balance the NP voltage. The 
P-type seven-segment sequence [OOO]-[POO]-[PON]- 
[PNN]-[PON]-[POO]-[OOO] formed by four vectors: 
[OOO], [POO], [PON] and [PNN]. Similarly, the N-type 
seven-segment sequence [OOO]-[OON]-[PON]-[PNN] 
-[PON]-[OON]-[OOO] formed by four vectors: [OOO], 
[OON], [PON] and [PNN]. It can be easily observed that the 
two sequences cover sector 1, which means the NP voltage 
can be actively balanced in this sector and the modulation 
index can reach to the max value. The two seven-segment 
sequences change only one switching state per phase just 
like the conventional method. Moreover, there is no 
switching steps when changing the sequences because both 
sequences star and end with the same zero vector [OOO]. 
The CMV values of the two sequences are limited between 
+ and -, which greatly suppress the CMV. All in all, the 
redesigned sequences can actively balance the NP voltage 
and suppress the CMV at the same time. According to the 
above analysis, the sequences in all sectors are concluded in 
Table. 4. Another conclusion can be drawn that in all sectors 
all the sequences start and end with the zero vector [OOO]. 
Therefore, no extra switching changes happen when 
switching the sectors, which can help reduce the 
unnecessary switching losses.  

 
Table 4: All Seven-segment Sequences in 12 Sectors. 

S P/N Seven-segment sequence 

1 P [OOO]-[POO]-[PON]-[PNN]-[PON]-[POO]-[OOO] 
N [OOO]-[OON]-[PON]-[PNN]-[PON]-[OON]-[OOO] 

2 P [OOO]-[POO]-[PON]-[PPN]-[PON]-[POO]-[OOO] 
N [OOO]-[OON]-[PON]-[PPN]-[PON]-[OON]-[OOO] 

3 P [OOO]-[OPO]-[OPN]-[PPN]-[OPN]-[OPO]-[OOO] 
N [OOO]-[OON]-[OPN]-[PPN]-[OPN]-[OON]-[OOO] 

4 P [OOO]-[OPO]-[OPN]-[NPN]-[OPN]-[OPO]-[OOO] 
N [OOO]-[OON]-[OPN]-[NPN]-[OPN]-[OON]-[OOO] 

5 P [OOO]-[OPO]-[NPO]-[NPN]-[NPO]-[OPO]-[OOO] 
N [OOO]-[NOO]-[NPO]-[NPN]-[NPO]-[NOO]-[OOO] 

6 P [OOO]-[OPO]-[NPO]-[NPP]-[NPO]-[OPO]-[OOO] 
N [OOO]-[NOO]-[NPO]-[NPP]-[NPO]-[NOO]-[OOO] 

7 P [OOO]-[OPO]-[NPO]-[NPP]-[NPO]-[OPO]-[OOO] 
N [OOO]-[NOO]-[NPO]-[NPP]-[NPO]-[NOO]-[OOO] 

8 P [OOO]-[OOP]-[NOP]-[NNP]-[NOP]-[OOP]-[OOO] 
N [OOO]-[NOO]-[NOP]-[NNP]-[NOP]-[NOO]-[OOO] 

9 P [OOO]-[OOP]-[ONP]-[NNP]-[ONP]-[OOP]-[OOO] 
N [OOO]-[ONO]-[ONP]-[NNP]-[ONP]-[ONO]-[OOO] 

10 P [OOO]-[OOP]-[ONP]-[PNP]-[ONP]-[OOP]-[OOO] 
N [OOO]-[ONO]-[ONP]-[PNP]-[ONP]-[ONO]-[OOO] 

11 P [OOO]-[POO]-[PNO]-[PNP]-[PNO]-[POO]-[OOO] 
N [OOO]-[ONO]-[PNO]-[PNP]-[PNO]-[ONO]-[OOO] 

12 P [OOO]-[POO]-[PNO]-[PNN]-[PNO]-[POO]-[OOO] 
N [OOO]-[ONO]-[PNO]-[PNN]-[PNO]-[ONO]-[OOO] 

3.2 Duty Ratio Calculation 

Proper duty ratios should be distributed to obtain better 
output currents. However, using the convention 
voltage-second principle cannot solve this issue, because the 
number of the unknown quantity are more than the 
equations. In order to calculate the suitable duty ratios, a 
simple method based on the cost function results of the MPC 
are proposed. In the above part, the NP voltage is balanced 
by switching the N- and P-type sequences. Therefore, the 
item for the NP voltage balancing in cost function j can be 
removed. The new cost function is only used for current 
tracking and it is expressed as  

* 2( ( ) ( ))  ( , , )
xn xng u k u k x a b c= − =       (7) 

The cost function g represents the distance between the 
Vref and vectors. Thus, larger the result, farther the distance, 
which also means the duty ratio of the vector is smaller. 
Therefore, the duty ratio and the cost function result are 
inversely proportional and the duty ratios of the four vectors 
can be calculated by 

2 3 4
1

1 2 3 1 2 4 2 3 4 1 3 4

1 3 4
2

1 2 3 1 2 4 2 3 4 1 3 4

1 2 4
3

1 2 3 1 2 4 2 3 4 1 3 4

1 2 3
4

1 2 3 1 2 4 2 3 4 1 3 4

g g gd
g g g g g g g g g g g g

g g gd
g g g g g g g g g g g g

g g gd
g g g g g g g g g g g g

g g gd
g g g g g g g g g g g g

 = + + +
 = + + +

 =
 + + +

 = + + +

    (8) 

4 Simulation Verification 
The proposed MPC strategy is verified in the 

Matlab/Simulation. The steady-state and dynamic cases are 
simulated. The simulated parameters are listed in Table 5. 

Table 5: Parameters for Simulation 

Parameters/components         Values 
DC input voltage (Vdc) 100 v 

Load (R) 6 Ω 
Filter (L) 5 mH 

Dc-link capacitor (Cp, n) 3760 μF 
Sampling period (Ts) 100 μs 

Fundamental frequency 50 Hz 
Amplitude of the current reference (id) 4A and 8 A 

4.1 Steady-state Results 

As shown in Fig. 5(a), id=4A. The total harmonic 
distortion (THD) of the output current is 3.75%. The 
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three-phase currents show a sinusoidal waveform. The 
CMV is well limited between +1/6Vdc (16.6V) and -1/6Vdc 
(-16.6V). The NP voltage is effective balanced around half 
of the dc-link value (50V). When id goes to 8A, the THD is 
reduced to 1.35% and better output currents are generated. 
The CMV and NP values are the same with the case when, 
which indicates that the proposed MPC method performs 
well in different steady-state cases of effective CMV 
suppression, NP voltage balance and high quality output 
currents.  

ia[A] ib[A] ic[A]

CMV[V]

Vp[V] Vn[V] 

THD=3.75%

(a) 
THD=1.35%ia[A] ib[A] ic[A]

CMV[V]

Vp[V] Vn[V] 

(b) 
Fig. 5: The steady-state simulation results. (a) id=4A. (b) id=8A. 

 

4.2 Dynamic Results 

When id suddenly changes at t=0.55s from 4A to 8A as 
shown in Fig. 6(a), the output current can quickly track this 
step, indicating that the proposed MPC method has strong 
robustness. During the whole response process, the CMV is 
well suppressed and the NP is effectively balanced. 

When setting ΔVpn as 20V as shown in Fig. 6(b), the 
proposed MPC method can hold this difference until it is set 
to 0 at t=0.55s. The process of the NP voltage recovering 
takes about 0.06s. Due to the unbalanced NP voltage, the 
CMV shows different values. But as soon as the NP voltage 
is recovered, it is limited between +16.6V and -16.6V. 
During the dynamic process shown in Fig. 6, the output 
currents show no significant distortions.  

Cost function (7) aims for current tracking only, which 
means the results of (7) are the optimal vector for current 
tracking. In other words, it may not the optimal results for 
both current tracking, NP voltage balancing and CMV 
suppression in (5). But from the simulated results, the 
proposed MPC strategy still gains a good output current 
quality and effective balancing for NP voltages.  

The existing research has been proved that adjusting the 
weighting factors is a tedious work and their different values 
will greatly influence the control performance. The optimal 
result from the cost function with weighting factors is a 

trade-off value for the control targets. The proposed MPC 
strategy simplify this complex process.  

ia[A] ib[A] ic[A]

CMV[V]

Vp[V] Vn[V] 

(a) 
ia[A] ib[A] ic[A]

CMV[V]

Vp[V] Vn[V] 

(b) 
Fig. 6: The dynamic simulation results. (a) Change id. (b) Recover 

NP voltage. 
 

5 Conclusions 
In this paper, an improved MPC method is proposed to 

suppress the CMV and balance the NP voltage actively. 
Unlike using small vectors for balancing the NP voltage, 
two different sequences are applied. By switching the 
sequences in different 12 sectors, the NP voltage can be 
balanced actively and no other additional switching occurs, 
even when switching sectors. The two sequences are 
seven-segment sequences formed by four vectors with the 
smallest CMV values. Using the conventional 
voltage-second principle cannot solve the accurate duty 
ratios, thus in this paper a method based on the cost function 
results is adopted. Through a simple calculation, the four 
duty ratios can be solved rapidly. During the whole progress, 
the weighting factors are removed which saves the tedious 
work for its selection. Finally, the proposed MPC method is 
verified simulation, and the results show the proposed MPC 
method can effectively balance the NP voltage and reduce 
the CMV values in the steady-state and the dynamic 
simulation testing.  
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Abstract: The conventional model predictive control (MPC) suffers from high complexity of implementation and large output 

current ripples. In this article, a simplified double-vector finite control set MPC (FCS-MPC) method with active damping is 

proposed for three-level T-type (3LT2) inverters with LCL filter. First, the predictive model with active damping method is 

derived. Second, to reduce computation burden, a phase-to-line voltage coordinate algorithm is adopted. Furthermore, the vector 

space where reference voltage locates is simplified from three-level space to two-level space. Third, a geometry-based technique 

is used to select two optimized candidate vectors and calculate duty cycles. The proposed strategy not only enhances the 

portability of the conventional FCS-MPC method, but also reduces the harmonic components induced by LCL filter. In the end, 

simulations are performed to validate the effectiveness of the proposed strategy. 

Key Words: three level T-type converters, LCL filter, double vector FCS-MPC 

 

 
 

1 Introduction 

As large scale exploitation of renewable energy continues 

to domain the power generation landscape, the renewable- 

based power system has been widely implemented. The 

grid-connected inverter, which inverts dc power into ac 

power for the grid integration, is essential for the overall 

system operation. Among various topologies, three level T-

type (3LT2) inverter is one of the most promising candidates 

with benefits such as low total harmonic distortion (THD), 

low cost, and higher overall efficiency[1]. Furthermore, in 

order to fulfill the grid code requirements for 3LT2 inverters, 

LCL filter, which offers good resonance attenuation 

performance, is now widely applied to interface the inverters 

to the grid.  

Nevertheless, various challenges exist for the LCL-

filtered 3LT2 inverter. One inherent risk of the potential 

imbalance of the NP (upper and lower capacitors of dc link) 

voltage of T-type inverter, which requires specific control. 

Besides that, LCL filter brings resonance-induced 

harmonics, which should also be well suppressed[2]. 

Numerous control strategies have been proposed to tackle 

related problems. Among them, FCS-MPC is becoming a 

competitive strategy due to high response speed and control 

flexibility[3].  

Several studies have investigated the implementation of 

FCS-MPC in three-level converters. An improved FCS-

MPC method was first proposed in [4], in which the 

synthesized vectors are calculated without going through the 

look up table, but the steady state performance of the 

proposed method is limited due to the single vector usage in 

every sampling period. [5] proposed a double-vector MPC 

(DMPC) method, in which both optimal phase and length 

vectors are synthesized to suppress current ripples and 

achieve NP voltage balance. However, the calculation 

complexity is high, making it hard to implement. In [6], a 

fast FCS-MPC method was proposed for the 3LT2 inverter 

without weighting factors, which well guaranteed the NP 

voltage balance and steady-state performance, and reduced 

the computational burden. [7] and [8] also proposed 

simplified DMPC methods with reduced complexity. 

Although these studies revealed the superiority of DMPC 

methods, few of them discussed simplified DMPC method 

considering the LCL harmonics damping. Typically, to 

achieve grid current with low THD, adequate filter design 

and active damping(AD) strategies are required, as 

suggested in [9]. Motivated by the above-mentioned, this 

paper proposes a low harmonic simplified DMPC method 

for the LCL filtered 3LT2 inverter. The main contributions 

of this article can be summarized as follows: 

1) To eliminate harmonics caused by LCL filter, an active 

damping method using the high-frequency component of 

filter capacitor voltage is considered and prediction model is 

derived in this paper.  

2) An easy and intuitive DMPC method is proposed in this 

paper. In the proposed method, a geometric technique for the 

selection of optimized candidate vectors and calculation of 

their corresponding duty ratios is adopted. The vector space 

where reference voltage resides is simplified from three-

level space to two-level space, therefore reducing the 

conventional tedious candidate vector selection procedures. 

2  Model of LCL-filtered 3LT2 inverter  

Fig.1 presents the structure of the three-level T-type 

inverter with the LCL filter, where Vdc is the voltage on the 

dc side, Vp and Vn are dc side capacitor voltages; i1a, i1b, and 

i1c are the inverter-side currents, i2a, i2b, and i2c the grid-side 

currents; L1, L2, Cf are the inductors and capacitors of the 

LCL filter, R1, R2 are the parasitic resistances of the 

inductors, uCfa, uCfb, and uCfc are the three-phase filter 

capacitor voltages. 
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Fig.1: Topology of the LCL-filtered T-type inverter 

 

According to Kirchhoff’s voltage Law, the inverter-side 

voltage balance equation can be derived as: 

                (1) 

where uao、ubo、uco are the inverter output voltages. 

Using Clark transformation and backward Euler 

approximation of Eq. (1), we derive 

f

f

o 1 1 1 c
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  (2)                

where Ts is the sampling period, uαo(k+1), uβo(k+1) are the 

(k+1)th-sampling-instant inverter output voltages, uCfα(k+1) 

and uCfβ(k+1) are the (k+1)th-sampling-instant capacitor 

voltages, i1α(k), i1β(k) and i1α(k+1), i1β(k+1) are the inverter-

side currents at the kth and (k+1)th sampling instant. 

According to Eq. (2), the tracking of inverter reference 

current i1
*(k + 1) equals to the tracking of reference voltage 

u*(k + 1). Also as filter capacitor voltage changes at a 

relatively slow speed, kth-sampling-instant capacitor 

voltage uCfα(k) and uCfα(k+1) can be considered constant, 

therefore, the prediction model can be obtained as 

   (3) 

In addition, the cost function g based on inverter output 

voltage is 
2 2[ ( 1) ( 1)] [ ( 1) ( 1)]g u k u k u k u k   

            (4) 

To eliminate the the deviation between the given value of 

reference current and its actual value, the reference current 

i1
*(k+1) needs to be obtained by  

   (5) 

where i1α(k−1), i1β(k−1) and i1α(k−2), i1β(k−2) are the 

inverter-side current at the (k−1)th and (k−2)th sampling 

instant,  

3 Active damping method 

Omitting parasitic resistance of filter inductors, the 

equivalent circuit of Fig.1 and system control block are 

displayed in Fig.2. 
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Fig.2: Equivalent circuit and control block of system with no 

added damping 

 

To provide adequate damping for the system, an active 

damping method is adopted, displayed in Fig.3. 
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Fig.3: Equivalent circuit and control block of system with 

active damping 

In Fig.3, SOGI (Second Order Generalized Integrator), 

seen as a low pass filter, is used to obtain the fundamental 

frequency component of the filter voltage. Kd represents the 

damping coefficient, usually calculated by  
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2d

C
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                     (6) 

where μ is 0.6. Considering the transfer function of MPC is 

1, the open loop transfer functions of system in Fig.2 and 

Fig.3 can be derived, respectively, as G1 and G2: 
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           (7) 

The comparison of system bode plot is presented in Fig.4, 

showing that the active damping method can effectively 

mitigate the resonance peak.  
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Fig.4: Comparison of system bode plots 

 

Compare the control block diagram transformation after 

employing the active damping method, it can be concluded 

that the LCL resonance suppression is achieved by 

suppressing the high-frequency component of the filter 

capacitor current. From the perspective of voltage, it can be 

considered that the full-frequency component of the filter 

capacitor voltage uCf(k) involved in the calculation of the 

prediction equation before can be replaced by the low-

frequency component of the capacitor voltage uCf_l(k), thus 

the prediction model of the system after the addition of 

active damping can be re-derived as 
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 (8) 

Further, the MPC cost function is given as 
2 2[ ( 1) ( 1)] [ ( 1) ( 1)]g u k u k u k u k   

           (9) 

4 Proposed double-vector FCS-MPC 

4.1 Phase/Line-voltage coordinate transformation 

Fig.5 displays the space vector diagram of the 3LT2 

inverter in line voltage coordinate. Define the reference 

voltage vector coordinates as ux(k)(x=a, b, c) in the abc 

voltage coordinate system and uxy(k)(xy=ab, bc, ca) in the 

line voltage coordinate system, then the line voltage 

coordinates of the any vector can be given as 

( ) 1 1 0 ( )

( ) 0 1 1 ( )

( ) 1 0 1 ( )

ab a

bc b

ca c

u k u k

u k u k

u k u k

     
     

 
     
          

          (10) 

V8

V10

V12

V14

V16

V18

V7

V9V11

V15 V17

V13

bc

abca

v6
v5

v4

v3 v2

v1v0

(0,2,-2)

(-1,0,1)(-1,1,0)

(0,1,-1)

(1,0,-1) (1,-1,0)

(0,-1,1)(0,0,0)

(1,1,-2)

(2,0,-2) (2,-1,-1) (2,-2,0)

(1,-2,1)

(0,-2,2)

(-1,2,-1)

(-2,2,0) (-2,1,1) (-2,0,2)

(1,-2,1)

1 2
3

4

 
 

Fig. 5: Space vector diagram under line voltage coordinate 

 

Unlike the traditional algorithms where Clarke 

transformations are required, the line voltage coordinate 

system proposed in this section does not require complex 

coordinate transformations, so it greatly simplifies the vector 

selection and duty cycle calculation process. 

There are two types of triangular sectors in the space 

vector diagram under the line voltage coordinate system, 

which can be divided into equilateral and inverted triangular 

sectors, as shown in Fig.6. The vectors can be selected and 

their duty cycles calculated according to the different sectors 

where the reference voltage is located. 
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Fig. 6: Equilateral and inverted triangle sectors 

 

In order to determine the sector type as well as calculate 

duty cycles, first we obtain uf
xy(k) by 

f

xy xy( ) ( ( ))  (xy=ab,bc,ca)u k floor u k       (11) 

where floor() is a function that can round down the real 

values to the integer values.  Since the reference voltage is 

usually transformed into per unit values beforehand, the 

height of the triangle sector becomes 1, so the method of 

determining the type of triangle where the reference vector 

is located can be expressed as follows: 
f

xy

, ,

ref f

xy

, ,

equilateral triangle sector, if ( ) 1

 locates in
inverted triangle sector,    if ( ) 1 
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V
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(12) 

The corresponding duty cycles dab, dbc, dca for 

synthesizing vectors vab, vbc, vca are denoted as 
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4.2 Vector space mapping 

To further simplify the calculation, this subsection 

proposes a mapping method based on the line voltage 

coordinate system, which reduces the three-level vector 

space to a two-level space, as shown in Fig.7. 

 
 

Fig. 7: Vector mapping process 

 

Therein, the three-level space vector map can be regarded 

as a composition of six two-level space vector maps, and 

each two-level space vector map contains six small 

triangular sectors. In order to simplify the calculation, the 

reference vectors in the three-level space are mapped into 

the two-level space by subtracting the center voltage vectors 

Vbase of the two-level space vector maps: 

 d

x x base( ) ( ) U   (x=a,b,c)u k u k              (14) 

where ud
x is the coordinates of the reference vector 

under the two-level space after mapping, ux is the 

coordinates of the reference vector under the three-

level space before mapping, and Ubase is the coordinate 

of centre voltage vector. 

Vbase can be selected according to the three-level 

macrosector in which the reference voltage is located: 
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where S1 to S6 are the two-level vector space numbers. 

Next, to determine the small triangle sector number where 

the reference voltage is located in the two-level space vector 

map, we should follow: 
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    (16) 

Using simple logical judgement of the phase and line 

voltages, respectively, we can finally obtain the small sector 

where the reference voltage is located, and then the 

combination of vector states in the two levels can be 

obtained. In this process, Eq. (15) determines the section 

where Vref locates and Eq. (16) determines the sub-section 

where V’
ref stays. 

In the same time, the number of candidate vectors is 

reduced from 27 to 3, so the computational effort is greatly 

reduced. 

Next, the optimal double synthesizing vectors and their 

optimal duty cycles need to be determined from the chosen 

combination of two level vector states 

4.3 Double vector selection and duty cycle calculation 

In the two-level space, there are three candidate vectors in 

every sector, so we need to select two vectors out of three. 

Based on experience, the vector with the smallest duty ratio 

contributes least for the synthesis. Therefore, in order to 

achieve the minimum current tracking error, the vectors with 

the largest and second largest duty ratios are considered to 

be the two optimized vectors in our proposed method. 
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Fig. 8: Duty ratio calculation diagram for double vectors 

 

Fig.8 displays an example of the selection process, in 

which h1 is the smallest duty ratio of three, thus we select V2 

and V3 as the optimized candidate vectors. Using V2 and V3, 

we obtain the synthesized vector V”
ref, which has the most 

approximation to V’
ref. It can be observed from Fig.8 that the 

auxiliary line segment OD forms a 30°angle with both OC 

and OE, therefore DC and CE both equal to half of OC. Also 

as DF equals OA, EG equals OB, the duty ratio for V2 

(h’
2/CG) and V3(h’

3/CF) in synthesizing V”
ref are 

'

2 2 1

'

3 3 1

/ 2

/ 2

h h h

h h h

  


 
                (17) 

To generalize the calculation, we have 
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Following the above procedures, the optimal two-vector 

Vd
op1、Vd

op2 in two-level space and their corresponding duty 

cycles hop1、hop2 can be determined, which eventually need 

to be remapped to the three-level space in order to determine 

the switching states of the corresponding vectors and  

output the control signals. 

4.4 NP voltage balancing 

Using the characteristics of redundant small vectors, the 

NP voltages on the dc side can be well balanced by switching 

positive and negative redundant small vectors.  
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(a)                      (b) 

 

Fig.9: Impacts on NP voltage of different vectors, (a) Small P-

type vector [POO], (b) Small N-type vector [ONN] 

 

Define ∆vpn to be the deviation of upper and lower 

capacitor voltage, and ∆vpn can be used to make the 

switching judgement of redundant small vectors. If ∆vpn >0, 

then vp>vn, then the upper capacitor Cp needs to be 

discharged, so the positive small vector should be selected; 

if ∆vpn<0, then vp<vn, then the upper capacitor Cp needs to be 

charged, so the negative small vector should be selected then. 

The priority of midpoint voltage balance control is ranked 

after current tracking. In the actual optimal switching vector 

selection process, when the redundant small vectors 

participate in the synthesis of the reference voltage, the 

corresponding redundant small vectors are selected for the 

midpoint balancing control according to the midpoint 

voltage, so that the introduction of the weight factor in the 

value function can be avoided.  

5 Simulation Verification 

In order to verify the feasibility and advantages of the 

proposed AD-based DMPC (AD-DMPC) method, 

simulation is performed using the parameters in Table I.  

 

 

Table 1: Simulation parameters 

Parameters Values 

DC input voltage 

(Vdc) 
300 v 

Dc link capacitor 
(Cp,Cn) 

2000 μF 

Inverter-side 

inductor(L) 
3 mH 

Grid-side inductor 

(Lg) 
1.5 mH 

Filter capacitor (Cf) 20 μF 

Parasitic resistor R1 0.5Ω 

Sampling period (Ts) 100 μs 

Output fundamental 

frequency 
50 Hz 

Inverter-side 

reference current i1_ref   
15 A/10A 

Define Method-1 to be the conventional single-vector 

FCS-MPC strategy and Method-2 to be the simplified two-

vector FCS-MPC with active damping proposed in this 

paper. 

 

(a) Method-1 

 

 

(b) Method-2 

Fig.10: The steady-state simulated results of grid-side 

current and dc link capacitor voltage deviation 

It can be observed from Fig.10 that the THD of Method-

2 is lower than Method-1. Since two vectors are used to 

synthesize the reference voltage in each control cycle, the 

quality of the grid-side current can be improved. In addition, 

Method-2 not only balances the midpoint voltage, but also 

facilitates midpoint voltage fluctuation suppression. 
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Fig.11: The dynamic simulated results when changing the 

amplitude of i1_ref with Method-2 

 

Fig.12: The dynamic simulated results when changing Δvpn with 

Method-2 

 

It can be seen from Fig.11 that when i1_ref is switched at 

the moment of t=0.25 sec and the amplitude is switched 

between 10A and 15A, the grid-side current responds very 

fast, and it can track up to the amplitude of i1_ref at the instant 

of t=0.25 sec. In addition, the midpoint voltage is effectively 

balanced in the process of dynamic change, and no distortion 

occurs in the grid-side currents. 

The midpoint balancing is controlled by switching the 

redundant small vectors and therefore also has the ability to 

actively balance the midpoint voltage. As shown in Fig.12, 

at different given currents, when Δvpn is switched to 0 at 0.25 

sec, the midpoint voltage is quickly balanced, and both the 

upper and lower capacitor voltages on the DC side are 

maintained at about 150V. 

6 Conclusion 

Aiming at the problems of low control accuracy and high 

computational burden of the traditional FCS-MPC method, 

this paper proposes a simplified dual-vector FCS-MPC 

algorithm with active damping, which simplifies the 

implementation of the dual-vector FCS-MPC algorithm 

while reducing the distortion of the output current. 

Compared with the traditional methods, the proposed AD-

based dual-vector FCS-MPC strategy cleverly reduces the 

complexity of finite-set candidate vector evaluation using 

simple logic judgement and geometric principles, which 

decreases the difficulty in optimal dual-vector selection and 

duty cycle calculation. Simulations verify the effectiveness 

of the proposed method in improving the quality of grid-side 

currents. 
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Abstract: This study focuses on robust predictive control for cascaded under-actuated systems (UASs) based on fully-actuated
system (FAS) approaches. Rooted in the fundamental principles of model mechanics, the dynamic model for a cascade UAS
is derived from the Lagrangian equation. A global coordinate transformation is given for the cascaded UAS, which kinetic and
potential energy are in general forms, such that the cascade UAS is converted into an equivalent FAS. Meanwhile, considering
discretization errors inevitably introduced during the model discretization process, the FAS-RPC control scheme is proposed.
The predictive controller is solved through linear matrix inequalities (LMI) and the asymptotical stability of the closed-loop
system and minimum of robust performance index can be guaranteed simultaneously. Finally, the effectiveness of the proposed
algorithm is verified by the simulation of a cascaded under-actuated dual rotational translational actuator (RTAC) system.

Key Words: Cascaded UASs, FAS approaches, coordinate transformation, discretization errors, robust predictive control.

1 Introduction

In the field of control systems engineering, effectively
controlling under-actuated systems (UASs) remains a piv-
otal challenge, which becomes an important research topic
aiming at significant improvement of the behavioural per-
formance and energy efficiency [1]. UASs characterized by
having fewer control inputs than degrees of freedom, pose
significant challenges due to their inherent complexity and
nonlinearity [2]. The burgeoning interest in UASs stems
from their extensive applicability, ranging from aerospace
engineering to marine manipulators, robotics systems , flexi-
ble systems, mobile systems, locomotive systems, etc [3–6].

As benchmarks, some UASs are used to test different con-
trol techniques [7–9]. Effective control strategies must not
only address the inherent under-actuation but also mitigate
impacts arising from system nonlinearities and uncertainties
[10]. Control methods for UASs encompass, but are not lim-
ited to, feedback linearization, sliding mode control, energy-
shaping methods, adaptive control, optimal control, predic-
tive control, intelligent control, and hybrid control. Each
method offers unique advantages and is suited for specific
scenarios. For instance, feedback linearization simplifies
control challenges by linearizing nonlinear system dynamics
[11]. A linear auxiliary sliding mode controller is designed
to avoid the singularity problem in a UAS [12]. Predictive
control is used for unactuated constraints with constraints
conversions [13], and energy-shaping methods manipulate
the system’s energy landscape to achieve control objectives
[14].

As mentioned in [15], it is essential to highlight that the
most methods outlined above employ the state-space rep-
resentation of system models for the subsequent controller
design. The solution procedure of the nonlinear optimiza-
tion problem for the first-order state-space model via vari-

This work has been partially supported by the Science Center Pro-
gram of the National Natural Science Foundation of China under grant No.
62188101

able augmentation becomes more and more intractable, and
the optimization solutions begin to transition from an off-
line accurate analytical solution to a numerical online so-
lution. As a methodology, the FAS approach breaks away
from traditional thinking, which takes a new perspective on
the problem of FASs by starting from the models’ mechanics
and focusing on control variables [16]. Specifically, the FAS
approach, by preserving a full actuation model with phys-
ically meaningful or establishing one with mathematically
meaningful, fully leverages the attributes of full actuation
[17]. This approach also encompasses some foundational
works on UASs [16], such as strict feedback system [18],
non-holonomic systems, Brockett’s examples [19, 20] and
some benchmark UASs [17, 21, 22].

However, current research for UASs based on FAS ap-
proaches lacks paradigmatic breakthroughs. Drawing in-
spiration from FAS methodologies, this study embarks on
bridging the gap between UASs and FASs, and concurrently
explores robust predictive control (RPC) for a type of cas-
caded UASs. Specifically, we venture to the following as-
pects in this paper:
1) A novel paradigm for converting a general type cas-
caded UASs into FASs is proposed. Based on the funda-
mental principles of the model, a concise form of the Euler-
Lagrange equations for cascaded UASs is delineated. Mean-
while, considering that the kinetic and potential energy of
each sub-UAS are in general forms, a global coordinate
transformation relation is given to transform the cascaded
UAS into a FAS.
2) A FAS-RPC control scheme is proposed for digitally im-
plemented discrete-time FAS with discretization error. The
inevitable discretization error in the digital implementation
of predictive control is regarded as a bounded uncertainty
term for comprehensive controller designed.
3) The complexity of predictive control issues in the cas-
caded UAS is significantly reduced. Based FAS ap-
proaches, the optimization problem, originally a multi-
variable infinite-time domain issue, is transformed into

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
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several independent, decoupled sub-optimization problem.
Each sub-optimization problem focuses on optimizing an
upper bound of performance index.

For the sake of convenience, the following notations are
frequently used in this paper. In continuous-time cases, for
variable vectors xi ∈ Rm, as in [16], we denote that

x
(j)
i

∣∣∣
j=p∼q

=


x
(p)
i

x
(p+1)
i

...
x
(q)
i

,x(j)
i

∣∣∣
i=m∼n,j=p∼q

=



x
(j)
m

∣∣∣
j=p∼q

x
(j)
m+1

∣∣∣
j=p∼q

...

x
(j)
n

∣∣∣
j=p∼q


.

Parallelly, in discrete-time cases, we use the following ones
as [23]:

z
(j)
i (k)

∣∣∣
j=p∼q

=


z(p)(k)

z(p+1)(k)
...

z(q)(k)

,z⌊j⌋i (k)|i=m∼n,j=p∼q=


z
⌊j⌋
m (k)

z
⌊j⌋
m+1(k)

...
z
⌊j⌋
n (k)

,

where z
(j)
i (k) = zi (k + j). Meanwhile, D

(
x(i)
)

presents
the discretization operation for the continuous-time deriva-
tives x(i), ⟨X⟩Y presents the the coefficient of X in poly-
nomial Y

2 Cascade UASs

In this section, a type of cascaded UASs is studied from
model mechanisms. Based on the Euler Lagrange equation
of each sub-UAS, the multi-order UASs model is firstly de-
rived. Then a transformation paradigm from UASs to FASs
and its discretization model with uncertainties are given.

2.1 From UASs to FASs
Consider a cascaded UAS with n sub-UASs, the Euler-

Lagrange equation for the i-th sub-UAS is given as follows
d

dt

∂Li

∂ṗi
− ∂Li

∂pi
= 0

d

dt

∂Li

∂q̇i
− ∂Li

∂qi
= τi, i = 1, 2, · · · , n,

(1)

where Li = Ki − Vi, and pi, qi ∈ R, i = 1, 2, · · · , n, are
states of the i-th under-actuated system, τi, i = 1, 2, · · · , n,
are generalized forces. And the kinetic energy of the i-th
UAS Ki is symmetric, generally presented as

Ki =
1

2
ρ̇Ti Mi (qi) ρ̇i

Mi (qi) =

[
m11

i (qi) m12
i (qi)

m21
i (qi) m22

i (qi)

]
,

(2)

where ρi = [pi, qi]
T
, Mi (qi), i = 1, 2, · · · , n, are the iner-

tia matrices, m11
i ,m22

i ̸= 0. And the potential energy of the
i-th UAS is Vi (pi, qi) = U1

i (pi) + U2
i (qi) , where

U1
i (pi) =

1

2
Ka

i p
2
i +Kb

i pi +Kc
i , (3)

Ka
i , K

b
i and Kc

i are constants relative to actual potential en-
ergy calculation.

By simple rearrangements, the sub-UAS (1) can be rewrit-
ten in the following formm

11
i (qi) p̈i +m12

i (qi) q̈i + h1
i

(
p
(0∼1)
i , q

(0∼1)
i

)
= 0

m21
i (qi) p̈i +m22

i (qi) q̈i + h2
i

(
p
(0∼1)
i , q

(0∼1)
i

)
= τi,

(4)

where

m11
i (qi) = ⟨p̈i⟩

d

dt

∂Ki

∂ṗi

m12
i (qi) = ⟨q̈i⟩

d

dt

∂Ki

∂ṗi

h1
i (·) = −∂Li

∂pi
−
(
m11

i (qi)
)′
ṗ−

(
m12

i (qi)
)′
q̇,

and
m21

i (qi) = ⟨p̈i⟩
d

dt

∂Ki

∂q̇i

m22
i (qi) = ⟨q̈i⟩

d

dt

∂Ki

∂q̇i

h2
i (·) = −∂Li

∂qi
−
(
m12

i (qi)
)′
ṗ−

(
m22

i (qi)
)′
q̇.

From the first sub-equation of (4), one has

p̈i = −h1
i +m12q̈i
m11

taking above the equation into the second sub-equation of
(4), we have p̈ = ui, where

ui =
m11

i (qi) τi −m11
i (qi)h

2
i (·) +m21

i (qi)h
1
i (·)

m11
i (qi)m22

i (qi)−m21
i (·)m12

i (·)
. (5)

Since Mi (qi) > 0, the input conversion (5) always exists.
The following assumptions are used in this paper.

Assumption 1 detm11
i (qi) ̸= 0, i = 1, 2, · · · , n, ∀qi ∈ R.

Assumption 2 There exist a group of invertible func-
tions γi (·), i = 1, 2, · · · , n, such that dγi (qi) =(
m11

i

)−1
m12

i dqi, i = 1, 2, · · · , n, where
(
m11

i

)−1
m12

i dqi
are exact one-forms.

Based on the above preparations, a normal forms FASs
can be devoted in the following theorem.

Theorem 1 Consider the cascaded UAS (1) with the input
conversion (5) satisfies Assumptions 1− 2. If
1. m11

i (qi) is a constant;
2. K1a

i > 0;

3.
(
γ−1
i

)′ ̸= 0;

there exist the following global transformation of coordi-
nates

zi = pi + γi (qi) , i = 1, 2, · · · , n, (6)

such that the cascaded UAS (4) is transformed into a FAS as
follows

z
(4)
1∼n =F1∼n

(
z
(0∼3)
i

∣∣∣
i=1∼n

)
(7)

+ B̂
(
z
(0∼3)
i

∣∣∣
i=1∼n

)
u1∼n,
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where

B̂ (·) = diag

(
− 1

Mi (·)
, i = 1 ∼ n

)
Fi (·) =

(
γ−1
i

)′′( żi
Mi (·)

− m11
i z

(3)
i

Ka
i Mi (·)

)
+
(
γ−1
i

)′ z̈i
Mi (·)

Mi (·) =
(
γ−1
i

)′
m11

i

Ka
i

.

Proof. Then taking the derivative of (6), one has

żi = ṗi +
(
m11

i

)−1
m12

i q̇i =
1

m11
i

∂Ki

∂ṗi
.

According to the first sub-equation in (1), we have

z̈i =
1

m11
i

∂Li

∂pi
. (8)

From the kinetic energy given in (2), that ∂Ki

∂pi
= 0, then

z̈i = − 1

m11
i

∂Vi

∂pi
=

1

m11
i

[
Ka

i pi +Kb
i

]∣∣
pi=zi−γi(qi)

=
1

m11
i

(
Ka

i (zi − γ (qi)) +Kb
i

)
.

After simplify rearrangement, one has

qi = γ−1
i

(
zi −

m11
i z̈i −Kb

i

Ka
i

)
,

and then taking the second derivative, we have

(
γ−1
i

)′′(
żi −

m11
i z

(3)
i

Ka
i

)
+
(
γ−1
i

)′(
z̈i −

m11
i z

(4)
i

Ka
i

)
= ui,

which is equal to (7).
Thus, this proof is completed.

Remark 1 The common potential energy in practical appli-
cation includes gravitational potential energy, elastic poten-
tial energy, electric potential energy, gravitational potential
energy, etc. For the elastic potential energy, it can be pre-

sented as U =
1

2
kx2, where k is the spring constant and

x is the displacement form the equilibrium position. It is
equal to Ka

i pi in (3). The gravitational potential energy
U = mgh, where m is the mass of the object, g is the ac-
celeration due to gravity, and h is the height of the object
relative to a reference point. For charged particles in an
electric field, the electric potential energy can be calculated
as U = qV , where q is the charge of the particle and V is
the electric potential at the particle’s position. The type of
gravitational potential energy and electric potential energy
can be uniformly expressed as Kb

i pi in (3). For objects in-
fluenced by the gravity of celestial bodies, such as planets

or stars, the potential energy is given by U = −Gm1m2

r
,

where G is the gravitational constant, m1 and m2 are the
masses of the two objects, r is the distance between the cen-
ters of the two objects, which generally can be regarded as a
constant as Kc

i in (3).

2.2 Discretization
In predictive control, systems are typically represented by

discrete-time models. Consequently, We make discretization
for the above continuous-time FAS model (7). During this
process, the introduction of discretization errors is unavoid-
able, so we treat the discretization errors as uncertainties that
are bounded by the norm related to the state of the system.
The discretization results of the FAS (7) is given as follows:

z
⌊4⌋
1∼n (k + 1) =F1∼n

(
z
⌊0∼3⌋
i

∣∣∣
i=1∼n

(k)
)

+ B̂
(
z
⌊0∼3⌋
i

∣∣∣
i=1∼n

(k)
)
u1∼n (k)

+ ∆f1∼n

(
z
⌊0∼3⌋
i

∣∣∣
i=1∼n

(k)
)
, (9)

where
Fi (·) = D

(
Fi

(
z
(0∼3)
i

∣∣∣
i=1∼n

))
+

3∑
j=0

Cj
4z

⌊j⌋
i (k)

B̂ (·) = D
(
B̂
(
z
(0∼3)
i

∣∣∣
i=1∼n

))
,

and the uncertainties satisfy the following assumption.

Assumption 3 There exists a non-negative constant func-
tion ρi

(
z
⌊0∼3⌋
1∼n

)
, i = 1, 2, · · · , n, such that uncertainties

satisfy

∥∆fi (·)∥2 ≤
∥∥∥z⌊0∼3⌋

i (k)
∥∥∥2
Φi

,

where Φi = ρ2i (·) I4.

And the full-actuation assumption for system (9) is

Assumption 4 [16]det B̂ (·) ̸= 0 or ∞, for ∀ z
(0∼3)
i |i=1∼n.

3 FAS-RPC scheme for FASs

For the discrete-time FAS (9), the FAS-RPC controller is
designed in the following form:

u1∼n (k) = B−1 (·) (−F1∼n (·) + v1∼n (k)) , (10)

where

vi (k) = Ki (k) z
⌊0∼3⌋
i (k) , i = 1, 2, · · · , n, (11)

are robust predictive controllers to be designed.
Consider the system performance, we define the following

common receding-horizon optimization index:

J∞ (k) =

∞∑
j=0

 ∥∥∥z⌊0∼3⌋
i (k + j| k)

∣∣∣
i=1∼n

∥∥∥2
Q̄

+ ∥vi (k + j)|i=1∼n∥
2
R̄

 , (12)

where Qi, Ri > 0, i = 1 ∼ n, are predictive weights,
compose the following diagonal block matrices{

Q̄ = diag (Qi, i = 1, 2, · · · , n)
R̄ = diag (Ri, i = 1, 2, · · · , n) .

Problem 1 Consider the discrete-time FAS (9) satisfies As-
sumptions 1− 4, to design a FAS-RPC controller (10), such
that there exists the minimum of receding-horizon optimiza-
tion index (12), and the resultant closed-loop system is ro-
bust asymptotically stable.
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3.1 Model and optimization problem decoupling
Taking the FAS-RPC controller (10) into the FAS model

(9), we have

z
⌊3⌋
i (k + 1) = vi (k) + ∆fi (·) , i = 1, 2, · · · , n.

Subsequently, the above systems can be decoupled and
rewritten into canonical forms, presented as follows:

z
⌊0∼3⌋
i (k + 1) =Aiz

⌊0∼3⌋
i (k) +Bivi (k)

+Bi∆fi (·) , i = 1, 2, · · · , n, (13)

where

Ai =


0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . .

...
...

...
... · · · 1

0 0 0 · · · 0




i, Bi =


0
0
...
0
1




i. (14)

It can be directly observed from the above equations, the
FAS (9) is directly decoupled under the controller (10). And
the receding-horizon optimization index (12) can be further
decoupled as

J∞ (k) =

n∑
i=1

Ji∞ (k) , (15)

where

Ji∞(k)=

∞∑
j=0

(∥∥∥z⌊0∼3⌋
i (k + j| k)

∥∥∥2
Qi

+ ∥vi (k + j)∥2Ri

)
.

3.2 Controller design
For FAS system (9), one can choose the following Lya-

punov functions as

V (k) =

n∑
i=1

Vi (k) , (16)

where

Vi (k) =
∥∥∥z⌊0∼3⌋

i (k)
∥∥∥2
Pi

, (17)

and Pi, i = 1, 2, · · · , n, are positive-definite, and impose the
stability condition

Vi (k + j + 1| k)− Vi (k + j| k) (18)

≤− li

(
z
⌊0∼3⌋
i (k + j| k) , vi (k + j| k)

)
,

where

li (·) =
∥∥∥z⌊0∼3⌋

i (k + j| k)
∥∥∥2
Qi

+ ∥vi (k + j| k)∥2Ri
.

Theorem 2 Consider the discrete-time FAS (9) satisfies As-
sumptions 3 and 4, if there exist matrices Yi, symmetric posi-
tive definite matrices Gi, and scalar γi > 0, i = 1, 2, · · · , n,

solved by the following optimization problem

min
Yi,Gi,γi

γi, i = 1, 2, · · · , n,

s.t.

[
1 ∗

z
⌊0∼3⌋
i (k) Gi

]
> 0, (19)

Gi ∗ ∗ ∗ ∗
AiGi +BiYi Gi ∗ ∗ ∗√
BT

i BiρiGi 0 Gi ∗ ∗
√
QiGi 0 0 γiI4 ∗√
RiYi 0 0 0 γi

> 0, (20)

where Ki = YiG
−1
i , Gi = γiP

−1
i , then:

1. there exists the FAS-RPC controller given as follows{
u1∼n (k) = B−1 (·) (−F1∼n (·) + v1∼n (k)) ,

vi (k + j| k) = YiG
−1
i z

⌊0∼3⌋
i (k + j| k) , i = 1, 2, · · · , n;

2. if the optimization problem is feasible at k instant, then
under the above FAS-RPC controller, the resultant closed-
loop system is robust asymptotically stable.

Proof. When the system is asymptotically stable, Vi (∞) =
zi (∞) = 0. By summing (18) from j = 0 to j = ∞, we
have

Ji∞ (k) ≤ Vi (k) .

Thus optimizing problem of the minimize the index (12) is
equivalent to minimizing (16). Let the upper bound of Vi (k)
is γi, then combing (17), and the Schur complement prop-
erty, the first inequality (19) is obtained.

For the stability condition (18), using (13) and (11), we
have

∆Vi (k + j| k) + li

(
z⌊0∼3⌋
p (k + j| k) , vp (k + j| k) , j

)
≤
∥∥∥(Ai+BiYiG

−1
i

)
zi
⌊0∼3⌋ (k + j| k) +Bi∆fi (k + j| k)

∥∥∥2
Pi

−
∥∥∥z⌊0∼3⌋

i (k + j| k)
∥∥∥2
Pi

+
∥∥∥z⌊0∼3⌋

i (k + j| k)
∥∥∥2
Qi

+
∥∥∥z⌊0∼3⌋

i (k + j| k)
∥∥∥2
(YiG

−1
i )

T
RiYiG

−1
i

≤
∥∥∥z⌊0∼3⌋

i (k + j| k)
∥∥∥2
(Ai+BiYiG

−1
i )

T
Pi(Ai+BiYiG

−1
i )

+
∥∥∥z⌊0∼3⌋

i (k + j| k)
∥∥∥2
Qi

−
∥∥∥z⌊0∼3⌋

i (k + j| k)
∥∥∥2
Pi

+
∥∥∥z⌊0∼3⌋

p (k + j| k)
∥∥∥2
BT

i Biρ2
i (·)I4Pi

+
∥∥∥z⌊0∼3⌋

i (k + j| k)
∥∥∥2
(YiG

−1
i )

T
RiYiG

−1
i

.

If (
Ai +BiYiG

−1
i

)T
Pi

(
Ai +BiYiG

−1
i

)
(21)

+BT
i Biρ

2
i (·) I4Pi +Qi +

(
YiG

−1
i

)T
RiYiG

−1
i − Pi < 0,

the stability condition (18) is hold, the resultant closed-
loop system is robust asymptotically stable. Pre- and post-
multiplying by Gi, then applying Schur complements, the
(21) is equivalent to the second inequality (20). Thus, the
whole proof is completed.
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4 Simulations

Consider the cascaded under-actuated dual rotational
translational actuator (RTAC) system as Fig. 1. The kinetic

1-st RTAC 2-nd RTAC

Fig. 1: The simplified model of dual-RTAC system.

and potential energy of each RTAC system in the dual-RTAC
system is computed as{
Ki =

1
2

(
(Mi+mi)ẋ

2
i +2miLiẋθ̇ cos θi+

(
Ji +miL

2
i

)
θ̇2i

)
Vi =

1
2kix

2
i +migLi (1− cos θi) , i = 1, 2,

where xi is the i-th cart’s horizontal displacement, θi denotes
the ith rotor’s rotational angle with respect to the vertical
direction, Mi and mi denote the mass of the i-th cart and the
eccentric ball, Ji represents the moment of inertia of the i-th
rotor. ki represents the stiffness coefficient of the i-th spring.
Li be the rotational radius of the i-th eccentric ball.

It can be observed that the kinetic and potential energy
of each RTAC system in the dual-RTAC system are matched
with system (1). And the conditions (1) and (2) in Theorem
1 are satisfied. And the dynamical equations of each RTAC
system is derived as{
(Mi+mi)ẍi+miLi cos θiθ̈=miLiθ̇

2 sin θi + kixi

miLi cos θiẍi+
(
Ji +miL

2
i

)
θ̈ +mgLi sin θi=τi.

(22)

4.1 Model conversion
Define

dγi =
miLi cos θi
Mi +mi

dθi,

then we have
γi =

miLi

Mi +mi
sin θi.

From (6), the global transformation for each sub-RTAC sys-
tem is

zi = xi +
miLi

Mi +mi
sin θi, i = 1, 2. (23)

According to Theorem 1 and the forward Euler discretiza-
tion, under the input transformation

ui=
(Mi+mi)τi−(Mi+mi)migLisinθi−m2

iL
2
i sinθicos θiθ̇i

(Mi+mi)(Ji +miL2
i )−m2

i l
2
i cos

2 θi

a discrete-time uncertain FAS can be obtained as follows:

z
⌊4⌋
1∼2 (k) =F1∼2

(
z
⌊0∼3⌋
i

∣∣∣
i=1∼2

(k)
)

+ B̂1∼2

(
z
⌊0∼3⌋
i

∣∣∣
i=1∼2

(k)
)
u1∼2 (k)

+ ∆fi

(
z
⌊0∼3⌋
i (k)

)∣∣∣
i=1∼2

,

where

Mi =
(Mi+mi)(γ

−1
i )′

ki

Fi =
(
γ−1
i

)′′(D(ż)
Mi

− (Mi+mi)D(z(3))
Mi

)
+
(
γ−1
i

)′ (D(z̈)
Mi

)
γ−1
i = arcsin

(
zi − (Mi+mi)(zk+2−2zk+1+zk)

ki

)
B̂ (·) = diag

(
− 1

Mi
, i = 1, 2

)
,

and system uncertainties satisfy that

∥∆fi (·)∥2 ≤ ρ2i (·)
∥∥∥z⌊0∼3⌋

i (k)
∥∥∥2 , i = 1, 2,

where ρ1 (·) = 0.1 and ρ2 (·) = 0.2. For simulation veri-
fication that system uncertainties are selected as ∆fi (·) =

0.01 sin (k)
∥∥∥z⌊0∼3⌋

i (k)
∥∥∥2 , i = 1, 2, which satisfy that

∥∆fi (·)∥2 ≤ ρ2i (·)
∥∥∥z⌊0∼3⌋

i (k)
∥∥∥2 , i = 1, 2,

where ρ1 (·) = 0.1 and ρ2 (·) = 0.2.

4.2 Simulation Results
Let m1 = m2 = 1 kg, k1 = k2 = 100 N/m, M1 = M2 =

5 kg, L1 = L2 = 0.1 m, J1 = J2 = 0.02 kg·m2.
The initial states of the dual-RTAC system are selected as
follows

x1 (0) = 0.1, x1 (1) = −0.02, θ1 (0) = 0.08, θ1 (1) = 0.1,

x2 (0) = −0.1, x2 (1) = 0.02, θ2 (0) = 0.1, θ2 (1) = 0.07.

Then combing with (8) and (23), the initial states of system
(22) are calculated as

z1 (0) = 0.1, z1 (1) = −0.018, z1 (2) = 1.53, z1 (3) = −12,

z2 (0) = −0.09, z2 (1) = 0.02, z2 (2) = −1.52, z2 (3) = 12.

The predictive parameters are selected as Q1 = Q2 = 0.9I4,
R1 = R2 = 0.1.

The simulation trajectories of the dual-RTAC system are
given in Figures 2 and 3.
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Fig. 2: The responses of the 1-st RTAC system.

It can be easily observed that the displacement and an-
gle of the dual-RTAC system finally converge into bounded
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Fig. 3: The responses of the 2-nd RTAC system.

region at the origin. And from the response of states, the pro-
posed FAS-RPC scheme has good time specifications, such
as lower setting time, lower overshoot and lower fluctua-
tions.

5 Conclusions

This study presents a paradigm for the transformation
of cascaded UASs into FASs, accounting for uncertainties
in the model arising from discretization of continuous-time
model. A FAS-RPC control scheme for discrete-time uncer-
tain FAS is proposed, demonstrating the existence of a upper
bounded of the performance optimization index over an infi-
nite time horizon. This ensures that the resultant closed-loop
system maintains robust asymptotic stability. The efficacy
of the proposed method is validated using the dual-RTAC
system as a benchmark UAS, achieving robust asymptotic
stabilization.
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Abstract: Integrated energy systems (IES) are complex systems that integrate multiple energy sources, converters, and loads to 
achieve optimal operation and carbon neutrality. However, conventional optimization methods for IES scheduling face 
challenges such as nonconvexity, uncertainty, and system dynamics. This paper proposes a novel deep reinforcement learning 
(DRL) approach for real-time energy dispatch of IES. The approach uses a prioritized replay safe soft-actor critic (PR-sSAC) 
algorithm that incorporates a safety network and a prioritized experience replay mechanism to improve the performance and 
reliability of the DRL agent. The safety network ensures that the agent’s actions do not violate the physical constraints of the 
IES components, while the prioritized experience replay mechanism enhances the sampling efficiency and convergence speed 
of the agent. Simulation experiments are conducted on a case study of an IES model with six components and the approach is 
compared with other DRL methods and a theoretical optimization model. The results show that the approach achieves near-
optimal operation cost and tolerable constraint violation, demonstrating its effectiveness and applicability for IES scheduling. 
Key Words: Integrated energy system, deep reinforcement learning, carbon neutrality. 

 

1.1 Introduction 

Integrated energy systems (IES) energy management 
challenges have been widely studied using conventional 
mathematical modeling to achieve optimal schedule. These 
methods include different types of math programming, 
ADMM, game theory, and dealing with uncertainty using 
stochastic and robust optimization. For instance, a 
community level MES was modeled with a MILP algorithm 
in [1]. Trans et al. [2] proposed a distributed control strategy 
based on ADMM and consensus theory to achieve optimal 
schedule for IES.  A flexible energy management model 
using a Stackelberg game theory method was developed in 
[3]. Further, Alabi et al. [4] also proposed a two-stage robust 
stochastic optimization technique to reduce the cost of IES 
operation by taking into account the uncertainties of 
renewable resources and multi-energy demand. 

Mathematical model optimization methods have many 
limitations, such as the requirement of a specific 
optimization model because of nonconvexity that may lead 
to nonconvergence solution, challenges in estimating 
uncertainties accurately, diverse operation constraints, and 
the system dynamics of energy scheduling problem. 
Therefore, it is hard to develop a precise model-based 
optimization method for IES. In this situation, the recent 
interdisciplinary research between engineering and data 
science, and the access to big data and ICT technology 
improvement has made a data-driven method called deep 
reinforcement learning (DRL) a viable alternative. As a 
common type of ML algorithms, DRL uses its DNN feature 
to solve high-dimension optimization problems without any 
prior knowledge or mathematical information of the 
environment, this is done by using the experience gained 

*This work is supported by the Centre for Advances in Reliability and
Safety (CAiRS), Hong Kong SAR, China admitted under AIR@InnoHK 
Research Cluster. 

from the constant interaction with the environment to 
progressively learn the optimal control decisions [5]. 
Contrast to the conventional model-based optimization, the 
DRL agent treats the environment technical parameters and 
mathematical models as a black-box, this lowers the 
dependence on precise physical models or the need to avoid 
inaccurate model parameters by using suitable algorithm 
improvements[6].  

Moreover, DRL handles the system uncertainties and 
adjusts to different state dynamics by using the shared data 
from the environment effectively during online training. 
Lastly, a well-trained DRL agent has more flexibility than 
traditional model-based optimization during real-time 
execution since its policy can be implemented on 
milliseconds timescales. Therefore, DRL is regarded as a 
powerful tool for real-time control applications. 

However, physical constraint and security concerns are 
essential in IES model, any control policy that will be 
applied in real-time for scheduling task must guarantee that 
the systems’ operation states do not breach the physical 
constraints. At the same time, the training phase of DRL is 
an unconstrained optimization problem, the common 
method to deal with this inevitable issue is to add the 
constraint violation that is expressed as a penalty term to the 
reward function [7]. Nevertheless, this approach makes 
control policy unreliable for large number of constraints. 
Fewer studies have tackled this issue by suggesting safety 
DNN network as a key component of DRL[8, 9].  
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1.1 Main contributions  

This paper presents a novel DRL approach for real-time 
energy dispatch of IES components with carbon capture  

 
system. This configuration optimizes the trade-off between 
economic cost and carbon emission reduction while 
respecting the physical limits of the systems. The approach 
uses an offline-trained and online-deployed DRL agent that 
considers the safety impact of its actions through a safety 
network.  

Compared to conventional DRL methods, the optimal 
policy of the proposed DRL agent is trained with the mindset 
of its selected actions’ safety implication. This is 
implemented with the introduction of a safety-guided 
network and contributes to near-optimal performance of the 
agent in real-time autonomous decision making. 
Furthermore, the sampling efficiency during the training of 
agent is improved with prioritized experience replay 
mechanism and results in low computational cost compared 
to conventional approach. 

1.2 Integrated Energy System model 

As Fig. 1 shows, the suggested MES model has six 
components: (1) electric and heat loads as two types of 
energy demand; (2) wind and solar power as two sources of 
renewable energy supply (RES); (3) a natural gas-powered 
cogeneration unit (CCHP) for combined heat and power 
production; (4) two kinds of energy storage devices for 
saving excess energy and supporting the system when RES 
is low; (5) a water-source heat pump (WSHP) and a gas 
boiler (GB) as two thermal devices for heating, and (6) a 
carbon capture technology (CDR) for reducing the CO2 
emissions from CCHP and GB. The system prioritizes using 
or storing all the energy from wind and solar power to 
minimize renewable power curtailments. The carbon capture 
unit (PCC) is attached to the exhaust outlet of CCHP and GB 
to collect the exhaust gas, separate the CO2 by adsorption, 
and release the clean air to the environment. This study does 
not account for the regeneration of the PCC absorbent after 
capturing CO2. 
 

1.3 Energy generation and converters 

Aside from renewable energy sources (RES) utilization, 
CHP is considered as a key component of MES due to its 
single-input-multi-output characteristics. 

௧ܲ
 = ܽ௧ܲܣܥ

,    ∀ݐ ∈ ܶ,      0 ≤ ܽ௧
 ≤ 1        (1) 

݃௧
 = ௧ܲ



ߟ
 ܪܮ ܸ

൘ , ݐ∀ ∈ ܶ                             (2) 

ܳ௧
 = ݃௧

ߟ
 ܪܮ ܸ,          ∀ݐ ∈ ܶ                              (3) 

 
GAS boiler model 
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WSHP model 
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Absorption chiller 
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Energy storages 
 

The energy storage devices chosen are BES and TES, 
which can save energy when there is surplus renewable 
production or low-cost period and supply energy when 
needed. The two devices have the same modeling method as 
shown in (10) – (13). The remaining power in the storage at 
each time step t is the state of charge (SOC), which is 
calculated in (10). Eq (11) prevents the SOC from going 
beyond its capacity limit and the charging power ௧ܲ

  is 
limited by the maximum power and a binary variable ߞ௧

ாௌௌ. 
The storage is either charging when ߞ௧

ாௌௌ = 1 or discharging 
or idle when ߞ௧

ாௌௌ = 0, as indicated in (12). 
 

ܵ௧ାଵ
ாாௌ = ܵ௧

ாாௌ + ௧ܲ
∆ߟݐாாௌ ⁄ܤ

+ ௧ܲ
ௗ∆ݐ ⁄ܤாாௌߟ                             (10) 

ܥܱܵ
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ாாௌ ≤ ௫ܥܱܵ
ாாௌ                                                  (11) 

Fig. 1. IES configuration model 
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0 ≤ ௧ܲ
 ≤ ܲ௫ߞ௧

ாௌௌ,     ߞ௧
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0 ≤ ௧ܲ
ௗ ≤ ܲ௫(1 − ௧ߞ

ாௌௌ),         ∀ݐ ∈ ܶ                         (13) 
 
Post carbon capture system (PCC) 
 

Eq (14)-eq (16) show the mathematical model of PCCS. 
The first step is to find the total CO2 emission from the 
burning devices (i.e. CHP and GB) using eq (14) where ߯మ 
is the amount of carbon released by natural gas combustion, 
which is 0.368 t/MWh [10]. 
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Finally, the aim of the study is to minimize the associated 
economic implications of operating energy systems. Thus, 
the objective function (ݐ)ܨ is described as: 
 
(ݐ)ܨ =  ݁௧ ܲௗ,௧

ା + ݃௧൫݃௧
 + ݃௧

ீ൯ − ݁௧ ܲௗ,௧
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ܲௗ,௧
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Where, ݁௧  is the electricity price, ܲௗ,௧

ା  denotes the 
electricity export to the grid at time ݐ, ܲௗ,௧

ି  is the amount 
of energy that is required from the grid to balance the on-site 
demand, ݃௧ is the natural gas price, and ܮܧ௧ represents the 
electricity demand by the prosumer at time ݐ 
 

2. Proposed prioritized safe soft-actor critic 
deep reinforcement learning. 

 
In this section, the energy management scheduling of the 
proposed IES is formulated as a Markov decision process 
(MDP). To achieve reliable optimal operation and system 
constraints, a safety function is introduced following a 
similar approach of the reward function computation in a 
conventional DRL method. An improved SAC algorithm is 
used to solve the scheduling problem, where safety network 
and prioritized experience replay are introduced to improve 
its performance. This ensures that the developed DRL agent 
can make reasonable scheduling decisions while satisfying 
constraint conditions. Specifically, the improved DRL agent 

ensures (1) the system does not violate specified constraints 
and (2) fast learning period by sampling the most crucial 
data from the pool of experience that are pertinent to the 
reward and safety optimization during training. 
 
3.1 Markov Decision Process for formulation and 
Prioritized experience replay. 
 

1) State space: The state s୲  represents the observed 
information from the IES environment by the DRL 
agent, this information include renewable energy 
(ܲ ௧ܸ , ܲ ௧ܹ), electricity and cooling demand 
௧ܦܧ) ,  ௧), the current State of Charge of BES andܦܪ
TES (ܱܵ݁ܥ௧ ,  ℎ௧), and the energy price at eachܥܱܵ
time step i.e, electricity and gas price (݁௧ , ݃௧). It is 
expressed as: 

௧ݏ = [ܲ ௧ܸ , ܲ ௧ܹ , ௧ܦܧ , ,௧ܦܪ ݁௧ , ݃௧ , ௧݁ܥܱܵ , [ℎ௧ܥܱܵ ∈ ܵ 
 

2) Action space: The action space A contains the 
controlled action ܽ௧ implemented by the IES agent 
base on the input state ݏ௧  to control the IES 
components. The control action is a 6-dimensional 
vector, 

ܽ௧ = ൣܽ,௧ , ܽ,௧ , ܽ,௧ , ܽாௌ,௧ , ்ܽாௌ,௧൧ ∈ [−1, 1] 

3) Reward function: Considering the cost associated 
with the IES operation, i.e., the energy exchange 
with the grid. The designed reward function is: 

,௧ݏ)௧ݎ ܽ௧) = −[݁௧ ܲௗ,௧
ା + ݃௧൫݃௧

 + ݃௧
ீ൯

− ݁௧| ܲௗ,௧
ି  (20)                            ݐ∆  [|

4) Safety function: The formulation of the safety 
function is one of the improvements introduced in 
this study, which is a constraint cost function of the 
IES components comprising of grid exchange 
violation and thermal balance constraint. It is 
expressed as: 

 ܿ௧(ݏ௧ , ܽ௧) = −หܳ௧
ீ + ܳ௧

ு + ܳ௧
 + ௧ܲ

்ாௌ,ௗ − ௧ܥܥܲ


− ௧ܲ
்ாௌ, − ௧หܦܪ

− ห ܲௗ,௧
ି/ା − ܲௗ

௫ห                           (21) 
 

Fig. 2. Proposed DRL interaction with IES environment 
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Considering the long-term goal of scheduling problem, a 
discount factor ߛ is introduced to weight the immediate and 
future rewards and safety value as: 
 

(ݐ)ܴ =   ݐ)ఛߛ + ߬)
்

ఛୀ

                                                  (22) 

Prioritized experience replay (PER) 

PER was introduced in this a study for efficient sampling 
during SAC algorithm training. This is achieved by 
assigning a priority to the samples that are crucial to the 
reward and safety. The approach is mathematically 
expressed as: 
 

ܲ = |ߜ|) + ߳)ఈ                                                             (23) 

ܲ(݅) =


ఈ

∑ 
ఈ


                                                                 (24) 

 
Where ܲ  is the priority experience of the ݅-th experience, 
|ߜ|  denotes the absolute TD error, ߳  is a small positive 
constant, and ߙ  is the hyperparameter for controlling the 
degree of prioritization. Eq (24) describes the probability of 
sampling transition ݅ from the experience buffer with cache 
size ݇. 
 
Safe Soft actor critic (safe-SAC) deep reinforcement 
learning model. 
 

In this study, we propose a SAC algorithm that has three 
networks: the actor network, the critic network, and the 
safety network. The actor network takes the input state 
information ݏ௧ as input and outputs the controllable action ܽ 
at the current timestep. The critic network takes the state  ݏ௧ 
and the action ܽ  from the actor network as input and 
generates the Q value. The safety network takes the state s 
and the action ܽ as input and outputs a safety value that is 
mainly affected by the constraint cost function. Both the Q 
value and the safety value are used to evaluate the action 
from the actor network. 

Figure 3 illustrates the training process for the three 
networks. Before the commencement of the training, the 
network parameters of all the neural networks are initialized. 

During the training, random action sampling is performed 
by the network without updating the network parameters, the 
information is stored in a replay buffer. After storing enough 
experience, network update is initiated, by sampling from 
the stored experience using PER to obtain the most crucial 
experience, the obtained information is then used for 
gradient descent computation and network updates. 

In the conventional DRL methods, the systems constraints 
are usually described by incorporating a penalty term into 
the reward function. However, selecting appropriate penalty 
coefficient is a difficult task and the approach may not 
generalise across different environment. Thus, a safety 
network is introduced in the SAC algorithm in this study. 
The proposed safety guided function is applied to compute 
the safety of the current policy in the future by estimating 
the action-value function of the accrued safety ℳஏ(ݏ, ܽ). 
The network follows the critic network evaluation procedure 
by using DNN parameterised by Ψ . The action-value 
function is computed as shown in eq (25). Given the 
stochastic policy ߤ∅(௦), TD learning approach is applied to 
minimise the loss function during the training process as 
illustrated in eq (26). Similarly, the network parameter is 
updated in eq (27) by applying gradient descent on ℒ(Ψ) 
while the target safety network parameter is update in eq (28) 
using soft update. 

 
ℳஏ(ݏ, ܽ) =  ॱ௦ᇱ~ఌ ቂܿ + ߛ max

ᇲ
ℳஏ(ݏᇱ, ܽᇱ)ቃ                (25)                  

ℒ(Ψ) = ॱ௦,,,௦ᇲ~ [(ܿ
+ ߛ max

ᇲ
ℳஏ(ݏᇱ, ܽᇱ)|ୀఓ∅(ೞ) − [ℳஏ(ݏ, ܽ)

− log  ଶ                                (26)([(௧ݏ|௧ߙ)∅ߨ
 

߰Ψ௧ାଵ ← ߰Ψ௧ −  ∇ஏℒ(Ψ)                                              (27)ߙ
Ψෙ௧ାଵ ← Ψ௧ߢ + (1 −  Ψෙ௧                                                   (28)(ߢ
 

The proposed safe-SAC is an off-policy DRL algorithm 
that can update the DNN function parameters using past 
experiences. Meanwhile, these experiences that are attained 
from the environment are temporarily correlated. Thus, to 
break this correlation and stabilise the training performance, 
an experience replay buffer D of cache size KD is employed. 
The buffer stores the agent’s experience in form of a 
transition tuple (ݏ, ܽ, ,ݎ ܿ,  ᇱ). During the training period, aݏ
minibatch of ܪ experiences is uniformly sampled from the 

Fig. 2. Proposed safe-DRL training process. 
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buffer (ݏ, ܽ, ,ݎ ܿ, ,ܦ~ (ᇱݏ ∀= 1 … .  using PER approach in ܪ
eq (23) and eq (24) to evaluate the online actor network 
policy gradient ∇ఝℒ(߮), TD error of critic (ℒ(ߠ)) and safety 
network (ℒ(Ψ)), and parameters (ߠ, ߮, ,ෘߠ Ψ, Ψෙ ) soft-update. 
 

3. Simulation results and Analysis 
 

In this section, a simulation experiment on the proposed IES 
is presented, and the parameters of the IES components and 
algorithms are presented.  

 
3.1 Parameters settings for the DRL algorithm and 

IES scheduling 
The deep reinforcement learning algorithm introduced in 
this study is implemented using Pytorch framework and real 
time multi-energy data, renewable energy, gas and 
electricity price for analysis [9,10]. The yearly data is split 
into training and test data by selecting every fifth day for test 
(73 days in total), while the remaining days (292 days) as the 
training data. The time interval of 1hr is applied while and 
the episode length is 24 hours timestep per day. The 
algorithm hyperparameters setting are presented in Table 1. 

Table 1: DRL agent selected hyperparameters. 

Hyperparameters value 

Buffer size 60,000 

Discount factor 0.95  ߛ 

Soft update factor 0.002 

Actor learning rate 0.0002 
Safety and critic learning 

rate 0.002 

Batch size 32 

PER parameters 0.6, 0.4 
Neural network size (all 

networks) [400, 300] 

Training Epochs 30,000 
 

3.2 Analysis of the simulation results 
 

Figure 4 presents the training operation cost curves of all 
the considered DRL algorithms. All the agents randomly 
interact with the environment for the first 3000 episodes to 
obtain enough training experience. After obtaining enough 
experience, the actual training commences, and the 
algorithm starts updating the network parameters of all the 
neural networks. Noticeably, the SAC with safety network 
converges early to achieve tolerable system physical 
constraints at 10,000 episodes compared to other algorithms 
as illustrated in Fig 4b. Besides, other algorithms could not 
reach tolerable constraints despite converging at 20,000 
episodes which indicates the penalty value needed to be 
tuned. Whereas, safe-SAC does not require penalty value 
and achieve tolerable constraint, this indicates the efficacy 
of the proposed method. Another interesting observation is 
in Fig 4a, proposed algorithm achieved the least operation 
cost, this is possible with the introduction of PER to sample 
the most important data for the network update during 
training. 

The training elapsed duration of each DRL agent and the 
elapsed time to reach convergence is presented in Table 2. 
Agents with safety network take more training periods to 
complete the specified training epochs with is due to 
additional network structure. However, they converged early 
compared to the conventional SAC due to the introduced 
PER and reduction on the critic network burden during 
training. This indicates that lower epochs can be initiated for 
the proposed agent and contribute to low computational cost 
with optimal performance. A comparative analysis is 
conducted to validate the effectiveness of the proposed DRL 
strategy in achieving optimal energy cost in real-time. The 
obtained results are shown in Table 3, the proposed 
improved strategy is benchmarked against theoretical 
optimization and other existing DRL agents. The proposed 
model achieved near optimal results and tolerable constraint 
in relation to theoretical optimization. 

 

 
Fig 4. Agents Episodic training curves (a) operation cost (b) thermal 
balance constraint 

Table 2: DRL agents elapsed and training period. 

Trained models Total Training 
period (h) 

Elapsed time to 
converge (h) 

SAC 4.13 3.56 

Safe-SAC  5.70 2.45 

per-SAC 4.17 3.58 

Proposed (PER 
+safe) 5.86 2.57 
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Table 3: DRL agents average Optimal cost on the test data. 

Trained models Operation cost 
(k$) 

Grid 
violation 

(MW) 

Thermal 
balance 

violation 
(MW) 

Theoretical 
Optimization 23.46 0.00 0.00 

SAC 28.28 0.00 24.60 

Safe-SAC  26.05 0.00 4.57 

per-SAC 27.69 0.00 18.54 

Proposed (PER 
+safe) 25.74 0.00 1.12 

 
 

4. Conclusion 
 
This study presents an improved SAC model for real-time 
autonomous scheduling of IES components. The improved 
strategy incorporates PER for efficient sampling from the 
pool stored experience which contributes to fast 
convergency of the model. The second strategy is the 
inclusion of a safety network to handle the physical 
constraints associated with the system. This approach 
enables the actor policy network to be constraint conscious 
in action decision making. Consequently, the proposed 
strategy achieved near optimal results with tolerable 
constraints. 
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Abstract: This study focuses on predictive path-following control (PPFC) for a tilt-quadrotor UAV based on fully-actuated
system (FAS) approaches. Rooted in the fundamental principle of tilt-quadrotor UAV model mechanics, the dynamic model
of the tilt-quadrotor UAV is derived into a FAS model with multiple degree of freedoms. Concurrently, the PPFC-FAS control
scheme is proposed for tilt-quadrotor UAV path-following, the path-following problem is transformed into a trajectory tracking
problem with the tilt-quadrotor FAS model and parameterized path. If the cost function and the penalty function in the predictive
performance index satisfies the certain conditions, the convergence of path-following errors is guaranteed. Finally, the simulation
results verify the effectiveness and efficiency of the proposed PPFC-FAS control scheme.
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1 Introduction

In recent years, the rapid advancement in drone tech-
nology has led to an increased interest in autonomous Un-
manned Aerial Vehicles (UAVs), particularly in quadrotors,
due to their versatility, maneuverability, and robustness[1,
2]. Among the various configurations of quadrotors, the
tilt-rotor design has gained significant attention[3, 4]. This
design, featuring rotors that can tilt independently, offers
enhanced aerodynamic efficiency and superior control over
motion, making these UAVs suitable for a wide range of
applications, from aerial photography and surveillance to
search and rescue operations and package delivery[5, 6].

However, the most literature on tilt-quadrotors focus on
trajectory tracking control[4, 7, 8]. It is noteworthy that tra-
jectory tracking mission requires the UAV to track a time-
related reference trajectory. This implies a requirement for
system response speed, and the tracking error seriously af-
fects the safe performance of the system. If the overshoot
of the tracking error is too large to meet the accessibility
of the actual system control capability and speed response,
such that the UAV will not be able to follow the reference
trajectory [9]. The reason for this phenomenon is that the
pre-planning offline fixed time reference trajectory does not
take into account the actual capabilities of the actual system.
Yet not all problems encountered in tilt-quadrotor missions
are trajectory-tracking problems, and the accuracy of move-
ment along a trajectory is more important than speed.

One way to overcome this problem is the path-following
control, which drive the system along a geometric refer-
ence without any pre-specified timing information[10, 11].
There also exists one problem. The sophisticated, multi-
variable and coupled dynamics of the tilt-quadrotor for
path-following poses substantial challenges in the control
system design of the tilt-quadrotor. These challenges are
compounded when the UAV is required to follow a pre-
determined path while maintaining stability and smooth re-
sponse dynamics.

Predictive control, known for its ability to anticipate fu-
ture events and take control actions accordingly, emerges as

a promising solution to these challenges[12]. Particularly, it
is well-suited for managing the multi-variable control prob-
lems inherent in tilt-quadrotors due to its optimization-based
approach that allows for the consideration of future path-
following and constraints. As a methodology, the fully ac-
tuated system (FAS) approach breaks away from traditional
thinking, which takes a new perspective on the problem of
FASs by starting from the models’ mechanics and focusing
on control variables[13, 14]. Specifically, the FAS approach,
by preserving a full actuation model with physically mean-
ingful or establishing one with mathematically meaningful,
fully leverages the attributes of full actuation fully-actuated
system (FAS) approaches have unique advantages in deal-
ing with the decoupling and optimization of nonlinear and
multi-variable systems [15–17].

This study focuses on predictive path-following control
(PPFC) for a tilt-quadrotor UAV based on FAS approaches,
which propose PPFC-FAS control scheme to achieve path
following. The contribution of this paper is given as follows.

1) The nonlinear coupled tilt-quadrotor system into a FAS
system with control degrees of freedom.

2) Predictive control provides the tilt-quadrotor inputs and
the path-following inputs, which provided by minimiz-
ing the performance index.

2 Modeling

In this section, a type of cascaded UASs is studied from
model mechanisms. Based on the Euler Lagrange equation
of each sub-UAS, the multi-order UASs model is firstly de-
rived. Then a transformation paradigm from UASs to FASs
and its discretization model with uncertainties are given.

For a tilt-quadrotor UAV, its structure is shown in Figure
1. The symbols in tilt-quadrotor model used in the following
section are listed in Table 1.

The transformation matrix, from the frame B to the frame
W , denotes as RB/W . It is calculated by a rotation sequence
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Table 1: Symbols description in tilt-quadrotor system.

symbols Meaning
B body-fixed frame
W world frame
m mass of quadrotor
g gravitation acceleration
I moment of inertia matrix

kf , km constants of force and moment
(x, y, z) position in W coordinates
(ϕ, θ, ψ) yaw, pitch and roll angles

θi, i = 1 ∼ 4 tilted angle of ith rotors
ωi, i = 1 ∼ 4 angular velocity of ith rotor

Fig. 1: The structure of the tilt-quadrotor.

along axis of X, Y and Z in sequence as follows

RB/W=

 cψcθ cψsθsϕ− sψcϕ cψsθcϕ+ sψsϕ
sψcθ sψsθsϕ+ cψcϕ sinψsθcϕ− cψsϕ
−sθ cθsϕ cθc

 .
where c and s denote cos(·) and sin(·), respectively.

Using the Newton-Euler method, the equations of motion
in world-frame is given as: ẍ

ÿ
z̈

 = −

 0
0
g

+RB/W

m

 τ6 + τ8
−τ5 − τ7

τ1 + τ2 + τ3 + τ4

 , (1)

 ṗ
q̇
ṙ

 = I−1



l (τ2 − τ4) +
km
k2f

(τ6 + τ8)

l (τ3 − τ1) +
km
k2f

(τ7 + τ5) l (−τ5 − τ6 + τ7 + τ8)

−km
k2f

(τ1 − τ2 + τ3 − τ4)




(2)

−I−1

 p
q
r

× I

 p
q
r

 ,
 ϕ̇

θ̇

ψ̇

 = R−1

 p
q
r

 , (3)

where

R =

 1 0 − sin θ
0 cosϕ cos θ sinϕ
0 − sinϕ cos θ cosϕ

 ,

R−1 =


1 sinϕ

sin θ

cos θ
cosϕ

sin θ

cos θ
0 cosϕ − sinϕ

0
sinϕ

cos θ

cosϕ

cos θ

 ,
and the assigned control inputs τi, i = 1 ∼ 8, are given as

τi = kfω
2
i cos θi, i = 1, 2, 3, 4,

τj = kfω
2
i sin θi, j = 5, 6, 7, 8.

Taking the derivative on the both side of (3), then by simple
rearrangement, one has θ̈

θ̈

ψ̈

 = −R−2Ṙ

 p
q
r

+R−1

 ṗ
q̇
ṙ

 . (4)

Further, from (3), one can be obtained p
q
r

 = R

 ϕ̇

θ̇

ψ̇

 , (5)

taking equations (2) and (5) into (4), we have ϕ̈

θ̈

ψ̈

=−R−2ṘR

 ϕ̇

θ̇

ψ̇

 (6)

−R−1I−1R

 ϕ̇

θ̇

ψ̇

×IR
 ϕ̇

θ̇

ψ̇



+R−1I−1



l (τ2 − τ4) +
km
k2f

(τ6 + τ8)

l (τ3 − τ1) +
km
k2f

(τ7 + τ5) l (−τ5 − τ6 + τ7 + τ8)

−km
k2f

(τ1 − τ2 + τ3 − τ4)




. (7)

Let η = [x, y, z, ϕ, θ, ψ]
T
, combing (1) and (7), the dynam-

ics of the tilt-quadrotor UAV can be cased into the following
form:

η̈ = f1∼2

(
η(0∼1)

)
+ b

(
η(0∼1)

)
τ1∼8, (8)

where

b (·) = diag

(
RB/E

m
,R−1I−1

)
×

0 0 0 0 0 1 0 1
0 0 0 0 −1 0 −1 0
1 1 1 1 0 0 0 0

0 l 0 −l 0
km
k2f

0
km
k2f

−l 0 l 0
km
k2f

0
km
k2f

0

−km
k2f

km
k2f

−km
k2f

km
k2f

−l −l l l


,
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and

f1 (·) = −

 0
0
g


f2 (·) = −R−2ṘR

 ϕ̇

θ̇

ψ̇

−R−1I−1R

 ϕ̇

θ̇

ψ̇


× IR

 ϕ̇

θ̇

ψ̇

 .
(9)

and η is the state vector, and τi ∈ Ti ⊆ R, i = 1 ∼ 8, denote
the compact set of input constraints. It can easily observed
that rank(b (·)) = 6.

3 Control scheme design

Building upon the foregoing modeling, we further con-
sider the path-following problem for the tilt-quadrotor UAV
system based on FAS system approach. In this section, we
first make FAS control allocation, and then give the PPFC-
FAS control scheme.

3.1 FAS control allocation
Inspired by FAS approaches and the nonlinear tilt-

quadrotor model (8), selecting the controller in the following
form

τ1∼8 =B+ (·)
[
A0η +A1η

⌊1⌋ +B0u1∼6 − F (·)
]

(10)

+Y −B+BY,

where F = f1∼2(·), B = b(·) given in (8), A0, A1, B̄ and
Y are matrices to be selected with appropriate dimensions.
Then the tilt-quadrotor model can be cased in the following
linear over-actuated system

η̈ = A1η̇ +A0η +B0u1∼6, (11)

which can be further transformed into the following state-
space form:

η̇(0∼1) = Āη(0∼1) + B̄u1∼6, (12)

where

Ā =

[
06 I6
A0 A1

]
, B̄ =

[
06×6

B0

]
.

Condition 1 By selecting matrices A0, A1, Y and B0, such
that the following conditions are satisfied

1) the pair
(
Ā, B̄

)
is controllable;

2) the pair
(
Ā, C

)
is observable;

3) Y provides extra DOFs for the constraints requirment
of τ1∼8.

The parameterized reference path is

Yr =
{
yr ∈ R6

∣∣ [ρstart, ρend] ∋ ρ 7→ yr = rpf (ρ)
}
, (13)

where rpf (κ) : R 7→ R6. And the path-following error is
defined as

epf = η − ηr.

The control object is summarized as follows.

Problem 1 Consider the tile-quadrotor system (12) with the
parameter path (13), to design the FAS allocation control in
following form (10), such that:

1) the path convergence is achieved, i.e.
limt→∞ ∥epf (t)∥ = 0;

2) the reference path-following system motions keep for-
ward, i.e. ρ̇ ≥ 0 and limt→∞ ρ (t) = ρend;

3) the constraints always hold, i.e. τi (t) ∈ Ti, i = 1 ∼ 8,
∀t ≥ 0.

Remark 1 The selection of matricesA0, A1,B0 and Y pro-
vide a certain degrees of freedom. These degrees of freedom
acting on the input channel can adjust the input performance
of the tilt-quadrotor UAV, such as amplitude, energy, con-
straints, etc. Due to the limitation of the space, the selection
of matrices A0, A1, B0 and Y are not reported in this pa-
per. For simplification, let A0 = A1 = 06, B0 = I6 and
Y = 06 in the following section. And the input constraints
alway hold by selecting matrix Y.

3.2 Predictive path-following control
We design the following virtual reference system as fol-

lows
ρ̈ = v, (14)

where v is the virtual reference input to be designed, such
that the reference states constraint ρ(0∼1) ∈ P holds, where
P =

{
ρ(0∼1) ∈ R2

∣∣ ρ ∈ [ρstart, ρend] , ρ̇ ≥ 0
}

.
Let e = η − rpf (ρ) , combing (11) and (14), we have

ė(0∼1) = Ae(0∼1) +BU, (15)

where

U = u1∼6 −
∂2rpf (ρ)

∂ρ2
ρ̇+

∂rpf (ρ)

∂ρ
v,

then the path-following problem is converted into trajectory
tracking problem. And the common horizon performance
index is given as follows

Jpf

(
η(0∼1) (tk) , ρ

(0∼1) (tk) , v (tk) , U (tk)
)

=

∫ tk+T

tk

L
(
e(0∼1) (s) , ρ(0∼1) (s) , v (s) , U (s)

)
ds

+ Epf

(
e(0∼1) (tk + T ) , ρ(0∼1) (tk + T )

)
,

where L (·) is the path-following error continous continuous
function, and Epf (·) ∈ C1 is the end penalty positive semi-
definite function.

Then the optimization problem in the predictive path-
following control can be stated as

min
U,v

Jpf (·) (16)

s.t. (14), (15),

ρ(0∼1) ∈ P .

Building upon the foregoing analysis, the following results
with simplified proof can be given.

Theorem 1 Consider the tilt-quadrotor system (12) satisfies
condition (1) with the parameter path 13 and the perfor-
mance index (3.2). Suppose that the following conditions
hold
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1) L
(
e(0∼1), ρ(0∼1), v, U

)
≥ Γ

(
∥epf , ρ− ρend∥T

)
,

where Γ is the K function;
2) Epf

(
e(0∼1), ρ(0∼1)

)
≥ 0 is C1;

3) there exist a scalar 0 < δ ≤ ϵ, such that

d

ds

(
Epf

(
e(0∼1) (s) , ρ(0∼1) (s)

))
+

L
(
e(0∼1) (s) , ρ(0∼1) (s) , v (s) , U (s)

)
≤ 0,

∀s ∈ [t, t+ δ] , t ≥ 0 and ρ(0∼1) (0) ∈ P;

4) the optimal control problem (16) is feasible for t = 0;
then the Problem 1 is solved, that is, the (16) is re-
cursively feasible and the path-following error epf (t)
converges to zero under the following PPFC-FAS con-
troller

τ1∼8 = B+ (·)
[
A0η +A1η

⌊1⌋ +B0u1∼6 − F (·)
]

+ Y −B+BY

u1∼6 = U +
∂2rpf (ρ)

∂ρ2
ρ̇− ∂rpf (ρ)

∂ρ
v,

where U and v are solved by (16).

Proof. Select the following value function V (tk) =
Jpf (tk) with optimization solution U∗ and v∗, and V (tk) ≥
0. At tk + δ instant, the performance index with feasible
states U and v is

Jpf (tk + δ)

=

∫ tk+T

tk+δ

L
(
e(0∼1) (s) , ρ(0∼1) (s) , v (s) , U (s)

)
ds

+

∫ tk+δ+T

tk+T

L
(
e(0∼1) (s) , ρ(0∼1) (s) , v (s) , U (s)

)
ds

+Epf

(
e(0∼1) (tk + δ + T ) , ρ(0∼1) (tk + δ + T )

)
.

Since V (tk + δ) ≤ Jpf (tk + δ) , then we have

V (tk + δ)− V (tk)

≤ −
∫ tk+δ

tk

L
(
e(0∼1) (s) , ρ(0∼1) (s) , v (s) , U (s)

)
ds

+

∫ tk+δ+T

tk+T

L
(
e(0∼1) (s) , ρ(0∼1) (s) , v (s) , U (s)

)
ds

+Epf

(
e(0∼1) (tk + δ + T ) , ρ(0∼1) (tk + δ + T )

)
−Epf

(
e(0∼1) (tk + T ) , ρ(0∼1) (tk + T )

)
.

According to condition 3, the aforementioned inequality
holds

Epf

(
e(0∼1) (tk + δ + T ) , ρ(0∼1) (tk + δ + T )

)
−Epf

(
e(0∼1) (tk + T ) , ρ(0∼1) (tk + T )

)
≤ −

∫ tk+δ+T

tk+T

L
(
e(0∼1) (s) , ρ(0∼1) (s) , v (s) , U (s)

)
ds.

Then it can conclude that V (·) is a monotonically decreasing
positive function, the path-following errors will converge to
zero as time increase. Thus the whole proof is completed.

4 Simulations

To validate the proposed controller, a numerical simula-
tion of tilt-quadrotor UAV is given in this section.

The values of physical parameters in the tilt-quadrotor
model are are selected as m = 1 kg, g = 9.8 kg/m2,
kf = 3× 10−6, km = 1.2× 10−7, and

I =

 2.95× 10−3 0 0
0 2.95× 10−3 0
0 0 5.9× 10−3

 .
The initial state vector is selected as η(0∼1) (0) =

[1,−2, 1, 0, 0, 0,−0.1,−0.8,−0.05,−1.05, 0.2,−0.28]
T
.

The parameters in parameterized path are selected as
ρ(0∼1) (0) = [0, 0]

T
, ρstart = 0 , ρend = 9990, and

rpf (ρ) =


sin(0.001ρ)

cos(0.001ρ+ π/2)
0.001ρ
03


T

.

The cost and the end penalty functions are selected as

L (·) =
∥∥∥∥[ η(0∼1)

ρ(0∼1)

]∥∥∥∥2
Q

+

∥∥∥∥[ U
v

]∥∥∥∥2
R

,

where Q = 105I14, R = 10−3I7, and Epf (·) = 0.
The simulation results of the tilt-quadrotor system are

given in Figures 2-5. It can be easily observed that the posi-
tion and the attitude of the tilt-quadrotor system finally con-
verge into the path-following trajectory. And from the re-
sponse of states, the proposed PPFC-FAS control scheme has
good time specifications, such as lower setting time, lower
overshoot and lower fluctuations.

0 10 20 30 40 50

-1

0

1

0 10 20 30 40 50

-1

0

1

0 10 20 30 40 50
0

0.5

1

Fig. 2: The position results of the tilt-quadrotor UAV system.

5 Conclusions

This paper effectively solves the path-following problem
of the tilt-quadrotor UAV in practical applications by inte-
grating FAS system approaches and predictive control strat-
egy. The study starts from the system model, transforming
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Fig. 3: The path following convergence in the x− y space.

Fig. 4: The trajectory results of the tilt-quadrotor UAV sys-
tem.

the tilt-quadrotor system into a FAS with input DOF, and fur-
ther converts the path-following problem into a more man-
ageable trajectory tracking problem. Then, in conjunction
with the predictive control strategy, it not only achieves the
design of the UAV controller with the minimum optimiza-
tion index but also obtains virtual inputs for adjusting path-
following. The comprehensive application of this method
not only enhances the accuracy and reliability of the quadro-
tor UAV’s path-following but also provides an innovative
solution to control problems of complex dynamic systems.
In summary, the results of this research enrich the theoret-
ical field of FASs and predictive control, and are also ex-
pected to provide strong support for the development of path-
following technologies for quadrotor UAVs in practice.

0 10 20 30 40 50

-0.1

0

0.1

0 10 20 30 40 50

-0.1

0

0.1

0 10 20 30 40 50

-0.1

0

0.1

Fig. 5: The response of attitude of the tilt-quadrotor UAV
system.
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Abstract: Multi-degree-of-freedom (DOF) manipulators demonstrate vast application potential in aerospace, medical, and agri-
cultural domains. In this paper, the robust model predictive control (MPC) scheme based on fully actuated system approach
(FASA) is proposed for trajectory tracking problem of robotic manipulators with state constraints on joint angle, angular velocity
and control torque. First, to handle with the coupled dynamics nonlinearity, a FASA-based controller is adopted. Fortunately,
the obtained closed-loop system is linear and concise, brings all the design degrees of freedom, which can be further optimized
to satisfy the trajectory tracking performance and state constraints. Furthermore, in addressing the system uncertainties and state
constraints, the robust model control scheme is proposed to optimize the FASA-based controller, and the optimization problem is
transformed into a quadratic programming (QP) problem. Finally, numercial simulation is carried out to verify the effectiveness
of proposed method.

Key Words: Robotic Manipulators, State Constraints, Fully Actuated System Approach, Robust Model Predictive Control

1 Introduction

In recent years, propelled by the ongoing progress in
science and technology, robotic manipulators have exhib-
ited considerable potential across diverse fields, serving as
viable substitutes for humans in a myriad of tasks. The
use of robotic manipulators has substantially elevated effi-
ciency and precision, concomitantly reducing risks and labor
costs. This burgeoning trend has instigated comprehensive
research in the realm of control technology for robotic ma-
nipulators. Owing to the intricate nonlinear characteristics
inherent in manipulators, advanced nonlinear control meth-
ods have been developed, such as sliding mode control [1],
backstepping control [2], feedback linearization [3] and so
on.

Recently, the theory and application of fully actuated sys-
tem approach (FASA) are currently experiencing a phase of
robust development. Pioneering works in literature [5–13]
introduced the concept of the fully actuated system, employ-
ing innovative perspectives to address control challenges in-
herent in high-order systems. Different from the modern
control approach developed on the first-order system within
the state space, the FASA inherits the benefits of general high
order fully actuated (HOFA) model, and gives a concise de-
sign method for the control law of pratical nonlinear system
[4, 14, 15]. Subsequently, scholars have conducted exten-
sive research in this domain. In [16], a three-channel joint
optimal attitude control method for roll, yaw, and pitch was
devised based on the aircraft’s fully actuated model. Contri-
bution in [17] established a necessary and sufficient condi-
tion for the controllability of a linear discrete periodic system
within the framework of high-order full drive. Additionally,
[18] transformed the Rodriguez parameter model of space-

This work is supported by National Natural Science Foundation
(NNSF) of China under Grant 62273245, Sichuan Science and Technol-
ogy Program under Grant 24NSFSC3005, the Opening Project of Robotic
Satellite Key Laboratory of Sichuan Province and National Natural Science
Foundation (NNSF) of China under Grant 62173033.

craft attitude into a high-order full drive model, designing
a robust controller to ensure the convergence of the system
state to any ellipsoid region. [19] utilized the fully actu-
ated system to formulate the dynamics of network control,
achieving an optimal control scheme based on Nash equi-
librium through a prediction model completed by the Dio-
phantine equation. Furthermore, [20] introduced a propor-
tional integral predictive controller to enhance collaborative
performance in high-order fully driven multi-agent systems
with communication delays. Utilizing the FASA, [21] de-
veloped a sliding mode-based adaptive tube model predic-
tive control for robotic manipulators with model uncertainty
and state constraints. Under the framework of FASA, once
the HOFA models are given, we can immediately obtain the
controllers, which provide all the design degrees of freedom
to be further utilised to achieve additional system require-
ments [12]. However, the FASA has less discussions on the
state constraints problem.

Upon scrutinizing the dynamic model of robotic manip-
ulators with multi-degree-of-freedom, although the model
is a highly coupled multi-input multi-ouput nonlinear sys-
tem, it becomes evident that it manifests as a typical second-
order fully actuated system, which fits well for the applica-
tion of FASA. In addition, in the pratical situation, the joint
angle, angular velocity and control torque of manipulator
are always limited, correspondingly model predictive control
(MPC) scheme is one of the mostly used strategies to deal
with constraints. With the FASA, the obatained closed-loop
system is linear and stable, it can be directly constructed as
predictive model. Importantly, FASA-based controller pro-
vide the design degrees of freedom, which can be optimized
in the MPC scheme to satisfy the state constraints, be agan-
ist uncertainties and improve the trajectory tracking perfor-
mance.

Motivated by the above discussions, this paper aims to de-
velop a control scheme taking advantage of the FASA and
MPC method, in order to deal with the highly coupled dy-
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namic nonlinearity and guarantee the satisfication of state
constraints and system performance. First, to handle with
the coupled dynamics nonlinearity, a FASA-based controller
is adopted. The obtained closed-loop system is linear and
stable, it is constructed as the preditve model. Furthermore,
in addressing the system uncertainties and state constraints,
the robust model control scheme is proposed to optimize
the FASA-based controller, and the optimization problem
is transformed into a quadratic programming (QP) problem.
The main contributions are stated as follows.

1) A novel FASA-based robust MPC scheme is pro-
posed to deal with the trajectory trakcing control prob-
lem of robotic manipulators with complicated nonlinearites,
state constraints on joint angle, angular velocity and control
torque under uncertain conditions.

2) By using the mean information of uncertainty to formu-
late the objective function in the form of first-order statistical
moments and employing the freezing strategy, the optimiza-
tion problem is transformed into a quadratic programming
(QP) problem, which can effectively reduce computational
complexity.

The structure of remaining paper is organized as follows.
Chapter 2 initiates with the Lagrangian dynamics model of
the multi-degree-of-freedom manipulator. It proceeds to de-
rive the error dynamics system based on reference informa-
tion and concludes with the design of the FASA-based con-
troller. Chapter 3 focuses on the linear steady system model
post-compensation by the actuated controller. The optimiza-
tion of control inputs is achieved through the design of the
objective function and constraints within the framework of
robust model predictive control. Chapter 4 utilizes the track-
ing of a two-degree-of-freedom manipulator in a practical
scenario as a case study to accomplish all tasks. The pa-
per culminates in the simulation verification of the designed
control inputs.
2 Fully Actuated System Approach Based Con-

troller

In this paper, the trajectory tracking control problem of
robotic manipulators is considered. Let q̄, ˙̄q, ¨̄q represent the
desired joint angle, angular velocity and angular accelera-
tion respectively, the state error dynamic model of robotic
manipulators with n-DOF can be described by the following
Lagrangian equation

M (qe) q̈e + C (qe, q̇e) q̇e +Ψ(qe, q̇e) = u (1)

where q, q̇, q̈ ∈ Rn represent the actual state of joint angle,
angular velocity and angular acceleration respectively, qe =
q − q̄, q̇e = q̇ − ˙̄q, q̈e = q̈ − ¨̄q ∈ Rn denote the state error,
u ∈ Rn is the joint control torque, Ψ(qe, q̇e) = G (qe) +
M (qe) ¨̄q+C (qe, q̇e) ˙̄q, M(qe) ∈ Rn×n is the inertia matrix,
C(qe, q̇e) ∈ Rn×n is the centrifugal force and coriolis force
matrix, G(qe) ∈ Rn is the earth’s gravitational term.

Obviously, the state error dynamic model (1) satisfies the
standard type required of second-order fully actuated sys-
tem. Therefore, according to [9, 10], we can immediately
obtain the following FASA-based controller

u = uc + uf

uc = Ψ(qe, q̇e)

uf = K0(qe, q̇e)qe +K1(qe, q̇e)q̇e + v

(2)

where v ∈ Rn is the part of control input to be designed,
K0(qe, q̇e),K1(qe, q̇e) ∈ Rn×n are the feedback gain matri-
ces given by[

K0(qe, q̇e) K1(qe, q̇e),
]
= WP−1,

P = P (Z,F ) =

[
Z
ZF

]
,

W = M(qe)ZF 2 + C(qe, q̇e)ZF

(3)

with F ∈ R2n×2n being the Jordan canonical form and its
eigenvalues lieing in the left-half open complex plane, the
parameter matrix Z ∈ Rn×2n satisfying

det

[
Z
ZF

]
̸= 0 (4)

It is noted that in the FASA-based controller, the parame-
ter matrices Z,F provide the freedom of design, they can be
determined by solving the following optimization problem
with close-loop eigenvalue sensitivities index

min
Z

∥∥∥∥[ Z
ZF

]∥∥∥∥ ·

∥∥∥∥∥
[
Z
ZF

]−1
∥∥∥∥∥

s.t. det

[
Z
ZF

]
̸= 0

(5)

where F is the pre-selected Jordan canonical form with its
eigenvalues in the left-half open complex plane.

Based on the results of FASA in [9, 10], we can obtain the
following model of (1) with controller (2)

ẏ = Āy +Dv

y =

[
qe
q̇e

]
, Ā = PFP−1, D =

[
0

M−1

]
(6)

where A is a linear time-invariant matrix and possess stabil-
ity in the Lyapunov sense, the control input v can be further
utilised to acheive additional performance requriment of ma-
nipulator motion control system. However, in the pratical
situation, there always exist the state constraints on the joint
angle, angular velocity and control torque. In the folllow-
ing procedure, in order to satisfy physical constraints and
improve the anti-disturbance capability of FASA-based con-
troller, the robust MPC scheme is proposed to optimize the
control input v online.

3 Robust Model Predictive Control Scheme of
FASA-based Controller

By formulating the entire uncertainties, such as environ-
mental noise and modeling errors, as a additive random dis-
turbance variable ω, the model (6) can be rewritten as fol-
lows

ẏ(t) = Āy(t) +D(t)v(t) +Hω(t) (7)

where H ∈ R2n×2n is the weight matrix of the disturbance,
ω(t) ∈ R2n is only dependent of the t, E(ω) = µ, |ωi| ≤
ζi, i = 1, 2 · · · 2n, its mean value µ and boundary value ζ
are known, while variance value ℵ is not required.

Suppose that the sampling period Ts is small enough, the
continuous model (7) will be discretized by utilizing Shan-
non’s sampling theorem. Let t = kTs, yielding the following
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expression

ẏ(kTs) = lim
Ts→0

y[(k + 1)Ts]− y(kTs)

Ts

≈ y[(k + 1)Ts]− y(kTs)

Ts

(8)

Combining with (8), the model (7) can be approximately
discretized as

y(k + 1) = Ady(k) +Dd(k)v(k) +Hdω(k) (9)

where Ad = TsĀ+ I2n, Dd(k) = TsD(k), Hd = TsH .
For an actual manipulator, there exist physical constraints

on joint angle, angular velocity and control torque, which
can be expressed in the following form

qmin ≤ q(k) ≤ qmax, q̇min ≤ q̇(k) ≤ q̇max

umin ≤ u(k) ≤ umax

(10)

where qmin, qmax, q̇min, q̇max, umin, umax are known con-
stants.

Following the approach in [22], the objective function
based on the first-order statistical moment, as depicted be-
low, is employed

min
ṽ

J(ṽ) = E
{
ỹ⊤Qỹ + ṽ⊤Rṽ

}
(11)

where the prediction time domain is N , the weight matrices
Q ∈ R(2n.N)×(2n.N) and R ∈ R(n.N)×(n.N) are positive
definite and symmetric, the state ṽ, ỹ is given by

ỹ =

 y(k + 1)
...

y(k +N)

 , ṽ =

 v(k)
...

v(k +N − 1)

 (12)

Combining with (9),(10) and (11), the robust MPC prob-
lem P1 for FASA-based controller (2) is described as

min
ṽ

J(ṽ) = E
{
ỹ⊤Qỹ + ṽ⊤Rṽ

}
s.t. y(k + l + 1) = Ady(k + l)

+Dd(k + l)v(k + l) +Hdω(k + l)

u(k + l) = Ψ (qe, q̇e) +K0(qe, q̇e)qe

+K1(qe, q̇e)q̇e + v

qmin ≤ q(k + l + 1) ≤ qmax

q̇min ≤ q̇(k + l + 1) ≤ q̇max

umin ≤ u(k + l) ≤ umax

(13)

where l = 0, · · · , N − 1, y(k) is updated by the actual state
of manipulator. By solving the optimal problem online to
obatine the FASA-based controller (2), we can guarantee the
satisfaction of state constraints and improve the tracking per-
formance of controller.

In the following, the optimization problem P1 (13) will be
transformed into a QP problem. During the forward predic-
tion, a freezing strategy is employed. The expansion matrix
in the prediction time domain is expressed concisely as fol-

lows

ω̃ =


ω(k)

ω(k + 1)
...

ω(k +N − 1)

 , Ã =

 Ad

...
AN

d

 ,

D̃ =


Dd 0 · · · 0

AdDd Hd · · · 0
...

...
...

...
AN−1

d Dd AN−2
d Dd · · · Dd

 ,

H̃ =


Hd 0 · · · 0

AdHd Hd · · · 0
...

...
...

...
AN−1

d Hd AN−2
d Hd · · · Hd



(14)

Then combining with (12) and(14), in the prediction time
domain N , the discrete model (9) of manipulator is rewritten
as the following compact form

ỹ = Ãy(k) + D̃ṽ + H̃ω̃ (15)

To reformulate the objective function (11) into the
tractable form, the lemma from [23] is stated as follows.

Lemma 1 Assuming λ is a symmetric matrix, when ϑ̄ =
E(ϑ),Σ = E

[
(ϑ− ϑ̄)⊤(ϑ− ϑ̄)

]
, we have

E
{
ϑ⊤λϑ

}
= tr{λΣ}+ ϑ̄⊤λϑ̄ (16)

where tr {·} represents the trace of a matrix

According to Lemma 1, Substituting (15) into (11), we
obtain

J(ṽ) =2y⊤(k)Ã⊤QD̃ṽ + 2µ⊤H̃⊤Q̃D̃ṽ

+ ṽ⊤D̃⊤Q̃D̃ṽ + ṽ⊤R̃ṽ +Λ

Λ =y⊤(k)Ã⊤Q̃Ãy(k) + 2y⊤(k)Ã⊤Q̃H̃µ

+ tr
{
H̃⊤Q̃H̃ℵ

}
+ µ⊤H̃⊤Q̃H̃µ

(17)

where µ = IN ⊗ µ, ⊗ stands for the Kronecker product,
IN denotes the unit matrix of order N , Λ is an item that has
nothing to do with the decision vector ṽ. ṽ has no depen-
dency on ℵ, therefore, it can be treated as a constant term in
the ongoing optimization process. Easily, the objective func-
tion (17) can be rewritten as the following quadratic form

J(ṽ) = ṽ⊤Lṽ + Sṽ +Λ (18)

where
S = 2y(k)⊤Ã⊤QD̃+ 2µ⊤H̃⊤Q̃D̃

L = D̃⊤Q̃D̃+ R̃
(19)

Since x̄ = [q̄ ˙̄q]⊤, all state constraints (10) can be ex-
pressed as

y + x̄ ∈ X , uc(k) + uf (k) + v ∈ U (20)

where X ,U represent feasible regions of the convex poly-
hedron of corresponding dimensions. Considering (15), the
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state constraints (20), incorporating terms of stochastic dis-
turbance in the prediction time domain, can be formulated as
follows

Ãy(k) + D̃ṽ + X̄± H̃ω̃opt ∈ X
u0 + ṽ ∈ U
X̄ = [x̄(k + 1), x̄(k + 2) · · · x̄(k +N)]⊤

(21)

where u0 = IN⊗(uc+uf ), ω̃opt can be determined by solv-
ing the following optimization problem offline in advance

max
ω̃opt

(H̃ω̃opt)
⊤H̃ω̃opt

s.t. ω̃opt ∈ W
(22)

with convex polyhedron W being composed of ±ζi, i =
1, 2, · · · , 2n.

As H̃ is a fixed lower triangular matrix, H̃⊤H̃ results in
a positive definite symmetric matrix. Consequently, the ob-
jective function becomes a pure quadratic form, and ω̃opt re-
sides within the convex polyhedron. Therefor, the simulated
annealing algorithm is well-suited for finding the global op-
timal solution.

Finally, comprehensively considering equations (18), (20)
and (21), the robust MPC problem P1 (2) for FASA-based
controller is reformulated as follows

min
ṽ

J(ṽ) = ṽ⊤Lṽ + Sṽ +Λ

s.t. Ãy(k) + D̃ṽ + X̄± H̃ω̃opt ∈ X
{uc(k) + uf (k)}1N + ṽ ∈ U

(23)

which can be solved using the Quadprog solver. By online
solving the optimization problem (23) to generate v(k), sub-
stituting v(k) into FASA-based controller (2), we can obtain
the control torque u(k), which is applied into the motion
control system of each manipulator joint.

4 Numercial Simulation

In order to verify the feasibility and control effect of the
proposed manipulator control method, a two-link rigid ma-
nipulator is taken as an example to conduct simulation ver-
ification of the robust model predictive controller based on
FASA. At the same time, the physical parameter settings of
the manipulator are shown in Tables 1 and 2.

Table 1: Model Parameters

Symbol Value Symbol Value

m1 2kg m2 2kg

l1 0.5m l2 0.5m

I1 0.125kg.m2 I2 0.125kg.m2

Table 2: State Constraints

Symbol Value Symbol Value

umin −20N.m umax 20N.m

qmin −4 rad qmax 4 rad

q̇min −1 rad/s q̇max 1 rad/s

The calculation of the manipulator’s inertia matrix in (1)
is given as follows

M(qe) =

[
M11 (qe) M12 (qe)
M21 (qe) M22 (qe)

]
M11(qe) =m2l

2
1 +

1

4
m2l

2
2 +

1

4
m1l

2
1 + I1 + I2

+m2l1l2 cos (qe2 + q̄2)

M12(qe) =M21(qe) =
1

4
m2l

2
2 + I2

+
1

2
m2l1l2 cos (qe2 + q̄2)

M22(qe) =
1

4
m2l

2
2 + I2

(24)

Coriolis force matrix is given as follows

C(qe, q̇e) =

[
C11 (qe, q̇e) C12 (qe, q̇e)
C21 (qe, q̇e) C22 (qe, q̇e)

]
C11(qe, q̇e) =− 1

2
m2l1l2 sin (qe2 + q̄2) (q̇e2 + ˙̄q2)

C12(qe, q̇e) =− 1

2
m2l1l2 sin (qe2 + q̄2)

∗ (q̇e1 + ˙̄q1 + q̇e2 + ˙̄q2)

C21(qe, q̇e) =
1

2
m2l1l2 sin (qe2 + q̄2) (q̇e1 + ˙̄q1)

C22(qe, q̇e) =0

(25)

Gravity matrix is given as follows

G(qe) =

[
G1 (qe)
G2 (qe)

]
G1(qe) =

(
1

2
m1 +m2

)
gl1 cos (qe1 + q̄1)

+
1

2
m2gl2 cos (qe1 + q̄1 + qe2 + q̄2)

G2(qe) =
1

2
m2gl2 cos (qe1 + q̄1 + qe2 + q̄2)

(26)

where gravity coefficientg is 9.8 N/kg.
Combined with the state information during the actual

movement of manipulators, the mean of stochastic distur-
bance ω is designed as µ = [0, 0, 0, 0], the variance is de-
signed to be less than 10 orders of magnitude of the state
quantity, that is, ℵ = [0.01, 0.01, 0.01, 0.01], and the bound-
ary ωb is designed to be of the same order of magnitude as
the state quantity, that is, ζ = [0.1, 0.1, 0.1, 0.1].

For the preset matrix F in robust model pre-
dictive controller based on FASA, it is taken

as F = blockdiag([
−1 1
−1 −1

],−3,−4), then

λ(F ) = (−1± j,−3,−4). Eigenvalues are located in
the left semi-open complex plane, so the system state will
not diverge. By solving the optimization problem (5), Z is
obtained as follows

Z =

[
1.4947 −0.0842 0.8128 0.0463
−0.0882 1.5055 0.0094 0.6331

]
(27)

The weight matrix Q is IN ⊗ diag[10, 10, 1, 1], R is
IN ⊗ diag[0.01, 0.01], the prediction time domain N is 10,
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the number of simulation steps is 1000, and the sampling
interval is 0.1 s.

The initial joint angle q0 of the manipulator is set to be
[0, 0], the joint angular velocity q̇0 is set to be [0, 0], the
joint angular acceleration q̈0 is set to be [0, 0]. The refer-
ence trajectory is set to be a circular trajectory with the cen-
ter coordinate located at [0.3, 0.3], and the radius is set to
0.2 m. Since the disturbance has stochastic characteristics,
the experiment will conduct Monte Carlo simulation of 1000
times. The tracking results of the fully actuated controller FA
and the FASA-based robust model predictive controllerFA-
RMPC are obtained through MATLAB’s parallel calculation
as shown below.

0 0.2 0.4 0.6 0.8 1

X (m)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Y
 (

m
)

FA

FA-RMPC

Reference

Initial

Fig. 1: End effector tracking with uncertainty

Figure 1 shows the position tracking results of the circu-
lar trajectory. The results of FA and FA-RMPC under 1000
Monte Carlo simulations are averaged. It can be seen that
both control algorithms can achieve tracking of the reference
trajectory, and FA-RMPC can achieve faster convergence.

Fig. 2: Joint angle tracking with uncertainty

Figure 2 shows the tracking results of the joint angle. It
can be seen that both FA and FA-RMPC controllers can track
the reference angle trajectory, but for unknown external dis-
turbances, FA-RMPC has a smaller fluctuation range and
better anti-disturbance ability.

Figure 3 shows the tracking results of the joint angular
velocity. It can be seen that although the FA controller can
complete the tracking of the reference angular velocity tra-
jectory, it is difficult to meet the constraint requirements,
while the FA-RMPC method can complete the reference an-

Fig. 3: Joint velocity tracking with uncertainty

gular velocity trajectory tracking while satisfying the con-
straints.

Fig. 4: Control torque of tracking with uncertainty

Figure 4 shows the joint torque during the tracking pro-
cess. It can be seen from the figure that FA-RMPC can ob-
tain an optimal control quantity that satisfies the constraints
in the prediction time domain through optimization solution,
which is better than the state feedback FA control rate that is
difficult to satisfy the constraints.

0 20 40 60 80 100

Times (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0 20 40 60 80 100

Times (s)

-2

-1.5

-1

-0.5

0

0.5

0 20 40 60 80 100

Times (s)

-1

-0.5

0

0.5

0 20 40 60 80 100

Times (s)

0

0.5

1

1.5

Fig. 5: State error of tracking with uncertainty
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Figure 5 shows the state error during the tracking process.
It can be seen that FA-RMPC can converge to the predeter-
mined state at a faster speed and with a smaller overshoot
than FA.

Based on the above simulation results, it can be con-
cluded that the proposed FASA-based robust model predic-
tive control method is significantly better than the state feed-
back fully actuated control in the manipulator tracking con-
trol with environmental interference, system uncertainty and
state constraints.

5 Conclusion

Aiming at the time-varying trajectory tracking problem
of multi-degree-of-freedom manipulators in complex envi-
ronments, a FASA-based robust model predictive control
method is proposed. After converting the pseudo-linear sys-
tem of the manipulator into a linear steady system by apply-
ing the FASA-based controller, Shannon sampling is used
for discretization to construct the predictive model. By con-
structing the objective function of the first-order statistical
moment, the disturbance term can be preprocessed offline,
and then robust model predictive control shceme is used to
optimize the FASA-based controller online, finally the op-
timization problem is transformed into a QP problem. This
method proposes a feasible solution to the tracking control
problem of the manipulator under uncertainty, and is supe-
rior to the state feedback fully actuated control method in
terms of tracking accuracy and constraint satisfaction. In the
further work, the research will focus on the parameter opti-
mal problem of FASA-based controller and the combination
of FASA and distributionally robust model predictive control
method.
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Abstract: This paper investigates attitude control with high accuracy and active vibration suppression for flexible spacecraft
with external disturbances and inertia uncertainty. A novel control scheme is technically proposed based on the fully-actuated
system approach. Firstly, based on the 3-dimensional Special Orthogonal Group, a second-order fully-actuated system described
by exponential coordinates is constructed and then converted into a constant linear system with an arbitrarily eigenstructure.
After that, a fixed-time sliding mode control scheme is proposed to ensure the fixed-time convergence of the error exponential
coordinates and the flexible mode simultaneously. By using Lyapunov approach, the stability of the closed-loop system is
analysed. Finally, a numerical simulation is carried out to vindicate the effectiveness of the controller.

Key Words: Fully-actuated system, Attitude control, Active vibration suppression, Fixed-time control, Exponential coordinates

1 Introduction

For many current spacecrafts, it is common to carry large
flexible accessories such as solar sail and truss antenna,
which would largely intensify vibration during attitude ma-
neuvers. In the meantime, spacecrafts would usually suf-
fer from external disturbances due to various conditions in
practice such as atmospheric drag, earth geomagnetic, solar
radiation pressure, etc. And the inertia uncertainty is also
a common situation in actual space missions. Thus, it is
increasingly important to design a new control scheme to
ensure precision of spacecraft attitude control and also deal
with the obstacles above.

Lots of control techniques for flexible spacecraft attitude
control have been presented previously including adaptive
robust control [1, 2], finite-time control [3], active distur-
bance rejection control [4], fuzzy control [5], etc. However,
most of the control systems in previous works are nonlinear,
which has perceptible drawbacks including complex calcu-
lation and inflexibility of design process. More recently, a
novel proposed methodology called the fully-actuated sys-
tem(FAS) approach [6–11] has been proved to be more ef-
fective in addressing the nonlinear control problems by con-
verting the original nonlinear fully-actuated system into a
constant linear system with an arbitrarily assignable eigen-
structure. Despite the benefits of the FAS approach, it is not
enough to deal with uncertainties caused by large external
disturbance, unknown inertia and flexible vibration because
the implementation of the FAS approach requires detailed in-
formation of system dynamics. This may result in degrada-
tion of control performance or even instability of the close-
loop system. So it is necessary to combine the FAS approach

This work is supported by the Science Center Program of National Nat-
ural Science Foundation of China (Grant No.62188101), the National Nat-
ural Science Foundation of China (Grant No.61690212), the Heilongjiang
Touyan Team, the Guangdong Major Project of Basic and Applied Basic
Research (Grant No.2019B030302001), and the grant of SiYuan collabo-
rative innovation alliance of artificial intelligence science and technology
(Grant No.HTKJ2023SY502003).

with other methods in the process of control law design.
Apart from that, although previous control schemes have

high robustness and are able to suppress the flexible vibra-
tion, it is hard to achieve highly effective performance of
vibration control. Piezoelectric material is a kind of intelli-
gent material that is able to change the characteristics of the
structure through active control. Many control schemes for
vibration suppression have been developed based on piezo-
electric actuators [12]. Xu et al. [13] developed a novel vi-
bration suppression control law with piezoelectric actuators
by using the adaptive sliding mode control. Zhang et al. [14]
studied an active prescribed vibration suppression control for
a flexible spacecraft by using active vibration suppression
controller for piezoelectric actuators. And in [15] and [16],
active vibration suppression technique is also applied in the
processes of controller design to deal with flexible vibration.
By using piezoelectric actuators, the flexible mode could be
taken into consideration as state variables while applying the
FAS approach, which could largely reduce the flexible vibra-
tion effect to attitude control and also actively suppress the
vibration.

Inspired by all aforementioned methodology, this paper
would concentrate on the design of a novel scheme for flex-
ible spacecraft attitude control and active vibration suppres-
sion. To this end, control input of the piezoelectric actu-
ators is added in the attitude dynamics of flexible space-
craft. And the 3-dimensional Special Orthogonal Group has
been introduced to describe the error attitude kinematics,
which is combined with the attitude dynamics to construct
a second-order fully-actuated system based on exponential
coordinates without the problem of singularity. By applying
the FAS approach, the nonlinearities would be eliminated
and the nonlinear system is converted in to a constant linear
one with a designable eigenstructure. Then the control law
of the system is designed via the fixed-time terminal sliding
mode control scheme. Under this control strategy, the error
exponential coordinates and the flexible mode would be all

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China

1394  



guaranteed to converge to a region around the equilibrium.

2 Problem Formulation and Preliminaries

Notations: sign (·) represents the standard sign func-
tion; SO(3) denotes the 3-dimensional Special Orthogonal
Group, which is also the Lie Group, and the Lie algebra as-
sociated with it is denoted by so(3); (·)× stands for the carte-
sian mapping: R3 → so(3); In denotes the identity matrix
of n × n and | · | stands for the absolute value of a scalar;
‖ · ‖ is the standard Euclidean norm of a vector; For any
x = [x1, . . . , xn]

T ∈ Rn, diag(x) = diag(x1, . . . , xn) is
a diagonal matrix and sigr(x) = [sigr(x1), . . . , sig

r(xn)]
T

with sigr(xi) = |xi|r sign(xi).

2.1 Attitude Dynamics and Kinematics
The attitude dynamics of a flexible spacecraft with active

vibration suppression using piezoelectric smart materials is
described as follows[17, 18]:{

Jω̇ + ω×Jω +Bη̈ = T + d
η̈ + 2ξΛη̇ + Λ2η +BTω̇ = ∆up

(1)

where ω ∈ R3 is the angular velocity; J ∈ R3×3 is the in-
ertia matrix of the rigid spacecraft and J = J0 + δJ with
J0 and δJ being the nominal part and the uncertain part of
the inertia matrix; T ∈ R3 represents the control torque and
d ∈ R3 stands for the external disturbance torque; η ∈ Rn
is the flexible mode coordinates with n being the number
of flexible modes; ξ ∈ Rn×n and Λ ∈ Rn×n are the modal
damping and modal frequency coefficients; B ∈ R3×n is the
coupling matrix between the flexible structures and the rigid
body; ∆ ∈ Rn×n is the coupling matrix between the piezo-
electric actuators and the flexible structures and up ∈ Rn
denotes the control voltage input of the piezoelectric actua-
tors.

Due to the fact that in most practical projects the number
of the flexible modes is no more than 3, in this paper we let
n = 3 for analysing purpose. Let T = ω×J0ω + uc and
d
′
= d− δJω̇ − ω×δJω, then we have:{

J0ω̇ +Bη̈ = uc + d
′

η̈ + 2ξΛη̇ + Λ2η +BTω̇ = ∆up
(2)

And the kinematics of the spacecraft is given as follows:

Ṙ = Rω× (3)

where R ∈ SO(3) is the direction cosine matrix from the
body-fixed frame B to the inertia reference frame I.

Before further proceeding, it is necessary to make a mild
assumption as follows.
Assumption 1. The disturbance d and the second part of the
inertia δJ are unknown, but we suppose that d, δJ,ω and ω̇
are all bounded, thus d

′
is also bounded and satisfies ‖d′‖ ≤

dm, where dm > 0 is an unknown constant.
Assumption 2. In most practical cases, the basic parameter
matrices of the flexible spacecrafts would satisfy

det (ξ) 6= 0, det (Λ) 6= 0, det (B) 6= 0

and det
(
I3 −BTJ−10 B

)
6= 0

2.2 Definitions and Lemmas
Definition 1. For anyψ× ∈ so(3), the exponential mapping
exp(·): so(3)→ SO(3) is defined as:

exp
(
ψ×
)
= I3 +

sin‖ψ‖
‖ψ‖

ψ× +
1− cos‖ψ‖
‖ψ‖2

ψ×ψ× (4)

And for any R ∈ SO(3), while tr(R) 6= 1, the in-
verse map of the exponential mapping is logarithmic map-
ping log(·): SO(3)→ so(3), which is defined as follows:

ψ× = log (R) =
ϕ

2 sinϕ

(
R−RT) (5)

where cos(ϕ) = 0.5(tr(R)− 1), |ϕ| ≤ π. log(R) = ±πµ×
while tr(R) = 1, µ is the unit eigenvector associated with
characteristic value 1 in R. ψ is the exponential coordinate
of R.

Definition 2. ([19]) For any a ∈ R6 and r > 0, we define
χr(a) = [χr(a1), χ

r
(a2)

, χr(a3), χ
r
(a4)

, χr(a5), χ
r
(a6)

]T with χr(ai)
being

χr(ai) =

{
sigr (ai) , |ai| > ε
(2− r) εr−1ai + (r − 1) εr−2sig2 (ai) , |ai| ≤ ε

(6)

where i = 1, 2, 3, 4, 5, 6 and ε is a small positive constant
selected as 0.0001 in this paper. And the time derivation of
χr(ai) is defined as

χ̇r(ai) =

{
r |ai|r−1 ȧi, |ai| > ε
(2− r) εr−1ȧi + 2 (r − 1) εr−2 |ai| ȧi, |ai| ≤ ε

(7)

Lemma 1 ([20]). Consider the following nonlinear system:

ẋ = f(x(t)), x(0) = 0, f(0) = 0 (8)

where x ∈ RN . If there exist a Lyapunov function V (x) and
scalars α > 0, β > 0, 0 < p < 1, q > 1 and 0 < ϑ < ∞,
satisfying that

V̇ (x) ≤ −αV (x)p − βV (x)p + ϑ (9)

then the trajectory of this system is practical fixed-time sta-
ble and the residual set of the solution of the system can be
given by{
x | V (x) ≤ min

{
α−

1
p

(
ϑ

1− θ

) 1
p

, β−
1
q

(
ϑ

1− θ

) 1
q

}}
where θ is a scalar and satisfy 0 < θ ≤ 1. And the time
needed to reach the residual set is bounded as

T ≤ 1

αθ(q − 1)
+

1

βθ(1− p)
(10)

Lemma 2 ([21]). Let ρ1, ρ2, . . . , ρN ≥ 0, then

N∑
i=1

ρpi ≥

(
N∑
i=1

ρi

)p
if 0 < p < 1

N∑
i=1

ρpi ≥ N
1−p

(
N∑
i=1

ρi

)p
if 1 ≤ p <∞
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2.3 Second-order Fully Actuated System
According to Definition 1, we let ψ×e = log (Re) and

rewrite the error attitude kinematics using exponential coor-
dinates as follows:

ψ̇e = E(ψe)ω (11)

where

E (ψe) = I3 +
1

2
ψ×e +

1− ‖ψe‖
2 cot

(
‖ψe2‖

2

)
‖ψe‖2

ψ×e ψ
×
e

(12)

and E (ψe) is simplified as E for brevity.
Remark 1. Note that the determinant value of E can be cal-
culated by the following formular:

det (E) =
‖ψe‖2

4
+
‖ψe‖2

4
cot2

(
‖ψe‖
2

)
And also lim

‖ψe‖→0
E (ψe) = I3. Thus E(ψe) is invertible.

After some simple calculations, we can get:

ω̇ = E−1ψ̈e + Ė−1ψ̇e (13)

By substituting (13) into (2) and letting xe =

[
ψe
η

]
and u =

[
uc
up

]
, we can further transform the system into

a Lagrange-like form as follows:

M (ψe) ẍe + C(ψe, ψ̇e)ẋe +Nxe = Pu+Qd
′

(14)

with

M (ψe) =

[
J0E

−1 B
BTE−1 I3

]
, C(ψe, ψ̇e) =

[
J0Ė

−1 0

BTĖ−1 2ξΛ

]
N =

[
0 0
0 Λ2

]
, P =

[
I3 0
0 ∆

]
, Q =

[
I3
0

]
Remark 2. Examining (14), note that M (ψe) and
P are invertible according to Assumption 2. And
M (ψe) , C(ψe, ψ̇e) will be simplified as M,C for
brevity.

Consider the fully-actuated system described by (14) and
the following control input

u =
[
K0

(
ψe, ψ̇e

)
K1

(
ψe, ψ̇e

)] [ xe
ẋe

]
+ v (15)

with

[
K0

(
ψe, ψ̇e

)
K1

(
ψe, ψ̇e

)]
= P−1WV −1 (16a)

W =MZF 2 + CZF +NZ (16b)

V =

[
Z
ZF

]
(16c)

where K0

(
ψe, ψ̇e

)
,K1

(
ψe, ψ̇e

)
∈ R6×6 are the time-

varying feedback gain matrices simplified as K0,K1. And
Z ∈ R6×12, F ∈ R12×12 are two constant matrixes to be
designed.

Then, by letting Xe = [xT
e , ẋ

T
e ]

T, Acl = −M−1(N −
PK0) and Acr = −M−1(C −PK1), the second-order sys-
tem (14) could be transformed into a linear augmented form
as follows:

Ẋe = AcXe + Pcv +Qcd
′

(17)

with 

Ac =

[
0 I6
Acl Acr

]
(18a)

Pc =

[
0

M−1P

]
(18b)

Qc =

[
0

M−1Q

]
(18c)

where v is the control law of the system (17) to be designed.
Furthermore, combining (16), it can be derived easily that

V −1AcV

=V −1
[

ZF
M−1 (P [K0 K1]V − CZF −NZ)

]
=V −1

[
ZF
ZF 2

]
=V −1V F = F (19)

then Ac = V FV −1 is a constant matrix and similar to F .
And Z,F should satisfy that [22]

1) F ∈ R12×12 is a Hurwitz matrix;
2) ∃Z ∈ R6×12 such that detV (Z,F ) 6= 0.

3 Main Result

In what follows, a fixed-time terminal sliding mode sur-
face is applied in the process of control law design. And an
adaptive law is also designed to deal with the external dis-
turbance and the inertia uncertainty. Finally, we analyse the
stability of control system under the designed control law
using Lyapunov approach.

3.1 Control Law Design
Let Xe = [XT

e1,X
T
e2]

T, then the system (17) can be
rewritten in the following form:{

Ẋe1 =Xe2

Ẋe2 = AclXe1 +AcrXe2 +M−1Pv +M−1Qd′

(20)

Then a terminal sliding mode surface is selected as fol-
lows:

s = Ẋe1 + α1χ
p1
(Xe1)

+ β1χ
q1
(Xe1)

(21)

where α1 > 0, β1 > 0, 0 < p1 < 1 and q1 > 1 are all
constant parameters to be designed.

Evaluating the time derivative of s, it gives:

ṡ = Ẋe2 + α1χ̇
p1
(Xe1)

+ β1χ̇
q1
(Xe1)

(22)

The control law and the adaptive law are designed as:

v =P−1M

[
−AclXe1 −AcrXe1 − α1χ̇

p1
(Xe1)

− β1χ̇q1(Xe1)

− α2sig
p2 (s)− β2sigq2 (s)−

γ̂s

2ε2

]
(23)

˙̂γ =k1

(
‖s‖2

2ε2
− k2γ̂

)
(24)
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where α2 > 0, β2 > 0, 0 < p2 < 1, q2 > 1, k1 > 0, k2 > 0
and ε > 0 are all constant parameters to be designed; γ̂ is the
estimation of γ, which is defined in the following Remark.
Remark 3. Since d

′
is bounded, we define γ > 0 as an un-

known constant satisfying γ ≥ ‖M−1Qd′‖2. And the initial
value of γ̂ should be set as γ̂(0) ≥ 0 to ensure γ̂(t) ≥ 0 all
the time. Additionally, in the proposed control law, the fol-
lowing terms would accelerate the convergence rate:

α2sig
p2 (s) + β2sig

q2 (s) (25)

In detail, while the system states are larger than 1, the first
term in (25) has a dominant effect on the convergence rate
as q2 > 1; and while the system states are less than 1, the
second term in (25) has a dominant effect on the convergence
rate because 0 < p2 < 1.

Then by (15), we could get the control input:

u =
[
K0 K1

]
Xe + v (26)

with 
[K0 K1] = P−1WV −1

W =MZF 2 + CZF +NZ

V =

[
Z
ZF

]
where M,C,N and P are all consistent with the definitions
in (14); Z,F are parameter matrices to be designed. As
u = [uT

c , u
T
p]

T, we could get uc and up separately, and
the control torque T = ω×J0ω + uc can be calculated.

3.2 Stability Analysis
In this section, we are ready to present the primary results

of this paper, which is given in theorem 1.

Theorem 1. Consider the flexible spacecraft attitude system
(1) and (3), under the proposed controller (26), the error
exponential coordinates ψe will converge to a small region
around the equilibrium and meanwhile the flexible mode η
will converge to a small region around 0 within fixed time
while Z,F satisfy that

1) F ∈ R12×12 is a Hurwitz matrix;
2) ∃Z ∈ R6×12 such that detV (Z,F ) 6= 0.

Proof. Construct the following Lyapunov function for the
system (14):

V =
1

2
sTs+

1

2k1
γ̃2 (28)

where γ̃ = γ − γ̂ is the estimation error of γ̂.
Evaluating the time derivative of V along the trajectories

of the system leads to:

V̇ =sTṡ− 1

k1
γ̃ ˙̂γ (29)

By substituting (22) and (24) into (29), also combining
(20), it can get:

V̇ =sT(AclXe1 +AcrXe2 +M−1Pv +M−1Qd′

+ α1χ̇
p1
(Xe1)

+ β1χ̇
q1
(Xe1)

)− γ̃(‖s‖
2

2ε2
− k2γ̂) (30)

Then we substitute the control law (23) into (30), it fol-
lows:

V̇ =− α2s
Tsigp2 (s)− β2sTsigq2 (s) + sTM−1Qd

′

+ k2γ̃γ̂ −
γ‖s‖2

2ε2
(31)

By some simple calculation, we could get

sTM−1Qd
′
≤‖s‖ · ‖M−1Qd

′
‖

≤γ‖s‖
2

2ε2
+
ε2

2
(32)

Additionally, by using the inequation γγ̃ ≤ 1
2γ

2 + 1
2 γ̃

2, it
can give

k2γ̃γ̂ =− k2γ̃2 + k2γ̃γ

≤− k2
2
γ̃2 +

k2
2
γ2 (33)

Incorporating (32) and (33) into (31), it gives

V̇ ≤− α2

6∑
i=1

(s2i )
p2+1

2 − β2
6∑
i=1

(s2i )
q2+1

2 − k2
2
γ̃2 +

ε2

2
+
k2
2
γ2

(34)

Then by Lemma 2, we could get

V̇ ≤− α2(s
Ts)

p2+1
2 − 6

1−q2
2 β2(s

Ts)
q2+1

2 − α2(
γ̃2

k1
)

p2+1
2

− 6
1−q2

2 β2(
γ̃2

k1
)

q2+1
2 + α2(

γ̃2

k1
)

p2+1
2 + 6

1−q2
2 β2(

γ̃2

k1
)

q2+1
2

− k2
2
γ̃2 +

ε2

2
+
k2
2
γ2

≤− α2(2V )
p2+1

2 − 12
1−q2

2 β2(2V )
q2+1

2 − k2
2
γ̃2

+ α2(
γ̃2

k1
)

p2+1
2 + 6

1−q2
2 β2(

γ̃2

k1
)

q2+1
2 +

ε2

2
+
k2
2
γ2

(35)

Due to γ̃ = γ − γ̂ and γ̂ ≥ 0, γ ≥ γ̃ is always satisfied.
Then we let κ = γ2 − γ̃2, and it follows:

V̇ ≤− λ1(V )
p2+1

2 − λ2(V )
q2+1

2 + φ (36)

with
λ1 = 2

p2+1
2 α2

λ2 = 2× 6
1−q2

2 β2

φ = α2(
γ̃2

k1
)

p2+1
2 + 6

1−q2
2 β2(

γ̃2

k1
)

q2+1
2 + ε2

2 + k2
2 κ

From Lemma 1, the trajectory of the system tends to be prac-
tical fixed-time stable. Moreover, the residual setD is calcu-
lated asD = {s | V ≤ min{[ φ

λ1(1−θ) ]
2

p2+1 , [ φ
λ2(1−θ) ]

2
q2+1 }}

and the settling time Ts is given by Ts ≤ 1

λ1θ(
q2+1

2 −1)
+

1

λ2θ(1− p2+1
2 )

. Hence, the proof is completed.

4 Simulation Results

In this section, we carry out a numerical simulation to vin-
dicate the controller designed above. The simulation param-
eters are selected as follows. The nominal part of the in-
ertia is chosen as J0 = diag(500, 400, 450)(Kg · m2) with
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the uncertain part of the inertia matrix selected as δJ =
0.3 sin(0.5t)J0; The modal damping and modal frequency
coefficients are chosen as ξ = diag(0.005, 0.002, 0.008) and
Λ = 2π × diag(0.15, 0.25, 0.2); The coupling matrix be-
tween the piezoelectric actuators and the flexible structures
is ∆ = diag(0.02,−0.004, 0.07). The coupling matrix be-
tween flexible structures and the rigid body is selected as:

B =

6.4564 −4.2562 8.1169
1.2781 −1.9176 4.4890
2.1563 −1.6728 −4.8368


The initial attitude quaternions are Q =

[−0.8155, 0.1, 0.35,−0.45]T and the initial angular
velocity is 0; The desired attitude quaternions are
Qd = [−0.6982, 0.3, 0.25,−0.6]T; The initial value of
the flexible mode and its derivation are both 0; The external
disturbance d (N ·m) is given as follows:

d = 10−3 ×

 3 cos(0.1t) + 4 sin (0.03t)− 1
−1.5 cos (0.02t)− 3 sin (0.05t) + 1.5

2 sin(0.1t)− 1.5 sin (0.04t) + 1


The control torque is limited with |Ti,max| ≤ 1 (N ·m)

with i = 1, 2, 3. And the control voltage of the piezoelectric
actuators is limited with |upi,max| ≤ 10 (V) with i = 1, 2, 3.

Select the parameter matrices Z = [I6 I6], and F =
diag(−0.2,−0.2,−0.2,−0.3,−0.3,−0.3,−0.1,−0.1,−0.1,
− 0.15,−0.15,−0.15). Then by Z and F , we can calculate
V and Ac = V FV −1. Other parameters are chosen as
α1 = 0.05, α2 = 0.05, β1 = 0.1, β2 = 0.1, p1 = 0.8, q1 =
8, p2 = 0.8, q2 = 8 and ε = 0.05, k1 = 0.001, k2 = 0.8.
And the initial value of γ̂ is set as 0.
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Fig. 1: Time responses of the error exponential coordinates
ψe.

The trajectories of the error exponential coordinates ψe,
the angular velocity ω and the flexible mode η are shown in
Fig.1, Fig.2 and Fig.4, demonstrating that all state errors are
guaranteed to converge to small regions in fixed-time and the
stability of the system is realized. Fig.3 and Fig.5 illustrate
the control torque T and the control voltage of the piezo-
electric actuators up. And time responses of the adaptive
parameter γ̂ is plotted in Fig.6, which shows the effective-
ness of uncertainty estimation.
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Fig. 3: Time responses of the control torque T (N ·m).
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Fig. 4: Time responses of the flexible mode coordinates η.

5 Conclusion

In this article, we have presented a attitude control scheme
and active vibration suppression method for a flexible space-
craft subject to inertia uncertainty and external disturbances.
The main feature of this controller is that a second-order
fully-actuated system expressed by the error exponential co-
ordinates and the flexible mode coordinates has been con-
structed based on the Lie algebra of SO(3), which would
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avoid singularity in the system. And by adopting a direct
parametric approach for fully-actuated systems, the nonlin-
ear system would be converted into a linear constant system
with a desired eigenstructure. Then a fixed-time terminal
sliding mode control law has been designed to guarantee that
the closed-loop system achieves fixed-time stability without
singularity theoretically. The stability of the system has been
analyzed by Lyapunov approaches, and a numerical simula-
tion verified the effectiveness of the proposed controller.
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Abstract: The working environment for aero-engine is highly demanding, and stringent performance standards must be met. 
Consequently, a robust active disturbance rejection controller is essential for effective control. However, several issues are 
associated with the classical active disturbance rejection control technique used in aero engines. These issues include:(1) The 
system control gain changes with the operating conditions, making the parameter b0 difficult to tune; (2) Gain of extended state 
observer is too high due to high-frequency components in the unmodeled dynamics. Therefore, an improved active disturbance 
rejection control technique with variable control gain is proposed in this paper. Firstly, for the aero-engine speed model, the 
Gram– Schmidt  algorithm is used to identify the control gain offline under various operating conditions. Secondly, by 
incorporating the concept of gain scheduling, the switching of parameter b0  is implemented, and the unmodeled dynamics 
identification value f̂(k) is calculated and used to compensate for improving the classical active disturbance rejection controller. 
Lastly, a complete simulation experiment was conducted. The simulation results indicate that the proposed method is effective 
in regulating the aero-engine working process during the transition state, which can quickly tune the parameter b0 and effectively 
reduce the bandwidth of the observer under the premise of ensuring the performance. 
Keywords: adaptive disturbance rejection control, aero-engine, system identification, gain scheduling 
 
 

1. Introduction 
The aero-engine control system has undergone several 

stages of development and has now evolved into a full 
authority digital electronic control system (FADEC) for gas 
turbine engines. Since then, aero-engine technology 
worldwide has exhibited a notable trend of accelerated 
development. It is expected to progress towards achieving 
high thrust-to-weight ratios, high speeds, wide usability, 
enhanced reliability and applicability, reduced fuel 
consumption, minimized noise emissions, decreased 
environmental pollution, and enhanced economic efficiency. 
The high-performance engine needs and high-intensity 
mission requirements will eventually cause the control 
system's operating environment to deteriorate progressively 
[1]. Hence, it is crucial for the control technology employed 
in aero-engine fuel systems to be robust. Active Disturbance 
Rejection Control (ADRC), which consists of real-time 
estimation of total disturbance and dynamic compensated 
linearization, is being applied to the design of fuel control 
for aero-engine during the transition state. 

In the 1990s, the famous control scholar Han Jingqing 
deeply considered the difference between model theory and 
cybernetics [2], overcame traditional PID control 
technique's shortcomings, and proposed the Active 
Disturbance Rejection Control(ADRC) technique. ADRC 
reduces the impact of unmodeled dynamics and external 
disturbance by treating them as total system disturbance. It 
then estimates the total disturbance and compensates for it 
within the system, effectively transforming the system into 
integral series system so that we can use the error feedback 
law to control [3,4]. To simplify the ADRC parameter tuning 
process and promote wider adoption of the ADRC technique, 
Gao [5] proposed the Linear Active Disturbance Rejection 
Control (LADRC), which relates the ADRC parameters to 
the frequency of the controller and observer. The problem of 
parameter tuning is transformed into the issue of bandwidth 
adjustment, and the workload of parameter tuning is greatly 

reduced. 
In recent years, ADRC has been used in the field of aero-

engine control many times. Zhang et al. [6] integrated the 
ADRC algorithm and an augmented LQR method to control 
the aftereffect transition state of the aero-engine, which 
could better coordinate the aftereffect fuel supply and nozzle 
opening and had little influence on the work of the core 
engine during the whole transition state. Wang et al. [7] 
applied ADRC to the design of a limit protection controller, 
which can effectively transform the out-of-limit deviation 
into the correction of the main loop instruction, and the 
comprehensive control system has a fast response speed and 
achieves the purpose of limit protection. Li et al. [8] 
implemented a multivariable control framework based on 
ADRC, and the proposed controller can not only decouple 
the two control loops but also keep the turbine outlet 
temperature within the specified limit. Qian et al. [9] 
proposed an intake pressure control method based on linear 
active disturbance rejection control. This method can 
effectively control the intake pressure without engine 
information, has high versatility and excellent inference 
immunity, and can greatly improve the adjustment quality of 
the intake system in the transition state test. 

ADRC has strong robustness and inference immunity, but 
its performance depends on the parameter tuning. Many 
scholars have explored and studied the parameter tuning of 
LADRC. Chen et al. [10] proposed a tuning method in which 
all the parameters except the parameter 𝑏0 can be calculated 
on the premise of known settling time, while the parameter 
𝑏0 can only be obtained by stepwise trial. The trial-and-error 
method means a huge time cost caused by repeated tests, and 
the feasibility of this method is greatly reduced due to the 
high cost and risk of aero-engine experiments. In [11,12], the 
control gain 𝑏 of the system is identified directly to complete 
the tuning of the parameter 𝑏0 . In [12], the successive 
approximation [13] is used to identify the control gain 𝑏 
online. However, the above identification methods need to 
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know the system's structural terms and are unsuitable for the 
aero-engine with strong nonlinearity and uncertainty. The 
parameter 𝑏0 in LADRC is called the compensation factor 
and affects the compensation performance of the total 
disturbance in the controller. Reference [14] points out that 
better control performances can be achieved when the 
relative error between compensation factor 𝑏0  and control 
gain 𝑏 is within 30%. Therefore, the accurate identification 
of the system control gain 𝑏  is the key to tuning the 
parameter 𝑏0  when the structural terms of the aero-engine 
model are unknown. 

ADRC technique regards the unmodeled dynamics and 
external disturbance in the aero-engine model as the total 
system disturbance, which is estimated by the extended state 
observer and compensated into the system. Due to the 
existence of high-frequency disturbance, high-gain observer 
is needed to achieve accurate estimation. However, due to 
measurement noise, using a high-gain observer requires a 
tradeoff between fast state reconstruction and reasonable 
state estimation error [15]. Therefore, using a low-gain 
observer to achieve better estimation is another key in the 
design of ADRC for aero-engine. 

The purpose of this paper is to improve the classical 
adaptive disturbance rejection control technique using 
system identification and gain scheduling, where the 
improved control technique not only allows for fast 
parameterization but also achieves the same observational 
performance using a smaller observer bandwidth. 

2. Problem Formulation 
2.1 Fuel Control of Aero-Engine in Transition State 

In this paper, the main fuel flow control is carried out for 
the working process of the aero-engine during the transition 
state. The transition state test of the aero-engine is a vital 
examination content to test the maneuverability and other 
indicators of the engine, including inertial starting and thrust 
transient. The main fuel flow delivered to the actuator is 
comprehensively determined by multiple control loops, 
including steady-state control, acceleration-and-
deceleration control, starting, and ignition. The main fuel 
flow comprehensive control logic is shown in Fig. 1. 

 
Fig. 1: Main fuel flow comprehensive control logic 

Considering the order, nonlinearity and uncertainty of the 
aero-engine speed model, the model can be established as 
follows based on LADRC:  

�̈�2 = �̃�𝑢 + 𝑓(𝑁2, �̇�2, 𝑤) (1) 

where 𝑁2 is the engine’s high-pressure rotor speed, 𝑢 is the 
main fuel flow, �̃� is variable control gain, 𝑤 is the external 
disturbance, and 𝑓(𝑁2, �̇�2, 𝑤)  is unmodeled system 
dynamics. 

2.2 Active Disturbance Rejection Control of Fuel Flow 

When the control gain is unknown and variable, the 
control gain can only be approximated by tuning the 
compensation factor 𝑏0. In this case, (1) should be expressed 
as follows: 

�̈�2 = 𝑏0𝑢 + (�̃� − 𝑏0)𝑢 + 𝑓(𝑁2, �̇�2, 𝑤) (2) 

According to the framework of LADRC, we can set 𝑥1 =
𝑁2, 𝑥2 = �̇�2, 𝑥3 = (�̃� − 𝑏0)𝑢 + 𝑓(𝑁2, �̇�2, 𝑤) . In this case, 
(2) can be transformed into the state space expression form: 

{

�̇�1(𝑡) = 𝑥1(𝑡)
�̇�2(𝑡) = 𝑥2(𝑡) + 𝑏0𝑢(𝑡)

�̇�3(𝑡) = ℎ(𝑡)
(3) 

According to (3), LESO can be designed as follows: 

{

�̇�1(𝑡) = 𝑧2(𝑡) + 𝛽1(𝑦(𝑡) − 𝑧1(𝑡))

�̇�2(𝑡) = 𝑧3(𝑡) + 𝑏0𝑢(𝑡) + 𝛽2(𝑦(𝑡) − 𝑧1(𝑡))
�̇�3(𝑡) = 𝛽3(𝑦(𝑡) − 𝑧1(𝑡))

𝑦(𝑡) = 𝑥1(𝑡) + 𝑣(𝑡)

(4) 

where 𝑧1, 𝑧2, 𝑧3  are the estimated values of 𝑥1, 𝑥2, 𝑥3 , 
respectively, 𝛽1, 𝛽2, 𝛽3  are observer gain of different 
channels, and 𝑣  is measurement noise. Based on the 
bandwidth method proposed in [5], the characteristic 
polynomial of the error dynamic equation of the observation 
system can be obtained by using (3) and (4) as follows:  

 𝑠3 + 𝛽3𝑠
2 + 𝛽2𝑠 + 𝛽1 = (𝑠 + 𝜔0)

3 (5) 
It can be seen that  𝛽1 = 3𝜔𝑜, 𝛽2 = 3𝜔0

2, 𝛽3 = 𝜔𝑜
3, where 

𝜔𝑜 is the bandwidth of the observer, the performance of the 
observer can be adjusted only by tuning 𝜔𝑜. 

Assuming that the reference speed of the system is 𝑁2𝑟, 
the designed control law is: 

{
𝑢 =

𝑢0 − 𝑧3
𝑏0

𝑢0 = 𝑘𝑝(𝑁2𝑟 − 𝑧1) + 𝑘𝑑(�̇�2𝑟 − 𝑧2)
(6) 

Through (2) and (6), the following can be obtained: 
�̈�2𝑟 = 𝑘𝑝(𝑁2𝑟 − 𝑦) + 𝑘𝑑(�̇�2𝑟 − �̇�) (7) 

Therefore, the characteristic polynomial of (7) is as 
follows: 

 𝑠2 + 𝑘𝑝𝑠 + 𝑘𝑑 = (𝑠 + 𝜔𝑐)
2  (8) 

It can be seen that 𝑘𝑝 = 2𝜔𝑐,𝑘𝑑 = 𝜔𝑐2, where 𝜔𝑐 is the 
controller bandwidth, only 𝜔𝑐 needs to be adjusted to make 
the engine meet the excellent tracking performance. 

At this point, we need to clarify two problems that still 
exist when LADRC is applied to control aero-engine. Firstly, 
the control gain of the fuel system in the aero-engine 
changes with the operating condition. If using the trial-and-
error method simply, it will cause great costs. If we choose 
a compensation factor 𝑏0  with large deviation from the 
control gain �̃� , it may cause overtemperature and 
overrotation and then damage the engine. Therefore, the 
tuning of the parameter 𝑏0 is the first difficulty. Secondly, 
the aero-engine is highly nonlinear and uncertain and 
contains high-frequency thermal-mechanical dynamics. 
LESO is employed in LADRC to uniformly estimate the 
system's unmodeled dynamics and external disturbances. 
Due to high-frequency dynamics, we need to use a high-gain 
observer, which will increase the influence of measurement 
noise. Therefore, decreasing the observer gain while 
ensuring the observation performance is the second 
difficulty. In the following parts of this paper, the classical 
ADRC will be improved by system identification and gain 
scheduling to solve the above two problems. 

Acceleration 
control plan

Deceleration 
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3. Design of Controller 
The design idea of the controller is as follows: Firstly, the 

control gain 𝑏 and the unmodeled dynamics 𝑓 of the aero-
engine speed model are identified in a single operating 
condition by the system identification method. Secondly, the 
identification value of control gain �̂�  during different 
operating conditions of the speed models are obtained using 
the above identification method. By switching control gain 
�̂�  according to the aero engine speed 𝑁2 , the tuning of 
parameter 𝑏0  is completed. The tracking problem for 
variable control gain �̃�  is translated into an interpolation 
problem for control gains at different operating conditions. 
Finally, the identification value of unmodeled system 
dynamics 𝑓(𝑘) and the estimated total disturbance 𝑧3 under 
different control gains are used as feedforward terms to 
compensate the observer and the control law, hoping to 
eliminate the influence of the total disturbance. The 
improved extended state observer and control law constitute 
an improved LADRC technique with variable control gain 
for aero-engine. In this chapter, we first introduce the system 
identification method for the aero-engine speed model, then 
introduce the parameter tuning method for different 
operating conditions, and finally improve LADRC by using 
the identification results of the unmodeled dynamics and the 
control gain of the system. 

3.1 Control Gain and System Unmodeled Dynamics 
Identification of The Speed Model 

The aero-engine speed model is a nonlinear system with 
unknown time-varying parameters. Considering that the 
structure term of the speed model is unknown, a nonlinear 
discrete model is used for fitting. In this paper, the 
NARMAX(Nonlinear Auto Regressive Moving Average 
with Exogenous Inputs) model is selected, which is an input-
output description of nonlinear systems and can characterize 
the dynamic characteristics of nonlinear systems [16]. 

Equation (1) is transformed into the following using 
forward difference: 

𝑁2(𝑘) = 𝑇2𝑏𝑢(𝑘 − 2) + 𝑇2𝑓(𝑘 − 2) +

2𝑁2(𝑘 − 1) − 𝑁2(𝑘 − 2) (9)
 

where 𝑇 is the sampling period. Thus, the identification of 
the control gain 𝑏  and the unmodeled dynamics 𝑓  of the 
system is transformed into the identification of 𝑏 and 𝑓(𝑘 −
2) in (9). 

In this paper, the RMGS [17,18] algorithm is used to 
identify the above two terms. The RMGS algorithm employs 
a selection of principal elements strategy, adjusts the order 
of orthogonalization, and utilizes orthogonal least squares 
and forward stepwise regression to complete the integrated 
identification of structures and parameters. The linear 
parameter model corresponding to NARMAX is constructed 
as follows: 

𝑦(𝑡) =∑𝜙𝑖

𝑀

𝑖=1

(𝑡)𝜃𝑖 + 𝑒(𝑡) (10) 

where 𝑦(𝑡) is the model output, 𝜙𝑖(𝑡) is the model structure 
term, 𝜃𝑖  is the parameter corresponding to the model 
structure term, 𝑒(𝑡) is the model error, and 𝑀 is the number 
of model structure terms. 

Using the input and output data of the model in a certain 

period, the matrix form of the linear parameter model can be 
obtained: 

𝑌 = 𝛷𝛩 + 𝛦 (11) 
where 𝑌 = [𝑦(𝑡1), 𝑦(𝑡2), … , 𝑦(𝑡𝑁)]𝑇 ,  𝛷 = [𝛷1, 𝛷2, … , 𝛷𝑀] , 
 𝛷𝑖 = [𝜙𝑖(𝑡1), 𝜙𝑖(𝑡2), … , 𝜙𝑖(𝑡𝑁)]

𝑇,  𝛦 = [𝑒(𝑡1), 𝑒(𝑡2), …, 
𝑒(𝑡𝑁)]

𝑇 , 𝛩 = [𝜃1, 𝜃2, … , 𝜃𝑀]
𝑇, 𝑁 ≥ 𝑀. 

Then, the RMGS algorithm is carried out, and the iterative 
process is as follows: 

Algorithm 1 RMGS algorithm 

QR Decomposition: 
𝑌 = 𝛷𝛩 + 𝛦 = 𝑄𝑅𝛩 + 𝛦 = 𝑄𝐺 + 𝐸, 𝐺 = 𝐷−1𝑄𝑇 , 𝐷 = 𝑄𝑇𝑄 
 
Iterative Calculation: 
𝑺𝒆𝒕 𝐼1 = {1,2, . . . , 𝑀}; 
𝒇𝒐𝒓 𝑖 = 1 𝑡𝑜 𝑀 
 𝑞𝑖 = 𝜙𝑖; 
 

𝐸𝑅𝑅𝑖 =
𝑔𝑖
2 < 𝑞𝑖 , 𝑞𝑖 >

< 𝑌, 𝑌 >
; 𝑔𝑖 =

< 𝑞𝑖 , 𝑌 >

< 𝑞𝑖 , 𝑞𝑖 >
; 

 𝑟11 = 1; 
𝒆𝒏𝒅 𝒇𝒐𝒓 
𝑙1 = 𝑎𝑟𝑔  𝑚𝑎𝑥𝑖∈𝐼1{𝐸𝑅𝑅𝑖}; 

𝑞1
0 = 𝑞𝑙1; 𝑔1

0 =
< 𝑞1

0, 𝑌 >

< 𝑞1
0, 𝑞1

0 >
;𝑌 = 𝑌 − 𝑔1

0𝑞1
0; 

𝒇𝒐𝒓 𝑗 = 2 𝑡𝑜 𝑀 
 𝐼𝑗 = 𝐼𝑗−1\{𝑙𝑗−1}; 
 𝒇𝒐𝒓 𝑎𝑙𝑙 𝑖  ∈ 𝐼𝑗  
  

𝑞𝑖 = 𝜙𝑖 −∑  

𝑗−1

𝑘=1

< 𝜙𝑖 , 𝑞𝑘
0 >

< 𝑞𝑘
0, 𝑞𝑘

0 >
𝑞𝑘
0; 

  
𝐸𝑅𝑅𝑖 =

𝑔𝑖
2 < 𝑞𝑖 , 𝑞𝑖 >

< 𝑌, 𝑌 >
, 𝑔𝑖 =

< 𝑞𝑖 , 𝑌 >

< 𝑞𝑖 , 𝑞𝑖 >
; 

 𝒆𝒏𝒅 𝒇𝒐𝒓 
 𝑙𝑗 = 𝑎𝑟𝑔  𝑚𝑎𝑥𝑖∈𝐼𝑗{𝐸𝑅𝑅𝑖}; 
 

𝑞𝑗
0 = 𝑞𝑙𝑗; 𝑟𝑗𝑗 = 1; 𝑔𝑗

0 =
< 𝑞𝑗

0, 𝑌 >

< 𝑞𝑗
0, 𝑞𝑗

0 >
;𝑌 = 𝑌 − 𝑔𝑗

0𝑞𝑗
0; 

 𝒇𝒐𝒓 𝑘 = 1 𝑡𝑜 𝑗 − 1 
  

𝑟𝑘𝑗 =
< 𝑞𝑘

0, 𝜙𝑙𝑗 >

< 𝑞𝑘
0, 𝑞𝑘

0 >
; 

 𝒆𝒏𝒅 𝒇𝒐𝒓 
𝒆𝒏𝒅 𝒇𝒐𝒓 
 
Parameters Calculation: 
𝑅 = [𝑟𝑖𝑗]𝑀×𝑀; 𝐺 = [𝑔1

0, ⋯ , 𝑔𝑀
0 ]𝑇; 

𝑅𝛩 = 𝐺 → 𝛩 = [𝜃1, 𝜃2, . . . , 𝜃𝑀]
𝑇; 

 
For making the RMGS applicable to identification, (9) is 
assumed in advance to be a second-order system with both 
input and output delays equal to 3, and the model structure 
term is set to{𝑢(𝑘 − 1), … , 𝑢(𝑘 − 3), 𝑁2(𝑘 − 1), … , 𝑁2(𝑘 −
3), 𝑢(𝑘 − 1)2, … , 𝑢(𝑘 − 1)𝑢(𝑘 − 3), … , 𝑢(𝑘 − 3)2, 𝑁2(𝑘 
−1)2, … , 𝑁2(𝑘 − 1)𝑁2(𝑘 − 1), … , 𝑁2(𝑘 − 3)

2, 𝑢(𝑘 − 1) 
𝑁2(𝑘 − 1), … , 𝑢(𝑘 − 3)𝑁2(𝑘 − 3)}. 

Since model structure item 𝑢(𝑘 − 2)  corresponds to 
parameter 𝜃2, thus we can get: 

𝑏 =
𝜃2
𝑇2

(12) 

𝑓(𝑘 − 2) =
𝑁2(𝑘)−2𝑁2(𝑘−1)+𝑁2(𝑘−2)

𝑇2
− 𝑏𝑢(𝑘 − 2) (13) 

Therefore, the identification of control gain 𝑏  and 
unmodeled dynamics 𝑓 are completed. 
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3.2 Control Gain Switching at Different Operating 
Conditions 

For the steady-state control of the aero-engine speed 
model at a single operating condition, the system 
identification method proposed in Section 3.1 can be used 
for integrated identification of the control gain 𝑏  and the 
unmodeled dynamics 𝑓 of the system, and the identification 
results can be used to complete the tuning of parameter 𝑏0 
and the compensation of the unmodeled dynamics 𝑓 . 
However, the limitation of linearization design is that the 
controller can only be designed to work in a certain domain 
at a single operating condition. Considering the diverse 
operating conditions in the transition state of the aero-engine 
working process, it is essential to note that the corresponding 
control gain may vary accordingly. Therefore, the linearized 
design method for the single operating condition is not 
suitable for the working process during the transition state. 

Gain scheduling can extend the effectiveness of the 
linearization method to several operating conditions. In 
many cases, the dynamic characteristics of the system with 
its operating condition are known, and the operating 
condition can be described by one or more variables as 
parameters, which are called allocation variables. In this way, 
the system can be linearized at several operating conditions, 
a linear feedback controller can be designed for each 
operating condition, and a set of linear controllers can be 
executed as one controller. Its parameters can be changed by 
monitoring allocation variables. Such a controller is called a 
gain scheduling controller [19,20]. 

In this paper, the system identification method described 
in Section 3.1 is used to identify the control gain in different 
operating conditions offline. We establish the control gain 
interpolation table, and gain scheduling is performed based 
on the actual speed of the aero-engine. This facilitates the 
online tuning of parameter 𝑏0. 

3.3 Improvement of Control Law and Observer 

By using the system identification method described in 
Section 3.1, the identification values of the control gain �̂� 
and the identification value of unmodeled system dynamics 
𝑓(𝑘)  in the aero-engine speed model can be obtained. 
Because LADRC performs better when the parameter 𝑏0 is 
close to 𝑏, we can set 𝑏0 to �̂� or fine-tune it near �̂�. 𝑓(𝑘) is 
the identification value of the unmodeled dynamics 𝑓 of the 
system and therefore contains information about the high-
frequency components of 𝑓. If 𝑓(𝑘) is added to LESO, the 
total disturbance will contain no or fewer high-frequency 
dynamics and the low-gain LESO can be used to estimate 
the total disturbance accurately and reduce the influence of 
measurement noise. 

Let 𝑥1 = 𝑁2 , 𝑥2 = �̇�2 , 𝑥3 = (𝑏 − 𝑏0)𝑢 +

[𝑓(𝑁2, �̇�2, 𝑤) − 𝑓(𝑘)], then the system dynamic equation 
is: 

{

�̇�1(𝑡) = 𝑥2(𝑡)

�̇�2(𝑡) = 𝑥3(𝑡) + 𝑓(𝑘) + 𝑏0𝑢(𝑡)

�̇�3(𝑡) = ℎ(𝑡)

(14) 

Therefore, the improved LESO(ILESO) is: 

{
 
 

 
 
�̇�1(𝑡) = 𝑧2(𝑡) + 𝛽1(𝑦(𝑡) − 𝑧1(𝑡))

�̇�2(𝑡) = 𝑧3(𝑡) + 𝛽2(𝑦(𝑡) − 𝑧1(𝑡)) + 𝑓(𝑘) + 𝑏0𝑢(𝑡)

�̇�3(𝑡) = 𝛽3(𝑦(𝑡) − 𝑧1(𝑡))

𝑘 = 𝑖𝑛𝑡(
𝑡

𝑇
)

(15) 

where 𝑧1, 𝑧2, 𝑧3 are the estimates of 𝑥1, 𝑥2, 𝑥3, respectively, 
and 𝑖𝑛𝑡( ⋅)  is the integer operator. Since the identification 
value 𝑓(𝑘)  is introduced into ILESO, 𝑧3  is the estimated 
value of (𝑏 − 𝑏0)𝑢 + [𝑓 − 𝑓(𝑘)]. To eliminate the influence 
of the total disturbance, the improved control law is: 

{
𝑢 =

𝑢0−𝑧3−�̂�(𝑘)

𝑏0

𝑢0 = 𝑘𝑝(𝑁2𝑟 − 𝑧1) + 𝑘𝑑(�̇�2𝑟 − 𝑧2)
(16) 

Combined with (16), (1) can be approximated as:  
�̈�2 = �̃�

𝑢0−𝑧3−�̂�(𝑘)

𝑏0
+ 𝑓 ≈ 𝑢0 (17) 

It can be seen that the unmodeled dynamics in the aero-
engine speed model have been compensated, and only the 
parameters 𝑘𝑝  and 𝑘𝑑  need to be adjusted to ensure 
excellent tracking performance. 

4. Simulation 
This paper conducts numerical simulation based on 

MATLAB/Simulink. The dual-rotor turbofan engine in the 
simulation system is built with real data, which can 
effectively replicate the behavior of a real engine, enabling 
researchers to analyze its performance under different 
conditions and scenarios. The input of the engine model is 
the main fuel flow, and the output is the relative converted 
speed. The relative converted speed 𝑁2 of the high-pressure 
rotor can be calculated by the following formula:  

𝑁2 =
𝑁𝑐𝑢𝑟

𝑁𝑚𝑎𝑥−𝑑𝑒𝑠
× 100% (18) 

where 𝑁𝑐𝑢𝑟   is current speed, 𝑁𝑚𝑎𝑥−𝑑𝑒𝑠  is the maximum 
design speed. 

In the simulation system, the reference speed is mapped 
using the throttle lever angle. Specifically, we utilize the 
changing process of the throttle lever angle as shown in Fig. 
2 to simulate the engine's operation under various operating 
conditions. The control gain corresponding to different 
operating conditions needs to be identified offline in 
advance and switched according to the actual speed during 
the working process. 

Firstly, the offline identification of the control gain is 
carried out, the working process is set up with the engine in 
a starting stage, and reference speeds are stable at different 
values. The given value of the main fuel flow of the actuator 
is used as the identification input, and the relative converted 
speed of the high-pressure rotor of the engine is used as the 
identification output. The integrated identification of the 
control gain 𝑏 and the unmodeled dynamics 𝑓 of the system 
is carried out using the method proposed in Section 3.1. The 
identification results of control gain at different operating 
conditions are shown in Table 1. 

According to the concept of gain scheduling proposed in 
Section 3.2 and the established control gain interpolation 
table, the parameter 𝑏0  is dynamically switched online 
according to the actual speed of the aero-engine during 
operation. 

Further tuning of the controller bandwidth 𝜔𝑐  and 
observer bandwidth 𝜔𝑜  is required. The tuning of the 
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controller bandwidth 𝜔𝑐  needs to balance the problem 
between tracking error, overshoot, and oscillation, while 
tuning the observer bandwidth 𝜔𝑜 also needs to balance the 
problem between estimation error and the influence of 
measurement noise. Based on practical control 
performances, the controller bandwidth 𝜔𝑐 is set to 9, and 
the observer bandwidth 𝜔𝑜  is set to 5. The controller 
parameters are chosen as 𝑘𝑝 = 𝜔𝑐

2  and 𝑘𝑑 = 2𝜔𝑐 . The 
observer gains are chosen as 𝛽1 = 3𝜔𝑜 , 𝛽2 = 3𝜔0

2 , and 
 𝛽3 = 𝜔𝑜

3. 
Fig. 3 shows the comprehensive control curve of the main 

fuel flow. It can be seen that the output of the ILADRC 
steady-state control law has some over-limits, and the actual 
output of the main fuel flow is the output of the ILADRC 
steady-state control processed by the comprehensive control 
logic. Fig. 4 shows the speed tracking performance 
controlled by ILADRC. It can be seen that the actual speed 
can follow the reference speed during the transition state. 
 

Table 1: Control gain interpolation table 

𝑃𝐿𝐴 𝑁2𝐷𝑒𝑚 𝑁2𝑅𝑒𝑎𝑙 �̂� 

60 99.98 98.14 0.0027 
55 98.64 98.15 0.0024 
50 96.69 96.69 0.0022 
45 94.13 94.13 0.0024 
40 92.09 92.09 0.0029 
35 87.93 87.93 0.0057 
30 85.95 85.95 0.0069 
25 82.44 82.44 0.0225 
20 76.22 76.22 0.0060 
15 70.00 70.00 0.0041 

 

 
Fig. 2: Throttle lever angle 

 

 
Fig. 3: Main fuel flow comprehensive control curve 

 

 
Fig. 4: Speed tracking performance 

 

 
Fig. 5: Speed tracking error with different parameter 𝑏0 

 

 

Fig. 6: Observing errors with different parameter 𝑏0 
 

 
Fig. 7: Estimated disturbance 𝑧3 of LESO and ILESO 

 

 
Fig. 8: Observing errors of LESO and ILESO 

 
Fig. 5 and Fig. 6 show the speed tracking error, 

observation error of 𝑥1  and observation error of 𝑥2  with 
different parameter 𝑏0  respectively. Compared with the 
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system tuning 𝑏0  by trial-and-error method, the speed 
tracking error, observation error of 𝑥1 and observation error 
of 𝑥2 of the system tuning 𝑏0 by gain scheduling are smaller 
overall. 

Fig. 7 shows the estimated disturbance values before and 
after compensation of the unmodeled dynamics 
identification value 𝑓(𝑘) , which shows that the estimated 
disturbance of ILESO is much smaller than that of LESO. 
After compensation, most high-frequency components are 
removed from the total disturbance estimated by ILESO, 
which can reduce the observer bandwidth and the influence 
of measurement noise. Therefore, ILESO's estimating 
performance will surpass LESO's when the same observer 
bandwidth is used. Fig. 8 shows the observation errors of 
LESO and ILESO, and it can be seen that integral absolute 
errors of observation errors of ILESO are smaller than those 
of LESO when using the same observer bandwidth. 

5. Conclusion 
LADRC used in aero-engine has the problems that the 

parameter 𝑏0 is difficult to tune, and the gain of extended 
state observer is too high. An improved LADRC with 
variable control gain is proposed in this paper, which can 
quickly tune the parameter 𝑏0 during the transition state and 
compensate for the unmodeled dynamics 𝑓(𝑘) in real-time 
through system identification and gain scheduling, reducing 
the observer bandwidth to ensure performance. Finally, the 
performance of the improved LADRC with variable control 
gain is verified by simulation. 
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Multi-Spacecraft adaptive tracking control with collision
avoidance based on fully actuated system approach
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Abstract: In this paper, an adaptive tracking control problem of a constrained multi-spacecraft system in observation mission
for a rotating target is investigated. Based on the integrated spacecraft attitude-orbit kinematic described on Lie group SE(3) and
a positive definite configuration error function, a second-order fully actuated system model for error configuration is derived.
Considering collision avoidance problem, a collision avoidance scheme based on the collision detection algebraic condition is
established, which considers the interaction of relative attitude and geometric shapes of two spacecraft. In view of the influence of
external disturbance, an adaptive controller based on the fully actuated system theory is further designed. According to Lyapunov
stability theory, it is proved that the resulting closed-loop system is ultimately uniformly bounded. The simulation results prove
the effectiveness of the proposed control strategy.

Key Words: Spacecraft pose tracking control, Lie group SE(3), Fully actuated system approach, Collision avoidance

1 Introduction

With the development of space technology, there is a need
for on-orbit monitoring of a failed high-value spacecraft to
extract some characteristic information for subsequent cap-
ture and maintenance missions [1]. Compared with one-to-
one on-orbit service, utilizing mass-produced small space-
craft for operations in close range [2] has the advantage of
cost reduction and efficiency improvement. However, once
multiple spacecraft simultaneously perform proximity oper-
ations for target, this poses a challenge for collision avoid-
ance between spacecraft. Therefore, it is necessary to ad-
dress the safety control problem in multi-spacecraft observa-
tion mission of failed target under collision avoidance con-
straint.

When considering spacecraft collision avoidance, there
are roughly two approaches to modeling collision avoidance
constraint from the perspective of the geometric shape of the
chaser spacecraft. One is to treat the chaser as a point mass
and depict the envelope for target spacecraft as accurately as
possible, such as safety path constraint [3], spherical forbid-
den zone [4], Superquadratics curved surface envelope [5].
The second is to consider the envelope of chaser as a sim-
ple sphere. As in [6, 7], a composite envelope combined
a sphere and an ellipsoid is designed for target, while the
envelope of chaser is a standard sphere. However, if chasers
are equipped with large sails or accessories, using ellipsoidal
envelope to describe its shape can further reduce the conser-
vatism of constraint modeling. The collision avoidance con-
straint modeling methods mentioned above consider chaser
as a point mass or an attitude independent sphere, which is
not applicable to the collision avoidance problem with con-
sidering the geometric shapes of all chasers simultaneously.

In order to achieve high-precision on-orbit monitoring and
other close range operation missions, Lie group SE(3) is
used to describe the integrated coupled attitude-orbit model.
Based on Lie group SE(3), the formation spacecraft attitude-
orbit integrated control problem [8, 9] and multi-agent for-

This work is supported by National Natural Science Foundation
(NNSF) of China under Grant 62188101, and in part by the Heilongjiang
Touyan Team Program.

mation control problem [10] are addressed. The spacecraft
attitude orbit integration model based on Lie group SE(3) is
more precise and concise, and it is convenient for the de-
sign of attitude-orbit integrated controller. However, due to
the strong non-linearity of the spacecraft system, the intro-
duction of nonlinear control algorithms leads to complicated
controller design processes and strict stability conditions.

In recent years, the fully actuated system approach(FASA)
proposed by Duan has gradually received attention from
scholars due to its simplicity and effectiveness in designing
nonlinear control systems [11–13]. The pose control prob-
lems of single spacecraft and combined spacecraft are solved
in [14, 15] by combining the parameterized design method of
FASA with prescribed performance control method, respec-
tively. In [16], an attitude obstacle avoidance control method
based on FASA under attitude constraints is designed. An
adaptive tracking control problem for a class of uncertain
fully actuated systems with actuator faults and full state con-
straints is studied in [17]. However, the above research fo-
cuses on the pose control problem of a single spacecraft.
There is currently limited research on multi-spacecraft pose
tracking control based on FASA under safety constraint.

Based on the above analysis, this paper proposes a robust
adaptive pose controller based on FASA and the potential
function in the presence of collision avoidance and external
disturbance. Firstly, according to the pose kinematic model
described on the Lie group SE(3) and spacecraft dynamics
equation, a second-order fully actuated system model for
error configuration is established. Meanwhile, to meet the
safety requirements during observation mission, this paper
describes the geometric shape of all spacecraft as ellipsoids,
and then algebraic condition is used to derive the collision
avoidance scheme between chaser spacecraft. Next, to ad-
dress the external disturbance, an adaptive controller is pro-
posed based on FASA. According to the Lyapunov method,
it is proven that the second-order fully actuated system of
pose error is ultimately uniformly bounded. The simulation
results show that the multi-spacecraft system accomplishes
fly-around mission without collision, which illustrates the
effectiveness of the proposed control strategy.

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China
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2 Preliminaries

For ∀n ∈ N+, En ∈ Rn×n represents an identity ma-
trix. Given a set A , its interior is denoted by Å. A
smooth function σ (x) is defined as σ (x) = 0, if x ≤ 0,
σ (x) = e−

1
x , if x > 0. The detailed definitions of mapping

(·)∧ : R6 7→ se (3).
Proposition 1 [18]: Consider cubic polynomial equa-

tions with constant coefficients f (λ) = a3λ
3 + a2λ

2 +
a1λ

1 + a0 = 0, ai ∈ R, ∀i ∈ {0...3} and roots λ1,
λ2, λ3. Then the discriminant of f (λ) is given as
∆ = (a3)

4 ∏
(λi − λj)

2
, i ∈ {1, 2}, j ∈ {i+ 1, ..., 3}. The

following statements then hold
1) ∆ = 0 ⇔ at least two roots are equal.
2) ∆ > 0 ⇔ all three roots are real and distinct.
Proposition 2 [18]: Consider two planar ellipsoids A ={
z ∈ R3 s.t. zTA (t) z ≤ 0

}
, B =

{
z ∈ R3 s.t. zTB (t) z

≤ 0}, where z = [xT, 1]T, x ∈ R2. A, B ∈ R3×3 de-
scribe the motion of A and B in the plane, respectively. The
characteristic polynomial between two ellipsoids is given as
f (λ) = det (λA−B), then the following statements hold

1) ∃λ∗ > 0 s.t. f (λ∗) = 0, which implies one of the roots
of f (λ) is always positive.

2) A ∩ B = ∅ ⇔ f (λ) has two distinct negative roots.
3) A ∩ B ≠ ∅ with Å ∩ B̊ = ∅ ⇔ f (λ) = 0 has a nega-

tive double root, which means A touches B externally.

Assumption 1 [19]:
∥∥∥φk

d − ⌢
φk
d

∥∥∥ ≤ δ0,
∥∥∥φ̇k

d − ⌢̇
φk
d

∥∥∥ ≤ δ1,
δ0 and δ1 are non-negative constants.

Lemma 1 [19]: Let φ̂k
d be the estimation of the unknown

disturbance φk
d , and define

φ̃k
d = φk

d − φ̂k
d

φ̃k
de = φ̂k

d − ⌢
φk
d

φ̃k
dr = φk

d − ⌢
φk
d

(1)

then, on the basis of Assumption 1, the following relations
hold:

φ̃k
d = φ̃k

dr − φ̃k
de(

φ̃k
dr

)T
φ̃k
d ≤ 1

2

(
δ20 +

∥∥φ̃k
d

∥∥2)(
˙̃φk
dr

)T
φ̃k
d ≤ 1

2

(
δ21 +

∥∥φ̃k
d

∥∥2) (2)

3 Second-order Fully Actuated System Modeling

According to the the basics of Lie group SE(3) defined in
[10], spacecraft pose kinematic equation can be expressed in
a compact manner as

ġkI = gkI
(
ξkk
)∧

(3)

where gkI =

[
RIk pIk
0T1×3 1

]
∈ SE(3) denote space-

craft configuration in FI , RIk is a rotation matrix from
to Fk to FI , pIk is the position of kth chaser in FI .
ξkk =

[
ωk
k ; v

k
k

]
∈ R6 denotes motion velocity. ωk

k and vkk
denote the angular velocity and translational velocity of
kth chaser in Fk, respectively.

(
ξkk
)∧

is defined as(
ξkk
)∧

=

[
ωk
k

×
vkk

01×3 0

]
∈ R4×4.

Taking the time derivative of ξkk and after deducing, the
spacecraft dynamics equation expressed in frame Fk is ob-
tained

ξ̇kk = Ξ̄−1
k adTξk Ξ̄kξ

k
k + Ξ̄−1

k

(
φk
c + φ̄k

g + φk
d

)
(4)

where Ξk = blockdiag(Jk,mkE3) ∈ R6×6 denotes inertial
matrix of kth chaser. Here, Jk and mk denote moment of
inertia matrix and mass, respectively. φk

c =
[
τkc ;u

k
c

]
∈ R6,

τkc and ukc are control torque and control force, respectively.
φ̄k
g denotes the nominal gravity force. φk

d ∈ R6 denotes
external disturbance. The adjoint operator ad(·) is defined as

adξkk =

[ (
ωk
k

)×
03×3(

vkk
)× (

ωk
k

)×
]
∈ R6×6

The desired pose of kth chaser is set as gdI . Then, the
configuration tracking error of kth chaser can be calculated
by gkd = g−1

dI gkI . For the convenience of controller design,
the following positive definite Morse potential function is
introduced to evaluate the configuration tracking error

ψ (gkd) = ψR(Rdk) + ψp
(
pdkd

)
= 2−

√
1 + tr(Rkd) +

1

2

(
pdkd

)T
pdkd

(5)

where Rdk, pdkd are the attitude and position tracking errors,
respectively. Taking the time derivative of (9), configuration
error vector is obtained

ek =

[
eRk
epk

]
=

[
1

2
√

1+tr(Rdk)

(
Rdk −RT

dk

)∨
RT

dkp
d
kd

]
(6)

Taking time derivative of (6), and then pose error kinematic
and dynamic equations are derived as

ėk = Fkdξ
k
kd (7)

where

Fkd =

[
Fa 03×3(

RT
dkp

d
kd

)×
E3

]
Fa =

1

2
√
1 + tr(Rdk)

(
tr(Rdk)E3 −RT

dk + 2eRk
(
eRk

)T)
Taking the time derivative of (6) yields

ëk = Ḟkdξ
k
kd + Fkdξ̇

k
kd (8)

where Ḟkd denotes the derivative of Fkd, the expression of
ξ̇kkd is given as

ξ̇kkd = ξ̇kk −Adg−1
kd
ξ̇dd −

dAdg−1
kd

dt
ξdd (9)

where

Adg−1
kd

=

[
RT

dk 03×3

−RT
dk

(
pdkd

)×
RT

dk

]
∈ R6×6

dAdg−1
kd

dt
= −adξkkd

Adg−1
kd
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Combining (4) with the derivative of (7), the following
pose error dynamic equation can be obtained

ëk =FkdΞ̄
−1
k

(
adTξk Ξ̄kAdg−1

kd
ξkk + φ̄k

kg + φk
c + φk

d

)
+ Fkd

(
adξkkd

Adg−1
kd
ξdd −Adg−1

kd
ξ̇dd +∆fk

)
+ Ḟkdξ

k
kd

(10)

As long as det
(
FkdΞ̄

−1
k

)
̸= 0 is met, the system (10) is a

second-order fully actuated system.

4 Collision avoidance scheme

Define a set of ellipsoidal spacecraft systems N =
{1, ..., N}, including N chasers. Each spacecraft can be de-
scribed by ellipsoid Ai (gi) =

{
y ∈ R4 : yTAi (gi) y ≤ 0

}
,

i ∈ N , gi = gIk. Ai (gi) = g−T
i Âig

−1
i , where Âi =

diag
{
a−2
i , b−2

i , c−2
i ,−1

}
.

For Ai, i ∈ N , its projections on the planes can be
denoted as As

i (gi) =
{
y ∈ R3 s.t. yTAs

i (gi) y ≤ 0
}

,
∀s ∈ {xy, xz, yz}. There are three states between chasers:
Separating, Overlapping, and Touching. If Ai and Aj , j ∈
N , j ̸= i collide each other, then the projections of the two
ellipsoids on the three planes must also collide, such that for
all s ∈ {xy, xz, yz}

As
i (gi) ∩ As

j (gj) ̸= ∅ (11)

Thus, Ai does not collide with Aj if and only if As
i (gi) ∩

As
j (gj) = ∅ for at least one s ∈ {xy, xz, yz}.
Whereas the relevant properties given in Proposition 2,

which indicates for at least one s ∈ {xy, xz, yz} character-
istic equation fsi,j (λ) = det

(
λAs

i (gi)−As
j (gj)

)
= 0 must

always have two distinct negative and one positive roots.
The discriminant of fsi,j (λ) = 0 is abbreviated as ∆s

i,j .
It can be seen that ∆s

i,j > 0 must always be satisfied for
at least one s ∈ {xy, xz, yz} from Proposition 1, because
∀s ∈ {xy, xz, yz}, ∆s

i,j = 0 implies a collision between el-
lipsoids .

In summary, ∆s
i,j = 0 ⇔ σ

(
∆s

i,j

)
= 0, ∀s ∈

{xy, xz, yz}, if planar ellipsoid Ai collides with Aj ,
σ
(
∆xy

i,j

)
+σ

(
∆xz

i,j

)
+σ

(
∆yz

i,j

)
> 0 if and only if Ai does not

collide with Aj . Here, the equivalent condition for collision
avoidance have been established. Therefore, a continuously
differentiable safety index function for all k ∈ N is defined
as

∆kj = σ
(
∆xy

k,j

)
+ σ

(
∆xz

k,j

)
+ σ

(
∆yz

k,j

)
j ∈ N , j ̸= k

(12)
To save computational resources for the multi-spacecraft

systems, safety radius of chaser is incorporated in the colli-
sion avoidance scheme. Let ∆̄kj = ∆xy

kj +∆xz
kj +∆yz

kj , for
the same safety radius, different relative attitude corresponds
to different ∆̄kj . The lower bound of ∆̄kj corresponding to
the safety radius between chasers is defined as follows

⌢

∆kj = inf
(gk,gj)

{
∆̄kj s.t.

∥∥ptkt − ptjt
∥∥ ≤ min {dsr,k, dsr,j}

}
(13)

where ptjt = Rtk((p
k
kj)

T
+ pkkt), p

k
kj can be obtained by

relative pose measurement device. dsr,k, dsr,j are
safety radius of kth chaser and jth chaser, respectively.

Since ∀k, j ∈ N , k ̸= j, dsr,k > max {ak, bk, ck} +
max {aj , bj , cj} +ϖ, where ϖ is a positive constant, there

exists a positive constant ∆̃kj such that
⌢

∆kj ≥ ∆̃kj > 0.
Subsequently, the safety index function is defined for all
k ∈ N as follows

ρk = min
j∈N
j ̸=k

ρkj = min
j∈N
j ̸=k

 ∆kj

∆kj + σ
(
∆̃kj − ∆̄kj

)
 > 0

(14)

Only if ρks > 0 implies that kth chaser has not collided
with other chasers.

Vr =
∑

j∈N ,j ̸=k

1

(nkjρkj)
κkj

(15)

where nkj and κkj are positive constants. According to (15),
when ρkj → 0, Vb → ∞, it means that external contact
will occur between spacecraft. If ρks > 0 is satisfied at the
beginning, as long as a suitable control law is designed, then
Vb is always bounded.

5 Controller Design

This section proposes a 6-DOF pose tracking controller
based on APF, which is used to ensure that each spacecraft
reaches desired states with collision avoidance constraint be-
ing satisfied.

Define a sliding surface as follow

s = ėk + (kaVa + kp) ek (16)

where kp and γ are positive constants.
Then, for the second-order fully actuated system model of

error configuration, the following controller is proposed

φk
c = φk

c1 + φk
c2 (17)

φk
c1 =− Ξ̄k

(
adξkkd

Adg−1
kd
ξdd −Adg−1

kd
ξ̇dd

)
− Ξ̄kF

−1
kd Ḟkdξ

k
kd − adTξk Ξ̄kξ

k
k − φ̄k

kg

(18)

φk
c2 = Ξ̄kF

−1
kd

(
−kss− kpėk − kaVaėk − kaV̇aek − φ̂k

d

)
(19)

where ks is a positive constant. φ̂k
d is updated from the fol-

lowing adaptive law

˙̂φk
d = Ξ̄−T

k Fkds− (2ks + 1)
(
φ̂k
d − ⌢

φk
d

)
− ⌢̇
φk
d (20)

Theorem 1: Consider spacecraft pose error second-order
fully actuated system (10) with the proposed control strat-
egy (17). If assumption 1 holds, the resulting closed-loop
system is ultimately uniformly bounded, and the pose error
vector ek and its derivative ėk can converge exponentially
to the ellipse π(κ1,c) (0) =

{
sT s+

(
φ̃k
d

)T
φ̃k
d ≤ 2κ1/c

}
,

where κ1 = 1
2

(
δ21 + (2ks + 1) δ20

)
. Meanwhile, the colli-

sion avoidance constraint (14) always holds.
proof: Define Lyapunov candidate function as follows

V =
1

2
sT s+

1

2

(
φ̃k
d

)T
φ̃k
d (21)
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Taking the derivative of (21) yields

V̇ =sT
(
ëk + kaV̇aek + (kaVa + kp) ėk

)
+
(
φ̃k
d

)T ˙̃φk
d

(22)
Substituting (10) and (17) into (22) yields

V̇ =sT
(
FkdΞ̄

−1
k φk

d − FkdΞ̄
−1
k φ̂k

d − kss
)
+
(
φ̃k
d

)T ˙̃φk
d

=− kss
T s− ks

(
φ̃k
d

)T
φ̃k
d + ks

(
φ̃k
d

)T
φ̃k
d

+
(
φ̃k
d

)T ˙̃φk
d + sTFkdΞ̄

−1
k φ̃k

d

=− 2ksV + Vn
(23)

where,

Vn = ks
(
φ̃k
d

)T
φ̃k
d + sTFkdΞ̄

−1
k φ̃k

d +
(
φ̃k
d

)T ˙̃φk
d (24)

According to Lemma 1, ηk = φ̃k
dr − φ̃k

de − φ̃k
d = 0. Then,

Vn can be written as

Vn =
(
ksφ̃

k
d + Ξ̄−T

k Fkds+ ˙̃φk
d

)T
φ̃k
d + (2ks + 1) ηTk φ̃

k
d

=
(
Ξ̄−T
k Fkds− ˙̃φk

de − (2ks + 1) φ̃k
de

)T
φ̃k
d +

(
˙̃φk
dr

)T
φ̃k
d

+ (2ks + 1)
(
φ̃k
dr

)T
φ̃k
d − (ks + 1)

(
φ̃k
d

)T
φ̃k
d

(25)
Substituting the adaptive law (20) into (25) obtains

Vn =
(
˙̃φk
dr

)T
φ̃k
d + (2ks + 1)

(
φ̃k
dr

)T
φ̃k
d

− (ks + 1)
(
φ̃k
d

)T
φ̃k
d

≤ 1

2

(
δ21 +

∥∥φ̃k
d

∥∥2)− (ks + 1)
∥∥φ̃k

d

∥∥2
+

2ks + 1

2

(
δ20 +

∥∥φ̃k
d

∥∥2)
=
1

2

(
δ21 + (2ks + 1) δ20

)
(26)

Substituting (26) into (23) yields

V̇ ≤ −cV + κ1 (27)

where c = 2ks, κ1 = 1
2

(
δ21 + (2ks + 1) δ20

)
. Consider

a closed region
∏

=
{
(s, φ̃k

d) : V ≤ ρ0,∀ρ0 > 0
}

, and
the control parameter can be selected as c ≥ κ1/ρ0. If
V (0) ≤ ρ0, V will always stay in the region

∏
because

V̇ ≤ − (κ1/ρ0) ρ0 + κ1 = 0. Solving (27) obtains

0 ≤ V ≤ κ1
c

+
(
V (0)− κ1

c

)
e−ct,∀t > 0 (28)

According to equation (28), lim
t→∞

V = κ1/c. Therefore, s

and φ̃k
d remain bounded and will eventually converge to the

following ellipse

π(κ1,c) (0) =
{
sTs+

(
φ̃k
d

)T
φ̃k
d ≤ 2κ1/c

}
(29)

Combining (16) with (29), it is known that the configuration
error vector ek and its derivative ėk will also converge ex-
ponentially to π(κ1,c) (0). Therefore, the second-order fully
actuated system (10) is ultimately uniformly bounded under
control law (17), which also means that the collision avoid-
ance constraint (14) is satisfied all the time.

6 Simulation Results

To achieve on-orbit observation of space rotating target by
multi-spacecraft system, the desired motion of spacecraft is
to fly around the target in LVLH frame. The desired radius
and period of fly-around are 30m and 400s. The desired at-
titude is to maintain accurate pointing to the target during
the flying around. The initial attitude and velocity of each
spacecraft are consistent with target.

Initial states of target are ωt = (0, 0.01, 0.01)rad/s,
(6878140, 0.01, 30◦, 45◦, 120◦, 90◦), RI

t = E3. Mass is
chosen as mk = 25kg. Moment of inertia is set as

Jk=

 7.9 0.7 0.4
0.7 8.8 0.9
0.4 0.9 10.1

 kg ·m2

The geometric shape of spacecraft is chosen as Ls1 =
1m,Ws1 = 2m, Ls2 = 4m, Ws2 = 1m, according to
minimum envelope ellipse defined in [20]. The relative
position between spacecraft and target are given as pl1t =
[13; 20; 19]m, pl2t = [−6; 15;−6]m, pl3t = [−10; 10; 13]m.
α1 = (0◦,−60◦,−50◦) , α2 = (0◦, 0◦, 0◦) , α3 =
(0◦, 120◦, 50◦) denote the rotation angle from LVLH frame
to flying coordinate system by ’3-2-1’ rotation sequence, re-
spectively. ⌢

φk
d = (1.2, 1.2, 1.2, 4, 4, 4) × 10−3 (Nm,N),

φ̂k
d = 06×1, ζ = 0.001, nkj = 1, κkj = 1.5. ks = 0.1,

kp = blkdiag(0.4E3, 0.3E3). ukcmax = 1Nm, τkcmax = 8N.

φk
d =


1.2 + sin(0.03t+ 1)
1 + sin(0.048t+ 1)
1.5 + cos(0.05t+ 1)

4 + 5 sin(2πnt)
4.5 + 4 cos(2πnt)

3 + 2.5 sin(2πnt+ π
3 )

× 10−3 (Nm,N)

Fig. 1 and Fig. 2 show attitude and position tracking er-
rors. Fig. 3 and Fig. 4 show attitude and position tracking
errors.
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Fig. 1: Attitude tracking errors eRk

All spacecraft can converge to the desired pose to perform
fly-around observation mission. Because of consideration
of collision avoidance, it can be observed that state of 2th
spacecraft have a significant fluctuation near t=100s. From
the change of the state, it is clear that not only position and
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velocity, but also attitude and angular velocity fluctuate. This
is due to the attitude-orbit coupling is considered in the col-
lision avoidance scheme.
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Fig. 2: Position tracking errors epk
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Fig. 3: Angular velocity tracking errors ωk
kd

The norm of control torque and force are given in Fig. 5,
as mentioned above, control torque and control force sudden
increase simultaneously. Values of safety index function are
given in Fig. 6, when the collision avoidance constraint is
not considered, 2th chaser collides with 3th chaser. 3D tra-
jectory of 2th chaser and 3th chaser in frame Ft are shown
in Fig. 7(a) and Fig. 7(b), which correspond to the safety
index function in Fig. 6. From the comparison results in Fig.
7, it is clear that collision between spacecraft can be avoided
under the proposed control scheme.

7 Conclusion

This paper investigates the problem of fly-around control
of tumbling target by a multi-spacecraft system in the pres-
ence of safety constraint and external disturbance. Firstly,
the second-order fully actuated system model of error con-
figuration is derived by combining the attitude-orbit kine-
matic equation on SE(3). Then, a collision avoidance mech-
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Fig. 4: Velocity tracking errors vkkd
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Fig. 5: Control input
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Fig. 6: Safety index function:marked trajectories without
collision constraint / unmarked trajectories with collision
constraint

1410  



(a) without collision avoidance constraint (t=87.5-112.5s)

(b) with collision avoidance constraint (t=87.5-112.5s)

Fig. 7: 3D trajectory in frame Ft (Enlarged view)

anism is established for multi-spacecraft system based on
collision detection algebraic conditions. Finally, an adaptive
controller is proposed based on FASA adaptive technology.
The simulation results show that the proposed control strat-
egy can enable each spacecraft in multi- spacecraft system to
safely fly-around target and maintain accurate attitude point-
ing. This work can implement collision avoidance between
spacecraft with attitude and geometric coupling in 3D sense
with analytical control law.
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Unwinding-Free Attitude Control via Fully Actuated System
Approach
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Abstract: Quaternion representation is widely used to describe the attitude motions of rigid bodies because it provides a global
representation and is free from singularities. Nevertheless, the double cover property of the representation can result in the
unwinding phenomenon, where the rotation angles exceed π radians. The present work proposes a fundamental attitude control
law via the fully actuated system approach. The fundamental control law, without the need for additional operations, can avoid
the unwinding phenomenon. Based on the fundamental control law, external disturbances and input saturation are considered.
Consequently, an unwinding-free controller is proposed for the attitude control of rigid bodies. Lyapunov’s direct method is used
to verify the stability of the system. Numerical simulations demonstrate the validity of both the fundamental control law and the
proposed controller.

Key Words: Attitude Control, Unwinding Phenomenon, Fully Actuated System approach, Second-Order Quaternion

1 Introduction

The attitude of rigid bodies expressed in quaternions (Eu-
ler parameters) has attractive advantages such as global rep-
resentation and singularity-free [1]. Nevertheless, the inher-
ent ambiguity from the double cover property of the quater-
nion representation would lead to the rotation angles of rigid
bodies being larger than π radians when the rigid bodies
perform attitude motions, which is known as the unwinding
phenomenon [2].

The property offers two sets of quaternions to describe
a given physical orientation of rigid bodies. Hence, the
corresponding physical equilibrium point is also repre-
sented by two sets of quaternions Q+1(+1, 0, 0, 0) and
Q−1(−1, 0, 0, 0). Ordinary attitude controllers only con-
sider Q+1 as the equilibrium point even if the present atti-
tude is near Q−1 [3], which leads to the occurrence of the
unwinding phenomenon.

Many scholars have come up with effective methods for
the unwinding phenomenon. Dong et al. [4] combined a
sliding mode technology with a switching function to ad-
dress the unwinding phenomenon. Tan et al. [5] utilized the
rotation matrix to represent attitude, and then the rotation
matrix-based controller is naturally without the unwinding
phenomenon. Su et al. [6] used modified Rodrigues pa-
rameters to describe the attitude of spacecraft, and then a
nonlinear sliding surface was introduced to obtain the anti-
unwinding property. Huang and Meng [7] presented a hybrid
distributed observer to avoid the unwinding phenomenon.
Hu et al. [8] proposed a novel attitude error function to
realize the unwinding-free performance. Su et al. [9] em-
ployed a unified auxiliary variable to avoid the unwinding
phenomenon.

The above controllers are mainly designed based on the
state-space models. There are novel models named the fully
actuated system models [10, 11]. The present work finds
a fundamental control law designed based on the fully ac-
tuated system models capable of achieving unwinding-free

This work is supported by National Natural Science Foundation
(NNSF) of China under Grant Nos. 62188101 and 12132002.

Corresponding author: Li-Qun Chen (E-mail: chenliqun@hit.edu.cn).

performance. The fundamental control law prevents the oc-
currence of the unwinding phenomenon without the need for
additional operations. Based on the unwinding-free control
law, the present work addresses attitude control issues such
as external disturbances and input saturation.

The remainder of the manuscript is presented as follows:
Section 2 shows a deduction process of a quaternion-based
fully actuated system. Section 3 proposes an unwinding-free
control law, designs an observer-based controller, and proves
the stability of the controlled system. Section 4 employs
numerical simulations to confirm the validity of the proposed
controllers. Section 5 provides some conclusion remarks to
end the manuscript.

2 Quaternion-Based Fully Actuated System

Consider an attitude system of a rigid body. J ∈ R3×3

is the inertia matrix of the rigid body. The attitude is ex-
pressed in unit quaternion Q ≜

[
q0 q

T
]T

= [q0 q1 q2 q3]
T ∈

R4, where q0 is a scalar and q ∈ R3 is a vector. ω =
[ω1 ω2 ω3]

T ∈ R3 denotes the angular velocity. An input
torque u = [u1 u2 u3]

T ∈ R3 adjusts the attitude. More-
over, there are disturbances d = [d1 d2 d3]

T ∈ R3 affecting
the system. Then, the attitude systems are presented as fol-
lows:

Q̇ =
1

2
Q ◦Ω, (1)

Jω̇ + ω×Jω = d+ u, (2)

where Ω ≜
[
ω0 ω

T
]T ∈ R4 is a pure quaternion, and “◦”

represents the quaternion multiplication rule.
Symbol “×” converts a 3D vector to its skew-symmetric

matrix, such as

ω× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (3)

A desired attitude Qd ≜
[
qd,0 q

T
d

]T
=

[qd,0 qd,1 qd,2 qd,3]
T ∈ R4 and a desired angu-

lar velocity ωd ∈ R3 are introduced to construct
the error dynamic systems. The error quaternion
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Qe ≜
[
qe,0 q

T
e

]T
= [qe,0 qe,1 qe,2 qe,3]

T ∈ R4 and
error angular velocity ωe ∈ R3 both used to represent the
relative motion are obtained [12]:

qe = qd,0q − q0qd + q×qd,

qe,0 = qd,0q0 + q · qd,
(4)

ωe = ω − C̃eωd, (5)

where

C̃e =
(
q2e,0 − qT

e qe

)
I + 2qeq

T
e − 2qe,0q

×
e , (6)

and I denotes an identity matrix.
Then, the error dynamic systems are presented as follows:

Q̇e =
1

2
Qe ◦Ωe, (7)

Jω̇e =−
(
ωe + C̃eωd

)×
J
(
ωe + C̃eωd

)
+ u+ d

+ Jω×
e C̃eωd − JC̃eω̇d.

(8)
The following equation can be yielded by Eq. (7):

1

2
Ωe = Q̃e ◦ Q̇e, (9)

where Ωe ≜
[
0 ωT

e

]T ∈ R4, and Q̃e ∈ R4 ≜[
qe,0 − qT

e

]T
.

The following equation is employed to replace ωe:

ωe = G−1q̇e, (10)

where

G =
1

2

 qe,0 −qe,3 qe,2
qe,3 qe,0 −qe,1
−qe,2 qe,1 qe,0

 . (11)

Base on Eq. (10), Eq. (8) is updated as follows:

Jω̇e =−
(
G−1q̇e + C̃eωd

)×
J
(
G−1q̇e + C̃eωd

)
+ J

((
G−1q̇e

)×
C̃eωd − C̃eω̇d

)
+ u+ d.

(12)
Eq. (12) can be rewritten as follows:

ω̇e = f + fd + J−1u, (13)

where

f =− J−1
(
G−1q̇e + C̃eωd

)×
J
(
G−1q̇e + C̃eωd

)
+
(
G−1q̇e

)×
C̃eωd − C̃eω̇d,

(14)
and

fd = J−1d. (15)

Define some pure quaternions: F ≜
[
0 fT

]T
, F d ≜[

0 fT
d

]T
, and U ≜

[
0
(
J−1u

)T]T
, then Eq. (13) is rewrit-

ten as the following equation:

Ω̇e = F + F d +U . (16)

Taking the derivative of Eq. (7) yields

Q̈e = Q̇e ◦
1

2
Ωe +

1

2
Qe ◦ Ω̇e. (17)

Using Eqs. (9) and (16) to replace Ωe and Ω̇e obtains the
final system [10, 11]:

Q̈e = Q̇e ◦ (Q̃e ◦ Q̇e) +
1

2
Qe ◦ (F + F d +U), (18)

which is named the quaternion-based fully actuated system
in [13] and differs from the Lagrange form of [14].

3 Controller Design

3.1 Unwinding-Free Control Law
The quaternion-based fully actuated system has three vec-

tor subsystems and a scalar subsystem [13], the vector sub-
systems are generally employed:

q̈e = g + gd +Bu, (19)

where g = ĠG−1q̇e +Gf , gd = Gfd, and B = GJ−1.
A fundamental control law provided by the fully actuated

system approach is presented as follows [11]:

u = −B−1

(
g + gd +A0∼1q

(0∼1)
e +

n∑
i=1

vi

)
, (20)

A0∼1 =
[
A0 A1

]
, (21)

q(0∼1)
e =

[
qe

q̇e

]
, (22)

where A0 ∈ R3×3 and A1 ∈ R3×3 are parameter matrices.
vi ∈ R3, i = 1 ∼ n are additional vector functions.

While detB ̸= 0, the fundamental control law exists. Be-
cause J is a symmetric positive matrix, condition detB ̸= 0
is equivalent to

det G = qe,0 ̸= 0. (23)

The equilibrium point of system (18) is represented
by two sets of quaternions: Q+1(+1, 0, 0, 0) and
Q−1(+1, 0, 0, 0). Most controllers only consider Q+1

as the equilibrium point, even if the current attitude is close
to Q−1 [15]. Then, the rotation angles will be larger than π
radians, this is known as the unwinding phenomenon [16].

The phenomenon means that qe,0 will equal zero, but
qe,0 = 0 means that the fundamental control law does not
exist. Thus, the control law and the phenomenon cannot co-
exist. Because qe,0 = 0 is avoidable, the following work will
provide two ways to hold qe,0 ̸= 0.

3.2 Disturbance Estimation
Eq. (20) is an ideal control law. Unfortunately gd is un-

known. Thus, an assumption and an observer are introduced
to estimate gd.

Assumption 1 gd is Lipschitz. In other words, there is a
positive real number d1 such that ġT

d ġd ⩽ d1.

Then, the following nonlinear disturbance observer is em-
ployed [17]:

ṡ = −ks− k (g +Bu+ kq̇e) , (24)
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ĝd = s+ kq̇e, (25)

where s ∈ R3 is the state of the nonlinear disturbance ob-
server, ĝd ∈ R3 is used to observe gd, k = 1+µ

2 , and µ is a
scalar parameter.

Based on Eqs. (24) and (25), Eq. (20) is updated:

u = −B−1

(
g + ĝd +A0∼1q

(0∼1)
e +

n∑
i=1

vi

)
. (26)

3.3 Design of Additional Function vi

This subsection deals with the estimated error between the
observed and the actual values of gd, and then the saturation
effects are considered. Thus, Eq. (19) is updated as follows:

q̈e = g + gd +Bu+B∆u, (27)

where ∆u = sat(u)− u,

sat(u) =
[
sat(u1) sat(u2) sat(u3)

]T
, (28)

and

sat(ui) =

 umax ui ⩾ umax,
ui −umax < ui < umax, i = 1 ∼ 3,

−umax ui ⩽ −umax.
(29)

To deal with the error between the estimated and the ac-
tual values of gd, an assumption and an adaptive system are
employed [18, 19].

Assumption 2 There exist two positive real numbers δ0 and
δ1 such that ∥ egd ∥⩽ δ0 and ∥ ėgd ∥⩽ δ1,∀ t ⩾ 0, where
egd = gd − ĝd.

˙̂δ = −2kδ̂ + PT
L q(0∼1)

e , (30)

where PL ∈ R6×3 is a designed matrix, and δ̂ ∈ R3 is the
state of the adaptive system.

Furthermore, input saturation is inevitable. An auxiliary
system is designed to mitigate the saturation effects [20]:

ξ̇ =


−kξ −KTPT

Lq
(0∼1)
e

−fq + f∆
∥ ξ ∥2

ξ +B∆u, ∆u ̸= 0

0, ∥ξ∥ < ϑ &∆u = 0
(31)

where fq =

∣∣∣∣q(0∼1)
e

T
PLB∆u

∣∣∣∣, f∆ = 1
2 ∥ B∆u ∥2, ξ ∈

R3 is the state of the auxiliary system, ϑ is a positive real
number, K ∈ R3×3 is a parameter matrix.

Based on adaptive system (30) and auxiliary system (31),
Eq. (26) is updated again:

u = −B−1

(
g + ĝd +A0∼1q

(0∼1)
e +

2∑
i=1

vi

)
, (32)

where
v1 = δ̂, (33)

v2 = −Kξ. (34)

The nonlinear disturbance observer is also updated as fol-
lows:

ṡ = −ks− k (g +Bsat(u) + kq̇e) . (35)

Substituting Eqs. (32), (33), and (34) into Eq. (27) yields

q̈e +A0∼1q
(0∼1)
e = eδ +Kξ +B∆u, (36)

where eδ = egd − δ̂.
Eq. (36) is rewritten as the following form:

q̇(0∼1)
e = Φ(A0∼1)q

(0∼1)
e +

[
0
I

]
(eδ +Kξ +B∆u) ,

(37)
where

Φ(A0∼1) =

[
0 I

−A0 −A1

]
. (38)

3.4 System Analysis
Some lemmas used for system analysis are presented as

follows:

Lemma 1 [18, 19]: The following condition can be held by
assigning the values of Ai ∈ Rr×r:

Reλi(Φ(A0∼n−1)) ⩽ −µ

2
, i = 1, 2, . . . , n. (39)

where µ > 0 is a scalar parameter,

Φ(A0∼n−1) =


0 I

. . .
I

−A0 −A1 · · · −An−1

 , (40)

and 0 is a zero matrix.
Thus, there is a positive definite matrix satisfying

ΦT (A0∼n−1)P (A0∼n−1) + P (A0∼n−1)Φ (A0∼n−1)
⩽ −µP (A0∼n−1) .

(41)

Lemma 2 For any two vectors a and b, there holds

aTb ⩽
1

2
aTa+

1

2
bTb. (42)

The system analysis including two cases are presented as fol-
lows.

Case 1: Saturated case:
A Lyapunov function is defined as follows:

V = V1 + V2, (43)

where

V1 =
1

2

(
q(0∼1)
e

)T
P (A0∼1) q

(0∼1)
e , (44)

V2 =
1

2
eTgdegd +

1

2
eTδ eδ +

1

2
ξTξ. (45)

Taking the derivative of Eq. (44) yields

V̇1 =
1

2

(
q̇(0∼1)
e

)T
Pq(0∼1)

e +
1

2

(
q(0∼1)
e

)T
P q̇(0∼1)

e

=
1

2

(
Φq(0∼1)

e +

[
0

eδ +Kξ +B∆u

])T

Pq(0∼1)
e

+
1

2
q(0∼1)
e

T
P

(
Φq(0∼1)

e +

[
0

eδ +Kξ +B∆u

])
⩽− µ

2
q(0∼1)
e

T
Pq(0∼1)

e + q(0∼1)
e

T
PL (eδ +Kξ +B∆u)

=− µV1 + q(0∼1)
e

T
PL (eδ +Kξ +B∆u) .

(46)
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where P is a parameter matrix satisfying Lemma 1, and
PL = P [0 I]

T.
Differentiating Eq. (45) obtains

V̇2 = ėTgdegd + eTδ ėδ + ξ̇
T
ξ. (47)

Substituting Eqs. (44) and (45) into the first derivative of
Eq. (43) yields the following inequality:

V̇ ⩽− µV1 + q(0∼1)
e

T
PL (eδ +Kξ +B∆u)

+ eTδ ėδ + ξ̇
T
ξ + ėTgdegd

=− µV + V̇δ + V̇ξ + V̇gd,

(48)

where

V̇δ = q(0∼1)
e

T
PLeδ + eTδ ėδ +

µ

2
eTδ eδ, (49)

V̇ξ = q(0∼1)
e

T
PL (Kξ +B∆u) + ξ̇

T
ξ +

µ

2
ξTξ, (50)

V̇gd = ėTgdegd +
µ

2
egd

Tegd. (51)

Substituting Eq. (35) into Eq.(51) yields

V̇gd =eTgdġd − eTgd ˙̂gd +
2k + 1

2
eTgdegd

=eTgdġd − eTgd (ṡ+ kq̈e) +
2k + 1

2
eTgdegd

=keTgd (s+Bsat(u) + g + kq̇e − q̈e)

+ eTgdġd +
2k + 1

2
eTgdegd

=eTgdġd +
1

2
eTgd (s+ kq̇e − gd)

=eTgdġd −
1

2
eTgdegd.

(52)

According to Lemma 2 and Assumption 2, the following
inequality is obtained:

V̇gd ⩽
1

2
ġT
d ġd ⩽

d1
2
. (53)

Substituting Eq. (31) into Eq.(50) obtains

V̇ξ =q(0∼1)
e

T
PL (Kξ +B∆u)− 1

2
ξTξ − f q

− 1

2
∥ B∆u ∥2 +ξTB∆u− ξTKTPT

Lq
(0∼1)
e

⩽− 1

2
ξTξ − 1

2
∥ B∆u ∥2 +ξTB∆u.

(54)
On the basis of Lemma 2, the following inequality holds

V̇ξ ⩽− 1

2
ξTξ − 1

2
∥ B∆u ∥2 +

1

2
ξTξ +

1

2
∥ B∆u ∥2

=0.
(55)

A variable is employed κ = egd − δ̂ − eδ , and subse-
quently there is

V̇δ =eTδ P
T
Lq

(0∼1)
e + eTδ ėδ +

2k + 1

2
eTδ eδ

=eTδ

(
q(0∼1)
e

T
PL + ėδ

)
+

2k + 1

2
eTδ eδ + 2kκTeδ

=eTδ

(
PT

Lq
(0∼1)
e − ˙̂δ + ėgd

)
+

2k + 1

2
eTδ eδ

+ 2kκTeδ

=eTδ

(
PT

Lq
(0∼1)
e − ˙̂

δ − 2kδ̂
)
+ ėTgdeδ

+
2k + 1

2
eTδ eδ + 2k(eTgd − eTδ )eδ.

(56)
Substituting Eq. (30) into Eq. (56) obtains the following

equation:

V̇δ =ėTgdeδ +
2k + 1

2
eTδ eδ + 2k(eTgd − eTδ )eδ. (57)

Based on Lemma 2 and Assumption 2, the following in-
equality holds

V̇δ ⩽
δ21 + 2kδ20

2
. (58)

According to Eqs. (48), (53), (55), and (58), there is

V̇ ⩽ −µV + ϵ, (59)

where ϵ =
δ21+2kδ20+d1

2 .
Based on the comparison theorem [19], there holds

V ⩽ V (0) exp(−µt) +
ϵ

µ
(1− exp(−µt)) , (60)

then,

V ⩽

(
V (0)− ϵ

µ

)
exp(−µt) +

ϵ

µ
→ ϵ

µ
, t → ∞. (61)

Based on Eq. (61), the states of the controlled system
eventually stabilize within the following ellipsoid:

Θµ,ε(0) = {qe, eδ, egd, ξ∣∣∣∣qT
e P (A) qe + eTgdegd + eTδ eδ + ξTξ ⩽

2ϵ

µ

}
.

(62)
Case 2: Unsaturated case:
The proof process is similar to the saturated case.
Unwinding-free condition:
According to (61), increasing µ or decreasing ε ensures

that V is monotonically decreasing, which leads to the
monotone increasing of q2e,0. Hence the unwinding phe-
nomenon can be avoided.

4 Numerical Simulations

The physical parameters, controller parameters, and initial
values are shown in Tabs. 1, 2, and 3, respectively.

Figs. 1 and 2 are the time responses of attitude. Although
the default target is Qd, controller (32) still drives the current
attitude to the closer one −Qd, which means that controller
(32) can avoid the unwinding phenomenon. Fig. 3 shows the
time responses of angular velocity. Fig. 4 is about the control
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Table 1: Physical Parameters

Quantity Value

J


8.542 −0.065 0.136

−0.065 10.767 −0.198

0.136 −0.198 8.727

 kg·m2

umax 0.2 N·m

d 0.005 · [sin(0.5t) sin(t) cos(0.5t+ π
3
)]T N·m

Table 2: Controller Parameters
Quantity Value

A0 diag(0.2, 0.2, 0.2)

A1 diag(0.8, 0.8, 0.8)

Qd (0.3772, 0.4329, -0.6645, -0.4783)

ωd (0, 0, 0) rad·s−1

µ 0.7

ϑ 10−5

K diag(0.1, 0.1, 0.1)

Table 3: Initial Values
Quantity Value

Q(0) (-0.7500, -0.6300, 0.1800, 0.0906)

ω(0) (0, 0, 0) rad·s−1

s(0) (0, 0, 0)

ξ(0) (0.5, −0.5, 0)

δ̂(0) (0, 0, 0)
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Fig. 1: Time responses of quaternions

input, where the input saturation duration is 10.40 seconds.
Figs. 5, 6, and 7 present the actual and estimated values of
gd. It is clear that the observer (35) can accurately estimate
gd. Fig. 8 is the time responses of the adaptive state. Fig. 9
is the time responses of the auxiliary system state, illustrat-
ing that the run time (28.06 seconds) of the auxiliary system
(31) far exceeds the saturation duration (10.40 seconds).

5 Conclusion

This work presents an unwinding-free control law and de-
signs an attitude controller for rigid bodies with external dis-
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Fig. 2: Time responses of error quaternions
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Fig. 3: Time responses of angular velocities

0 20 40 60 80 100
-0.2

-0.1

0.0

0.1

0.2

In
pu

t (
N

m
)

Time (s)

 1  2  3

Fig. 4: Torque of control inputs
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Fig. 5: Actual and estimated values of gd,1

turbances and input saturation. Based on the Lyapunov sta-
bility theory and numerical simulations, the present study
obtains the following conclusions:

• The fundamental control law realizes unwinding-free
performance without the need for additional operations.

• The proposed controller based on the fundamental con-
trol law can be unwinding-free even in the presence of

1416  



0 20 40 60 80 100
-0.0010

-0.0005

0.0000

0.0005

0.0010
U

nk
no

w
n 

te
rm

 g
d,

2

Time (s)

 Actual value  Estimated value

Fig. 6: Actual and estimated values of gd,2
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Fig. 7: Actual and estimated values of gd,3
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Fig. 8: Time responses of adaptive system states
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Fig. 9: Time responses of auxiliary system states

external disturbances and input saturation.
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Abstract: An innovative three-dimensional cooperative guidance law for striking stationary target, based on proximal policy 

optimization (PPO), is introduced. This novel guidance law directly correlates engagement state information with the navigation 

ratio of proportional navigation guidance (PNG). Initially, the cooperative homing guidance problem is transformed into a 

Markov decision process, and the reward function incorporates considerations for the zero-effort-miss (ZEM) and the consensus 

error of time-to-go. Subsequently, the cooperative homing guidance problem is transposed into the framework of reinforcement 

learning (RL). Ultimately, the effectiveness of the cooperative homing guidance solution is validated through numerical 

simulations, encompassing agent model training and Monte Carlo cases. 
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1 Introduction 

In the practical design of missile guidance laws, 

proportional navigation guidance (PNG) plays a pivotal role 

in targeting to achieve ZEM. In recent years, there has been 

a growing emphasis on guidance laws addressing impact 

angle constraint and impact time constraint. The inclusion of 

impact time constraint enables saturation attacks against air 

defense systems, while incorporating impact angle 

constraint enhances overall attack effectiveness. 

The objective of Proportional Navigation Guidance (PNG) 

is to minimize the rate of change of line-of-sight (LOS) 

between the missile and the target. Extensive research 

efforts have been dedicated to PNG for engaging both 

stationary and maneuvering targets. To address the impact 

time constraint problem, an effective approach is to 

incorporate time-to-go considerations into the guidance law 

design. This strategy has led to the development of a diverse 

range of guidance laws. In[1], a 3D cooperative guidance 

law, integrating PNG with a time-biased feedback, was 

introduced to address the impact time constraint problem. 

In[2], a guidance law that incorporates PNG and a time error 

feedback term was employed to achieve coordinated attacks 

involving multiple missiles. In addition to guidance laws 

relying on time-to-go estimation, the impact time constraint 

(ITC) can also be addressed through the missile state profile 

[3]. 

Beyond these PNG-based guidance laws, significant 

efforts have been devoted to addressing ITC through 

advanced control techniques [4]. Optimal guidance is also 

widely utilized for ITC. In [5], an optimal guidance law 

based on time-to-go was introduced. Utilizing the state-

dependent Riccati equation (SDRE) technique, [6] and [7] 

proposed suboptimal Impact Angle Control Guidance laws. 

Through the estimation of time-to-go, [8] introduced a 

nonsingular sliding-mode guidance law to solve ITC. In [9] 

 
*This work is supported by Aeronautical Science Foundation of China 

under Grant 20170112012, 20180112003. 

and [10], impact time control guidance was presented based 

on Lyapunov, providing an exact closed-form solution for 

impact time guidance. Finite-time stability of multi-agent 

consensus error was designed in [11] for cooperative 

interception. Additionally, [12] proposed a new sliding 

surface that does not require the estimation of time-to-go. 

As a prominent branch of intelligent control, Artificial 

Intelligence (AI) algorithms, particularly those represented 

by Reinforcement Learning (RL), have found extensive 

applications in the field of homing guidance. To showcase 

the potential of RL, [13] proposed an intelligent guidance 

algorithm based on the reward of miss distance, energy, and 

time. Subsequently, an impact angle guidance law 

considering a field-of-view constraint was developed in [14] 

based on RL. This guidance law comprises PNG and two 

bias terms generated by agents. A Deep Deterministic Policy 

Gradients (DDPG)-based guidance law was introduced in 

[15] to intercept maneuvering targets, with this method 

mapping the states to the acceleration of the missile. In [16], 

a novel 3D guidance law, considering the field-of-view, was 

developed to address ITC by training hyperparameters based 

on RL to optimize energy.  

The aforementioned investigations highlight the need for 

further exploration of reinforcement learning applications in 

homing guidance. To the best of our knowledge, there have 

been no papers designed to develop three-dimensional 

centralized cooperative guidance laws based on RL without 

resorting to numerical iterations and hyperparameter 

selection. Consequently, this paper introduces a novel 

centralized cooperative guidance law with the framework of 

RL. 

The main contributions of this paper are summarized as 

follows. Firstly, the proposed guidance law establishes a 

framework for addressing ITC using RL. The problem 

considered in this paper represents an end-to-end mapping 

challenge, as the essence of the cooperative guidance law 
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using PNG is to adjust the navigation ratio to maintain 

consistent time-to-go. Secondly, the trained agent model can 

be easily applied to any other scenarios without the need for 

retraining the model or fine-tuning hyperparameters, thanks 

to the fact that the states of the agent involve relative 

parameters in the homing guidance process. 

The subsequent sections of this paper are organized as 

follows: Section 2 presents the three-dimensional 

engagement model and provides some preliminaries. In 

Section 3, the guidance objectives are outlined, and the 

Proximal Policy Optimization (PPO) agent for cooperative 

homing guidance is introduced. Section 4 details the training 

process of the guidance law and presents the results of 

numerical simulations to validate the performance of the 

proposed guidance law. The paper concludes with Section 5, 

summarizing the findings and presenting conclusions. 

2 Problem formulation and Preliminary 

2.1 Three-Dimensional Engagement Model 
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Fig. 1: Three-dimensional engagement geometry 

The equation of motion for the missile and a stationary 

target in three-dimensional relative kinematics can be 

formulated as follows: 

cos cos
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where i represents the ith missile. The velocity of the ith 

missile is denoted as 
iM

V , which is supposed to be constant. 

The relative distance between the ith missile and the target 

is denoted by ir . The inertial frame, LOS frame and velocity 

frame are represented by I I IX Y Z , L L LX Y Z  and M M MX Y Z , 

respectively. The 
iyma  and 

izm
a  denote the guidance 

command along MMY  and MMZ  axes, respectively. The 

iL
  and 

iL
  represent the elevation and azimuth LOS 

angles. The leading angles in pitch and yaw directions and 

the total leading angle are represented by 
iM

 , 
iM

  and i , 

respectively.  

The geometric relation between 
iM

 , 
iM

  and i  can be 

formulated as 

cos cos cos
i ii M M  =  (6) 

2.2 Reinforcement Learning 

Reinforcement learning is a framework for mapping agent 

states to actions. The interaction between the environment 

and the agent is often modeled as a Markov decision process 

(MDP), which is composed of the state space S , the action 

space A , and the reward R : S A R → . 

Reinforcement learning algorithms are generally 

categorized into value function and policy gradient 

approaches. PPO belongs to the policy gradient category and 

utilizes an actor-critic structure. This structure comprises an 

actor and a critic. PPO, as a deep reinforcement learning 

method based on the policy gradient algorithm, is well-

suited for the cooperative guidance law in this paper due to 

its excellent performance and fast convergence. The 

architecture of PPO is illustrated in Fig. 2. 
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Fig. 2: Framework of PPO 

The PPO algorithm employs an 'advantage' function to 

assess the relative advantage of taking an action in a state 

that yields high returns. The 'advantage' function is defined 

as follows: 

( ) ( ) ( ), ,t t t t tA s a Q s a V s= −  (7) 

where ( ),t tQ s a  represents the action value function for 

taking action ta  in state ts , signifying the expected benefit 

derived from that action ta . Meanwhile, ( )tV s  represents 

the state value function in state ts , reflecting the anticipated 

benefit in the current state ts . The 'advantage' function 
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gauges the benefit of choosing the current action in the 

present state relative to other potential actions. A positive 

value for ( ),t tA s a  implies that adopting the current action 

ta  is more advantageous. In this paper, the assessment of 

the 'advantage' function is conducted through temporal 

difference error, calculated as: 

( ) ( ) ( )1,t t t t tA s a r V s V s  += + −  (8) 

where ( )1tV s

+  and ( )tV s
are computed by the critic 

network, while tr  represents the reward function. 

The update of the critic network is the same as the 

traditional Actor-Critic (AC) algorithm, but the actor 

network adopts new ideas for parameter updating. The PPO 

algorithm introduces a ratio to describe the difference 

between the old and new strategies, as expressed in: 

( )
( )
( )
t t

t

k t t

a s
r

a s









=  (9) 

Then,   is to update to maximize the following equation: 

 

( ) ( ) ( )( )( )ˆ ˆˆ min , ,1 ,1PPO

t t t t tJ E r A clip r A     = − +
 

 (10) 

where   is policy parameter, ( )tr   is the probability ratio 

of new policy to the previous policy, ˆ
tA  is an “advantage” 

function at time t ,   is hyperparameter and ˆ
tE  is 

empirical expectation. 

2.3 Explanation of time-to-go 

Under the assumption that ( )3sin O  = + ,

( )2 4cos 1 2 O  = − + , a widely adopted formulation 

for calculating the time-to-go in PNG is expressed as follow: 

( )

2
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2 2 1
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M

r
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V N

 
= +  − 

 (11) 

where N is navigation ratio. 

3 RL Homing Guidance Law  

3.1 Objective of design 

Assuming that n missiles exchange coordinate variables 

with each other to attack the target simultaneously, the time-

to-go is considered as a coordinate variable for designing the 

law. 

( )

2

1
2 2 1i

i

i i

go

M i

r
t

V N

 
= +  − 

 (12) 

In (12), i  represents the ith missile. The consensus error of 

the ith missile is defined as follows: 

( )
1

, 1,2, ,
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j

a t t i n
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= − =  (13) 

Next the objective of designing the cooperative guidance is 

to develop a guidance law that ensures  

0, 0i ir → →  (14) 

Then, n missiles will simultaneously attack the target. 

3.2 PPO for cooperative homing guidance 

3.2.1 Learning strategy 

The command of the guidance law is structured as  
2
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where iN  is the navigation ratio of PNG, iN  will be 

designed using RL. 

3.2.2 MDP for cooperative homing guidance 

The cooperative homing guidance process involving the 

missile and the target is modeled as a MDP. We use the 

variables ir , i , and itgo  to define the state space, which 

can be expressed as: 

 1 1 1 2 2 2 3 3 3, , , , , , , ,S r tgo r tgo r tgo  =  (17) 

where we set n to 3, indicating the design of cooperative 

homing guidance for coordinating the attack of 3 missiles on 

a target simultaneously. S  represents the state space in the 

RL problem we design. Additionally, we normalize the state 

space S  by dividing it by the initial value. 

0 0 0 0 0 0 0 0 0

3 3 31 1 1 2 2 2

1 1 1 2 2 2 3 3 3

, , , , , , , ,
r tgor tgo r tgo
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r tgo r tgo r tgo

 

  

 
=  

  

(18) 

The PPO algorithm is highly effective in addressing 

continuous action problems. Since the control mode of the 

missile is continuous, the action space in the MDP is also 

continuous. In PNG, the trajectory becomes curved as the 

navigation ratio increases, and more curved as the 

navigation ratio decreases. By adjusting the navigation ratio, 

it is possible to coordinate multiple missiles to attack the 

target simultaneously. Therefore, we utilize PPO to obtain 

the navigation ratios for three missiles. The output of PPO 

consists of three action values mapped by each state, as 

shown in the following equation: 

   1 2 3 1 2 3 max max, , , , , ,A N N N N N N N N=  −  (19) 

where, 1 2,N N  and 3N represent the navigation ratios of 

PNG for the three missiles. 

The design of the reward function is crucial in RL 

problems. In the design of RL action spaces, the range of the 

navigation ratio is from negative six to positive six. 

Therefore, both the consensus error and the miss distance 

should be taken into account. The reward function is 

designed as follows: 

During interception, a smaller relative distance 

corresponds to a reduced ZEM. The reward is designed as 

follows: 

( )
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0.3

0.3

,  1
_

10,

i i

i

i

r if r
reward r
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 − 
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where 0i i ir r r= , 0ir  is the initial value of ir . 

To ensure simultaneous attacks on the target, a consensus 

error reward is necessary. Specifically, it is expressed as: 

10 ,  0.02
_

10 10,

i i

i
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reward
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− 
= 

− +
 (21) 

To sum up, the total reward is as follows: 
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( )
3

1
_ _i ii

reward reward r reward 
=

= +  (22) 

4 Simulation and Analysis 

Measurement errors are not considered in agent training. 

The equations of motion are solved using the Runge-Kutta 

method with a fourth order, and the simulation step is set to 

0.001s. The simulations are terminated when the distance 

between the missile and target is less than 1m. The 

simulation results include agent training, agent validation, 

and Monte Carlo experiments. Following each simulation 

result, a detailed analysis is provided. 

4.1 Parameter setup 

Table 1: Initial conditions of missiles and target 

Missile 
MV  

( )/m s  

r  

( )km  

L  

( )deg  

L  

( )deg  

M

( )deg  

M

( )deg  

1 330 10 -50 -60 20 30 

2 320 10 -80 -10 15 40 

3 310 10 -10 -20 40 10 

Table 2: Architecture of the actor network 

Layers Size 
Activation 

functions 

Input of state 9 \ 

Hidden layer 1 128 Relu 

Output 3 Tanh 

Table 3: Architecture of the critic network 

Layers Size 
Activation 

functions 

Input of state 9 \ 

Hidden layer 1 128 Relu 

Output 3 Tanh 

Table 4: The hyperparameters of PPO 

Hyperparameter Parameter value 

Maximum iterations 700 

Discount factor 0.2 

Coefficient of soft update 0.9 

Reward coefficient 1,1 

Noise attenuation rate 0.01 

Value network learning rate 0.0001 

Policy network learning rate 0.005 

The position of the target is set to ( )0,0,0 , and the initial 

conditions of the three missiles are provided in Table 1. The 

maximum lateral accelerations are set to 20g, where g 

represents the acceleration due to gravity. 

The PyTorch framework is utilized for constructing the 

PPO network. The actor and critic of PPO are implemented 

using fully connected neural networks. Tables 2 and 3 

provide the network structure for the actor and critic. The 

parameters play a crucial role in agent training, and if they 

are not set appropriately, the agent is hard to converge. Table 

4 summarizes the parameters for PPO agent training. 

4.2 Training Simulation 

The simulations in this paper were conducted using a 

computer equipped with a GeForce RTX 3050 GPU and a 

3.3GHz CPU. The Python version used is 3.9, and PyTorch 

version 2.0 was employed for algorithm implementation. 

Training the agent model for 700 episodes took 

approximately 1.6 hours. 

The changes in reward during agent training are depicted 

in Fig. 3. The horizontal axis represents the training episodes, 

and the vertical axis represents the total and average rewards. 

The solid blue curve in the figure represents the cumulative 

reward without smoothing, while the dotted red curve 

depicts the average reward over every 40 episodes. As 

observed from Fig. 3, the maximum cumulative reward is 

achieved in the 150th episode. In the early episodes, the 

reward gradually increases. After 150 iterations, the 

cumulative reward stabilizes around the maximum value, 

indicating that the agent has converged. 

 

Fig. 3: PPO cumulative reward change 

4.3 Test Analysis  

 
(a) Trajectories 
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(b) Estimated time to go 

 
(c) Relative distance between missile and target 

 
(d) Azimuth command 

 
(e) Elevation command 

 
(f) Actions of agent 

Fig. 4: PPO simulation results for the same scenario as training 

Numerical simulations are conducted to assess the 

effectiveness of cooperative guidance control using the 

trained agent. The simulation results are presented in Fig. 4. 

The terminal miss distance and the time needed to attack are 

provided in Table 5. Figure 4a illustrates the trajectory 

curves of the missiles, showing that missile 1 has the most 

curved trajectory. Figure 4b indicates that the remaining 

flight time itgo  remains consistent at around 3 seconds, 

demonstrating time synchronization among the three 

missiles. Additionally, Figure 4c displays the relative 

distance between the missiles and the target, showing that 

the relative distances reach the same value at almost the 

same time. Figures 4d and 4e depict the corresponding 

acceleration curves of the cooperative guidance laws. It's 

noteworthy that the proposed guidance law can cause the 

terminal accelerations to converge to zero. Figure 4f 

illustrates the corresponding navigation ratio curves of the 

three missiles, indicating that in the initial 10 seconds, the 

navigation ratio N  change drastically and stabilize 

gradually. 

Table 5 presents the results of the numerical simulation. 

The first column indicates the missile number, and the 

subsequent two columns display the miss distance and 

running time, respectively. The values of miss distance are 

all less than 1 meter, indicating successful interceptions. The 
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maximum consensus error for the three missiles is 0.23 

seconds, affirming the success of coordinated attacks. 

Table 5: Miss distance and time needed to attack 

Missile fr (m) time(s) 

1 0.93 32.69 

2 0.86 32.46 

3 0.95 32.63 

4.4 Robustness Against Uncertainties 

 

Fig. 5: Maximum consensus error 

In this scenario, the robustness of the proposed 

cooperative guidance law is validated through three hundred 

Monte Carlo simulations, taking into account autopilot lag 

and initial errors. A significant advantage of the cooperative 

guidance law based on reinforcement learning is the 

adaptability of the trained agent model to any scenario 

without requiring retraining or adjusting hyperparameters. 

Leveraging this advantage, the trained agent model is 

applied to assess its capability to adapt to unfamiliar 

scenarios. 

In these simulations, the autopilot lag is set to 0.2 seconds. 

Additionally, the initial condition errors are assumed to 

follow Gaussian distributions with standard deviations of 

[ 5 ,5 ]−    for the initial values of LOS angles, [ 200,200]−

m for the initial relative range, and [ 10,10]− m/s for the 

missile velocity. The terminal maximum consensus errors of 

300 Monte Carlo runs are depicted in Fig. 5. 

Figure 5 illustrates that, despite the scenarios differing 

significantly from the training scenarios, three missiles 

successfully attack the target simultaneously under the 

proposed cooperative guidance law. Note that, it is observed 

that the maximum consensus errors are within 0.038s, 

meeting the practical implementation requirements. 

5 Conclusion 

This paper proposes a PPO-based three-dimensional 

cooperative guidance law designed for stationary targets. 

The study aims to develop a novel guidance framework 

based on RL to address time constraints. Numerical 

simulation results indicate that the trained agent model 

exhibits excellent performance. Furthermore, Monte Carlo 

simulation results demonstrate the effectiveness and 

robustness of the cooperative guidance law. 
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Abstract: One of the crucial applications of tether systems is formation flying. In recent research endeavors aimed at meeting 

the requirements of remote sensing satellites for interferometric measurements of ground targets, a new type of tethered solar 

sail spacecraft has been proposed. This spacecraft replaces the subsatellites of traditional tethered satellites with solar sail 

spacecraft, forming a distinctive formation configuration. Specifically, the main satellite is positioned in a sun-synchronous orbit, 

while the sub solar sail is in a suspended orbit. If the solar sail assumes an appropriate orientation, the main satellite and the solar 

sail spacecraft, linked by a metallic tether, can move side by side. Consequently, this formation system is termed the "transverse 

formation." The inter-satellite baseline in this transverse formation system is perpendicular to the satellite's ground track, 

effectively addressing the periodic trigonometric variations observed in the inter-satellite baseline of traditional flyby formations. 

This paper delves into the control laws for the deployment and retrieval of tethered solar sails by constructing and resolving an 

optimal control problem. 

Key Words: Flight control; transverse formation; formation deployment; tethered satellite-sail system; solar sail 

 
  

1 Introduction 

Since the concept of satellite formation flying was 

introduced in the 1990s, it has become a focal point of 

research in the development of space technology in the 21st 

century [1]. Currently, satellite formation flying plays a 

crucial role in space missions such as satellite remote 

sensing, electronic reconnaissance, and deep space 

exploration [2].Satellite formation flying involves two or 

more small satellites maintaining a certain distance while in 

flight, forming a system with a specific configuration and 

larger scale. Previous researches extensively studied flyby 

formations through analysis and numerical methods [3,6]. 

However, the inter-satellite baseline in such flyby 

formations exhibits periodic trigonometric variations, which 

are not conducive to the requirements of Earth observation 

and other applications of formation flying. 

To address this issue, recent research has proposed a novel 

type of dual-satellite formation flying. Solar sail spacecraft, 

continuously influenced by solar radiation pressure, could 

move along specific suspended orbits. Ref. [7] investigates 

this new type of solar sail system composed of satellites in 

sun-synchronous orbits and solar sails on parallel-

displacement orbits.As shown in Fig. 1, if the solar sail is in 

the appropriate orientation, the main satellite and the solar 

sail spacecraft could move side by side. Consequently, this 

formation system is referred to as the "Transverse 

Formation." The inter-satellite baseline in this transverse 

formation system is perpendicular to the satellite's ground 

track, effectively addressing the problem of periodic 

trigonometric variations in the inter-satellite baseline 

observed in traditional flyby formations. 

However, due to the typically lightweight nature of solar 

sails, a single solar sail is usually incapable of carrying a 

substantial payload. Addressing this issue, [7] delves into a 

                                                           

 
 

further discussion. Taking inspiration from the structure of 

tethered satellites, the main satellite is connected to the solar 

sail using a metallic tether. The primary payload needed for 

the mission could be carried on the main satellite, and the 

electrical power required for the camera on the sail could be 

transmitted through the conductive tether. 

 

Fig. 1:Transverse formation 

Numerous control strategies, including tether length 

control [8], tether velocity control [9], tension control 

[10,11], and optimal control [12,13,14], have been designed 

for tethered satellite deployment and retrieval.Addressing 

the deployment and retrieval challenges specific to tethered 

solar sail systems, Ref. [15] proposed a sliding mode 

controller with a saturation function and discussed 

deployment strategies for tethered solar sail spacecraft. Ref. 

[16] introduced an alternative attitude angle definition for 

system modeling and described a tether velocity control law, 

discussing deployment and retrieval strategies for tethered 

solar sail systems.In the study of the deployment and 

retrieval processes of this novel spacecraft, the design of 

control laws is subject to various constraints influenced by 

practical considerations.  This paper delves into the control 

laws for the deployment and retrieval of tethered solar sails 

under these limiting factors.  Treating these practical 

constraints as constraints in an optimal planning problem, 
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the paper will construct and resolve an optimal control 

problem. 

2 Dynamics 

This paper assumes that the spacecraft operates on a 

circular sun-synchronous orbit at an altitude of 1000 km. 

The descending node time is set at 18:00 (i.e., a dawn-dusk 

orbit). The solar rays are approximated to be nearly 

perpendicular to the orbital plane, allowing the satellite to 

continually receive usable solar radiation pressure. 

Additionally, a tether length of 1000 m is selected for close-

range formation and imaging tasks. 

2.1 Definition of coordinate systems 

The primary coordinate systems defined in this paper are 

as follows: 

1. Inertial Coordinate System (Si): 

• Origin Oi coincides with the Earth's center. 

• Axis Definition: The xi-axis points from the Earth 

toward the ascending node of the satellite's orbit, the zi-axis 

is perpendicular to the orbital plane, and the yi-axis lies 

within the orbital plane in accordance with the right-hand 

rule. 

2. Orbital Coordinate System (So): 

• Origin Oo coincides with the main satellite. 

• Axis Definition: The xo-axis points along the Earth 

toward the main star, the zo-axis aligns with the orbital 

velocity vector, and the yo-axis follows the right-hand rule. 

3. Tethered Solar Sail System Body Coordinate 

System (Sb): 

• Origin Ob coincides with the main satellite. 

• The three axes are oriented as shown in Fig.3. 

The coordinate transformation relationships between Sb 

and So are as follows: 

( ) ( )R Ry x
o b

S S
α β→• →        (1) 

Finally, to better describe the attitude of the solar sail, a 

coordinate system is defined for the solar sail body. 

Solar Sail Body Coordinate System (Sd): 

• Origin Od coincides with the center of the solar sail. 

• The zd-axis is opposite to the direction of sunlight 

incidence on the solar sail. Since the satellite operates in a 

sun-synchronous orbit, and the Earth-Sun distance is much 

greater than the orbital radius, the direction of sunlight 

incidence could be considered parallel to the orbital plane. 

• The xd-axis and yd-axis are parallel to the xo-axis and 

yo-axis, respectively. 

 

Fig. 2: Definition of coordinate systems for traverse formation 

 

Fig. 3: Solar sail body coordinate system 

2.2 Dynamical Model 

Assuming a stable deployment process where the solar 

sail is fully deployed and the tether is fully extended, the 

control forces in this scenario include solar radiation 

pressure and tether tension. Due to the minimal impact of the 

attitude motions of the main satellite and the solar sail on the 

dynamic effects of tether release, they could be treated as 

point masses in the dynamic model. 

Ref. [16] derived and provided the dynamic equations for 

the tethered solar sail system. The resulting dynamic 

equations for each channel in a circular orbit were obtained: 
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where ,α β are attitude angles for satellite-sail system, l is 

length of tether, oω is orbit angular velocity.
l

Q , Q
α

, and 

Q
β

 represent the generalized forces corresponding to each 

variable. 

In the general case, where the mass of the main satellite is 

much greater than that of the solar sail, i.e., 
1 2

m m , it 

could be approximated as 
2

m m≈ . 

The control forces in the system consist of solar radiation 

pressure Fs and tether tension Tl. The relationship between 
generalized forces and control forces is as follows: 

[ ]

[ ]
[ ]

sin

l l s yb

s xb

s zb

Q T F

Q F l

Q F l

α

β

β

 = − +


=
 =

       (5) 

In the equations, [ ]s xb
F , [ ]s yb

F , [ ]s zb
F  are the projected 

components of solar radiation pressure along the axes of the 

solar sail body coordinate system (Sb), and  
l

T represents the 

tension in the tether. 

According to Eq. (5), the direct control input variables for 

the dynamics of the tethered solar sail system are solar 

radiation pressure and tether tension. However, the precise 
control of the magnitude of solar radiation pressure on the 

spacecraft is challenging. The solar sail could change its 

attitude angles to alter the distribution of solar radiation 

pressure on its surface. Therefore, the system could be 

indirectly controlled by manipulating the attitude angles of 

the solar sail. 

To thoroughly investigate the characteristics of solar 

radiation pressure, in Section 2.1, the solar sail attitude 

coordinate system 
d
S  was defined. The solar sail attitude 

angles 
1 2
,ϕ ϕ  are defined as shown in Fig. 3. According to 

geometric relationships, the normal direction of the sail in 

the coordinate system 
d
S could be expressed as: 

[ ]
T

1 2 1 2 1
sin cos sin sin cosϕ ϕ ϕ ϕ ϕ=n   (6) 

The expression for solar radiation pressure is: 

2

2 12
coss

s

sd

m
r

µ
ξ ϕ=F n        (7) 

In the Eq. (7), 
s

µ  is the solar gravitational constant, and 

sd
r  is the distance between the Sun and the sail. 

Eq. (7) describes the ideal solar sail model with perfect 

specular reflection. In reality, considering the effects of 

diffuse reflection and wrinkles in the solar sail membrane, it 

is necessary to multiply by an optical efficiency factor κ to 

study the actual radiation pressure on the solar sail under 

non-ideal conditions. The expression for solar radiation 

pressure under non-ideal conditions is: 

2

2 12
coss

s

sd

m
r

µ
κ ξ ϕ=F n       (8) 

Due to the much greater distance between the Earth and 

the Sun (rse) compared to the satellite's orbital radius and the 

relative distance between the main satellite and the solar sail, 

sd se
r r≈ . ξ  is the areal density ratio of the solar sail, which 

is a constant for a specific solar sail. According to Ref. [5], 

to maintain the displacement of the sun-synchronous orbit, 

the required solar radiation pressure acceleration magnitude 

for the solar sail is given by: 

3
22 22

2

2
1 1

req
a h

h

ρ ω
ω

ω

   
= + −         

      (9) 

In the Eq. (9): 3

e
= /

d
rω µ  is the angular velocity of the 

solar sail's rotation around the Earth, 
e

µ  is the Earth's 

gravitational constant, 
d

r  is the distance between the Earth 

and the solar sail, h is the displacement height, ρ  is the 

orbital radius. From geometric relationships, 2 2

d
r hρ= + . 

Considering that hρ  , in the study, it could be 

approximated as 
o

ω ω≈ . 

Eq. (9) describes a solar sail planetary floating orbit 

influenced solely by planetary gravity and solar radiation 

pressure. Once the required orbital radius and h  are 

determined, the solar radiation pressure coefficient ξ is also 

determined. However, for the tether solar sail studied in this 

paper, the solar sail is additionally affected by tether tension. 

Therefore, in the study of the tether solar sail system, it is 

not necessary to design the solar sail coefficient solely based 

on Eq. (9). In this paper, the selected solar radiation pressure 

is 2

0
3

s o
F lω=  In this case, 0.4993ξ = is required, 

corresponding to an areal density ratio of 23.0641g/m . 

The coordinate transformation matrix from Sb to Sd is 

defined as follows: 

bd bo
=A A

        
(10) 
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Therefore, it follows that: 

[ ] [ ]s bd sd b
=F A F        (11) 

That is: 
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According to the Ref. [7], Eq. (12) could be considered as 

a nonlinear system of equations. Solving the nonlinear 

system of equations (12) will yield the required attitude 

angles for the solar sail. Following the methods in Ref. [7], 

[15], and [16], this paper utilizes the Newton iteration 

method to solve the nonlinear system of equations. 

3 Design of Control Law 

This section will provide corresponding strategies by 

transforming the deployment and retrieval problem of the 

tethered solar sail spacecraft into an optimal control 

problem. Ensuring that the tension in the tether remains 

positive, i.e., considering 0
te

F > , is treated as a control 

constraint in the optimal control problem. By solving this 

optimal control problem, optimal deployment and retrieval 

trajectories are obtained. These optimal trajectories are then 

applied as reference tether length trajectories for the 

deployment and retrieval of the tethered solar sail spacecraft. 

In general, the continuous form model of an optimal control 

problem is as follows: 

( ) ( )( ) ( ) ( )0 0 0
, , , , ,

t f

f f t
J t t t t t t t dt= Φ +    x x f x u

 (13) 

( ) ( ) ( )( ), ,t t t t=&x g x u      

 (14) 

( ) ( )( )min 0 0 max
, , ,

f f
t t t tσ σ σ≤ ≤x x    

 (15) 

( ) ( )( )min max
, ,t t t≤ ≤x uγ γ γ     

 (16) 

Where x  is the state variable, u is the control variable. Eq. 

(13) represents the value function of the optimization 

problem, (14) is the dynamic constraint, (15) is the boundary 

constraint, and (16) is the path constraint. The above 

equations are also known as the continuous Bolza problem 

for optimal control. 

The objective function is formulated as follows: 

 

      2 2 2

1 2 3f f f
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 (17) 

The state variables are represented by x , and the control 

variables are denoted by u . The dynamic constraints of the 

system are given by: 
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The relationship between 
l

Q , Q
α

, and Q
β

, and the control 

variable is given by Eq. (6). 
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The state constraints during the deployment process are as 

follows: 

       

 

0 1000m,0 ,0
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The control constraints are as follows 
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0
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The state constraints for the retrieval process are as follows: 
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The initial and final values of the states are: 
0

1000ml = ，

0
0m/sl =& ,

0 0
180

π
α β= = ,

0 0
0α β= =&& , 0

f f
α β= = . 

4 Simulation and Results 

The optimal control problem in this study will be solved 

using the GPOPS toolbox, an open-source MATLAB 

optimization package developed by Professor Anil V. Rao's 

team at the Vehicle Dynamics and Optimization Laboratory 

(VDOL) at the University of Florida. The GPOPS toolbox is 

a widely used software package for solving optimal control 

problems using the pseudospectral method. 
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The procedure involves first using the GPOPS software to 

solve the optimal deployment control trajectory designed in 

this section. The computed trajectory is then utilized as the 

reference trajectory for tethervelocity deployment, and 

closed-loop control is applied to the dynamical model. The 

results of the optimal tethervelocity trajectory and the actual 

simulation of state changes are compared, as shown in Fig.4 

to 5. The simulation results demonstrate that the GPOPS 

software successfully solved the corresponding optimal 

problem, and the simulation of the actual model ran 

smoothly, with the tether being successfully deployed. The 

corresponding control quantities are shown in the Fig.6 and 

Fig.7, indicating that limiting tension as a constraint in the 

optimal planning problem ensures the non-negativity of the 

tether tension. 

Fig.4:States trajectory during the deployment of a satellite-sail 

system (length) 

 

Fig.5:States trajectory during the deployment of a satellite-sail 

system 

 
Fig.6:Control inputs trajectory during the deployment of a 

satellite-sail system (Tension) 

The same approach is applied for the retrieval process. 

GPOPS software is used to solve the optimal retrieval 

trajectory designed in this section. The computed trajectory 

is then utilized as the reference trajectory for tethervelocity 

retrieval, and closed-loop control is applied to the simulation 

model. 

The results of the optimal tethervelocity trajectory and the 

actual simulation of state changes are compared in Fig.8 to 

Fig.9. The simulation results demonstrate that the GPOPS 

software successfully solved the optimal retrieval problem, 

and the simulation of the actual model ran smoothly, with 

some angular channel errors within the permissible range for 

engineering.The tether was successfully retrieved, and the 

tension in the tether was ensured to be non-negative in 

Fig.10 and Fig.11, as indicated by the control quantities. 

 
Fig.7:Control inputs trajectory during the deployment of a 

satellite-sail system (Angle of Solar Sail) 

 
Fig.8:States trajectory during the retrieval of a satellite-sail 

system (length) 

 

 

Fig.9:States trajectory during the retrieval of a satellite-sail 

system  
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Fig.10:Control inputs trajectory during the retrieval of a satellite-

sail system (Tension) 

 
Fig.11:Control inputs trajectory during the retrieval of a satellite-

sail system (Angle of Solar Sail) 

 

5 Conclusions 

This paper discusses the deployment and retrieval issues 

of a novel concept spacecraft, the tether-controlled solar sail 

system. Considering the characteristic that the tethercould 

only withstand tension and not compression, the goal is to 

successfully achieve deployment and retrieval under the 

constraint of limited inputs. In light of this, a tether velocity 

deployment control law is designed, taking into account the 

characteristics of the actuation system used in the 

deployment and retrieval control process of space tether 

systems. The optimal control method is employed, 

appropriate optimization criteria are selected, and the 

constraint of limited inputs is formulated as a constraint in 

the optimal planning problem. The control method for the 

deployment and retrieval of the tether-controlled solar sail 

spacecraft is investigated. Simulation results demonstrate 

that the spacecraft could successfully and stably deploy and 

retrieve to the target tether length and configuration, 

indicating the effectiveness of the proposed control law. 
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Abstract: This article proposes a satellite attitude planning algorithm based on potential function to meet the requirements of 

satellite attitude constraints on ground stations. The algorithm dynamically adjusts the satellite attitude by designing attractive 

and repulsive potential functions and adjusting their corresponding weight values, enabling the satellite to avoid optical and radar 

stations in the same area. In addition, a design approach based on Model-Based Design (MBD) was adopted, combining MBD 

technology with practical engineering. Through soft-ware digital design processes such as model rule checking, model coverage 

testing, automatic code generation, code checking, and semi physical simulation testing, algorithm design, modeling and 

simulation, and automatic code generation were integrated, greatly improving development efficiency, Promoted the process of 
project development from the traditional document centered development model to the digital development model. 

Key Words: Attitude planning; Potential function; MBD technology; Code generation 

 

 
  

1 Introduction 

During the process of satellite attitude maneuvering, it 

often encounters constraints on attitude orientation, which 

can generally be categorized into attitude pointing 

constraints and attitude avoidance constraints. The issue of 

attitude maneuvering under pointing constraints has 

gradually become a focal point in the field of spacecraft 

attitude control. At the same time, accelerating the 

advancement of digitalization in the aerospace sector and 

enhancing operational efficiency through digital means are 

also key developmental priorities in the current stage. 

With the continuous enrichment of in-orbit missions for 

spacecraft, practical needs such as sunlit observation and 

telemetry control support pose higher demands on attitude 

planning. The geometric approach, by establishing a 

relationship between the current and desired attitudes, 

enables the rapid derivation of analytical maneuver paths. 

Duan[1] proposed a two-step tangent maneuver path based on 

Euler axis-angles, achieving the avoidance of forbidden 

pointing regions for a single line of sight axis. Xu[2] proposed 

a solution to the effective path discrimination problem under 

multiple cone constraints based on the reduction of pointing 

vector dimensions. However, geometric methods face 

challenges in adapting to problems involving multiple axes 

and constraints. In contrast, the potential function approach, 

guided by gradient principles, dynamically plans trajectories 

and exhibits excellent performance in scenarios with 

multiple constraints and real-time calculations. Guo[3] 

established the premise of the repulsive potential function 

and investigated a backstepping tracking controller, 

achieving adaptive adjustment of control amplitudes. Shen[4] 

utilized normalized quaternions to construct a quadratic 

potential function, enabling flexible appendage satellites to 

avoid forbidden pointing regions. Feng[5] rapidly 

accomplished attitude planning and maneuvering processes 

                                                           
 

while ensuring sensor sun avoidance and antenna-to-ground 

communication based on a logarithmic potential function. 

The MBD method is the mainstream implementation 

approach for the digital development of control algorithms 

and software, gradually gaining application in the aerospace 

and automotive industries. In the design of spacecraft 

control systems, engine control systems, and avionics 

systems, the MBD software development mode has been 

adopted by renowned companies such as NASA, Boeing, 

Airbus, Honeywell, and others. The Asia-Pacific Center of 

Trane Technology[6] has applied the MBD design pattern to 

the development of air conditioning control software. 

Compared to traditional software development models, this 

approach has significantly improved development efficiency. 

The Xi'an Aeronautical Computing Technology Research 

Institute[7] has applied Model-Based Systems Engineering 

(MBSE) technology to the research and development of 

aircraft power control systems, completing model-based 

design and development. The Beijing Telemetry 

Technology Research Institute[8] has applied MBSE 

technology to the modeling of telemetry and control 

subsystems, transitioning from a traditional document-based 

development mode to a model-based development approach. 

This transformation has effectively enhanced development 

efficiency. The China Aerospace Standardization Research 

Institute[9] has conducted research on the development of 

aerospace enterprises in the context of digital transformation. 

The study analyzes the current status of digital 

transformation in aerospace enterprises and the necessity of 

digitizing transformation for the aerospace industry. 

This article proposes a satellite attitude planning 

algorithm based on potential functions, which achieves the 

avoidance of optical and radar stations by the satellite. 

Simultaneously, leveraging a software-driven digital design 

process, it integrates algorithm design, modeling simulation, 

and code generation seamlessly. by combining digital 
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methods with practical engineering, it promotes the digital 

transformation process in the aerospace field. 

2 Satellite Attitude Planning Algorithms Design 

2.1 Background 

Satellites simultaneously avoid a designated area within 

the same orbit, which includes both a radar station and an 

optical station. A potential function algorithm is designed to 

ensure that the satellite's desired reference attitude aligns the 

weakest region of the satellite's Radar Cross Section (RCS) 

with the radar station. Building upon this, fine adjustments 

to the satellite's attitude are made to prevent sunlight 

reflected off the satellite's solar panels from entering the 

optical station. 

2.2 Metrics 

Radar Station: When the satellite passes over the radar 

station, the angle between a specific pointing axis (weakest 

region of RCS) in the satellite's body frame and the line 

connecting to the ground station remains consistently below 

15o
. 

Optical Station: When the satellite passes over the optical 

station, the angle between the line connecting to the ground 

station and the sunlight vector, after reflection off the 

satellite's solar panels, consistently remains greater than 15o
. 

This ensures that the reflected sunlight does not enter the 

optical station. 

2.3 Potential Function Algorithm Design 

The potential function includes attractive and repulsive 

components. In this paper, the attractive potential function 

aV  is designed as a function of the quaternion error: 

2

1aV k= e  (1) 

The expression of aV  reveals that aV  has only one local 

minimum, denoted as [ ]0 0 0
T

    e = , indicating alignment 

between the current attitude and the desired attitude, at 

which 0aV = . The desired attitude corresponds to pointing 

the low RCS region towards the ground radar station. 

Next, we provide the definition of the repulsive potential 

function rV : 

o

r T

k
V =

− % %m e Ae
 (2) 

Equation (2) represents the forbidden attitude region 

between the sunlight reflection and the ground optical 

station, preventing strong light from entering the optical 

station. 0ok >  is the weight of the forbidden attitude region 

in the entire repulsive potential function. 

The value of ok  follows a three-segment distribution, as 

shown in the following equation: 

1 1
(

0

od

odo

od

k


− <

= 
 >

)     

                    

k q q
q q

q q

  (3) 

Where q  represents the angles between various 

connecting vectors, 
od

q  is the field of view of the optical 

station, and k  is the gain weighting factor. When od<q q , 

the closer the current attitude is to the forbidden attitude 

region, the greater the repulsive force generated. 

Based on the above content, we construct the potential 

function pV  as follows[10]: 

p a rV V V= +  (4) 

The constructed potential function is smooth and convex 

for all forms of quaternion error-based quadratic functions, 

and it globally attains its minimum at the quaternion 

[0 0 0 1]T=    %e . Incorporating the designed potential function 

into the spacecraft attitude control process enables the 

satellite to simultaneously avoid both the optical station and 

the radar station. 

2.4 Building Simulation Models Based on MBD 

MBD (Model-Based Design) software design tool 

includes a model library, model rule library, code rule 

library, code auto-generation tool, model rule checking tool, 

code rule checking tool, and report auto-generation tool, 

covering all requirements from model establishment to code 

auto-generation. MBD software design platform is 

illustrated in the following Fig.1: 
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Fig. 1: MBD Software Design Platform 

3 Simulation Validation 

In this section, simulation validation is conducted to 

verify whether the aforementioned algorithm meets the 

requirements for satellite attitude avoidance. 

Assuming that a region includes an optical station and a 

radar station simultaneously. The simulation parameters are 

as shown in Table 1: 

Table 1: Simulation Parameters 

Parameters Values 

Epoch Time 2023-12-08  15:10:00.000 

Semi-Major Axis (km) 6928.137000 

Eccentricity 0 

Inclination 97.687° 

Right Ascension of 

Ascending Node 
48.167° 

Argument of Perigee 0° 

True Anomaly 34.886° 

Geographical Coordinates 

of the Region 
(120 ,30 )E N

o o
 

Coordinates of the Weakest 

RCS Reflection Region 

on the Satellite (m) 

(In the satellite body frame) 

[0.3; 0.4; 0.8] 

 

The angle between the line connecting the reflected 

sunlight and the optical station is shown in Fig. 2. 
 

Time(Hour-Minute-Second)

A
n

g
le

（°

）

 

Fig. 2: Angle between the line to the ground station 

and the sunlight-reflected light 

when the satellite passes over the optical station 

According to the above simulation results, it can be 

observed that: 

(1) When the satellite passes over the radar station, the 

angle between the pointing axis and the line to the 

ground station consistently remains below 3°, ensuring 

that the weakest RCS reflection region always points 

towards the radar station, thereby achieving avoidance 

of the radar station by the satellite; 

(2) When the satellite passes over the optical station, the 

angle between the sunlight-reflected light and the line 

to the ground station consistently remains above 20°. 

This ensures that the sunlight vector, after reflection off 

the satellite's solar panels, never enters the ground 

optical station, thereby achieving avoidance of the 

optical station by the satellite. 

4 Automatic Generation of On-board Code 

The design and modeling simulation of satellite attitude 

planning algorithm based on MBD have been completed in 

the previous text. According to the MBD software 

development process, it is also necessary to complete steps 

such as model rule checking, model coverage testing, 

automatic code generation, code rule checking, model code 

consistency testing, and semi physical simulation testing to 

ensure that the software meets the requirements of the on-

board code. 

4.1 Model Rule Check 

The MBD software design platform integrates model 

specification checking function for automated specification 

checking and inspection item management, as shown in Fig. 

3. 
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Fig. 3: Model Rule Check 

Among them, the model rule check items mainly include: 

 Domain model checking rules, used in conjunction with 

modeling standards used in domain model libraries; 

 High security rules, used for specifications related to 

high security code generation; 

 Consistency check rules, relevant rules for verifying the 

consistency of project code models; 

 Run a specification check tool, select the model or model 

directory to be checked, perform automated specification 

checks on the model, and generate an inspection report. 

4.2 Model Coverage Testing 

According to software design specifications, development 

work requires sufficient dynamic and static testing of 

software (models) and performance. The static testing 

methods at the model level are model rule checking and code 

checking, which are completed: 

 Design compliance of the model under safety and 

reliability constraints; 

 Consistency between code and model  

The typical method of dynamic testing is model coverage 

testing, while meeting the requirements of code coverage 

testing through use case reuse. In the MIDE software system, 

coverage testing is a tool and a test case. Use cases are 

generated manually and automatically, provided that the 

tester has a thorough understanding of the design 

requirements of the tested model. 

4.3 Code Generation 

The MBD software design platform integrates automatic 

code generation function, which is used to generate high-

quality C code from the model, as shown in Figure 5. After 

the model has passed the model rule check, click the auto 

generate code start button. The software calls the compiler 

at the bottom level for code generation, and using a highly 

reliable and secure model environment configuration can 

ensure that the code generated by the model conforms to 

high reliability and high security, thus achieving the 

transformation from model to code. 

The automatically generated part of the code 

corresponding to the model in this project is shown in Fig. 4. 

 

Fig. 4: Partial automatic code generation 

4.4 Code Rule Check 

The MBD software design platform integrates code 

checking function. Clicking on the code checking option 

directly on the generated code can complete the current code 

check. This check is mainly used to check whether the model 

and code are structurally consistent. Code rules are checked 

separately for automatically generated code.  

According to the code inspection results, it can be seen 

that the structure of the code and the model are consistent. 

4.5 Model Code Consistency Testing 

Code model consistency testing is a test that ensures 

complete functional consistency between the code and the 

model. This tool uses the SIL test method. Setting SIL in the 

model is mainly based on the Ref Model method, that is, in 

the same model, the model and the code generated by the 

model are synchronously simulated and compared to verify 

the functional consistency of the generated code. 
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4.6 Semi Physical Simulation Testing 

Semi physical simulation is the most realistic test that 

reflects the actual satellite in orbit environment. The 

automatically generated code is embedded into the onboard 

computer and subjected to semi physical simulation testing. 

Telemetry the results of the onboard computer (single 

precision) to the ground and compare them with the ground 

simulation results, as shown in Fig. 5. 

Time(s)

C
al

cu
la

ti
o
n

 e
rr

o
r 

 

Fig. 5: Comparison error of attitude planning results  

From the above figure, it can be seen that the results of the 

on-board computer running automatic code generation are 

consistent with the ground simulation results. 

4.7 Brief Summary 

Through steps such as model rule checking, model 

coverage testing, automatic code generation, code rule 

checking, model code consistency testing, and semi physical 

simulation testing, the transition from model to code has 

been achieved. 

5 Summarize 

This article designs target pointing and potential function 

algorithms based on the requirements of satellite avoidance 

of ground radar stations and optical stations. Modeling and 

mathematical simulation of algorithms based on MBD 

software design tools. At the same time, model rule checking, 

model coverage testing, code automatic generation, code 

rule checking, model code consistency testing, and semi 

physical simulation testing were carried out, achieving the 

integration of algorithm design, modeling and simulation, 

and code automatic generation. 
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Abstract: In view of the challenge in obtaining accurate relative navigation information during the close-range guidance phase 

of space non-cooperative target approaching missions, making it difficult to achieve high-precision rapid approach control, this 

paper proposes an approaching control strategy for close-range guidance based on bearing-only measurement for non-

cooperative target approaching. Firstly, the relative orbital motion dynamic model between the mission satellite and the non-

cooperative target is established, and the mission scenario is defined. Subsequently, a close-range guidance control strategy is 

designed based on bearing-only measurement. The lateral control law of the mission satellite is devised through the deviation of 

the target's elevation and azimuth angles. Moreover, the course control law is designed based on the initial and desired position 

relative to the target, thereby achieving rapid linear approach control of the target. Finally, a comparative simulation is conducted 

with traditional methods involving bearing-only navigation combined with real-time closed-loop control. The simulation results 

demonstrate that the proposed approach outperforms traditional methods in terms of energy consumption, accuracy, and transfer 

time, validating the superiority and practical value of the method in engineering applications. 

Key Words: Bearing-only measurement, Non-Cooperative target, Fast approaching control 

 

 
  

1 Introduction 

With the continuous development of human spaceflight 

technology, spacecraft are gradually becoming lighter and 

smaller. Micro spacecraft are increasingly replacing 

traditional large spacecraft in tasks such as space debris 

removal and in-orbit maintenance of non-cooperative targets. 

Micro spacecraft are typically released into orbit by a mother 

spacecraft and then autonomously approach non-

cooperative targets to perform tasks such as debris removal 

and in-orbit maintenance. This paper focuses on the 

guidance and control strategy during the approach phase. 

The approach task to a non-cooperative target can be 

divided into the near-range guidance phase, the flyby 

observation phase, and the high-precision ultra-close range 

approach phase. The near-range guidance phase involves 

approaching the target from a position several kilometers 

away to within a few hundred meters, allowing for more 

precise measurements and facilitating tasks such as hovering 

and flyby observation in high-precision relative orbital 

motion control. Control methods for the near-range guidance 

phase are typically classified into continuous low-thrust, 

impulse thrust, and relay-type thrust control. 

Continuous low-thrust methods mainly involve electric 

propulsion techniques, but the thrust is usually low, making 

it unsuitable for rapid approaches. Impulse thrust is 

commonly used in CW guidance control strategies. For 

example, Yang et al. addressed the uncertainty in elliptical 

orbit maneuvering under J2 perturbation using a nonlinear 

uncertainty analysis method based on the state transition 

matrix tensor[1]. Hablani H et al. tackled the problem of 

autonomous approach to a target spacecraft operating on a 

                                                           
*This work is supported by National Natural Science Foundation 

(NNSF) of China under Grant 00000000. 

circular orbit and derived a guidance method for an 

exponential slip orbit. This method ensures that the 

approaching spacecraft's flight process conforms to a certain 

changing pattern[2]. Li studied control methods under pulse 

maneuvers [3]. However, on one hand, the control error of 

CW guidance control makes it not suitable for high-

precision control. On the other hand, CW guidance control 

methods require high-quality relative position and velocity 

information about the target. Therefore, it is typically used 

in cooperative target rendezvous missions. For non-

cooperative targets, it is often impractical to accurately 

obtain the relative motion information of the target, leading 

to the ineffectiveness of CW guidance control methods. 

In non-cooperative target approach scenarios, relay-type 

thrust control is commonly employed. Relay-type thrust 

involves constant thrust magnitude with toggleable on-off 

thrust. Zhang proposed an adaptive control law and studied 

the relative position tracking problem of non-cooperative 

target spacecraft using line-of-sight relative motion 

dynamics in the presence of external disturbances, 

unmodeled dynamics, and thrust saturation[4]. Xing designed 

a control law to minimize relative velocity during the 

spacecraft approaching phase[5]. Wang introduced control in 

the direction of the line connecting the spacecraft and the 

target based on classical proportional guidance to address 

challenges in non-cooperative targets, such as missing self-

information, difficulties in measurement, and 

communication[6]. However, the mentioned studies assume 

accurate measurement of the target's relative motion 

information. For kilometer-level non-cooperative targets, 

typically only bearing measurements are available, without 

distance information. Therefore, the practical applicability 

of the above methods is limited in engineering.  

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
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For non-cooperative targets with only bearing 

measurements, the typical approach for achieving approach 

control is to use bearing-only navigation combined with 

optimal guidance control. However, relying solely on 

bearing  information in non-cooperative relative navigation 

can lead to the problem of unobservable states. Currently, 

methods such as camera biasing, complex dynamics 

methods, and orbital maneuvering are employed to enhance 

the observability of states. Camera biasing, despite its 

simplicity, has the drawback of being limited to applicable 

distances[7]. Complex dynamics methods can address the 

unobservability issue but are susceptible to noise 

interference and may not be suitable for close encounters[8]. 

Orbital maneuvering introduces increased fuel consumption 

and makes navigation and guidance performance directly 

influenced by the encounter trajectory[9]. Therefore, the 

method of using bearing-only navigation combined with 

optimal guidance control also has certain limitations. 

In response to the challenge of low accuracy in relative 

navigation information during the close-range guidance 

phase, hindering the achievement of high-precision 

approach control, this paper proposes a strategy for close-

range guidance of non-cooperative targets based on bearing-

only measurements. By establishing the mapping 

relationship between the target line-of-sight pointing 

deviation and lateral position deviation, a lateral control law 

is designed. By controlling the lateral position of the 

spacecraft, the line-of-sight axis of the spacecraft is kept 

pointing towards the target. Subsequently, open-loop control 

is applied in the course direction, with the course velocity 

given at the initial moment and deceleration applied when 

approaching, thereby achieving high-precision and rapid 

approach control in the close-range guidance phase with 

bearing-only measurement. 

2 Dynamics and Mission Scenario definition 

In the inertial frame, the orbital motion equations for the 

target and the chaser are given by: 
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This paper adopts the CW equations as the relative 

dynamics model for space rendezvous[11], which can be 

expressed as: 
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The mission scenario is defined as follows: at the initial 

moment, the chaser and the target are located in the same 

circular orbital plane, and the chaser has already performed 

a CW orbital transfer to hover 5 km behind the target, as 

shown in Fig. 1. 

3 Approaching control strategy 

3.1 Traditional control strategy 

For the space non-cooperative target approach control 

with bearing-only measurement, traditional methods 

generally adopt the approach of bearing-only navigation 

combined with optimal guidance control. Since this paper 

focuses on the design of control strategies, and the bearing-

only navigation method has been detailed in the reference 

[10], it will not be reiterated here. Taking the LQG control  
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Fig. 1: Mission Scenario Definition 

method as an example, the controller design is briefly 

introduced as follows: 

The control acceleration acting on the spacecraft body-

axis system is given by: 
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where 
T
r  is the distance from the target spacecraft to the 

center of the Earth; 
S
r  is the distance from the spacecraft to 

the center of the Earth; 
/

, ,
T

d

T S x y z
l l l l =    is the 

formation vector, which can be obtained through cubic 

polynomial interpolation algorithm; [ ]/ , ,
T

T Sr x y z∆ =  is 
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the relative position vector in the target spacecraft's orbital 

coordinate system; 
Tθ&  is the first derivative of the true 

anomaly change with respect to time; 
Tθ&&  is the second 

derivative of the true anomaly change with respect to time; 

/ bT SR  is the direction cosine matrix from the spacecraft 

body-axis coordinate system to the target spacecraft's orbital 

coordinate system; µ  is the gravitational constant of the 

Earth. The state feedback gain matrix K  is obtained by 

solving the Riccati equation based on the performance 

objective function; the estimated relative state quantity ˆ
K
X  

is provided by the navigation system. 

 For discrete control systems, we need to find the optimal 

state feedback control law: 

 
k k
u KX= −  (4) 

 To minimize the quadratic cost function: 

 
1

[ 2 ]T T T

k k k k k k

n

J X QX u Ru X Nu
∞

=

= + +  (5) 

When there are no cross terms in the cost function J , 

0N = . Here, Q and R  are weighted matrices for state and 

control variables, respectively. According to the extremum 

principle, the state feedback gain matrix for optimal control 

in discrete quadratic form can be derived. 

 1( ) ( )T T TK S R S N−= Γ Γ + Γ Φ +  (6) 

where the matrix S  must satisfy the Riccati equation of 

discrete system. 

3.2 Approach Control Strategy Design Based on 

Bearing-only Measurement 

The lateral control law is designed as follows: 

When the attitude of the chaser is oriented towards the 

Earth, the line of sight axis always points to the positive +X-

axis direction in the VVLH frame. Therefore, adjusting the 

positions in the Y-axis and Z-axis directions can achieve 
adjustments in the elevation and azimuth angles of the target 

in the chaser body frame, as shown in Fig. 2. When the 

chaser is behind the target, to control the elevation and 

azimuth angles and keep the line of sight axis pointing to the 

target, the desired azimuth angle is 0°, and the desired 
elevation angle can be calculated using the following 

equation: 

 
2 2

2

1 2
arccos( )

2 2
d

R d

R
α

−
=  (7) 

Where d  is the relative distance between the two stars, 

and R is the orbital radius. 

X

Z

α

θ

Chaser

Target

Earth

 
Fig. 2: Diagram of the desired elevation angle 

After obtaining the desired elevation and azimuth angles, 

it is necessary to design lateral control laws to achieve 

control over these angles. As shown in Fig. 2, elevation 

angle control is primarily achieved by adjusting the Z-axis 

position in VVLH frame, while azimuth angle control is 
achieved by adjusting the Y-axis position. Therefore, the 

lateral control laws can be designed as follows: 
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β β
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= − −
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where ,py dyk k and ,pz dzk k are the PD control parameters 

of Y-axis and Z-axis, respectively. 

The course control law is designed as follows: 

When the attitude of the chaser is directed towards the 

Earth, we expect to first accelerate to the given speed in the 
course direction. Subsequently, the thruster is turned off. 

When the chaser flies to a certain distance behind the target, 

the thruster needs to apply reverse thrust to decelerate. This 

is to prevent the chaser from being unable to decelerate in a 

timely manner when reaching the distance range where 

range information can be obtained due to excessive speed. 
This could lead to the chaser being too far from the hover 

observation distance, or even directly colliding or flying 

over the target. 

According to the above analysis, we set the thruster to a 

constant thrust of 0.01 m/s² for 300 seconds, accelerating the 
chaser to a relative course speed of about 3 m/s. The thruster 

is then turned off. The chaser flies for about 1300 seconds 

with a relative speed of approximately 3 m/s. Afterward, the 

thruster applies a -0.01 m/s² thrust in the opposite direction 

for 250 seconds, decelerating to about 0.5 m/s. It then 

continues to fly until it reaches a distance within 100 meters 
of the target. The entire control process is illustrated in Fig. 

3. 

 
Fig. 3: Flowchart of the course control 

4 Simulation and Analysis  

Simulations were conducted to compare the method 

proposed in this paper with the approach of using bearing-

only navigation combined with real-time closed-loop control. 
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The task scenario was set as follows: 1) The target's orbit 

was a circular orbit with an altitude of 550 km and an 

inclination angle of 53°; 2) The chaser was in the same orbit 

as the target, initially positioned 5 km behind the target. The 

initial mass of the chaser was set to 5 kg, and control 

parameters were chosen as 0.5543,py pzk k= =

2.9779dy dzk k= = . For the real-time closed-loop control 

method, the task time was set to 53 minutes. The simulation 

results are shown in Fig. 4-11. 

 Fig. 4-6 shows the simulation results obtained using the 

method proposed in this paper. Fig. 4 and 5 depict the three-
axis relative positions of the chaser in the target VVLH 

frame and an enlarged view of the X-axis relative position, 

respectively. Fig. 6 illustrates the variation in elevation and 

azimuth angles of the target relative to the chaser during the 

approach process. From Fig. 4 and 5, it can be observed that 

the entire approach process takes about 2650 seconds, with 
a final X-axis direction control error of approximately 8 

meters. The relative positions in the Y and Z-axis directions 

are both oscillatory and convergent, with the amplitude of 

the Z-axis being much larger than the Y-axis. This is because 

applying thrust in the X-axis direction will inevitably cause 
a change in orbital altitude, resulting in a change in the Z-

axis direction position of the chaser in the target VVLH 

frame. 

 From Fig. 6, it can be seen that during the approach 

process, the elevation angle can be controlled within the 

range of ±2°, while the azimuth angle can be controlled 
within ±0.1°. This is because the elevation angle reflects the 

position deviation in the Z-axis direction, while the azimuth 

angle reflects the position deviation in the Y-axis direction, 

and as seen from Fig. 4, the Z-axis direction position 

deviation is much larger than the Y-axis, reflecting in the 

elevation and azimuth angle as well. 

 
Fig. 4: Relative distance between target and chaser 

 
Fig. 5: Relative distance on the X axis at the end 

 
Fig. 6: The elevation and azimuth angle 

 
Fig. 7: Relative distance between target and chaser 

 
Fig. 8 Relative distance on the X axis at the end 
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Fig. 9 The error of bearing-only navigation 

 
Fig. 10: The navigation error on the X axis at the end 

 
Fig. 11: The comparison of fuel consumption 

 

 Fig. 7-10 show the results obtained using the bearing-only 

navigation combined with real-time closed-loop control 
method. Fig. 7 and 8 depict the three-axis relative positions 

of the chaser in the target VVLH frame and an enlarged view 

of the X-axis relative position, respectively. Fig. 9 and 10 

show the three-axis relative error of bearing-only navigation 

and an enlarged view of the X-axis at the end. From Fig. 7 

and 8, it can be observed that the entire approach process 
takes about 3300 seconds, with a final X-axis direction 

control error of approximately 70 meters. From Fig. 9 and 

10, it can be seen that the bear-only navigation error in the 

X-axis direction is much larger than that in the Y and Z-axis 

directions. The initial navigation error is about -450 meters, 

and even after convergence, there is still an error of about -
50 meters near the end of the approach. This results in a 

significant control error in the X-axis direction for the real-

time closed-loop control method, which cannot meet the 

requirements for further tasks such as flying around and 

observing after the approach. 

Fig. 11 compares the fuel consumption of the two 

methods. It can be seen from the figure that the method 
proposed in this paper saves about 20% of fuel consumption 

compared to the traditional method. In summary, the method 

proposed in this paper is superior to the traditional method 

in terms of approach time, control accuracy, and fuel 

consumption. 

 

5 Conclusion 

The paper proposes a non-cooperative target approach 
strategy based on bearing-only measurement. Based on 

bearing-only measurement, the method achieves closed-

loop control of the lateral position error of the chaser and 

designs control logic based on the time axis for the course 

direction. Simulation results demonstrate that the proposed 
method significantly outperforms traditional bearing-only 

navigation combined with real-time closed-loop control 

approach, in terms of fuel consumption, approach time, and 

end-point control. The method shows promising prospects 

for practical engineering applications.  
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Abstract: Morphing vehicles achieve optimal flight performance by changing shape under different flight conditions 

and missions to meet different mission requirements. In this paper, the variable span vehicle is studied, and the 

status-deformation cooperative control of the morphing vehicle is developed. The structural deformation of the 

vehicle is treated as the control input, and the status-deformation cooperative control model is established. Then, a 

virtual adaptive sliding mode control law is designed and assigned to the actual control inputs by solving the 

optimization problem. Simulations show that the control algorithm achieves status-deformation cooperative control, 

Compared to conventional vehicles, morphing vehicle can achieve desired cost function optimization by actively 

changing the wingspan at different flight phases, reducing fuel or rudder deflection requirements. 

Key Words: morphing vehicle, variable span vehicle, adaptive sliding mode, control allocation 

 

 
  

1 Introduction 

Morphing vehicles, as a new concept, have been one of 

the research hotspots in the aerospace field in recent years. 

Compared to conventional vehicles, variant vehicles can 

have greater range and greater environmental suitability by 

morphing [1]. 

Since the concept of a morphing vehicle was proposed, 

scholars have investigated multiple ways of morphing. In 

general, variant vehicles can be divided into three categories 

by the size of the deformation scale [2]: The first is 

small-scale deformation, such as local deformation such as 

ballooning; The second is medium-scale deformation, such 

as wing camber, thickness changes; The third is large-scale 

deformation, including variable span, variable wing area and 

wing surface shape, variable sweep. 

A deformable structure is a prerequisite for a morphing 

vehicle to be able to achieve deformation, and current 

morphing vehicles can perform structural deformation by 

some mechanical construction and drive components or 

distributed drive systems [3]. However, the ideal 

deformation mechanism still needs further research and 

breakthrough, such as simple, lightweight, reliable and other 

requirements can not be achieved. 

Changes in aerodynamic characteristics, center of gravity, 

and moment of inertia of the vehicle due to deformation 

bring many difficulties to the design of the control system. 

Overall, there are currently two main research ideas for the 

relationship between the deformation process of the 

morphing vehicle and its control system. The first is to treat 

the deformation as an external given command, and the 

vehicle deforms over time according to the given command, 

on which the control system is then designed. The second is 

to treat the structural deformation as an input to the control 

system, and the deformation is coupled and affected by the 

flight state. 

Variant vehicle control applies more methods of robust 

adaptive control, control based on backstepping, sliding 

mode control and so on. Reference [4] gives the different 

                                                           
*This work is supported by Shanghai Aerospace Control Technology 

Institute. 

regions of the vehicle sweep range, then gives the solution 

conditions for the system to satisfy the robust H ∞ 

performance according to the different control objectives in 

the different regions, and designs the corresponding 

controllers. Ligang GONG [5] et al. established a non-linear 

model of the vehicle's motion, using the backstepping 

method to design controllers such that all signals in the 

closed-loop system are bounded and the vehicle altitude 

tracking error eventually tends to a stable smaller value. An 

adaptive super twisted sliding mode controller is proposed 

in reference [6]. the simulation results show that the 

proposed algorithm has good tracking performance and 

robust performance. All of the above control methods treat 

structural deformation of the variant vehicle as an externally 

given command.Cunyu Bao[7] et al. investigated an 

integrated approach to control and guidance for hypersonic 

missiles with variable span assist control. Simulations 

showed that the variable span missile had a smaller miss 

distance and flight time than conventional missiles, and the 

end fall angle was closer to the design value. 

In this paper, the status-deformation cooperative control 

algorithm of variable span vehicle is designed. The 

simulation results show that the status-deformation 

cooperative control algorithm designed can make the 

vehicle actively change its wingspan in different flight 

phases to achieve the desired cost function optimization, 

reducing fuel or rudder deflection requirements compared to 

conventional vehicles 

2 Dynamics modeling of status-deformation 

cooperative control for morphing vehicles 

2.1 Model of aerodynamic parameters varying with 

span 

The variable span vehicle discussed in this article is 

capable of autonomously varying the length of the wing 

during flight, with the wingspan on either side being 

lengthened or shortened symmetrically. The change in span 

is described by the span deformation ratio ξ , defined as 

follows [8]: 
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 min

max min

b b

b b
ξ

−
=

−
 (1) 

where b is the actual span and 
min max

,b b is the shortest and 

longest span, respectively, and it is clear that the span 

deformation ratio ξ varies with the vehicle's span, taking 

values in the range [0,1]. 

Morphing vehicle longitudinal aerodynamic forces and 

moments are defined as: 

 
w L

w D

w A m

L QS C

D QS C

M QS c C

=

=

=







 (2) 

where 
2

0.5Q Vρ=  is the dynamic pressure, ρ  is the 

atmospheric density, ,
w A
S c is the wing reference area and 

characteristic length, respectively, , ,
L D m
C C C are the lift 

coefficient, drag coefficient, and pitch moment coefficient, 

respectively, which are functions of the span deformation 

rate. Aerodynamic parameter , ,
L D m
C C C  can be fitted as a 

polynomial as follows:  

 

0

0 2

0

2

2

2

qe

qe

A

L L L L e L

D D D D

A

m m m m e m

c
C C C C C q

V

C C C C

c
C C C C C q

V

α α δ

α α
α

α α δ

α δ

α α

α δ

=

=

=

= + + +

= + +

= + + +









 (3) 

where α  is the angle of attack and 
e

δ  is the rudder 

deflection in radians. 
0 0 0

, ,
L D m
C C C

α α α= = =  
are the lift coefficient, 

drag coefficient, and pitch moment coefficient at zero angle 

of attack, respectively. , ,
e e e

L D m
C C C

δ δ δ

are the aerodynamic 

derivatives of lift, drag and pitching moment with respect to 

elevator deflection, respectively. , ,
L D m
C C C

α α α

are lift, drag 

and pitching moment with respect to angle of attack, 
2

D
C

α  
is 

the secondary aerodynamic derivative of drag with respect 

to angle of attack, and ,
q q
L m
C C  are the aerodynamic 

derivatives of lift and pitching moment with respect to pitch 

angle velocity, respectively. 

The above aerodynamic derivatives are functions of flight 

altitude h , Ma , and span deformation rate ξ . 

( )

( )

( )

( )

0
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 (6) 

where h is in km, 
2

D
C

α

is in rad-2, and other aerodynamic 

derivatives are in rad.  

Further, the aerodynamic parameters (4)-(6) are 

organized into matrix forms for height, Mach and span 

deformation correlation. 

[ ]

0 0 2 0

, , , , , , , , , ,

, , ,1

q q e e
L L L D D D m m m L m
C C C C C C C C C C C

C h Ma

α α α α α α δ δ
α

ξ

= = =

Τ

Τ

=

 
 

(7) 

where the coefficient matrix 

 

0 0.0098 0.4890 0.3340

0.0001 1.0597 6.0872 5.9792

0 0.8710 5.1386 9.6995

0.0005 0.0277 0.0142 0.0288

0.0001 0.0325 0.0906 0.1883

0.0011 1.2434 0.1408 2.1775

0.0001 0.0031 0.2436 0.0121

0.0001 0.0922 1.4954 1.6444

0 0.6

C

− −

−

= − −

− −

− − − −

− 857 1.0762 18.1012

0.0013 0.0316 0 0.4099

0.0030 0.1256 0 0.9766

− −

−

− −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (8) 

2.2 Status-deformation cooperative control model 

With reference to the conventional vehicle dynamics 

modeling process, the longitudinal dynamics equation for a 

variable span vehicle is 
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where m  is the mass, V is the velocity, ( ) ( ), ,L D Tξ ξ

are lift, drag, and thrust respectively, , ,α θ ϑ are the angle of 

attack, ballistic inclination, and pitch angle respectively, 
y
I

is the component of the vehicle's moment of inertia with 

respect to the z  axis of the body coordinate system, q is the 

component of the angular velocity of rotation of the body 

frame relative to the ground frame on the axis of body frame

z , and ( )M ξ  is the pitching moment. Both aerodynamic 

forces and aerodynamic moment ( ) ( ) ( ), ,L D Mξ ξ ξ  are 

related to the span deformation rate, see previous article for 

specific expressions. 

Additionally, vehicle thrust is described using a linear 

relationship 

 
t
t

T T
δ
δ=  (10) 

where 85.2N/%
t

T
δ

=  is the engine thrust coefficient and 
t

δ  

is the engine throttle opening. 

Further, the structural deformation of the morphing 

vehicle is treated as a system control input, and the dynamic 

model of state deformation coordinated control of the 

variant vehicle is established as follows. 

 ( ) ( ), ,m m mx f x g x u dξ ξ= + +&  (11) 

where [ ]x V q hα ϑ
Τ

=  is the state vector, 

[ ]
m e t
u δ δ ξ

Τ

= is the input vector, d is the compound 

interference vector, and the system function ( ),
m
f x ξ  is 
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The system function ( ),

m
g x ξ  is 

 ( ) ( ) ( ) ( )[ ]
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, , , ,
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3 Design of state deformation cooperative control 

algorithm for morphing vehicle 

3.1 Design of adaptive sliding mode control algorithm 

In this section, the adaptive sliding mode control 

algorithm is designed according to the morphing vehicle 

status-deformation cooperative control model. The velocity 

subsystem and attitude subsystem are extracted, and an 

adaptive sliding mode control law with preset adjustment 

time is designed for the two subsystems, respectively, to 
enable the velocity and attitude (obtained from the desired 

altitude) of the system to track the command signal within 

the specified time. 

The variable span vehicle status-deformation cooperative 

control model (11) is broken down into two subsystems: 

 [ ]
1 11 21 31 1m m m m m

V f g g g u d= + +&
 (14) 

 [ ]
4 14 24 34 4m m m m m
f g g g u dϑ = + +&&  (15) 

Denote [ ]
1 1 11 21 31c m m m m m
v f g g g u= + and

[ ]
2 4 14 24 34c m m m m m
v f g g g u= +  

  
1 1c

V v d= +&
 (16) 

 2 4c
v dϑ = +&&  (17) 
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Furthermore, the proposed adaptive sliding mode control 
algorithm is designed as follows: 
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where ( )1, 2
i
e i =  is the system tracking error, 

( )1, 2
i
iη = is the designed expected error curve, 

( )1, 2
i
s i = is the designed sliding surface, and ( )ˆ 1, 4

i
d i =

is the estimate of the unknown bounded parameter

( )1, 4
i
d i = , which is updated by the following adaptive 

law: 
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where sat(.) represents the saturation function, 
i

ε  satisfies 

the inequality 
1

0
2

i ii
Cε< < òi ,

i
òi  is the steady-state 

tracking accuracy,. ( )1, 2
i
C i = , ( )1, 2

i
iµ = , ( )1, 2

i
k i =  

are the design parameters. 

Lemma 1 [9]: For system (14)-(15), when the reference 

command signal ,
d d
V ϑ  has a second order continuous 

derivative and is bounded, the proposed adaptive sliding 

mode control algorithm (18)-(19) can realize that: 

(1) , , ,V V ϑ ϑ&& are all bounded; 

(2) When t → ∞ , ( ) ( )
,

ˆ ˆ 1, 4
i i
d t d i

∞
→ = , where 

,

ˆ
i
d

∞
 is a 

constant; 

(3) For the preset settling time 0
f
T >  and steady-state 

tracking accuracy 0
i
>òi , if the design parameters are 

chosen such that

2

2

i

i

i

d
µ

ε
≥ , then, when

f
t T≥ , the system 

state ,V ϑ  satisfies that: 
1 2
  ,  

d d
V V ϑ ϑ− ≤ − ≤òi òi . 

3.2 Control Input Assignment 

This section assigns the two virtually control designed 

previously to the three actual control inputs, rudder 
deflection, throttle opening, and span deformation rate 

An expression entered by the virtual control gives: 

 
1 11 21 31 1

4 14 24 34 2

m m m m c

m

m m m m c

f g g g v
u

f g g g v
+ =
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Further, make 
1 11 21 31

4 14 24 34

,
m m m m

m m m m

f g g g
A B

f g g g
= =
   
   
   

,

c
v v A= − , Then the formula above translates to: 

 
m

Bu v=  (22) 

Therefore, the problem is transformed into solving the 

actual control law 
m
u  by the above equation. 

In making control allocation, the control inputs are 

considered to be as close to the initial equilibrium state of 
the system as possible, while the rate of change of the 

control inputs is as small as possible, so the above control 

allocation problem is represented as an optimization 

problem as shown below 

 

( ) ( )( ){ }
1 0 22 2

min

. .   

m

m m m m
u

m

W u u W u u t T

s t Bu v

− + − −

=
 (23) 

where 
0m

u  is the control input in the initial equilibrium state 

of the system and T  is the sampling time of the system. 

Two lemmas are introduced below to solve the above 

optimization problem. 

Lemma 2 [10]: an optimization problem 

 ( ) ( ){ }
1 1 2 22 2

min
x

W x x W x x− + −
 (24)

 

is equivalent to: 

 ( ){ }
0 2

min
x

W x x−
 (25) 

where ( )
1/ 2

2 2

1 2
W W W= + , ( )2 2 2

0 1 1 2 2
x W W x W x

−
= + . 

Lemma 3 [10]: For the optimization problem: 

 

( ){ }
0 2

min

. .   

x

W x x

s t y Ax

−

=
 (26) 

there are the following solution: 

 0
x Fx Gy= +  (27) 
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where ( )
1

1 1
,F I GA G W AW

−− −
= − = .

 

Note that since 1
AW

−  is not a square matrix, here 

( )
1

1
AW

−−  represents the pseudoinverse of 1
AW

− , and the 

specific solution expression is: 

 ( ) ( ) ( )( )
1

1
1 1 1 1

AW AW AW AW
−− Τ Τ− − − −

=  
   (28)

 

Finally, from the above two lemmas, the solution of the 

optimization problem (24) can be obtained as 

 1m
u Fu Gv= +  (29) 

where: 

( ) ( )
1 1/ 2

1 1 2 2

1 2
, ,F I GB G W BW W W W

−− −
= − = = +  

( )( )2 2 2

1 1 0 2
u W W u W u t T

−
= + −  

So far, the control law of state deformation coordinated 

control for variable span vehicles is obtained. In which, the 

wingspan deformation rate is adjusted as control input 
according to the state of the system, achieving the flight 

status-deformation cooperative control of the morphing 

vehicle. In addition, by adjusting the weight matrix, the 

approach degree of the three inputs to the initial equilibrium 

point and the rate of change of the three inputs can be 
controlled, so the problems such as the controller saturation 

control quantity changing violently can be solved to some 

extent. 

4 Simulation results 

In this section, the advantages of the morphing vehicle 

over conventional vehicles and the effectiveness of the 

proposed adaptive sliding mode control algorithm are 

verified through a numerical simulation. 

4.1 Simulation condition 

The control task is to use the proposed control algorithm 

such that: the speed increases from 100 m/s to 150 m/s in 50s 

and remains thereafter, and altitude remains at a level of 

2km in the first 50s and climbs to 2.5 km from 50s to 80s, 

remains at a level of 2.5km from 80 to 140s, decreases to 2 

km from 140 to 170s, and remains at a level of 2 km 
thereafter. The thrust optimization is expected in the flat 

flight phase, and the rudder deflection and rudder rate 

optimization are expected in the maneuvering phase. 

The parameters are set as: 

17.09, 1.74, 4067.5, 85.2, 9.8
t

w A y
S c I T g

δ
= = = = =  

1 1 1 1 2
,1247 3, 0.8, 50, 15, 10

f
m k T kε µ= = = = = =  

2 2 2
0.05, 0.2, 13

f
Tε µ= = =  

Cruise flight segment 

[ ]( ) [ ]( )
1 2

diag 1 0.1 10 , diag 200 0.1 10W W= =  

Maneuvering flight segment 

[ ]( ) [ ]( )
1 2

diag 100 0.1 10 , diag 200 0.1 10W W= =  

4.2 Simulation results and analysis 

The simulation results are shown in fig: 

 

Fig. 1: Flight speed curve 

 

 

Fig. 2: Flight altitude curve  

 

Fig. 3: Rudder deflection curve 
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Fig. 4: Throttle opening curve 

 

Fig. 5: Span deformation rate curve 

From Figure 1, both conventional and variable span 

vehicles are capable of reaching a specified speed in 50 s, 

without overshoot, and without steady state error. Variable 

span vehicles have minor (within 0.5 m/s) fluctuations in 
velocity near steady state values at the moment of span 

change 

From Figure 2, both conventional and variable span 

vehicles are capable of the assigned altitude mission, with 

essentially no difference between the dynamic and 

steady-state processes, with a steady state error of 0 and an 
overshoot of 0.5%. 

From Figure 3, in the vehicle maneuvering phase (0~80s, 

140~170s), the variable span vehicle rudder deflection 

requirements are significantly smaller than for conventional 

vehicles (more than 57%). In the initial start control phase, 

both rudder deflection and angular velocity requirements are 
large for conventional vehicles, with rudder deflection 

requirements around 14 ° and rudder deflection velocity 

reaching a limiting amplitude (350 °/s), while variable span 

vehicles reduce both rudder deflection and angular velocity 

requirements through span changes, with maximum rudder 
deflection within 5 ° and rudder deflection velocity 

significantly reduced. 

From Figure 4, in the level flight phase (80-140s, 

170-250s), a variable span vehicle changes aerodynamics 

through span deformation, reducing thrust requirements by 

more than 14.5% for the same mission. 

From Figure 5, the conventional vehicle wingspan 

deformation rate maintains an initial wingspan of 0.5, while 
the variable span vehicle changes the wingspan according to 

mission requirements, thereby achieving different 

optimization goals for different phases of flight. 

5 Conclusion 

In this paper, the span deformation is regarded as the 

control input of a variable span vehicle, and the vehicle 

status-deformation cooperative control dynamics model is 
established; An adaptive sliding mode method with preset 

adjustment time is applied, which ensures the vehicle state 

under compound jamming converges in a specified time. 

The simulation results show that the state deformation 

coordinated control has little difference from the 

conventional vehicle in state tracking accuracy and dynamic 
process. However, compared to conventional vehicles, the 

state deformation coordinated control of variant vehicles can 

change the wingspan and reduce thrust or rudder deflection 

requirements by adjusting the control gain allocation matrix. 
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Abstract: As humans continue to deepen their exploration of space, lunar autonomous driving technology has gradually become 

a research hotspot. This article conducts a comprehensive and in-depth study of lunar autonomous driving technology, aiming 

to provide technical support for future lunar exploration missions. First, the background and significance of lunar autonomous 

driving technology are introduced, and the characteristics of the lunar environment and the importance of autonomous driving 

in lunar exploration are explained. This paper proposes a lunar surface autonomous driving method based on hybrid A*. This 

method detects obstacles and 3D targets through pre-fusion of radar and images, thereby constructing a passable grid map, and 

then uses the hybrid A* algorithm as a During the global planning period, the path is planned in real time, control instructions 

are output, and automatic detection and avoidance of obstacles are realized. At the same time, combined with the Lidar vision 

inertial fusion odometer algorithm, autonomous navigation of lunar vehicles is achieved. Finally, the feasibility and effectiveness 

of the proposed method were verified through experiments. The research results of this article will provide important technical 

support for future lunar exploration missions and help promote the further development of lunar surface autonomous driving 

technology. 

Key Words: Lunar surface exploration, autonomous driving, hybrid A*, unstructured paths, lunar surface environment 

perception 

 

 
  

1 Introduction 

As terrestrial autonomous driving technology becomes 

more and more mature, and the craze for manned lunar 

landings is promoted, some countries and institutions are 

actively combining terrestrial autonomous driving 

technology to carry out research and exploration of lunar 

autonomous driving[1] . For example, NASA and the private 

company SpaceX are both developing lunar autonomous 

driving technology. 

In the future, humans will need to establish bases and 

facilities on the moon. By using autonomous driving 

technology, lunar surface construction and base construction 

can be carried out more quickly and efficiently, providing 

more support and guarantee for human survival and 

development in space. And the moon contains abundant 

resources, including water, oxygen, helium-3, etc. By using 

autonomous driving technology, these resources can be 

developed and utilized more quickly and efficiently, 

providing more support and guarantee for human survival 

and development in space[2] . In addition to applications on 

the moon, lunar autonomous driving technology can also be 

applied to other deep space exploration missions, such as 

exploration missions to Mars, Venus and other planets. 

Ground autonomous driving mainly relies on advanced 

sensors, computer vision, artificial intelligence and machine 

learning technologies to perceive, analyze and make 

decisions on the road environment, thereby achieving 

autonomous navigation and control of the vehicle. The 

computing resources for autonomous driving on the lunar 

 
*This work is supported by Shanghai Sailing Program(22YF1447200). 

surface are relatively demanding, and special problems such 

as complex lunar terrain, communication delays, and energy 

supply need to be solved. 

Terrestrial autonomous driving usually relies on the 

global positioning system for positioning. On the lunar 

surface, due to the lack of communication systems on the 

earth, other methods need to be used for positioning, such as 

using lunar maps and odometry. 

In terms of application scenarios, ground autonomous 

driving is mainly used in road scenarios such as urban roads 

and highways. Complex traffic environments and factors 

such as road signs and signals need to be considered. 

Autonomous driving on the lunar surface is mainly used in 

the rugged lunar terrain and special environments without an 

atmosphere. It needs to solve problems such as lunar terrain 

identification and obstacle avoidance. However, 

autonomous driving on the lunar surface is also divided into 

three parts: perception, planning and control, as shown in the 

figure below. 

 
 

Fig. 1: Schematic diagram of the lunar autonomous driving 

process 

Among them, helping astronauts realize automatic 

perception planning on the lunar surface has the following 

advantages:  

(1) It can improve mission efficiency: the environment on 

the lunar surface is complex and harsh, including uneven 
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terrain and lack of atmospheric protection. Autonomous 

driving technology can help lunar probes or vehicles 

navigate and avoid obstacles autonomously, thereby 

improving mission execution efficiency. 

(2) Reduce human errors: Astronauts are prone to errors 

when operating in complex and harsh environments, and 

autonomous driving technology can use algorithms and 

sensors to perceive the environment and make decisions, 

reducing risks caused by human errors. 

(3) Achieve remote operation: Due to the long distance 

between the moon and the earth, communication delay is an 

important issue. Autonomous driving technology can reduce 

reliance on real-time communications, allowing lunar 

probes or vehicles to perform tasks autonomously without 

real-time instructions. 

(4) Cost reduction: Autonomous driving technology can 

reduce the operating costs of lunar missions because it 

reduces the need for expensive human resources and allows 

for more efficient use of resources. 

With the deepening of research on planning algorithms, 

reinforcement learning is increasingly used to train agents 

and output control instructions end-to-end. R. U. Sonsalla et 

al[3]  address a solution to access and map a lunar lava tube 

with a semi-autonomous heterogenous team of exploration 

rovers. Yu X et al[4]  designed an end-to-end path planning 

algorithm based on deep reinforcement learning methods, 

including state space, action space, network structure, 

reward function that considers slip behavior, and a training 

method based on proximal policy optimization. However, 

this innovative method lacks safety when operating on the 

lunar surface and is limited by the training constraint 

function. Among traditional algorithms, S. Sedighi et al[5]  

present an innovative and computationally efficient 

approach of fusing the well-known Hybrid A-star search 

engine with the Visibility Diagram planning to find the 

shortest possible non-holonomic path in a hybrid 

(continuous-discrete) environment for valet parking. Similar 

to the A* algorithm, Hybrid A* planning is based on raster 

maps. The difference is that A* does not consider the 

kinematic constraints of the moving body (robot or vehicle) 

when searching for surrounding nodes, while Hybrid A* 

considers this constraint and limits the direction of progress 

when expanding the node, so its output trajectory is certain. 

is passable. 

Therefore, this article uses sensors such as lidar, cameras, 

and IMUs to perceive the lunar surface environment, uses 

the LVI-SAM[6] algorithm to provide positioning 

information and perform three-dimensional mapping, and 

uses the octree algorithm to convert the surrounding 

environment information into a voxel grid and then perform 

secondary processing. Dimensional projection is used as the 

global two-dimensional grid map input of the planning 

algorithm, and the hybrid A-star algorithm is used as the 

global planner to carry out path planning and conduct actual 

experimental tests. The success rate of path planning can 

reach more than 90%. 

2 Perception Method of Lunar Surface 

Autonomous Driving  

The lunar surface scene mainly consists of undulating 

terrain such as craters. There are no unique ground objects 

such as trees and buildings. It lacks significant visual texture 

and geometric features. Conventional SLAM solutions using 

a single sensor face huge challenges. In addition, the lunar 

scene also presents many challenges due to the undulating 

terrain, bumps during the robot's exploration, sudden 

changes in posture, and dramatic changes in lunar 

illumination. Therefore, this article uses LVI-SAM multi-

sensor fusion to obtain visual, laser, and inertial multi-modal 

data. Different modal data complement each other's 

advantages and significantly improve the robustness to 

environmental challenges. In order to achieve reliable 

autonomous positioning of the patrol vehicle, special 

attention is paid to autonomous positioning in degraded 

scenarios, which is the basis for autonomous driving on the 

lunar surface.

 
 

Fig. 2: Lidar vision-inertia fusion positioning algorithm flow chart

As shown in the figure, the IMU odometry node is added 

to the laser odometry and visual odometry threads, and with 

the IMU as the central node, the lidar, IMU, and camera are 

integrated to perform motion recovery in a coarse-to-

precision manner. The visual inertial odometry establishes a 

reprojection error for factor graph optimization. The error 

factors include visual reprojection error, IMU pre-

integration error, marginalization error and a priori pose 

error provided by the IMU odometry. Laser inertial 

odometry, based on the extraction of point, line and surface 

features in the laser point cloud, uses the prior pose of the 

IMU to determine the area where the point, line and surface 

features to be matched in the laser point cloud are located, 

and uses the dynamic octree algorithm to perform laser The 
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addition of new points and the removal of old points in the 

point cloud, as well as the search for feature points. Use 

linearity, flatness and curvature to establish point-point, 

point-line, point-surface measurement error functions, and 

add the error factors in the laser inertial odometry together 

with the IMU pre-integration error and the IMU prior pose 

error. 

The visual inertial odometry subsystem and the laser 

inertial odometry subsystem provide pose estimation to 

constrain the IMU's bias, establish the IMU pre-integration 

factor, and update the IMU pre-integration result. After this, 

two different residuals are obtained, different weights are 

given to the two residuals, and the IMU residual factor 

calculation is performed using the reliability of the 

observation environment. Finally, motion prediction is 

implemented in the IMU odometry node. 

 
 

Fig. 3: Octree map of experimental scene 

At the same time, after the slam algorithm establishes a 

point cloud map, the point cloud map needs to be processed 

to meet navigation planning requirements. Two-dimensional 

raster maps and octree maps can be used directly for 

planning, while octree maps are sparse, structured, and 

indirect coordinate index queries, which can reduce memory 

consumption. Therefore, laser point clouds are used for 

constructing octree maps, the octree uses probability to 

describe the occupancy of nodes. Given lidar measurements 

1:tz , the probability ( )1:tP n z  that a leaf node n  is 

occupied is calculated as: 

( )
( )

( )
( )

( )

1

1: 1

1:

1: 1

1 1 ( )
1

1 ( )

t t

t

t t

P n z P n z P n
P n z

P n z P n z P n

−

−

−

 − −
= + 

−  

∣ ∣
∣

∣ ∣
  (1) 

The above equation depends on the current measurement 

tz  , the prior probability ( )P n  and the previous estimate 

( )1: 1tP n z −  . ( )tP n z  represents the probability that 

voxel n  is occupied given the measurement of tz , this 

value is specific to the lidar that generated tz  , and then 

stores the logit value of the probability ( )1:tP n z ,where: 

( )
L( ) log

1 ( )

P n
n

P n

 
=  

− 
                    (2) 

The updated formula after Logit transformation is as 

follows: 

( ) ( ) ( )1: 1: 1L L Lt t tn z n z n z−= +∣ ∣ ∣       (3) 

Then map the octree map, set the threshold of the z-axis 

of the point cloud map, fine-tune the minimum value of the 

z-axis to just filter out the ground information, characterize 

the obstacle information higher than the ground, and obtain 

a two-dimensional raster map Used for subsequent path 

planning algorithms, as shown in the figure below, an area 

is divided into many small grids, and then a binary value (0 

or 1, 0 means free; 1 means occupied) is placed in each grid. 

As shown below, a two-dimensional raster map with a 

resolution of 0.05m: 

 
 

Fig. 4: 2D raster map of the experimental scene 

3 Method of Path Planning Based on Hybrid A* 

At present, a variety of planning algorithms have been 

proposed in the field of mobile robots. They can be roughly 

divided into two categories: global path planning algorithms 

and local path planning algorithms based on their application 

problem scenarios. Global path planning can usually plan an 

optimal path, but it requires Accurate information about the 

environment is known in advance. At the same time, because 

the planned map space is large, it is generally difficult to 

consider kinematic constraints to ensure completeness and 

solution efficiency. Local path planning focuses on 

considering the current local environment information of the 

robot, and it relies on the sensors carried by the robot. 

Dynamically obtain local environment information around 

the robot, and change it in real time as the environment 

changes. Compared with global path planning, local path 

planning has higher real-time performance due to smaller 

planning space, and can also satisfy kinematics and 

dynamics. constraints, but global optimality is difficult to 

guarantee. Considering that the environmental information 

may be unknown or incomplete when the lunar rover 

performs special tasks such as autonomous driving and 

scientific exploration, the solution that combines global path 

planning and local path planning algorithms is more suitable 

for autonomous driving on the lunar surface. 

This paper uses the hybrid A* algorithm as the global path 

planner. The hybrid A* algorithm is an algorithm for path 

planning in a continuous state space, which combines the 

traditional A algorithm and the vehicle dynamics model. 

Through the combination of discretized state space and 

continuous dynamics model, this algorithm can find the 

optimal path while considering vehicle constraints. First, we 

need to define the map and related parameters of the target 
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area. Assume that the target area is a rectangular area. The 

three-dimensional octree map is obtained by the positioning 

and mapping algorithm introduced in Section 2, and then 

converted into a two-dimensional raster map, where, 0 

represents the drivable area and 1 represents the obstacle 

area. Additionally, we need to define the coordinates of the 

starting and target points. 

The lunar rover is different from the Ackermann steering 

structure like a car, and may have a unique mechanism type. 

This article assumes that the lunar rover's kinematic model 

is: 

( )sinx v =                            (4) 

( )cosy v =                           (5) 

 =                                    (6) 

Vehicle motion satisfies the following conditions: 

( ) ( )cos sin 0x y − =                  (7) 

The Hybrid A* algorithm structure is very similar to the 

A* algorithm process. The core difference lies in (1) 

generation of child nodes (2) heuristic function design. 

 
 

Fig. 5: Car body movement diagram 

Node expansion mainly uses different turning angles to 

generate different short-distance nodes. First, it is decided 

whether to evaluate the node based on whether the local 

trajectory collides. If there is no collision, the arc length of 

the generated node can be used to determine the cost. Of 

course, the cost caused by steering and the cost of changes 

in the traveling direction can also be considered. 

For each child node, consider the grid that the node 

reaches： 

(1) If the node reaches the grid and the grid is not in the 

closed set, it means that the grid has not been expanded, then 

continue to expand the evaluation. 

(2) If the grid is not in the open set (indicating that this 

grid has not been extended by any previous node) and if the 

cost-so-far of the parent node plus the cost of extending the 

child node to the current grid is less than the cost-so- of the 

current node far, the new node is considered to be a child 

node of the parent node, and the g function is updated at the 

same time, and the heuristic function is used to estimate the 

cost-to-come, and the child node is added to the open set. 

Two heuristic functions are used in Hybrid A*: 

constrained heuristic and unconstrained heuristic, which 

represent different node expansion methods. 

Constrained heuristic considers vehicle imperfections and 

ignores environmental obstacles. This heuristic function 

considers the current heading and turning radius of the 

vehicle in order to maintain the correct posture when the 

vehicle approaches the target node. Commonly used 

heuristic function values can use Dubins and Reeps-Shepp 

curves to calculate the shortest distance between two points, 

so the heuristic function formula is acceptable. 

Unconstrained heuristic only considers obstacles and 

ignores vehicle incomplete restrictions. This heuristic 

function can be calculated entirely based on the shortest path 

distance from the current point to the target point. 

Commonly used heuristic functions can use Euclidean 

distance, etc., so this heuristic function is also acceptable. 

Since both heuristic functions are acceptable, we only 

need to go to the maximum value between the two as the 

final heuristic function value. 

( ) ( ) ( ) max , ,c gh x l x d x x=                 (8) 

In the formula, ( )l x  is the extended node distance 

function, and ( ), gd x x  is the function between the current 

node and the target node. 

Although the path planned by Hybrid A* is executable, 

there are some unnecessary turning operations, so the path 

smoothing of the Hybrid A* planning result is required to 

obtain a smoother and safer path. By using a gradient descent 

smoother, its objective function can be expressed as 

obs obs cur cur smo smo vor vorP P P P P   = + + +    (9) 

obsP  is Defined as an obstacle term that penalizes 

collisions with objects. Assume that ix  is each point on the 

path, for the point that satisfies i i obsx o d−  , where 
io  is 

the nearest obstacle from ix , obsd  is the maximum 

threshold of collision risk, the penalty between the two can 

be expressed by a quadratic function, that is 

( )
2

i i obsx o d− − . 

( )
0

N

obs obs i i obs

i

P x o d
=

= − −               (10) 

Among them, obs  is the quadratic penalty function, 

when i i obsx o d−   is 0. 
curP  is defined as the curvature 

term. for max
i

ix






 punishment, 

1

max

1

N
i

cur cur

i i

P
x

 
−

=

 
= −   

                (11) 

Among them, cur  is defined as the quadratic penalty 

function, and 1

1

arccos i i
i

i i

x x

x x

+

+

 =  is the change of the 

tangent angle between the point i  and the adjacent point.  

1i i ix x x − = −  is the vector difference between point i and 

its adjacent points. The displacement vector between 

vertices is evaluated for the smoothing term smoP , which 

can be defined as, 
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( )
21

1

1

N

smo i i

i

P x x
−

+

=

=  −                   (12) 

vorP  can make the path away from obstacles. This 

definition uses the voronoi field function, which is simply 

expressed as 

( )
1

,
N

vor i i

i

P V x o
=

=                    (13) 

4 Experiments 

4.1 Structured Park Experiment 

We use the unmanned vehicle platform system to organize 

field tests on the perception planning method proposed 

above. The hardware mainly includes AutoBots-Pro - a 

modular and highly intelligent wire-controlled chassis with 

strong load capacity ( Full load mass 1700KG) and passing 

capacity are suitable for a variety of application scenarios. It 

supports manual remote control driving and automatic 

driving, and reserves multi-sensor wiring harness interfaces 

for automatic driving. It can be equipped with sensors and 

intelligent devices such as lidar, positioning module RTK-

GNSS, and cameras, making it convenient for developers to 

apply various automatic driving scenarios. 

 
 

Fig. 6: Experimental platform and sensors 

 
 

Fig. 7: Comparison of environmental maps and satellite maps 

Table 1: Test parameter table 

project parameter 

Length*width*height 

(mm) 
3250*1675*660 

suspension solution 

Front and rear double 

wishbone independent 

suspension 

Minimum turning radius 

(m) 
≤3.2 

Communication Interface CAN 2.0B 

control mode 
Remote control/computer 

command control 

camera Flir 41c6c 

lidar Ch128X1 

IMU Yesense 510A 

On-board computer NVIDIA AGX Xavier 

 

（a） 

 

（b） 

 

Fig. 6: Structured park experimental path planning results 

In the structured park test site, our global path planning 

technical framework based on this complex map is shown in 

Figure 8. First, the hybrid A* algorithm is used to perform 

path planning on a low-precision environmental data model. 

Subsequently, the obtained path is segmented, and the 

starting point and end point of each segmented path are re-

planned using the direction-guided path search method. 

Finally, the segmented paths are connected to form the final 

global path. This method aims to improve the computational 

efficiency of the algorithm while reducing the length cost of 

path planning. 

 
 

Fig. 8: Autonomous driving test flow chart 

4.2 Unstructured Lunar Terrain Simulation 

Experiment 

In addition, we conducted autonomous driving tests in an 

unstructured simulated lunar scene. The venue is as shown 
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below. After determining the absolute coordinate system, 

vehicle body coordinate system, and odometer coordinate 

system, we continuously solved the vehicle body motion 

through sensor data. position to provide positioning 

information. At the same time, lidar and cameras sense the 

area ahead, represent it with an octree map, and then map it 

into a two-dimensional grid map, which is provided to the 

hybrid A* global planner to plan a safe path to the target 

location. . Since there are no dynamic obstacles on the lunar 

surface, dynamic local obstacle avoidance is not considered 

for the time being. The planning results are shown in Figure 

10. 

 
 

Fig. 9: Unstructured experimental site 

 

（a） 

 

（b） 

 

Fig. 10: Experimental results of unstructured simulated lunar 

terrain path planning 

5 Conclusion 

In response to the demand for global path planning 

technology in complex terrain, the research team plans to 

conduct research on overcoming the limitations of low 

computational efficiency in long-distance cross-country 

path planning. This study combines the characteristics of 

off-road path planning that are not restricted by road 

network traffic and the theory of the straight-line shortest 

path between two points, proposes a direction-based search 

guidance path planning method, and performs path 

segmentation optimization to improve path quality and 

improve Computational efficiency. 

Through forward fusion of radar vision, negative obstacle 

detection and 3D target detection are performed to construct 

a passable grid map. Improving the lunar rover's scene 

understanding and cognitive capabilities will help the lunar 

rover better plan its autonomous movements in complex 

terrain environments. 
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Abstract: In this paper, the robust tracking control of a combined spacecraft simulator (CSS) system is investigated based on the
discrete-time fully actuated system (FAS) approach. Firstly, the CSS system is modeled as a discrete-time uncertain second-order
FAS model and generalized to general discrete-time high-order fully actuated systems (HOFASs) with nonlinear uncertainties.
Secondly, for the proposed tracking control problem, a sufficient condition to solve it is given by designing a discrete-time
HOFA robust controller, followed by a stability analysis. Further, the designed controller generates a closed-loop system with
an arbitrary assignable eigenstructure in which the design degrees of freedom can be exploited further. Finally, the proposed
control technique is used to solve the robust tracking control of CSS, and the simulation results demonstrate the effectiveness
and practicality of the proposed method.

Key Words: Discrete-time HOFASs, combined spacecraft simulator, step backward uncertain HOFA models, robust tracking
control, parametric design.

1 Introduction

Robust control is used to deal with uncertainties in the
system, and its related research has always been a research
hotspot in the field of control theory and application. Espe-
cially in recent years, for the robust control of discrete-time
systems, many scholars have combined robust control with
some advanced control methods, giving birth to many theo-
retical and practical research results. Such as, based on the
robust output regulation theory, literature [1] investigated the
optimal output tracking problem for linear discrete-time sys-
tems with unknown dynamics. While a observer based ro-
bust tracking predictive controller for discrete-time nonlin-
ear affine systems was developed in [2]. And literature [3]
studied the problem of static output feedback preview track-
ing control for discrete-time systems with time-varying pa-
rameters. Also for practical applications, literature [4] pre-
sented the design of a robust observer based on discrete-time
formulation of uncertainty and disturbance estimators for
controlling robotic manipulators. And for multi-input multi-
output uncertain discrete-time systems, a systematic method
to design robust tracking controllers, including mechatronics
applications, was developed in [5].

Besides, in recent years, with the rapid development of
the world’s aerospace science and technology, the increasing
complexity of aerospace vehicle structure and control tasks,
as well as the increasingly high system performance require-
ments, the uncertainty problems in aerospace vehicle sys-
tems have become more complex and diversified. Accord-
ingly, the application of relevant methods based on robust
control in aerospace vehicles has burst into new vigor. Based
on the nonlinear disturbance observer control technique, lit-
erature [6] investigated the robust control of attitude tracking
system between two rigid spacecraft, and subsequently, the
authors also proposed a composed control approach by com-
bining a nonlinear disturbance observer and an asymptotic

This work was supported by the Science Center Program of National
Natural Science Foundation of China (62188101).

tracking control for spacecraft formation flying system [7],
while the robust cooperative tracking and application for het-
erogeneous spacecraft systems were addressed in [8]. And
in [9], the problem of robust output-feedback motion track-
ing control for spacecraft close-range proximity maneuvers
was considered. Also, for robust attitude tracking control of
spacecraft, see [10, 11] and their associated studies.

One thing to note is that most of the research on robust
control, including the above, has been carried out in the first-
order state-space framework. The state-space approach can
still be effective in dealing with linear systems containing
uncertainties, but it is often impotent when faced with un-
certain systems containing complex nonlinearities. Fortu-
nately, the fully actuated system (FAS) method has brought a
new light to deal with complex nonlinear problems [12, 13].
Since its inception, it has demonstrated strong superiority
and capability in both continuous and discrete-time sys-
tems, including adaptive control [14], fault tolerance control
[15] predictive control [16], model reference tracking con-
trol [17], etc. Especially the robust control of continuous
systems has been deeply discussed in [18].

This paper further investigates the robust tracking control
of a combined spacecraft simulator (CSS) system based on
the discrete-time high-order fully actuated system (HOFAS)
approach framework established in [19], which is of great
significance for studying the tracking control of postcapture
combined spacecraft in space.

2 Problem description

In this paper, In represents the identity matrix, det (A),
A−1 and ∥A∥2 are the determinant, inverse and 2-norm of
matrix A, respectively. For Ki ∈ Rm×m, i = 1, 2, · · · , n,
define K0∼n =

[
K0 K1 · · · Kn

]
and

Ψ(K0∼n) =


K0 K1 · · · Kn

I
. . .

I 0

 .
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For x (k), there is xp(k)|p=1∼η=
[
xT
1 (k) x

T
2 (k) · · · xT

η (k)
]T

,
and let q−1 be the one-step backward operator, i.e.,
x⌈i⌉(k) = q−ix(k) = x(k − i). For n0, ni ∈ N, n0 < ni,
i = 1, 2, . . . , n,

x⌈n0∼ni⌉(k)

=


x⌈n0⌉(k)

x⌈n0+1⌉(k)
...

x⌈ni⌉(k)

 ,

x⌈n0∼np⌉
p (k)|p=i∼j = x

⌈n0∼np⌉
i∼j (k)

=


x
⌈n0∼ni⌉
i (k)

x
⌈n0∼ni+1⌉
i+1 (k)

...
x
⌈n0∼np⌉
j (k)

 .

2.1 Discrete-time FAS modeling for the CSS system
As shown in Fig. 1, the CSS consists of two air-bearing

spacecraft simulators (ABSSs) with three degrees of free-
dom and a robotic arm. ABSS 1 and ABSS 2 respectively
represent the service spacecraft and the target spacecraft of
postcapture combined spacecraft, which are suspended with
the aid of air feet and are moved by the hollow cup propellers
controlled by the ”on-board controller”. In this paper, we
consider the robust tracking control of CSS in the case of
power failure of the target spacecraft (for more details see
[17]). The parameters of CSS are listed in Table 1.

Robotic arm of 
service spacecraft

Service spacecraft
Target spacecraft

Hollow cup 
propellers

On-board controllers

High pressure 
gas cylinder

Air feet

Smooth marble platform

Robotic arm control 
mechanism

Reflectors

Fig. 1: The combined spacecraft simulator

Table 1: Related parameters of the CSS
Parameter Notation Value

Mass of the CSS Mc 35.4kg
Distance between two centroids L 0.776m

Moment of inertia of the CSS Jc 5.758kg ·m2

Sampling time Ts 0.2s
Maximum thrust \ 0.2N

Consider the following step backward second-order FAS
model of CSS system with uncertainties
xc(k+1)=2xc(k)−x

⌈1⌉
c (k)+T 2

s
1

Mc
Fx(k)+T

2
s ηsin(xc(k))

yc(k+1)=2yc(k)−y
⌈1⌉
c (k)+T 2

s
1

Mc
Fy(k)+T

2
s ηsin(yc(k))

φc(k+1)=2φc(k)−φ
⌈1⌉
c (k)+T 2

s
1
Jc
Fφ(k)+T

2
s

L
2 ηsin(φc(k)),

(1)
and noting that x1(k) = xc(k), x2(k) = yc(k), x3(k) =
φc(k), (1) can be rewritten into a more compact form

x1∼3(k+1)=2x1∼3(k)− x
⌈1⌉
1∼3(k) + B̆u∗(k)+∆f̆(x1∼3(k),k),

(2)
where x1∼3(k) =

[
x1(k) x2(k) x3(k)

]T
represents the

state vector, u∗(k) =
[
Fx(k) Fy(k) Fφ

]T
denotes the con-

trol vector, B̆=T 2
s diag {1/Mc, 1/Mc, 1/Jc} apparently sat-

isfies the full-actuation det B̆ ̸= 0, and ∆f̆(x1∼3(k),k) =

T 2
s diag{ηsin(x1(k)), ηsin(x2(k)),

L
2 ηsin(x3(k))} is the

unknown uncertainty of CSS system.

Remark 1. In (1), uncertainties ηsin(xc(k)), ηsin(yc(k))
and ηsin(φc(k)) represent the effects of external airflow and
subtle differences in the leveling of the marble platform at
different locations on the states of the CSS system.

Combined with the experimental setting of the practical
CSS, the control objective for the second-order FAS (2) is
given as: by designing a second-order fully actuated robust
controller u∗(k), the state x1∼3(k) of FAS (2) is able to track
a given reference signal x̄1∼3(k) under certain conditions
satisfied by the uncertainty.

2.2 General step backward uncertain HOFASs
Without loss of generality, the second-order FAS (2) can

be generalized to general discrete-time step backward HO-
FASs subject to uncertainties, following the basic framework
of discrete-time HOFAS established in [19],

xp(k+1)|p=1∼η=f

(
x⌈0∼µp−1⌉
p (k)

∣∣∣
p=1∼η

,k

)
+∆f (·, k)

+B

(
x⌈0∼µp−1⌉
p (k)

∣∣∣
p=1∼η

, k

)
u(k),

(3)
where f (·, k) =

[
fT
1 (·, k) fT

2 (·, k) · · · fT
η (·, k)

]T
and

∆f (·, k)=
[
∆fT

1 (·, k) ∆fT
2 (·, k) · · · ∆fT

η (·, k)
]T

are non-
linear vector function and unknown nonlinear uncertainty,
respectively, u(k) ∈ Rr is the control input vector, xp ∈
Rrp , p = 1, 2, . . . , η, is a set of state vectors, µp and rp are
given positive integers satisfying

r1 + r2 + · · ·+ rη = r, (4)

and B(·, k) ∈ Rr×r satisfies the fully actuated condition
detB(·, k) ̸= 0. Also, the nonlinear uncertainty satisfies

Assumption 1. There exists a non-negative scalar γ such
that the nonlinear uncertainty ∆f(·, k) satisfies

∥∆f(·, k)∥2 ≤ γ
∥∥∥x⌈0∼µp−1⌉

1∼η (k)
∥∥∥
2
, (5)

where γ is the positive real number to be found.

Problem 1. Consider the discrete-time HOFAS (3) subject
to uncertainties, and let x̄(k) be a given discrete-time ref-
erence signal to be tracked by the state x(k). To obtain a
HOFA robust controller u(k) such that the state of HOFAS
(3) is able to track the given reference signal x̄(k) under the
condition (5) satisfied by nonlinear uncertainty.

3 Main results

For the proposed Problem 1, this section gives the main
results of solving for it.

3.1 HOFA robust controller design and stability analy-
sis

Denote
ξ(k) = x(k)− x̄(k), (6)

there are{
ξ⌈0∼µp−1⌉
p (k) = x⌈0∼µp−1⌉

p (k)− x̄⌈0∼µp−1⌉
p (k)

ξp(k + 1) = xp(k + 1)− x̄p(k + 1), p = 1, · · · , η,
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and f
(
x
⌈0∼µp−1⌉
1∼η (k), k

)
, ∆f

(
x
⌈0∼µp−1⌉
1∼η (k), k

)
and

B
(
x
⌈0∼µp−1⌉
1∼η (k), k

)
can be converted accordingly with

respect to ξ(k)
f
(
x
⌈0∼µp−1⌉
1∼η (k), k

)
=f

(
ξ
⌈0∼µp−1⌉
1∼η (k), k

)
∆f

(
x
⌈0∼µp−1⌉
1∼η (k), k

)
=∆f

(
ξ
⌈0∼µp−1⌉
1∼η (k), k

)
B
(
x
⌈0∼µp−1⌉
1∼η (k), k

)
=B

(
ξ
⌈0∼µp−1⌉
1∼η (k), k

)
.

Further, the HOFAS (3) can be transformed into

ξ1∼η(k+1)=f
(
ξ
⌈0∼µp−1⌉
1∼η (k),k

)
+∆f

(
ξ
⌈0∼µp−1⌉
1∼η (k), k

)
+B

(
ξ
⌈0∼µp−1⌉
1∼η (k), k

)
u(k)− x̄1∼η(k + 1).

(7)
Apparently, the tracking control of HOFAS (3) can be

equivalently converted to the stabilization control of above
system (7). And a HOFA robust stabilization controller for
system (7) can be given as

u (k)=B−1(·, k)
[
−f

(
ξ⌈0∼µp−1⌉
p (k)

∣∣∣
p=1∼η

, k

)
+v(k)

]

v(k) =


[K1] 0∼ω1−1ξ

⌈0∼ω1−1⌉
1 (k)

[K2] 0∼ω2−1ξ
⌈0∼ω2−1⌉
2 (k)

...
[Kη] 0∼ωη−1ξ

⌈0∼ωη−1⌉
η (k)

+ x̄1∼η(k + 1),

(8)
where [Kp]0∼ωp−1=

[
Kp,0 Kp,1 · · · Kp,ωp−1

]
∈Rrp×ωprp ,

p = 1, 2, . . . , η, are a set of feedback gain matrices to be
determined, and ωp, p = 1, 2, . . . , η, are a set of integers
satisfying ωp ≥ 1. Under the control law (8), the follow-
ing series of closed-loop systems containing nonlinear un-
certainties can be obtained

ξp(k+1)=[Kp]0∼ωp−1 ξ
⌈0∼ωp−1⌉
p (k)

+∆fp

(
ξ
⌈0∼µp−1⌉
1∼η (k), k

)
, p=1, 2, . . . , η. (9)

And, if written in state-space form, the closed-loop system
(9) can be represented as, according to the preceding nota-
tion,

ξ⌈0∼ωp−1⌉
p (k+1) = Ψ

(
[Kp]0∼ωp−1

)
ξ⌈0∼ωp−1⌉
p (k)

+

[
∆fp

(
ξ
⌈0∼µp−1⌉
1∼η (k), k

)
0(ωp−1)rp×rp

]
, p = 1, 2, . . . , η.

(10)

Furthermore, denote

KE = blockdiag
{
[Kp]0∼ωp−1 , p = 1, 2, . . . , η

}
, (11)

Ψ(KE) = blockdiag
{
Ψ
(
[Kp]0∼ωp−1

)
, p = 1, 2, . . . , η

}
(12)

and

∆fH(·, k)=

[
∆fp

(
ξ
⌈0∼µp−1⌉
1∼η (k), k

)
0(ωp−1)rp×rp

]∣∣∣∣∣
p=1∼η

. (13)

Then, obviously, the closed-loop system (10) has a more
compact form as

ξ⌈0∼ωp−1⌉
p (k+1)

∣∣∣
p=1∼η

=Ψ(KE) ξ
⌈0∼ωp−1⌉
p (k)

∣∣∣
p=1∼η

+∆fH(·, k). (14)

It is easy to see that the matrix Ψ(KE) can be made Schur
stable by finding [Kp]0∼ωp−1=

[
Kp,0 Kp,1 · · · Kp,ωp−1

]
,

p = 1, 2, . . . , η. Further, there is the following well-known
lemma.

Lemma 1. For a Schur matrix Ψ(KE), there exists a posi-
tive definite symmetric matrix P (KE) that satisfies the fol-
lowing discrete-time Lyapunov matrix equation

ΨT (KE)P (KE)Ψ (KE)− P (KE) = −2I. (15)

It is already known that the asymptotic stabilization of
system (14) means that the state of HOFAS (3) is eventu-
ally able to track the reference signal x̄(k). Then, according
to the Lyapunov theories of discrete-time systems, the suffi-
cient condition regarding the asymptotic stabilization of the
HOFAS (14) is as follows.

Theorem 1. The state of HOFAS (3) can ultimately track the
reference signal x̄(k) under the transformation (6) and the
control law (8), if for a matrix P (KE) satisfying Lyapunov
matrix equation (15), the uncertainty bound γ in condition
(5) is given by

γ =
Θ−

∥∥ΨT(KE)P (KE)
∥∥
2

∥P (KE)∥2
, (16)

where Θ =
√
∥ΨT(KE)P (KE)∥22 + 2∥P (KE)∥2.

Proof. For derivation convenience, denote

Ξ(k) = ξ
⌈0∼ωp−1⌉
1∼η (k).

Then, choose the Lyapunov function

V (Ξ(k)) = ΞT(k)P (KE) Ξ(k). (17)

The increment of Lyapunov function (17) along system (14)
can be expressed as

∆V =V (Ξ(k + 1))− V (Ξ(k))

= (Ψ(KE)Ξ(k) + ∆fH(·, k))T P (KE)

× (Ψ(KE)Ξ(k) + ∆fH(·, k))− ΞT(k)P (KE)Ξ(k)

=ΞT(k)
(
ΨT(KE)P (KE)Ψ(KE)− P (KE)

)
Ξ(k)

+ 2ΞT(k)ΨT(KE)P (KE)∆fH(·, k)
+ ∆fT

H(·, k)P (KE)∆fH(·, k).
(18)

Substituting (15) into (18) gives

∆V =− 2ΞT(k)Ξ(k) + 2ΞT(k)ΨT(KE)P (KE)∆fH(·, k)
+ ∆fT

H(·, k)P (KE)∆fH(·, k). (19)

It is not difficult to determine that if the following inequality
holds

− 2 ∥Ξ(k)∥22+2 ∥Ξ(k)∥2
∥∥ΨT(KE)P (KE)

∥∥
2
∥∆fH(·, k)∥2
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+ ∥P (KE)∥2 ∥∆fH(·, k)∥22 < 0, (20)

then we have, for the above equation (19),

∆V < 0.

Dividing both sides of the inequality (20) by
∥P (KE)∥2 ∥Ξ(k)∥

2
2 simultaneously, gives

−2

∥P∥2
+2

∥∥ΨTP
∥∥
2

∥P∥2
∥∆fH(·, k)∥2

∥Ξ(k)∥2
+
∥∆fH(·, k)∥22

∥Ξ(k)∥22
< 0

⇔

∥∆fH(·, k)∥2
∥Ξ(k)∥2

+

∥∥ΨTP
∥∥
2
+
√
∥ΨTP∥22+2∥P∥2
∥P∥2


×

∥∆fH(·, k)∥2
∥Ξ(k)∥2

+

∥∥ΨTP
∥∥
2
−
√
∥ΨTP∥22+2∥P∥2
∥P∥2

<0,

(21)

where Ψ(KE) and P (KE) are abbreviated as Ψ and P , re-
spectively, for clarity of presentation. It follows from the
above inequality that if∥∆fH(·, k)∥2

∥Ξ(k)∥2
+

∥∥ΨTP
∥∥
2
−
√
∥ΨTP∥22+2∥P∥2
∥P∥2

 < 0,

(22)
holds, then the inequality (20) holds, which implies ∆V <
0. And the above inequality (22) leads naturally to expres-
sion (16) in Theorem 1.

Remark 2. Theorem 1 gives a sufficient condition for the
state of HOFAS (3) to achieve asymptotic tracking in the
presence of specific uncertainties. For a certain uncertainty,
combined with Lyapunov equation (15), it can be seen that
the key to achieving this condition is to find a suitable Schur
matrix Ψ(KE) such that the relation (5) holds with γ derived
from (16).

3.2 Parameterization of the control law

For the Schur matrix Ψ(KE) ∈ Rϖ×ϖ, ϖ =
η∑

p=1
rpωp, to

be determined in (14), combining the previous notations and
(11)-(12), there is

Ψ(KE) = Ψ0 +𭟋HKE , (23)

where

Ψ0 =blockdiag {Ψ0p, p = 1, 2, . . . , η} ,
𭟋H =blockdiag {𭟋p, p = 1, 2, . . . , η} ,

Ψ0p =


0 0 · · · 0
Irp · · · 0 0

...
. . .

...
...

0 · · · Irp 0

 , 𭟋p=


Irp
0
...
0

 .

It is not difficult to determine the matrix pair (Ψ0,𭟋H)
is controllable. Apparently, for matrix Ψ(KE), the corre-
sponding eigenvector matrix V ∈ Rϖ×ϖ and the expected
Jordan standard type F ∈ Rϖ×ϖ can be determined by the
following Sylvester equation

(Ψ0 +𭟋HKE)V =V F , (24)

where the eigenvector matrix V satisfies

detV ̸= 0. (25)

The solution of (24) can be converted into a standard
eigenstructure assignment problem, that is, given the ex-
pected Jordan standard type F of Ψ(KE), find the eigen-
vector matrix V and configuration matrix KE , such that (24)
and (25) hold. Based on the basic scheme of parametric de-
sign in [13, 20], the following Algorithm 1 is built to solve
it, which also includes the process of solving for γ in (16).

Algorithm 1 Compute the matrix KE and γ in (16)
Input Ψ0, 𭟋H

Output KE , γ

1) Solve a pair of right coprime polynomial matrices N (s) and
D(s) satisfying

(sI −Ψ0)
−1 𭟋H = N (s)D−1(s).

2) Denote D(s) = [dij(s)]r×r , and α =
max {deg (dij(s)) , i, j = 1, 2, . . . , r}, such that

N (s) =

α∑
i=0

Nis
i, Ni ∈ Rϖ×r

D(s) =

α∑
i=0

Dis
i, Di ∈ Rr×r.

3) Choose a Schur matrix F and an arbitrary matrix Z to com-
pute two parameter matrices V and W

V =N0Z + N1Z F + · · ·+ NαZ Fα,

W =D0Z + D1Z F + · · ·+ DαZ Fα.

4) If (25) holds, compute KE via KE = W V −1. Else, return
to Step 3) to recompute matrices V and W .

5) Use the resulting KE to obtain the compound matrix Ψ(KE)
following (23).

6) Solve for P (KE) by substituting Ψ(KE) obtained in Step
5) into Lyapunov equation (15).

7) Acquire γ by substituting Ψ(KE) and P (KE) obtained in
Step 5) and Step 6), respectively, into (16).

Remark 3. In Algorithm 1, the sufficient design freedom due
to the arbitrariness of F and Z can be further exploited, see
literature [17] for details.

4 Application to the CSS system

First, applying the transformation (6), the second-order
FAS (2) can be rewritten as

ξ1∼3(k+1)=2(ξ1∼3(k) + x̄1∼3(k))− (ξ
⌈1⌉
1∼3(k) + x̄

⌈1⌉
1∼3(k))

+ B̆u∗(k) + ∆f̆(ξ1∼3(k),k)− x̄1∼3(k + 1),
(26)

Then, on the basis of Theorem 1, for the above system (26),
the second-order fully actuated robust tracking controller can
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be designed as

u∗ (k) =B̆−1


 [K1] 0∼1ξ

⌈0∼1⌉
1 (k)

[K2] 0∼1ξ
⌈0∼1⌉
2 (k)

[K3] 0∼1ξ
⌈0∼1⌉
3 (k)

+ x̄1∼3(k + 1)

+ x̄
⌈1⌉
1∼3(k)− 2x̄1∼3(k)

)
(27)

where, without loss of generality, the reference sig-
nal x̄1∼3(k) to be tracked is set to x̄1∼3(k) =[
0.5sin(2πk/100) 0.5sin(2πk/100) 0.3sin(2πk/100)

]T
.

Further, the following closed-loop system can be obtained

ξ1∼3(k+1)=2ξ1∼3(k)− ξ
⌈1⌉
1∼3(k) + ∆f̆(ξ1∼3(k),k)

+

 [K1] 0∼1ξ
⌈0∼1⌉
1 (k)

[K2] 0∼1ξ
⌈0∼1⌉
2 (k)

[K3] 0∼1ξ
⌈0∼1⌉
3 (k)


with ∆f̆(ξ1∼3(k),k) being

∆f̆(ξ1∼3(k),k) = T 2
s diag{ηsin (ξ1(k) + x̄1(k)) ,

ηsin (ξ2(k) + x̄2(k)) ,
L

2
ηsin (ξ3(k) + x̄3(k))},

where η = 0.01 in conjunction with the actual experimental
setting.

In addition, the expected Jordan standard type F is set to
be the diagonal matrix formed by real numbers within the
unit circle of the z-plane, namely

F =diag {0.674, 0.720, 0.718, 0.674, 0.444, 0.4909} ,

and the free matrix Z is selected as

Z =

 6.243 7.195 0 0 0 0
0 0 −4.491 4.533 0 0
0 0 0 0 7.133 6.299

 ,

and the other parameters are shown earlier.
Then, by solving the program in Algorithm 1, we get

KE= blockdiag

{[
−0.606
0.515

]T
,

[
−0.608
0.516

]T
,

[
−1.065
0.782

]T}
,

Ψ(KE)= blockdiag

{[
1.394−0.486
1 0

]
,[

1.392−0.484
1 0

]
,

[
0.935−0.218
1 0

]}
,

P (KE) =blockdiag

{[
43.987 −20.046
−20.046 12.369

]
,[

43.493 −19.744
−19.744 12.186

]
,

[
10.216 −1.708
−1.708 2.485

]}
,

and γ = 0.020. Eventually, based on the simulation results,
it can be verified easily that∥∥∥∆f̆H(ξ1∼3(k),k)

∥∥∥
2∥∥∥ξ⌈0∼1⌉

1∼3 (k)
∥∥∥
2

= 0.014 < γ,

which implies the inequality relation (5) holds.
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Fig. 2: The top view of the CSS

Before giving the simulation results, for better under-
standing of the thrust distribution of CSS, a top view of the
CSS is given here as shown in Fig. 2. Therein, the inertial
frame O-xyz is fixed to the marble platform on which the
CSS moves. Os-xsys, Ot-xtyt and Oc-xcyc represent the
body frames of ABSS 1, ABSS 2 and CSS, respectively. The
propellers numbered 1–4 and 5–6 on ABSS 1 represent the
tangential and radial propellers, respectively, with the corre-
sponding thrusts being denoted as f11, · · · , f16. And let

fx1 = f11 − f12, fx2 = f13 − f14, fy1 = f16 − f15

represent the equivalent thrusts along the 1–2, 3–4 and 5–6
thrust directions, respectively. The corresponding simulation
results are shown in Fig. 3–Fig. 6.
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Fig. 3: The tracking trajectory of state xc(k)
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Fig. 4: The tracking trajectory of state yc(k)

As can be seen from the tracking trajectories of states
xc(k) and yc(k) shown in Figs. 3 and 4, the tracking tra-
jectories of the two states have certain tracking errors in the
first 40 s, but then they keep tracking the reference signals.
On the contrary, the yaw angle shown in Fig. 5 shows good
tracking performance throughout the tracking process. It can
be said that our tracking objective for the CSS proposed in
Subsection 2.1 has been successfully achieved.

In addition, from the equivalent thrusts results of the CSS
shown in Fig. 6, it can be seen that during the period when
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Fig. 5: The tracking trajectory of state φc(k)
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Fig. 6: The equivalent thrusts fx1, fx2 and fy1 in different
directions

there are significant tracking errors in the state trajectories,
i.e., within approximately the first 40 s, the thrust outputs
in all three directions are close to or even at the saturated
value of 0.2N. After all states tracked up to the reference
signals, the outputs of all thrusts are significantly reduced as
compared to the previous ones.
5 Conclusion

In this paper, the HOFA robust tracking control of a class
of CSS systems with nonlinear uncertainties is investigated.
The discrete-time HOFA controller designed for the pro-
posed tracking control problem not only gives sufficient con-
ditions for the existence of the solution, but also well elim-
inates the nonlinear terms in the system. In addition, the
eigenstructure of the closed-loop system can be configured
arbitrarily through the control law parameterization process.
The entire process of controller design and parameter solv-
ing is simple enough, easily solvable and the numerical re-
sults are stable. Finally, the proposed technique successfully
solves the robust tracking control problem of the CSS system
and obtains satisfactory tracking results.

In the following research, a more complex dynamic sce-
nario of the CSS system, i.e., the system with both nonlinear
uncertainties and unknown parameters, will be considered,
and discrete-time robust adaptive control based on the FAS
method will be investigated in this case.
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Abstract: On the basis of high-order fully actuated (HOFA) system theory, this research is devoted to a flying-around problem
of spacecraft with lumped disturbances under a sight coordinate system, where the lumped disturbances are used to represent the
total impacts of the model uncertainties and external disturbances. Following the HOFA system theory, a nonlinear HOFA system
model is exploited to establish the relative dynamical model of spacecraft flying-around under the sight coordinate system, such
that the flying-around mission can be equivalent to a tracking control problem. A sliding-mode disturbance observer-based HOFA
(SMDOB-HOFA) predictive control method is proposed to handle this problem. Specifically, a HOFA sliding-mode disturbance
observer is designed to estimate and compensate for the lumped disturbances. Then, an incremental HOFA prediction model
including the errors of disturbance estimation is developed with the help of Diophantine Equation to construct the multi-step
ahead predictions. Based on these predictions, an objective function involving the tracking control performance can be minimized
to obtain an optimal tracking controller for the realization of flying-around mission. The capability of SMDOB-HOFA predictive
control is verified via a flying-around experiment of air-bearing spacecraft (ABS) simulator in a desired circular orbit.

Key Words: Spacecraft Flying-Around, Lumped Disturbances, Sliding-Mode Disturbance Observer, HOFA Predictive Control,
Experimental Verification via ABS simulator

1 Introduction

Because of less prior knowledge of non-cooperative target
spacecraft, it is hard to obtain its related characteristics for
correspondingly service and maintenance in orbit. To cope
with this problem, spacecraft flying-around is studied as an
important task to monitor the status of non-cooperative tar-
get, such that the comprehensive characteristics of spacecraft
can be obtained to achieve the subsequent service and main-
tenance in orbit. Thus, many scholars focus on this field and
have obtained a string of results (see [1–3] and the references
therein). During the flying-around mission, the disturbances
are always present to damage the control performances due
to complex space scenarios, so that a number of represen-
tative approaches have been proposed to consider this prob-
lem, such as fixed-time terminal sliding-mode control [4],
finite-time fault-tolerant control [5], appointed-time safety-
guaranteed control [6], etc.. Among so many methods, the
disturbance observer-based control has become one the most
widely used ways in the spacecraft control, which can realize
the active compensation of disturbances to raise the control
performances (see [7, 8] and their associated literature).

A shortcoming of the above is that they still utilize a tra-
ditional first-order state space model to describe the attitude
and orbit dynamics of spacecraft. In fact, the dynamic model
of spacecraft control is almost always second-order fully ac-
tuated. When using a traditional state space model, the orig-
inal dynamics of spacecraft have to be converted into a first-
order form, such that the physical meanings of original sys-
tems are lost and some drawbacks are caused during the pro-
cess of model reduction. Following this framework, the de-
sign and computation complexities are obviously increased.

This work was supported in part by the National Natural Science Foun-
dation of China under Grants 62173255 and 62188101, and in part by the
Shenzhen Key Laboratory of Control Theory and Intelligent Systems under
Grant ZDSYS20220330161800001.

To address this problem, HOFA system theory is recently
created in [9], which involves the combination of modeling,
analysis, design and applications of control systems. In this
theory, a HOFA system model is applied to describe the con-
sidered original systems, so that the full actuation character-
istic is guaranteed to reduce the difficulties of design process.
In the control design based on HOFA system theory, predic-
tive control plays a significant role and has obtained a string
of reults on the related work of this study (see [10–13]). Con-
cretely, [10, 11] designed a HOFA disturbance observer to
estimate both external disturbances generated by exogenous
system and slowly time-variant lumped disturbances, respec-
tively, and then combined with a HOFA predictive control to
realize the tracking control. [12] transformed the spacecraft
flying-around problem into a tracking control one of nonlin-
ear HOFA systems, and then developed a HOFA predictive
control to deal with this problem. Following [12], [13] fur-
ther used the HOFA predictive control to address the com-
munication constraints in the flying-around task. The results
in [10–13] gave a solid basis for the realization of spacecraft
flying-around under lumped disturbances in this study.

This paper considers a SMDOB-HOFA predictive control
to implement the spacecraft flying-around under lumped dis-
turbances, where a nonlinear HOFA system model is adopted
to describe the relative dynamics of spacecraft flying-around
in a sight coordinate system. Based on this idea, the flying-
around task can be equivalent to a tracking control problem.
To solve this problem, a HOFA sliding-mode disturbance ob-
server is to estimate and compensate for the lumped distur-
bances. Then, an incremental HOFA prediction model con-
taining the errors of disturbance estimation is established by
applying a Diophantine Equation to generate the multi-step
ahead predictions, so that an object function including the
tracking control performance is optimized to obtain an opti-
mal tracking controller for achieving the flying-around mis-
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sion. Further, a flying-around experiment of ABS simulator
is taken to demonstrate the practicality of SMDOB-HOFA
predictive control. The advantages of this paper are summa-
rized in three aspects.

1) By using the HOFA system model, full actuation char-
acteristic can be ensured to eliminate the nonlinearities
for simplifying the design process.

2) A sliding-mode disturbance observer in HOFA form is
designed to estimate the lumped disturbance, which re-
laxes the constraint that lumped disturbance is slowly
time-variant.

3) An incremental HOFA prediction model is established
to replace a first-order prediction model, so that the de-
sign and representation of predictive control are com-
pleted in the perspective of HOFA system theory.

Notation. Nx and Nv are the prediction horizons for state
and control vectors, and Nx ≥ Nv . z is time operator sat-
isfying ϱ(t + µ) = zµϱ(t), µ ∈ Z, where ϱ(t) is an ar-
bitrary signal. ∆ represents a difference operator satisfying
∆ = 1−z−1 so that ∆ϱ(t) = ϱ(t)−ϱ(t−1) is an increment
of ϱ(t). ϱ̂(t+ µ|t) denotes the µ-th ahead prediction of ϱ(t)
based on t time. T indicates the sampling period.

2 Problem Formulation

2.1 Fully actuated model for spacecraft flying-around
A flying-around problem that servicing spacecraft points

to the target one is studied here, whose sketch and its associ-
ated coordinate systems are provided in Fig. 1. Concretely,
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Earth/Ground control center
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Fig. 1: The sketch of flying-around of servicing spacecraft
and its associated coordinate systems.

Os−xsyszs,Ot−xtytzt andOe−xeyeze represent the sight,
orbit and centered inertial coordinate systems. According to
[1], the relative orbit dynamic model of spacecraft flying-
around in the Os − xsyszs coordinate system is given as

ρ̈− ρφ̇2 + 2ωtsρφ̇− 3ρω2
ts sin

2(φ) = uρ,

ρφ̈+ 2ρ̇φ̇− 2ωtsρ̇−
3

2
ρω2

ts sin(2φ) = uφ,
(1)

where ρ and φ denote the relative distance and the sight an-
gle, uρ and uφ represent the associated control inputs, and
ωts is the orbital angular velocity of target spacecraft. De-
note x(t) =

[
ρ(t) φ(t)

]T
, u(t) =

[
uρ(t) uφ(t)

]T
, and

then adopt a forward difference operator ẋ(t) = x(t+1)−x(t)
T

to realize the discretization of system (1), it is yielded that

x(t+2) = f(x(t), x(t+1))+ g(x(t), x(t+1))u(t)+ ζ(t),
(2)

where f(x(t), x(t + 1)) and g(x(t), x(t + 1)) indicate the
known nonlinear vector and matrix functions, and ζ(t) de-
notes a bounded disturbance. In detail, they are defined as

f(x(t), x(t+ 1)) =

[
f1(x(t), x(t+ 1))
f2(x(t), x(t+ 1))

]
,

g(x(t), x(t+ 1)) =

[
T 2 0
0 T 2/ρ(t)

]
,

ζ(t) =

[
3T 2ρ(t)ω2

ts sin
2(φ(t))

3
2T

2ω2
ts sin(2φ(t))

]
,

with f1(x(t), x(t+ 1)) = 2ρ(t+ 1) + (φ2(t+ 1)− 2φ(t+
1)φ(t) + φ2(t) − 1)ρ(t) − 2Tωtsρ(t)(φ(t + 1) − φ(t)),
f2(x(t), x(t+1)) = 2φ(t+1)−φ(t)+2Tωts(ρ(t+1)/ρ(t)−
1)− 2(φ(t+1)−φ(t))(ρ(t+1)/ρ(t)− 1). From [14], sys-
tem (2) is a discrete-time nonlinear second-order fully actu-
ated one. In this paper, system (2) and its general promotion
expression will be deeply considered.

Based on [12, 13], the flying-around mission in the Os −
xsyszs coordinate system can be realized if and only if the
following tracking control target is achieved, that is,

x(t) =

[
ρ(t)
φ(t)

]
→ x⋆(t) =

[
ρ⋆(t)
φ⋆(t)

]
, t→ ∞, (3)

where ρ⋆(t) is a desired relative distance between target and
servicing spacecraft, φ⋆(t) is a desired sight angle that is set
as a periodic function with φ⋆(t) ∈ [0, 2π]. Summarizing
the above shows that the purpose of this paper is to propose
a u(t) for system (2), such that condition (3) is held.

2.2 Problem statement
Based on the extension of system (2), a class of discrete-

time nonlinear HOFA systems is investigated as

x(t+ n) =f
(
x⌊0,n−1⌋(t), u⌈p,1⌉(t)

)
+ g

(
x⌊0,n−1⌋(t), u⌈p,1⌉(t)

)
u(t) + ζ(t),

x(t) =x0(t), u(t) = u0(t), t ≤ 0,

(4)

with

x⌊0,n−1⌋(t) :={x(t), x(t+ 1), · · · , x(t+ n− 1)},
u⌈p,1⌉(t) :={u(t− p), u(t− p+ 1), · · · , u(t− 1)},

where x(t) ∈ Rñ and u(t) ∈ Rñ represent the state and
control vectors, x0(t) ∈ Rñ and u0(t) ∈ Rñ are the re-
lated initial values of x(t) and u(t). n and p indicate the
highest order of state vector and the lowest order of control
vector, respectively. f

(
x⌊0,n−1⌋(t), u⌈p,1⌉(t)

)
∈ Rñ and

g
(
x⌊0,n−1⌋(t), u⌈p,1⌉(t)

)
∈ Rñ×ñ are the known nonlinear

vector and matrix functions, which are denoted by f(·) and
g(·). ζ(t) ∈ Rñ is a lumped disturbance including the model
uncertainties and external disturbances.

Assumption 1. 1) ∀t ≥ 0, det (g(·)) ̸= 0 or ∞, 2) The
state vector of system (4) is available, 3) ζ(t) is unknown
but bounded, which satisfies ∥∆ζ(t+ 1)∥ ≤ ζmax.
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Remark 1. In some researches, such as [11, 15], the lumped
disturbances are required to be slowly time-varying, that
is, ∆ζ(t + 1) ≈ 0, but it is almost impossible in practice.
Hence, the lumped disturbances can not be effectively esti-
mated and compensated, which seriously affect the control
performances. This paper uses ∥∆ζ(t + 1)∥ ≤ ζmax to re-
place ∆ζ(t+1) ≈ 0, which relaxes the constraint of lumped
disturbances and is more applicable to actual applications.

For nonlinear HOFA system (4), a SMDOB-HOFA pre-
dictive control is designed as

u(t) = g−1(·)
(
Υ (A0∼n−1, x(t))−f(·)−ζ̂(t|t−1)+v(t)

)
,

(5)
where Υ (A0∼n−1, x(t)) =

∑n−1
µ=0 Aµx(t+µ) ∈ Rñ aims to

realize the adjustment of closed-loop system performances
andAµ ∈ Rñ×ñ represents the coefficient matrix to be deter-
mined, −f(·) is used to eliminate the system nonlinearities,
ζ̂(t|t− 1) ∈ Rñ is the disturbance estimation generated by a
sliding-mode disturbance observer, and v(t) ∈ Rñ is a track-
ing control item designed by HOFA predictive control. By
applying (5), a closed-loop form of nonlinear HOFA system
(4) is achieved as

x(t+ n) =Υ (A0∼n−1, x(t)) + eζ(t) + v(t)

=
∑n−1

µ=0
Aµx(t+ µ) + eζ(t) + v(t),

(6)

where eζ(t) = ζ(t)− ζ̂(t|t− 1) is the estimation error. For
the tracking control, an objective function J (t) is given as

J (t) =
∥∥∥X̂(t+Nx|t)−R(t+Nx)

∥∥∥2
W1

+
∥∥∥∆V̂ (t+Nv|t)

∥∥∥2
W2

,

(7)with

X̂(t+Nx|t) =
[
x̂T(t+Nx|t) · · · x̂T(t+ 1|t)

]T
,

∆V̂ (t+Nv|t) =
[
∆v̂T(t+Nv|t) · · · ∆v̂T(t|t)

]T
,

R(t+Nx) =
[
rT(t+Nx) · · · rT(t+ 1)

]T
,

where x̂(t + µ|t), µ = 1, 2, . . . , Nx, and ∆v̂(t + µ|t),
µ = 0, 1, . . . , Nv , indicate the µ-th ahead predictions of state
x(t) and tracking control increment ∆v(t). r(t) represents a
known reference input, W1 and W2 are the positive definite
weighted coefficient matrices. In (7), the first part considers
the implementation of tracking control by measuring the dif-
ferences of reference input and state predictions. The second
part proposes a constraint of changing rate and amplitude for
∆v(t) in the view of algorithm design, which is benefit for
physical implementation of controller.

Problem 1. For nonlinear HOFA systems (4) with Assump-
tion 1, a SMDOB-HOFA predictive control (5) is proposed
by optimizing (7) to ensure the stability and tracking control
performance of closed-loop system (6), such that Conditions
C1–C2 below can be satisfied.
C1 ∀t ≥ 0, ∥y(t)∥ <∞ with ∥r(t)∥ <∞,
C2 limt→∞∥y(t)− r(t)∥ = 0.

3 Main Results

3.1 Design of sliding-mode disturbance observer
By utilizing the z operator, system (4) can be equivalently

converted as

x(t+ 1) = f̃(·) + g̃(·)u(t) + ζ̃(t), (8)

with f̃(·) = z1−nf(·), g̃(·) = z1−ng(·), ζ̃(t) = z1−nζ(t).
In this case, Assumption 1–3) should be revised as ∥∆ζ̃(t+
1)∥ ≤ ζmax, and the estimation error is redefined as eζ̃(t) =

ζ̃(t)− ˆ̃
ζ(t|t− 1) = z1−neζ(t). Meanwhile, the vector form

of system (8) is given as

xi(t+ 1) = f̃i(·) + g̃i(·)u(t) + ζ̃i(t), (9)

where i = 1, 2, . . . , ñ, and

x(t) =

 x1(t)
...

xñ(t)

 , f̃(·) =
 f̃1(·)

...
f̃ñ(·)

 ,

g̃(·) =

 g̃1(·)
...

g̃ñ(·)

 , ζ̃(t) =
 ζ̃1(t)

...
ζ̃ñ(t)

 .
For system (9), an auxiliary system is constructed as

si(t) =xi(t)− x̂i(t|t− 1),

x̂i(t+1|t) =f̃i(·)+g̃i(·)u(t)+ ˆ̃
ζi(t|t− 1)−κi,1sgn(si(t)),

(10)
where κi,1 > 0 is a parameter to be designed. By using (9)
and (10), it is yielded that

si(t+ 1) = eζ̃,i(t) + κi,1sgn(si(t)), (11)

where eζ̃,i(t) is the i-th element of eζ̃(t). Then, a sliding-
mode disturbance observer is presented as

ˆ̃
ζi(t|t− 1) =κi,2(si(t)− εi(t)),

εi(t+ 1) =− 1

κi,2

ˆ̃
ζi(t|t− 1) + κi,1sgn(si(t)),

(12)

where κi,2 > 0 is also a parameter to be designed. Combin-

ing (11) with (12) derives that ˆ̃ζi(t + 1|t) =
ˆ̃
ζi(t|t − 1) +

κi,2eζ̃,i(t), and

eζ̃,i(t+ 1) = ∆ζ̃i(t+ 1) + (1− κi,2)eζ̃,i(t), (13)

with |∆ζ̃i(t+ 1)| ≤ ζmax,i. Then, Theorem 1 is provided to
obtain the sliding-mode disturbance observer (12)

Theorem 1. For nonlinear HOFA system (9) and sliding-
mode disturbance observer (12), the estimation error eζ̃,i(t)
is uniformly bounded if there exist three parameters κi,1 >
0, κi,2 > 0 and κi,3 > 0 such that Ωi,1 > 0 and Ωi,2 > 0,
where

Ωi,1 =1− 2κ2i,2 − (1− κi,2)
2 − κi,3(1− κi,2)

2,

Ωi,2 =2κ2i,2κ
2
i,1 + ζ2max,i +

ζ2max,i

κi,3
.

(14)

Proof. From (11), it is obtained that s2i (k + 1) ≤ 2e2
ζ̃,i
(t) +

2κ2i,1. Based on (13), it is yield that e2
ζ̃,i
(t + 1) ≤ ζ2max,i +

(1− κi,2)
2e2
ζ̃,i
(t) +

ζ2max,i

κi,3
+ κi,3(1− κi,2)

2e2
ζ̃,i
(t). Then, a

Lyapunov function for systems (10) and (13) is designed as

Vi(t) = κ2i,2s
2
i (t) + e2

ζ̃,i
(t),
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so that ∆Vi(t+ 1) = Vi(t+ 1)− Vi(t), that is,

∆Vi(t+ 1)

= κ2i,2s
2
i (t+ 1) + e2

ζ̃,i
(t+ 1)− κ2i,2s

2
i (t)− e2

ζ̃,i
(t)

≤ 2κ2i,2e
2
ζ̃,i
(t) + 2κ2i,2κ

2
i,1 + ζ2max,i + (1− κi,2)

2e2
ζ̃,i
(t)

+
ζ2max,i

κi,3
+ κi,3(1− κi,2)

2e2
ζ̃,i
(t)− κ2i,2s

2
i (t)− e2

ζ̃,i
(t)

= −(1− 2κ2i,2 − (1− κi,2)
2 − κi,3(1− κi,2)

2)e2
ζ̃,i
(t)

− κ2i,2s
2
i (t) + 2κ2i,2κ

2
i,1 + ζ2max,i +

ζ2max,i

κi,3

= −Ωi,1e2ζ̃,i(t)− κ2i,2s
2
i (t) +Ωi,2

≤ −Ωi,1e2ζ̃,i(t) +Ωi,2,

whereΩi,1 andΩi,2 are given in (14). When |eζ̃,i| >
√

Ωi,2

Ωi,1
,

∆Vi(t + 1) < 0. Thus, the estimation error eζ̃,i(t) is uni-
formly bounded, and its corresponding convergence radius

is
√

Ωi,2

Ωi,1
. By properly adjusting the κi,1, κi,2 and κi,3, the

estimation errors can be become small enough.
This completes the proof.

3.2 Design of SMDOB-HOFA predictive control
By applying the z operator, system (6) is transformed as

A(z−1)x(t) = B(z−1)v(t− 1) + Beeζ(t), (15)

with A(z−1) = I−
∑n−1
µ=0 Aµz

−n+µ, B(z−1) = z−n+1 and
Be(z−1) = z−1B(z−1). From [10], a Diophantine Equation
in relation to system (15) is shown as

Eµ(z−1)A(z−1)∆ + z−µFu(z−1) = I,

where Eµ(z−1) and Fµ(z−1) are two polynomial matrices
that are decided by the prediction horizon µ and the system
polynomial matrix A(z−1). Concretely, they are shown as
Eµ(z−1) =

∑µ−1
η=0 eµ,ηz−η and Fµ(z−1) =

∑n
η=0 fµ,ηz−η .

Then, multiplying Eµ∆zµ at (15) obtains that

EµA∆x(x+ µ) = EµB∆v(t+ µ− 1) + zµEµBe∆eζ(t).

Substituting the Diophantine Equation into the above estab-
lishes an incremental HOFA prediction model as

x(t+µ) = Fµx(t)+Gµ∆eζ(t)+Lµ∆v(t+µ− 1), (16)

where Gµ(z−1) = zµEµ(z−1)Be(z−1) and Lµ(z−1) =
Eµ(z−1)B(z−1).

For µ = 1, 2, . . . , Nx, the multi-step ahead predictions by
using (16) are derived as

x̂(t+ 1|t) =F1x(t) + G1∆eζ(t) + L1∆v̂(t|t),
...

x̂(t+Nx|t) =FNx
x(t) + GNx

∆eζ(t) + LNx
∆v̂(t+Nx − 1|t),

for µ = Nv + 1, Nv + 2, . . . , Nx, v̂(t+Nv|t) = v̂(t+ µ|t)
so that ∆v̂(t + µ|t) = 0, hence the above can be concluded
as

X̂(t+Nx|t) = P1x(t)+P2∆eζ(t)+P3∆V̂ (t+Nv|t), (17)

with

P1 =

 FNx

...
F1

 , P2 =

 GNx

...
G1

 ,

P3 =



LNx
0 · · · 0

...
... · · ·

...
LNv+1 0 · · · 0

0 LNv

. . .
...

...
. . . . . . 0

0 · · · 0 L1


.

Meanwhile, a stair-like incremental limitation about predic-
tive control is introduced as

∆v̂(t+ µ|t) = γ∆v̂(t+ µ− 1|t) = · · · = γµ∆v̂(t|t),

where µ = 1, 2, . . . , Nv , and γ > 0 is a weighting factor
and Γ = Blockdiag{γNvI, . . . , γI, I} indicated a stair-like
factor matrix.Thus, P3 is converted as P4 = P3Γ .

In order to solve the optimal predictive control increment,
let ∂J (t)

∆V̂ (t+Nv|t)
= 0, taking (17) into the above yields that

PT
4 W1

(
P1x(t) + P2∆eζ(t) + P4∆V̂ (t+Nv|t)

−R(t+Nx)) +W2∆V̂ (t+Nv|t) = 0,

which can be summarized as

∆V̂ (t+Nv|t) =M−1
1 M2x(t) +M−1

1 M3∆eζ(t)

+M−1
1 M4R(t+Nx),

with M1 = PT
4 W1P4 + W2, M2 = −PT

4 W1P1, M3 =
−PT

4 W1P2, M4 = PT
4 W1. Thus, the optimal predictive

control increment ∆v(t) is defined as ∆v(t) = ∆v̂(t|t) =
H∆V̂ (t + Nv|t) with H =

[
0 · · · 0 I

]
, which can

be given as

∆v(t) =HM−1
1 M2x(t) +HM−1

1 M3∆eζ(t)

+HM−1
1 M4R(t+Nx).

(18)

Remark 2. In this paper, Υ (A0∼n−1, x(t)) in (5) is used
to stabilize the system x(t + n) =

∑n−1
µ=0 Aµx(t + µ). On

the one hand, it can improve the accuracy of incremental
HOFA prediction model (16) via feedback correction. On the
other hand, it can adjust the tracking control performance.
An effective way for obtaining the coefficient matrices Aµ of
Υ (A0∼n−1, x(t)) is to construct a matrix Φ(A0∼n−1) that is
similar to a Schur matrix with

Φ(A0∼n−1) =


0 I
...

. . .
0 I
A0 A1 · · · An−1

 .
In this view, the coefficient matrices Aµ can be obtained by
utilizing the eigenstructure assignment method (refer to the
Remark 3.2 in [12]). The paper length prevents that the de-
tails are not discussed here.
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Fig. 3: The hardware of ABS simulator.

4 Experimental Verification

A semi-physical simulation platform of spacecraft control
is shown in Fig. 2, where ABS simulator in Fig. 3 is regarded
as a frequently-used equipment to simulate the ground exper-
iment of spacecraft control under micro-gravity site, such as
[10, 12, 13]. In this platform, ABS simulator has three de-
grees of freedom to be considered, involving the positions in
xoy plane (x and y) and the angle rotating the z-axis (ψ),
such that ABS simulator can satisfy the requirement of the
proposed flying-around mission in Fig. 1. Table 1 offer the
basic parameters of ABS simulator. Based on [12], the dy-

Table 1: Basic parameters of ABS simulator.

Parameter Notation Value

Mass M 19.4 kg
Moment of inertia J 0.239 kg ·m2

Radius r 0.18 m

namic model of ABS simulator is given as

M(ẍ− ẏψ̇) = Fx, M(ÿ − ẋψ̇) = Fy, Jψ̈ = FT , (19)

where Fx, Fy , FT are the thrusts and torque of ABS simu-
lator. By using a forward difference operation, the discrete-
time form of system (19) is expressed as

Mx(t+ 2) = fx(·) + T 2Fx(t) + ζx(t), (20a)

My(t+ 2) = fy(·) + T 2Fy(t) + ζy(t), (20b)

Jψ(t+ 2) = fψ(·) + T 2FT (t), (20c)

where fx(·) = 2Mx(k + 1) −Mx(k), ζx(t) = M∆y(k +
1)∆ψ(k + 1), fy(·) = 2My(k + 1) − My(k), ζy(t) =
M∆x(k+1)∆ψ(k+1) and fψ(·) = 2Jψ(k+1)−Jψ(k).

A flying-around experiment in circular orbit is carried out
to illustrate the capability of SMDOB-HOFA predictive con-
trol, the desired orbit parameters are set that the center of or-
bit is (0, 1.5)m and its radius is 0.5m. In this case, condition
(3) is set as ρ⋆ = 0.5m and φ⋆(t) = π + π sin( π50 t)rad.

For systems (20a) and (20b), a SMDOB-HOFA predictive
control in the form of (5) is presented as

Fx(t) =
Υ (Ax,0∼n−1, x(t))− fx(·)− ζ̂x(t|t− 1) + vx(t)

T 2
,

Fy(t) =
Υ (Ay,0∼n−1, y(t))− fy(·)− ζ̂y(t|t− 1) + vy(t)

T 2
,

(21)
where Υ (Ax,0∼1, x(t)) = 19.4x(t + 1) − 0.3802x(t) and
Υ (Ay,0∼1, y(t)) = 19.4y(t + 1) − 0.3802y(t). Meanwhile
ζ̂x(t|t − 1) and ζ̂y(t|t − 1) are estimated by adopting the
sliding-mode disturbance observer in the form of (10)–(12)
with κx,1 = 1, κx,2 = 0.2, κx,3 = 0.4 and κy,1 = 1, κy,2 =
0.5, κy,3 = 0.8. For system (20c), it is only required to
realize the stabilization. Then, a stabilization control in the
form of (5) without tracking control and estimation items is
presented as

FT (t) =
Υ (Aψ,0∼1, ψ(k)− fψ(·)

T 2
, (22)

with Υ (Aψ,0∼1, ψ(t)) = 0.2629ψ(t+1)− 0.0717ψ(t). For
predictive control part, let Nx = 5, Nv = 3, W1 = I , W2 =
5I , γ = 2. By utilizing the control laws (21) and (22), the
experimental results are shown in Fig. 4.

Figs. 4a and 4b implies that x- and y-axes responses
of ABS simulator can realize the desired tracking control
performance within allowable errors, and Fig. 4c shows
the shortcoming that there exist the vibrations of ψ-axis re-
sponse of ABS simulator during the steady process. The rea-
sons are that the presented controller does not consider the
reaction forces of thrusters and the the airflow around ex-
perimental environment. In Fig. 4d, the estimation errors
of sliding-mode disturbance observer can be converged to
0 by choosing the proper parameters, so that the feasibility
of sliding-mode disturbance observer can be ensured. The
practical trajectory of ABS simulator is provided in Fig. 4e,
which means that ABS simulator can reach the desired circu-
lar orbit and continue to perform the flying-around mission.
The control inputs are plotted in Fig. 4f. According to the
experimental results in Fig. 4, the capability and practicality
of SMDOB-HOFA predictive control can be fully verified,
which provides the theoretical support and experimental ba-
sis for further application and promotion of SMDOB-HOFA
predictive control in actual spacecraft control.

5 Conclusions

In this study, a flying-around problem of spacecraft with
lumped disturbances in the sight coordinate system has been
investigated under the framework of HOFA system theory.
A nonlinear HOFA system model has been applied to de-
scribe the relative orbital dynamics for flying-around mis-
sion of spacecraft with lumped disturbances. A sliding-mode
disturbance observer in HOFA form has been designed to re-
alize the estimation of lumped disturbances. Then, an incre-
mental HOFA prediction model with estimation errors has
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(b) y-axis response of ABS simulator
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(c) ψ-axis response of ABS simulator
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Fig. 4: The experimental results for flying-around in circular orbit of ABS simulator by using (21) and (22).

been developed in HOFA form with the help of Diophan-
tine Equation, so that multi-step ahead predictions have been
constructed to optimize an objective function involving the
tracking control performance. By adopting this result, an op-
timal tracking controller has been established to achieve the
desired flying-around mission. An experimental verification
on flying-around in circular orbit of ABS simulator has been
taken to verify the capability and practicality of SMODB-
HOFA predictive control. A drawback of this study is that
the errors of disturbance estimation are only bounded, it is
hard to obtain a result that the errors converge to 0. The fu-
ture work will continue to improve this result by designing a
new disturbance observer and to consider the more complex
flying-around missions, including input constraints, pointing
constraints, non-holonomic constraints and other situations.
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Abstract: This paper addresses the close-proximity multi-spacecraft mission of tracking a tumbling space object under safety
constraints. The six-degree-of-freedom control objectives of spacecraft include: 1) hovering at a specific area above the target,
and 2) maintaining a line of sight that continuously points toward the target. During the control process, motion constraints for
both position and attitude are considered: 1) position constraints ensure collision avoidance among multiple spacecraft and the
target, and 2) attitude constraints require the sensor’s optical axis to avoid direct sunlight. To achieve these goals, a high-order
fully actuated system is established for specific tracking, and the direct parametric method is used to design control law based
on fully actuated theory. Subsequently, the backup control barrier function method with quadratic programming (CBF-QP) is
introduced to the fully actuated system. This safety-critical control framework transforms the tracking control inputs, initially
not considering safety, into guaranteed-safe control inputs that satisfy motion constraints. Finally, a numerical simulation of
multi-satellite hovering observation is conducted to validate the effectiveness of the proposed algorithm.

Key Words: Safety-Critical Control, Spacecraft Specific Tracking, Control Barrier Function, Fully Actuated System

1 Introduction

On-orbit servicing (OOS) has garnered widespread atten-
tion, generally including refueling, maintenance, space de-
bris removal and asteroid sampling return [1]. Traditional
large service spacecraft has the drawbacks, such as high con-
struction costs, long development cycles and single-point
failure. Thus, low-cost and more redundant microsatellite
clusters have been employed in OOS. For instance, satellite
swarms are utilized for takeover control [2], cooperative ob-
servation [3], and debris dragging [4]. However, the precise
and un-simplified attitude and orbital dynamics are both non-
linear. There is coupled behavior between attitude and orbit
in six-degree-of-freedom (6-DOF) control. When operating
at close distances, various constraints must also be consid-
ered. These factors make the control for multiple spacecraft
in OOS a great challenge.

Duan [5] firstly proposes a general method to design con-
trol law for nonlinear systems. The fully actuated (FA)
system can be controlled as a desired closed-loop system
through a direct parametric method, thereby achieving the
desired performance. For an ordinary spacecraft, both its
translational motion and attitude motion are second-order
fully actuated (SOFA) system. Thus, the fully actuated the-
ory provide a new approach to design a 6-DOF tracking con-
troller. Numerous controller design studies have already em-
ployed the FA theory for dynamics control tasks, such as for-
mation flying [6], attitude control [7], manipulator [9], and
so on. However, there has been no prior study to incorporate
FA into the tracking mission of tumbling target by multiple
satellites, especially under safety motion constraints.

During the multi-spacecraft tracking process, position and
attitude constraints need to be considered. The former refers
to maintaining a minimal distance between the chasers and
the target or among chasers themselves, preventing physical
collisions that could lead to mission failure. The latter refers

This work is supported by National Natural Science Foundation
(NNSF) of China under Grant 62188101 and in part by the Heilongjiang
Touyan Team Program. (Corresponding author: Baolin Wu)

to avoid the direct sunlight for chasers equipped with optical
sensor, preventing burnt out image plane.

Currently, studies primarily address motion constraints
through methods of path planning (PP), model predictive
control (MPC), and the artificial potential field (APF) [10].
PP and MPC fall under trajectory optimization, which con-
sume excessive onboard computational resources. APF is
a physically meaningful and computationally simple con-
troller with an explicit solution, but it faces issues of un-
smooth movement and excessively large commands at the
obstacles’ boundaries.

Based on the theories of invariance set and control Lya-
punov function, [11] has developed a novel safety-critical
control framework named control barrier function (CBF)
with quadratic program (QP). By solving a convex QP prob-
lem for an unsafe control command, a sufficiently safe con-
trol command is obtained. Under this control command,
the motion state can always be guaranteed within a well-
designed invariant set. Compared to MPC, which optimizes
the control commands over multiple steps in one horizon,
CBF-QP only optimizes the current control command. Al-
though CBF-QP also operates within an optimization frame-
work, the single-step convex programming significantly re-
duces computational complexity.

CBF-QP is a universal safety-critical control framework
that separates the constrained control objective into two pro-
cesses: one for designing a controller that disregards safety
momentarily but achieves stability, and the other for design-
ing the CBF with constraints. Then, the QP relates these two
in one framework. It has been gradually studied in robotics
[13] and manipulators [14]. Existing applications of CBF in
spacecraft control are limited to simple tasks such as one-on-
one rendezvous and docking [15], attitude control [16], and
flybys of asteroid [17]. This paper considers a more com-
plex mission of 6-DOF control problem described by non-
linear SOFA systems. This safety-critical control framework
addresses both multiple objects collision avoidance and light
avoidance constraints simultaneously.

Inspired by the aforementioned discussion, this paper con-
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Fig. 1: Structure of safety-critical control for multi-
spacecraft specific tracking.

siders the control problem of multiple chasers tracking mis-
sion. The relative motion control system and attitude control
system are complex systems characterized by strong nonlin-
earity and multivariate coupling. Particularly, with the intro-
duction of various motion constraints, achieving control ob-
jectives becomes a challenging task. We introduce a safety-
critical control framework into such fully-actuated systems.
The main contributions of this paper involves:

• The SOFA systems are derived for spacecraft attitude
and orbital dynamics and their error systems. For
objective of hovering and observation, the desired
motion is established. The direct parametric method
based on fully actuated system is utilized to design
6-DOF tracking controller.

• Considering the collision avoidance and sunlight avoid-
ance, the forbidden zone of motion constraints are es-
tablished by superquadric sphere and cone, respec-
tively. Then, the safety-critical framework, named
backup CBF-QP is introduced to addresses these estab-
lished constraints. So, the unsafe 6-DOF tracking con-
troller can be transformed into a guaranteed-safe one to
keep motion states in safe invariant set.

The structure of control scheme proposed by this paper is
illustrated in Fig. 1. Each one module will correspond to a
section to be explained.

2 Spacecraft Dynamic Modeling

In this section, coordinate frames are described firstly.
Then relative orbit and attitude dynamics are derived to es-
tablish second order fully actuated system.

2.1 Coordinate Frames
This paper considers five coordinate frames, illustrated in

Fig. 1. Inertial frame, local vertical horizontal frame [10]
are denoted by OIXIYIZI and OLXLYLZL, respectively.
Body-fixed coordinate frames of target and i-th chaser are
denoted by OTXTYTZT and OCiXCiYCiZCi , respectively.
The desired body-fixed coordinate frame of chaser is repre-
sented by ODi

XDi
YDi

ZDi
. In the subsequent sections, the

coordinate frames will be abbreviated as {I, L, T, Ci, Di}.

 

Fig. 2: Scenario and coordinate frames.

2.2 Relative Orbit Dynamics
The translational motion in {I} of i-th chaser spacecraft

and uncontrolled target are described by

r̈i +
µ

l3i
ri = fi r̈t +

µ

l3t
rt = 0 (1)

where ri, rt denote the position vectors from earth to space-
craft or target respectively, expressed in {I}; li = ‖ri‖,
lt = ‖rt‖ denote the distance from earth to spacecraft or
target respectively. ui denotes the control force unit mass
of chaser spacecraft; µ = 3986004418 × 1014 m3/s2 is the
gravitational constant.

Define relative position between chaser and target as ρi =
ri − rt = [xi, yi, zi], expressed in {L}. Relative motion
kinematics is gotten by [10]

ρ̈ =


ẍi + 2ḟ

(
ẏi − yi l̇t/lt − ḟ2xi

)
ÿi − 2ḟ

(
ẋi − xi l̇t/lt − ḟ2yi

)
z̈i

 (2)

where ḟ represent the orbital angular velocity of target, cac-
ulated by [10]. Then the relative motion dynamics yields

ρ̈i +Aρ̇i +Biρi + Ci = ui (3)

where

A =

 0 −2ḟ 0

2ḟ 0 0
0 0 0

Bi =

µ/l3i − ḟ2 2ḟ l̇t/lt 0

−2ḟ l̇t/lt µ/l3i − ḟ2 0
0 0 µ/l3i


Ci =

[
µ(lt/l

3
i − 1/l2i ), 0, 0

]
; ui represent the control force

unit mass expressed in {L}. Obviously, both ranks of control
input ui and state ρi are three, so relative motion dynamics
in (3) is a typical SOFA system.

If the desired relative position, velocity, acceleration are
ρdi, ρ̇di, ρ̈di, then error states are defined as

ρei = ρdi − ρi ρ̇ei = ρ̇di − ρ̇i ρ̈ei = ρ̈di − ρ̈i (4)
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Then the SOFA error system is gotten from (3) as follows

ρ̈ei +Aρ̇ei +Biρei − Li + ui = 0 (5)

where Li = ρ̈di + Aρ̇di + Biρdi + Ci. Only if both ρ̇ei
and ρei are asymptotically converge to zero, ρi → ρdi and
ρ̇i → ρ̇di can be obtained.

2.3 Attitude Dynamics
The attitude kinematics in quaternion of i-th chaser is rep-

resented by

q̇0i = −1

2
qTviωi q̇vi =

1

2

(
q0iI + q×vi

)
ωi (6)

where Qi = [q0i, qvi] is unit quaternion, q0i represent the
scalar part of quaternion and qvi represent the vector part of
quaternion; ωi denote the body angular velocity with respect
to inertial frame expressed in body-fixed frame; I represents
identity matrix and (·)× is cross-product matrix, with ex-
pression as

a× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (7)

Neglecting flexible parts and liquid sloshing, the attitude
dynamics of rigid spacecraft expressed in {Ci}is

Jiω̇i + ω×i Jiωi = τi (8)

where Ji is inertia matrix and τi is control torque to be de-
signed. Target’s attitude motion can be described by (6) and
(8) when subscript i is replaced by t.

The error quaternion is defined by quaternion product

Qei = Qi ⊗Q−1di (9)

where Qei is error quaternion, Qdi is desired quaternion; ⊗
denote the product of quaternion; “-1” denotes the inverse of
quaternion here. The error system of attitude yields [2]

q̇e0i = −1

2
qTeviωei q̇evi =

1

2

(
qe0iI + q×evi

)
ωei

Jiω̇ei = −ω×i Jiωi + Ji
(
ω×eiReiωdi −Reiω̇di

)
+ τi

(10)

where ωei = ωi−Reiωdi is error angular velocity expressed
in {Ci}; ωdi is desired velocity expressed in {Di}; Rei =
RCi

Di
is the rotation matrix from {Di} to {Ci}, gotten byQei,

expressed by

RCi

Di
=
(
q2e0i − qTeviqevi

)
I + 2qeviq

T
evi − 2qe0iq

×
evi (11)

Only if both qvei and ωei are asymptotically converge to
zero, Qi → Qdi and ωi → ωdi can be obtained.

Obviously, (10) is a nonlinear dynamics but strict feed-
back system, so SOFA system is also can be derived [8].
According to the second equation of (10), it follows that

ωei = 2Gi(Qei)q̇evi (12)

where Gi =
(
qe0iI + q×evi

)−1
. Then taking the second

derivative of qevi yields SOFA system as follows

2Giq̈evi + Āiq̇evi = J−1i τi + L̄i (13)

where Āi = −2Gi

(
q̇e0iI + q̇×evi

)
Gi

L̄i = −J−1i ω×i Jiωi + ω×eiReiωdi −Reiω̇di

Thus, the control objective in SOFA is to qvei → 0 and
q̇vei → 0.

3 Relative Motion and Attitude Tracking Con-
troller Design Based on SOFA Systems

Here, the 6-DOF tracking controller is designed based on
direct parametric method. Safety constraints are temporarily
not considered, but will be addressed in section 4.

3.1 Establishment of Desired Motion
3.1.1 Desired Position Motion

The desired input for hovering position is usually de-
scribed in {T}, represented by di, which is determined by
observation mission. It should be transformed to ρdi, ρ̇di,
ρ̈di in {L}, corresponding to (5).

The transformation matrix from {L} to {I} is

RI
L =

[
IXL

IYL
IZL

]
(14)

where XL = rt/‖rt‖, ZL = r×t ṙt/‖r×t ṙt‖, which denote
the direction of orbital radius and normal of target, respec-
tively. YL = ZL

×XL.
Then, desired hovering position, velocity and acceleration

in {L} is obtained as

ρdi = RL
T ρ̇di = RL

Tω
×
tldi

ρ̈di = RL
Tω
×
tlω
×
tldi +RL

T ω̇
×
tldi

(15)

where ωtl and ω̇tl denote the orbit-attitude coupling angular
velocity of target, expressed by

ωtl = ωt −RT
Lωl ω̇tl = ω̇t + ω×tlR

T
Lωl −RT

Lω̇l (16)

where ωt and ωl denote the angular and the orbital velocities,
respectively.

3.1.2 Desired Attitude Motion

The desired attitude motion is coupled with motion of po-
sition, due to the requirement of align the LOS toward the
target. As illustrated by Fig. 2, the sensor axis is fixed
on axis −ZCi. So the following equation expressed in {L}
should be satisfied ρ/‖ρ‖ = ZCi. Similar to (14), the trans-
formation matrix from {Di} to {L} can be established by

RL
Di

=
[
LXDi

LYDi
LZDi

]
(17)

where XDi = ρ×i ρ̇i/‖ρ
×
i ρ̇i‖, ZDi = ρi/‖ρi‖, YDi =

ZDi

×XDi . Then, desired attitude is derived by

RDi

I = RDi

L RL
I (18)

Through the conversion between quaternions and rotation
matrix, we caculated desired quaternion Qdi from RDi

I .
Next, desired angular velocity and acceleration are given by

ωdi = ωdli +RDi

L ωl

ω̇di = ω̇dli − ω×dliR
Di

L ωl +RDi

L ω̇l

(19)

where

ωdli =

−YDi
· ŻDi

XDi
· ŻDi

YDi
· ẊDi

 ω̇dli =

−ẎDi
· ŻDi

− YDi
· Z̈Di

ẊDi · ŻDi +XDi · Z̈Di

ẎDi
· ẊDi

+ YDi
· ẌDi


(20)
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3.2 Tracking Controller Design for SOFA system
3.2.1 Position Tracking Controller

According to [5], for a quasi-linear SOFA system, a nor-
mal control law in (5) for i-th chaser can be designed as

ui = Li + (K1i −A)ρ̇ei + (K0i −Bi)ρei (21)

whereKi1 andKi0 are given matrices. Substituting (21) into
(5) yields

ρ̈ei +K1iρ̇ei +K0iρei = 0 (22)

In order to obtain a closed-loop system with expected per-
formance, we only need to be appropriately select K1i and
K0i. The direct parametric method is introduced [8]. We
rewrite (22) in a first order form as

Ẋi = AiXi (23)

where Xi =
[
ρei ρ̇ei

]T
and Ai =

[
0 I; −K0i −K1i

]
Given a constant matrix Fi of whom all eigenvalues have

negative real parts, e.g., Hurwitz matrix. To ensure stability
of (23), the K0i and K1i should satisfy as AiVi = ViFi,
where Vi denotes eigenvector matrix. According to [8], Vi
can be chosen by Vi =

[
Zi ZiFi

]T
where Zi is an arbi-

trary matrix. Then, the gain matrices are obtained as below[
K0i K1i

]
= −ZiF2

i (24)

3.2.2 Attitude Tracking Controller

For quasi-linear SOFA system in (13), the control torque
can be designed as

τi = −JiL̄i +
(
JiĀi − K̄1i

)
q̇evi − K̄0iqevi (25)

where K̄1i and K̄0i are gain matrices. The same direct para-
metric method for selecting gain matrices can be applied in
the attitude controller. Substituting (25) into (13) yields

˙̄Xi = ĀiX̄i (26)

where X̄i = [qvei q̇evi]
T and Āi =

[
0 I; −E−10i K̄0i

−E−11i K̄1i

]
Similar to algorithm from Section 3.2.1, if Z̄i

is arbitrary matrix, F̄i is Hurwitz matrix, the gain matrices
are [

K̄0i K̄1i

]
= −2GiZ̄iF̄2

i (27)

4 Safety-Critical Control Framework Based on
Backup CBF-QP

In this section, the constraints for position and pointing
forbidden zones are modeling [10]. Then, the safety-critical
control framework based on backup CBF-QP will be used
to transform unsafe controller designed in (21) and (25) to a
safe-enough one.

4.1 Constraint Modeling
4.1.1 Position Forbidden Zone

The forbidden zone is to describe the collision envelope
among chasers and target. It includes the collision between
two chasers and collision between chaser and target.

For the former type of collision, the superquadric surface
is employed to describe the envelope of the tumbling target,

serving as a restricted region for the chasers’ maneuvering
trajectories. Its mathematical expression is given by

hki (ρi) =

(
T ρxi
ak

) 2
mk

+

(
T ρxi
bk

) 2
mk

+

(
T ρxi
ck

) 2
mk

− 1

(28)
where subscript k, i denotes the k-th parts of target should
not collide with i-th chaser; ak, bk, ck > 0 and 0 < mk ≤ 1
are parameters; T ρi = RT

Lρi denotes the relative position of
i-th chaser expressed in {T}. Only if hki > 0 is satisfied, the
chaser is out of envelope of target for safety. As analyzed by
[10], with the decrease of mk, hki becomes more similar to
a cuboid with more sharpened edges. In this paper, h1i and
h2i represent the envelope of central main body and solar
array wings, respectively.

For the second type of collision, chasers are seemed as
spheres. So the collision discrimination function can be

lji (ρi, ρj) = (ρi − ρj)T (ρi − ρj)− r2s (29)

where rs are the safe distance for two chasers. lji > 0 should
be ensured without collision among chaser spacecraft.

4.1.2 Attitude Forbidden Zone

The chaser spacecraft is equipped with an optical camera.
To enhance image quality or protect the image plane from
being burnt, the sunlight vector should be outside the cone
formed by the field of view (FOV), as illustrated in Fig. 2.
The attitude exclusion zones are utilized to depict scenarios
of sunlight avoidance.

Assuming that the line of sight (LOS) is fixed along−ZCi ,
the discrimination function for pointing forbidden is defined
as follows

gi (Qi) = cos θ − ZT
Ci
RCi

I So (30)

where θ represent the half-angle of FOV, So is the sun-
light vector expressed in {I}. Compared with orbit motion,
change of sunlight vector is slower, so So can be consid-
ered constant, RT

Ci
denotes the transform matrix from {I} to

{Ci}, caculated from quaternions as follows

RCi

I =
(
q20i − qTviqvi

)
I + 2qviq

T
vi − 2q0iq

×
vi (31)

Only if gi > 0 is ensured, the safety of attitude motion is
maintained.

4.2 Backup CBF-QP
We begin with the brief review of CBF theory. For an

affine system ẋ = f(x, u), the state and control input is x,
u. Given a function H(x) satisfies

∀x ∈ X0, H(x) ≥ 0 ∀x ∈ Xd, H(x) < 0

∀x ∈ C,∃u ∈ U Ḣ + α(H) ≥ 0
(32)

where X0 and Xd are the initial set and danger set, respec-
tively. C = {x | H(x) ≥ 0} is named safe set. α(·) is a
class-K function. Then H is named the CBF. For any legacy
control input u0, CBF is combined with QP optimization as
follows [11]

u∗ = arg min
u∈U

∥∥u− u0∥∥2
s.t.∇H · f (x, u) + α (H) ≥ 0,

(33)
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where u∗ is the guaranteed-safe control input from an unsafe
control input u0. In this paper, x represents Qi or ρi, u0 rep-
resents the unsafe input given in (21) and (25), u represents
the safe control law. H is set as hki, lji and gi.

However, such general CBF-QP has two limitations and
is not suitable for our SOFA system of position and attitude
motion. The first limitation is that the existence of control set
U may cause QP infeasible. The second limitation is that due
to the second-order character, the optimization conditions in
(33) do not explicitly contain u after taking first derivative.
One method to address these issues is backup CBF [13]. If a
backup policy is defined as πb(x), then recurrent state over
time t for initial x is Φt

b (x), expressed as

Φt
b (x) = x+

∫ t

0

f(x, πb(x))dt (34)

As basic idea for backup CBF, a suitable safe set C is hard
to obtain when considering various constraints, but a small
and apparent safe set Cb named backup safe set can be deter-
mined easily. The state under πb(x) is forward invariant in
Cb. Using Φt

b (x), the small C0 can be enlarged to Cs, so that
Cb ⊆ Cs ⊆ C. The backup safe set is described by backup
CBF as Cb = {x | G (x) > 0}. With the increasing horizon,
the Cs is larger. The Cs is formed by

Cs =
{
x | Φt

b ∈ C,ΦT
b ∈ Cb

}
(35)

In this paper, backup policy φb is chosen by quick brake of
chaser spacecraft. The backup CBF is set as the small do-
main of zero for position and angular velocity [13].

According to above explanation, the backup CBF-QP
safety-critical control is given by

u∗ = arg min
u∈U

∥∥u− u0∥∥2
s.t.∇H(Φt

b) ·Dt(x) · f (x, u) + α
(
H
(
Φt

b

))
≥ 0

∇G(ΦT
b ) ·DT (x) · f (x, u) + α

(
G
(
ΦT

b

))
≥ 0

(36)

where t is divided by horizon T into t = [t0, t1, · · · , T ],
Dt(x) = ∂Φt

b (x) /∂x is the sensitivity matrix. As analyzed
in [13], the optimization problem is feasible. And, the con-
straint in backup CBF-QP framework in (36) is a sufficient
condition for Ḣ+α(H) ≥ 0 corresponding to normal CBF-
QP in (33).

5 Numerical Simulation

Here is a simulation provided for the tracking of a tum-
bling target to validate the proposed control strategy. The
target is orbiting at an altitude of 600 km with an eccentric-
ity of 0.001, an inclination of 50°, a perigee argument of
193°, a right ascension of the ascending node at 315°, and a
true anomaly at perigee of 140°. The target’s inertia is rep-
resented by diag(500, 500, 1000) kgm2, and its mass is 1500
kg. The chaser’s inertia is diag(12, 23, 45) kgm2, with a
mass of 20 kg. The chaser’s initial positions in {T} are [-10,
-20, -30] m, [-10, 12, 8] m, [-15, -7, 15] m, [10, -15, 7] m, re-
spectively. The initial velocities in {T} are [0, 0, 0] m/s. The
desired hover positions for the chaser are [0, 5, 2] m, [-10,
-10, 2] m, [15, -7, 15] m, and [0, 10, 6] m, respectively. The
target’s angular velocity is [1, 1, 1]°/s, with an initial quater-
nion [1, 0, 0, 0]. Each of chaser’s angular velocity is [0, 0,

Fig. 3: The trajectories of position for four chasers in {T}.

Fig. 4: The trajectory of pointing for Chaser 3 in {I}.

0.1]°/s, with an initial quaternion [0.2706, 0.6533, 0.2706,
0.6533].

The simulation results are illustrated in Figs. 3 to 7. Fig.
3 depicts the trajectories of the four chaser spacecraft in the
{T} frame, comparing scenarios with and without consid-
ering collision avoidance (CA). The dashed lines represent
trajectories without CA, where Chaser 1 and Chaser 2 inter-
sect with the main body and solar wings (red surfaces) of the
target spacecraft. However, with CA strategies, the chasers
bypass the designed restricted zones to ensure safety. Fig. 5
represent the indices for Chaser 1 and Chaser 2, respectively,
ensuring that the safety condition h11, h22 > 0 is consis-
tently maintained; otherwise, they would intersect the zero
line. The trajectories of Chaser 3 and 4 do not exhibit promi-
nent CA in Fig. 3, but in Fig. 5, a noticeable safety transition
of l34 from < 0 to > 0 is apparent. Fig. 4 illustrates the sun-
light avoidance (SA) simulation results for Chaser 3. With-
out the introduction of the safety-critical framework, the ex-
pected motion of the optical axis passes through the conical
restricted area (purple region), where sunlight invades the
FOV directly. Introducing SA strategies successfully steers
the optical axis around the designated forbidden region. Fig.
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5 also demonstrates the consistent maintenance of g3 > 0.
Figs. 6 and 7 present the relative position deviation and at-
titude deviation, with final steady-state deviations of 0.01 m
and 0.1°, respectively. In comparison to scenarios without
considering CA and SA, the state deviations increase when
bypassing restricted zones to ensure safety, so that they con-
verge slower to relax the stability for safety.
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Fig. 5: Safety discrimination function of hki, lji and gi.
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Fig. 6: Relative position error for Chaser 1.
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Fig. 7: Attitude error of for Chaser 3.

6 Conclusion

This paper addresses the control problem of multiple
spacecraft tracking a tumbling space object under safe mo-
tion constraints. Firstly, second-order fully actuated systems
are derived to describe the 6-DOF motion of chasers. Then,
based on the fully actuated theory, the direct parametric
method is used to design a tracking controller to achieve the
desired performance of closed-loop systems. Then, safety-
critical control framework, named backup control barrier
function with quadratic program is introduced to convert un-
safe control law into a guaranteed-safe one. Simulation vali-
dates the proposed controller in a multi-satellite observation
mission. When chasers move to desired pose, the collision

avoidance and sunlight avoidance can be achieved. Future
work will combine both light avoidance and collision avoid-
ance into coupling desired motion.
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Abstract: This paper tackles the longitudinal load relief control problem of launcher during ascent phase. By doing 
so, the longitudinal control equation in the load feedback framework is firstly formulated and then transformed to a 
classical Sylvester equation. Due to fully characterized freedoms of the closed-loop system via the parameterized 
approach in fully-actuated system approach, the feedback gains can be optimized to simultaneously satisfy multiple 
control objectives involving closed-loop stabilization, load relief and low sensitivity of closed-loop poles. Finally, a 
numerical example is given to verify the proposed control method. 
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1 Introduction 

Load relief control is to reduce the wind impact on a 
flying launcher during its ascent phase, ensuring its reliable 
flight in case of wind disturbances. 

There are mainly two methods enabling load relief in 
practice. One is the passive strategy, which mainly utilizes 
the measurement of wind to modify the trajectory before 
launch. Based on pre-compensation philosophy, the load 
relief can be achieved by flying along the resulting multiple 
modified trajectories. The other method is the active load 
relief control, which introduces angle-of-attack or load 
signals into the control loop enabling load relief in real time. 
By comparison, the latter one is able to reduce the 
dependence on the meteorological measurement and 
meanwhile guarantee the real-time control performance, 
especially in case of wind disturbance, thereby drawing a 
wide of attentions[1-4]. 

Initial studies focusing on the active load relief control 
mainly introduce angle-of-attack sensors and directly use 
the synthesized angle-of-attack to construct feedback law 
for load attenuation[3]. However, it is hard to ensure a 
satisfactory configuration and specification of 
angle-of-attack sensors, and thus hard to use in practice. 
Alternatively, the signals of accelerator are often used to 
enable load relief control by indirectly introducing 
angle-of-attack into the control-loop[4]. This forms the 
background of the present study. 

This paper deals with the active load relief control 
problem by introducing the parameterized approach in the 
fully-actuated system (FAS) theory[5-7]. To this end, the 
traditional longitudinal control equation in the load feedback 
framework is firstly transformed to the Sylvester equation. 
Then, due to fully characterized freedoms of the closed-loop 
system by using the parameterized approach, the feedback 
gains can be optimized such that multiple control objectives 
can be achieved, including closed-loop stabilization, 
minimized load relief and minimized sensitivity of 

                                                           
*This work is supported by National Natural Science Foundation (NNSF) 

of China under Grant 61703437, Grant 61690210, Grant 61690212, Grant 
62173301 and the Youth Talent Support Program of CASC. 

closed-loop poles. Finally, a numerical example is given to 
verify the proposed control method. 

2 System Modeling and Control Problem 

2.1 Modeling 

The longitudinal model of a launcher during ascent phase 
can be described by [1-4] 

1 2 3 2

1 2 3 1

w bz

w BY

b b b b M

c c c c F





    

    

  

         


        
    

 

      (1) 

where  denotes the pitch angle error,  denotes the 
angle-of-attack error,  denotes the control deflection, 
 denotes the trajectory inclination angle error, 

,bz BYM F are the disturbance torque and force for the 
longitudinal channel, 1b is the longitudinal aerodynamic 
damping torque coefficient, 2b is the longitudinal 
aerodynamic stabilizing torque coefficient, 3b is the control 
torque coefficient, 1c is the longitudinal aerodynamic force 
coefficient, 1c is the longitudinal aerodynamic damping 
force coefficient, 2c is the longitudinal gravitational force 
coefficient, 3c is the longitudinal control force coefficient, 

w denotes the angle-of-attack causing by wind. 
The load relief control problem is mainly to reduce the 

wind impact on the pitch motion and meanwhile ensure the 
longitudinal closed-loop stability. In the light of this, the 
timescale of translational motion of a launcher is larger than 
that of rotational motion, so the  -dynamics can be 
omitted such that 

1 2 3 2 w bzb b b b M                    (2) 

Traditional PD control only stabilizes the above system, 
but hard to reduce the wind impact. To overcome this 
problem, angle-of-attack would be a good choice but void 
due to its immeasurability. Instead, the load feedback 
control introducing accelerator signals is often utilized in 
practice, yielding 

0 1 2a a g W                  (3) 
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where 0 1,a a are PD feedback gains, 2g denotes the load 
relief gain, and W  is the accelerator signal governed by 

2 3( )w aW k l k          

        (4) 

where 2 3,k k are the dynamic and control force coefficients, 
respectively, and al denotes the distance between the mass 
center and the accelerator. 

Integrating Eq. (3) and (4) gives that 

 0 1 2 2 2
2 3

1
( )

1 w aa a g k g l
g k

 
              


   

      (5) 

by which, the longitudinal closed-loop pitch dynamics can 
be obtained from (2) as 
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2.2 Control Problem 

The load relief control problem can be described as 
follows. 

Control Problem: for system (6), design control gains 

0 1 2, ,a a g such that the closed-loop poles are stable while the 
disturbance w has a minimum impact on the pitch motion.  

3 Control Scheme 

3.1 Load Relief Gain Design 

Let 

1

2

,
x

x
x




   
       

          (6) 

and the system in Eq. (6) can be re-written as 

( ) w w d bzM   x A BK x H H      (7) 
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In practice, to minimize the impact of wind, one often 
choose that  

2 2 3 2 2 3( ) 0b g k b k b           (8) 

which obtains the gain g2 as   

2
2

3 2 2 3

b
g

k b k b



          (9) 

and one has 

1 2 3 1

2 3 3
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, 0
0

1 ( )
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a
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A H     (10) 

3.2 Control Feedback Gains Design 

Since the load relief gain is given, the impact from 
disturbance bzM on the pitch motion is almost determined, 
but we can reduce the sensitivity of the closed-loop poles 
besides the basic stable requirement. 

To do so, the parameterized design method from FAS 
approach [5-7] is utilized to find appropriate control 
feedback gains. 

Let the closed-loop matrix be the following Hurwitz 
matrix 

a b
c

b a

s s

s s

 
   

F           (11) 

where sa, sb are scalars to be adjusted, satisfying 

0as             (12) 

Then, according to FAS theory [5-7], the whole solutions of 
the following matrix equation 

c AV BW VF          (13) 

can be described by 
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where 1 2[ ]a bz z  Z  are arbitrary matrix and  

3
2 1

2 3 3

3
0

2 3 3

1 2 3 1
2 1 0

2 3 3

0 0
, ,

0 11 ( )

1
,

01 ( )

1, , 0
1 ( )

a

a

a

b

g k b l

b

g k b l

b g k b
D D D

g k b l

   
         

 
      


  

 

N N

N     (15) 

At last the control gains can be obtained by 

  1
0 1a a  K WV         (16) 

3.3 Solution to Control Feedback Gains 

According to the requirements of control feedback gains, 
three main issues are taken into account and mathematically 
characterized to choose the values of sa sb and the matrix Z: 
 System stability: i.e., Eq. (12) 
 The sensitivity of closed-loop poles: 
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Then, by introducing a weight scalar   to balance the above 
two indices, once the optimization problem is solved 

1 2,
min (1 )

s.t. 0
Z F

a

J J J

s

   


      (19) 

the control gains can be hence solved by using Eq. (16). 

4 Numerical Examples 

To verify the proposed method, a characteristic ascent 
flight point of a launch vehicle is considered, where the 
wind gives a higher impact.  

By using Eq. (9), one can obtain that g2 = 0.0217, and the 
system matrices are set as 

 
0 1 0

,
0 0.0538 0.5308

   
        

A B   

Thus the component Ni and Di can be obtained as  

2 1 0

2 1 0

0 0 0.5308
, , ,
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1, 0.5308, 0D D D

     
            
  

N N N
    

Select 0.8  , and solve the optimization problem in Eq. 
(19), one can obtain that  

 

 

0.1753

0.1 0.045

0.045 0.1

0.9618 1.0639

c

J 

 
    


F

Z

  

-40

-20

0

20

40

M
ag

ni
tu

de
 (

dB
)

10
-3

10
-2

10
-1

10
0

10
1

-180

-135

-90

-45

0

P
ha

se
 (

de
g)

Bode Diagram
Gm = Inf dB (at Inf rad/s) ,  Pm = 11.5 deg (at 0.996 rad/s)

Frequency  (rad/s)  
Fig. 1: Closed-loop system margins (no perturbation) 

-40

-20

0

20

40

M
ag

ni
tu

de
 (

dB
)

10
-3

10
-2

10
-1

10
0

10
1

-180

-135

-90

-45

0

P
ha

se
 (

de
g)

Bode Diagram
Gm = Inf dB (at Inf rad/s) ,  Pm = 12.6 deg (at 0.994 rad/s)

Frequency  (rad/s)  
Fig. 2: Closed-loop system margins (+10% perturbation) 

-40

-20

0

20

40

M
ag

ni
tu

de
 (

dB
)

10
-3

10
-2

10
-1

10
0

10
1

-180

-135

-90

-45

0

P
ha

se
 (

de
g)

Bode Diagram
Gm = Inf dB (at Inf rad/s) ,  Pm = 10.3 deg (at 0.998 rad/s)

Frequency  (rad/s)  
Fig. 3: Closed-loop system margins (-10% perturbation) 

and the corresponding gains and closed-loop poles are 

 1

2

0.1 0.045i

0.1 0.045i

s

s

  
   

, 0

1

0.0227

0.2754

a

a


 

  

Figs. 1-3 show the margin results of the closed-loop 
system in case of no perturbation, +10% perturbations and 
-10% perturbations. The results indicate that the proposed 
method ensure a robust gain and phase margins of the 
closed-loop system. 

5 Conclusions 

This paper deals with the longitudinal load relief control 
problem of launcher during ascent phase. To do so, the 
control equation in the load feedback framework is firstly 
formulated and then transformed to a classical Sylvester 
equation. By making full use of design freedoms of the 
closed-loop system provided by the parameterized approach 
in fully-actuated system approach, the feedback gains can be 
optimized to simultaneously satisfy multiple control 
objectives involving closed-loop stabilization, load relief 
and low sensitivity of closed-loop poles. Finally, a 
numerical example is given to verify the proposed control 
method. 
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Abstract: In this paper, the hypersonic flight vehicle(HFV) is taken as the research object. The problems of tracking control and
formation control are studied. A predefined time control method is proposed to ensure the stability of the system in the expected
time. Considering the complexity of the model, firstly, the hypersonic flight vehicle model is decoupled. Secondly, the desired
value tracking control is realized for a single HFV. Next, on the basis, it is extended to multiple HFVs system to realize formation
control. Then, the stability is proved according to Lyapunov stability theory. Finally, the effectiveness of the proposed control
methods is verified by simulation results.
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1 Introduction

In recent years, with the increasing number of flight tasks,

the increasingly complex flight environment and the contin-

uous expansion of activity range in flight operations, the re-

search on aircraft has become more and more in-depth, cov-

ering the aviation area, orbit to deep space and near space.

The near space plays an irreplaceable strategic role in long-

range strike, navigation and positioning, comprehensive ear-

ly warning, reconnaissance and surveillance, and electronic

countermeasures[1], so it has been widely concerned and fa-

vored by researchers at home and abroad. Hypersonic flight

vehicle (HFV) is one of the main aircrafts flying in this re-

gion. Because of its advantages of long-range rapid response

and large range maneuvering penetration, it has become a

hot spot and difficulty in the development of aerospace field.

In order to ensure the control accuracy, there are many intel-

ligent control methods, such as robust control[2, 3] and quan-

titative learning control[4].

The above research methods have achieved some well

control effect, most of them study the situation of a single

aircraft. Reference [5] completes the tracking problem of

two different HFVs by planning different maneuvering tra-

jectories. And the reference [6] proposes an anti-interference

composite control solution based on additive state decom-

position (ASD) theory, which uses feedback linearization

method to transform complex nonlinear problems into lin-

ear problems and realize control problems.

Considering the changes of the flight environment, multi-

vehicle formation has a huge advantage that a single air-

craft cannot match, and can complete more functions, more

complex and more difficult tasks in many fields, which

is the direction of future development of aircraft system

This work is supported by the National Natural Science Foundation

of China (Nos. 61703134, 62022060, 62073234, 62003236, 61972040).

The China Postdoctoral Science Foundation under Grant 2019M650874.

Open Fund of Complex System Cognition and Decision Lab, Institute of

Automation, Chinese Academy of Sciences E2T0X4D803.

technology[7]. For example, in reference [8], according to

the state and output of the system, corresponding control

commands are obtained to make each member move along

the reference trajectory to achieve and maintain the desired

geometry. In reference [9], a distributed time cooperative

guidance method based on finite time control theory is pro-

posed for multi-hypersonic vehicles system.

Given that the convergence rate is very important for for-

mation flight, the fixed time theory is proposed based on the

finite time theory. The convergence time of the fixed-time

theory no longer depends on the initial conditions. The dis-

tributed formation control of multiple hypersonic flight ve-

hicles is studied in reference [10]. Based on multi-HFVs

formation flight frame, a global fixed-time formation control

scheme is proposed. In addition, the global fixed time dis-

tributed formation control protocol with guaranteed tracking

behavior is proposed in reference [11] to realize collision-

free formation tracking of multiple hypersonic vehicles.

However, the relationship between system parameters and

convergence time is not clear in fixed time theory, so it is

challenging to determine the convergence time in predefined

time[12]. The predefined time theory can overcome the above

shortcomings and ensure that the convergence time can be

arbitrarily selected by the system adjustable parameters[13].

Therefore, how to make the upper bound of the system con-

vergence time independent of the initial state, simple in form

and predefined by the obvious control parameters[14], that is,

to achieve convergence within the settling time , is a problem

worth studying.

The present study focuses on the glide phase of the HFVs,

specifically referring to the power-off and thrust-free stage.

In the second section, the preparatory knowledge including

the graph theory, the predefined time theory and the model

description are given. In the third section, the concrete form

of control law is given and the stability of system is proved.

The fourth section is the simulation results, and the fifth sec-

tion is the summary of this paper.
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2 Preliminaries

2.1 Graph Theory
The graph theory is used to represent the communication

between individuals in a system. An undirected graph can be

represented as G = (υ, ε, A), where υ = {υ1, υ2, ..., υN} is

a node set, ε ⊆ υ×υ is an edge set, and A = [aij ] ∈ RN×N

is a weighted adjacency matrix. In an undirected graph, it

is known that (υi, υj) ⊆ ε ⇔ (υj , υi) ⊆ ε, aij = aji. An

edge (υi, υj) ⊆ ε means that υi and υj can communicate

with each other, and the adjacency matrix coefficients meet

aij > 0. On the contrary, communication is not available,

and aij = 0 is satisfied. D = diag{d1, d2, ..., dN} is the

degree matrix with di =
∑N

j=1 aij . So, the Laplacian matrix

can be written as L = D−A = [lij ] ∈ RN×N . In addition, if

there is a path between any two nodes, the undirected graph

is called connected.

2.2 Hypersonic Flight Vehicles Model Description
The HFVs possess a vast flight envelope, characterized by

highly complex and nonlinearly coupled dynamics. There-

fore, when constructing the control-oriented model, certain

secondary factors should be disregarded in accordance with

the actual flight environment. When studying formation

flight, they can be regarded as particles. Assume that the

Earth is a uniform sphere and ignore its rotation. The three

degrees of freedom model of HFV can be obtained in the

following form

ẋi =Vi cos θi cosψi

ẏi =Vi sin θi

żi =Vi cos θi sinψi

V̇i =−Di − g sin θi

θ̇i =
Li cos γvi

− g cos θi
Vi

ψ̇i =
Li sin γvi

Vi cos θi

(1)

where Vi, θi, ψi and γvi respectively represent the velocity,

the flight path angle, heading angle and the bank angle of the

i-th HFV. Li and Di represent the lift and resistance of the

HFV, which are expressed as follows

Li =
1

2m
ρiVi

2S(cαyαi + cβyβi)

Di =
1

2m
ρiVi

2S(cx0 + cαx |αi|+ cβx |βi|)
(2)

where α is the angle of attack, and β is the side slip an-

gle. m and S represent the mass and reference area of the

aircraft, ρi is the air density, and its specific expression is

ρi = 1.2258e−1.3785×10−4y . Considering the specific flight

environment, the aerodynamic parameters are fitted and the

specific values are cαy = 57.16, cβy = −0.08, cx0 = 0.32,

cαx = 0.21, cβx = 0.19. Therefore, the above lift and drag

forces can be fully expressed.

2.3 Predefined-time Stability
Consider the following autonomous system

ẋ = f(x(t), ϕ), x(0) = x0 (3)

where x ∈ Rn is the state variable and x0 = x(0) is the

initial value of the system. ϕ is a tunable parameter of the

system. f : Rn → Rn is a nonlinear function. The solution

of the system (3) is assumed to be Φ(t, x0), while the origin

serves as the equilibrium.

Definition 1. The origin of system is globally finite-time

stable if the origin of system (3) is globally asymptotically

stable and Φ(t, x0) reaches the equilibrium point within a

finite time. In conclusion, it can be expressed as Φ(t, x0) =
0, ∀t ≥ T (x0). T (x0) : R

n → R+ \ {0} is the convergence

time function.

Definition 2. Assuming that the convergence time func-

tion T (x0) of system (3) is bounded, that is, ∃Tmax > 0 :
∀x0 ∈ Rn : T (x0) ≤ Tmax, then the origin of system has

fixed time stability.

Definition 3. Assuming that the system (3) is fixed time

stable, and there are parameter ϕ and settling time T (ϕ) sat-

isfying ∀x0 ∈ Rn : T (x0) ≤ T (ϕ). Therefore, the origin

of system has predefined time stability, where T (ϕ) is the

predefined convergence time.

Lemma 1[15]. The requirement for system (3) is the exis-

tence of a radially unbounded and positive definite Lyapunov

function V (x) that satisfies the following relation:

V̇ ≤ − 4

TcM(1− μ)
(MV +NV

1+μ
2 +KV

3−μ
2 ) (4)

where M,N,K > 0, 4NK = M2 and 0 < μ < 1. There-

fore, the system is predefined time stable. The settling time

is Tc, which depends on the system parameters.

Proof. Considering the properties of differential inequali-

ties, equation (4) is transformed into:

dt ≤ dV

− 4
TcM(1−μ) (MV +NV

1+μ
2 +KV

3−μ
2 )

(5)

Suppose that the initial condition V0 > 0 of the Lyapunov

function converges to Vr = 0 in time T (x0). Therefore,

provided that both sides of equation (5) are integrated simul-

taneously, the settling time T (x0) can be satisfied

T (x0) ≤−
∫ Vr

V0

TcM(1− μ)

4

dV

MV +NV
1+μ
2 +KV

3−μ
2

=
Tc

√
NK(μ− 1)

2

∫ Vr

V0

dV

V
1+μ
2 (

√
N +

√
KV

1−μ
2 )2

=− Tc

√
NK

∫ Vr

V0

d(V
1−μ
2 )

(
√
N +

√
KV

1−μ
2 )2

=
Tc

√
N√

N +
√
KV

1−μ
2

∣∣∣∣
Vr

V0

=Tc(1−
√
N

√
N +

√
KV

1−μ
2

0

)

≤Tc

(6)

Therefore, the proof of Lemma 1 is complete.
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2.4 Control objective
Considering the system given by (1), in order to facilitate

the design of formation control law, the x and y direction

control is considered in this paper. Given the desired relative

distance, a sliding mode controller based on predefined time

is constructed to make the HFVs reach the desired position

and realize the formation configuration.

3 Predefined-time sliding mode control law

Since the HFV dynamic model is complex and has a

strong coupling, the following method is used to achieve sys-

tem decoupling while realizing the desired formation control

performance. Assuming the control inputs u and v, the sys-

tem model can be expressed as

ẋi =ui

ẏi =vi
(7)

where ui = Vi cos θi cosψi and vi = Vi sin θi.
Assuming the desired trajectory of the formation are xd

and yd, and the relative distance between the i-th HFV and

the expected trajectory is δxi and δyi, the formation error can

be expressed as

exi =
N∑
j=1

aij(x̃i − x̃j) + bix̃i

eyi =
N∑
j=1

aij(ỹi − ỹj) + biỹi

(8)

where x̃i = xi − xd − δxi and ỹi = yi − yd − δyi. The

formation error is selected as sliding mode function. There-

fore, the horizontal direction control law designed according

to the predefined time theory is as follows

ui =
1

(lii + bi)
(−a1exi − b1exi

p
q − c1exi

2− p
q ) + ẋd (9)

where a1, b1, c1 > 0, p, q are positive odd numbers and sat-

isfy p < q. Similarly, the control law of the longitudinal

plane is designed as

vi =
1

(lii + bi)
(−a2eyi − b2eyi

p
q − c2eyi

2− p
q ) + ẏd (10)

where a2, b2, c2 > 0 are the control gains. Thus, using the

above control inputs can ensure that the system realize the

desired formation and meet the desired relative distance re-

quirements.

Theorem 1. Consider the system shown in (7), assuming

that the communication graph of the system is connected.

The control law (9) and (10) can ensure that the system con-

verges in a predefined time Tc, that is, the desired formation

is achieved.

Proof. According to the basic knowledge of graph theory,

the formation error (8) is transformed into the form of vector

ex =(L+B)x̃

ey =(L+B)ỹ
(11)

where x̃ = [x̃1, x̃2, ...x̃N ] ∈ RN , ỹ = [ỹ1, ỹ2, ...ỹN ] ∈
RN and ex = [ex1, ex2, ...exN ]T ∈ RN . Both L and

B are matrices of order N . Supposing there is a matrix

I = [1, 1, ..., 1]N
T

, the control law can be expressed as

u = (L+B)−1(−a1ex − b1ex
p
q − c1ex

2− p
q ) + Iẋd

v = (L+B)−1(−a2ey − b2ey
p
q − c2ey

2− p
q ) + Iẏd

(12)

Select system parameters in the same way as above. Con-

sidering the stability proof in the horizontal direction, the

Lyapunov function is chosen as

V1 =
1

2
eTx ex (13)

The matrix is inherently positive definite, and its derivative

can be derived

V̇1 =eTx ėx

=eTx (u− Iẋd)

=eTx (L+B)(u− Iẋd)

=eTx (−a1ex − b1ex
p
q − c1ex

2− p
q )

=− a
′
1V1 − b

′
1V

1+p/q
2

1 − c
′
1V

3−p/q
2

1

=− (a
′
1V1 + b

′
1V

1+p/q
2

1 + c
′
1V

3−p/q
2

1 )

(14)

According to Lemma 1, the selection of parameters obtained

by comparing (4) and (14) should satisfy the following con-

ditions

a
′
1 ≥ 4

Tc1(1− p/q)

b
′
1 ≥ 2

√
N

Tc1

√
K(1− p/q)

c
′
1 ≥ 2

√
K

Tc1

√
N(1− p/q)

(15)

Therefore, let p/q = μ and 0 < μ < 1, the Lyapunov func-

tion can be rewritten as

V̇1 ≤ − 4

Tc1M(1− μ)
(MV1 +NV

1+μ
2

1 +KV
3−μ
2

1 ) (16)

Similarly, we can select the Lyapunov function as V2 =
1
2e

T
y ey in the longitudinal plane which satisfies the above

conditions. Hence, the designed control law ensures that the

system converges in the predefined time Tc1, and Theorem 1

is proved completely.

The expected heading angle and the flight path angle can

be inversely determined based on the expressions of ui and

vi. So the specific expressions are as follows

ψid =arccos(
ui

Vi cos θi
)

θid =arcsin(
vi
Vi

)

(17)

Thus, the tracking error is defined as

eψi =ψi − ψid

eθi =θi − θid
(18)
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The real control inputs of this system are the bank angle

γvi
and the attack angle αi, so according to the above errors,

the control law can be designed as:

(Li sin(γvi))d =Vi cos θi(uψi + ψ̇id)

(Li cos(γvi
))d =Vi(vθi + θ̇id) + g cos θi

(19)

and

uψi
=(−a3eψi − b3e

p
q

ψi − c3e
2− p

q

ψi )

vθi =(−a4eθi − b4e
p
q

θi − c4e
2− p

q

θi )
(20)

where a3, b3, c3 > 0, a4, b4, c4 > 0, p, q are positive odd

numbers and satisfy p < q.

Therefore, the following equations can be obtained

Ω = sign((Li cos(γvi
))d)

Li = Ω

√
(Li cos(γvi))d

2
+ (Li sin(γvi

))d
2

γvi
= arctan(

(Li sin(γvi
))d

(Li cos(γvi
))d

)

αi =
2Lim

ρiV 2
i Sc

α
y

(21)

The HFVs system formation control laws are designed.

Theorem 2. Taking the model represented by (1) as the

research object, the expressions of the real control law γvi

and αi shown in (20) and (21) can ensure that the system

achieves the desired formation.

Proof. The Lyapunov functions are designed as V3 =
1
2e

2
ψi and V4 = 1

2e
2
θi. Taking the derivative of V3, the re-

sult is as follows

V̇3 =eψiėψi

=eψi(ψ̇i − ψ̇id)

=eψi(
Vi cos θi(uψi

+ ψ̇id)

Vi cos θi
− ψ̇id)

=eψi(−a3eψi − b3e
p
q

ψi − c3e
2− p

q

ψi )

=− a3e
2
ψi − b3e

p+q
q

ψi − c3e
3q−p

q

ψi

=− (a
′
3V3 + b

′
3V

1+p/q
2

3 + c
′
3V

3−p/q
2

3 )

(22)

If the parameters a
′
3, b

′
3, c

′
3 are selected in the same way as

(15), there is

V̇3 ≤ − 4

Tc2M(1− μ)
(MV3 +NV

1+μ
2

3 +KV
3−μ
2

3 ) (23)

The above form can also be obtained by taking the derivative

of V4 in the same way. Theorem 2 is proved. Because the

convergence rate of the control inner ring is greater than that

of the control outer ring, the HFVs system can be guaranteed

to be stable in the predefined time Tc = Tc1(Tc2 < Tc1).

4 Simulations

4.1 Single HFV tracking control
In this section, the tracking control problem of a single

aircraft is studied. The initial values of x and y directions

are x0 = 1000m and y0 = 34000m respectively. The ex-

pected value is set to xd = 200m and yd = 33300m, and

the predefined time is selected to Tc = 6.5s. The specific

simulation results are shown in the Fig.1 and Fig.2.
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Fig. 1: Tracking control performances
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Fig. 2: Tracking control errors

By analyzing the above simulation results, it can be con-

cluded that: Fig.1 shows that the state variables of the hori-

zontal and vertical planes can eventually track the expected

values, making the system stable. Fig.2 shows the tracking

errors, which can be guaranteed to converge within Tc to

achieve predefined time tracking control.

4.2 Multiple HFVs formation control
A multi-aircraft system consisting of three HFVs is con-

sidered based on a single HFV. Multiple aircrafts in the sys-

tem start from the same initial position, and the expected

relative distances in the horizontal and the longitudinal di-

rection are δx = [0;−2500; 2500] and δy = [0; 1000; 1000],
respectively, to form the expected triangular formation. Sup-

posing the HFVs can communicate with each other. The

predefined time is designed as Tc = 13s, and the specific

simulation results are as follows.
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Fig. 3: Formation control performances
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Fig. 5: Three-dimensional formation

According to the above simulations, it can be seen from

Fig.3 that the positions can guarantee the expected relative

distance values. Fig.4 indicates that the errors reach zero at

the predefined time, that is, the system can be stable with-

in Tc. Fig.5 gives the three-dimensional formation, which

eventually formes a triangular formation.

5 Conclusions

The purpose of this paper is to design the predefined time

control law for the HFVs control. In order to solve the prob-

lem of high coupling, a virtual control input is introduced to

transform the complex model into a first-order system. Then

the actual control law is designed by inverting the expect-

ed value. The Lyapunov function is utilized to demonstrate

the stability of both the internal and external rings within the

system, and the simulations show that the system can reach

the expected values and stabilize in a settling time.
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Abstract: Tightly coupled disturbances such as flexible vibration and liquid sloshing reduce the attitude control accuracy and sta-
bility of spacecrafts. The separation and thereby compensation of tightly coupled disturbances are crucial for improving attitude
control performance. This paper investigates disturbance separation-based antidisturbance attitude control for flexible liquid-
filled spacecrafts. First, based on the rigid-flexible-liquid interaction mechanism of spacecrafts, the flexible vibration disturbance
and liquid sloshing disturbance are finely characterized, and a tightly coupled attitude dynamics model of a flexible liquid-filled
spacecraft is established. Then, a disturbance separability criterion is established and two disturbance separability observers are
designed to estimate the flexible vibration disturbance and the liquid shaking disturbance, respectively. Furthermore, a tightly
coupled antidisturbance attitude control law is designed to accurately compensate for the flexible vibration disturbance and the
liquid sloshing disturbance, thereby improving the attitude control accuracy and stability of spacecrafts. Finally, a numerical
simulation is given to verify the validity of the proposed methodology.

Key Words: Flexible liquid-filled spacecrafts, disturbance separation, tightly coupled disturbances, disturbance observer-based

control (DOBC)

1 Introduction

With the development of space technology, high-precision

space missions, such as in-orbit communications and Earth

observation, have placed rigorous requirements on the pre-

cision and stability of spacecraft control. However, in the

microgravity environment of space, factors such as satellite

manoeuvres and changes in environment temperature can

excite the continuous vibration of the satellite’s flexible ap-

pendages and generate multi-modal rigid-flexible coupling

disturbances, which reduces the accuracy and stability of at-

titude control. In addition, during satellite manoeuvring, the

sloshing of a large amount of fuel carried on the spacecraft

will cause oscillations in the satellite attitude. In particu-

lar, the tight coupling between the flexible vibration and the

liquid fuel sloshing will seriously affect the attitude control

accuracy of the satellite. Therefore, the accurate estima-

tion and the compensation of flexible vibration disturbance

and liquid sloshing disturbance in flexible liquid-filled satel-

lites is crucial to the attitude control performance of rigid-

flexible-liquid satellites.

For the anti-disturbance attitude control problem of flex-

ible liquid-filled satellites, various robust control method-

s have been widely studied, such as H∞ control, sliding

mode control, etc [1–3]. These robust control methods at-

tribute disturbances such as flexible vibration and liquid s-

loshing to the norm-bounded uncertainty, and use the robust

characteristics of control methods itself to suppress distur-

bances. Compared with robust control methods that utilize

robust characteristics to suppress disturbances with limited

performance, disturbance compensation based methods are

an effective anti-disturbance control method. By estimat-

This work was supported in part by Beijing Natural Science Foundation

under Grant 4232048, in part by the Fundamental Research Funds for the

Central Universities. (Corresponding author: Yukai Zhu).

ing the disturbance using the disturbance observer and then

compensating for it, the system’s anti-disturbance ability is

improved [4–9]. [5] revealed the uniqueness of active distur-

bance rejection control (ADRC) for dealing with the uncer-

tainties. In [7], a nonlinear ADRC is designed to ensure the

semiglobal and global convergence for the general nonlinear

systems. [10] presented an ADRC strategy to estimates and

compensates for internal dynamic changes in the drive axis

of micro-electro-mechanical systems gyroscope.

However, it is worth noting that the above method is a di-

rect estimation of the disturbance and does not make use of

the information of the disturbance, which leads to a large

conservatism in disturbance rejection. In contrast, distur-

bance observer based control (DOBC) method achieves ac-

curate estimation of disturbance compensation by utilizing

partial information of disturbances [11, 12]. In practical en-

gineering, the disturbance is multi-source rather than single.

The performance of anti-disturbance can be effectively im-

proved by the fine estimation of multiple disturbances. In

particular, the composite hierarchical antidisturbance control

(CHADC) with “disturbance observer + robust control” first

proposed by Guo and Chen can simultaneously attenuate and

reject the multiple disturbances and has been widely applied

in various fields [13–17].

Although abundant results have been obtained on space-

craft attitude control, it is worth noting that the applicability

of disturbance estimation is limited by the fact that the above

mentioned disturbance estimation methods only deal with s-

ingle type disturbance or all heterogeneous disturbances is

classified as lumped disturbance for ease of handling. How-

ever, by classifying heterogeneous and isomeric disturbances

as the lumped disturbance to estimate disturbances reduces

the accuracy of the disturbance estimation, which leads to

more conservative. Therefore, how to achieve separation es-
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timation of multiples tight-coupling disturbances by analyz-

ing different disturbances with heterogeneous property is a

critical challenge.

In this paper, disturbance separation-based antidistur-

bance attitude control for flexible liquid-filled spacecrafts

subject to flexible vibration disturbance and liquid sloshing

disturbance. First, based on the constructed tightly coupled

attitude dynamic model, the definition and criterion for the

disturbance separability are given to ensure that the tightly

coupled disturbances are refined estimated. Then, two dis-

turbance observer are designed to estimate flexible vibration

disturbance and liquid sloshing disturbance, respectively. Fi-

nally, a tightly coupled antidisturbance attitude control law is

designed to accurately compensate for the flexible vibration

disturbance and the liquid sloshing disturbance.

The remainder of this paper is organized as follows. The

tightly coupled dynamics model is introduced in Section 2.

In Section 3, the definition and criterion for the disturbance

separability are given and two disturbance observers are de-

signed. Section 4 presents antidisturbancc attitude control

law designed and stability proof. A numerical simulation is

given in Section 5. Finally, Section 6 concludes this paper.

2 Problem Formulation

Consider a flexible liquid-filled spacecraft, whose attitude

kinematics equations based on Euler angles in a small-angle

case are described as

ω1 = ϕ̇− ω0ψ, ω2 = θ̇ − ω0, ω3 = ψ̇ + ω0ϕ (1)

where ϕ ∈ R, θ ∈ R and ψ ∈ R are roll, pitch, and yaw

angles, respectively. ω1 ∈ R, ω2 ∈ R and ω3 ∈ R are the

angular velocities of the roll, pitch, and yaw channels, re-

spectively. The constant ω0 ∈ R stands for the orbit angular

velocity.

The attitude dynamics model of the flexible liquid-filled

spacecraft is conducted as

Jω̇ + ω×Jω + δ0η̈ + δ1q̈ = u (2)

η̈ +D0η̇ +K0η + δT0 ω̇ = On×1 (3)

q̈ +K1q + δ2ω̇ + δ3Θ = Om×1 (4)

where J ∈ R
3×3 is spacecraft inertia matrix. ω =

[ω1 ω2 ω3]
T ∈ R

3 is the angular velocity vector composed

of ω1, ω2, and ω3. Θ = [ϕ θ ψ]T ∈ R
3 is the attitude

angle vector. δ0 ∈ R
3×n denotes the rigid-flexible cou-

pling matrix. δ1 ∈ R
3×m, δ2 ∈ R

m×3 and δ3 ∈ R
m×3

are constant matrices related to the rigid-liquid coupling.

u ∈ R
3×1 is the tightly coupled anti-jamming attitude con-

trol law. η ∈ Rn is the modal displacement vector of flex-

ible appendage. D0 = diag{2ς1	1, 2ς2	2, · · · , 2ςn	n} ∈
R

n×n and K0 = diag{	2
1, 	

2
2, · · · , 	2

n} ∈ R
n×n are

the damping matrix and the stiffness matrix, respectively.

ςi ∈ R(i = 1, 2, · · · , n) and 	i are the damping ratio

and the modal frequency, respectively. q ∈ Rm denotes

the modal displacement of the liquid sloshing disturbance.

K1 represents the modal frequency matrix of liquid slosh-

ing disturbance. ω× is a skew-symmetric matrix denoted as

ω× =

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦.

Let w1 = η and w2 = η̇. From (2)–(4), the dynamic of

flexible vibration disturbance is obtained as{
ẇ = W0w +H0(u+ ds + δ1δ3Θ− ω×Jω)
dv = V0w

(5)

where w = [wT
1 wT

2 ]
T ∈ R

2n. ds = δ1K1q is the liquid

shaking disturbance, J0 = J − δ0δ
T
0 − δ1δ2 is a known

constant matrix. The coefficient matrices W0 ∈ R
2n×2n,

H0 ∈ R
2n×3, and V0 ∈ R

3×2n are given as

W0=

[
On×n In×n

−(In×n + δT0 J
−1
0 δ0)K0 −(In×n + δT0 J

−1
0 δ0)D0

]
,

H0 =

[
On×3

−δT0 J
−1
0

]
, V0 =

[
δ0K0 δ0D0

]
.

Similarly, let ξ1 = q and ξ2 = q̇. The dynamic of liquid

sloshing disturbance is represented as{
ξ̇ = W1ξ +H1(u+ dv + δ1δ3Θ− ω×Jω) +H2

ds = V1ξ
(6)

where ξ = [ξT1 ξT2 ]
T ∈ R

2m, and the coefficient matri-

ces W1 ∈ R
2m×2m, H1 ∈ R

2m×3, H2 ∈ R
2m, and

V1 ∈ R
3×2m are given as

W1=

[
Om×m Im×m

−(Im×m + δT2 J
−1
0 δ1)K1 Om×m

]
,

H1=

[
Om×3

−δ2J
−1
0

]
, H2=

[
Om×1

−δ3Θ

]
, V1=

[
δ1K1 Om×m

]
.

Combining the attitude dynamics model (2)–(4), the flex-

ible vibration disturbance model (5) and the liquid sloshing

disturbance model (6), the deep-coupled model can be estab-

lished as⎡
⎣ ω̇
ẇ

ξ̇

⎤
⎦=As

⎡
⎣ ω
w
ξ

⎤
⎦+Bs(u+δ1δ3Θ−ω×Jω)+Ds (7)

where As =

⎡
⎣ O3×3 J−1

0 V0 J−1
0 V1

O2n×3 W0 H0V1

O2m×3 H1V0 W1

⎤
⎦, Bs =

⎡
⎣ J−1

0

H0

H1

⎤
⎦,

and Ds =

⎡
⎣ O3

O2n

H2

⎤
⎦.

Remark 1 In this paper, different from the existing work-
s ([10, 11, 18]), the dynamic of flexible vibration distur-
bance dv and liquid slosh disturbance ds are described by an
exogenous model, which utilize the partially known distur-
bance information. Especially the disturbance between dv
and the disturbance ds are mutually contained, resulting in a
tightly coupled disturbance. Furthermore, the deep-coupled
mode is established based on attitude dynamics model and
two disturbance models. In addition, this deep-coupled mod-
el will provide important support for the subsequent discus-
sion on the separability of disturbance.

3 Disturbance Separability and Estimation

3.1 Disturbance separability
In order to obtain accurate estimation of multiple distur-

bances, it is necessary to ensure that the multiple distur-

bances have separability, that is, each disturbance can be
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independently estimated. Inspired by the disturbance esti-

matability in [17], the definition of disturbance separability

is given as follows.

Definition 1 For a given initial time instant t0 ∈ Ts, if there
exist a finite time tf ∈ Ts(tf > t0), such that the distur-
bance initial states w(t0) and ξ(t0) can be uniquely deter-
mined based on the system output y(t) during time interval
[t0, tf ]. Hence, the disturbance states w(t0) and ξ(t0) can
be independently estimated. If for any time instant t ∈ Ts,
the disturbance states can be independently estimated, the
disturbance dv and ds are said to be separable.

The angular velocity tracking error ω can be regarded as

the system output, then a sufficient condition for disturbance

separability criterion can be given as

Rank(

⎡
⎢⎢⎣

Cs

CsAs

· · ·
CsA

2m+2n+2
s

⎤
⎥⎥⎦) = 2m+ 2n+ 3, (8)

where As has been given in (7), Cs = [I3×3 O3×2n O3×2m].

Remark 2 In order to ensure the separation of tightly cou-
pled disturbances, it is only necessary to ensure that each
type of disturbance in tightly coupled model can be accu-
rately estimated, that is, to ensure the estimatability of dis-
turbance. Therefore, the definition of disturbance separabil-
ity is reasonable. By utilizing the observability of the deep
coupling model (7), the disturbance dv and ds can be re-
fined estimated, which indicates that the tightly coupled dis-
turbance has separability.

3.2 Separation estimation of multiple disturbances
In order to obtain the flexible vibration disturbance de-

scribed in (5), the disturbance observer is designed as

{
d̂v=V0ŵ, ŵ = ζ0 + L0J0ω

ζ̇0=(W0−L0V0)ŵ+(H0−L0)(u+d̂s+δ1δ3Θ−ω×Jω)
(9)

where d̂v and ŵ are estimation of dv and w, respectively. ζ0
is the auxiliary variable. L0 is the observer gain matrix.

Similarly, the disturbance observer for estimating liquid

sloshing disturbance in (6) is designed as

{
d̂s=V1ξ̂, ξ̂ = ζ1 + L1J0ω

ζ̇1=(W1−L1V1)ξ̂+(H1−L1)(u+d̂v+δ1δ3Θ−ω×Jω)+H2

(10)

where d̂s and ξ̂ are estimation of ds and ξ, respectively. ζ1 is

the auxiliary variable. L1 is the observer gain matrix.

Define the estimation error of (9) and (10) as w̃ = w − ŵ
and ξ̃ = ξ − ξ̂, respectively. Thus, we have

[
˙̃w

˙̃
ξ

]
= Wξ

[
w̃

ξ̃

]
(11)

where Wξ =

[
W0 − L0V0 (H0 − L0V1)
(H1 − L1)V0 W1 − L1V1

]
.

Therefore, in order to ensure the convergence of distur-

bance estimation errors w̃ and ξ̃, the disturbance observer

gain matrices L0 and L1 are selected to ensure that all poles

of matrix Wξ have negative real parts by pole placement

method.

Remark 3 Due to the disturbance dv and ds are in the same
channel, namely, tightly coupled disturbance, it is impossi-
ble to separate the tightly coupled disturbance by using tra-
ditional methods. However, due to the heterogeneity between
dv and ds, the disturbances exhibit different characteristics.
Especially, locally known disturbance information provides
support conditions for tightly coupled disturbances. Two de-
signed disturbance observers can refined estimate the tightly
coupled disturbances by locally known disturbance informa-
tion, such as the damping ratio and the modal frequency. In
addition, the deep-coupled model (7) provides conditions for
the estimatability of disturbances, that is, system observabil-
ity, which decides the disturbance separability.

4 Anti-Disturbance Controller Design

Based on satellite attitude kinematics, the expected atti-

tude angular velocity is defined as ω∗ = −k0Θ−

⎡
⎢⎣

ω0ψ

ω0

−ω0ϕ

⎤
⎥⎦,

where k0 is a positive constant.

Theorem 1 Consider the attitude control system (1)–(2)
and the disturbance estimation (9)–(10). The attitude an-
gle vector of the spacecraft asymptotically converges to the
equilibrium point, if the anti-disturbance control law u is
designed as

u=−k1(ω−ω∗)+ω×Jω−δ1δ3Θ+J0ω̇
∗−d̂v − d̂s (12)

where k1 > 1. ω̇∗ is obtained by calculation based on the
definition of ω∗, (2) and (7).

Proof 1 Choose the Lyapunov function

V =

[
w̃

ξ̃

]T

P

[
w̃

ξ̃

]
+

1

2
(ω − ω∗)TJ0(ω − ω∗). (13)

The time derivative of V (t) is calculated as

V̇ (t) =

[
˙̃w

˙̃
ξ

]T

P

[
w̃

ξ̃

]
+

[
w̃

ξ̃

]T

P

[
˙̃w

˙̃
ξ

]
+(ω − ω∗)TJ0(ω̇ − ω̇∗)

=

[
w̃

ξ̃

]T

(WT
ξ P+PWξ)

[
w̃

ξ̃

]
+(ω−ω∗)T (u+ dv + ds

+ δ1δ3Θ− ω×Jω − J0ω̇
∗). (14)

Substituting the control law (12) into (14), we get

V̇ (t) =

[
w̃

ξ̃

]T

(WT
ξ P+PWξ)

[
w̃

ξ̃

]
− k1‖ω − ω∗‖2

+ (ω − ω∗)T (d̃v + d̃s). (15)

Note that the following inequalities hold:

(ω − ω∗)T d̃v ≤ 1

2
‖ω − ω∗‖2 + 1

2
‖d̃v‖2, (16)

(ω − ω∗)T d̃s ≤ 1

2
‖ω − ω∗‖2 + 1

2
‖d̃s‖2. (17)
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It is obvious that inequalities ‖d̃v‖ ≤ V0‖w̃‖ and ‖d̃s‖ ≤
V1‖ξ̃‖ hold. Substituting (16)–(17) into (15), we get

V̇ (t) ≤
[
w̃

ξ̃

]T

(WT
ξ P+PWξ)

[
w̃

ξ̃

]
− (k1 − 1)‖ω − ω∗‖2

+
1

2
max{‖V0‖2, ‖V1‖2}(‖w̃‖2 + ‖ξ‖2)

=

[
w̃

ξ̃

]T

(WT
ξ P+PWξ+

1

2
max{‖V0‖2, ‖V1‖2}I)

[
w̃

ξ̃

]

− (k1 − 1)‖ω − ω∗‖2. (18)

Furthermore, there is a positive parameter α satisfying
the following inequality

WT
ξ P+PWξ+

1

2
max{‖V0‖2, ‖V1‖2}I < −αI. (19)

Therefore, (18) can be further transformed into

V̇2 ≤− α(‖w̃‖2 + ‖ξ‖2)− (k1 − 1)‖ω − ω∗‖2
≤−min{α, k1 − 1}(‖w̃‖2 + ‖ξ‖2 + ‖ω − ω∗‖2)
≤− βV, (20)

where β = min{α,k1−1}
max{λP , 12‖J0‖} and λmax(P ) denotes the maxi-

mum eigenvalue of P .
Furthermore, we have

V2 ≤ V (0)e−βt. (21)

Therefore, the attitude angle vector of the spacecraft
asymptotically converges to the equilibrium point. The proof
is completed.

Remark 4 The designed composite attitude anti-
disturbance controller contains a feedback control part
−k1(ω − ω∗) + ω×Jω − δ1δ3Θ+ J0ω̇

∗ and a disturbance
compensation part −d̂v − d̂s. Compared with traditional
compensation methods for the lumped disturbance, this
paper considers some prior information of tightly coupled
disturbances, such as the flexible vibration frequency,
damping ratio, liquid fuel oscillation frequency and so on.
By separating tightly coupled disturbances based on the
criterion of disturbance separability (8), the estimation
accuracy of disturbances based on (9)–(10) is improved,
thereby enhancing the anti-disturbance ability of the com-
posite controller (12). Therefore, the proposed composite
controller is suitable for control systems subject to tightly
coupled disturbances.

5 Numerical Simulation

In this section, the numerical simulation is given to ver-

ify the effectiveness of proposed methods. The inertia ma-

trix of the spacecraft is J = diag{50, 50, 50}kgm2. The

orbital angular velocity is ω0 = 0.0011rad/s. For the flex-

ible appendage of the spacecraft, the modal frequencies

and damping ratios are given as 	1 = 1.85rad/s, 	2 =
2.25rad/s, 	3 = 3.45rad/s, and ς1 = ς2 = ς3 =
0.0001. The rigid-flexible coupling matrix δ0 is select-

ed as 0.2 ×
⎡
⎣ 1.25 0.15 0.12

−1.30 0.20 0.05
1.20 −0.15 0.02

⎤
⎦. For the liquid-

slosh of the spacecraft, the relevant parameters are set as

follows: δ1 =

⎡
⎣ 0 −2.6281

2.6281 0
0 0

⎤
⎦, K1 = 10−1 ×

[
1.0589 0

0 1.0589

]
, δ2 =

[
0 0.6174 0

−0.6174 0 0

]
,

δ3 = 10−3 ×
[

0 4.37 0
4.37 0 0

]
.

Due to rank([Cs CsAs · · · CsA
12
s ]T ) = 13, the multiple

disturbances is separable. By pole placement method, the

observer gains of the disturbance observer (9) and (10) are

chosen as

L1 =

⎡
⎢⎢⎣

−6.4930 29.5976 27.6492
−9.8791 15.6704 20.3825
−0.8705 3.1476 3.1296
−0.3976 1.1446 1.2176

⎤
⎥⎥⎦ ,

L0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−7.6892 16.8900 27.6355
1.1385 −2.4987 −4.3669
0.7720 −0.8244 0.3050
−0.5335 0.8483 −0.8180
10.7525 −23.4151 −38.1542
−19.0163 41.7845 68.7963

⎤
⎥⎥⎥⎥⎥⎥⎦
.

First, the disturbance separation estimation is verified by

the disturbance separation observer. Fig.1 shows the flexible

vibration disturbance and its estimated value. Fig.2 repre-

sents liquid fuel slosh disturbance of spacecraft. From which

it can be seen that the flexible disturbance and liquid slosh

disturbance are well estimated, which verifies the rationality

of disturbances separability criterion. Fig.3 exposes the re-

sponse of the attitude angular velocity. The actual attitude

angular velocity ω can well track the desired attitude angu-

lar velocity ω∗. Fig. 4 exhibits the attitude angle Θ, which

implies that although the spacecraft is affected by multiple

disturbances, the attitude angle Θ can still maintain con-

vergence. Fig.5 depicts the control input u. These results

show that the multiple disturbances can be accurately esti-

mated based on the disturbance separability criterion, there-

by achieving good angular velocity tracking performance.

0 20 40 60 80 100
-0.02

0

0.02

0 20 40 60 80 100
-0.02

0

0.02

0 20 40 60 80 100
-0.02

0

0.02

Fig. 1: Response of the flexible disturbance and its estimate

6 Conclusion

This paper has studied the antidisturbance attitude control

for flexible liquid-filled spacecrafts subject to the flexible vi-
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Fig. 2: Response of liquid slosh disturbance and its estimate
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Fig. 3: Response of ideal and actual angular velocity
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Fig. 4: Response of attitude angles

bration disturbance and liquid sloshing disturbance. A tight-

ly coupled attitude dynamics model of a flexible liquid-filled

spacecraft has been established. The definition and criterion

of disturbance separability have been given, and two distur-

bance separability observers have been designed to estimate

tightly coupled disturbances. Furthermore, the attitude con-

trol law has been proposed. Finally, the numerical simula-

0 20 40 60 80 100
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0

0.5

1

1.5

2

Fig. 5: Response of the control input

tion has shown the effectiveness of the proposed method.
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Abstract: This paper investigates the problem of cooperative guidance strategies for multiple missiles attacking a maneuvering 

target. Based on the consistency theory and algebraic graph, a fixed-time cooperative guidance law with a terminal line-of-sight 

(LOS) angle constraint is proposed. Initially, the maneuvers of target in the LOS direction and normal to the LOS are considered 

as disturbances affecting the missiles. A two-dimensional guidance encompassing three degrees of freedom model is formulated 

based on the missile-target kinematics. Next, the guidance law design is divided into two parts. Along the LOS, a disturbance 

observer estimates the disturbances, and a fixed-time convergent, time-coordinated guidance law is formulated, integrating a 

consensus protocol to handle these disturbances. In the LOS normal direction, an adaptive estimation method is utilized to es-

timate the upper bound of disturbance. A non-singular fast terminal sliding mode control method is employed to generate LOS 

normal acceleration commands while ensuring convergence to the sliding surface within a fixed time. Lastly, a scenario with 

three missiles engaging a maneuvering target is designed, and saturation limits are applied on the acceleration commands in both 

directions. The simulations validate the proposed cooperative guidance law’s accuracy and efficacy for multiple missiles with a 

LOS angle constraint. 

Key Words: Cooperative Guidance Law, Consensus Theory, Non-singular Terminal Fast Sliding Mode, Adaptive Control.  

 

 
  

1 Introduction 

Multi-Missile Cooperative Guidance (MMCG) is an ad-

vanced guidance technique applied in missile systems. As a 

crucial component of cooperative guidance technology, 

MMCG law has been extensively studied for cooperative 

engagement against stationary and slow-moving targets. 

References [1] and [2] present studies on cooperative 

guidance laws for engaging against stationary targets with 

multi missiles. Reference [3] modified the proportional 

guidance law's coefficient according to the remaining time 

to target. However, these cooperative guidance laws are not 

applicable when the target is maneuvering. Obtaining target 

maneuvering information in combat environment is chal-

lenging. To address this problem, someone utilized adaptive 

estimation to estimate the upper bound of target's accelera-

tion disturbance along the LOS direction in reference [4]. 
When dealing with the maneuvering information of a target, 

the target's maneuver can be regarded as a disturbance to the 

system, which can be estimated in the form of an observer. 

In reference [5], scholars have considered the system's dis-

turbance as a new state and used an extended state observer 

(ESO) to observe the disturbance experienced by the sys-

tem.  

The most critical issue in multi-missile collaborative at-

tack on a target is the problem of time coordination, which 

can be achieved through three main approaches. The first 

method involves presetting the attack time for all missiles 

before attacking the target, as described in reference [6] and 

[7], so that all missiles attack on a target simultaneously. 

 
*This paper was supported by the National Natural Science Foundation 

of China (Grant No.62273277), Key Research and Development Program 

of Shaanxi (Grant No. 2023-GHZD-32), and the Aeronautical Science 

Foundation of China (No.201901053004). 

However, this method does not leverage the dynamic in-

formation from other missiles. The second method involves 

utilizing a centralized cooperative guidance architecture, 

with a typical example being the master slave cooperative 

guidance architecture. By tracking the remaining attack time 

of the lead missile, the slave missiles achieve time coordi-

nation within the entire missile group, as described in ref-

erences [8] and [9]. However, this type of cooperative ar-

chitecture leads to significant computational burden on the 

central coordinating unit. The final method involves em-

ploying a distributed, two layers cooperative architecture for 

inter-missile communication. The distributed communica-

tion method within the missile group enables each missile to 

promptly adjust its control inputs through inter-missile 

communication, thereby achieving consistent remaining 

attack times. In reference [10], a distributed time coordina-

tion guidance law with finite-time convergence is designed 

using sliding mode control and first-order consensus pro-

tocols. 

In the majority of research literature, the design of coop-

erative guidance law is typically predicated on the assump-

tion of a constant missile velocity. However, during the 

terminal guidance phase, the missile actually generates 

acceleration along its velocity vector. In light of this, the 

present study re-evaluates the construction of a mis-

sile-target guidance model within a two-dimensional plane. 

This model lays the groundwork for subsequent research on 

saturation control of acceleration in the LOS direction 

within a three-dimensional space. The work of this paper are 

as follows: Under the premise of Assumption 1, a mis-

sile-target guidance model is established and a cooperative 

guidance law along the LOS and normal to LOS directions is 

designed. Theoretical proof is provided to demonstrate that 

this cooperative guidance law can direct all missiles to 

simultaneously engage a maneuvering target with a desired 
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LOS angle within a fixed time. Finally, the effectiveness of 

this cooperative guidance law is proved through simula-

tions. 

2 Fundamental Knowledge 

2.1 The Establishment of Model 

Considering the guidance problem of a missile inter-

cepting a maneuvering target, we can obtain the relative 

motion relationship between the missile and the target in the 

plane. As shown in the Fig. 1, M  represents the center of 

mass of the missile, and T  represents the center of mass of 

the target. r  represents the relative distance between the 

missile and the target. tV  and mV  represent the velocity of 

the target and missile. q  represents the LOS angel between 

the target and missile. The velocity heading angle of the 

target and missile are denoted by t  and m , respectively. 

mra  and
mqa  represent the acceleration along the velocity 

direction and the acceleration along the velocity normal 

direction of missile. And mra  is generated by the thrust of 

the missile’s engine. According to Fig. 1, it can be obtained 

the relative motion equation between the missile and the 

target: 

 

 cos( ) cos( )t t m mr V q V q = − − −  (1) 

 sin( ) sin( )t t m mrq V q V q = − − + −
 (2) 

 /t tq ta V =
 (3) 

 /m mq ma V =
 (4) 

 m mrV a=
 (5) 

Furthermore, the derivative of the equation (1) can be ob-

tained: 

 sin( ) sin( ) sin( )

cos( ) sin( )

t t m m tq t

mr m mq m

r V q q V q q a q

a q a q

  

 

= − − + − + −

− − − −
 (6) 

Assumption 1. In the terminal guidance phase, the velocity 

leading angle between the LOS and the velocity vector is 

very small, that means ( )mq −  is very small. 

Remark 1. The guidance law designed herein is intended 

solely for the terminal guidance phase. During this phase, 

the target has been acquired by the seeker and is within the 

seeker's line of sight, making the aforementioned assump-

tions reasonable.  

Next, the first-order derivative of equation (2) is:  

 cos( )( ) sin( )

+ cos( )( )

t t t mr m

m m m

rq rq V q q a q

V q q

  

 

+ = − − − + −

− −
 (7) 

Simplifying the Equation (7), this yields: 

 cos( ) cos( )2

sin( )

tq t mq m

mr m

a q a qrq
q

r r r

a q

r

 



− −
= − + +

−

 

(8) 

Finally, the dynamic equations between the missile and 

target are expressed as 

 2

2

r r

q q

r rq u w

u wrq
q

r r r

= − +

= − − +
 (9) 

where, cos( ) sin( )r mr m mq mu a q a q = − + −  and it repre-

sents the acceleration component along the direction of LOS.  

sin( ) cos( )r mr m mq mu a q a q = − + − , and it represents the 

acceleration component along the LOS normal direction. 

sin( )r t tw a q = −  represents the projection of the target's 

acceleration in the LOS direction, and cos( )r t tw a q = −  

represents the projection of the target's acceleration in the 

LOS normal direction. 

These state variables are defined in the following paper: 

1x r= , 2x r= , 3 dx q q= − , 4x q= , where dq  is the de-

sired angle of the LOS. It can be obtained that the state space 

equation between the missile and the target: 

 
1 2

2

2 1 4

3 4

2

4 4

1 1 1

2

r r

q q

x x

x x x u w

x x

u wx
x x

x x x

=


= − +


=

 = − − +


 (10) 

It can be obtained that the motion relationship between a 

single missile and a moving target in Fig. 1. 

mV

tV

t

q

q

m

M

r T

 
Fig. 1: Missile-target engagement geometry 

To design cooperative guidance law that enable all mis-

siles to attack a target simultaneously, introducing a new 

variable: 
got  to represent the remaining attack time between 

the missiles and target. Using the following formula to es-

timate the remaining time to impact between the missiles 

and target: 

 
go

r
t

r
= −  (11) 

This yields the first-order derivative of equation (11): 

 2 2

1 4 1 1

2 2 2

2 2 2

1go r r

x x x x
t u w

x x x
= − + − +  (12) 

Fig. 2 describes the motion relationship of multiple mis-

siles intercepting a target simultaneously during the terminal 

guidance phase. In order to ensure the consistency of the 

remaining time for all missiles to attack, it is necessary for 

every missile to communicate with the others, to ensure the 

consistency of 
got . To differentiate between different mis-

siles, the state of each missile is represented by the subscript 

( 1,2,3...)i i = . 

Treating the impact time of missiles for each missile as a 

new state variable. It can be obtained that a new state space 

equation: 
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 2 2

1 4 1 1

2 2 2

2 2 2

3 4

2

4 4

1 1 1

1

2

i i i i

goi ri ri

i i i

i i

qi qii

i i

i i i

x x x x
t u w

x x x

x x

u wx
x x

x x x


= − + − +




=

 = − − +


 (13) 

Define a new control input variable: 

 2 2

1 4 1

2 2

2 2

i i i

ri

i i

ri

x x x
u

x x
u = −  (14) 

Substituting equation (14) into equation (13), it follows 

that: 

 

3 4

2

4 4

1 1

1

2

goi ri ri

i i

qii

i i qi

i i

t u d

x x

ux
x x d

x x

= − + +




=


− = − − +


 (15) 

where 1

2

2

i

ri ri

i

x
d w

x
= , and 

1

qi

qi

i

w
d

x
= . 

Assumption 2. Treating the projection of the target's ac-

celeration in the LOS frame: rid  and 
qid , as the disturbance 

to the system. And they satisfy the following inequalities: 

ri rid    and qi qid D , where ri and
qiD  are positive 

constants. 

Based on the analysis of the model mentioned above, we 

can design the following two components to achieve the two 

major control objectives: three missiles attack the target 

simultaneously, and every missile satisfy the desired LOS 

angle constraints. Firstly, designing the time-coordinated 

guidance law along the LOS direction. Treating the com-

ponent of the target’s acceleration along the LOS as dis-

turbance, design the time-coordinated guidance law: riu , to 

enable all the missiles to attack the target simultaneously. 

Secondly, design a guidance law: 
qiu , which can converge 

the LOS angle between missiles and the target to the desired 

LOS angle. 

Remark 2. Because all the missiles are in the terminal 

guidance phase, ( )mq −
 

is very small, the acceleration 

along the LOS direction is primarily provided by thrust of 

engine. Therefore, in the final simulation stage of this study, 

we will use a saturation function to limit riu  to be greater 

than or equal to zero. 
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Fig. 2: Multi-missiles interception a maneuvering target 

 

2.2 Foundational Knowledge 

Fixed-time stability refers to the property where the sys-

tem state converges to the equilibrium point within a fixed 

time, and the convergence time is independent of the initial 

state. For the convenience of subsequent stability proofs of 

control laws, the following definition and lemma are pro-

vided.  

Consider a nonlinear system: 

 ( ) ( ( ))x t f x t=  (16) 

where, (0) 0f = , 0 0t = , 
0 (0)x x , ( ) nx t R  is the state 

of the system. : nf U R→  is domain that includes origin. 

0 nR represents the zero vector. 0x  represents the initial 

state of the system.  

Definition 1[11]: If system (16) converges in finite time and 

the upper bound of convergence is independent of the initial 

conditions, then the system is fixed-time stable. 

Lemma 1[11]: For system (16), if there exists a positive 

definite and continuous function ( )V x  defined on the do-

main U  that satisfies the following inequality: 

 ( ) ( ) ( )p gV x V x V x  − −  (17) 

where, \{0}x U ,  ,  , p  and g  are positive constants, 

p  and g  satisfy: 1p  , 1g  , the system can stabilize 

within a fixed time, the upper bound of convergence time is: 

1 1

(1 ) ( 1)
rT

p g 
 +

− −
 

Lemma 2[12]: ix R , 1,2, ,i n=  , v  is a positive constant. 

If (0,1]v , then  

 

1 1

( | |) | |
n n

v v

i i

i i

x x
= =

   (18) 

When 1v   , then  

 
1

1 1

( | |) ( | | )
n n

v v v

i i

i i

x n x−

= =

   (19) 

Lemma 3[13]: Let us consider N NL R   as the Laplacian 

matrix of the graph G , then we can obtain the following 

conclusion: 

(1) If the matrix L is positive semi-definite and has exactly 

one zero eigenvalue, then when the communication topol-

ogy graph G  is undirected and connected, all the other 

eigenvalues of the Laplacian matrix are positive real num-

bers.      

 (2) If graph G is undirected and connected, it can be ob-

tained that: 

 
2

1 1

1
( )

2

N N
T

ij j i

i i

x Lx a x x
= =

= −  (20) 

Lemma 4[13]:There is a Laplacian matrix L  of the undi-

rected graph G . The second smallest eigenvalue of the 

matrix L  satisfies the following inequality: 

 
2 20,1 0
( ) min 0T

N

T

x x

x Lx
L

x


 =
=   (21) 

If 
1

0
N

i

i

x
=

= , then  

 
2 ( )T Tx Lx L x x  (22) 
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3 The Design of Cooperative Guidance Laws 

3.1 Time-coordinated guidance law with convergence 

within a fixed time. 

First, from equation (11), we can obtain the remaining 

time 
goit  to target for each missile. Therefore, we can de-

termine the time from the missile launch to the moment each 

missile reaches the target's position based on the remaining 

time to target: 

 
fi goit t t= +  (23) 

where, 
fit  represents the moment when the ith  missile 

attacks the target. 

Take the derivative of the above equation and substitute 

equations (12) and (14): 

 

2 2

1 4 1

2 2

2 2

    =

fi ri ri

i i i

ri ri

i i

t u d

x x x
u d

x x

= +

− +
 (24) 

where, riu  is the acceleration along the LOS, and riu  is 

consistency protocol. 
This part aims to achieve: 

 lim( ) lim( ) 0
r r

fj fi goj goi
t T t T

t t t t
→ →

− = − =  (25) 

Based on consensus control protocol and equation (21), it 

follows that the guidance law riu : 

 2

22

1 4
1

i

ri ri i i

x
u u x x

x i
= − +  (26) 

And the consensus control protocol riu  is: 

 

1 1

1

( )

[ ( ) ( )

       ( )]

N

ri ij goj goi

j

ij ij goj goi goj goi

goj goi

u t t

a sig t t sig t t

dsign t t

 





=

= −

= − + −

+ −



 
(27) 

where, 10 1  , 1 1  , 1/2

22 / ( )rid N L=  . N  

represents the numbers of missiles. 2 ( )L  represents the 

second smallest eigenvalue of the matrix L . 

It can be obtained that the upper bound of convergence 

time: 

 
1 max

1 1

(1 ) ( 1)
T T

p q 
 = +

− −
 (28) 

where, 
1

2 1

22 ( )p p L −= , 
1

2 1

22 ( )q q L −= , 1 1

2
p

 +
= ,

1 1

2
q

 +
= . 

Stability proof 

First, let 
1

1 N

f goj

j

t t
N =

=   and 
i goi goe t t= − , where, ie and 

ft  represent the error between the remaining attack time of 

the ith  missile and the average remaining attack time of all 

missiles. The following equation obviously holds:  

( ) ( )ij goj goi ji goi gojt t t t − = − −  and 
j i goj goie e t t− = − . 

Taking the derivative of ie  with respect to time, this 

yields: 

1

1 1 1 1

1
( )

1 1
    = ( ) ( )

N

i ri ri rj rj

j

N N N

ij goj goi ri ji goi goj rj

j j i j

e u d u d
N

t t d t t d
N N

 

=

= = = =

= + − +

− + − − −



  
 

(29) 

It can be obtained that the following relationship: 

 

1 1

( ) 0
N N

ij goj goi

i j

t t
= =

− =  (30) 

Then, substituting equation (28) into equation (27), this 

yields: 

 

1 1

1
( )

N N

i ij goj goi ri ri

j j

e t t d d
N


= =

= − + −   (31) 

Construct the Lyapunov function in the following form: 

 
2

1

1
( )

2

N

i

i

V e e
=

=   (32) 

Furthermore, it can be obtained that: 

1 1 1 1 1

1
( ) ( )

N N N N N

i i i ij goj goi i ri rj

i i j i j

V e e e t t e d d
N


= = = = =

= = − + −     (33)

 

For 
1

0
N

i

i

e
=

= , we can obtain 
1 1

1
0

N N

i rj

i j

e d
N= =

=  . The above  

equation (33) can be rewritten as  

 

1 1

1 1 1

1 1 1

1 1

1 1

1 1 1

( )

1
    = ( ) ( )

2

1
    (| | | | )

2

1
       | | | |

2

N N N

i ij goj goi i ri

i j i

N N N

j i ij j i i ri

i j i

N N

ij j i j i

i j

N N N

ij j i ri i

i j i

V e t t e d

e e e e e d

a e e e e

d a e e e

 





= = =

= = =

+ +

= =

= = =

= − +

− − − +

 − − + −

− − +

  

 



 

 (34) 

Based on Lemma 2 and Lemma 3, it can be obtained that: 

 11

2
1 1

2

1 1 2

1 1

| | ( ( ) )
N N

ij j i ij j i

j j

a e e a e e



 

+

+ +

= =

−  −   (35) 

 1 1

1 1

21 1

1 1 22 2

1 1

| | ( ( ) )
N N

ij j i ij j i

j j

a e e N a e e

 
 

− +

+ +

= =

−  −   (36) 

 1

2 2 2

1 1

| | ( ( ) )
N N

ij j i ij j i

j j

a e e a e e
= =

−  −   (37) 

 1 1

22 2

1 1

| | ( )
N N

i i

i i

e N e
= =

   (38) 

Based on Lemma 4, it can be obtained that: 

 
1

1

1

1

2

1 2

1, 1

2

2

( ) 2

                           2 ( )

                           4 ( ) ( )

N
T

ij j i

i j

T

a e e e L e

L e e

L V e













+

= =

− =



=



 

(40) 

 
1

1

2

1 2

2

1, 1

( ) 4 ( ) ( )
N

ij j i

i j

a e e L V e


+

= =

−   (41) 

 
2 2

2

1, 1

( ) 4 ( ) ( )
N

ij j i

i j

a e e L V e 

= =

−   (42) 

Substituting equations (40) ~ (42) into equation (34), this 

yields: 
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 111 1 1
2

1 1

1 1 1

2 2 2
2( ) 2 ( ) 2 ( )

        = p q

V e L V N L V

V V

  
 

 

 

++ + −

 − −

− −

 (43) 

According to Lemma 2, the system state will stabilize 

within a fixed time. Proof completed. 

Lemma 5[14]: Using FxTDO to estimate the disturbance 

value. In the design of the cooperative guidance law, the 

observed values from FxTDO are incorporated into the 

design of the control law (For the proof of convergence of 

FxTDO, refer to Ref[14]). 2z  is estimation value of the rid .  

2id z−  will converge to a stable state within a fixed time. 

 
1

1 1 1 2

12

2 2

( )

( )

i

i

x z
z k z a bu

x zk
z





 

−
= + + +


− =



 (44) 

where, 1 2, 0k k  , 1 2k k , 0 1  , '0.5 1  , 

'1 1.5  . 1( )  and 2 ( )  are correction terms defined as 

follow: 

 ' '

1( ) ( ) ( )x sig x sig x  = +  (45) 

 2 ' 1 2 ' 1

2( ) ( ) ( )x sig x sig x  − −= +  (46) 

The purpose of introducing the FxTDO is to avoid ex-

cessive control gains, which could lead to control chattering 

phenomena. Based on Lemma 5, the specific form of the 

FxTDO adopted is as follows: 

 
1

1 1 1 2

12

2 2

( )

( )

i i

i i ri

i i

i

x z
z k z u

x zk
z





 

−
= + +


− =



 (47) 

Based on FxTDO, transform the 1/2

22 / ( )rid N L=   

to 1/2

2 22 | | / ( )id z N L= . 

3.2 Design of 
qiu satisfying terminal angle constraints. 

Through equation (13), it can be obtained that: 

 
3 4

2
4 4

1 1

2

i i

qii
i i qi

i i

x x

ux
x x d

x x

=



= − − +


 (48) 

Construct a non-singular terminal sliding surface: 

 1 2

3 1 3 1 4( ) ( )i i i is x sig x sig x
  = + +  (49) 

where ( ) | | ( )sig sign = , 21 2  , 1 2  , 1 0  ,

1 0  . 

Select the following approximation law: 

 1 2

2 2
ˆ( ) ( ) ( )i i i i qi is sig s sig s D sign s

   = − − −  (50) 

where 2 0  , 2 0  , 10 1  , 2 1  , 1i  .Combining 

equations (48), (49), and (50), we construct the control law 

and adaptive law: 

2 1

1 2

2 11 12

1 4 1 2 4 1 1 3

1

2 2

2
( ( )(1 | | )

ˆ        + ( ) ( ) ( ))

i

qi i i i i

i

i i i qi i

x
u x x sig x x

x

sig s sig s D sign s

 

 

   

  

− −− −= − + +

+ +

 (51) 

where, 1i  , ˆ
qiD  represents the estimate of 

qiD . Adaptive 

law: 

 2 1

1 2 4
ˆ | | | |i i iD x s   −

=  (52) 

Stability proof 

Constructing a Lyapunov function: 

 
2 2

1

1 1

2 2
i qiV s D= +  (53) 

where, ˆ
qi qi qiD D D= −  represents the difference between 

the upper bound of disturbance and the estimated value. To 

differentiate equation (51), substitute it into equations (49) 

and (50), it can be obtained that: 
2 1 2

2

2 1 2 2

1

1 1 2 4 2 2

1

1 2 4

1 1 1 1

1 2 4 2 1 2 4 2

[ | | ( ( ) ( )

ˆ      ( ) )] ( | | | |)

    | | | | | | | |

       

i i i i

i qi i qi i i i

i i i i

V s x sig s sig s

D sign s d D x s

x s x s

  



   

   

   

     

−

−

− + − +

= − −

− + −

 − −

 (54) 

where 21 2  , 1 0  , 2 0  , 2 0  , Therefore, we 

can draw the following conclusion: 0V  , equation (54) 

indicates that both is  and qiD  are bounded. Further con-

struct the following Lyapunov function: 

 
2

2

1

2
iV s=  (55) 

Taking the derivative of (53) and substituting (49) and (50), 

it can be obtained that: 

 

2 1

2 2

2

1 1

1 2 4 2

1 1

1 2 4 2

ˆ( ) | |

      | | | |

      | | | |

i i qi qi i

i i

i i

V s s D D s

x s

x s

 

 



  

  

− +

− +

=  −

−

−

 (56) 

where, ˆ (0) 0qiD  . Through (52)， it can be obtained that 

ˆ ˆ (0) 0qi qiD D  , Let ˆ (0)qiD  be as large as possible. Let the 

following inequalities hold: 

 2 2ˆ(0) (0)
1

ˆ (0)

i qi

i

qi

s D

D


+
 +  (57) 

Therefore, the following inequalities hold: 

 2 2

2 2

2 2

ˆ ˆ ˆ(0) (0) (0)

ˆ                  | (0) | (0) (0)

ˆ ˆ                  | (0) | (0) (0)

                  0

qi qi i qi i qi qi

qi i qi

qi i qi

D D D s D D

D s D

D s D

−  − + −

 − +

 − +



 (58) 

This yields that: 
2 1 2 2

1 1 2 2

2 2

1 1 1 1

2 1 2 4 2 1 2 4 2

1 1 1 1

1 12 2 2 2
1 2 4 2 2 1 2 4 2 2

| | | | | | | |

   = 2 | | 2 | |

i i i i

i i

V x s x s

x V x V

   

   
 

     

     

− + − +

+ + + +

− −

 − −

− −

 

(59) 

It can conclude   that under the action of this control law, 

the sliding surface can converge to the sliding surface 

0is = from any initial value within a fixed time. According 

to the finite-time convergence property on the nonsingular 

terminal sliding surface, the system state can converge to 

zero within a finite time. Proof complete. 

4 Simulation Analysis 

Design the following combat scenario: three missiles 

simultaneously attack a moving target. The communication 

topology among the three missiles is shown in the following 
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Fig. 3. The initial position of the target is set at (0m , 0m ), 

the initial heading angle is 0 . The magnitude of the veloc-

ity is 300 /m s . Next, the following table is provided to 

illustrate the initial position coordinates, initial velocity, 

initial heading angle, initial LOS angle, and terminal LOS 

angle constraints for the three missiles. Finally, considering 

saturation of control inputs, the following constraints are 

imposed on the LOS direction and the magnitude of the LOS 

normal acceleration for the missile-target scenario: riu  is 

constrained in 0 30g , 
qiu  is constrained in 30 30g g− , 

where 29.8 /g m s= . 

M1

M2 M3

 
Fig. 3: The communication topology among the three missiles 

 

 

Table 1: Initial condition for three missiles 

Missile 
Initial position 

(/m ) 

Initial 
heading 

angle (/deg) 

Initial 

velocity 

(/ 1m s− ) 

Desired 
LOS angle 

(/deg) 

Missile1 (-3200, 2098) -30 600 -20 

Missile2 (-4098, -2680) 35 600 15 

Missile3 (-2708, -2090) 40 600 20 

 

The parameters used in equations (27) and (44) are: 

1 0.5 = , 1 1.5 = , ' 0.75 = , ' 1.25 = , 1 3k = , 2 1k = , 

0.5 = . The parameters used in equations (51) are: 1 1 = , 

1 1 = , 2 1 = , 2 1 = , 1 2 = , 2 1.5 = , 1 0.75 = , 

2 1.2 = . To prevent the occurrence of chattering phe-

nomenon in the controller, a saturation function is used to 

replace the sign function in the controller. 

Using an asymmetric saturation constraint function to 

handle riu , the specific mathematical form is as follows: 

2

1
         | |

4

( ){

1
( ) [ ( )( ) ] }

4

1 1
           | |            

4 4

1
( )    | |     

4

jm dis

u

mid jm dis u

u jm dis mid

u

dis jm dis

u u

mid jm dis jm dis

u

v v u

u sign v u

g v v sign v u u

u v u

u sign v u v u







 




 −





+ −


= − + −



−   +


 +  +


 

where, 
jm midv v u= − , u  is a positive constant, which is 

used to adjust the error between the smooth saturation 

function and the ()sat function. ( ) / 2midu u u= + , 

( ) / 2disu u u= − , u  and u  are the upper and lower satura-

tion bounds. 

  Using ()sat  function to handle 
qiu : 

1      

( )    | | .   1 /

1   

s

sat s ks s k

s

 


=   = 
−  −

 

To demonstrate the good anti-disturbance characteristics of 

the guidance law, we consider two types of target motion: 

non-maneuvering and cosine maneuvering. The acceleration 

of target is: 5 cos( )ta g t= , The simulation results are 

shown in the following figures. Fig. 4 (a) to (g) illustrate the 

simulation results for the non-maneuvering target scenario, 

while Fig. 5 (a) to (g) depict the simulation results for the 

pre-maneuvering target scenario. 

 
(a). Missile-target trajectory plot 

 
(b). The remaining attack time 

 
(c). The remaining attack dis-

tance 

(d). LOS normal acceleration 
 

(e). The angular acceleration of 

the LOS 

(f). LOS angular rate (g). LOS angle 
Fig. 4: Simulation results under the condition of non-maneuvering 

target 

 

 
(a). Missile-target trajectory plot 
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(b). The remaining attack time 

 
(c). The remaining attack dis-

tance 

 
(d). LOS normal acceleration 

 
(e). The angular acceleration of 

the LOS 

 
(f). LOS angular rate 

 
(g). LOS angle  

Fig. 5: Simulation results under the condition of cosine maneu-

vering target 

Table 2: Miss distances, interception time and LOS angle 

errors 

Types of target 
maneuvers 

missile 

Miss dis-
tance 

(/ 1m s− ) 

Interception 
time(/s) 

LOS angle 
error(/deg) 

Non-maneuvering 

Missile1 0.351 9.805 0.080 

Missile2 0.451 9.805 0.150 

Missile3 0.312 9.805 0.117 

Cosine maneu-

vering 

Missile1 0.122 9.377 -0.430 

Missile2 0.156 9.377 0.048 

Missile3 0.107 9.377 0.193 

5 Conclusion 

This paper studies the combat scenario where three mis-

siles intercept a maneuvering target simultaneously with the 

expected LOS angle, the fixed-time cooperative guidance 

laws are designed. The main conclusions are listed as fol-

lows: 

(1). A distributed cooperative guidance law with fixed 

time convergence characteristics is designed based con-

sistency theory and algebraic graph, to address the problem 

of impacting time consistency. 

(2). To enable every missile to attack the target with the 

desired LOS angle, a guidance law based on nonsingular fast 

terminal sliding mode control is proposed, with fixed time 

convergence characteristics. 

(3). Through simulating two types of target maneuvers, 

results have shown the effectiveness and high precision 

guidance performance of both guidance laws with input 

saturation. 

This paper explores the design of cooperative guidance 

laws within a two-dimensional plane, but we don’t consider 

the problem of cooperative guidance law design in 

three-dimensional space. Furthermore, the paper does not 

delve into the control stability under conditions of input 

saturation. Future research will focus on developing more 

efficient cooperative guidance law in three-dimensional 

space, particularly considering the case of input saturation. 
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Abstract: This paper aims at exploring a new-type mode for autolanding control of fixed-wing unmanned aerial vehicles 

(UAVs). A discrete-time data-driven control scheme is tentatively proposed and developed with its pitch-only channel as a case 

study. Eventually, data-driven controllers inspired by attracting laws are introduced for a series of difference models. Numerical 

simulation for pitch-only dynamics is demonstrated to validate and compare performances of proposed DDC laws. Simulation 

results indicate that DDC laws can achieve the desired performance by altering data-driven models with different orders. 
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1 Introduction 

Fixed-wing unmanned aerial vehicles (UAVs) have 

numerous applications in fields including agriculture, traffic 

surveillance, industrial accident monitoring, crime 

prevention, assessment and restoration of nature reserve 

areas [1-5], etc. Compared with unmanned helicopters, 

multi-rotor aircraft, flapping-wing aircraft, and other aircraft, 

fixed-wing UAVs have advantages such as large payload, 

high speed, low energy consumption, long range, and high 

safety [6-7]. The increasing demand for tasks such as aerial 

reconnaissance, communication relays, resource exploration, 

and border surveillance, combined with the rapid 

advancements in technologies such as structural engineering, 

flight control algorithms, and power systems, are driving the 

development of fixed-wing UAVs toward greater autonomy 

and intelligence capabilities [8-9]. As the utilization of 

fixed-wing becomes more widespread, an increasing number 

of incidents of varying severity are being reported. 

Particularly, almost half of these UAV accidents occur in 

landing scenarios. This trend emphasizes developing more 

robust and adaptable control strategies to counteract 

modeling uncertainties and external disturbances that may 

arise during autolanding [10-11]. 

Typical landing trajectories usually involve three phases: 

approach, glide, and flare [12-13]. Numerous studies have 

demonstrated the possibility of developing autolanding 

algorithms using decoupled longitudinal and lateral models 

[14-16], but linear model-based approaches are practical 

only within narrow ranges surrounding operation points.  To 

overcome this limitation, the gain scheduling method is 

introduced to widen operational ranges by adjusting 

pre-designed control parameters for varying operation points. 

The following challenge is that interpolated parameters 

generated by gain scheduling cannot always guarantee the 

stability of the closed-loop system [17]. In addition, 

                                                           
*This work is supported by National Natural Science Foundation of 

China under Grant 61973327 and the Royal Society's International 

Exchanges 2021 Cost Share NSFC. 

numerous nonlinear control techniques have been researched 

for autolanding. However, their effectiveness still depends 

significantly on the complexity and accuracy of nonlinear 

dynamic models [18-19]. 

In this context, data-driven control approaches, which do 

not rely on complicated dynamics, have gained more and 

more interest [21-26]. DDC methods aim to use only 

input/output (I/O) data to design control laws. For 

fixed-wing UAVs, uncertainties arising from model errors 

and environmental influences, such as wind disturbances and 

aerodynamic changes, cannot be neglected. DDC methods 

adapt well to model uncertainties because they utilize full 

historical data, including those from disturbed conditions. 

The concept of data-driven modeling originated from the 

characteristic modeling approach [24]. The data-driven 

modeling method represents nonlinear systems as linear 

models with a single lumped, unmodeled term instead of 

various time-varying coefficients. DDC laws can be obtained 

from different data-driven models with similar structures, 

which means that few modifications are required to adapt 

controllers to new application scenarios. 

This paper discusses the application of DDC methods in 

UAV autolanding. Motivated by attracting laws, DDC laws 

are derived with guaranteed stability and error bounds from 

models of different orders. The main contributions of this 

study include: 1) the longitudinal motion of fixed-wing 

UAVs is introduced and analyzed, and the data-driven 

modeling on pitch-only dynamics is derived; 2) DDC laws 

are designed for data-driven models with different orders; 3) 

a numerical simulation is performed to demonstrate the 

application of DDC laws for tracking desired trajectories. 

2 Data-driven modeling for pitch-only dynamics of 

one fixed-wing UAV 

This section presents data-driven modeling for the 

pitch-only dynamics. The physical model of a fixed-wing 

aircraft comprises several coupled non-linear equations. 

When the fixed-wing UAV is in steady-state flight, many 

coupled terms can be sufficiently small. As a result, the 

dynamic model of a fixed-wing can be decomposed into 
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longitudinal and lateral motions. Our study focuses on the 

longitudinal dynamics of a fixed-wing UAV, specifically its 

pitch-only model, which describes vertical rotation during 

the autolanding procedure.  

The longitudinal autopilot for autolanding typically uses 

the throttle for airspeed and the elevator for pitch control. 

The inertial and body frames, represented by
I

O and
B

O , 

mentioned in this section are illustrated in Fig. 1. When the 

airspeed reaches the desired value, for example, in a trimmed 

condition, the elevator
e

δ is utilized to adjust the pitch 

angleθ and pitch rate q . Consider a pitch-only longitudinal 

motion, the equation of pitch angle is expressed as follows:  

/ yyq

q

J

θ



=

=

&

& M
 (1) 

where yyJ is the moment of inertia, and M is the pitch 

moment that is shown as follows: 

0

21
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where 
0

CM
, C

αM
, and

q
CM

are aerodynamic coefficients; 

α is the angle of attack; airρ is the air density; S is the 

planform area and c is the mean chord of the fixed-wing, 

respectively. By combining Eq.(1) and Eq.(2), the equation 

for pitch-only dynamics can be derived as follows: 
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Fig. 1. Illustration of frames and state variables 

To derive a discrete-time model for pitch-only dynamics, the 

following backward differences representation is defined: 

( ) 2

( ) ( 1) /

( 1) 2 ( ) ( 1) /

k k
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k k k

θ θ

θ θ θ

θ
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= − −

= + − + −&&
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where k is the discrete time instance; h is the sampling 

period. The data-driven model for pitch-only dynamics can 

be expressed as 

( )
,1 ,2

( 1) ( ) ( 1)

( )e

k f k f k

g k kθ θ

θ θθ θ θ

δ ε

+ = + −

+ +
 (5) 

where ( )kθε is the unmodeled term; ,1fθ , ,2fθ and gθ are 

constant parameters: 
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Similarly, backward first-order and second-order differences 

of the unmodeled term ( )kθε can be represented by: 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

1

2

2 2

1

1

k

k

k k k

h t

k k k

h t

θ θ θ

θ

θ θ θ

θ

ε ε ε

ε

ε ε ε

ε

∇ = − −

=

∇ = ∇ − ∇ −

=

 (6) 

where ( )1

k
tθε and ( )2

k
tθε are derivatives lie within sampling 

points. Eq.(6) indicates that backward differences are 

bounded if respective derivatives are bounded. If the 

disturbance signal ( )kθε  is a polynomial function of time, 

its derivatives can be seen as signals that change slowly over 

time. For example, it is seen that 0θε∇ = , when θε is a 

constant signal; 2 0θε∇ = , as θε  is a ramp signal. It is easier 

to estimate slow-varying signals than fast-varying ones, 

which indicates that higher-order models are more practical 

in most scenarios. For pitch-only dynamics of the fixed-wing, 

first-order and second-order models, can be derived by 

transforming Eq.(5) into difference equations: 

,1 ,2

2 2 2

,1 ,2

2 2

( 1) ( ) ( 1)

( ) ( )

( 1) ( ) ( 1)

( ) ( )

e

e

k f k f k

g k k

k f k f k

g k k

θ θ

θ θ

θ θ

θ θ

θ θ θ
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θ θ θ

δ ε

∇

∇

+ = + −

+ +

+ = + −

+ +

∇ ∇

∇ ∇

∇ ∇
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 (7) 
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3 Control design based on data-driven models 

This section presents a design methodology for DDC 

based on data-driven models. The primary objective of the 

pitch-only controller is to accurately follow the desired pitch 

angle produced by the outer-loop autopilot.  By applying the 

attracting law, the discrete-time dynamic of the tracking 

error can be designed as 

( ) ( ) ( )1 1e k e kρ+ = −  (8) 

where ( ) ( ) ( )d
e k k kθ θ= − is the tracking error of pitch angle; 

( )d
kθ represents the desired pitch angle; (0,1)ρ ∈ is a 

tunable parameter. According to Eq.(8), the relationship 

between ( 1)e k + and ( )e k  satisfies ( 1) ( )e k e k+ <  , which 

indicates that the tracking error ( )e k decreases as time steps 

increase. Combining Eq.(5) and Eq.(8), we have 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

,1 ,2

1 1 1

1 1

1

d

e

de k k k

k f k f k

g k k

e k

θ θ

θ θ

θ

δ

θ θ

θ θ

ε

ρ

+ = + − +

= + − + −

+ +

= −

 (9) 

The ideal data-driven control law ( )
e

kδ can be derived from 

Eq.(9): 

( ) ( ) ( ) ( )

( ) ( ) ( ),1 ,2

1
1 1

1

de
k e k k

g

f k f k k

θ

θ θ θ

δ ρ

θ θ ε

θ= − − + +

− − − − 

 (10) 

However, the ideal control law Eq.(10) is not realizable 

because the disturbance ( )kθε  is unknown. A simple 

estimation ˆ ( )kθε  of the disturbance signal ( )kθε  is its 

time-delay signal ( 1)kθε −  which yields: 

,1

,2

( ) ( ) ( 1)

( 2) ( 1)

ˆ

e

k k f k

f k g k

θ θ

θ θ

ε θ θ

θ δ

= − −

− − − −
 (11) 

Thus, the practical data-driven control law ( )
e

kδ  is given as 

follows: 

[

,1 ,2

1
( ) (1 ) ( ) ( 1)

( ) ( 1) ˆ ( )

e dk e k k
g

f k f k k

θ

θ θ θ

δ θρ

θ θ ε

= − − + +

− − − − 

 (12) 

According to Eq.(6), if the first-order difference ( )kθε∇ is 

bounded, the maximum norm of ( )kθε∇ can be noted by 

maxθε∇ . The closed-loop system Eq.(5) governed by DDC 

law is stable, and the upper limit of tracking error is 

bounded: 

maxlim ( )
k

e k
θε

ρ→∞

∇
≤  (13) 

For data-driven models Eq.(7) with higher-order differences, 

the 1-order DDC and 2-order DDC can be designed as: 

[
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and  

[
2

,1 ,2

2 2

1
( ) ( 1) ( 1)

(1 ) ( ) ( 1) ( ) ( )

ˆ( ) ( 1) ( )

d

e e ek k k
g

e k k k k

f k f k k

θ

θ θ θ

δ

θ

ε

δ δ

ρ θ θ

θ θ

= − + ∇ − +

× − − + + − − ∇

− ∇ − ∇ − − ∇ 

 (15) 

where estimations for ( )kθε∇ and 2 ( )kθε∇ are given by: 
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( 2) ( 1)

( ) ( ) ( 1)

( 2) ( 1

e

e

k k f k

f k g k

k k f k

f k g k

θ θ

θ θ

θ θ

θ θ

ε θ θ

θ δ

ε θ θ

θ δ

∇ = ∇ − ∇ −

− ∇ − − ∇ −

∇ = ∇ − ∇ −

− ∇ − − ∇ −

 (16) 

4 Numerical Simulation 

This section presents the results from numerical 

simulation to demonstrate the properties and effectiveness of 

the data-driven controllers. For the scenario of UAV 

autolanding, consider the pitch-only dynamics Eq.(3) with 

following parameters： 

0

2 3

2 2

1 kg, 9.81 m/s , 1.29 kg/m

0.123 m , 0.1 m, 0.0092 m kg

0.0026, 0.0003, 0.0051
q e

airm g

S c J

C C C
δ

ρ= = =

= = = ×

= = − = −M M M

 

The airspeed is set to 20 m/s , and the sampling time h  is 

chosen as 0.001 s . As a consequence, constant parameters 

given by Eq.(5) can be computed as follows: 

,1 ,21.999997, 0.999997, 0.008862f f gθ θ θ= = − = −  

The desired pitch trajectory is set as a constant signal 

d0.1 ra5
d

θ = , while the disturbance ( )kθε is assumed to be 

a sine wave signal ( ) 0.05*si drn(20 ) atk kθ πε ∆= . The 

initial states and control input for numerical simulation are 

assumed as follows: 
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2

2

(0) 0.1 rad, (0) (0) 0 rad,

(0) (0) (0) 0 rad,e e e

θ θ θ

δ δ δ

= ∇ = ∇ =

= ∇ = ∇ =
 

To achieve a clear comparison, the 0-order,1-order, and 

2-order DDC laws use the same tunable parameter ρ , which 

is set to 0.5. 

 
Fig. 2. Desired pitch angle ( )d

kθ (black) and tracking 

trajectories ( )kθ by using 0-order (red), 1-order (green) 

and 2-order (blue) DDC laws 

e(
k)

 d
eg

 
Fig. 3. Tracking errors ( )e k by using 0-order (red),  

1-order (green) and 2-order (blue) DDC laws 

 
Fig. 4. Control inputs ( )e kδ  of 0-order (red solid), 1-order 

(green dashed) and 2-order (blue dash-dot) DDC laws 

According to numerical simulation results presented in 

Figs. 2-3, all tracking errors decrease rapidly within a short 

period of time. The 1-order DDC law yields better results 

than the 0-order DDC law while obtaining the similar 

performance as the 2-order DDC law. The tracking error of 

the 0-order DDC law is significantly influenced by the 

maximum absolute value of ( )kθε that can be approximated 

by 
maxθ ρε∇ . Recorded data from numerical simulation 

indicates that absolute values of unmodeled terms with 

different differences satisfy
max max max

2

θ θ θε ε ε>∇ ∇> . It means 

that the upper limit of the tracking error gets smaller when a 

higher order data-driven model is chosen.  

5 Conclusions 

In this paper, a data-driven control (DDC) design method is 

tentatively proposed and developed for the autolanding of 

fixed-wing UAVs. The longitudinal pitch-only channel of UAV 

flights is concentrated on as a case study. Three DDC laws based 

on different difference models have been explored. 

Optimizing DDC laws can be achieved by selecting different 

models, while parameter tuning is simple with only one 

parameter. Numerical simulation shows that DDC laws can 

effectively govern pitch-only dynamics for closed-loop 

tracking with predictable error bounds. For practical 

implementation, it is suggested to use a lower order 

difference model that balances the performance of tracking 

error and system band. Further study is required to explore 

DDC schemes on UAV autolanding for lateral control loops 

and coupled systems. 
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Abstract: Based on fully actuated technology, a sliding mode control approach is suggested for helicopter systems with all 

degrees of freedom.  First, the degree of nonlinearity and coupling is lessened by applying the feedback linearization technique. 

And the helicopter systems transform into fully actuated systems. Secondly, a sliding mode controller is built with the 

assumption of system stability in order to achieve the intended tracking task. Third, the reliability of complete closed-loop 

structures is investigated using Lyapunov theory. Finally, this work presents simulation data to validate the effectiveness of the 

designed control technique. 

Key Words: Helicopter systems, Feedback linearization, Sliding mode control, Fully actuated method.  

 
  

1 Introduction 

Because of unique advantages of helicopter, such as the 

vertical takeoff and landing, air hovering, flexible flight, 

helicopters could be used to search, rescue, inspection and 

so many applications. Therefore, in recent years, helicopter 

systems have become extensively developed and used in 

both the military and the civilian sectors [1-2]. The 

significant nonlinearity, high order, and strong coupling of 

helicopter systems make them underdriven systems that are 

challenging to regulate [3-4]. For this reason, creating a 

sturdy controller is essential to improving helicopter flight 

quality. At present, a large number of domestic and foreign 

scholars have proposed various control methods in the 

application of helicopters, and achieved many excellent 

results. 

In the early days, the flight control issues have been 

studied for helicopters, and the linear flight control 

methods are the most commonly control schemes. The 

attitude controller in [5] was designed using output 

feedback linear quadratic regulator (LQR) technology, 

taking into account helicopters in a hovering condition. In 

[6], in order to obtain good control efficacy, the PID 

approach is utilized to improve the traditional controller, 

which was built using the inner and outer loop control 

structure as the basis for design. In [7], for the purpose of 

controlling the attitude of the helicopter, a robust controller 

made up of a robust compensator and PI controller was 

created. Although the linear control development is more 

complete and has the characteristics of convenient in 

controller design and stability analysis, it has large 

limitations. It is suitable for control tasks with low control 

accuracy. 

Helicopter control performance is impacted by a variety 

of disturbances that the control system experiences during 

actual flight. Numerous nonlinear control techniques have 
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Research Program (Grant 23JY053), the Key Research and Development 

Plan of Shaanxi Province (Grant 2024GX-YBXM-298), and the Science 

Center Program of the National Natural Science Foundation of China 

(Grant 62188101) provided partial funding for this work. 

been presented by researchers to address the issue. In [8], 

the attitude robust control issues were discussed for ship-

based unmanned helicopters. In [9], a finite-time tolerant of 

faults control technique was introduced for systems with 

quadrotors and actuator faults.  In [10], the anti-disturbance 

flight control technique for helicopters was examined in 

combination with the neural network control and active 

disturbance rejection control methods. In [11], for 3-DOF 

model aircraft systems, the adaptive neural fault-tolerant 

control technique was recommended. In our earlier results 

[12], Using the anti-disturbance stochastic flight control 

approach, the position and elevation helicopter systems 

were managed under random disturbances. 

This study will comprehensively consider the coupling 

of the helicopter systems with full degrees of freedom, 

based on the aforementioned research. The full-degree-of-

freedom aircraft control method combines the sliding mode 

control method with input and output feedback 

linearization. The helicopter model and mathematical 

preparation are given Section II. In Section III, the system 

will be modified using the feedback linearization approach 

and the sliding mode control method will be developed. 

The effectiveness of the control system is verified and the 

outcomes of the helicopter tracking simulation are 

displayed in Section IV. The paper is finally summarized in 

Section V. 

2 Helicopter Model and Mathematical 

Preparation 

The two right-handed coordinate systems used to model 

the helicopter system are the body coordinate system 

 and the inertial coordinate system 

, where  is the helicopter's center of gravity, 

 are its unit vectors,  points to the helicopter's 

head, and  points to its underneath;  is a fixed point on 

the ground,  points to the north, and  points to the 

earth's center. The forces and moments of the helicopter are 

analyzed under above two coordinate systems, the 

helicopter systems are presented as follow [13]: 
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   (1) 

where  is the acceleration caused by gravity,  is the 

helicopter's mass,  is the rolling moment of inertia,  

is the pitch moment of inertia, and  is the yaw moment 

of inertia;  are the position, and  is the 

velocity in the inertial coordinate system;   and  

represent the moments generated by the main and tail 

rotors, respectively; the main rotor's lateral and longitudinal 

flapping angles are represented by  and ;  is the roll 

angle,  is the pitch angle,  is the yaw angle; 

;  and  

are known constants;  

The model (1) is organized such that 

 and  , 

Where  stand for position and velocity vector in 

the inertial coordinate system.;  is 

the attitude angle vector of the helicopter; 

 is the attitude angular velocity 

vector; ;  is the 

helicopter's inertia matrix;  is the matrix of rotations 

between the body and inertial coordinates: 

    

where  and  denote respectively as  and

,  denote  or . The attitude 

kinematic matrix  is showed as follows: 

 

The cross-product operator matrix, denoted as , 

is provided as follows: 

 

Moreover, the force produced by the main rotor of a 

helicopter is expressed as   ; while the 

moments from the main and tail rotors are expressed as 

, which are expressed as 

 

The following helicopter model (2) was obtained 

through the above organization [14]: 

           (2) 

In this paper, a robust control method will be designed 

for the helicopter system (2) to ensure that the helicopter 

track to the desired position  and yaw angle .  

To make the controller design and stability analysis 

simpler, the ensuing Lemmas and Premises are presented:   

Assumption 1 [15]: During helicopter flight process, roll 

angle  and pitch angle  satisfy respectively 

 and . 

Assumption 2 [16]： For , there exist positive 

constants  which are not known in such a 

way that . 

Lemma 1 [17]：  is a continuous function. When 

, , and  are bounded,  is 

asymptotically stable if the inequality  holds. 

3 Controller Design for Helicopter Systems 

This section describes a flight controller that uses sliding 

mode control to make sure the helicopter systems track to 

the intended yaw angle  and position . Initially 

the nonlinear and tightly coupled problems of helicopter 

systems are treated using the input and output feedback 

linearity method. The tracking signals  and  

are then combined to develop the helicopter systems' basic 

tracking fault nonlinear model.    Then, a flight controller 

that can guarantee the required control performances is 

designed using the sliding mode control method. Fig. 1 

depicts the flight controller's design process: 

 
Fig. 1: The flight controller designed process block diagram 
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3.1 System transformation based on input-output 

feedback linearization 

 It is evident that the helicopter systems' control input 

consists solely of 4-dimensional variables. During the 

actual flight, the helicopters not only need to track to the 

desired position  and yaw angle , but also need 

to control the six degrees of freedom. Therefore, the 

helicopters are a typical underdriven nonlinear control 

system. Because of this, the input and output feedback 

linearization approach will be used to create a system that 

is comparable to system (2), and the controller for flight 

will be constructed using the new system in this section. 

The expanded system is generated by adding two extra 

variables, ensuring that the helicopters can be linearized via 

the input-output feedback linearization technique,  

and , as shown in [18]:  

           (3) 

Select system (2) with  and  as inputs,  

and  as outputs. The system's overall relative order 

, The dimensions of the system , namely, 

. Thus, there exists a diffeomorphism that enables 

the system to be transformed from the original system to a 

new system. The following variables were selected for the 

new system: 

     

(4) 

where . 

Since there exists a diffeomorphism for system (2), there 

is a bijection between its state variable 

 and the state 

variable  of 

system (4). As a result, system (4) is obtained as follows: 

                             (5) 

where ,  

, , 

, , 

, 

. 

In system (5),  and  are the control inputs. 

 is the helicopters' position tracking error,  is 

the velocity tracking error,  is the acceleration 

produced by the helicopter's controllable combined force, 

 is the force variability, The helicopters' yaw angle 

tracking inaccuracy is represented by , and  is 

the yaw angle rate tracking error. In order for the 

helicopters to do the intended tracking task, the control rule 

will be designed in this work using the sliding mode 

control approach. 

3.2 Sliding mode controller design 

The system (5) can be considered as two subsystems, a 

fourth-order position subsystem and a second-order yaw 

angle subsystem. Thus, the position tracking error of the 

helicopters  is controlled by a fourth-order system, 

and the yaw angle tracking error  is controlled by a 

second-order system. To ensure that the tracking error 

approaches to zero, the controller for flight in the following 

is designed using the sliding mode control approach. 

For a fourth-order system which controls , defining 

the tracking error  as 

                                (6) 

where  is the desired tracking error of . 

Create a sliding modal surface that is 

                 (7) 

where, , ,

 and . 

Differentiating (7) yields 

     (8) 

The designed control law is 
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   (9) 

where  , . 

Invoking (8) yields 

                            (10) 

For a second-order system which controls , 

defining the tracking error 

                             (11) 

Create a sliding modal surface that is 

                            (12) 

where  is a positive constant. 

Differentiating (12) yields 

                  (13) 

The designed control law is 

      (14) 

Invoking (15) and (16) yields 

                    (15) 

Theorem 1: Think about the helicopters (5). The 

tracking error has converged under the sliding mode 

control strategy, and each closed-loop signal is consistently 

controlled. 

Select the Lyapunov function as proof. 

                         (16) 

Considering (10) and (15), the time derivative of  is 

            

(17) 

Lemma 1 provides asymptotically stabilization of the 

function, as demonstrated by (17), so guaranteeing the 

stability of the systems constructed by this research. The 

closed-loop signals all came together. The goal of control 

was achieved. 

4 Simulation Study 

This section employs data from [19] helicopters that 

have the following relevant attributes in order to confirm 

the efficacy of the control system that is presented in this 

paper: 

 
The helicopters need to use the controller that this study 

suggests in order to track the appropriate location and yaw 

degree. Default tracking signal configuration is as follows: 

 
The initial values are set as  and

. 

 
 

Fig. 2: The position trajectories of helicopter system 

 

 
 

Fig. 3: The tracking error of yaw angle  of helicopter systems 

 

 

 
 

Fig. 4: The helicopter system's roll angle  and pitch angle . 

 

 
 

Fig. 5: The helicopter tail rotor's thrust 
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Fig. 6: The main rotor thrust of a helicopter 

 

 

 
 

Fig. 7: The main rotor of a helicopter's waving angles 

 

The helicopter's position tracking trajectory is displayed 

in Fig. 2. After making a small adjustment, the helicopter 

may swiftly track the intended course under the guidance 

of the specified flight controller. Fig. 3 shows the desired 

yaw angle and tracking curve of helicopter, from which it 

can be seen that the yaw angle of helicopter tracks on the 

desired value after 8s. Figure 4 shows the helicopter's roll 

and pitch angles, which varies within , indicating 

that there is no capsizing and overturning caused by 

excessive roll angle and pitch angle during the flight. The 

helicopter's control inputs are depicted in Figures 5, 6, and 

7, and all simulation values fall within a suitable range. 

Consequently, the helicopter can be efficiently controlled 

by the sliding mode controller that this study has designed. 

5 Conclusion 

This work tackled the flight control problem of the full-

degree-of-freedom chopper system. During the flight 

controller design phase, both the input and the output loop 

linearity method is applied to reduce the coupling and 

nonlinearity of the helicopter systems. Next, a nonlinear 

flight regulator is constructed using the sliding mode 

control methodology. The reliability of the system is then 

shown using the Lyapunov technique. Ultimately, 

simulation confirms that the controller developed in this 

study is capable of enabling the helicopter to track the 

intended signal. 
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Abstract: In this paper, the attitude control problem of hypersonic vehicle is studied. The DDQN (double deep Q network) 

algorithm is used to realize the online adaptive adjustment of the control parameters of the PID (proportional-integral-derivative) 

controller. Firstly, the dynamic model of hypersonic vehicle is established. Then, the implementation process of parameter 

adjustment using DDQN algorithm is described. By building two neural networks, the main network is used to determine the 

action to be performed, and the target network is used to determine the action value, so as to realize the adaptive adjustment of the 

control parameters. Finally, the effectiveness of the proposed method is verified by simulation experiments. 
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1 Introduction 

Hypersonic vehicle itself has the characteristics of strong 

coupling, strong nonlinearity and strong uncertainty. 

Concurrently, the flight environment is subject to various 

external disturbances. The span of flight altitudes and Mach 

numbers is extensive, the flight environment is intricate, the 

aerodynamic characteristics undergo drastic changes, and 

there are numerous flight constraints[1]. These factors impose 

higher requirements on the attitude control system of 

high-speed vehicle. To fulfill the control demands of strong 

stability and high precision, the design of the flight control 

methods needs to embody rapid response, accuracy, and 

robustness. Designing an attitude control method for 

high-speed vehicle that meets these stringent control 

requirements remains a focal point of research [2-4]. 

At present, a multitude of methods have been employed in 

the domain of hypersonic vehicle attitude control. With 

advancements in control theory and intelligent technology, 

novel approaches continue to emerge, including control 

theories such as backstepping control[5], sliding mode 

control[6], and performance preset control[7], as well as the 

integration of disturbance observer, state observer, and 

combining BP neural network, RBF neural network with 

control theory[8][9]. Reference[10] introduces a predictive 

sliding mode control method founded on trajectory 

linearization and an extended Kalman filter, designed to 

facilitate rapid tracking control of a hypersonic vehicle's 

attitude amid parameter random perturbations and nonlinear 

disturbances. Reference [11] presents a nonsingular fast 

terminal sliding mode fault-tolerant control approach that 

considers prescribed performance for addressing the attitude 

control challenge of hypersonic vehicles affected by model 

uncertainty, external disturbances, and actuator faults. LU[12] 

proposes a nonlinear control approach drawing upon the 

backstepping method. Reference [13] proposes a fuzzy 

Q-learning algorithm for the parameter tuning of active 

disturbance rejection control in attitude systems of 

                                                           
* This work is supported by the National Natural Science Foundation of 

China under Grant 61773387. 

hypersonic vehicles. Reference [14] designs an intelligent 

attitude control algorithm by integrating deep reinforcement 

learning with the dynamic surface control method to address 

the control challenges of hypersonic vehicles. 

Reinforcement learning is a control method to obtain the 

maximum long-term return. It has the characteristics of 

autonomously exploring the system environment and 

improving the control performance, and has been widely 

used in various fields. Moreover, it does not require a model 

and is suitable for the control problem of hypersonic 

vehicles[15]. 

In this paper, the reinforcement learning framework is 

used to explore the intelligent adjustment strategy of PID 

controller parameters by using the double deep Q Network 

(DDQN) algorithm. The goal is to design an adaptive 

attitude controller for hypersonic vehicle, which can 

dynamically adjust PID control parameters according to 

different flight conditions. The organizational structure of 

this paper is described as follows: In section 2, the motion 

model of vehicle attitude control is established, which lays a 

foundation for the design of subsequent controllers. The 

third section describes the construction of the control system 

based on DDQN algorithm, and describes the training 

process of the algorithm. In section 4, simulation studies are 

carried out to evaluate the effectiveness of the proposed 

controller. Finally, the thesis is summarized in section 5, 

which summarizes the main findings and contributions of 

this study. 

2 Hypersonic vehicle model establishment 

Without losing generality, the earth is regarded as a sphere 

with uniform mass, ignoring the influence of the earth's 

oblateness and tangential gravitational acceleration, and 

ignoring the influence of the earth's rotation[16]. Based on the 

above assumptions, the force analysis of the vehicle is 

carried out in the longitudinal plane, and the force diagram is 

shown in Figure 1. 
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Fig. 1: Hypersonic vehicle force diagram 

Based on the above assumptions, the following pitch 

dynamics model is considered: 
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Among them, v  is the speed of the vehicle, θ is the 

trajectory angle, α is the angle of attack, ϑ is the pitch angle, 

zω is the pitch angle velocity, x is the flight distance, y is 

the flight height, m  is the mass, 
cm is the fuel consumption 

rate, 
zM is the pitching moment, 

zI is the pitching moment 

of inertia, 
eR is the radius of the earth, g is the acceleration 

of gravity, 
ueδ is the elevator drive voltage, and the real 

elevator Angle is 
eδ , T is the thrust, D is the resistance, 

L is the lift, The calculation expression is as follows:  

20.5

T

D

L

T qSC

D qSC

L qSC

q vρ

=

=

=

=

 (2) 

where
L

C , 
D

C , and 
T

C are the lift coefficient, drag 

coefficient and thrust coefficient of the vehicle, respectively. 

S is the reference area of the vehicle, q is dynamic pressure ; 

ρ is the atmospheric density; The dynamic equation of 

elevator steering gear is: 

0
2

2e

z z c

z c

z z z zz

M m qSL

L
m m m m

Vδ

ω

=



= + +

 (3) 

In Eq. (3), q  is the dynamic pressure, S  is the area, 
c

L is 

the longitudinal reference length, 
z

m ,
e

z
m

δ
,

zz
m is the 

function of angle of attack, Mach number and elevator.  

Next, the controller design based on reinforcement 

learning will be carried out based on the above model. 

3 Controller Design 

Hypersonic vehicles are the epitome of a class of control 

objects, which are full of considerable uncertainty and 

significant nonlinearity. The traditional manual tuning 

method of PID parameters mainly depends on the iterative 

trial and error method, which depends heavily on the 

professional knowledge and subjective judgment of the 

tuning personnel. This method not only takes a long time, but 

also often fails to achieve the high-precision tracking 

performance required for hypersonic flight control.  

In order to cope with the complex challenges faced by 

such vehicle control systems, this study introduces a PID 

parameter tuning framework based on the principle of deep 

reinforcement learning (DRL). This method can 

automatically adjust the PID parameters in real time by 

receiving information related to the current flight state of the 

hypersonic vehicle. By using DRL, the adjustment strategy 

transcends the limitations of manual adjustment and is 

expected to improve the adaptability and accuracy of the 

control system in rapidly changing and unpredictable 

hypersonic flight dynamics. 

The double deep Q network enhances the standard deep Q 

network (DQN) by using a dual neural network architecture. 

This design reduces the overestimation bias inherent in the 

original DQN, where a single network is responsible for both 

action selection and value estimation. In DDQN, action 

selection is performed by a main network, and a separate 

target network evaluates the selected actions to provide more 

stable and reliable action value estimation. 

DDQN algorithm is a kind of deep reinforcement learning 

based on value function. Through trial and error, the optimal 

action value function ( ),
t t

Q s a  is learned and trained, which 

is expressed as 

( ) ( )( )1 1
, ,

t t t t t
Q s a E R Q S Aγ + += + ⋅  (4) 

In Eq. (4), γ  is the discount factor, E is expectation. 

Solving the optimal action value function is to give the 

state
1t

S +
 in the learning, and select the action

1t
A +

 to meet 

the Q maximization, that is, 

( )

( ) ( )

1 1

1 1 1

arg max ,

, max ,

t t
a

t t t
a

A Q S a

Q S A Q S a

+ +

+ + +

 =



=

 (5) 

can be obtained 

( ) ( )1 1 1
, max ,

t t t t
a

Q S A E R Q S aγ+ + +
 = + ⋅
 

 (6) 

The Monte Carlo approximation of the above equation 

can be obtained 
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( ) ( )1 1
max , max ,

t t t t
a a

E R Q S a r Q S aγ γ+ +
 + ⋅ ≈ + ⋅
 

 (7) 

Among them, tr  represents the reward received at the 

current time, and ( )1max ,t
a

Q S aγ +⋅  is the TD target. Since 

the TD target includes both the current real reward and the 

predicted reward value, the TD target is more accurate than 

the predicted value Q. Through continuous updating, the Q is 

close to the TD target, and the iterative process of the Q 

value is as follows: 

( ) ( ) ( ) ( )1
s ,a s ,a max , s ,a

t t t t t t t t
a

Q Q r Q S a Qτ γ +
 ← + + ⋅ −
 

 (8) 

The target value of DDQN 

( )( )1 1 1
'

, arg max , '; ,DoubleDQN

t t t t t
a

Y R Q S Q S aγ θ θ −

+ + += +  (9) 

As the iteration progresses, the loss function is the current 

moment reward minus the reward value that can be obtained 

by taking action in the existing state. The mean square error 

of the estimated Q value of the current main network and the 

Q value of the target network is defined as the loss function. 

( ) ( ) ( )( )
2

1
'

1
max , '; , ;

2
t t t t t

a
L E r Q S a Q S aθ γ θ θ−

+

 
= + − 

 
 (10) 

When the neural network is used to approximate the 

function, the update of the merit function is actually to 

update the parameter tθ in the neural network. The update 

method is the gradient descent method： 

( ) ( ) ( )1 1
max , s , s , ;

t t t t t t t
a

r Q S a Q a Q aθ θ τ γ θ+ +
 = + + ⋅ − ∇
 

 (11) 

The control goal is to design a PID controller for the pitch 

attitude, so that the pitch angle can track the relevant 

command signal. 

( ) ( ) ( )
( ) ( )1

q q

e p q i q d

e k e k
k k e k k e k k

t
δ

− −
= + +

∆
  (12) 

The DDQN algorithm training agent is shown in the fig.2, 

and the detailed steps are as follows: 

environment
main 

network
target 

network

experience replay buffer

loss function

periodic renewing

renewing

( )1
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t t t t
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t t t
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t t t t
a

Q s Q s a θ θ −
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Fig. 2: DDQN network training model 

Step 1) Initialize the main network and target network 

parameters; 

Step 2) The attitude control problem is transformed into 

the state features needed to train the agent; 

step 3) Use the current state ts  as the main network input 

to obtain the corresponding Q value output of the deep Q 

network for all actions. According to the ' ε-greedy ' strategy, 

the action a with the largest Q value is selected with a 

probability of 1-ε; 

step 4) Perform an action a under the state ts , get a new 

state 
1ts +  and a reward r , and put the experience ( s , a , r , 

1t
s +

) generated this time into the experience replay buffer; 

step 5) Sample m samples from the experience replay 

buffer, calculate the target Q value and the main network Q 

value, and use the loss function to update the main network 

parameters through the gradient back propagation of the 

neural network; 

step 6) Assign the main network parameters to the target 

network parameters every constant episode; 

step 7) Check whether 
1t

s +
 is the termination state. If yes, 

determine whether the set number of training is reached, if 

not, the current episode ends and jumps to step 2, otherwise 

the algorithm training ends. If not, let ts =
1t

s +
, skip to step 3.  

start

Initialize the 

parameters and 

establish the 

experience playback 

pool

episode=episode+1

Did it reach the 

training goal ?

end

Initialize the state and 

action of Agent

step=step+1

Select the action 

according to the 

greedy strategy

The agent moves to 

the next state and 

receives a reward 

value

Store state, action, 

reward value, and the 

next state into the 

experience pool

Pass the reward value 

to the value function 

to update the Q value.

Uniformly sample a 

sample batch from the 

Experience Replay 

Buffer

Use gradient descent 

method to train the 

main network.

The parameters are 

passed to the target 

network every N steps.

Does the state reach 

the target state ?

yes no

yes

no

 
Fig. 3: The flow chart of DDQN algorithm training 
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4 Simulation and Experiment Results  

This section will verify the effectiveness of the proposed 

algorithm through the simulation of the Winged-Cone model. 

For simplicity, direct hypothesis. The number of hidden 

layer nodes of the two neural networks is 20, and the network 

weight adopts the random distribution number between (0,1). 

The initial value of the learning step size of the two networks 

is ( ) ( )target
0 0 0.04l l= = , and finally gradually reduced to 

0.005, forgetting factor 0.95η = , weight factor 5λ =  and 

70µ = . The parameter settings of the algorithm training are 

shown in Table 1. 

Table 1: DDQN Parameter setting table 

parameter numerical value 

forgetting factor 0.95 

initial value of learning 

step size 
0.05 

final value of the 

learning step size 
0.005 

update frequency of the 

target network 
500 

size of the experience 

replay buffer 
100000 

number of samples 

taken each time 
256 

discount factor 0.99 

learning rate 0.0001 

initial exploration rate 0.99 

The output curve of the pitch angle is shown in Fig.4. It 

shows the tracking of the pitch angle to the given signal, 

which shows the effectiveness of the algorithm. From the 

simulation image, it can be seen that the aircraft can achieve 

stable control of the pitch angle at about 300 steps, and 

achieve stable tracking of the target signal. 

 
Fig. 4: pitch angle 

 
Fig. 5: attack angle 

Fig.5 shows the change of angle of attack in the process of 

signal tracking. As shown in the figure, the state and control 

quantity of the angle of attack curve are stable. 

5 Conclusion 

In this paper, the attitude control problem of hypersonic 

vehicle is addressed and an attitude controller based on deep 

reinforcement learning is designed. Based on the traditional 

PID control, the DDQN algorithm is used to realize the 

autonomous adjustment of the control parameters to adapt to 

the complex flight environment in the near space, and the 

control effect that meets the control requirements is achieved. 

The simulation results show that the proposed control 

algorithm can make the hypersonic vehicle obtain the ideal 

control state.  
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Abstract: The global stabilization problem is revisited for the circular orbit spacecraft rendezvous system with actuator
saturation. The linearized relative motion equation transformed into its Luenberger canonical form. It is noted that
the system decomposed into a cascade of neutral stable linear systems, and bounded linear state feedback controllers
for subsystems are designed respectively based on the absolute stability theory. The global stability of the closed-loop
system is proved by providing explicit conditions on the parameters in the feedback gains. Optimal feedback gains are
also discussed. Simulation results are given to show the effectiveness of the presented approaches.

Key Words: Bounded linear feedback, Global stabilization, Spacecraft rendezvous

1 Introduction

The completion of spacecraft rendezvous is the nec-
essary prerequisite for many space missions such as re-
pair, preservation, interception, docking, and satellite
networking [15]. During the last few decades, the space-
craft rendezvous control problem has been widely dis-
cussed and many design methods have been devised, see,
[4–6, 23], and the references therein. Assuming the tar-
get spacecraft is running on an approximately circular
orbit, while another chasing spacecraft is flying near it.
The relative motion between the chaser spacecraft and
the target spacecraft can be represented by second-order
nonlinear differential equations. As a basic tool of the
spacecraft rendezvous control systems, C-W equations,
which were proposed by Clohessey and Wiltshire in [3],
have been widely investigated in the literature. With
the development of control theory and practical purpose,
numerous useful methods have been proposed to solve
the rendezvous control problem. For example, [7] prof-
fers a robust state-feedback controller design method
for spacecraft rendezvous, [20] investigates the sampled-
data control problem.

Saturation nonlinearity is always unavoidable in ev-
ery practical control system, because of the boundedness
of the output of physical actuators [13, 16, 18, 21]. If
the actuator saturation is ignored in controller design, it
will significantly reduce control performance and may
even lead to instability of the closed-loop system [14].
Control systems subject to actuator saturation has been
widely analysis and design in the literature. To mention a
few, containment control for double-integrator discrete-

This work was supported in part by the National Natural Science
Foundation of China under grant number 62303466, and by the PhD
Program of Mass Entrepreneurship and Innovation Talents of Jiangsu
Province under grant numbers JSSCBS20211216.

time multi-agent systems was investigated with input and
velocity constraints in [19]. The global finite-gain sta-
bilization problem for neutrally stable systems by satu-
rated linear feedback was investigated in [10]. There are
further results on the related problems, see [16], [17],
and references therein.

As a typical practical control system, there is an actu-
ator saturation problem in spacecraft rendezvous control
systems, mainly due to the limited acceleration provided
by the thrust configured on the chasing spacecraft [25].
Therefore, the boundedness of control signals should be
considered in spacecraft rendezvous systems. In the past
few years, the stabilization problem of spacecraft ren-
dezvous with thrust saturation has received much atten-
tion(see, [2], [6], [8], [9]). The optimal power limi-
tation problem of spacecraft rendezvous systems with
thrust constraints was studied in [2]. The bounded, low-
thrust, fixed-time, fuel-optimal constrained terminal ap-
proach direction rendezvous using the relative linearized
equations of motion is investigated in [8]. The fixed
time minimum fuel solution is obtained by using a C-
W linearized kinetic model and the optimal finite time
solution is by minimizing the problem involving both
fuel consumption and final time [9]. Recently, Zhou et
al. proposed saturated linear feedback controllers based
on the Lyapunov equation for circular orbit spacecraft
rendezvous[13, 22, 23, 25]. Based on absolute stabil-
ity theory, a class of saturated linear state feedback con-
troller was proposed to stabilize globally the C-W equa-
tions [25].

Motivated by the existing results on this topic, we con-
sider the global stabilization problem for the circular or-
bit spacecraft rendezvous system with actuator satura-
tion. The linearized relative motion equations can be
transformed to a set of coupled single-input subsystems
that are neutral stable by Luenberger canonical form.
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Fig. 1: Circular orbit and coordinate system

Bounded linear state feedback controllers for subsystems
are designed respectively by utilizing Lyapunov func-
tions that contain positive (semi)definite quadratic term
and integral terms. The global stability of the closed-
loop system is proved by providing explicit conditions
on the parameters in the feedback gains. The determi-
nation of the optimal gain parameters are also obtained.
Numerical simulations show the effectiveness of the pro-
posed approaches.

The remainder of this paper is organized as follows. In
Section 2, the model of the spacecraft circular orbit ren-
dezvous control system is introduced. The main results
regarding global stabilization of the relative motion are
proposed in Section 3. A numerical simulation is given
to demonstrate the effectiveness of the proposed control
law in Section 4. Finally, Section 5 concludes the paper.

2 Equation of Relative Motion

Assume that the target spacecraft is in a circular orbit
whose radius is R (see in fig. 1). Let the right-handed
coordinate system (rotating coordinate system) (x, y, z)
be fixed at the center of mass of the target, where the
x-axis is along the radial direction, the y-axis is along
the flight direction of the target, and the z-axis is out
of the orbit plane, respectively. Denote the gravitational
parameter µ = GM where M is the mass of the center
planet and G is the gravitational constant. Then the orbit
rate of the target orbit is given by n = µ1/2/R3/2. The
relative motion model between the target and chaser can
be described by Newton’s equations [1]

ẍ(t) =2nẏ(t) + n2(R+ x(t))− φµ(R+ x(t))

+ σδ1(ax(t)),

ÿ(t) =− 2nẋ(t) + n2y(t)− φµy(t) + σδ2(ay(t)),

z̈(t) =− φµz(t) + σδ3(az(t)),
(1)

where φ = ((R+ x (t))2 + y2 (t) + z2 (t))−
3
2 , and

a (t) =
[
ax (t) ay (t) az (t)

]T
, (2)

is the acceleration vector due to thrust forces on the
chaser, in which δ1, δ2 and δ3 are three given nonneg-
ative scalars representing the saturation levels on the
thrust, namely, δ1, δ2 and δ3 are respectively the max-
imal accelerations that the thrusts can generate in the
three directions. Here σδ(·) : R → [−δ, δ] defined as

σδ(x) =

{
x, |x| ≤ δ,
δsign(x), |x| > δ,

is the saturation function and σ1(x) will be denoted by
σ(x) for short. The linearized equation of (1) is given by ẍ (t) = 2nẏ (t) + 3n2x (t) + σδ1(ax (t)),

ÿ (t) = −2nẋ (t) + σδ2(ay (t)),
z̈ (t) = −n2z (t) + σδ3(az (t)),

(3)

which is known as the Hill’s equation or Clohessy-
Wiltshire equation [3] when a = 0.

The whole rendezvous process can be described by
the transformation of state vectors ϕ = [x, y, z, ẋ, ẏ, ż]T

from nonzero initial states ϕ(t0) to the terminal state
ϕ(tf ) = 0, where tf is the rendezvous time (settling
time). In this paper, saturated linear feedback laws will
be established to achieve the rendezvous mission in the
presence of actuator saturation.

3 Global Stabilization of Spacecraft Ren-
dezvous

In this section we only consider the global stabilizing
controllers design for the in-plane motion.

By choosing the state vector X and control vector u
as

X = [ x y ẋ ẏ ]T,

u =
[

1
δ1
ax

1
δ2
ay

]T
, (4)

the in-plane motion involving the variables x (t) and
y (t) in the C-W equation (3) can be expressed as

Ẋ = AX +Bσ(u), (5)

where A and B are constant matrices given by

A =


0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0

 ,

B =


0 0
0 0
δ1 0
0 δ2

 =
[
b1 b2

]
. (6)

Here the identity σδ (a) = δσ
(
a
δ

)
has been used.

It is well known that a linear system could be sta-
bilized globally by bounded controls if and only if the
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system is asymptotically null controllable with bounded
controls (ANCBC), namely, it is stabilizable in the ordi-
nary sense and all the eigenvalues of A are on the closed-
left half plane [17]. It is noted that

det
[
b2 Ab2 A2b2 A3b2

]
= 12δ4n4 (7)

which is nonzero, namely, (A, b2) is controllable. On the
other hand, we can compute

λ (A) = {0, 0,±ni} ,

which implies that all the eigenvalues of A are on the
imaginary axis. Hence (A,B) (actually, (A, b2)) is AN-
CBC. Therefore, there is a globally stabilizing controller
for system (5).

Existing results show that a linear global stabilizing
controller can be designed if A is neutral stable, namely,
all the eigenvalues of A are simple. However, this is not
satisfied for system (5) since A possesses a zero eigen-
value with multiplicity two. In fact, the Jordan form JA
of A is given by

JA =


0 1

0
ni

−ni

 .

As a result, global stabilizing linear bounded controller
can not be proposed by using positive definite solutions
to Lyapunov equations associated with the open-loop
system [12, 24]. Then, the system (5) can be transformed
into its Luenberger canonical form [11]. We choose the
nonsingular matrix

L =


0 δ1 0 0
0 0 −2nδ1 0
δ1 0 −n2δ1 0
0 −2nδ1 0 δ2

 , (8)

and consider the transformation

Y = [y1, y2]
T = L−1X,

where y1 ∈ R3 and y2 ∈ R. As a result, we obtain

Ẏ =

[
A1 A12

01×3 A2

]
Y +

[
d1 0
0 d2

]
σ(u), (9)

where the coefficient matrices A1 ∈ R3×3, A2, A12, d2
and d1 ∈ R3×1 are given by

[
A1 A12

01×3 A2

]
=


0 0 0 3nδ2

2δ1
1 0 −n2 0

0 1 0 − δ2
2nδ1

0 0 0 0

 ,

[
d1 0
0 d2

]
=


1 0
0 0
0 0
0 1

 .

It is easy to see that λ (A1) = {0,±ni} . Hence A1 is
neutral stable (or stable in the Lyapunov sense). The
linear state feedback controllers for the A2 subsystem
and A1 subsystem can be proposed respectively by using
positive definite solutions to Lyapunov equations associ-
ated with the open-loop system [13].

Different from [13], we will propose global stabiliz-
ing controllers for the A2 subsystem and A1 subsystem
based on the absolute stability theory. Then we have the
following result.

Theorem 1 The linear system (5) with input saturation
can be globally stabilized by the linear state feedback

u = FX,

F =

[
f11

n2k1

2δ1
−n(k1+k3)

δ1
f14

− 2n
δ2
k4 0 0 −k4

δ2

]
, (10)

in which ki, i = 1, 3, 4 > 0, k2 ≥ 0 and

f11 = −
n2

(
3k1 + 3k1k

2
4 + k2k

3
4 + 4k3k

2
4 − 3k2k4

)
k4 (k24 + 1) δ1

,

f14 = −
n
(
4k2k4 − 3k1k

2
4 − 4k3k

2
4 − 3k1

)
2k4 (k24 + 1) δ1

.

Moreover, the linearized closed-loop system possesses
the eigenvalue set

Γ = {−nk4} ∪ λ

n

 −k1 −k2 −k3
0 0 1

−k1 −k2 − 1 −k3

 .

(11)

In the following, the determination of the gain pa-
rameters ki, i = 1, 2, 3, 4 will be discussed. Since the
closed-loop system consisting of (5) and (10) will oper-
ate in linear region after finite time, one may want to find
a suitable F to the following min–max problem:

J0 = min
kj ,j∈{1,2,3,4}

max
i=1,2,3,4

Re {λi (A+BF )} .

We can see from (11) that the above min–max optimiza-
tion problem is independent of n. Denote the matrix Ak

as

Ak =

 −k1 −k2 −k3
0 0 1

−k1 −1− k2 −k3

 , (12)

whose characteristic equation is given by

|λI3 −Ak| = λ3+(k1 + k3)λ
2+(1+k2)λ+k1. (13)

It follows that the zeros of |λI3 −Ak| = 0 cannot arbi-
trarily assigned by choosing k1, k2 and k3. To find the
optimal ki, i = 1, 2, 3 such that the maximal real part of
the zeros of |λI3 −Ak| = 0 is minimized, we have the
following result.
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Theorem 2 Let Ak be given by (12). The optimal solu-
tion k∗ satisfies k∗ ∈ K∗ with

K∗ =

{
k : k1 = a3∗ > 0, k2 = 3a2∗ − 1 ≥ 0,

k3 = 3a∗ − a3∗ > 0

}
, (14)

where a∗ > 0. Then

min
kj ,j∈{1,3}

max
i=1,2,3

Re {λi (Ak)} = −a∗. (15)

4 Simulation

Simulation will be carried out on the nonlinear model
(1). Assume that δ1 = δ2 = 8 × 10−3m/s

2 and
δ3 = 6× 10−3m/s

2
. Hence η = 1. Assume also that the

target spacecraft is in a circular orbit with the Earth as the
centre planet and the orbital height is 500km. Hence, the
radius of the target orbit is R = 6.8781× 106m and the
gravitational parameter is µ = 3.9860×1014m3/s2. For
simulation purpose, the initial conditions are chosen as[

x y z ẋ ẏ ż
]

=
[
8000 10000 −15000 4 −8 5

]
. (16)

For the out-of-plane motion, we use the controller
(42) in [25] where f1 = f2 = 5 which is such that
λ (Φ0 +Ψ0H0) = {−2,−3}. For the in-plane motion,
the system decomposition cased controller (10) where
k1 = 1, k2 = 2, k3 = 2(i.e. a∗ = 1 in (15)) and
k4 = 1. The state trajectories and control signals of the
closed-loop system are leads to respectively recorded in
Figs. 2 and 3. It follows that the closed-loop systems
are asymptotically stable with these parameters, say, the
rendezvous mission is accomplished.

5 Conclusion

This paper revisited the global stabilization problem
for the circular orbit spacecraft rendezvous system with
actuator saturation. The linearized relative motion equa-
tion could be decomposed into a cascade of neutral stable
linear systems, bounded linear state feedback controllers
for subsystems were designed by using the absolute sta-
bility theory. The global stability of the closed-loop sys-
tem was proved, and optimal linear feedback gains were
also obtained.
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Abstract: In this article, the attitude tracking control problem of combined spacecraft actuated by three reaction wheels under
actuator fault, actuator saturation, and external disturbance is investigated. Based on the fully-actuated system approach, a new
fault-tolerant attitude tracking scheme is developed by incorporating the Nussbaum gain technique, time-delay estimation (TDE)
method, and adaptive method. Firstly, the attitude tracking kinematic and dynamic equation with actuator fault and actuator
saturation is transformed into a fully-actuated system model, where a smooth function is used to approximate the actuator torque.
After estimating the lumped uncertainty which contains actuator fault, inertia uncertainty, and external disturbance by a TDE
method, a new control scheme is designed, where Nussbaum gain is introduced to address the time-varying actuator gain arising
from actuator saturation, an adaptive law is adopted to suppress the estimation error. Furthermore, the convergence of the
attitude tracking error and angular velocity tracking error is strictly proven by Lyapunov method. Simulation results demonstrate
the effectiveness of the proposed control method.

Key Words: Fully-actuated system approach, Attitude tracking control, Combined spacecraft, Actuator fault, Actuator satura-

tion, Time-delay estimation method

1 Introduction

With the increasing abundance of space missions, such as

the construction of space station, space debris removal op-

erations and on-orbit servicing (OOS) missions, combined

spacecrafts which are constructed after an active spacecraft

capturing another space target exist widely[1]. The inertia

properties of the combined spacecraft are hard to obtain ac-

curately for the large change of the configuration after cap-

ture. Besides, the control ability of the combined spacecraft

will be strictly limited because no maneuver ability exists in

the noncooperative target. Thus, the attitude takeover control

of the combined spacecraft is an urgent and tough problem.

Despite the above difficulties, many scholars have made

some achievements in this field. In [2], Jiang et al. pro-

posed an approximated iteration method for the combined

spacecraft with noncooperative target such that a prescribed

convergence rate was guaranteed. Huang et al. [3] proposed

a dynamic surface method incorporating a robust dynamic

control allocation strategy for attitude control of a combined

chaser-target system. Under measurement uncertainties, a

novel practical prescribed time attitude control method for

post-capture combined spacecraft for attitude and angular

velocity was developed in [4]. Without model informa-

tion, data-driven model-free adaptive control (MFAC) strate-

gies were developed for attitude stabilization of a combined

spacecraft in [5] and [6]. However, a nonlinear closed-loop

system will be obtained by the above methods, which do

not provide much convenience for the control problem. Re-

cently, fully actuated system (FAS) approach has been devel-

oped by Duan [7], by which a controller can be immediately

This work is supported in part by the National Nature Science

Foundation of China under Grant 62103164 and Grant 62273245,

Fundamental Research Funds for the Central Universities (grants No.

020414380195), and Guang Dong Basic and Applied Basic Research Foun-

dation (No.2023A1515011537).

designed to make the closed-loop system a constant linear

one with a desired eigenvalue. The FAS approach has ob-

tain fully developed and been applied into many fields, such

as spacecraft attitude control [8], manipulator systems [9],

flexible servo systems [10] and etc.

As one important application of the FAS approach, space-

craft control has gain much attentions [11], [12], [13], [14],

[15], [16], [17], [18]. Among these works, the attitude or

orbit control problems of the spacecraft with inertia uncer-

tainty, external disturbance or input saturation were consid-

ered and the lumped uncertainties was estimated by extended

state observer (ESO). Particularly, for the combined space-

craft, Duan and Cui [19], [20], [21] investigated the attitude

tracking control problem based on fully-actuated system ap-

proach with prescribed performance or adaptive disturbance

observer. However, the spacecraft system control perfor-

mance will be seriously affected by actuator faults which

has not been considered in the existing FAS approach based

spacecraft control work. To simply and effectively address

the actuator fault problem and other uncertainties, the time-

delay estimation (TDE) algorithm [22] is adapted in this pa-

per. Compared with ESO, TDE has less turning parameters

and calculation burden. And to reduce the estimation error,

an adaptive law is contained in the controller to achieve bet-

ter performance. To reduce the effect of the actuator satura-

tion, a smooth function is used to approximate the saturated

actuator. Besides, inspired by [15], a Nussbum-type function

is contained in the control scheme to tackle the nonlinearity

arising from actuator saturation.

In this paper, a FAS approach-based attitude tracking con-

trol problem of combined spacecraft with actuator fault and

actuator saturation is investigated. The main contributions

of this article are stated as follows:

1) The attitude tracking problem of the combined space-

craft with actuator faults and actuator saturation is firstly ad-
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dressed based on fully-actuated system approach, which is a

direct linearization method.

2) A time-delay estimation method is adapted to estimate

the lumped disturbance with less adjusted parameters and an

adaptive law is combined to eliminate the estimation error

where more precisely estimated result can be obtained.

3) A smooth function is used to appropriate the saturated

actuator and a Nussbum-type function is contained in the

controller to effectively address the nonlinear term come

from actuator, which achieves a high performance in the sys-

tem.

The structure of this paper is stated as follows. Section

2 gives the problem formulation, including attitude tracking

kinematics and dynamics of the combined spacecraft with

actuator faults, actuator saturation and control objects. The

control scheme with time-delay estimation, Nussbum-type

function and adaptive law is developed in Section 3. Sec-

tion 4 demonstrates the effectiveness of the control scheme.

Section 5 concludes.

2 Problem Formulation

2.1 Attitude tracking kinematics and dynamics of the

combined spacecraft

This paper investigates a combined spacecraft comprised

of a rigid service spacecraft, a rigid space manuscript and

a rigid target spacecraft, where three reaction wheels are

mounted on the service spacecraft. Based on the analysis in

[23], the kinematic and dynamic equation of the combined

spacecraft is stated as:

{

σ̇ = G(σ)ω

Jω̇ = −ω×(Jω +CωJωΩω) − CωJωτ + ug + d
(1)

where σ = [σ1, σ2, σ3]T is Modified Rodrigues Parameters

(MRPs) vector, ω = [ω1, ω2, ω3]T is the angular velocity, ω×

represents its skew-symmetric matrix, in which

ω× =





















0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0





















And J ∈ R
3×3 is the inertia matrix of the combined space-

craft, Jω ∈ R
3×3 is the inertia matrix of the whole reac-

tion wheels, Cω ∈ R
3×3 is the reaction wheel’s configuration

matrix expressed in the body frame of the combined space-

craft, Ωω ∈ R
3 is the angular velocity of reaction wheels,

τ = Ω̇ω ∈ R
3 is the control torque, ug ∈ R

3 denotes the

gravity gradient torque and is expressed as

ug = 3ω2
0R×3 (σ)JR3(σ)

with the orbit velocity ω0 and R3(σ) is denoted as

R3(σ) =



























8σ3σ1−4σ2(1−σTσ)

1+σTσ
8σ3σ2+4σ1(1−σTσ)

1+σTσ
4(σ2

3
−σ2

2
−σ2

1
)+(1−σTσ)2

1+σTσ



























and G(σ) is denoted as G(σ) =
(1−σTσ)I3

4
+ σ

×

2
+ σσ

T

2
and

d ∈ R3 denotes the external disturbance.

Denote the desired attitude and angular velocity as σd and

ωd, then the attitude and angular velocity tracking error is

defined as














σe =
σd(σTσ−1)+σ(1−σT

d
σd )−2σ×

d
σ

1+σTσσT
d
σd+2σT

d
σ

ωe = ω − R(σe)ωd

with the rotation matrix R(σe) denotes as

R(σe) = I3 −
4σ×e (1 − σT

eσe)
(

1 + σT
eσe

)2
+

8(σ×e )2

(

1 + σT
e σe

)2

Then, the kinematics and dynamics of the combined space-

craft’s attitude tracking system is expressed as


















σ̇e = G(σe)ωe

Jω̇e = −ω
×(Jω +CωJωΩω) + Jω×e R(σe)ωd

−JR(σe)ω̇d −CωJωτ + ug + d

(2)

Due to the configuration of the combined spacecraft has

changed after capturing the target, it is hard to estimate the

inertia property of the combined spacecraft precisely. Thus,

there exists a certain deviation between the actual inertia ma-

trix and the estimated one. The actual inertia matrix J can

be denoted as

J = J0 + ∆J (3)

where J0 is the nominal inertia matrix and ∆J denotes the di-

viation between J and J0.With equation (3), the error system

(2) can be represented as


















σ̇e = G(σe)ωe

ω̇e = −J−1
0
ω×(J0ω + CωJωΩω) + ω×e R(σe)ωd

−R(σe)ω̇d − J−1
0

CωJωτ + J−1
0

ug0 + d1

(4)

where

ug0 = 3ω2
0R×3 (σ)J0R3(σ)

d1 = −∆Jnω
×(Jω +CωJωΩω) − J−1

0 ω
×∆Jω − ∆JnCωJωτ

+ ∆Jnug + 3ω2
0J−1

0 R×3 (σ)∆JR3(σ) + J−1d

with

∆Jn = J−1 − J−1
0

2.2 Actuator faults

According to the analysis in [23] and [24], a fault or fail-

ure may occur in several components of the reaction wheels.

The actual control torque generated by the reaction wheels

can be written as:

τ = τc + B(t, T f ault)(Λ(t) − I3)τc + τ̄c (5)

where τc is the input torque vector of the actuators, Λ(t) =

diag{Λ1,Λ2,Λ3} denotes the effectiveness matrix of the re-

action wheels and Λi ∈ (0, 1], τ̄c ∈ R
3, B(t, T f ault) =

diag{b1,T1
, b2,T2

, b3,T3
} denotes the time schedule when the ith

wheel fault occurs, i.e.,

bi,Ti
=

{

1 − e−ai(t−Ti)

0

if t ≥ Ti

if t < Ti

with ai > 0(i = 1, 2, 3) and Ti ≥ 0(i = 1, 2, 3). Then, based

on the actuator fault model (5), the attitude tracking system

(4) can be represented as


















σ̇e = G(σe)ωe

ω̇e = −J−1
0
ω×(J0ω + CωJωΩω) + ω×e R(σe)ωd

−R(σe)ω̇d − J−1
0

CωJωτc + J−1
0

ug0 + d2

(6)

with

d2 = d1 − J−1
0 CωJω(B(t, T f ault)(Λ(t) − I3)τc + τ̄c)
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2.3 Actuator saturation

Due to the physical limitation, the constraints on the actu-

ators should also be taken into account. The saturation on the

actuator τc(u) = [τc1(u1), τc2(u2), τc3(u3)]T can be expressed

as

τci(ui) =



















τmax,i,

ui,

τmin,i,

ui > τmax,i

τmin,i ≤ τci ≤ τmax,i

ui < τmin,i

, i = 1, 2, 3 (7)

Then according to the analysis in [22], a smooth function is

introduced to approximate the actuator and then the actuator

τc(u) can be expressed as

τc(u) = Π(u, ϑ) + ∆τc (8)

where Π(u, ϑ) = [Π1(u1, ϑ1),Π2(u2, ϑ2),Π3(u3, ϑ3)]T with

Πi(ui, ϑi) =



















ϑiτmax,i + τ̄max,i,

ui,

ϑiτmin,i + τ̄min,i,

ui > ϑiτmax,i

ϑiτmin,i ≤ ui ≤ ϑiτmax,i

ui < ϑiτmin,i

and

τ̄max,i = (1 − ϑi)τmax,i tanh

(

ui − ϑiτmax,i

(1 − ϑi)τmax,i

)

for i = 1, 2, 3. It shoud be noted that the discrepancy ∆τc

will vanish when the actuator τc(u) does not exceed the

value interval [ϑ ⊙ τmin, ϑ ⊙ τmax] and be effectively reduced

by increasing ϑ when the actuator τc(u) exceeds the above

interval. Thus, there exists a positive constant Dτ satis-

fying ‖∆τc‖ ≤ Dτ. Now define Φ = diag(φ1, φ2, φ3) with

φi = Πi(ui, ϑi)/ui where φi = 1 when ui = 0(i = 1, 2, 3), then

φi satisfies φi ∈ (0, 1]. Thus, the actuator (8) can be rewritten

as

τc(u) = Φu + ∆τc (9)

2.4 Control object

Now, both consider the actuator fault (5) and actuator satu-

ration (8), the attitude tracking error system of the combined

spacecraft (4) can be given as

{

σ̇e = G(σe)ωe

ω̇e = F − J−1
0

CωJωΦu + d3
(10)

with d3 = −J−1
0

CωJω∆τc + d2 and

F = −J−1
0 ω

×(J0ω+CωJωΩω)+ω×e R(σe)ωd−R(σe)ω̇d+J−1
0 ug0

By some simple derivations, the error system (10) can be

further written as

Mσ̈e + Cσ̇e + g = BΦu + D (11)

where

M = G−TJ0G,

C = −MĠG−1 +G−T(G−1σ̇e)×J0G−1

g = G−Tω×CωJωΩω −G−TJ0ω
×
e R(σe)ωd

+G−TJ0R(σe)ω̇d −G−Tug0

B = −G−TCωJω

D = G−TJ0d3

And it is easy to obtain that det(M) > 0 and det(BΦ) , 0 for

any σe and σ̇e.

The object of this paper is stated as follows: for the atti-

tude tracking system of the combined spacecraft (11) with

actuator fault, actuator saturation and external disturbance,

the goal is to develope a control scheme such that the error

MRPs σe and the angular velocity error ωe converge to a

small region abound equilibrium.

2.5 Preliminary definitions and lemmas

In order to facilitate the design of fully-actuated fault-

tolerant control law under actuator saturation, the following

definitions and lemmas are introduced.

Definition 1 [25]For a continuously differentiable function

h(χ) : [0,∞) 7→ (−∞,∞) is called a Nussbaum function if

the following equalities holds:

lim
T→∞

sup
1

T

∫ T

0

h(χ)dχ = ∞

lim
T→∞

inf
1

T

∫ T

0

h(χ)dχ = −∞

In this article, h(χ) is selected as

h(χ) = 1 + eχ
2/2(χ2 + 2) sin(χ)

Lemma 2 [26]Let V(t) and χi(t)(i = 1, 2, · · · ,N) be smooth

functions defined on [0, t f ) with V(t) ≥ 0 and χi(0) = 0.

Also, let h(χ) be Nussbaum function. Then if the following

inequality holds:

V(t) ≤ c0 + e−c1t

N
∑

i=1

∫ t

0

(−gi(ι)N(χi(ι)) + 1)χ̇i(ι)e
c1ιdι (12)

where c0 is a bounded constant, c1 > 0, gi(t) is a time-

varying parameter that takes value in the unknown set I :

[g−, g+] with 0 < I and all gi(t)(i = 1, 2, · · · , n) have the

same sign, then V(t), χi(t) and
∑N

i=1

∫ t

0
gi(ι)N(χi(ι))χ̇i(ι)dι are

bounded on [0, t f ).

Lemma 3 [27]For h,V : [0,∞) 7→ R and t0 ∈ (0, t), the

following result can be conducted:

V(t) ≤ e−α(t−t0)V(t0) +

∫ t

0

e−α(t−τ)h(τ)dτ (13)

if V ≤ −αV + τ with α > 0 is satisfied.

Lemma 4 [28]Consider the following second-order fully-

actuated system:

A2(x, ẋ)ẍ + A1(x, ẋ)ẋ + A0(x, ẋ)x + ξ(x, ẋ) = B(x, ẋ)u (14)

where x ∈ R
n is the state vector, u ∈ R

n is the controller,

det A2(x, ẋ) , 0 and det B(x, ẋ) , 0, the dimensions of the

other vectors and matrices match the above equality, by de-

signing the following controller

u = uc + u f

where

uc = B−1(x, ẋ)ξ(x, ẋ)

u f = K0(x, ẋ)x + K1(x, ẋ)ẋ
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with

[K0(x, ẋ),K1(x, ẋ)] = B−1(x, ẋ)WV−1

and

V =

[

Z

ZF

]

W = A2(x, ẋ)ZF2 + A1(x, ẋ)ZF + A0(x, ẋ)Z

and F and Z satisfy

F ∈ F = {F |F ∈ R2n×2n, and ∃Z ∈ Rn×2n s.t. det

[

Z

ZF

]

, 0}

and

det

[

Z

ZF

]

, 0

the system (14) can be turned into the following constant

linear system

Ẋ = VFV−1X

where X = [x, ẋ]T. Furthermore, the second-order fully-

actuated system (14) is globally stable if and only if F is

a Hurwitz matrix.

3 Main result

In this section, for the attitude tracking system with ac-

tuator saturation and actuator fault (11), based on the re-

cently developed fully-actuated system approach, a new con-

troller will be designed, where the lumped disturbance is

compensated by time-delay estimation (TDE) method and

the actuator saturation effect is tackled by Nussbaum func-

tion. Besides, two new adaptive laws are added in the control

scheme, where one is used to generate the Nussbaum func-

tion, and the other one is used to suppress the compensation

error including the TDE error and improve the system ro-

bustness.

In order to estimate the lumped uncertainty D in system

(11) accurately and efficiently, TDE method is used. Based

on the analysis about TDE method in [22], the lumped un-

certainty D(t) is estimated as

D̂ = D(t − T s) = Mσ̈e(t − T s) + Cσ̇e(t − T s)

+ g(t − T s) − BΦ(t − T s)u(t − T s) (15)

where T s is the sampling time period. Now define ǫ =

D(t)− D̂ as the estimation error, then according to the analy-

sis in [29] and [30], D̂ can effectively estimate the D(t) when

sampling time period T s is sufficiently small and the follow-

ing result holds.

Lemma 5 [29],[30],[22]There exists a positive constant ǭ

such that the following inequality holds

‖ǫ‖ ≤ ǭ

For the system (11), to achieve the tracking object, define

X = [σT
e , σ̇

T
e ]T ∈ R6 and the controller is designed as

u = hN(χ)Us (16)

with

Us = u1 + u2 + u3 (17)

where u1 is the fully-actuated system approach-based con-

troller, u2 is used to compente the lumped disturbance and

u3 is used to suppress the estimation error:

u1 = B−1g + KX,

u2 = B−1D̂

u3 = −ǫ̂B
−1N∗ ‖N‖ sgn(X)

with

K = B−1WV−1,

W = MZF2 +CZF,

V = [ZT, (ZF)T]T,

and

N = P

[

03×3

M−1

]

∈ R6×3

N∗ = NT(NNT)−1 ∈ R3×6

‖N‖ =

√

∥

∥

∥NNT
∥

∥

∥ ∈ R

and hN(χ) = diag(h1(χ1), h2(χ2), h3(χ3)) with hi(χi)(i =

1, 2, 3) being Nussbaum function. And χ = [χ1, χ2, χ3]T is

defined by the following adaptive law:

χ̇ = −αdiag(s)Us, χ(0) = 0 (18)

where α > 0 and diag(s) = diag(s1, s2, s3) with

s = [s1, s2, s2] = XTNB

where P is a positive matrix defined later. Besides, ǫ̂ is used

to estimate the upper bound ǭ and defined by the following

law:
·

ǫ̂ = Γ(‖N‖ ‖X‖ − δǫ̂) (19)

where Γ, δ > 0.

The main result of this paper is conducted in the following

theorem.

Theorem 6 Consider the combined spacecraft attitude

tracking control system (11) with actuator fault (5) and ac-

tuator saturation (8), the proposed controller (16) with the

TDE (15), the updating law (18) and the adaptive law (19)

can ensure the attitude error σe and the angular velocity er-

ror ωe converge to a small region around the equilibrium if

the controller parameters α, Γ, δ > 0 and there exists a posi-

tive definite matrix P > 0 such that

PA + ATP < 0 (20)

where A = VFV−1.

Proof 7 Construct the following Lyapunov function for the

attitude tracking system (11)

V =
1

2
XTPX +

1

2Γ
ǫ̃2

where Γ is a positive constant, P > 0 is a positive definite

matrix and ǫ̃ = ǭ − ǫ̂. Now, taking the time derivative of V, it
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can be obtained that

V̇ = XTPẊ +
1

Γ
ǫ̃
·

ǫ̃

= XTP

[

σ̇e

−M−1Cσ̇e − M−1g + M−1BUs

]

+ XTP

[

03×3

M−1D

]

+ XTP

[

03×3

M−1B

]

(Φu − Us)

−
1

Γ
ǫ̃
·

ǫ̂ (21)

Then, substitute (17) into (21), based on Lemma 4 and the

adaptive law (19), we have

V̇ = XTP

[

σ̇e

−M−1Cσ̇e − M−1g + M−1Bu1

]

+ XTP

[

03×3

M−1Bu2

]

+ XTP

[

03×3

M−1Bu3

]

+ XTP

[

03×3

M−1D

]

+ XTP

[

03×3

M−1B

]

(Φu − Us)

−
1

Γ
ǫ̃
·

ǫ̂

= XTPAX + XTNǫ − ǫ̂XTNN∗ ‖N‖ sgn(X)

+ s(ΦhN(χ)Us − Us) − ǫ̃(‖N‖ ‖X‖ − δ)ǫ̂

=
1

2
XT(PA + ATP)X + s(ΦhN(χ)Us − Us)

+ ‖X‖ ‖N‖ (‖ǫ‖ − ǭ) + δǫ̃ǫ̂ (22)

with A = VFV−1, then based on Lemma 5, ‖ǫ‖ − ǭ ≤ 0 is

satisfied, then the above inequality (22) can be written as

V̇ ≤
1

2
XT(PA + ATP)X + s(ΦhN(χ)Us − Us) + δǫ̃ǫ̂ (23)

Considering the updating law (18), we have

s(ΦhN(χ)Us − Us)

= s(ΦhN(χ) − I3)Us

= −
1

α
s(ΦhN(χ) − I3)(dig(s))−1χ̇

= −
1

α

3
∑

i=1

(φihi(χ) − 1)χ̇i (24)

And for the term δǫ̃ǫ̂, with the help of Yong’s inequality, we

have

δǫ̃ǫ̂ = δǫ̃(ǭ − ǫ̃) = −δǫ̃2 + δǫ̃ǭ ≤ −
δǫ̃2

2
+
δǭ2

2
(25)

Then combined (24) and (25), (23) can be written as

V̇ ≤
1

2
XT(PA + ATP)X −

1

α

3
∑

i=1

(φihi(χ) − 1)χ̇i −
δǫ̃2

2
+
δǭ2

2

≤ −β1

1

2
XTPX − δΓ

1

2Γ
ǫ̃2 −

1

α

3
∑

i=1

(φihi(χ) − 1)χ̇i +
δǭ2

2

(26)

where

β1 = −maxλ(A + P−1ATP),

β2 =
δǭ2

2
,

For equation (20) is satisfied,

A + P−1ATP < 0

is satisfied. Then, it can be conducted that β1 > 0. Now

define β∗ = min{β1, δΓ}, then (26) can be written as

V̇ ≤ −β∗V + β2 −
1

α

3
∑

i=1

(φihi(χ) − 1)χ̇i

Based on Lemma 3, the inequality (26) can deduce

V(t) ≤ e−β∗tV(0) +

∫ t

0

e−β∗(t−τ)

















β2 −
1

α

3
∑

i=1

(φihi(χ) − 1)χ̇i

















dτ

= e−β∗tV(0) +
β2

β∗
(1 − e−β∗t)

− eβ∗t
3
∑

i=1

∫ t

0

1

α
(φihi(χ) − 1)χ̇ie

β∗τdτ (27)

Because e−β∗tV(0) +
β2

β∗
(1 − e−β∗t) are bounded on [0, t f ) and

φi ∈ (0, 1] is bounded, according to Lemma 2, we can obtain

that V(t), χi(t) and
∑N

i=1

∫ t

0
gi(ι)N(χi(ι))χ̇i(ι)dι are bounded

on [0, t f ). Denote Vmax as the upper bound of V(t),then it

can be deduced that

‖X‖ ≤

√

2Vmax

λmin(P)

‖ǫ̃‖ ≤
√

2VmaxΓ

According to the proof analysis in Theorem 1 of reference

[23], 2 ≤
∥

∥

∥G−1(σe)
∥

∥

∥ ≤ 4, then based on (10), it can be

obtained that

‖ωe‖ =
∥

∥

∥G−1(σe)σ̇e

∥

∥

∥ ≤
∥

∥

∥G−1(σe)
∥

∥

∥ ‖σ̇e‖

≤
∥

∥

∥G−1(σe)
∥

∥

∥ ‖X‖ ≤ 4 ‖X‖

Therefore, σe and σ̇e will ultimately converge to the residual

set

Ω1 =



















X = [σT
e , σ̇

T
e ]T| ‖X‖ ≤

√

2Vmax

λmin(P)



















the angular velocity error ωe will ultimately converge to the

residual set

Ω2 =



















ωe | ‖ωe‖ ≤ 4

√

2Vmax

λmin(P)



















and the estimation error of the upper bound ǫ̃ will ultimately

converge to a residual set

Ω3 =
{

ǫ̃| ‖ǫ̃‖ ≤
√

2VmaxΓ
}

4 Simulation Result

In this section, a combined spacecraft described in [23]

is used to demonstrate the effectiveness of the proposed

control scheme. The simulation time is set as 50 seconds

and the sampling time is set as 0.01. The inertia ma-

trix of the combined spacecraft is set J = diag{12, 14, 18}

kg·m2, the inertia matrix of the whole reaction wheels is
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Jω = diag{0.338, 0.338, 0.338}kg·m2, the orbit velocity ω0 =

7.292115× 10−5, the configuration matrix is set as

Cω =





















0.9992 −0.0300 −0.0256

−0.0394 0.7455 0.6653

0.0009 −0.6658 0.7461





















and the actuator control torque τc(u) is bounded by

τmax,i = 35 rad/s2 and τmin,i = −35 rad/s2. The faults

acted on the actuator are set as Λ(t) = diag{0.8, 0.8, 1},

τ̄c = [0.5, 0,−0.5], and these faults occur at time

T1 = 5, T2 = 10, T3 = 5 and the fault evolution

rate ai = 1(i = 1, 2, 3). The external disturbance is

d(t) = 10−3 × [5 cos(0.02t),−5 cos(0.025t), 6 cos(0.04t)]T .

The initial attitude and angular velocity is set as σ(0) =

[0.323,−0.194,−0.388]T and ω(0) = [−0.01, 0.02,−0.03]T,

the desired attitude and angular velocity is set as

σd(0) = [0.217,−0.109,−0.163]T and ωd(0) =

[−0.02 cos(t/100),−0.01 sin(t/100),−0.03 cos(t/100)]T

rad/s. To achieve the attitude tracking goal, the pa-

rameters of the controller is set as Z = [I3, I3], F =

diag{−2,−2,−2,−1.5,−1.5,−1.5} and P is selected as

P =



















































3.877 0 0 0.5596 0 0

0 3.877 0 0 0.5596 0

0 0 3.877 0 0 0.5596

0.5596 0 0 0.6395 0 0

0 0.5596 0 0 0.6395 0

0 0 0.5596 0 0 0.6395



















































which satisfies inequality (20). And other parameters are set

as α = 0.001, Γ = 1 and δ = 1.

The trajectories of attitude tracking error σe(t), angular

velocity error ωe(t), and actuator torque τ are shown in Fig.

1-3 respectively. From Fig. 1 and 2, it can be seen that

both all the state errors are convergent to a small neighbor-

hood of zero and thus the stability of the closed-loop system

is guaranteed. And the amplitude of the control torque are

constrained in the saturation from Fig. 3. The trajectory of

adaptive parameter state are shown in Fig. 4, it can be seen

that each element of χ is convergent to a constant value.

Fig. 1: Trajectory of the angular velocity error ωe
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Fig. 2: Trajectory of the attitude error σe
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Fig. 3: Trajectory of the control torque τ
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Fig. 4: Trajectory of the adaptive parameter χ
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5 Conclusion

This article has developed a fault-tolerant attitude tracking

control scheme for combined spacecraft with actuator fault.

The major characteristic of this controller was that the di-

rect parameter approach was adapted in the fully-actuated

system. Besides, a Nubbaum gain with an updating law

was introduced to tackle the influence caused by actuator

saturation. Furthermore, a time-delay estimate method was

adapted to compensate the lumped uncertainty and an adap-

tive law is used to suppress the estimation error. A simula-

tion result was shown to illustrate the effectiveness of devel-

oped control scheme. In the future, the flexible spacecraft

system will be investigated with the proposed method.

6 Simulation Result
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A Novel Rolling Takeoff Flight Control for Fixed-Wing
Unmanned Aerial Vehicle

Wangkui Liu1,2, Xiangyu Wang1,2, Zunshi Shui1,2, Zhihua Chen3, Huabing Qiu1,2, Xuefei Yang4

1. Beijing Institute of Aerospace Technology, Beijing 100074, China
2. National Key Laboratory of Aerospace Flight Technology, Beijing 100074, China

3. Beijing Institute of Control Engineering, Beijing 100190, China
4. Harbin Institute of Technology, Harbin 150001, China

E-mail: liuwangkui@126.com
Abstract: A new rolling takeoff flight control method for fixed-wing unmanned aerial vehicle(UAV) which launched obliquely
and powered by propeller is proposed. The fixed-wing UAV has the characteristics of low launch velocity, insufficient control
ability of aileron, and strong reaction torque caused by propeller, which leads to insufficient control ability in rolling channel
during initial takeoff phase. Different from the traditional flight control system, the reaction torque is utilized as a part of control
torque to make the UAV roll 360deg with the direction of reaction torque in the initial phase. With the control ability of aileron
increasing and the reaction torque decreasing, the aileron is used to restrict the influence of reaction torque and stabilize the roll
angle of UAV at 0deg. The effectiveness of the proposed flight control strategy is illustrated by numerical simulation results.
Key Words: Unmanned Aerial Vehicle, Rolling Takeoff, Flight Control, Reaction Torque



1 Introduction

As a special of aircraft, the unmanned aerial vehicle
(UAV) can execute flight mission autonomously without
pilot onboard. Originally, UAVs were used to perform
military missions in dirty or dangerous environment for
pilot[1]. With the rapid development of UAVs, UAVs play an
important role in more civil application scenarios, such as
aerial photography or mapping, modern agriculture, forest
fire monitoring[2] and infrastructure patrol. Although UAVs
are designed with various different configuration, the UAV
can be classified into two categories: multi-rotor
configuration and fixed-wing configuration[3-5]. The
multi-rotor configuration UAV utilizes rotary wings to
produce aerodynamic forces for flight. The aerodynamic
forces of fixed-wing UAV are generated by wings and
control surfaces. It is well known that the aerodynamical
efficiency of fixed-wing UAV is higher than multi-rotor
UAV. The fixed-wing configuration has many advantages
compared to multi-rotor configuration, such as larger flight
range, longer flight time, higher speed and heavier mission
load. Due to the advantages such as low cost, portable
deployment and flight concealment, small fixed-wing UAVs
(usually less than 20 kg) have been widely used in recent
years. For instance, Switchblade UAV and Zala Lancet have
been well-known in Russo-Ukrainian War.

In recent decades, various control methods have been
used in fixed-wing UAV flight control[1], such as
backstepping control[6], sliding mode control[7-9], nonlinear
model predictive control[10,11] and linear quadratic Gaussian
control[12]. To improve the performance of flight control
system and flight quality of UAV, it is unavoidable to reduce
the adverse influence of disturbance. Thus, disturbance
rejection is an important issue in UAV control. Based on

*This work is supported by National Natural Science Foundation of
China(Grant No. U2141229,62003271,62173033 and 61903102), National
Defense Basic Scientific Research Program of China under Grant
JCKY2020204B044, and the Fundamental Research Funds for the Central
Universities under Grant HIT.OCEF.2023007.

wind tunnel experiment to acquire linear dynamic models of
UAV, model predictive controller has been designed in [10]
to enhance the disturbance rejection. In many studies, kinds
of disturbance observers have been widely used for UAV
fight control to estimate the external disturbance[13-16], and
satisfactory control performance have been obtained by
compensating the estimation of disturbance.

The authors focus on a small fixed-wing UAV which
similar to Switchblade recently. The UAV is launched
obliquely on rail type launcher and powered by propeller
motor. The pitch and roll channel of UAV are manipulated
simultaneously by a single pair of control surface. Due to the
length of launcher, structural strength of UAV and
measurement capacity of MEMS accelerometer, the
acceleration and acceleration distance of UAV on the
launcher are constrained which leads to the low launching
velocity of UAV. Besides, the pitch channel of UAV is
statically unstable and the thrust direction of the propeller
motor is coincided with body axis due to the structure and
equipment installation. Several experiment results show that
an reaction torque with large peak is generated by propeller
motor in roll channel when the propeller rotate with high
speed. The reaction torque has adverse influence on the
stability of roll channel which was treated as disturbance in
many studies. It is obvious that the velocity of UAV is
reduced firstly in the initial flight phase since the thrust
generated by propeller motor is hysteresis than thrust
command. As a result, the dynamic pressure and the control
efficiency of control surfaces are low. Considering the
physical limitation on deflection angle of control surface
and a part of control surface is necessary to control the
statically unstable pitch channel, the deflection angle of
control surface and the maximum control torque can be used
in roll channel is limited. As a result, the control torque for
roll channel have no advantage to the reaction torque and
disturbance caused by other factors in initial flight phase. In
conclusion, the influence of reaction torque in roll channel
must be considered in the design of control system to ensure
the stability of roll channel, such that satisfactory flight
quality and flight safety of UAV can be achieved.

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
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Unlike the preceding studies, the reaction torque which is
generated by the propeller motor is considered in this paper.
Compared with normal disturbances, the reaction torque
disturbance can easily get close to or even large than the
operational torque of roll channel in the initial flight phase.
Therefore, the reaction torque should be considered
particularly rather than treated as uncertainties to
compensate. Motivated by previous discussion, a new
rolling takeoff flight control method for fixed-wing UAV is
presented to deal with the reaction torque in roll channel.
The reaction torque is utilized to control the attitude of UAV
such that the UAV can execute a 360-degree roll promptly.
With the improved control capability of roll channel, normal
flight control strategy is adopted subsequently. The
numerical simulation results illustrate the efficiency of the
proposed flight control strategy.

2 Dynamic Model and Problem Formulation

In this section, the dynamic model for fixed-wing UAV
with aerodynamic force and moment model are introduced
firstly. After that, the dynamic characteristic of propeller
motor and the control objective of this thesis are presented.

2.1 Dynamic Model Description of Fixed-Wing UAV

Following [17,18], the orientational dynamics of
fixed-wing UAV can be expressed as
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where  ,  and  are pitch angle, yaw angle and roll angle,
respectively; x , y and z denote roll, yaw and pitch
angular rates, respectively; xJ , yJ and zJ represent the
moment of inertia around corresponding axis; xM , yM and

zM are roll, yaw and pitch moment, respectively.

The translational dynamics of fixed-wing UAV are given
as:
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where x , y and z denote the 3-D position of the UAV in
the inertial coordinate frame; m and V are the mass and
airspeed of the UAV, respectively;  ,  ,  , V and V
denote the angle of attack, side-slip angle, flight path angle,
heading angle and velocity bank angel, respectively; DF , LF ,

ZF and P denote the drag, lift , side force and thrust
generated by propeller, respectively; g represents the
acceleration of gravity.

The aerodynamic force, aerodynamic moment and thrust
of UAV can be modeled as follows:
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where the non-dimensional aerodynamic coefficients ic and

im are nonlinear functions of airspeed, angle of attack,
side-slip angle and the deflections of control surfaces; x
and z denote the deflections of the aileron and the elevator,
respectively;  ,  , s and l denote the throttle command,
air density, the reference area and length of UAV,
respectively; T is nonlinear functions of throttle command
and airspeed. kF 、 iM and P represent the uncertainties
of aerodynamic forces, aerodynamic moments and thrust,
respectively, which are caused by external disturbance,
parametric uncertainty and unmodeled dynamics.

2.2 Problem Formulation

In this subsection, the dynamic characteristic of propeller
motor is presented. Based on the analysis of the control
dynamic of UAV in the initial flight phase, the control
objective of this thesis is summarized.

Based on the wind tunnel experiments, we got the thrust
and reaction torque data of propeller motor. The size of
propeller is 13*6.5 inch, and the available range of throttle
command is 0.1 to 1. The thrust generated by propeller
motor with different wind velocity is presented in Fig. 1. Fig.
2 shows the curves of normalized thrust and reaction torque
under step throttle command. Fig.3 shows the curves of trim
angle of aileron for reaction torque with different angle of
attack and velocities.
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From these figures, it is obvious that the thrust generated
by propeller motor is increased by the throttle command,
and decreased with the velocity. Moreover, when the flight
velocity of UAV is 20m/s, the throttle command should be
larger than 0.5 such that the thrust of propeller motor is
positive. Compared with throttle command, the thrust
generated by the propeller is hysteretic and the lag time is
larger than 0.5s as shown in figure 2. Besides, reaction
torque increased obviously then became decreased, and the
peak of reaction torque occurs earlier than the thrust. It is
obvious that the trim angle of aileron is decreased with the
velocity, and the minimum trim angle is 24deg with the
velocity of 18m/s.

Fig. 1: The curves of thrust with different velocity

Fig. 2: The curves of normalized thrust and reaction torque

Fig. 3: The trim angle of aileron for reaction torque

Based on above analysis, we can know that the control
ability of aileron is insufficient to restrain the reaction
torque when the velocity of UAV is low in the initial flight
phase. The roll angle of UAV is unable to stabilise at 0deg

and the lifting of UAV loss seriously. As a result, the height
of UAV will decrease quickly and the flight safety of UAV
can not be guaranteed. In conclusion, the flight control
problem of fix-wing UAV in initial flight phase with both
strong disturbance and insufficient control ability in rolling
channel should be taken into account.

3 Rolling Takeoff Flight Control System Design

In contrary to the traditional flight control method which
tread the reaction torque as disturbance, the reaction torque
is used as control torque for rolling channel in the initial
phase in this paper. After the reaction torque decreased and
the control ability of aileron increases rapidly with the
increase of velocity, the aileron is used to restrict the
influence of reaction torque and other disturbance. In this
paper, the proportional–integral–derivative (PID) control
method is adopted to design the attitude controller of UAV
due to its simplicity and low computational intensity.

Based on PID control structure, the control signals for the
roll and pitch channel are calculated as follows:

   x px cmd dx x ix cmd fxk k k dt            (6)

   z pz cmd dz z iz cmdk k k dt          (7)

where cmd and cmd are pitch angle command and roll angle
command, respectively. pzk , dzk , izk , pxk , dxk and ixk are
control parameters, fx is the feedforward compensation.

The pitch angle command and roll angle command are
proposed as follows:
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where ini , cmdH and ycmdV are the initial pitch angle, height
command and vertical velocity command, respectively.
phk , dhk and ihk are control parameters. transt and Rt are end

time of constant pitch angle climb phase and roll flight,
respectively. t and t are transition time of pitch angle and
roll angle, respectively. The transition function  2
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The velocity control for the fixed-wing UAV is proposed
as follow:

   1 p cmd i cmdk V V k V V dt       (11)

where pk  and ik  are control parameters for velocity, and

cmdV is the cruising velocity of UAV.

Remark 1. The novel rolling takeoff flight control strategy
for small fixed-wing UAV can be segmented into two stages.
In the first stage, in view of the reaction torque is larger and
the control ability of aileron is insufficient, the control
objective of roll channel is to control the UAV roll 360deg
by utilizing the reaction torque as control torque. With the
reaction torque decreasing and the control ability of aileron
increasing, the control objective of roll channel is to
stabilize the roll angle of the UAV at 0deg by treating the
reaction torque as disturbance in the second control stage. It
is obvious that the transition time between the first stage and
the second stage is the key point which influence the flight
performance.The transition time is determined by the
characteristics of reaction torque and control ability of
aileron.

4 Numerical Simulation

To demonstrate the effectiveness of the proposed rolling
takeoff flight control algorithm, the full six degrees of
freedom model simulation experiments are carried out in
this section. The specifications and initial states of the UAV
are described in Table 1. Parts of controller components in
the rolling takeoff flight control are shown in Table 2.
Meanwhile, the flight controller operates at a sampling time
of 5ms, and the measure data transmission delay is
considered as 40ms.

Table 1: Physical parameters of the UAV

Parameter Value

Reference area 0.064m2

Reference length 0.08m

Mass 3kg

Moment of inertia
20.02kg mxxI  20.12kg myyI 

20.1kg mzzI 

Launch Velocity 21m/s

Pitch angle 29.5deg
Roll angle 2.5deg

Height 500m

Table 2: Controller components

Parameter Value

cmdV 30m/s

cmd 15deg

cmdH 600m

transt , Rt , t , t 10s, 1s, 6s, 2s

Besides, the control signals of aileron, elevator and
throttle command should satisfy the following constraints:

 25, 25x   ,  25, 25x   ,  0.5,1 

Fig. 4: The curves of pitch angle

Fig. 5: The curve of roll angle

Fig. 6: The cures of angular velocity

As shown in Figure 4, the pitch angle can tracking the
pitch angle command accurately and quickly. The Figure 5
shows the curve of roll angle, it is apparent that the UAV roll
360deg in 1.6s and then stabilize at 0deg quickly. Figure 6
and 7 show the curves of angular velocity and control
command, respectively. Follows that, we can conclude that
the attitude of the UAV is stable and the control objective of
rolling channel have been achieved. The curve of height,
velocity and throttle command of UAV are shown in Figure
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8, 9 and 10, respectively. The height of UAV increase firstly
and then decreases slightly, after that the UAV climb to the
cruise height at 15s. The minimum velocity of UAV is
17.48m/s at 0.875s, and the UAV accelerate to cruise
velocity 30m/s in 8.5s. Figure 11 shows the flight trajectory
of UAV in 3D. Based on the analysis of simulation results,
we can conclude that the proposed novel rolling takeoff
flight control strategy is effective to deal with the influence
of reaction torque, and satisfactory flight performance have
been achieved by utilizing the proposed control scheme.

Fig. 7: The cures of control input

Fig. 8: The cure of height

Fig. 9: The cure of velocity

5 Conclusion

In this paper, a new rolling takeoff flight control scheme
for fixed-wing UAV which launched obliquely and powered
by propeller was proposed. The fixed-wing UAV has the
characteristics of low launch speed, insufficient control
ability of aileron, and strong reaction torque caused by

propeller, which leads to insufficient control ability in
rolling channel during initial takeoff phase. By analyzing
the characteristics of rolling channel disturbance torque, a
novel takeoff flight control method is proposed. In the
direction of reaction torque, a 360-degree roll was executed
by the UAV in initial launched phase.With the established of
dynamic pressure and the improved control capability of
aileron, traditional flight control method was adopted.
Different from the traditional anti-disturbance control
method, the reaction torque in rolling channel was firstly
utilized to control the attitude of UAV in this article. The
effectiveness of the proposed scheme was verified by the
numerical simulation results.

Fig. 10: The cure of throttle command

Fig. 11: The flight trajectory of UAV
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Input saturation control of manipulator based on fully actuated system 

approach 
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Abstract: A control strategy based on fully actuated system approach is proposed for the manipulator system with input 

saturation. By introducing a smooth hyperbolic tangent function to approximate the saturation function, the original system is 

transformed into a smooth system. The complex differential operation is converted into algebraic operation by introducing a 

first-order low-pass filter. By designing an adaptive law, the uncertainty of the system model is effectively estimated. Based on 

fully actuated system approach, the controller for the manipulator system is directly designed, which eliminates the step of 

converting the original second-order strict feedback system into a first-order strict feedback system, reduces the steps of 

controller design, lowers the complexity of algorithm design, and effectively avoids the "differential explosion" problem. The 

Lyapunov stability theory is used to prove that all signals in the closed-loop system are uniformly ultimately bounded. Finally, 

numerical simulations of the manipulator system are performed to verify the effectiveness of the proposed method. 

Key Words: Manipulator system, Fully actuated system approach, Input saturation, Smooth function 

 

 
 

1 Introduction 

The manipulator system, with its advantages of flexibility 

and versatility, has been widely used in various fields such 

as industrial production, aerospace, and military applications. 

However, the physical characteristics, structural limitations, 

and operating environment of the mechanical arm system 

components inevitably lead to saturation nonlinearity. 

Ignoring this issue can result in degraded control 

performance and even instability of the system. Therefore, it 

is necessary to consider the design of input saturation 

controllers to achieve high-precision control of the 

mechanical arm system under input saturation conditions. 

Researchers have proposed strategies based on the 

backstepping/dynamic surface control methods, combined 

with approximations of the input saturation function using 

smooth functions, to effectively address this problem[1][2]. 

However, the model of the manipulator system is 

typically a cascade of two second-order subsystems, and the 

backstepping method is commonly used to design 

controllers for it. However, when using this method to 

design controllers, the model needs to be transformed into 

four first-order cascaded systems. This not only disrupts the 

full-actuation characteristics of the system but also increases 

the complexity of controller design. It is well-known that 

when there are many steps in the backstepping design 

process, the problem of "differential explosion" can occur. 

Therefore, reducing the steps in the design of the 

manipulator control system and designing a simple and 

efficient controller while ensuring control accuracy is 

currently a challenge[3][4][5][6]. 

Recently, the fully actuated system approach has shown 

significant advantages in the analysis and design of 

nonlinear systems. This method employs the idea of 

elimination in the process of establishing the physical model, 

simplifying the control instruction design steps while 

ensuring model accuracy. By eliminating the open-loop 

                                                           
*This work is supported by National Natural Science Foundation of 

China under Grant 62188101、61773387. 

system characteristics, the closed-loop system can be 

stabilized and linearized, and all degrees of freedom in the 

system model can be configured to meet the system control 

requirements[7][8]. In particular, for higher-order cascade 

systems, the fully actuated system approach allows for direct 

controller design without the need to transform the high-

order strict-feedback system into a first-order strict-feedback 

system. This eliminates the conversion process and reduces 

the design steps, effectively mitigating the problem of 

"differential explosion" associated with the backstepping 

method[9]. Based on this approach, researchers have 

proposed high-order backstepping methods, high-order 

dynamic surface control methods, and high-order command 

filtering control methods, which have achieved significant 

research results. Following this line of thinking, in order to 

effectively control the manipulator system under the 

influence of input saturation, simplify the design steps, and 

mitigate the "differential explosion" problem, this paper 

designs the controller for the manipulator system based on 

the fully actuated system approach[10]-[18]. 

First, let's define the relevant symbols for the input 

saturation controller of the manipulator system. 

min ( )iP  and 
max ( )iP  represent the smallest and largest 

eigenvalues of matrix 
iP , and 0iP   denotes that the matrix 

iP  is a positive-definite symmetric matrix. Moreover, 
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2 Problem Formulation 

Consider the manipulator system with input saturation, as 

shown in equation (1): 

 

2 sin ( ) ,

( ),

m

m m m

ML q MgL q F q Kq Kq

J q Bq K q q u v

    

    

        (1) 

where, q  and 
mq  are the angular positions of the link and 

the motor, M  and L  are the mass and length of the link, 

g  is the acceleration of gravity, K  represents the 

equivalent spring elasticity coefficient, J  is the rotational 

inertia of the motor, B  is the buffer coefficient, 

1( ) cos tanh F q B Mg q  represents the friction term, 1B  

is friction coefficient, ( )u v  is the motor control torque 

affected by saturation. 

By defining 1x q , 2 mx q , and ( )u v  the control input, 

the manipulator system can be represented as 

     
        

1 1,0 1 1 1 1 1 1 1 1 1 2

0 1 0 1 0 1

2 2,0 1 2 2 1 2 2 2 1 2

, , + , ,

+ ( ),

x f x x f x x g x x x

x f x f x g x u v




  

  

  



 

(2) 

where, 1 1sinf x  ，
 1 1

1,0 2 2

F x Kx
f

ML ML
   ， 1 2

K
g

ML
 ，

2 2f x  ，  2,0 1 2

K
f x x

J
   and 2

1
g

J
 . 

1=B  and 

2 =
B

J
  are uncertain system parameters. ( )u v  is the motor 

control torque affected by saturation, and can be represented 

as follows: 

( ) ,
( ) ( )

,

M M

M

sign v u v u
u v sat v

v v u

 
  


         (3) 

where, v  is the control input that needs to be designed, 

( )u v  is the input affected by saturation, and Mu  is the 

maximum amplitude of ( )u v . At point Mv u , ( )u v  is 

not smooth, and cannot be directly designed with the 

backstepping control method. To address this issue, a 

smooth hyperbolic tangent function ( )g v  is employed to 

approximate ( )u v : 

/ /

/ /
( ) tanh( )

M M

M M

v u v u

M M v u v u

M

v e e
g v u u

u e e






  


      (4) 

Combining equations (3) and (4), ( )sat v  can be 

represented as: 

( ) ( ) ( )sat v g v d v                        (5) 

where, ( )d v  is the approximation error, and its upper bound 

is 

( ) ( ) ( ) (1 tanh(1))M md v sat v g v u d     (6) 

Let 
( )

( )
g v

h v
v





, by the properties of the hyperbolic 

tangent function, we can get that 
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            (7) 

The manipulator system can be further transformed as 
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(8) 

where, 0c  is a constant, and w  is the auxiliary signal to 

be designed. 

The control objective of this paper is to design an input 

saturation controller that enables the system output 1y x  

to effectively track the desired reference signal dy . In the 

closed-loop system, all signals are uniformly ultimately 

bounded, and the tracking error converges to a sufficiently 

small neighborhood around zero. 

To achieve the control objectives of this paper, the 

following assumptions and lemmas are given: 

Assumption 1: 
(0 1)

1( ) 0, 1, 2j i ig x j

    . 

Assumption 2: The desired output tracking trajectory is 

smooth, available, and satisfies 
(2) (3)

0

T
(2) (3) 2 2 (2) 2 (3) 2 2

0

, , ,

( ) ( )

d d d d

d d d d d d d d

y y y y

y y y y y y y y r
, 

where 0r  is a constant. 

Assumption 3: The system is input-to-state stable (ISS). 

Lemma 1. For any 0 , there exists a vector 0 1nA    

such that 

 0 1
min

2

nA


    
 

                         (9) 

Furthermore, it can be derived that there exists a positive 

definite symmetric matrix 0 1nA    such that 

       

 

T 0 1 0 1 0 1 0 1

0 1

n n n n

n

A P A P A A

P A

   



  

 
  (10) 

Lemma 2. ( )V  and χ( )  are both smooth functions 

defined on the interval 0, ft  . Moreover, 0, ft t   , 

( ) 0V t   holds, where (χ)N  is the Nussbaum gain 

function. If inequality (11) holds, then the functions ( )V  

and χ( )  must be bounded on the interval 0, ft  . 

      
0

0 1 d

tt
t t e

V V e e hN e


  




   

 


      (11) 

where,  ，  ， χ 0   are all constants, and h  is a 

positive variable. 

Lemma 3： Let a , b  be two real numbers, and 0b . 

Then the following relation holds: 
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2

4

a
a b

b
                                   (12) 

3 Controller design 

3.1 Input saturation control algorithm 

For the transformed system (8), the main steps for 

designing an input saturation controller are as follows: 

Step 1 Define 

1 1 1cz x x                                 (13) 

and 

2 2 2cz x x                                 (14) 

where,
1z  is the tracking error, 

2z  is the virtual error, and 

1c dx y , dy  is the desired tracking signal. 2dx  is the 

virtual control to be designed, and 2cx  is obtained by 2dx  

through two first-order low-pass filters: 

2, 2, 2, 2,( 1) , 1, 2i i i i i               (15) 

where 2 0 2dx ， ， 2 1 2cx ， ,the filter parameters 

2, 0 , 1, 2i i   are constants, and the initial parameters 

satisfy    2, 2,( 1) , 1, 20 0i i i     . 

Define filtering errors as: 

2, 2, 2,( 1) , 1, 2i i is i                   (16) 

Then it follows that 
2

2 2 2 2,

1

d i

i

x x z s


                      (17) 

and 

2,1 2,1 2

2,1

2,2 2,2 2,1

2,2 2,1

1

1 1

ds s x

s s s



 


  



   



     (18) 

Define 
1̂  as the estimate of 1 .We then define the 

estimation error as 

1 1 1
ˆ=                            (19) 

Then it follows that 

1 1
ˆ=                               (20) 

and 

     

 

2 2 2

1 1 1

2
2

1,0 1 1 1 2 2 2, 1

1

c

d i c

i

z x x

f f g x z s x


  

 
     

 


(21) 

Select the virtual control law as 

    0 1 20 1

2 1,0 1 1 1 1 1

1

1 ˆ
d cx f f A z x

g


        (22) 

where, 0 1
1A   is the design parameter. 

   
2

2 0 10 1

1 1 1 1 2 2 1 1

1

i

i

z A z g z s f 




 
    

 
        (23) 

Define 
    

T
0 1 0 1

1 1 1 1zV z P z
 

                      (24) 

We can get 

       
  

T T
0 1 0 1 0 1

1 1 1 1 1 1 1 1 1

2T
0 1

1 1 2 2

11

2

0
2

z L

i

i

V z P z z P f

z P z s
g

 
  





  

   
    

  


   (25) 

where, 
1LP  is the last column of matrix 

1P . 

Define 

1

T

1 1V                                    (26) 

1 1 1zV V V                                 (27) 

Select the adaptive law as 

  
T

0 1

1 1 1 1 1 1
ˆ ˆ= Lz P f  


                     (28) 

where, 
1 0   is the design parameter, and we can get 

    

  

T
0 1 0 1 T

1 1 1 1 1 1 1 1

2T
0 1

1 1 2 2

11

ˆ2

0
2 i

i

V z P z

z P z s
g

   
 





  

   
    

  


          (29) 

Step 2 Define 

 3 3cz g v x                            (30) 

where, 3dx  is the virtual control to be designed, and 
3cx  is 

obtained by 
3dx  through a first-order low-pass filter. 

3,1 3 3 3c c dx x x                          (31) 

where, the filter parameter 3,1 0  is a constant, and the 

initial parameter satisfies    3 30 0c dx x . Define the 

filtering error as 

3,1 3 3c ds x x                                (32) 

Then we can get 

  3 3 3,1dg v x z s                       (33) 

and 

     

   

2 2 2

2 2 2

2

2,0 2 2 2 3 3 3,1 2+ ( )

c

d c

z x x

f f g x z s d v x

  

    
(34) 

Define 
2̂  as the estimate of 2 .We then define the 

estimation error as: 

2 2 2
ˆ=                                  (35) 

then we can get 

2 2
ˆ=                                       (36) 

Construct the virtual control law as 

     2 0 1 0 10 1 2 2 T

3 2,0 2 2 2 2 2 2 2 2

2

1 1ˆ
4

d c m Lx f f x A z g d P z
g




  
      

 

(37) 

where, 0   is a constant, 2LP  is the last column of 

matrix 2P . 

Then we can get 
     2 0 10 1

2 2 2 2 2 2 3 3,1z A z f g z s 
      (38) 

 0 12 2 T

2 2 2 2

1
( )

4
m Lg d P z g d v




               (39) 
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Define 

    

2

T
0 1 0 1

2 2 2zV z P z
 

                   (40) 

Then, we can get 

       
       

T T
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2 2 2 2 2 2 2 2

T T
0 1 0 1

2 2 2 2 2 3 3,1

2

2 2

z n L

L L

V z P z z P f

z P z P g z s

 



  

 

  

  

   (41) 

Based on Lemma 3, we can get 

       
    

T T
0 1 0 1 0 1

2 2 2 2 2 2 2 2 2

T
0 1

2 2 2 3 3,1

2

2 2

z L

L

V z P z z P f

z P g z s

 



  



  

  

  (42) 

Define 

2

T

2 2V                                 (43) 

 

2 22 zV V V                               (44) 

Construct the adaptive law as 

  
T

0 1

2 2 2 2 22
ˆ ˆ

Lz P f  


                    (45) 

and we can get 

    

    

T
0 1 0 1 T

2 2 2 2 2 2 2 2

T
0 1

2 2 2 3 3,1

ˆ2

2 2L

V z P z

z P g z s

   



 



  

  

             (46) 

Step 3 Construct 

( )w N w                               (47) 

0 1 T

3 3 2 2 2 32( ) ( )L cw c z z P g h v cv x (48) 
2( ) cosN                             (49) 

and 

3wz                                   (50) 

where, 0  and 3 0c  are design parameters, and 

( )N  is a Nussbaum type function. 

Define 

2

3 3

1

2
V z                                      (51) 

and 
0 12 T

3 3 3 3 3 2 2 2 3= 2( )

1
( ( ) ( ) 1)

LV z z c z z P g z

h v N




            (52) 

4 Stability analysis 

Theorem 1. For the system (1), the input saturation 

controller created by combining the virtual control law in 

Equations (22) and (37), the control law in Equations (48)-

(51), and the adaptive law in Equations (28) and (46), 

achieves uniform ultimate boundedness of all signals in the 

closed-loop system and effective tracking of the desired 

reference signal even when the system is subject to input 

saturation. 

Proof. It follows that 
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Define 
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2 2
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2
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1

2
sV s                                   (55) 
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then we can get 
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(59) 

It is obvious that idx  , 1,2i   is a function of the variables 

iz ,
 0 1

1z


,
(0 3)

dy 
, ˆ

i , 1,2i  , 3z and
(2)

icx , ,0if , if , 1,2i  ,

3cx and the parameters
 0 1

, 1,2iA i


 .Thus, there exists a 

non-negative continuous function i , which is a function of 

the aforementioned variables and depends on the design 

parameters mentioned above, such that 
id ix  .For any 

 0 0V  , the set 

  2

0 1

2,1 ,2 3 3,11 , , , , 1 ),2, (,, 0ii Vs s sz z Vi z


   ∣ (60) 

is a compact. Note that 
   

T
2 3

0d d d dy y y y  
 

. 

Therefore,  , 1,2i i    has a maximum value on 0  

denoted by i . Therefore, on  , we can get 
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Because 
23 3

2

1 1

2 2

= 2
4

i

i i i

i i

s s


 
 

                   (62) 

where, 0   is a constant. 

And we can get 
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Therefore, if the design parameters meet: 
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            (64) 

where   is an arbitrarily given positive number. 

Define 
2

T

1

= 2 2i i i

i

     


                         (65) 

Then, we can get 

1
( ( ) ( ) 1)V V h v N



   


               (66) 

By integrating Equation (70), we obtain 

0

(0)e (1 e )

e
( ( ) ( ) )e d

t t

tt

V V

h v N

 










   


 



  

 
            (67) 

Therefore, we can conclude from Lemma 2 that V  and χ  

are bounded. Furthermore, it follows that all signals in the 

closed-loop system are bounded. Theorem 1 is thus proved.■ 

5 Illustrative simulation 

To validate the effectiveness of the proposed algorithm, 

simulations were conducted by selecting the parameters for 

the manipulator system: 0.25kgM  , 1 mL ,

-29.8 m s g , 12N m rad  K , 0.6B , 1 0.01B ,

-20.001 m s J  and 
36


  . 1  and 2  are uncertain 

system parameters, and their real values are 1 9.8  and 

2 600 , respectively. 

The tracking reference signal is set to 

 0.5 sin( ) sin(0.5 ) dy t t . The relevant parameters 

selected for the simulation are  1
ˆ 0 =9 ,  2

ˆ 0 =590 , 

1(0) 0.1x  , 1(0) 0.2x  , 2 (0) 0.5x  , 2 (0) 0.5x   and 

2Mu  . 

The results are shown in Figs.1–5. 

 
Fig. 1:  The output 1( )x t  and the desired trajectory ( )dy t  

 
Fig. 2:  Tracking error 1( )z t  

 

Figure 3: control input v  and saturated control input  sat v . 
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Figure 4: parameter estimation 1̂  

 

Figure 5: parameter estimation 2̂  

In the above simulation results, Figures 1 and 2 show the 

system output tracking results and tracking error. Figure 3 

shows the system control input v  and saturated control 

input  sat v . It can be observed that, when considering 

input saturation constraints, the actual control input remains 

within the constraint range except for experiencing input 

saturation during the transient phase. Figures 4 and 5 display 

the system's uncertain parameter estimation results, which 

indicate that the proposed method can accurately converge 

the parameter estimation to the true value of the parameters. 

5. Conclusion 

In this paper, a control strategy based on the fully actuated 

system approach is designed for a second-order cascaded 

manipulator system (1) with input saturation. The proposed 

controller is developed directly using the fully actuated 

system approach, eliminating the need for transforming the 

original second-order strict feedback system into a first-

order strict feedback system. Smooth functions and 

Nussbaum functions were employed to address the input 

saturation issue. The Lyapunov stability theory is employed 

to prove that all signals of the closed-loop system are 

uniformly ultimately bounded. Numerical simulations of the 

manipulator system are performed to verify the effectiveness 

of the proposed method. 
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High-Order Fully Actuated System Approach

Dongyan Jin, Mingyu Hou, Tong Wang, Jianbin Qiu
Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin 150001, China

E-mail: 22S104176@stu.hit.edu.cn; 120L011616@stu.hit.edu.cn; twang@hit.edu.cn; jbqiu@hit.edu.cn

Abstract: In this paper, the adaptive attitude tracking control of spacecraft with unknown time-varying disturbances is studied.
Firstly, the attitude model is established using modified Rodriguez parameters, which is transformed into a high-order fully
actuated (HOFA) system model with unknown time-varying parameters. Then, a novel adaptive attitude tracking control strategy
based on the HOFA system approach is proposed. With the proposed control strategy, the unknown time-varying disturbances
are estimated and compensated. The system stability of spacecraft attitude is guaranteed via Lyapunov theory. Finally, the
effectiveness of the proposed control strategy is verified through numerical simulations.

Key Words: Adaptive control, high-order fully actuated system approach, spacecraft attitude control, modified Rodrigues pa-
rameters.

1 Introduction

Alongside the advancement of the space industry, there is
an increasing demand for diverse space missions, which im-
poses higher requirements on the attitude control of space-
crafts. For the attitude control of spacecrafts, it is es-
sential to consider the nonlinear characteristics of its atti-
tude model and the impact of unknown time-varying distur-
bances. These factors make the attitude control of space-
crafts more complex and crucial.

Consequently, the attitude control of spacecrafts has re-
cently gained significant attention during the past decades
and has been studied by proposing different control strate-
gies in [1–3]. It is necessary to highlight that most re-
search findings concerning attitude control of spacecrafts are
grounded in the foundational framework of the state space
model.

Recently, inspired by the concept of fully actuation of
actual engineering systems, the high-order fully actuated
(HOFA) system approach was suggested for the first time
in [4]. Unlike most of the traditional control strategies, a
novel control strategy utilizing the HOFA system approach
was thus introduced. As a result of the fully actuation prop-
erty, the known nonlinear functions can be completely com-
pensated, which facilitates the controller design process [4].
Furthermore, the aforementioned results were extended to
the cases of robust control, adaptive control, and generalized
PID control in [5–8].

It should be noted that the HOFA systems can be derived
from numerous different types of systems through trans-
formation, including strict-feedback systems, feedback lin-
earizable systems, and controllable linear and nonlinear sys-
tems. Moreover, controlled plants based on the law of mo-
mentum, Lagrangian equations, and Kirchhoff’s laws can
also be transformed into HOFA systems. Recently, based
on the HOFA system approach, the attitude tracking con-
trol strategy for a rigid body spacecraft by using the mod-
ified Rodrigues parameters was presented in [9]. The lin-
ear quadratic regulator control and the adaptive control for
a combined spacecraft by using Euler angles and the C-

This work was supported by the National Natural Science Foundation
of China (U21B6001, 62273121).

W equation were studied in [10, 11], respectively. Then,
the rigid body spacecraft attitude control using quaternions
was investigated in [12]. However, limited findings were re-
ported for the attitude tracking control of spacecraft via the
adaptive HOFA system approach by using the modified Ro-
drigues parameters.

Therefore, inspired by [7], a novel adaptive attitude track-
ing control strategy of a rigid body spacecraft derived from
the adaptive HOFA system approach is designed. The un-
known time-varying disturbances can be effectively esti-
mated based on the proposed control strategy, enabling the
successful control of spacecraft attitude.

The main contribution of this paper is to propose a novel
attitude tracking control strategy, which ensures the stability
of the spacecraft system. It successfully addresses the impact
of unknown time-varying disturbances while compensating
for system nonlinearities.

The notations employed in this paper are

x(0∼n) =


x
ẋ
...

x(n)

 ,

A0∼n−1 =
[
A0 A1 · · · An−1

]
,

Φ
(
A0∼n−1

)
=


0 I

. . .
I

−A0 −A1 −An−1

 .

The subsequent structure of this paper is outlined below.
In Section 2, the kinematic and dynamic attitude models
are established based on the modified Rodriguez parame-
ters. Then, it is converted into a HOFA system model with
unknown time-varying parameters. A novel adaptive con-
trol strategy is designed, and the system stability is proved
in Section 3. The effectiveness of the proposed control strat-
egy is validated through numerical simulations in Section 4.
Section 5 concludes this paper.
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2 Problem Formulation

Several different attitude models are presented in this sec-
tion to show the superiority of the modified Rodriguez pa-
rameters modeling technique. Then, the attitude error model
is transformed into a HOFA model with time-varying un-
known parameters. Finally, the control objective of this pa-
per is presented.

Euler angles, quaternions, and modified Rodriguez pa-
rameters are commonly used to describe the attitude of
spacecraft. These methods have their own advantages and
disadvantages. Euler angles and modified Rodriguez param-
eters are the least parameterized modelling methods. How-
ever, they both have the disadvantage of singularity. In addi-
tion, if Euler angles are used to describe the attitude model,
a significant amount of trigonometric calculations are re-
quired, which increases the computational burden. Quater-
nions are globally non-singular subject to unit constraints.
Therefore, based on the above analysis, modified Rodriguez
parameters are chosen as the modelling tool for the space-
craft attitude in this paper.

The kinematics and dynamics based on the modified Ro-
drigues parameters are given as

q̇e = Π(qe)ωe, (1)

Jω̇e =− (ωe + Cωd)
×J(ωe + Cωd)

− J
(
Cω̇d − ω×

e Cωd

)
+ u+ d(t)

(2)

where qe = [qe1, qe2, qe3]
T is the error of modified Ro-

driguez parameters, J ∈ R3×3 is the moment of iner-
tia matrix of spacecraft, u = [u1, u2, u3]

T is the control
torque, and d(t) = [d1(t), d2(t), d3(t)]

T is the unknown
time-varying disturbances torque caused by factors includ-
ing solar radiation atmospheric drag, and other factors. ωe =
[ωe1, ωe2, ωe3]

T and ωd = [ωd1, ωd2, ωd3]
T are the error and

desired angular velocity of the spacecraft, respectively. ω×
e

is defined as

ω×
e =

 0 −ωe3 ωe2

ωe3 0 −ωe1

−ωe2 ωe1 0

 . (3)

C is the attitude transformation matrix, satisfying

C = I3 +
8(q×e )

2 − 4(1− qTe qe)q
×
e

(1 + qTe qe)
2 . (4)

where I3 is a 3x3 identity matrix.
Π(qe) is given as

Π(qe) =
1

2

(
1− qTe qe

2
I3 + q×e + qeq

T
e

)
. (5)

Assumption 1: The d(t) is differentiable and bounded.
Let the pre-estimate of d(t) as d0(t), which satisfies

∥d(t)− d0(t)∥ ≤ δ0,∀t ≥ 0, (6)∥∥∥ḋ(t)− ḋ0(t)
∥∥∥ ≤ δ1,∀t ≥ 0 (7)

where δ0 and δ1 are non-negative real numbers representing
the estimation error and derivative estimation error of d(t),
respectively.

Then, the kinematics and dynamics of spacecraft attitude
error (1) and (2) will be converted into a HOFA system
model.

Calculating the time derivative of (1) and substituting (2)
into it, the following expression is obtained.

q̈e =Π̇ (qe)Π
−1 (qe) q̇e

−Π(qe) J
−1

(
Π−1 (qe) q̇e

+Cωd)
×
J
(
Π−1 (qe) q̇e + Cωd

)
−Π(qe)

(
Cω̇d −

(
Π−1 (qe) q̇e

)×
Cωd

)
+Π(qe) J

−1u+Π(qe) J
−1d(t).

(8)

Based on the properties of the modified Rodrigues param-
eters, the following equation holds.

Π−1(qe) =
16

(1 + qTe qe)
2Π

T(qe). (9)

Therefore, it always satisfies

detΠ(qe)J
−1 ̸= 0. (10)

Based on (10), it is concluded that (8) is a HOFA system
model. Furthermore, by considering unknown time-varying
disturbances, (8) can be regarded as a HOFA system model
with uncertain time-varying parameters proposed in [7]

x(n) =f
(
x(0∼n−1)

)
+HT

(
x(0∼n−1)

)
θ

+ L
(
x(0∼n−1)

)
u

(11)

where x and u represent the system state vector and con-
trol input, respectively. f

(
x(0∼n−1)

)
, H

(
x(0∼n−1)

)
and

L
(
x(0∼n−1)

)
are continuous functions of the system states.

θ represents the unknown time-varying parameter.
Our previous results in [13] have introduced the detailed

derivation process of (8). Therefore, this paper directly
presents the final attitude error HOFA spacecraft model (8)
omitting the intermediate derivation process.

This paper aims to develop an adaptive control strat-
egy building upon the HOFA system approach, ensuring
bounded estimation error of unknown time-varying distur-
bances and system stability.

3 Control Strategy Design

The following Lemmas are introduced before designing
the adaptive control strategy based on the HOFA system ap-
proach.

3.1 Lemma Description
Let the estimation value of d(t) as d̂(t), and the following

equations hold
d̃(t) = d(t)− d̂(t), (12)

d̃e0(t) = d̂(t)− d0(t), (13)

d̃r0(t) = d(t)− d0(t). (14)

Lemma 1 ([7]) According to (12)-(14), and under as-
sumption 1, we have

d̃(t) = d̃r0(t)− d̃e0(t), (15)
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d̃Tr0(t)d̃(t) ≤
1

2

(
δ20 + ∥d̃(t)∥2

)
,

(16)

˙̃
dTr0(t)d̃(t) ≤

1

2

(
δ21 + ∥d̃(t)∥2

)
.

(17)

Lemma 2 ([7]) For any µ > 0, matrices Ai ∈ Rr×r, i =
0, 1, . . . , n− 1 exist, such that

Reλi

(
Φ
(
A0∼n−1

))
< −µ

2
, i = 1, 2, . . . , nr. (18)

Lemma 3 ([7]) If Lemma 2 holds, there exist a positive
definite matrix P

(
A0∼n−1

)
defined as

P
(
A0∼n−1

)
=

[
P1 P2 · · · Pn

]
, Pi ∈ Rnr×r.

(19)
Then, we have

ΦT
(
A0∼n−1

)
P
(
A0∼n−1

)
+ P

(
A0∼n−1

)
Φ
(
A0∼n−1

)
≤ −µP

(
A0∼n−1

)
(20)

Denote
PL

(
A0∼n−1

)
= Pn. (21)

Lemma 4 ([7]) For any matrix F ∈ Rnr×nr, A0∼n−1 and
V hold as

Φ
(
A0∼n−1

)
= V FV −1

in which

A0∼n−1 = −ZFnV −1(Z,F )

V = V (Z,F ) =


Z
ZF

...
ZFn−1


where Z ∈ Rr×nr satisfies

detV (Z,F ) ̸= 0.

3.2 Controller Design
The control strategy is designed as

u =− J0Π
−1 (qe)

(
A0∼1q(0∼1)

e + u0 + u1

)
u0 =Π̇ (qe)Π

−1 (qe) q̇e

−Π(qe) J
−1

(
Π−1 (qe) q̇e

+Cωd)
×
J
(
Π−1 (qe) q̇e + Cωd

)
−Π(qe)

(
Cω̇d −

(
Π−1 (qe) q̇e

)×
Cωd

)
u1 =Π(qe) J

−1d̂(t)

(22)

in which d̂(t) satisfies

˙̂
d(t) =

(
Π(qe) J

−1
)T

PT
L

(
A0∼n−1

)
q(0∼1)
e

− (µ+ 1)
(
d̂(t)− d0(t)

)
+ ḋ0(t).

(23)

Theorem 1: The states of the system and the estima-
tion error of unknown time-varying disturbance converge to

the following ellipsoidal domain under the proposed control
strategy (22)-(23).

Θ(µ,δ)(0)

=

{[
q
(0∼1)
e

d̃(t)

] ∣∣∣∣ ∥∥∥q(0∼1)
e

∥∥∥2
P
+ ∥d̃(t)∥2 ≤ 2

δ

µ

}
(24)

where δ = 1
2

(
δ21 + (µ+ 1)δ20

)
.

Proof.
Substituting (22) into (8) yields

q̈e = A0∼n−1q(0∼1)
e +Π(qe) J

−1d̃(t). (25)

Then, it can be transformed into

q̇e
(0∼1) = Φ

(
A0∼1

)
q(0∼1)
e +

[
03×1

d∗

]
(26)

where d∗ = Π(qe) J
−1d̃(t).

Design the Lyapunov function as

V =
1

2

(
q(0∼1)
e

)T

P
(
A0∼1

)
q(0∼1)
e +

1

2
d̃T(t)d̃(t). (27)

Differentiating equation (27) with respect to time results
in

V̇ =
1

2

(
q̇e

(0∼1)
)T

P
(
A0∼1

)
q(0∼1)
e

+
1

2

(
q(0∼1)
e

)T

P
(
A0∼1

)
q̇e

(0∼1)

+
1

2
˙̃
dT(t)d̃(t) +

1

2
d̃T(t)

˙̃
d(t)

=
1

2

(
Φ
(
A0∼1

)
q(0∼1)
e

+

[
03×1

d∗

])T

P
(
A0∼1

)
q(0∼1)
e

+
1

2

(
q(0∼1)
e

)T

P
(
A0∼1

)(
Φ
(
A0∼1

)
q(0∼1)
e

+

[
03×1

d∗

])
+

˙̃
dT(t)d̃(t)

=
1

2

(
q(0∼1)
e

)T (
Φ
(
A0∼1

)T
P
(
A0∼1

)
+ P

(
A0∼1

)
Φ
(
A0∼1

) )
q(0∼1)
e

+
(
q(0∼1)
e

)T

P
(
A0∼1

) [ 03×1

d∗

]
+

˙̃
dT(t)d̃(t).

(28)
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From Lemmas 1 and 3, it can be concluded that

V̇ ≤− µ

2

(
q(0∼1)
e

)T

P
(
A0∼1

)
q(0∼1)
e

+
(
q(0∼1)
e

)T

PL

(
A0∼1

)
d∗ +

˙̃
dT(t)d̃(t)

=− µV +
µ

2
d̃T(t)d̃(t)

+
(
q(0∼1)
e

)T

PL

(
A0∼1

)
d∗ +

˙̃
dT(t)d̃(t)

=− µV +
µ

2
d̃T(t)d̃(t)

+

((
q(0∼1)
e

)T

PL

(
A0∼1

)
Π(qe)J

−1 +
˙̃
dT(t)

)
d̃(t)

=− µV +
µ

2
d̃T(t)d̃(t)

+

((
q(0∼1)
e

)T

PL

(
A0∼1

)
Π(qe)J

−1

− ˙̃
dTe0(t) +

˙̃
dTr0(t)

)
d̃(t)

+ (µ+ 1)
(
−d̃Te0(t) + d̃Tr0(t)− d̃T(t)

)
d̃(t)

=− µV +
µ

2
d̃T(t)d̃(t)

+

((
q(0∼1)
e

)T

PL

(
A0∼1

)
Π(qe)J

−1

− ˙̃
dTe0(t)

)
d̃(t) +

˙̃
dTr0(t)d̃(t)

− (µ+ 1)d̃Te0(t)d̃(t) + (µ+ 1)
(
d̃Tr0(t)− d̃T(t)

)
d̃(t)

=

((
q(0∼1)
e

)T

PL

(
A0∼1

)
Π(qe)J

−1

− ˙̃
dTe0(t)− (µ+ 1)d̃Te0(t)

)
d̃(t) +

˙̃
dTr0(t)d̃(t)

− µV + (µ+ 1)d̃Tr0(t)d̃(t)−
µ+ 2

2
d̃T(t)d̃(t).

(29)
From Lemma 3 and (23), we have

V̇ ≤− µV +
˙̃
dTr0(t)d̃(t) + (µ+ 1)d̃Tr0(t)d̃(t)

− µ+ 2

2
d̃T(t)d̃(t)

≤− µV +
1

2

(
δ21 + ∥d̃(t)∥2

)
+

(µ+ 1)

2

(
δ20 + ∥d̃(t)∥2

)
− µ+ 2

2
∥d̃(t)∥2

=− µV +
1

2

(
δ21 + (µ+ 1)δ20

)
=− µV + δ

(30)

Based on the Comparison Theorem, the states of the sys-
tem and the estimation error of unknown time-variance dis-
turbance will eventually converge to the ellipsoid region
(24). Thus, Theorem 1 is proved. □

The parameter matrices designed in this paper are given

as

F = −


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 6 0 0
0 0 0 0 6 0
0 0 0 0 0 6

 ∗ 0.1, (31)

Z =

 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


.

(32)

Based on Lemma 4, V becomes

V =

[
Z
ZF

]

= −


−1 0 0 −1 0 0
0 −1 0 0 −1 0
0 0 −1 0 0 −1
0.2 0 0 0.6 0 0
0 0.2 0 0 0.6 0
0 0 0.2 0 0 0.6


(33)

which guarantees detV ̸= 0.
Then, we have

A0∼1 = −ZF 2V −1

=

 0.12 0 0 0.8 0 0
0 0.12 0 0 0.8 0
0 0 0.12 0 0 0.8


,

(34)

Φ
(
A0∼1

)
= V FV −1

= −


0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

0.12 0 0 0.8 0 0
0 0.12 0 0 0.8 0
0 0 0.12 0 0 0.8


.

(35)

Considering Lemma 3, it holds that(
Φ
(
A0∼1

)
+ 0.1I

)T
P
(
A0∼1

)
+ P

(
A0∼1

) (
Φ
(
A0∼1

)
+ 0.1I

)
= −0.001I.

(36)

From (36), we have

ΦT
(
A0∼1

)
P
(
A0∼1

)
+ P

(
A0∼1

)
Φ
(
A0∼1

)
≤ −0.2P.

(37)

Therefore, PL

(
A0∼1

)
can be derived as

PL

(
A0∼1

)
=


0.0119 0 0

0 0.0119 0
0 0 0.0119

0.0177 0 0
0 0.0177 0
0 0 0.0177


.

(38)
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4 Simulation

The validity of the developed control strategy (22)-(23)
will be demonstrated through numerical simulations.

The inertia matrix is J = diag(40, 40, 40)kg ·m2 ,
the desired angular velocity is specified as ωd =
[sin(t), 2 cos(t),− sin(t)]

T ∗ 0.001, and the initial errors in
attitude and angular velocity are qe0 = [0.3, 0.2,−0.1]

T and
ωe = [0, 0, 0]

T, respectively. The disturbances is d(t) =

[0.11 + 0.01 sin(t), 0.1− 0.01 sin(t), 0.09 + 0.01 cos(t)]
T,

and their pre-estimated values are chosen as
d̂0(t) = [0.1, 0.1, 0.1]

T.
Based on the above designed parameters and initial val-

ues, simulation results are depicted in Figs. 1-4, respectively.
According to Figs. 1-4, the control objective has been suc-
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Fig. 1: The trajectories of attitude tracking errors
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Fig. 2: The trajectories of angular velocity tracking errors

cessfully achieved.

5 Conclusion

A novel spacecraft attitude adaptive tracking control strat-
egy based on adaptive HOFA system approach is proposed
in this paper. The system stability and the boundedness of
the estimation errors for time-varying disturbances are guar-
anteed with the developed control strategy. It successfully

0 20 40 60 80 100

Time in seconds
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-3

-2

-1

0

1

2

1

2

3

Fig. 3: The trajectories of control torque
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-0.04

-0.02

0
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0.06

0.08

0.1

0.12

Fig. 4: The trajectories of estimation errors

addresses the impact of unknown time-varying disturbances
while compensating for system nonlinearities, fully demon-
strating its advantages.
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Robust Attitude Control of a Tilt Trirotor in VTOL mode
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Abstract: This paper introduces a novel Fast Nonsingular Terminal Sliding Mode with Integral (FNTSM-I) attitude controller
tailored for tilt trirotor aircraft operating in Vertical Take-off and Landing (VTOL) mode. The proposed controller incorporates
an integral component designed to guide the attitude error towards convergence within a finite timeframe, even in the presence of
wind disturbances. Furthermore, to mitigate the risk of gimbal lock during large angle flight maneuvers, the motion representation
of the tilt trirotor utilizes quaternions instead of Euler angles. Moreover, this study integrates angular tracking into the controller
architecture to ensure both rapid response times and precise control accuracy. Additionally, comprehensive guidelines for the
selection of controller parameters are provided. Simulation results demonstrate that the proposed controller significantly reduces
overshoot and enhances the tracking response speed of tilt trirotor Unmanned Aerial Vehicles (UAVs), thereby augmenting
overall system robustness.

Key Words: Attitude control, Finite time control, Tilt Trirotor, Sliding Mode Control (SMC), Unmanned Aerial Vehicles (UAV)

1 INTRODUCTION

The tilt-rotor Unmanned Aerial Vehicle (UAV) represents
a specialized aerial platform endowed with the capability to
seamlessly transition between high-speed cruise flight mode
and Vertical Take-off and Landing (VTOL) flight mode[1].
This unique versatility renders it indispensable across di-
verse domains such as offshore wind power inspection, post-
disaster search and rescue operations, remote traffic man-
agement, and other environments characterized by complex-
ity. Within these multifaceted environments, precise hover-
ing and secure control in VTOL mode are imperative, partic-
ularly amidst external disturbances stemming from airflow
dynamics, variable payloads, and uncertain system parame-
ters. The attitude controller constitutes the fundamental un-
derpinning of the position controller[2]. However, tilt-rotor
Unmanned Aerial Vehicles (UAVs) manifest heightened vul-
nerability to disturbances stemming from turbulent airflow,
a consequence of their aerodynamic profile, surpassing that
encountered by traditional multi-rotor UAVs. Consequently,
the imperative emerges to engineer an attitude tracking con-
troller endowed with rapid responsiveness, precision, and ro-
bustness tailored specifically for tilt-rotor UAVs operating in
Vertical Take-off and Landing (VTOL) flight mode.

The field of attitude control for tilt-rotor Unmanned
Aerial Vehicles (UAVs) has garnered considerable atten-
tion among researchers, resulting in the proposition of var-
ious control methodologies such as Proportional-Integral-
Derivative (PID)[3], Sliding Mode Control (SMC),H∞,
Linear Quadratic Regulator (LQR), state observer-based
algorithms[4], and optimal preview control techniques[5].
For instance, in the work [6], a novel tilt-rotor octocopter
is introduced, wherein both inner-loop attitude control and
outer-loop position control are established using PID con-
trollers, albeit without consideration for interference, lead-
ing to suboptimal performance in the presence of gust dis-
turbances. Conversely, the study in [2] presents a fixed-time
SMC strategy aimed at addressing the challenge of fixed-
time attitude stabilization for tilt-rotor UAVs amidst parame-
ter uncertainties and external disturbances. Nonetheless, the
utilization of Newton-Euler equations to model UAV rota-
tion introduces the issue of gimbal lock. Another innovative

approach, proposed in [7], is the Constraint-based Adaptive
Robust Prescribed Performance Control (CARPPC), which
exhibits promising performance during transitional states.
However, this method is yet to be optimized specifically
for attitude control objectives. Meanwhile, [8] advocates
for Model Predictive Control (MPC) in the context of a
tilt quadrotor, although its computational demands render it
impractical for applications necessitating high control fre-
quencies, thereby limiting its suitability for attitude control
tasks. In another study in [9], a Fuzzy Backstepping Con-
trol with an Extended-State Observer (FBS-ESO) is intro-
duced to mitigate the effects of internal and external dis-
turbances during full-flight operations, demonstrating effec-
tiveness against external wind disturbances but lacking op-
timization for convergence time. Lastly, [10] proposes a
fixed-time convergence attitude tracking controller employ-
ing actor-critic neural networks to estimate modeling uncer-
tainties. However, the varying nature of modeling uncer-
tainties across tasks remains a challenge yet to be fully ad-
dressed.

Sliding mode control (SMC) is widely recognized for
its robustness and rapid convergence rate, rendering it ex-
tensively applied across various domains including lin-
ear motor positioners[12], underwater vehicles[13], robot
manipulators[14], and quadrotor UAVs[15]. Traditional
SMC approaches asymptotically drive the system status to
stationary points, which, however, fall short of meeting the
high-speed response demands characteristic of tilt-trirotor
operation in VTOL mode. To address this limitation, ter-
minal sliding mode (TSM) control has been introduced, en-
suring that tracking error diminishes to zero within a finite
duration propelled by a nonlinear hyperplane on the slid-
ing surface[16]. Nonetheless, this method entails unbounded
control output when the tracking error hovers around zero.
To mitigate this deficiency, nonsingular terminal sliding
mode (NTSM) control has been devised[17]. However, the
abrupt variation in control gain of the discontinuous operator
at the reaching control component leads to pronounced chat-
tering, potentially jeopardizing the actuator and overriding
the response bandwidth. Consequently, a plethora of strate-
gies have been explored, including second-order sliding
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mode[18], adaptive SMC[19], and fractional-order sliding
mode[20]. Additionally, fast nonsingular terminal sliding
mode (FNTSM) control has been proposed to dampen chat-
tering by altering the switching mechanism in the reaching
control law, albeit at the expense of tracking precision. An
adaptive fast nonsingular terminal sliding mode (AFNTSM)
control, incorporating integral elements, has been developed
as a refinement; however, it falls short of completely elimi-
nating chattering[21].

Motivated by the aforementioned discussions, FNTSM-
I control is proposed to further improve control of [21] by
introducing angular velocity control and integral for extent
disturbance and uncertainties parameters. The contribution
of the developed method are showed as follow.

1) In this article, a fast nonsingular terminal sliding func-
tion with integral element is presented, which is able
to improve the attitude control error tracking accuracy
under the interference of wind.

2) Angular velocity as an important element is introduced
into attitude control to smooth system state, reducing
the chattering without compromising response speed
and control accuracy.

The rest of this article is organized as follows. Section 2
presents the kinematics model of tilt trirotor in VTOL mode.
The method of FNTSM-I controller is developed in Section
3, in which the stability analysis and control parameters are
discussed in details. In section 4, simulation results are pre-
sented. Finally, Section 5 concludes this article.

2 MODELING

Before the design of attitude controller for a tilt triro-
tor aircraft, two coordinate systems are defined as Fig.1,
where Eb = Ob{xb, yb, zb} denotes the body frame and
En = On{xn, yn, zn} denotes the navigation frame. A unit
quaternion q is used to present the rotation from navigation
frame to body frame, which is

q =

[
q0
qv

]
, (1)

while qv = [q1, q2, q3]
T and ‖q‖ = q20 + q21 + q22 + q23 = 1.

And q is differential to be as

q̇ =
1

2
q⊗

[
0

Ωb

]
, (2)

where Ωb ∈ R3 is angular velocity respect to body frame
and ⊗ is quaternion operation,

qa ⊗ qb =

[
qa,0qb,0 − qTa,vqb,v
qa,v × qb,v + qa,0qb,v + qb,0qa,v

]
, (3)

and both qa and qb are unit quaternions. q̇ is rewritten as{
q̇0 = − 1

2qTv Ωb

q̇v = 1
2

(
[qv]

×
+ q0I

)
Ωb

, (4)

where [b]
× is defined as

[b]
×

=

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 (5)

Fig. 1: Body frame and navigation frame.

and b = [b1, b2, b3]
T ∈ R3. So the kinematics model is

JΩ̇b = −Ωb × (JΩb) + M + d, (6)

where J = diag (Jxx, Jyy, Jzz) denotes the moment of in-
ertia of drone, M = [τx, τy, τz]

T and d = [d1, d2, d3]
T de-

notes the bounded interference.

3 CONTROL DESIGN

In this section, a FNTSM-I controller is designed to ensure
the tilt trirotor UAVs can track the desired attitude under the
wind disturbances with bound. Besides, the stability of the
controller has been proven by Lyapunov functions. Finally,
parameter tuning is discussed.

3.1 Attitude control
The desired attitude is defined as

qdes = q⊗ qe, (7)

where qe denotes the error of attitude. So the qe is

qe = q−1 ⊗ qdes. (8)

The differentials, q̇des and q̇e, are{
q̇des,0 = − 1

2qTdes,vΩdes

q̇des,v = 1
2

(
[qdes,v]

×
+ qdes,0I

)
Ωdes

(9)

and {
q̇e,0 = − 1

2qTe,vΩe

q̇e,v = 1
2

(
[qe,v]

×
+ qe,0I

)
Ωe

, (10)

where Ωdes = −αaqe,0qe,v denotes the desired angular re-
spect to body frame. And αa is a positive diagonal param-
eter matrix. And Eq = 2qe,0qe,v denotes the angle error
respect to body frame. Ωe denotes the angular error velocity
respect to body frame, which can calculated by

Ωe = Ωb −Ωdes. (11)

In addition, (6) can be rewritten as

JΩ̇e = J
(
Ω̇b − Ω̇des

)
= −Ωb × (JΩb) + M + d− JΩ̇des

. (12)
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A terminal sliding mode function S is define as

S = Ωe + α1Eq + α2

∫ t

t0

Υ(Eq, β0)dτ, (13)

where α1 and α2 are positive values, and β0 > 1 is the con-
troller parameter in sliding function. The sliding variable
satisfy S = [S1, S2, S3]

T ∈ R3 The function Υ (v, ρ) is
defined as

Υ(v, ρ) =

 |v1|ρ sgn (v1)
|v2|ρ sgn (v2)
|v3|ρ sgn (v3)

 , (14)

where v = [v1, v2, v3]
T ∈ R3 is any vector and ρ is nonneg-

ative.
S takes the derivative of time to be

Ṡ = Ω̇e + α1Ėq + α2Υ (Eq, β0) , (15)

where

Ėq = −qTe,vΩeqe,v + qe,0

(
[qe,v]

×
+ qe,0I3

)
Ωe. (16)

Based on the equivalent control input method, let the slid-
ing mode variable satisfy Ṡ = 0. And substituting (12) into
(15), removing the uncertain disturbance terms, the equiva-
lent control input τ0 is

τ0 = −J
[
α1Ėq + α2Υ(Eq, β0)

]
+Ωb × (JΩb) + JΩ̇des

. (17)

And the reaching control input is designed as

τ1 = −J [α3S + α4Υ(S, β1) +Dsgn (S)] , (18)

where α3 and α4 are positive values, and β1 ∈ (0, 1) is the
reaching law parameter. D is positive scalars, sgn(S) =

[sgn(S1), sgn(S2), sgn(S3), ]
T and |Dsgn (S)| ≥

∣∣J−1d∣∣.
Hence, the control input can be combined as

τ = τ0 + τ1. (19)

3.2 Stability Analysis
To improve the stability of FNTSM-I, a Lyapunov func-

tion is defined as
V1 =

1

2
STS, (20)

which the derivative of V1 is

V̇1 = ST Ṡ. (21)

Based on (13)-(19) and the system (12), the derivative of
sliding variable Ṡ is able to be reconstructed as

Ṡ = − [α3S + α4Υ(S, β1) +Dsgn (S)] + J−1d. (22)

Therefore, the derivative of V̇1 can be rewritten as

V̇1 = −ST
[
α3S + α4Υ(S, β1) +Dsgn (S)− J−1d

]
= −α3S

TS− α4S
TΥ(S, β1)− STDsgn (S) + STJ−1d

≤ −α3S
TS− α4S

TΥ(S, β1)−
∣∣STDsgn (S)

∣∣+
∣∣STJ−1d

∣∣
= −α3S

TS− α4S
TΥ(S, β1)−

∣∣ST ∣∣ (|Dsgn (S)| −
∣∣J−1d∣∣)

≤ −α3S
TS− α4S

TΥ(S, β1)

= −α3S
TS− α4 |S|T |S|β1

= −α3S
TS− α4

(
|S1|1+β1 + |S2|1+β1 + |S3|1+β1

)
,

(23)

where |Dsgn (S)| ≥
∣∣J−1d∣∣. According to [22],

V̇1 ≤ −α3S
TS− α4

(
|S1|2 + |S2|2 + |S3|2

) 1+β1
2

= −2α3V1 − α4 (2V1)
1+β1

2

= −2α3V1 − 2
1+β1

2 α4 (V1)
1+β1

2

.

(24)
For any initial condition V1 (S (0)) = V1 (0), the system
moves to sliding surface S (Ts) = 0 in a finite time by [23],
which is

Ts ≤
1

α3 (1− β1)
ln

1 +
α3V

1−β1
2

1 (0)

2
β1−1

2 α4

 . (25)

Furthermore, in order to certify that the attitude error will be
driven to zero in a finite time, a Lyapunov function is defined
as

V2 = qTe,vqe,v. (26)

Follow the rule of unit quaternion, V2 can be rewritten as

V2 = 1− q2e,0 (27)

So combining (10), the derivative of V2 is

V̇2 = −2qe,0 ˙qe,0
= qe,0q

T
e,vΩe

(28)

The sliding surface reaches zero after Ts, and at this point
S (Ts) = 0, so (13) can be rewritten as

Ωe = −α1Eq − α2

∫ t

t0

Υ(Eq, β0)dτ (29)

. Substituting it into V̇2 , the result is

V̇2 = −qe,0qTe,0
(
α1Eq + α2

∫ t
t0

Υ(Eq, β0)dτ
)

= −2α1q
2
e,0q

T
e,vqe,v − α2qe,0q

T
e,v

∫ t
t0

Υ(Eq, β0)dτ
.

(30)
A operator is extracted from (30), which is

εα2qe,0q
T
e,v

∫ t
t0

Υ(αsEq, β0)dτ

= εα2qe,0
∣∣qTe,v∣∣Ms

∫ t
t0

Υ(αsEq, β0)dτ

= εα2qe,0
∣∣qTe,v∣∣ ∫ tt0 |Υ(αsEq, β0)| dτ

≥ 0

. (31)

So the (30) can be written as

V̇2 ≤ −2α1q
2
e,0q

T
e,vqe,v

= −2α1q
2
e,0V2

= −%V
1
2
2

, (32)

where % = 2α1q
2
e,0V

1
2
2 > 0 when V2 6= 0. According to

[23], for any initial condition of qe,v (0) and Ω (0), qe,v
would approach to zeros at a finite time Tq , which is

Tq ≤
2V

1
2
2 (0)

%
. (33)

Therefore, the attitude error reaches to qTe = [1, 0, 0, 0]
T ,

which takes the finite time Tr = Ts + Tq for any command
attitude angle qc. In a word, system state approaches slid-
ing surface in finite time Tr driven, and the angular velocity
respect to body frame would also converge to command an-
gular Ωc, which drives attitude q to command attitude qc at
the same time. At this point, the proof is completed.
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3.3 Parameters Tuning
In addition to uncertain interferences and sensor noise, the

control performances of tilt trirotor in VTOL mode would
also be affected by the control parameters, so it is significant
to choose appropriate parameters. In this subsection, some
suggestions are given about the choice of control parameters.

3.3.1 Selection of α1, α2 and β0

α1, α2 and β0 effect the convergence rate of attitude error
to [1, 0, 0, 0]T . But they also lead to chattering near by point,
due to their large control output. However, due to their large
control output, they can also cause chatter near the stagna-
tion point. To balance the control rapidity and precision, they
are α1 = 8.8, α2 = 12.5 and β0 = 4.2.

3.3.2 Selection of α3, α4 and β1

According equation (25), it is showed that these param-
eters determine the reach time Ts in which sliding surface
value S converges to zero. Larger values α3 and α4 can re-
inforce the robust of system and β1 give it a stronger and
smoother output. Thus, they are α3 = 18, α4 = 15 and
β1 = 0.10 in our simulation.

3.3.3 Selection of αa and D

αa is a gain matrix that effects the system state conver-
gence rate. Different from roll and pitch, yaw control of tilt
trirotor has a lower activity bounds. Therefore, it is best to
choose a smaller yaw gain. And D is the upper bound of
uncertain disturbance, where the large one would also cause
chattering. At last, they are αa = diag(8.4, 8.4, 8.4) and
D = 0.032.

4 SIMULATION RESULTS

Simulations on MATLAB are carried out to certify the im-
provement of proposed attitude controller for tilt trirotor in
VOTL mode. Here, simulations of this article include atti-
tude tracking responses and hover accuracy experience un-
der wind interferences.

Comparisons include convention SMC and FNTSM,
where the reach control input of SMC is τi = −ki,1Si −
ki,2sig (Si) and FNTSM is τi = −ki,1Si − ki,2sigβi (Si).
And control parameters for detail are list in Table 1. On
the tracking response task, the roll, pitch and yaw are moved
from 0° to 10°, where the system state would transform from
quaternion to Euler angle to show characteristics in differ-
ent control method. The performance of attitude tracking
is show in Fig.2. It is obvious that convergence time of
FNTSM-I is much shorter than the other two controller in
this simulation.

To prove the disturbance rejection performance of the
three controllers mentioned, accidental wind disturbance is
introduced into the simulation in which their bounds are set
as 0.0225 N·m lasting from 1s to 2s. Their detailed per-
formances is shown in Fig.3. It is clear that the FNTSM-I
controller can quickly return its stable state after being dis-
turbed, benefiting from its integral element of sliding surface
and introducing the angular velocity into control input.
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Fig. 2: Attitude tracking responses to step reference.
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Fig. 3: Wind disturbance rejection of three control methods.

Table 1: Control Parameters in the Simulations.

Controllers Control parameters Roll Pitch Yaw

FNTSM-I

αa 8.4 8.4 8.4
α1 8.8 8.8 8.8
α2 12.5 12.5 12.5
α3 18 18 18
α4 15 15 15
β0 4.2 4.2 4.2
β1 0.10 0.10 0.10
D 0.032 0.032 0.032

FNTSM

β 1.3 1.3 1.3
λ 0.16 0.16 0.16
ρ 0.6 0.6 0.6
k1 1.2 1.2 1.2
k2 10 10 10

CSM
λ 50 50 50
k1 10 10 10
k2 0.8 0.8 0.8
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5 CONCLUSIONS

In this article, a FNTSM-I attitude controller is presented
for tilt trirotor in VTOL mode, in which the integral element
drives the attitude error to convergence point in a finite time
under the wind disturbance. And the motion description of
tilt trirotor is modelled by using quaternion instead of Eu-
ler angle avoiding the gimbal lock on large angle flight task.
Furthermore, an angular tracking is introduced into the con-
troller, which can achieve rapid response speed while ensur-
ing accuracy. In addition, some suggestions about selections
of controller parameters are submitted. Finally, the results
of simulation show that the proposed controller reduces the
overshoot and improves tracking response speed of tilt triro-
tor UAVs, enhancing system robustness.
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Abstract: This paper addresses the attitude fault-tolerant control of a rigid spacecraft subject to multiple actuator faults, uncertain
inertia, unknown disturbances, and unknown system state variables. A high-order fully-actuated (HOFA) model is derived based
on the state-space representation by using variable elimination method. The extended state observer (ESO) is employed to
estimate the unknown state variables and their derivatives, as well as the generalized disturbances, which include uncertain
inertia, external disturbances, and bias fault. The assumption that the system states are known, which is required in the HOFA
approach, is relaxed. The controller designed based on the HOFA approach ensures a linear closed-loop system and incorporates
ESO for compensating the total disturbances. The tracking error is guaranteed to converge to a small neighborhood of the origin
and the closed-loop system is proved to be bounded. Numerical simulations are conducted to demonstrate the effectiveness of
the proposed control law.

Key Words: Fault-tolerant control, High-order fully-actuated system approach, Attitude tracking, Extended state observer

1 Introduction

Attitude control of a spacecraft is one of the most funda-
mental issues, which are usually utilized in spacecraft oper-
ations such as on-orbit service, space circumnavigation mis-
sion, etc. Due to the severe operating environment, space-
crafts are often subjected to different external disturbances
and uncertainties [1]. The inertia of the spacecraft is uncer-
tain due to various factors, such as fuel consumption, pay-
load deployment, etc. Therefore, it is essential to enhance
the robustness of the controller. In response to this issue,
a sliding mode control strategy was presented in [2]. Fur-
thermore, an adaptive backstepping control scheme was pro-
posed for attitude tracking of non-rigid spacecraft by consid-
ering external disturbances and inertia uncertainties [3].

The aforementioned methods show their robustness in
dealing with external disturbances and uncertainties. How-
ever, they did not show their ability in addressing the fault-
tolerant control problem with actuators faults. During the
spacecraft operations, the occurrence of various actuator
faults is inevitable, which may result in potential satellite
damages and different active and passive fault-tolerant con-
trol strategies were proposed in [4–9]. In this paper, a passive
fault-tolerant control strategy was proposed due to its sim-
plicity in structure and excellent real-time performance [7].
Then, by combining with traditional control methods such
as backstepping control and sliding mode control, a consid-
erable number of fault-tolerant control strategies have been
proposed to cope with actuator faults.

However, the aforementioned methods are all based on
state-space models, which bring challenges when dealing
with nonlinear systems [2–10]. For instance, most of the
traditional control strategies can only achieve local stabil-
ity, but not global stability. Moreover, these methods are

This work was supported by the National Natural Science Foundation
of China (U21B6001, 62273121).

often utilized for some specific system forms or under some
certain conditions. Recently, a novel method named HOFA
system approach was proposed in [11], whose ability is to
construct a closed-loop linear system. It has demonstrated
significant strengths in addressing various aspects, such as
adaptive control [12], robust control [13], and optimal con-
trol [14].

Nevertheless, the HOFA system approach requires the
knowledge of the system states and higher-order states,
which may be uncertain in practical systems. Additionally,
it heavily relies on the actuators. It poses significant chal-
lenges for the application of this theory that actuators have
multiplicative or additive faults. Motivated by the aforemen-
tioned challenges, this paper proposes an extended-observer
HOFA system approach for fault-tolerant attitude tracking
control. The main contributions of this paper are summa-
rized as follows:

1) The utilization of ESO relaxed the assumption that the
system states are measurable.

2) The proposed fault-tolerant control strategy effectively
addresses actuator faults, disturbances, and uncertain
inertia.

3) The HOFA system approach based fault-tolerant con-
trol strategy offers standardized and parametric con-
troller structure, along with semi-global uniformly
bounded stability results.

Notations: ω
(g)
e,f represents the angular velocity of Of

relative to Oe expressed in Og . Rf
e indicates the rotation

matrix from Oe to Of . ∥ · ∥ denotes the 2-norm of vec-
tors and the induced 2-norm of matrices. The maximum
and minimum eigenvalues of a matrix are represented by
λmax(·) and λmin(·), respectively. S(f) stands for the anti-
symmetric matrix for any f ∈ R3. Re(·) is the real part
of complex numbers. diag[f1, f2, f3] denotes the diagonal
matrix with f1, f2, f3 as its diagonal elements. x(0∼n−1)

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China

1543  



denotes
[
x ẋ . . . x(n−1)

]T
. For a set of matrices Aj ∈

Rm×m, j = 0, 1, . . . , n−1, we use the following definitions:

A0∼n−1 =
[
A0 A1 · · ·An−1

]
, Ā0∼n−1 = AT

0∼n−1,

Φ(A0∼n−1) =


0 I

. . .
I

−A0 −A1 . . . −An−1

 ,

Ψ(A0∼n−1) =


−An−1 I

...
. . .

−A1 I
−A0 0

 , Ī =

 1

. .
.

1

 .
2 Problem Formulation and Preliminaries

In order to describe the relative attitude of a spacecraft, we
define the Earth-Centered Inertial (ECI) frame as Oi. The
body frame, denoted as Ob, is established by placing the ori-
gin at the center of mass of the spacecraft. Furthermore, the
reference frame Or is defined with its origin and orientation
specified based on the desired attitude of the spacecraft.

2.1 Attitude Dynamics for Rigid Spacecraft
The relative attitude between Ob and Or denoted in Ob

can be represented by the modified Rodrigues parameters
(MRPs) σ =

[
σ1 σ2 σ3

]T
. According to [15], the rel-

ative attitude dynamics are expressed as{
σ̇ = G(σ)ω,

Jω̇ + Crω + nr = τ + τd,
(1)

where ω = ω
(b)
i,b −Rb

rω
(r)
i,r represents the relative angular ve-

locity with rotation matrix provided by Rb
r = I3 − 4(1 −

σTσ)S(σ)/(1 + σTσ)2 + 8S2(σ)/(1 + σTσ)2, G(σ) =
1
4 [(1− σTσ)I3 +2S(σ) + 2σσT ], J denotes the inertia ma-
trix of the spacecraft, Cr = JS(Rb

rω
(r)
i,r ) + S(Rb

rω
(r)
i,r )J −

S(J(ω + Rb
rω

(r)
i,r )) is an anti-symmetric matrix, nr =

S(Rb
rω

(r)
i,r )JR

b
rω

(r)
i,r+JR

b
rω̇

(r)
i,r represents a nonlinear vector,

and the control torque is denoted as τ while the disturbance
torque is represented as τd.

Considering the actuators faults, τ in (1) is represented as

τ = ρv(t) + δ(t), (2)

where ρ = diag[ρ1, ρ2, ρ3] ∈ R3×3 with 0 < ρi ≤ 1(i =
1, 2, 3) is the control effectiveness matrix, v(t) ∈ R3 repre-
sents the ideal control input to be designed and δ(t) ∈ R3 is
the bias fault.

Considering the practical situation, the spacecraft subjects
to the following assumptions.

Assumption 1. The angular velocity ω is unmeasurable.

MRPs possess the following proposition [16], making it
relatively easy to obtain the HOFA model.

Proposition 1. The matrix G(σ) is non-singular, which sat-
isfies

GT (σ)G(σ) =
1

16
(1 + σTσ)2I3,

and G−1(σ) is

G−1(σ) =
16GT (σ)

(1 + σTσ)2
.

2.2 HOFA Model
The state space model (1) can be converted into the HOFA

model through taking multiple derivatives [11]. Based on the
first equation in (1), ω can be represented as

ω = G−1(σ)σ̇. (3)

By differentiating equation (3) with respect to time and tak-
ing into account the second equation in (1), we can obtain
the following equation

ω̇ =
dG−1(σ)

dt
σ̇ +G−1(σ)σ̈

= J−1(−Crω − nr + τ + τd),

(4)

where

dG−1(σ)

dt
=

4

(1 + σTσ)2
[−2σT σ̇I3 − 2S(σ̇) + σ̇σT + σσ̇T ]

− 64

(1 + σTσ)3
GT (σ)(σT σ̇).

Furthermore, the attitude dynamics (1) can be transformed
into the following second-order model

σ̈ = F (σ(0∼1)(t)) +G(σ(t))J−1(τ + τd) (5)

where

F (σ(0∼1)(t)) =− [G(σ)
dG−1(σ)

dt
+G(σ)J−1CrG

−1(σ)]σ̇

−G(σ)J−1nr.

Assumption 2. The J can be decomposed as J = J0 +
∆J , where J0 is the known nominal value, and ∆J is the
bounded uncertainty.

The inertia matrix J is invertible and the subsequent equa-
tion holds

J−1 = (J0 +∆J)−1 = J−1
0 +∆J̃ (6)

where ∆J̃ = −J−1
0 ∆J(I3 + J−1

0 ∆J)−1J−1
0 . Consider-

ing the uncertainty in the inertia matrix and bias fault in the
actuators, (5) can be represented as

σ̈ = −G(σ)J−1
0 nr0 + F̄ (σ(0∼1)(t), τd, δ(t)) +G1(σ)ρv(t)

(7)
where

nr0 = S(Rb
rω

(r)
i,r )J0R

b
rω

(r)
i,r + J0R

b
rω̇

(r)
i,r ,

F̄ (σ(0∼1)(t), τd, δ(t)) = S(Rb
rω

(r)
i,r )∆JR

b
rω

(r)
i,r +∆JRb

rω̇
(r)
i,r

−G(σ)∆J̃nr +G[J−1
0 δ(t) + ∆J̃(ρv(t) + δ(t))]

−
[
G(σ)

dG−1(σ)

dt
+G(σ)J−1CrG

−1(σ)

]
σ̇ +G(σ)J−1τd,

and G1(σ) = G(σ)J−1
0 . F̄ is the generalized disturbance,

encompassing all unmeasurable variables, which fulfills the
following assumption.
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Assumption 3. [17] The generalized disturbance F̄ ∈ C1

satisfies ∥ ˙̄F∥ ≤ ḡ, where ḡ is a positive constant.

Taking into account Proposition 1 and reversibility of the
matrix J0, G1(σ) is invertible. Hence, according to the defi-
nition in [11], it can be concluded that the system described
by equation (7) is fully actuated.

Before presenting the main results, it is necessary to pro-
vide the following Lemmas.

Lemma 1. [18] Let A ∈ Rn×n satisfy

Re(λj(A)) ≤ −γ
2
, j = 1, 2, . . . , n (8)

where γ > 0, then there exits a positive definite matrix P ∈
Rn×n such that

ATP + PA ≤ −γP. (9)

Lemma 2. [18] For any µ, µ∗ > 0, there exist a series of
Aj , A

∗
j ∈ Rn×n, j = 0, 1, . . . , n− 1, such that

Re(λj(Φ(A0∼n−1))) ≤ −µ
2
, (10)

Re(λj(Ψ(A∗
0∼n−1))) ≤ −µ

∗

2
. (11)

3 Fault-tolerant Control Design Based on ESO

3.1 ESO Design
In this section, the fault-tolerant control strategy based on

an ESO is introduced.
Denote {

z1 = σ,

z2 = σ̇.
(12)

Then, (7) can be reformulated in the following form
ż1 = z2,

ż2 = −G(z1)J−1
0 nr0 + F̄ (z(0∼1)(t), τd, δ(t))

+G1(z1)ρv(t).

(13)

By introducing the ESO design technique, we define z3 =
F̄ (z0∼1(t), τd, δ(t)) and ż3 = g(t). Based on Assumption 3,
g(t) is unknown and bounded. Hence, (13) can be rewritten
as 

ż1 = z2,

ż2 = −G(z1)J−1
0 nr0 + z3 +G1(z1)ρv(t),

ż3 = g(t).

(14)

Let e1 = ẑ1 − z1, and the ESO can be designed as
˙̂z1 = ẑ2 −A∗

2e1,
˙̂z2 = −G(z1)J−1

0 nr0 + ẑ3 +G1(z1)ρv(t)−A∗
1e1,

˙̂z3 = −A∗
0e1,

(15)
where ẑ1, ẑ2 and ẑ3 are the estimations of z1, z2 and z3,
respectively. A∗

0, A
∗
1, A

∗
2 ∈ R3×3 are the matrices to

be designed. Defining the observer error vector as e =[
eT1 eT2 eT3

]T
, where e2 = ẑ2 − z2 and e3 = ẑ3 − z3.

Lemma 3. [19] Consider the system (7) with Assumptions
2-3. Let µ∗ be an arbitrarily positive number and A∗

j , j =
0, 1, 2 be a series of matrices satisfying (11), there exists a
positive definite matrix P ∗(A∗

0∼2) satisfying (9). Therefore,
ESO (15) for the uncertain system (7) ensures that the ob-
servation errors converge to an ellipsoid of the origin as fol-
lows:

Θξ,κ(0) =

{
e|eTP ∗(A∗

0∼2)e ≤
ξ

κ

}
(16)

where ξ and κ can be appropriately designed to guarantee
that the errors are small enough.

3.2 Control Law Design
In accordance with the HOFA system approach and the

above ESO (15), the controller can be formulated as follows.
Let µ be a positive number and A0, A1 ∈ R3×3 be the

matrices that satisfy (10), then the control law is given by
v(t) = −G−1

1 (σ)(v0(t) + v1(t)),

v0(t) = A1ẑ2 +A0ẑ1 −G(σ)J−1
0 nr0 + ẑ3,

v1(t) =
1
4ϵP

T
L (A0∼1)ẑ

(0∼1).

(17)

where the nonlinear control law v0(t) converts the high-
order nonlinear system into a linear time-invariant system,
while the control law v1(t) counteracts the effects of faults.
It is reasonably assumed that the control law is bounded.

Theorem 1. For the system (7), the control law (17) with
the ESO (15) ensures that the states σ(0∼1) converge to an
ellipsoid of the origin as follows:

Θϵm,µ =

{
σ(0∼1)|(σ(0∼1))TP (A0∼1)σ

(0∼1) ≤ 2
ϵm
µ

}
,

(18)
where ϵm and µ are provided in the subsequent proof.

Proof. For the HOFA model (7), the controller (17) pro-
duces the following linear system

σ̈ +A1σ̇ +A0σ = ω − v1(t)−G1(σ)(I3 − ρ)v(t), (19)

where ω = −A1e2 − A0e1 − e3. The state-space form of
(19) is

σ̇(0∼1) =Φ(A0∼1)σ
(0∼1)

+

[
0

ω − v1(t)−G1(σ)(I3 − ρ)v(t)

] (20)

where Φ(A0∼1) satisfies (10).
Then, v1(t) can be rewritten as

v1(t) =
1

4ϵ
PT
L (A0∼1)ẑ

(0∼1) − 1

4ϵ
PT
L (A0∼1)σ

(0∼1)

+
1

4ϵ
PT
L (A0∼1)σ

(0∼1)

=
1

4ϵ
PT
L (A0∼1)

[
e1
e2

]
+

1

4ϵ
PT
L (A0∼1)σ

(0∼1).

(21)

Furthermore, (20) can be expressed as

σ̇(0∼1) = Φ(A0∼1)σ
(0∼1) +

[
0
ψ

]
, (22)
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where

ψ = ωn−G1(σ)(I3−ρ)v(t)−
1

4ϵ
PT
L (A0∼1)σ

(0∼1), (23)

with

ωn = ω − 1

4ϵ
PT
L (A0∼1)

[
e1
e2

]
. (24)

ωn denotes the effect of observation error on the system,
which is assumed to be bounded.

According to Lemma 1, there exists a positive matrix
P (A0∼1) satisfying (9). Consider the following Lyapunov
function:

V =
1

2
(σ(0∼1))TP (A0∼1)σ

(0∼1). (25)

We define

P = P (A0∼1),Φ = Φ(A0∼1), G1 = G1(σ),

PL = PL(A0∼1) = P

[
03
I3

]
,

The time-derivative of V is

V̇ =
1

2
(σ̇(0∼1))TPσ(0∼1) +

1

2
(σ(0∼1))TPσ̇(0∼1)

=
1

2
(Φσ(0∼1) +

[
0
ψ

]
)TPσ(0∼1)

+
1

2
(σ(0∼1))TP (Φσ(0∼1) +

[
0
ψ

]
)

=
1

2
(σ(0∼1))T (ΦTP + PΦ)σ(0∼1)

+ (σ(0∼1))TP

[
0
ψ

]
≤− µ

2
(σ(0∼1))TPσ(0∼1) + (σ(0∼1))TP

[
0
ψ

]
=− µV + V1

(26)

where

V1 = (σ(0∼1))TP

[
0
ψ

]
= (σ(0∼1))TPLψ. (27)

From equations (17) and (23), we have

V1 =(σ(0∼1))TPL

[ωn −G1(I3 − ρ)v(t)− 1

4ϵ
PT
L σ

(0∼1)]

=− 1

4ϵ
[(σ(0∼1))TPLP

T
L σ

(0∼1)]

+ (σ(0∼1))TPL[ωn −G1(I3 − ρ)v(t)]

≤− 1

4ϵ
∥PT

L σ
(0∼1)∥2

+ ∥ωn −G1(I3 − ρ)v(t)∥∥PT
L σ

(0∼1)∥.

(28)

Taking into account the boundedness of ωn, σ, and the con-
trol law v, there exists a positive constant vm such that the
following inequality holds

∥ωn −G1(I3 − ρ)v(t)∥ ≤ vm. (29)

Thus, the inequality (28) is represented as

V1 ≤− 1

4ϵ
∥PT

L σ
(0∼1)∥2 + vm∥PT

L σ
(0∼1)∥

≤ϵv2m = ϵm

(30)

The combination of (26) and (30) leads to the following ex-
pression

V̇ ≤ −µV + ϵm. (31)

Consequently, according to the comparison lemma, it is con-
cluded that

V ≤V (0)e−µt +
ϵm
µ

(1− e−µt)

=

[
V (0)− ϵm

µ

]
e−µt +

ϵm
µ

→ϵm
µ

(t→ ∞).

(32)

Hence, the state σ(0∼1) will ultimately converge to the el-
lipsoid Θϵm,µ. It is evident that by appropriately choosing
parameters ϵ and µ, the upper bound of the overall errors are
minimized. The proof is completed.

3.3 Parametric Solutions of A0∼n−1 and A∗
0∼n−1

For HOFA closed-loop system, appropriate parameter ma-
trices are designed based on different circumstances. The
parametric solutions of A0∼n−1 and A∗

0∼n−1 are given in
the following.

Lemma 4. [11, 20] For a given matrix F ∈ Rnm×nm, ap-
propriate choice of a matrix A0∼n−1 and a nonsingular ma-
trix V ∈ Rnm×nm satisfy the following conditions

Φ(A0∼n−1) = V FV −1,

A0∼n−1 = −ZFnV −1(Z,F ),

V = V (Z,F ) =


Z
ZF

...
ZFn−1


(33)

where Z ∈ Rm×nm is an arbitrarily designed matrix satis-
fying det V (Z,F ) ̸= 0.

Lemma 5. [19] For a given matrix F̄ ∈ Rnm×nm, appro-
priate choice of a matrix Ā∗

0∼n−1 and a nonsingular matrix
V̄ ∈ Rnm×nm satisfy the following conditions

Ψ(A∗
0∼n−1) = V̄ F̄ V̄ −1,

Ā∗
0∼n−1 = −(Ī V̄ )F̄nZ̄,

V̄ = V̄ (Z̄, F̄ ) = Ī
[
Z̄ F̄ Z̄ · · · F̄n−1Z̄

]−1

(34)

where Z̄ ∈ Rnm×m is an arbitrarily designed matrix satis-
fying det

[
Z̄ F̄ Z̄ · · · F̄n−1Z̄

]
̸= 0.

4 Simulation Studies

In this section, a numerical simulation example is pro-
vided to show the effectiveness of the proposed fault-tolerant
control strategy. The simulation is conducted under similar
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conditions as described in [19]. The nominal value of the
spacecraft’s inertia matrix is given as:

J0 =

2500 50 30
50 1500 40
30 40 3500

 kg ·m2

and the corresponding actual value is given as J = 1.1J0.
The desired attitude is set as

(σ
(r)
i,r )

T =
[
0 0 0

]
, (ω

(r)
i,r )

T =
[
0 0 ω0

]
where ω0 = 0.00117rad/s represents the orbital angular
velocity. For the periodic influences from other objects [21],
the spacecraft subjects to an external disturbance described
as:

τd = b0 + b1sin(ω0t) + b2cos(ω0t)

where
(b0)

T =
[
0.09 0.06 0.07

]
,

(b1)
T =

[
−0.08 −0.06 0.05

]
,

(b2)
T =

[
0.03 −0.02 0.01

]
.

The relative attitude and relative angular velocity are given
as:

(σ(0))T =
[
−0.3152 0.4516 0.3461

]
,

(ω(0))T =
[
0.02 −0.01 0.02

]
rad/s.

At t = 30s , the actuators failure occurs with the following
form

τ = diag[ρ1, ρ2, ρ3]v(t) + δ(t),

ρ1 =

{
1, t ≤ 30,

0.6 + 0.4e−t+30, t > 30,

ρ2 =

{
1, t ≤ 30,

0.7 + 0.3e−t+30, t > 30,

ρ3 =

{
1, t ≤ 30,

0.5 + 0.5e−t+30, t > 30,

δ(t) =

6 + 6e−t+30sin(10t)
5 + 5e−t+30sin(15t)
3 + 3e−t+30sin(20t)

 .
The parameter matrices A0∼1 of the fault-tolerant controller
(17) are given as

A0 = 0.0002I3, A1 = 0.03I3,

and the parameter matrices A∗
0∼2 of the ESO (15) are given

as

A∗
0 = 6× 10−5I3, A

∗
1 = 0.0047I3, A

∗
2 = 0.12I3.

The simulation results are presented in Figs. 1-5. The ob-
server errors are defined as ei =

[
ei(1) ei(2) ei(3)

]T
,

i = 1, 2, 3. The time responses of the ESO (15) errors are
shown in Fig. 1. The states σ, σ̇ and the generalized distur-
bance F̄ are well estimated. The designed control law en-
ables that the relative attitude and relative angular velocity
converge to zero, as presented in Figs. 2 and 3, respectively.
Figs. 4 and 5 illustrate time responses of the control torque
and the ideal control inputs, respectively. At the beginning,
control torque of relatively large value drives the spacecraft
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Fig. 1: Time responses of observation errors e1, e2, e3.
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Fig. 2: Time responses of relative attitude.
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Fig. 3: Time responses of relative angular velocity.

towards the desired attitude. Afterwards, the magnitude of
the control torque rapidly decays to a small value to main-
tain the spacecraft attitude. The actuators fail at t = 30s,
resulting in small jump in the control torque. In order to
compensate the effect of the generalized disturbance F̄ , the
ideal control inputs do not converge to zero, as shown in Fig.
5. The simulation results demonstrate that the proposed con-
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Fig. 5: Time responses of ideal control inputs.

trol scheme is able to handle imprecise inertia parameters,
actuator failures, external disturbance and unknown state in-
formation σ̇.

5 Conclusion

In this paper, a fault-tolerant control scheme is proposed to
effectively address the challenges posed by spacecraft with
uncertain inertia, external disturbances, actuator faults, and
unknown state information. By employing the ESO, the
assumption that the system states should be known is re-
laxed. The nonlinearity is compensated by the proposed con-
trol strategy. The designed fault-tolerant controller exhibits
excellent capability in handling actuator faults. By appro-
priately selecting parameter matrices, the linear closed-loop
system achieves satisfactory performance, which is a signif-
icant advantage of the HOFA system approach. The numer-
ical simulation results show the effectiveness of the control
scheme.
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Fully Actuated Control for Directional Accuracy in Multiaxis
Antennas utilizing Sliding Mode and STESO Observers
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Abstract: This study presents an innovative control strategy designed to substantially improve directional accuracy in multiaxis
antenna systems. It achieves this by integrating sliding mode control (SMC) with fully actuated (FA) theory, further augmented
by a super twisting extended state observer (STESO). Initially, a control-oriented dynamics model was developed, serving as
a crucial foundation for the design and execution of the algorithm. This model, derived through an analytical methodology
employing both general and quasi-coordinate Lagrangian formulations, accurately defines the kinematics and dynamics that
are unique to multiaxis antennas. Subsequently, FA theory was applied to transform the dynamic model into a fully actuated
configuration, streamlining the control of antenna movements and avoiding the complexities inherent to manipulating the original
system. The subsequent integration of SMC with this transformed model, complemented by the deployment of a STESO,
effectively mitigates uncertainties in the system model, thereby significantly enhancing control precision. Simulation experiments
conducted using a multiaxis antenna system demonstrate the efficacy of the proposed method and show a substantial improvement
in directional accuracy.

Key Words: Fully Actuated Theory, Sliding Mode Control, Super Twisting Extended State Observer, Control-Oriented Dynam-
ics Model, Multiaxis Antennas, Directional Accuracy

1 Introduction

In the rapidly evolving field of wireless communication
and radar systems, precise control over the direction of an-
tenna beams is essential [1]. Multiaxis antennas, known for
their enhanced maneuverability and exceptional targeting ac-
curacy, play a critical role in applications such as satellite
communication, air traffic control, and mobile telephony,
where precise positioning and orientation directly impact
performance and reliability [2–4].

However, the inherent complexities of multiaxis systems,
coupled with external disturbances and system uncertain-
ties, pose significant challenges to achieving optimal direc-
tional accuracy. Extensive research has been conducted to
develop advanced control strategies capable of overcoming
these challenges. For instance, Kang et al. demonstrated the
use of passive magnetic pointing for CubeSats, simplifying
orientation control by aligning with Earth’s magnetic field
[5, 6]. While cost-effective and reducing complexity, this
method lacks the dynamic responsiveness required in non-
static magnetic environments, highlighting a gap in adapt-
ability under variable conditions. Mahbubul Alam’s devel-
opment of an automated satellite tracking system ensures
precise alignment with satellites [7]. However, this system’s
reliance on static predefined parameters makes it less effec-
tive in dealing with real-time dynamic disturbances or un-
foreseen changes in satellite orientation. Hadi Aliakbarian’s
digitally beam-steerable antenna array improves error rates
and power efficiency [8], but the complexity and cost of the
hardware limit its widespread application and adaptability in
economically constrained projects. Lita’s control system us-
ing spherical coordinates for accurate antenna orientation is
user-friendly [9], yet it struggles with rapid, real-time adjust-
ments necessary in fast-changing operational environments.
Finally, Ahn’s employment of reinforcement learning to op-

This work is supported by National Natural Science Foundation
(NNSF) of China under Grant 62173107.

timize satellite antenna profiles, although adaptive, requires
significant computational resources and extensive data, ren-
dering it impractical in limited-resource settings or where
quick deployment is critical [10].

Recognizing these gaps, the study introduces a novel
control strategy that leverages the high-order fully actuated
(HOFA) theory, initially proposed by Duan [11–13]. HOFA
simplifies the control of complex systems by transforming
underactuated systems into a linear form, allowing for strate-
gic pole placement to ensure system stability—an improve-
ment over traditional methods [14–16]. The approach in-
tegrates the precision of fully actuated theory with the re-
silience of sliding mode control (SMC) and the robustness of
a super twisting extended state observer (STESO), address-
ing both the nonlinear dynamics and external disturbances
effectively. Key contributions of the research include the de-
velopment of a control-oriented dynamics model tailored for
multiaxis antennas and the innovative application of STESO
for enhanced state estimation and disturbance rejection. The
results from simulation experiments suggest significant im-
provements in directional accuracy, potentially influencing
future developments in the field and enhancing the robust-
ness and reliability of communication networks.

2 Kinematics and Dynamics of the Multiaxis An-
tenna System

This section describes the kinematic and dynamic frame-
work of the multiaxis antenna system as shown in Fig.1.
Simplifying assumptions are made by neglecting the effects
of elastic deformation and gravity on the structure. The ar-
chitecture of the system comprises a main satellite body, de-
noted as B0, which is flanked by a pair of solar wings, each
connected through a rotary joint with a single degree of free-
dom. The structure also includes two serially connected seg-
ments of a mechanical arm, terminating in a large antenna.
Each component, indexed by i, is assumed to be a rigid body,
where Bi represents the ith body link. The kinematic and
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dynamic equations of motion are established in relation to
a local coordinate system Ci affixed to each segment, en-
suring precise control over the directional movement of the
antenna.

Fig. 1: Multiaxis Antenna System

The kinetic energy for the ith component is expressed as
follows

Ti =
1

2

[
vi

ωi

]T [
miI Pi

P T
i Ii

] [
vi

ωi

]
(1)

where i = 0, 1, . . . , N. Ii and Pi represent the 3 × 3 iner-
tia tensor and the first moment of mass about its body fixed
frame Ci, respectively. The term mi denotes the mass, and
I is the 3 × 3 identity matrix. The variables vi and ωi are
the linear and angular velocities with respect to the inertial
frame, and are represented as vectors.

The velocity constraint between the ith component Bi and
Bi−1 is given by the following[
vi

ωi

]
=

[
0

q̇izi

]
+

[
rotz (qi) 0

0 rotz (qi)

] [
Ci−1 Ci−1r̃

T
i−1

0 Ci−1

] [
vi−1

ωi−1

]
(2)

and

rotz (qi) =

 cos (qi) sin (qi) 0
− sin (qi) cos (qi) 0

0 0 1

 (3)

where zi is the unit z-dimensional vector of the frame Ci

and qi is the corresponding joint angle. Ci−1 is the rotation
matrix with respect to the frame Ci−1, and r̃i is the 3 × 3
skew-symmetric matrix associated with the vector ri.

Define Si and Ri (qi) as

Si =

[
0 0
0 diag(0, 0, 1)

]

Ri (qi) =

[
rotz (qi) 0

0 rotz (qi)

] [
Ci−1 Ci−1r̃

T
i−1

0 Ci−1

]
(4)

where diag(0, 0, 1) denotes the diagonal matrix.
For the kth component, the kinematic equations of motion

can be assembled as follows[
vk

ωk

]
=

(
k∏

i=1

Ri (qi)

)[
v0

ω0

]
+

k−1∑
j=1

 k∏
i=j+1

Ri (qi)

Sj q̇j + Sk q̇k

(5)

Consequently, all of the intermediate terms can be com-
bined and written in a more compact form as follows

Φk0 (q) =

(
k∏

i=1

Ri (qi)

)

Φkj (q) =

k∏
i=j+1

Ri (qi)Sj j = 1, 2, . . . , k − 1

Φkk (q) = Sk (6)

Thus, the equation above can be rewritten as follows[
vk

ωk

]
= Φk0 (q)

[
v0

ω0

]
+
[

Φk1 (q) Φk2 (q) . . . Φkk (q)
]
q̇1∼k

(7)
where q̇1∼k = [q̇1, q̇2, . . . , q̇k]

T.
Therefore, the total kinetic energy of the multiaxis antenna

system is as follows

T = T0 +

n∑
i=1

Ti

=
1

2

[
v0

ω0

]T

M0

[
v0

ω0

]

+
1

2

n∑
i=1

v0

ω0

q̇i

T

Mi (qi)

v0

ω0

q̇i


=

v0

ω0

q̇i

T

M (q)

v0

ω0

q̇i



(8)

where M(q) is the generalized inertia matrix,

M(q)) =
1

2


M0 +

∑n
i=1M00 (qi) M0q (q1) M0q (q2) · · · M0q (qn)

Mq0 (q1) Mqq (q1) 0 · · · 0
Mq0 (q2) 0 Mqq (q2) · · · 0

...
...

...
. . .

...
Mq0 (qn) 0 0 · · · Mqq (qn)


It is important to note that the angular velocity ω0 of the

base is not considered a generalized coordinate because the
attitude angle of the base cannot be directly obtained by in-
tegrating the angular velocity. As a result, employing the
classical Lagrangian formulation, which is based on gener-
alized coordinates, to directly derive the rotational motion of
the multiaxis antenna base, is particularly challenging. To
address this challenge, a quasi-Lagrangian approach is pre-
ferred for describing the base motion, since it allows for a
more manageable and direct representation of the system’s
dynamics.

The governing equations of motion derived from this for-
mulation can be represented as follows

d

dt

∂T

∂q̇
− ∂T

∂q
= τ (9)

where τ represents the generalized forces acting on the sys-
tem. Additionally, for the rotational motion of the base, the
modified equation takes the following form(

d

dt
+ ω̃0

)
∂T

∂ω
+

[
0

ṽ0
∂T
∂v0

]
=

[
F0

T0

]
(10)

where ω̃0 and ṽ0 denote the skew-symmetric matrices cor-
responding to the angular and linear velocities of the base,
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respectively, and F0 and T0 represent the external forces and
torques, respectively.

The dynamics model of the multiaxis antenna system can
be succinctly represented by the following equation

Mρ̇+
dM

dt
ρ+ diag (ω̃0, ω̃0)

[
M̃0

0

]
ρ

− 1

2


0

ρT ∂M
∂q1

ρ

ρT ∂M
∂q2

ρ

. . .


T

+

 0
ṽ0

[
I 0

]
M0ρ

0

 = T

(11)

where ρ = [v0,ω0, q]
T describes the state variables of the

system, including the linear and angular velocities of the
base and the joint positions. The matrix M̃0 = [M00,Mq0]
represents the inertial properties. The total forces and
torques acting on the system, T , are represented as T =
[F0,T0, τ1, τ2, . . . , τn]

T, and τi denotes the joint torque.
To facilitate the derivation of the control method, the com-

pact form of the dynamics model is expressed as follows

H(q)ρ̇+C (v0,ω0, q, q̇) = T (12)

To effectively distinguish between the dynamics of the
base and the antennas within the system, the comprehensive
variable ρ may be segregated into xb and q, where xb rep-
resents the position and attitude of the base and is character-
ized by the velocity and angular velocity vectors . By incor-
porating the external forces and moments acting on the an-
tennas and following a partitioned approach, Equation (29)
can be further delineated as follows[

Hb Hbm

HT
bm Hm

] [
ẍb

q̈

]
+

[
cb
cm

]
=

[
Fb

τ

]
+

[
JT
b

JT
m

]
Fh, (13)

Subsequently, this can be compactly expressed as follows

H∗q̈ + c∗ = τ + J∗
b Fb + J∗

hFh, (14)

where the modified terms H∗, c∗, J∗
b , and J∗

h describe the
dynamic interrelations and external influences on the system,
thereby streamlining the dynamics model for more efficient
analysis and control strategy development.

For the purposes of tracking control and formulating an
effective control strategy, an error dynamics equation is piv-
otal. By defining the tracking error eq as the difference be-
tween the reference trajectory qr and the current position q,
we quantify the deviation of the control objective from the
current state of the system. Subsequently, by modeling the
acceleration of this error ëq , we determine the response of
the system to external forces and control inputs, thereby fa-
cilitating a deeper understanding of the dynamics of the sys-
tem and aiding in the development of robust control laws.
The error dynamics equation can be established as follows

eq = qr − q (15)

ëq = q̈r − (τ + J∗
b Fb + J∗

hFh − c∗)H∗−1

(16)

where eq denotes the tracking error, qr is the reference tra-
jectory, q is the current state, q̈r is the acceleration of the

reference trajectory, τ is the control input, J∗
b Fb and J∗

hFh

account for the external forces acting on the system, c∗ de-
scribes the inherent dynamic properties of the system, and
H∗−1

is the inverse of the modified system inertia matrix.
This formulation provides a solid foundation for the deriva-
tion and implementation of tracking control algorithms.
3 Main Results

3.1 Traditional Fully Actuated Control Approach
The traditional fully actuated control approach leverages

a strategy of element reduction and order escalation, effec-
tively converting a lower-order underactuated system into a
higher-order fully actuated system. This transformation mit-
igates the nonlinear dynamics inherent to the system, pro-
ducing a linear, fully actuated structure amenable to stabi-
lization control via pole placement techniques. As outlined
in the ”Kinematics and Dynamics of the Multiaxis Antenna
System” section, the model developed herein has been con-
ceptualized as a fully actuated system, thereby permitting the
utilization of this theoretical framework to negate the nonlin-
ear components within each control channel.

Drawing from the foundational Equations (15) and (16),
the resulting controllers can be meticulously designed as fol-
lows

τA = (−J∗
b Fb − J∗

hFh + c∗)+H∗q̈r+H∗k0q+H∗k1q̇
(17)

where k0 and k1 are instrumental in modulating the pole
positions for both the position control channel and the syn-
chronization control channel. This preceding segment is ap-
propriately tailored to abate known and nonlinear aspects of
the model, thereby facilitating an optimal pole configuration
setup. The stability and response characteristics of a control
system are fundamentally influenced by the locations of its
system poles. This capability to modify pole positions by al-
tering k0 and k1 provides a powerful tool for designing and
optimizing control systems, ensuring that they achieve the
desired level of performance across a wide range of operat-
ing conditions.

3.2 Fully Actuated Sliding Mode Control Approach
By leveraging the principles of FA control, the system is

transformed into an FA linear system. This transformation
underscores the adaptability and effectiveness of FA control
in achieving precise pole placement for system stabilization.
However, the application of control theory to FA systems
may encounter challenges, such as an excessively high sys-
tem order, which could exacerbate model uncertainty and
amplify noise levels. To mitigate these issues, SMC provides
a viable solution to reduce the order of a system, thereby en-
hancing system robustness against uncertainties and noise.

In the context of a second-order control system(18), the
adoption of SMC augments convergence speed. Notably,
the linear SMC approach and the FA control method share
equivalency in terms of pole configuration, demonstrating
the versatility of SMC in achieving desired dynamic behav-
iors. The original system structure can be expressed as fol-
lows

ẍ+ k1ẋ+ k0x = busmc (18)

where usmc represents the sliding mode control input. To
implement SMC effectively, a sliding mode variable for this
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linear system is introduced as follows:

s = Cxx+ ẋ (19)

which facilitates dynamic behavior to ensure system stability
and rapid convergence. By selecting appropriate parameters,
it can be shown that

ṡ+ ηs = ẍ+ (Cx + η)ẋ+Cxηx (20)

This provides a direct analogy to the dynamics of a system
under SMC. If the parameters satisfy the relationship as fol-
lows

k1 = Cx + η (21)
k0 = Cxη (22)

the dynamic equation on the sliding surface can be made
equivalent to the original dynamics of the control system,
provided that appropriate choices of Cx and η are made.

In order to accelerate the convergence speed, the control
law is designed to ensure that the unique states of the sub-
system converge to zero. Specifically, when s = 0, the state
variable x is engineered to exponentially converge to zero.
The control law is expressed as follows

τsmc =
η

b
s− k

(
|s| 12 + ks

)
sgn(s)− rs (23)

This leverages the HOFA theory effectively reconfiguring
the poles to a stable state. This approach enables the trans-
formation of the original system into one with an FA linear
configuration(24)

ëy + k1ėy + k0ey = bcτs (24)

Ultimately, by integrating Equations (17) and (23), the fi-
nal control action is obtained as follows

τ = τA + τsmc (25)

highlighting the synergistic integration of control strategies
required to optimize system performance.

3.3 Compensating for system disturbances and unmod-
eled dynamics using STESO

In order to compensate for the uncertainties inherent in
most real-world scenarios, where model parameters are sub-
ject to significant perturbations leading to external distur-
bances, a STESO may be applied. STESOs are widely uti-
lized for estimating system states and disturbances, includ-
ing those arising from model uncertainties and external vari-
ations, thereby enhancing the robustness of control strate-
gies.

The observation error signal is calculated as follows

eo = x− z (26)

where x is the actual state and z is the state estimated using
STESO.

For the linear system under consideration, the sliding
manifold is designed as follows

σ = c1e1 + c2e2 + · · ·+ cn−1en−1 + en (27)

which is instrumental in delineating the system’s response to
disturbances.

To circumvent the residual estimation errors typical of the
linear extended state observer (LESO), the STESO is de-
signed with the following structure:

ż1 = z2 + β1e1,

ż2 = z3 + β2e1,

...
żn = zn+1 + ua + bu,

żn+1 = k3 sgn(σ) + k4σ

where ua is an auxiliary error feedback designed to address
the bounded total disturbance, with k3 and k4 being param-
eters that can be tuned to ensure the asymptotic convergence
of the STESO. The parameter k4σ is tailored for this pur-
pose.

The estimation error dynamics of STESO are then repre-
sented as follows:

ė1 = e2 − β1e1,

ė2 = e3 − β2e1,

...
ėn = en+1 − ua,

ėn+1 = h− k3 sgn(σ)− k4σ

Based on the super-twisting algorithm, ua is designed as
follows

ua = c1e2 + c2e3 + · · ·+ cn−1en + k1|σ|
1
2 sgn(σ) + k2σ

− (c1β1 + c2β2 + · · ·+ cn−1βn−1) e1, (28)

Then, the derivative of σ can be presented as follows

σ̇ = −k1|σ|
1
2 sgn(σ)− k2σ + en+1 (29)

ėn+1 = −k3 sgn(σ)− k4σ + h (30)

where ua serves as an auxiliary error feedback designed
to counteract the total bounded disturbance, in which k1,
k2, k3, and k4 are tunable parameters that facilitate control,
thereby ensuring the robustness and effectiveness of the con-
trol strategy under the influence of uncertainties and distur-
bances.

In the analysis of the system’s stability, a Lyapunov func-
tion approach is employed to demonstrate the system’s local
finite-time stability. Consider the system in (29), and sup-
pose there exists a Lyapunov function V (η) defined within
the neighborhood U ∈ Rn of the origin. If

V̇ (η) ≤ −β1V
α1(η) (31)

for all η ∈ U \ {0}, with 0 < α1 < 1 and β1 > 0, then
the system exhibits local finite-time stability. Furthermore,
the time T required for the system to reach V (η) = 0 is
bounded by the following:

T ≤ 1

β1(1− α1)
|V (η(0))|1−α1 (32)

where η(0) represents the initial state of the system.
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4 Results

This study focuses on a multiaxis antenna system, which
is primarily evaluated based on its capability to accurately
track five separate rotational axes. Each axis represents a
distinct rotational degree of freedom for the antenna, with
tracking performance measured in degrees to reflect its pre-
cision in angular positioning.

The components of the system include a satellite body,
modeled as a rigid body with a mass of 100 kg and triaxial
moments of inertia, each at 100 kg m2. The system also fea-
tures robotic arms, each weighing 50 kg, with moments of
inertia Ixx = Iyy = 100 kg m2 and Izz = 5 kg m2. Flexible
elements such as the solar wings and antennas were initially
modeled using Nastran finite element software and later in-
tegrated into Adams with modal neutral files up to the 12th
modal frequency for dynamic simulation.

The simulation involved applying a step signal with a 1◦

amplitude to assess the system’s control precision across its
five axes. These axes include rotational angles q1 and q2
for solar wing articulation, q3 for the connection from the
satellite body to the first robotic arm, q4 between the robotic
arms, and q5 for the final connection to the antenna. An
S-shaped speed profile was used to test the system’s adapt-
ability to dynamic conditions, highlighting the control chal-
lenges inherent in managing complex mechanical linkages.
This S-shaped curve is particularly suited for such appli-
cations as it provides a smooth acceleration and decelera-
tion, minimizing mechanical stress and potential overshoot-
ing during angle adjustments. This choice is reflected in the
tracking performance where the control methods strive to
follow this profile, thus explaining the similar curve types
across all tests.

Fig. 2: Axis q1 tracking with PID, SMC, and SMC+STESO.

Fig. 3: Axis q2 tracking with PID, SMC, and SMC+STESO.

The simulation results, presented in Figs. 2–6, compare
the tracking performance of three control methods: PID,
SMC, and SMC+STESO. The evaluation criteria focus on
the angular tracking error for each of the five axes in the sys-
tem. From the perspectives of rise time and overshoot, the

Fig. 4: Axis q3 tracking with PID, SMC, and SMC+STESO.

Fig. 5: Axis q4 tracking with PID, SMC, and SMC+STESO.

three control methods exhibited similar rise times with no
overshoot observed. In terms of tracking error, a compre-
hensive assessment of the five figures reveals that the static
error is significantly lower when using the SMC+STESO
controller. For instance, as shown in Fig. 2, the static er-
ror for the PID controller is approximately 0.05◦, while for
the SMC controller it is around 0.01◦. However, the use of
the SMC+STESO controller reduces the static error to ap-
proximately 0.006◦. Moreover, it is observable that SMC
method exhibits strong chattering due to the sign function in
its control law, whereas, in comparison, the SMC+STESO
control method alleviates some of the chattering issues in-
herent in SMC control, resulting in smaller errors. Overall,
SMC+STESO offers a significant advantage in terms of po-
sitioning accuracy over the traditional PID and SMC.

5 Conclusion

This study introduces an innovative control strategy that
significantly enhances directional accuracy in multiaxis an-
tenna systems by integrating sliding mode control with fully
actuated theory and a super twisting extended state observer.
Through the development of a control-oriented dynamics
model based on analytical methodologies and the application
of FA theory, the study transforms the dynamic model into
a fully actuated configuration, simplifying control over an-
tenna movements. The integration of SMC with this model,
augmented by a STESO, effectively addresses system uncer-

Fig. 6: Axis q5 tracking with PID, SMC, and SMC+STESO.
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tainties, leading to improved control precision. Simulation
results confirm the superiority of the SMC+STESO method
over traditional PID and SMC in terms of positioning ac-
curacy, demonstrating a significant reduction in static error
and alleviation of chattering issues. This advancement lays
a foundational framework for future developments in an-
tenna control systems, offering substantial benefits for satel-
lite communication, air traffic control, and mobile telephony
networks.

Looking forward, there are several avenues to explore that
could further enhance the robustness and efficiency of con-
trol systems for multiaxis antennas. Particularly, the incor-
poration of advanced models that account for the mechanical
flexibility of antenna structures and the dynamic effects of
robotic arms could lead to even more precise control. Me-
chanical flexibility, often observed in the long, slender com-
ponents of antennas and solar panels, introduces additional
dynamic challenges due to the modal responses of these
structures. Addressing these challenges requires the devel-
opment of control strategies that can effectively dampen os-
cillations and manage the micro-vibrations induced by envi-
ronmental factors and operational maneuvers.

Additionally, considering the integration of adaptive con-
trol algorithms could further refine the responsiveness of the
system to unforeseen disturbances and model inaccuracies.
These algorithms could dynamically adjust control parame-
ters in real-time, based on continuous system identification
processes that detect changes in the system’s dynamic char-
acteristics. This approach would be particularly beneficial
in scenarios involving prolonged space missions where en-
vironmental conditions and system properties may vary sig-
nificantly over time.
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Abstract: This paper focuses on position tracking control of a 3-DOF quadrotor under practical disturbances. High-order terms 

of system states, inputs, and disturbances are generated after the highly coupled underactuated quadrotor system is converted 

into two high-order fully actuated (HOFA) systems. To observe high-order terms for control design, which were not previously 

discussed in other approaches, as well as disturbances rejection in control, we developed extended state observers (ESOs) of the 

HOFA systems for the 3-DOF quadrotor. The convergence of ESOs is rigorously proven using the Lyapunov stability theory. 

Furthermore, we present the simulation results to verify the proposed observer and control design for the HOFA models of the 
3-DOF quadrotor. 

Key Words: High-order fully actuated system approach, Quadrotor control, Extended state observer. 
 
  

1 Introduction 

In recent decades, unmanned aerial vehicles (UAVs) have 

garnered significant attention due to their wide-ranging 

applications in education, commerce, industry, and the 

military [1]. Among rotorcraft UAVs, quadrotors offer 

distinct advantages over fixed-wing UAVs, including the 

ability to hover in place, execute vertical takeoffs and 

landings, and perform agile maneuvers. Their unique design 

sets quadrotors apart, which eliminates the need for complex 

mechanical linkages found in other rotorcraft, such as 

helicopters and tiltrotors. Quadrotors are characterized as 

highly coupled, under-actuated systems with four rotor 

inputs (used for roll, pitch, yaw, and throttle control) and six 

outputs (comprising 3-DOF translational position and 3-

DOF orientation). Typically, flight controllers focus on 

tracking the 3-DOF translational parts and yaw angle of a 

quadrotor with respect to the Earth frame. Achieving 

independent control of roll and pitch angles with just four 

inputs presents a notable challenge. 

In pursuit of optimal quadrotor flight performance, the 

hierarchical architecture is a commonly adopted approach 

for segregating control tasks based on distinct time scales: 

the rapid inner loop control governing attitude and the more 

gradual outer loop control overseeing position. Nevertheless, 

in the case of hierarchical controllers utilizing first-order 

state space representations, the performance of position 

tracking may prove unsatisfactory if the quadrotor cannot 

rapidly and accurately follow the desired attitude. Recently, 

a novel system modeling technique known as the high-order 

fully actuated (HOFA) model [3], aimed at eliminating 

nonlinear terms through complete actuation, has emerged. 

By removing nonlinearities, globally stabilized linear 

(sub)systems in controllable forms can be obtained. 

Subsequently, controllers for the (sub)systems can be readily 

formulated. Ultimately, the closed-loop system comprises 

several independent linear time-invariant (LTI) 

(sub)systems, allowing for flexible eigenstructures. 

Applying the HOFA approach to the quadrotor platform [7] 

offers advantages over the conventional hierarchical designs 

in the literature.  

                                                           
*Corresponding author: Yan Chen 

Nevertheless, the HOFA approach introduces high-order 

unmeasurable terms, such as jerk and derivatives of system 

inputs [7], which have a considerable impact on the 

quadrotor's tracking performance. In [11, 12], the jerk 

dynamic model and other general high-order terms were 

based on a statistical model driven solely by white random 

processes. The obtained estimator actually has no intrinsic 

difference from a second-order low-pass filter. Furthermore, 

jerk was computed based on the differential flatness of an 

ideal quadrotor model [9, 10], highlighting its close 

relationship with angular velocity and acceleration. 

However, the input derivatives were neglected, which also 

played a substantial role in jerk dynamics. Hence, a suitable 

observer is needed for the quadrotor model in the HOFA 

form due to the introduced high-order terms of inputs. A 

systematic observer design method for high-order systems 

was proposed in [4]. However, a specific form was required 

to accomplish the complete cancellation of nonlinear terms, 

which is not applicable to the quadrotor model. 

Moreover, the HOFA approach also introduces 

derivatives of disturbances, creating significant 

uncertainties that inevitably affect the performance of the 

closed-loop system. To address these uncertainties, the 

extended state observer (ESO) proves to be an effective 

method, requiring minimal model information. A nonlinear 

ESO applied to HOFA systems for the 6DOF motion of 

spacecraft was presented in [13]. The convergence proof 

was grounded in a rigorous Lyapunov analysis, ensuring that 

the estimation error converges within a neighborhood of the 

origin. However, it is essential to emphasize that the proof 

relies on the complete cancellation of nonlinear terms, and it 

assumes that only the lowest-order variables are 

measurable—a condition that does exist for the quadrotor 

model. 

Inspired by [13], an observation scheme is proposed in 

this paper to address all high-order terms, including system 

states, input derivatives, and disturbance derivatives, in the 

quadrotor model. This approach is based on the modified 

HOFA approach discussed in [7]. The choice of the 3-DOF 

planar quadrotor model is particularly apt, as it represents a 

typical non-minimum phase dynamical system that has been 
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extensively featured in the literature on acrobatic robots. To 

illustrate the effectiveness of the ESO design, we opt to 

employ the 3-DOF planar quadrotor model. Following a 

similar structure as presented in [5, 7], we divide the 

quadrotor model into two subsystems, each with its 

respective ESO design and convergence proof. 

The paper is structured as follows. The quadrotor HOFA 

model and the problem formulation are proposed in Section 

II. The extended observer designed for HOFA with 

convergence proof is presented in Section III. Simulation 

results are presented in Section IV, and the paper is 

concluded in Section V. 

2 HOFA Model and Problem Formulation 

This section introduces modeling and control of 3-ODF 

quadrotor HOFA systems based on [7] with disturbance 

compensation. For � ∈ ℝ� , �� ∈ ℝ�×� (
 = 1,2, ⋯ , �) and , ��,� ∈ ℝ�×�  (� = 1,2,3  and � = 1,2, ⋯ , �� ), frequently 

used symbols in this paper are defined as follows, 

2.1 3-DOF Quadrotor Model 

The 3-DOF planar quadrotor system is depicted in Fig. 1. 

This quadrotor is limited to motion within the �-� plane, and 

its mathematical model with disturbances is presented below. 

where � is the pitch angle, %�, %& are rotor thrusts, � is the 

quadrotor mass, ' is the yaw moment of inertia, and ( is the 

gravity acceleration. )�, )&  and )*  denote disturbances 

along the � axis, � axis, and the rotation + axis.  

 

Fig. 1: 3-DOF quadrotor for a planar motion 

To control the positions of �  and �  with the modified 

HOFA approach [7], we select the system inputs as ,� =-./-01 , ,& = -02-.3 . We have 

This system can be reformulated into two subsystems 

using the HOFA approach. 

2.2 HOFA Control with Disturbance Rejection 

The first subsystem is 

which is already a HOFA system. It is trivial to have 

and results in the following closed-loop system 

Then, we can take the 2nd order derivative of the first 

equation in (3) yields, 

Substituting the third equation from (3), we have the second 

HOFA subsystem 

and we can design ,& as, 

which gives the following closed-loop system 

�4~*6 ∈ ℝ�×7, �4~�8 ∈ ℝ�×&  and 9�, 9&  are external signals 

containing the commanding trajectory and observed 

disturbance information. Since (8) does not match the 

specific form in [4], the following assumption is made for 

the above two subsystems. 

Assumption 1: Regarding the second-order derivative of 

input ,�  and the disturbance terms ):�, )&, )*  arising from 

external factors such as wind and ground effects in (4) and 

(8), it is reasonable to assume that the high-order derivatives 

of these terms are bounded and differentiable. There exists 

(̅�, (̅&, (̅* and (̅< are positive scalars.  

Remark 1: Different from the measurement condition in [13], 

in the real quadrotor applications, �(4~�), �(4~�)  can be 

measured from the motion capture system (MOCAP) or the 

onboard visual-inertial odometry device (VIO). �: , �:  and �(4~�) can be measured from the IMU on the onboard flight 

�(4~1) ≜ > ��?⋮�(1)A
�4~1 ≜ B�4 �� ⋯ �1C��,�~�1 ≜ D��,� ��,& ⋯ ��,�1E

 (1) 

⎩⎪
⎨
⎪⎧ �: = %� + %&� sin � + )�

�: = %� + %&� cos � − ( + )&
�: = %& − %�' + )*

 (2) 

M �: = ,� sin � + )��: = ,� cos � − ( + )&�: = ,& + )*  (3) 

�: = ,� cos � − ( + )& (4) 

,� = ( − �4~�8 �(4~�) + 9�cos �  (5) 

�: + �4~�8 �(4~�) = 9� + )& (6) 

�(7) = ,: � sin � + 2,? ��? cos �−�? &,� sin � + �:,� cos � + ):� (7) 

�(7) = ,: � sin � + 2,? ��? cos � − �? &,� sin �+,&,� cos � + )*,� cos � + ):�  (8) 

,& = ,&∗ + �4~*6 �(4~*) − 9&,� cos � , ,&∗ = −,: � sin �−2,? ��? cos � + �? &,� sin �  (9) 

�(7) + �4~*6 �(4~*) = 9&+ )*,� cos � + ):�  (10) 

⎩⎪⎨
⎪⎧)�(*) = (�(O))?& = (&(O))?* = (*(O),�(*) = (<(O)

, ⎩⎨
⎧|(�(O)| ≤ (̅�|(&(O)| ≤ (̅&|(*(O)| ≤ (̅*|(<(O)| ≤ (̅<

 (11) 
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controller. For aggressive motions, �  measurement 

sometimes relies on MOCAP or VIO.  

Thus, in this paper, we aim to design an extended state 

observer containing the rest of the unmeasurable terms ,�(�~&), �(*) and the disturbance terms ):�, )&, )*. 

3 ESO for the HOFA approach 

In this section, ESOs for the subsystems mentioned above 

are designed to estimate external disturbance uncertainties 

and unmeasurable terms.  Before presenting the main results, 

we provide some preliminary information as follows.  

3.1 Preliminaries 

Lemma 1 [14]: Let � ∈ ℝ�×� satisfy 

Where R >0, then there exists a positive definite matrix S ∈ℝ�×� satisfying 

Proposition 1: Given a HOFA system in the following form 

If the system states �(4~1)  are all measurable and ,  is 

known, we can directly acquire ) with 

This condition could arise within specific subsystems. 

3.2 ESO and Control of Subsystem 1 

Denote ��,� = �, ��,& = �?  and ��,* = )& , then (4) can be 

written in the following form based on Assumption 1 

Note that ��,�, ��,&, �  and �:  are measurable. Following 

proposition 1, we can acquire ��,* with  

Let  

and we can design the following ESO 

where  �̂�,�, �̂�,& and �̂�,* represent the estimates of ��,�, ��,& 

and ��,*, respectively. U�,�, U�,& and U�,* are positive scalars. 

Then, based on (16) and (19), the error dynamics is  

Obviously, V� is a negative definite matrix.  

Theorem 1: Given a system such as (20) in the following 

state-space form 

where W ∈ ℝ�, V is a negative definite matrix satisfying the 

condition in lemma 1, and ‖((O)‖ ≤ (̅  ( (̅  is a positive 

scalar). Then W  will converge to the following ellipsoid 

centered at the origin 

where Y and Z are given in the following proof. 

Proof: The following Lyapunov function can be chosen for 

the system (22) as 

Based on lemma 1, we have ([, \ are positive numbers) the 

time derivative of ] along (23) 

where  

By selecting appropriate [, \, we can have Z > 0. Finally, 

Thus, W eventually converges into the ellipsoid à,b(0). The 

proof is completed. 

the observer states error W� eventually converges into the 

ellipsoid à.,b.(0)  with ( [1, \1  are appropriate positive 

numbers) 

Proposition 2: the following controller of the subsystem 1 is 

and produces the following linear system 

where 9cde,�  contains commanding trajectory and 

disturbance information. 

3.3 ESO and Control of Subsystem 2 

Denote �&,� = �, �&,& = �? , �&,* = �: , �&,7 = �(*)and �&,f =):�, then (8) can be written in the following form based on 

assumption 1 

Reh�(�) ≤ − R2 , 
 = 1,2, ⋯ i (12) 

�jS + S� ≤ −RS (13) 

�(1) = %k�(4~12�), ,l + ) (14) 

) = %k�(4~12�), ,l − �(1)
 (15) 

M �?�,� = ��,&�?�,& = ,� cos � − ( + ��,*�?�,* = (&(O)  (16) 

��,* =  �:  − ,� cos � + ( (17) 

W� =  DW�,�~*EjW�,� = �̂�,� − ��,� , 
 = 1,2,3 (18) 

m �̂?�,� = �̂�,& − U�,�W�,��̂?�,& = ,� cos � − ( + �̂�,* − U�,&W�,&�̂?�,* = −U�,*W�,*
 (19) 

W?� =  >−U�,� 1 00 −U�,& 10 0 −U�,*A
n.

+ o 0&×�−(&(O)p (20) 

W? = VW + ((O) (21) 

à,b(0) = qWr 12 WjW ≤ YZs (22) 

] = 12 WjW (23) 

]? = 12 W? jW + 12 WjW? = 12 kVW + ((O)ljW +
+ 12 WjkVW + ((O)l = 12 Wj(Vj + V)W +

(j(O)W ≤ − [2 WjW + Wj((O) ≤ − [2 WjW +
− [2 WjW + \2 ‖W‖& + 12\ ‖((O)‖& ≤

− t[2 − \2u ‖W‖& + 12\ (̅& = −Z] + Y
 (24) 

Z = [2 − \2 , Y = 12\ (̅&
 (25) 

] ≤ v](0) − YZw W2bx + YZ → YZ , O → ∞ (26) 

Z� = [�2 − \�2 , Y� = 12\� (̅�& (27) 

,� = ( − �4~�8 �̂(4~�) + 9�cos �9� = −�̂�,* + 9{,�  (28) 

�: + �4~�8 �(4~�) = 9{,� (29) 
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Note that �&,�, �&,&,  �&,* and � are measurable. Let 

and we can design the following ESO 

where �̂&,�  represents the estimate of �&,�  and U&,�  is a 

positive scalar (
 = 1,2, ⋯ ,5). Then, the error dynamics is 

Clearly, V� is a negative definite matrix. Nevertheless, we 

must ensure }%~(∙) − %(∙)}  is bounded, as per theorem 1. 

Denote  

and we have the prerequisite system model based on (3) and 

assumption 1 

Let W* = DW*,�~*Ej
 with 

U*,�,�, U*,�,&  are positive scalars, and we can design the 

following ESO  

where  �̂*,�, �̂*,& and �̂*,* represent the estimates of �*,�, �*,& 

and �*,*, respectively. Then, based on (35) and (37), the error 

dynamics is 

V* is also a negative definite matrix. Following theorem 1, 

the observer states error W*  eventually converges into the 

ellipsoid à�,b�(0)  with ( [3, \3  are appropriate positive 

numbers) 

Considering �, �?  are measurable and ,� is known, per (30), 

(34), and (36), we can have 

Remark 2: With ,� saturated, it is straightforward to find W*,*,� sin � and W*,*,&,� cos � remain bounded. Considering 

the robustness property of  HOFA control leading to 

bounded �?  and selection of high gains in (37) to small W*,&,�, 

it is also evident that 2W*,&,��? cos �  can also be bounded. 

Consequently, we can establish that }%~(∙) − %(∙)} ≤ (̅- 

(where (̅- is a positive scalar).  

Following theorem 1 and (33), the observer state error W& 

eventually converges into the ellipsoid à0,b0(0)  with 

([2, \2 are appropriate positive numbers) 

Proposition 3: the following controller of the subsystem 2 is 

and produces the following linear system 

where 9cde,&  contains commanding trajectory and 

disturbance information.  

4 Simulation Results 

This section presents simulation results in MATLAB to 

validate the proposed ESO for the HOFA approach to 

control the 3-DOF planar quadrotor. The quadrotor 

parameters are set as � = 1.0 kg, ' = 0.01kg ∙ m& and ( =9.8 m/s. 

4.1 Results of Subsystem 1 

The control and observation parameters are 

Picking  

⎩⎪⎨
⎪⎧ �?&,� = �&,&�?&,& = �&,*�?&,* = �&,7�?&,7 = %k�(4~�), ,�(4~&), )*l + ,&,� cos � + �&,f�?&,f = (�(O)%(∙) = ,: � sin � + 2,? ��? cos � −�? &,� sin � + )*,� cos �

 (30) 

W& = DW&,�~fEjW&,� = �̂&,� − �&,*, 
 = 1,2, ⋯ 5 (31) 

⎩⎪⎪
⎨⎪
⎪⎧ �̂?&,� = �̂&,& − U&,�W&,��̂?&,& = �̂&,* − U&,&W&,&�̂?&,* = �̂&,7 − U&,*W&,*�̂?&,7 = %~(∙) + �̂&,7 + ,&,� cos � − U&,7W&,*�̂?&,f = −U&,fW&,*

 (32) 

W?� =  
⎣⎢⎢
⎢⎢⎡
−U&,� 1 0 0 00 −U&,& 1 0 00 0 −U&,* 1 00 0 −U&,7 0 10 0 −U&,f 0 0⎦⎥⎥

⎥⎥⎤
n0

+ > 0*×�%~(∙) − %(∙)−(�(O) A (33) 

�*,� = D�*,�,�, �*,�,&Ej = B,�, �Cj�*,& = D�*,&,�, �*,&,&Ej = D,? �, �? Ej
�*,* = D�*,*,�, �*,*,&Ej = B,: �, )*Cj (34) 

M �?*,� = �*,&�?*,& = �*,* + B0, ,&Cj�?*,* = B(<(O), (*(O)Cj (35) 

W*,� = DW*,�,�, W*,�,&E =D�̂*,�,� − �*,�,�, �̂*,�,& − �*,�,&Ej
�*,� = diag�U*,�,�, U*,�,&�  , 
 = 1,2,3 (36) 

⎩⎪⎨
⎪⎧ �̂?*,� = �̂*,& − �*,�W�,��̂?*,& = �̂*,* + B0, ,&Cj − �*,& o�̂*,�,� − �*,�,��̂*,&,& − �*,&,&p

�̂?*,* = −�*,* o�̂*,�,� − �*,�,��̂*,&,& − �*,&,&p  (37) 

W?* = V*W* + B07×�, (*(O), (<(O)Cj

V* =
⎣⎢⎢
⎢⎢⎢
⎡−U*,�,� 0 10 −U*,�,& 0−U*,&,� 0 0

0 0 01 0 00 1 00 0 0−U*,*,� 0 00 0 0
−U*,&,& 0 10 0 0−U*,*,& 0 0⎦⎥⎥

⎥⎥⎥
⎤
 (38) 

Z* = [*2 − \*2 , Y* = 12\* ((̅*& + (̅<&) (39) 

%~(∙) − %(∙) = W*,*,� sin � + 2W*,&,��? cos �+W*,*,&,� cos �  (40) 

Z& = [&2 − \&2 , Y& = 12\& k(̅�& + (̅-&l (41) 

,& = ,&∗ − �4~*6 ��(4~*) + 9&,� cos � , ,&∗ = −�̂*,*,� sin �−2�̂*,&,��? cos � + �? &,� sin �9& = −�̂*,*,&,� cos � − �̂&,f + 9{,&
 (42) 

�(7) + �4~*6 �(4~*) = 9{,& (43) 
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the commanding and disturbances signals are 

Observation results and errors are depicted in Fig. 2 and Fig. 

3, respectively.  

 

Fig. 2: Subsystem 1 Observation Results 

 

Fig. 3: Subsystem 1 Observation Error 

 

Fig. 4: Subsystem 1 Tracking Results 

It is evident that all the observed values converge to the 

actual values, ultimately resulting in 
�& W�jW� ≤ Y� Z�⁄  as 

indicated by (26). Tracking results are illustrated in Fig. 4. ��  represents the tracking results without �̂�,*  in (28) for 

comparison. It is clear that �  tracking exhibits smaller 

tracking errors compared to �� , demonstrating the 

robustness of the proposed design. 

4.2 Results of Subsystem 2 

For the prerequisite system (35), observation parameters 

are 

Picking  

 

Fig. 5: Prerequisite System Observation Results 

Observation results (including observation error) of �*,&,�, �*,*,�, �*,*,&, and 
�& W*jW*  are depicted in Fig. 5. It is 

evident that the shown observed values converge to the 

actual values, ultimately resulting in 
�& W*jW* ≤ Y* Z*⁄  as 

indicated by (26). For subsystem 2, the control and 

observation parameters are 

Picking  

the commanding and disturbances signals are 

�4~�8 = B20,14C 9� = B20,14C�cde(4~�)U&,�~f = B40,40,20C (44) 

(̅� = 4, [� = 90, \� = 10 Y�Z� = (̅�& ([�\� − \�&)⁄ = 0.02 (45) 

�cde = sinv� 5� Ow  m/s )& = 4sinv� 5� Ow + )&,�  m/s&
)&,� = q 0, O < 10�−8, O ≥ 10�

   (46) �*,� = diag�60,100�, �*,& = diag�180,100��*,* = diag�480,400�,  (47) 

)* = sinv� 5� Ow + )*,�  rad/s&
)*,� = q 0, O < 10�−2, O ≥ 10�(̅* = 1, [* = 4.61, \* = 3.2 Y*Z* = (̅*& ([*\* − \*&)⁄ = 0.04

 (48) 

�4~*6 = B280,256,96,6C9& = B280,250,85,5C�cde(4~�)U&,�~f = B60,60,60,300,900C (49) 
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Observation results and errors of unmeasurable terms �&,7, �&,f and  
�& W&jW& are depicted in Fig. 6.  

 

Fig. 6: Subsystem 2 Observation Results 

 

Fig. 7: Subsystem 2 Tracking Results 

The results demonstrate the observer’s convergence, 

ultimately leading to 
�& W&jW& ≤ Y& Z&⁄ , even though 

�& W&jW& is 

large at O = 10~12s due to the step disturbance. Tracking 

results are illustrated in Fig. 7. ��  represents the tracking 

results without disturbance compensation in (28)(42) for 

comparison. It is clear that �  tracking exhibits smaller 

tracking errors compared to �� , demonstrating the 

effectiveness of the proposed design. 

5 Conclusions 

The HOFA approach introduces high-order derivatives of 

system state, inputs, and disturbances, resulting in 

substantial uncertainties that inevitably affect the 

performance of the closed-loop system. Employing the ESO 

technique enables us to estimate all unmeasurable terms and 

incorporate them into the HOFA controller with disturbance 

compensation. Theoretical development and simulation 

results collectively demonstrate the effectiveness of our 

proposed approach. 
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Abstract: This article introduces a methodology for modeling and parameter identification of the quadrotor systems, which
obviates the need for external devices. The model parameters and inherent system disturbances can be identified via flight data
acquisition through closed-loop system flight testing of an unmanned aerial vehicle (UAV). This study initially simplifies the
model for each axis into second-order systems with disturbances, which necessitates the identification of only three characteristic
parameters, thereby alleviating the complexity of the identification process. Subsequently, the identification of optimal model
parameters is achieved via closed-loop measurement data. The subsequent physical experiment validates that the accurancy of
Normalized Mean Square Error (NMSE) for the three-axis angles and angular velocities exceeds 90%. The proposed algorithm
constructs an inner-loop controlled object model for quadrotor systems, facilitating the design of closed-loop control system for
both angular velocity and outer loops.

1 Introduction

Quadrotors serve as practical platforms extensively em-
ployed across various domains, including military, agricul-
tural, educational, and scientific applications. Research in
this field spans mapping, localization, path planning, and
control, among other areas. To achieve true autonomy, it is
crucial to develop an effective flight control system, as this
significantly influences the performance of advanced appli-
cations. In the realm of control systems, the primary em-
phasis is on model establishment and controller design. The
model encapsulates the quadrotor’s physical properties, and
the controller is tasked with guiding the quadrotor to its in-
tended state. While model-free control strategies, such as
PID and ADRC, exist, models remain essential for the pre-
cise tuning of controller parameters. System modeling en-
tails two fundamental aspects: the structure of the model and
the determination of its parameters.

Quadrotors are typically modeled as six-degree-of-
freedom (6-DOF) rigid bodies, where torque and total thrust
serve as input controls, and attitude and position represent
the system states[1–4].The advantage of such modeling ap-
proach is that the primary measured parameters include the
three-axis principal moments of inertia and the drone’s mass,
which are straightforward to ascertain. However, the disad-
vantage is that the true input for quadrotors is motor throttle,
not torque and total thrust. Furthermore, the literature fre-
quently fails to explicitly delineate the relationship between
torque/total thrust and throttle. Moreover, the six-degree-of-
freedom rigid body model neglects some characteristics of
quadrotors, such as the relationship between motor speed
and throttle, the relationship between propeller thrust and
speed, and motor dynamic processes, potentially compro-
mising the model’s accuracy.

To enhance the accuracy of the quadrotor model, some
studies have modeled its components individually, includ-
ing the battery, motors, electronic speed controllers (ESCs),
and propellers, which supplements the transformation re-

0This work is supported in part by National Natural Science Foundation
(NNSF) of China under Grant 61973055 and the Fundamental Research
Funds for the Central Universities under Grant 2023NSFSC0511.

lationship between the throttle and torque[5, 6]. Mean-
while, certain studies concentrate on the process of propeller
thrust generation and the identification of relevant parame-
ters, achieved by formulating optimization problems[7–9].
Ultimately, the approximated model is derived, depicting
motor speed and throttle as a first-order inertial system with
steady-state speed linearly related to throttle input. The lift
generated by the propeller is observed to be proportional to
the square of the propeller speed. All coefficients are em-
pirically fitted using measured data. When combined with
the six-degree-of-freedom rigid body model, this approach
yields a comprehensive quadrotor model. The advantages of
such model include its ability to reflect the physical proper-
ties of quadrotors and to provide parameters with clear phys-
ical interpretations. However, it has several drawbacks: spe-
cialized equipment may be required for measurement, and
cumulative errors may arise due to the successive multipli-
cation of parameters.

In the mentioned mechanism modeling, installation dis-
crepancies are frequently disregarded. For example, the four
motors may not align on the exact same horizontal plane, and
the differential responses among the four motors and four
propellers are often not taken into account. Nonetheless, in
practice, such an assumption proves invalid and may intro-
duce persistent errors into the system. Omitting these factors
can lead to steady-state inaccuracies in the control system.

Besides acquiring quadrotor models via mechanistic
modeling, system identification represents another pivotal
approach[10–12]. System identification entails selecting a
suitable model structure followed by estimating the model
parameters from input-output data. The advantage of sys-
tem identification is that its capacity to derive system models
without delving into intricate internal dynamics. However,
there are several disadvantages. Firstly, when there exists a
weak relationship between inputs and outputs, such as em-
ploying throttle as input and axis as output, it becomes dif-
ficult to establish robust models. Secondly, the selection of
model structure is subjective, and model parameters gener-
ally lack physical interpretation. Higher-order systems may
offer improved fit, but this may lead to overfitting. Further-
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more, system identification typically deals with stable sys-
tems. Quadrotor models, however, are inherently unstable
due to the integral relationship between throttle input and
measurable angular velocities, rendering direct application
of system identification less suitable.

To leverage the advantages of both mechanistic model-
ing and system identification, these methods are frequently
integrated to create a more precise quadrotor model. In
the design of quadrotor controllers, angular velocity, atti-
tude, velocity, and position are typically selected as states,
thereby constructing a closed-loop feedback system. Among
these, angular velocity is frequently designated as the inner
loop and forms the foundation for the closed-loop structure.
Therefore, establishing a clear relationship between motor
throttle input and angular velocity is particularly important,
a focus that is central to the objectives of this paper.

The structure of this paper is arranged as follows: In Sec-
tion 2, the quadrotor model is established and linearized,
with throttle increment as the input and angular velocity as
the output, yielding a standard second-order system transfer
function.Section 3 introduces a closed-loop structure, iden-
tifies model parameters, and examines the effects of varying
closed-loop design and battery voltage on the model. Actual
flight data are employed to resolve the issue and to finalize
the parameter identification. Section 4 utilizes the identified
model to redesign the controller, aiming to enhance control
performance, and compares real output data with model pre-
dictions to assess the model’s accuracy.
2 Modeling

A quadrotor’s control inputs consist of throttle commands
for its four motors, with outputs typically encompassing an-
gular velocity, attitude, velocity, and position. In practical
design, angular velocity is often considered as the first set of
measurable states and serves as the foundation for the initial
closed-loop design in controller design. Therefore, in this
section, a model relating angular velocity to throttle com-
mands is developed and subsequently linearized to yield a
typical second-order system.

Firstly, the steady-state speed of the motor is linearly re-
lated to the voltage on both sides

ϖi,ss = kvi + b (i = 1, 2, 3, 4) (1)

wherein, vi represents the voltage across the ith motor,
normalized to the range of vi ∈ [ 0, 1 ]; ϖi,ss represents
the steady-state speed of the ith motor under voltage vi, in
[ rad/s ]; k is the proportionality coefficient; b is the inter-
cept coefficient.

The voltage across the motor terminals is the product of
the battery voltage and the throttle command.

vi = Ubatσi (i = 1, 2, 3, 4) (2)

wherein, Ubat represents the normalized battery voltage,
and σi represents the normalized motor throttle.

The motor can be approximated as a first-order inertial
system

Tmϖ̇i +ϖi = ϖi,ss (i = 1, 2, 3, 4) (3)

Wherein, Tm represents the motor time constant. A
smaller Tm implies a faster motor response, reaching steady-
state values more quickly.

Therefore, the dynamic model of the motor can be written
as

Tmϖ̇i +ϖi = kvi + b (i = 1, 2, 3, 4) (4)

The lift generated by the propeller is proportional to the
square of the motor speed

Fi = cTϖ
2
i (i = 1, 2, 3, 4) (5)

Wherein, cT represents the lift coefficient, in units of[
N/(rad/s)2

]
. Due to the imbalance in lift among the four

propellers, torque is generated along the axes of the aircraft.
For the following layout of the quadrotor, establishing the
body coordinate system, it is easy to determine the torques
generated along each axis

τx =

√
2

2
dcT (−ϖ2

1 +ϖ2
2 +ϖ2

3 −ϖ2
4)

τy =

√
2

2
dcT (ϖ

2
1 +ϖ2

2 −ϖ2
3 −ϖ2

4)

τz = cM (ϖ2
1 −ϖ2

2 +ϖ2
3 −ϖ2

4)

(6)

Wherein, d represents the horizontal distance from the
motor to the origin of the body coordinate system, in units of
[m]; cM represents the coefficient of counter-torque, in units
of

[
N ·m/(rad/s)2

]
.

Fig. 1: Quadcopter motor steering schematic

Given the torques along the three axes, according to Eu-
ler’s dynamics equation, we obtain

Jω̇ + ω × (Jω) = τ (7)

Where, J ∈ R3×3 is the moment of inertia matrix;
ω = (ωx, ωy, ωz)

T is the angular velocity vector; τ =
(τx, τy, τz)

T is the torque vector along the three axes in the
body coordinate system.

Due to the symmetry of the quadrotor structure, the iner-
tia products relative to the principal moments of inertia are
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negligible. Therefore, we take J = diag(Jx, Jy, Jz). In this
case

Jxω̇x = (Jy − Jz)ωyωz + τx

Jyω̇y = (Jz − Jx)ωzωx + τy

Jzω̇z = (Jx − Jy)ωxωy + τz

(8)

The relationship between Euler angles and body angular
velocities is as follows

 ϕ̇

θ̇

ψ̇

 =

 1 tanθsinϕ tanθcosϕ
0 cosϕ −sinϕ
0 sinϕ/cosθ cosϕ/cosθ

 ωx

ωy

ωz

 (9)

Where ϕ, θ, and ψ are respectively the roll angle, pitch
angle, and yaw angle.

The above model is nonlinear, which complicates system
analysis and controller design. By making reasonable as-
sumptions, the nonlinear model can be linearized. Below is
the linearized model of the controlled object

Gx =
Kx

s(Txs+ 1)
Kx =

4
√
2kdcT (kv0 + b)

Jx

Gy =
Ky

s(Tys+ 1)
Ky =

4
√
2kdcT (kv0 + b)

Jy

Gz =
Kz

s(Tzs+ 1)
Kz =

8kcM (kv0 + b)

Jz

(10)

3 Parameter Identification

3.1 Principle of Parameter Identification
Given the necessity to collect data from actual drone

flights, it is essential to design a closed-loop system that
facilitates takeoff. For simplicity, a cascaded proportional
controller is used. The diagram of the closed-loop system
for roll angle control is presented as follows. Note that the
angle loop is designed for ease of flight implementation, and
only angular velocity loop data is used for the identification
process.

Fig. 2: Block diagram of closed-loop system for roll angle

where ϕd [rad] is the desired roll angle, ϕ [rad] is the mea-
sured roll angle, ωxd [rad/s] is the desired roll angle angular
velocity, and ωx [rad/s] is the Measured roll angle angular
velocity; ∆σx is the incremental throttle input, the throttle is
normalized between [0, 1], and the hover throttle is approx-
imately 0.5, so the range of values ∆vx is [−0.5, 0.5]; dx
is constant external perturbation brought about by the instal-
lation of the four motors and the incomplete agreement of
the propeller model. The parameters to be recognized in the
whole system are nx,Kx,Tx.

In theory, parameters Kx,Tx could be identified based on
the system input ∆vx and output ωx. However, due to the
instability of the system being identified, low identification

accuracy, and the inability to identify disturbances nx , a sta-
ble system constructed by the desired angular velocity ωxd
and the measured angular velocity ωx is used as the system
to be identified.

The actual control output is a digital signal, which is
equivalent to sampling the continuous output and then pass-
ing it through a zero-order hold. Its equivalent structure is as
follows

Fig. 3: Discrete block diagram of a closed-loop system

The discrete closed-loop transfer function from input ωxd

to output ωx is given by

Φωx(z) =
b′1z

−1 + b′0z
−2

1 + a′1z
−1 + a′0z

−2
(11)

The closed-loop transfer function from the perturbation
nx to the output ωxdis given by

Φnx(z) =
b1z

−1 + b0z
−2

1 + a′1z
−1 + a′0z

−2
(12)

Among them
b1 = Kx(Txe

−T/Tx + T − Tx),
b0 = −Kx(Te

−T/Tx + Txe
−T/Tx − Tx),

a1 = −(1 + e−T/Tx),
a0 = e−T/Tx

(13)


b′1 = Kx2b1,
b′0 = Kx2b0,
a′1 = a1 +Kx2b1,
a′0 = a0 +Kx2b0

(14)

According to the Z-transform results, it is easy to write the
recursive formula for the output sequence ω̂x[k] in terms of
the input sequence ωxd[k] and the disturbance sequence n[k]

ω̂x[k] =− a′1ω̂x[k − 1]− a′0ω̂x[k − 2] + b′1ω̂xd[k − 1]

+ b′0ω̂xd[k − 2] + b1n[k − 1] + b0n[k − 2]
(15)

The actual measured output sequence is denoted as ωx[k].
Therefore, we aim for the sequence ω̂x[k] calculated ac-

cording to the recursive formula to closely match the actual
output sequence ωx[k], minimizing the cost function.

min J(Kx, Tx, d) =

n∑
k=1

(ω̂x[k]− ωx[k])
2 (16)

Due to the complexity of the equations, this paper em-
ploys the Particle Swarm Optimization (PSO) algorithm,
renowned for its global optimization capabilities, for solv-
ing.
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3.2 Flight Data Acquisition
The experiment employs a 450mm wheelbase frame,

JFRC U2814 KV900 motors, Hobbywing Platinum 30A
ESCs, a 5300mAh 30C battery, and APC MR 1045 pro-
pellers. We utilize a self-developed flight controller, with
a total drone mass of 2.16kg.

Fig. 4: Flight data acquisition platform

The flight controller’s sensors include an Inertial Mea-
surement Unit (IMU) and a magnetometer. The gyroscope
in the IMU supplies the craft’s angular velocity, and an Ex-
tended Kalman Filter (EKF) fuses data from the IMU and
magnetometer to estimate the drone’s attitude. The body’s
angular velocity and attitude serve as feedback states in the
controller. The desired attitude and hover throttle are pro-
vided by the remote controller, while the desired angular ve-
locity is determined by the attitude controller’s output.

For data recording, the flight controller is equipped with
wireless telemetry, which is linked to a personal computer
via a ground station. Data are recorded at a frequency of 500
Hz.

3.3 Parameter Identification Results
• Comparison of Roll Angle Recognition Output
In the experiments, Kx1 = 5, Kx2 are selected as 0.6,

0.8, 1.0 three sets of parameters, respectively, and five sets
of experiments are conducted, and each experiment selects
10s of data are used to recognize the parameters. The results
of trajectory following are as follows

Fig. 5: Trajectory following results

It can be observed that the output obtained from the iden-

tification system is quite close to the real output, without
any signs of divergence or significant deviation. In 15 ex-
periments, the angular velocity errors are as shown in the
following graph:

6.png

Fig. 6: Experimental results of angular velocity error

Except for the 6th experiment, the median error is around
0 rad/s, with 50% of the errors within 0.1 rad/s, and all
angular velocity errors are within 0.7 rad/s. It can be seen
that the identified system closely matches the real system
with high accuracy.

• Roll Angle Parameter Identification Results
As shown in the figure, the battery used in the experiment

has a maximum voltage of 16.8V and a minimum voltage of
14.8V, which is 88.1% of the maximum voltage. Assuming
the battery voltage remains constant is referred to as Case
A, while considering battery voltage variations is referred to
as Case B. The measured parameter results are shown in the
following figure

Fig. 7: Battery voltage and disturbance
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Fig. 8: Parameter identification results

Table 1: Parameter identification results and error range
Kx Tx ωnx ξx dx

Situation A 488.4 0.0783 78.99 0.0814 -0.016
Error [-15.0, [-16.7, [-4.6, [-14.2, [-47.0,

Range(%) 16.4] 14.9] 3.4] 18.0] 56.8]
Situation B 520.57 0.0784 81.60 0.0788 -0.0150

Error [-11.1, [-16.7, [-6.2, [-12.4, [-44.6,
Range(%) 14.2] 14.9] 4.6] 15.5] 55.0]

1. From the figure, it can be seen that the variation in
battery voltage has almost no effect on the undamped natu-
ral oscillation frequency ωn. When not considering voltage
changes, the system’s ωnx is 78.98 rad/s. Considering volt-
age changes, since the battery voltage is not greater than 1,
the obtained ωnx slightly increases to 81.60 rad/s.

2. The battery voltage will change the damping ratio ξx
to some extent; as the voltage decreases, the damping ratio
increases. This is mainly because when the battery voltage is
lower, the hover throttle will slightly increase, and since the
motor speed is not entirely linear with the throttle, it leads to
an error.

3. Considering the variation in battery voltage, the open-
loop gain of the system almost does not change with battery
voltage variation, but it slightly increases with the increase
of controller parameters.

4. The motor time constant will slightly decrease with the
decrease in voltage. This is mainly because when the battery
voltage is lower, the hover throttle slightly increases, leading
to a slight change in the system’s equilibrium point.

5. The mean of the disturbance in the system is -0.015,
but its range varies greatly. This is mainly due to external
factors such as wind force, changes in hover throttle, and
nonlinearities during motion.

It can be seen that the variation in battery voltage has a
minimal effect on the system. Therefore, it is assumed that
the battery voltage remains constant.

• Roll, Pitch and Yaw Results
Using the same method as for the roll angle, and for sim-

plicity, only 3 sets of data are used instead of 15. The pa-
rameters for pitch and yaw angles identified are as follows

Table 2: Three-axis parameters for roll, pitch and yaw
ωn ξ K T d

roll 78.99 0.0814 488.4 0.0783 -0.016
pitch 81.92 0.0883 466.2 0.0701 -0.021
yaw - - 31.94 0.0000 -0.033

It can be observed that the results for the pitch angle loop
are essentially similar to those for the roll angle loop. The
differences mainly arise from the incomplete symmetry of
the quadrotor. For example, if the battery is placed in the
y-direction, it may result in the moment of inertia about the
y-axis being slightly larger than that about the x-axis, leading
to a decrease in the corresponding open-loop gain.

The open-loop gain for the yaw angle loop is smaller by
an order of magnitude compared to the horizontal attitude
angles. The motor time constant is close to 0, primarily be-
cause the yaw response is slow, and the motor response time
can be neglected. The entire system approaches an integra-
tor system. In this case, the undamped natural oscillation
frequency and the damping ratio approach infinity, which do
not have practical physical significance.

4 Model Validation

4.1 Controller Design
To verify the accuracy of the model, the controller is de-

signed to ensure the UAV can fly well, facilitating compari-
son between the model output and actual measured values.

The angular velocity loop utilizes velocity feedback and
proportional control, while the angular loop employs pro-
portional control. The controller diagram is shown below

Fig. 9: Controller block diagram

where Ωd[rad] is the desired angle; Ω[rad] is the mea-
sured roll angle; ωd[rad/s] is the desired angular velocity;
ω[rad/s] is the measured roll angle angular velocity; and
∆v is the throttle increment input.
Hd(s) = Kds provides negative feedback on its deriva-

tive, enhancing the dynamic performance of the system.
The Hf (s) = α

s+α link realizes the low-pass filtering of
the differential signal, and the cutoff frequency of this first-
order filter is α[rad/s].This link on the one hand can effec-
tively reduce the interference of noise, can effectively solve
with the control frequency increases, the noise ”amplifica-
tion” phenomenon, on the other hand, makes the differential
signal physically achievable, not exceeding the maximum
throttle can provide.
Gc(s) = Kp link changes the open-loop gain of the sys-

tem, which is used to regulate the response speed of the sys-
tem. When Kp is small, the system response is slow, and
there is no overshoot or small overshoot; when Kp is large,
the system response is fast, and the overshoot is big.
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Gn(s) = 1 link is a feedforward control by disturbance,
which is used to minimize the effect of the disturbance on
the system, e.g., to reduce the steady-state error. This feed-
forward is also ultimately negative feedback and the distur-
bance needs to be subtracted to eliminate it.
g(·) is a limiter to avoid system instability caused by too

large a physically unrealizable input or by the system enter-
ing the nonlinear region.
Ga(s) = Ka adjusts the angular loop gain, and Ka is

smaller for a slower system response and larger for a faster
system response, but may result in overshooting.

The controller parameters are shown in the table below

Table 3: Controller parameters
controller roll-loop pitch-loop yaw-loop
parameters parameters parameters parameters

Ka 6.0 6.0 6.0
Kp 0.12 0.12 0.12
Kd 0.003 0.003 0
α 50 50 0

limit amplitude ±0.15 ±0.15 ±0.1

As battery voltage variation is not considered, the real
input for the four motors is the sum of the hover throttle
and throttle increment. Here, the throttle increment is repre-
sented by the outputs of the angular velocity loop controller
∆σx,∆σy ,∆σz . The hover throttle σ0 is directly provided
by the throttle channel of the remote controller


σ1
σ2
σ3
σ4

 =


1 1 1 1
−1 1 −1 1
−1 −1 1 1
1 −1 −1 1




∆σx
∆σy
∆σz
σ0

 (17)

4.2 Comparison of Results
The controller described above was designed and imple-

mented in the flight controller to control the UAV. The re-
mote controller signal was used as the reference signal. Roll,
pitch, and yaw attitudes along with angular velocity data
were collected. The desired attitude was loaded into the sim-
ulation environment, and the differences between simulation
output and real output were compared. As shown in the fig-
ure below, both the angles and angular velocities can effec-
tively track the reference signals, and the simulation output
closely matches the real output.

Fig. 10: attitude and angular velocity data of roll angular

Fig. 11: attitude and angular velocity data of pitch angular

Fig. 12: attitude and angular velocity data of raw angular

The error curves and error distributions between sim-
ulation and real output are depicted in the following
figures.The roll angle error is mostly within the range
[−0.02, 0.02] rad. The pitch angle error is mostly within the
range [−0.04, 0] rad, with a non-zero mean value, mainly
due to inaccurate estimation of external disturbances. The
yaw angle error is mostly within the range [−0.04, 0.04] rad.
Compared to the horizontal attitude angles, the yaw angle
error is slightly larger, primarily due to the slightly lower
model accuracy.

Fig. 13: Error curves between simulated and real outputs
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Fig. 14: Error distribution between simulated and real out-
puts

The mean and variance of the errors are as follows

Table 4: Mean and variance of attitude angle error
Roll Pitch Yaw

µe[rad] -3.634×10−3 -1.565×10−2 -5.334×10−4

σ2
et[rad] 8.510×10−3 9.406×10−3 1.796×10−2

NRMSE 96.62% 92.09% 97.08%

Table 5: Mean and variance of angular velocity error
X rate Y rate Z rate

µ[rad/s] 4.765×10−4 -1.044×10−3 -1.808×10−3

σ2
e [rad/s] 6.449×10−2 5.889×10−2 2.433×10−2

NRMSE 92.78% 92.93% 92.19%

From the above results, it can be seen that for the angle
prediction, the error between the model output and the mea-
sured output has a mean value of 1° and the variance is less
than 2°; for the angular velocity prediction, the error between
the model output and the measured output has a mean value
of 0.6°/s and the variance is less than 3.8°/s; this verifies the
accuracy of the model and the parameter identification. The
fitting accuracy is evaluated here using the normalized mean
square error (NRMSE), which is defined as

c = (1− ∥y − ŷ∥
∥y − y∥

)× 100% (18)

where y is the measurement sequence, y is the mean value
of the sequence y, ŷ is the model output sequence, ∥·∥ is the
vector paradigm, and c is the NRMSE value. The value of c
ranges from (−∞, 1]. If the model output is the same as the
measurement output, i.e., ŷ = y, then c = 1, otherwise c < 1,
and a larger value of c indicates a more accurate model.

The accuracy of NRMSE did not reach 100%, mainly due
to two reasons: firstly, the model is not entirely accurate, and
secondly, there is some level of noise in the measurement
data.
5 Conclusions

This paper models the quadrotor by treating throttle incre-
ment as the input and angular velocity as the output, con-
verting the controlled object of the angular velocity loop

into a second-order system, and identifying model param-
eters through closed-loop design. Based on this model, con-
trollers for both the angular velocity and attitude loops are
developed and experimentally validated, with an accuracy of
over 90% in terms of NRMSE..

In future work, we aim to extend the closed-loop model
to incorporate quadrotor velocity and position control. Ad-
ditionally, we plan to design innovative controllers, based on
the identified model, to enhance control performance.

References
[1] J. Lin, Y. Wang, Z. Miao, H. Zhong and R. Fierro, Low-

Complexity Control for Vision-Based Landing of Quadrotor
UAV on Unknown Moving Platform, in IEEE Transactions
on Industrial Informatics, vol. 18, no. 8, pp. 5348-5358, Aug.
2022, doi: 10.1109/TII.2021.3129486.

[2] D. Mellinger and V. Kumar, Minimum snap trajectory genera-
tion and control for quadrotors, 2011 IEEE International Con-
ference on Robotics and Automation, 2011, pp. 2520-2525,
doi: 10.1109/ICRA.2011.5980409.

[3] P. Foehn and D. Scaramuzza, Onboard State Dependent LQR
for Agile Quadrotors, 2018 IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 6566-6572, doi:
10.1109/ICRA.2018.8460885.

[4] X. Zhang, Y. Wang, G. Zhu, X. Chen and C. -Y. Su,
Discrete-Time Adaptive Neural Tracking Control and Its
Experiments for Quadrotor Unmanned Aerial Vehicle Sys-
tems, in IEEE/ASME Transactions on Mechatronics, doi:
10.1109/TMECH.2021.3112470.

[5] D. Shi, X. Dai, X. Zhang and Q. Quan, A Practical Per-
formance Evaluation Method for Electric Multicopters, in
IEEE/ASME Transactions on Mechatronics, vol. 22, no. 3, pp.
1337-1348, June 2017, doi: 10.1109/TMECH.2017.2675913.

[6] P. Pillay and R. Krishnan, Modeling, simulation, and analysis
of permanent-magnet motor drives PartII: The brushless DC
motor drive, in IEEE Transactions on Industry Applications,
vol. 25, no. 2, pp. 274-279, 1989, doi: 10.1109/28.25542.

[7] A. S. Sanca, P. J. Alsina and J. d. J. F. Cerqueira, Dynamic
Modelling of a Quadrotor Aerial Vehicle with Nonlinear In-
puts, 2008 IEEE Latin American Robotic Symposium, 2008,
pp. 143-148, doi: 10.1109/LARS.2008.17.

[8] D. Sartori and W. Yu. Experimental Characterization of a
Propulsion System for Multi-rotor UAVs, Journal of Intelligent
& Robotic Systems, 2019.

[9] A. Letalenet and P. Morin, Identification and evaluation of
a force model for multirotor UAVs, 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp.
4280-4286, doi: 10.1109/ICRA40945.2020.9197317.
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Abstract: In this paper, the mathematical model of dual-quadrotor suspension system is established, and the high-order fully-
actuated (HOFA) model of the system is derived. Then the direct parametric control method of HOFA nonlinear systems is
used to design a controller of the dual-quadrotor suspension system. Simulation results about tracking a circle of the suspension
system are presented, which show that HOFA controller have good control effects with relatively smaller tracking errors, while
the thrusts of the two quadrotors are within a reasonable range. Compared with a benchmark PD controller in [1], the HOFA
controller designed in this paper can mitigate the drastic oscillation in positions of the quadrotor and the load, while the fluctuation
of the load attitudes are maintained within a reasonable range.

Key Words: Dual quadrotors, suspension systems, high-order fully-actuated (HOFA) method

1 Introduction

Quadrotors are a type of unmanned aerial vehicles, and
they are being used in an increasingly wide range of appli-
cations. Quadrotors have the ability to take off and land ver-
tically, which gives them a high degree of flexibility to per-
form services such as aerial inspection [2], surveillance [3]
and mapping [4]. Quadrotors have the potential to play a
huge role in a variety of industries and services such as agri-
culture, disaster relief, search and rescue, parcel delivery, in-
spection and surveillance.

A quadrotor suspension system is a system for transport-
ing items by hanging them from a drone. It typically con-
sists of one or more drones with ropes or robotic arms that
can be remotely controlled or pre-programmed to hang items
down for transportation. Quadrotor suspension system can
be used in many areas such as logistics and transportation,
firefighting, search and rescue, and building and construc-
tion, such as Amazon’s emerging package delivery system
service using quadrotors. Advantages of using quadrotors
for load transportation include high flexibility, fast response,
and low operating cost.

The control objective of a quadrotor suspension system is
generally to make part of the system states track a reference
command and stabilize the rest of the states. PID controllers
are the most typical linear controllers commonly used for
position and attitude control. The performance of PID con-
trollers can be optimized by tuning the feedback gain, and
is robust to disturbance such as the adjustment of a payload
mass. The PID controller is often used in combination with
other control methods as a basic controller, or as the refer-
ence controller to compare the performance of other con-
trollers in simulation. The paper [5] uses a PID controller to
stabilize the position and attitude of a quadrotor suspension
system.

Linear controllers can only deal with a simplified model of

This work was supported by the Science Center Program of National
Natural Science Foundation of China under Grant 62188101, the Natural
Science Foundation of China under Grants 62273227, 92367203, and the
Natural Science Foundation of Shanghai under Grant 21ZR1430500.

the quadrotor suspension system and have a limited scope of
application. Because the system model is nonlinear, nonlin-
ear control methods need to be used in actual flight to ensure
global stability. Feedback linearization has the advantages
of simple structure and easy stability analysis, and is widely
used in the quadrotor suspension system. The paper [6, 7]
use feedback linearization to achieve finite time control of
quadrotor’s takeoff and trajectory tracking, and extend feed-
back linearization to the quadrotor suspension system. The
research [8] decomposes the control input into the horizontal
and vertical components of the quadrotor suspension system,
where the horizontal component is controlled using feedback
linearization.

If the system has too many degrees of freedom, it is
difficult to write the system in non-cascade form for con-
troller design and stability analysis, and sometimes the sys-
tem model is transformed into cascade form using backstep-
ping method for design. In the study of a single quadro-
tor suspension system, the controller in the paper [9] is de-
signed through Lyapunov and backstepping techniques, and
the control laws for the thrust and angular velocity are pre-
sented, which guarantee the closed-loop system to be asymp-
totically stable. The work [1] considers a system composed
of a bar tethered to two aerial vehicles, and develop a back-
stepping controller for the position and attitude tracking. The
first control step is to provide an input and a state trans-
formations which convert the system vector field into one
that highlights the cascaded structure of the problem. Then
this paper designs a controller for the transformed system
by exploring that cascaded structure.The research in [10]
has similar results, but its stability analysis does not use the
traditional Lyapunov asymptotic stability theorem, but first
proves that its Lyapunov function is bounded, and then de-
rives the asymptotic stability of the state error based on the
relationship of each state in the system model equation.

Due to the physical laws such as Newton’s laws, there
are many fully-actuated systems in the physical world, and
many of them can be modeled as second-order or higher-
order models compounded from second-order models. How-
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ever, in past studies, the state-space method has been com-
monly used to study these models by generalizing them into
augmented first-order systems. Although the first-order sys-
tem approach has played a great role in the development of
control system science, and is a good way to deal with prob-
lems such as state response analysis and observer design of
control systems, it does not provide any convenience in solv-
ing the control problems of dynamic systems. Converting a
high-order system into a first-order system, when the sys-
tem is nonlinear, it is not guaranteed that the controller of
the system can be definitely obtained. Even if it can be ob-
tained, the global stability of the closed-loop system may
not be guaranteed. At the same time, modeling the system
as a first order system description destroys the fully-actuated
property of the system [11], and the property can allow us
to eliminate all the dynamics of the open-loop system no
matter the system is linear or nonlinear, while establishing
completely new ideal closed-loop dynamics. This approach
provides an ideal constant linear closed-loop system even in
the case of nonlinear systems. Considering the above char-
acteristics, we use the high-order fully-actuated(HOFA) con-
troller in the research of the dual-quadrotor suspension sys-
tem.

2 System Description

2.1 Notation
The map S(x) yields a skew-symmetric matrix as

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0


for x = [x1;x2;x3], which can be shown to satisfy S(a)b =
a×b, for any a, b ∈ R3. S2 =

{
x ∈ R3 : xTx = 1

}
denotes

the set of unit vectors in R3.

2.2 System Modeling
The considered dual-quadrotor suspension system follows

the same as the one in [1]. For convenience and complete-
ness, we briefly describe the system model in this section.
Consider the schematic diagram of a system of dual quadro-
tors with a slung load shown in Fig. 1, where two quadrotors
are connected, by ropes, to the ends of a load that is ab-
stracted as a bar-like object. The motion of the quadrotors
causes the load to move in position and attitude. In order
to facilitate the analysis of the system model, the slung load
is simplified to be a homogeneous rod, and the slung rope
is regarded as a massless, inelastic, and flexible rope that is
rigidly connected to the quadrotors. In addition, since this
paper is concerned with the stabilization of the system, we
ignore external environmental perturbations. Physical quan-
tities are shown in the figure. The symbol ui ∈ R3 repre-
sents the input thrust of the ith quadrotor. Define the state
variables of the dual-quadrotor slung system as

z = (zk, zd) = (p, n, p1, p2, v, ω, v1, v2) . (1)

In the above equation, zk = (p, n, p1, p2) corresponds to the
kinematic variables and zd = (v, ω, v1, v2) corresponds to
the dynamic variables. The state variable p denotes the load
position, and n denotes the load attitude. p1 denotes the po-
sition of the first quadrotor, and p2 denotes the position of

the second quadrotor. v denotes the speed of load transla-
tion, and ω denotes the angular velocity of load rotation. v1
denotes the flight speed of the first quadrotor, and v2 denotes
the flight speed of the second quadrotor. The meaning of
other physical quantities in Fig. 1 is given in Table 1.

Table 1: Names and meanings of quantities in Fig. 1
Quantity Meaning

m mass of the load
m1 mass of the first quadrotor
m2 mass of the second quadrotor
l1 length of the first rope
l2 length of the second rope
T1 tension of the first rope
T2 tension of the second rope
d1 distance from load’s center to one end
d2 distance from load’s center to the other end
J moment of inertia of the load
g acceleration of gravity
e1 unit vector (1, 0, 0)
e2 unit vector (0, 1, 0)
e3 unit vector (0, 0, 1)

Define unit vectors associated with the ropes:

ni (zk) =
pi − (p+ din)

∥pi − (p+ din)∥
=
pi − (p+ din)

li
∈ S2,

which means the unit vector in which the ith rope is located.
From the kinematic analysis we can get

żk =


ṗ
ṅ
ṗ1
ṗ2

 =


v

−S(n)ω
v1
v2

 , (2a)

and from the kinetic analysis we can get

żd =


v̇
ω̇
v̇1
v̇2

 =


∑2

i=1
Ti(z,u)

m ni (zk)− ge3∑2
i=1

Ti(z,u)
J S (din)ni (zk)

u1

m1
− T1(z,u)

m1
n1 (zk)− ge3

u2

m2
− T2(z,u)

m2
n2 (zk)− ge3

 . (2b)

In the above equation, g represents the acceleration of grav-
ity, u = [u1;u2] represents the input of the system, Ti(z, u)
represents the tension in the ith rope, and e3 = (0, 0, 1)
represents the Z-axis in the Earth fixed coordinate system.
T1(z, u) and T2(z, u) constitute the internal forces of the
ropes whose expressions cannot be obtained by the Newton-
Euler equations of motion. However, the state locus is con-
strained to the state set z in Eq.(1), forcing the vector field
żk and żd in Eq.(2a) and Eq.(2b) to be in the tangent set of
the state set. This constraint uniquely defines the tension on
the cable [1][

T1(z, u)
T2(z, u)

]
=MT (zk)u+

[
T1 (z, 06)
T2 (z, 06)

]
, (3)

where, with a = S(n)n1 (zk), b = S(n)n2 (zk) and c =

1569  



quadrotor1quadrotor2

� �1

1

� �1
� �� �1��

�1�1 	
� � 	


bar

���

�

� ∈ �

 1

Fig. 1: Dual quadrotors with a slung load

n1 (zk)
T
n2 (zk), MT (zk) is a 2× 6 matrix satisfying

MT (zk)u

=

[
1 + m

m1
+

md2
1

J ∥a∥2 c+ md1d2

dTb b

c+ md1d2

J aTb 1 + m
m2

+
md2

2

J ∥b∥2

]−1

×

[
mn1(zk)

Tu1

m1

mn2(zk)
Tu2

m2

]
,

and T1 (z, 06) and T2 (z, 06) are some terms that are deter-
mined by the system state but independent of the input ui:[
T1 (z, 06)
T2 (z, 06)

]

=

[
1 + m

m1
+

md2
1

J ∥a∥2 c+ md1d2

dTb b

c+ md1d2

J aTb 1 + m
m2

+
md2

2

J ∥b∥2

]−1

×

(
m

[
∥v1−(v+d1S(ω)n)∥2

l1
∥v2−(v+d2S(ω)n)∥2

l2

]
+m∥ω∥2

[
d1n

Tn1 (zk)
d2n

Tn2 (zk)

])
.

2.3 An HOFA Model of the Dual Quadrotors
From (2a) and (2b), the relationship between quadrotors’

position and input is{
m1p̈1 + T1(z, u)n1 (zk) +m1ge3 = u1,
m2p̈2 + T2(z, u)n2 (zk) +m2ge3 = u2.

(4)

In order to obtain an HOFA dynamic model of p1 and p2
versus u1 and u2 for control design, substituting (3) into (4)
yields

m1p̈1 +
T1 (z, 06)

l1
p1 −

T1 (z, 06) (p+ d1n)

l1
+m1ge3

= ([I3 03×3]−
p1 − (p+ d1n)

l1
[1 0]MT (zk))u,

m2p̈2 +
T2 (z, 06)

l2
p2 −

T2 (z, 06) (p+ d2n)

l2
+m2ge3

= ([03×3 I3]−
p2 − (p+ d2n)

l2
[0 1]MT (zk))u.

Then a second-order fully-actuated model of the system can
be obtained as[

m1I3 03×3

03×3 m2I3

]
p̈12 +

[
T1(z,06)

l1
I3 03×3

03×3
T2(z,06)

l2
I3

]
p12

−

[
T1(z,06)(p+d1n)

l1
+m1ge3

T2(z,06)(p+d2n)
l2

+m2ge3

]
(5)

=

(
I6 −

[
p1−(p+d1n)

l1
03×1

03×1
p2−(p+d2n)

l2

]
MT (zk)

)
u,

where

p12 =

[
p1
p2

]
.

To simplify the presentation of the control law design in the
next section, (5) can be rewritten in a compact form of

A2p̈12 +A0p12 − ξ = Bu, (6)

whereA2, A0 andB are some 6×6 matrices and ξ is a 6×1
vector associated with the forces due to the earth gravity and
the rope tension. Note thatA2 andB are reversible matrices.

3 Control Law Design

For the second-order fully-actuated system Eq.(6), we de-
sign a control law consisting of two parts

u = uc + uf ,

where uc compensates for ξ

uc = −B−1ξ;

while uf is the state feedback

uf = K0p12+K1ṗ12+vref =
[
K0 K1

] [ p12
ṗ12

]
+vref .

K0,K1 ∈ R6×6 is the feedback gain to be designed and
vref is the external signal. Applying this controller to the
second-order fully-actuated system Eq.(6) yields the follow-
ing closed-loop system

A2p̈12 +Ac
1ṗ12 +Ac

0p12 = Bvref , (7)
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where {
Ac

0 = A0 −BK0,
Ac

1 = −BK1.

Define

P =

[
p12
ṗ12

]
,

the closed-loop system Eq.(7) is transformed into the follow-
ing form

Ṗ = AcP +Bcvref ,

with

Ac =

[
0 I6

−A−1
2 Ac

0 −A−1
2 Ac

1

]
,

Bc =

[
0

A−1
2 B

]
.

According to the research [12, Theorem 1], for a chosen ma-
trix F ∈ R12×12, there exists a constant matrix Z ∈ R6×12

and a pair of gain matrices K0 ∈ R6×6 and K1 ∈ R6×6,
such that [

Z
ZF

]−1

Ac

[
Z
ZF

]
= F,

while ∣∣∣∣ Z
ZF

∣∣∣∣ ̸= 0.

At the same time, K0 and K1 can be represented by Z, F
and other matrices about the system

[K0 K1] = B−1(A2ZF
2 +A1ZF +A0Z)

[
Z
ZF

]−1

.

We only need to choose the appropriate matrices Z and F
to complete the controller design, and the choice of matrices
turns out to be very broad [12]. Since matrix F is similar to
matrix Ac, in order to stabilize the system, the eigenvalues
of matrix F should be less than 0. The selection of matrix Z
only needs to satisfy that the determinant of matrix [Z;ZF ]
is not equal to 0. At the same time, we can further design
matrix F and Z according to the requirement of control ob-
jective such as rapidity.

4 Simulation

The dual-quadrotor suspension system is modeled
in MATLAB. Consider the system with parameters
m = 0.15kg, m1 = m2 = 0.18kg, d1 = −d2 = 0.3m,
l1 = l2 = 0.5m. In the initial state, the center position of
the load is (−4, 0, 0), the attitude of the load is (0, 1, 0),
and the positions of the two quadrotors are (−2, 1, 1.4)
and (−2,−1, 1.4). The task is to move the dual-quadrotor
suspension system along a circle in the (x, y) plane with
the load’s attitude tangent to the circle. The center of
the circle is located at the position (−4, 0, 0) and the
radius is 4m. The system is controlled by the high-order
fully-actuated controller designed in this paper. The param-
eters of the controller are selected as Z = [I6 I6] and F =
diag ([−2,−3,−4,−5,−6,−7,−8,−9,−10,−11,−12,−13]) .
The 3D trajectory is plotted as Fig. 2, where the red solid
line is the trajectory of the load and the red dashed line is
the desired trajectory.

Fig. 2: The three-dimensional trajectory of the system

Trajectories of the two quadrotors’ position are obtained
as Fig. 3(a) and Fig. 3(b). The solid line represents the com-
ponents of the actual quadrotor trajectory in the three coordi-
nate axes, and the dashed line represents the corresponding
desired trajectory.
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Fig. 3: Position of two quadrotors under HOFA control

From Fig. 3(a) and Fig. 3(b) we can see that the two
quadrotors are able to track the desired trajectory very well.
In actual flight, it is required that quadrotors’ thrust should
be within its own capability and avoid sudden changes in
thrust as much as possible. The magnitude of thrust of the
two quadrotors is plotted as Fig. 4.
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Fig. 4: Two quadrotors’ thrust under HOFA control

From Fig. 4 we can see that the x-axis and y-axis compo-
nents of the two quadrotors’ thrust fluctuate between −2N
and 2N after about one second, while the z-axis component
stays at about 16N . Overall, the thrust does not fluctuate
greatly and is within the capability of the quadrotor, which
can meet the requirements of practical use.

We plot the trajectory of load’s position and attitude as
shown in Fig. 5(a) and Fig. 5(b). In order to visualize the
load’s attitude more intuitively in Fig. 5(b), we use two an-
gles ψ and θ to measure the change of the load’s attitude.
Where ψ denotes the angle of load’s rotation in the (x, y)
plane and θ denotes the angle between the load and (x, y)
plane.

We can see from Fig. 5(a) and Fig. 5(b) that the load is
able to track on the desired trajectory of position and atti-
tude. The simulation shows that high-order fully-actuated
controller can be applied to the trajectory tracking of the
dual-quadrotor suspension system with less tracking error.

For comparison, we conduct the same simulation exper-
iment using the PD controller designed in literature [5] for
the dual-quadrotor suspension system. The control law is
defined as

u = u⋆ +
(
u1

pd, u2
pd
)
,

where u⋆ represents the input when the system is in equilib-
rium:

u⋆ =

((
m1 +

md2
d2 − d1

)
ge3,

(
m2 +

md1
d1 − d2

)
ge3

)
,

and uipd are as follows (i = 1, 2) :

updi =

 mi

(
kp,xe

T
1 (pi − p⋆i ) + kd,xe

T
1 vi
)

mi

(
kp,ye

T
2 (pi − p⋆i ) + kd,ye

T
2 vi
)(

mi +
m
2

) (
kp,ze

T
3 (pi − p⋆i ) + kd,ze

T
3 vi
)
 .

The PD controllers’ parameters in this simulation are kix,p
=

2.9, kix,d
= 2.4, kiy,p = 2.9, kiy,d

= 2.4, kiz,p =
1.0, kiz,d = 1.2. Trajectories of the two quadrotors’ posi-
tion are obtained as Fig. 6(a) and Fig. 6(b), and trajectories
of load’s position and attitude are shown in Fig. 7(a) and Fig.
7(b).

Comparing Fig. 3(a) - Fig. 3(b) and Fig. 6(a) - Fig.
6(b), we can see that the high-order fully-actuated controller
for the dual-quadrotor suspension system can achieve better
control effect of quadrotors’ position than the PD controller
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Fig. 5: Trajectory of the load under HOFA control

designed in literature [5] with less tracking error. Comparing
Fig. 5(a) - Fig. 5(b) and Fig. 7(a) - Fig. 7(b), we can see
that the high-order fully-actuated controller can obtain bet-
ter tracking result of load’s position than the PD controller
while the attitude trajectories are not much different.

5 Conclusion

We can conclude that the high-order fully-actuated con-
troller can achieve better tracking effect than the PD con-
troller for the dual-quadrotor suspension system, while
avoiding the difficulty of tuning parameters of the PD con-
troller. The high-order fully-actuated controller has better
control effect than the PD controller is because the high-
order fully-actuated controller is designed according to the
kinematics and dynamics of the system, instead of rely-
ing only on the position and velocity information of two
quadrotors, which is the case of the PD controller. How-
ever, the high-order fully-actuated controller designed in this
paper requires the position and attitude information of the
load, which are difficult to obtain in real scenarios. How to
solve this problem is subject to further research in the fu-
ture.
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Abstract: This paper proposes an incremental terminal angle constrained guidance law for the interception of maneuvering 
targets. The guidance commands are first derived based on the nonlinear PD-like twisting control as a base-line. Then, an 
incremental guidance law of the baseline command is presented based on the incremental twisting algorithm such that the 
robustness can be further enhanced. The incremental twisting guidance law has a simple structure and exploits the latest 
guidance information as closed-loop feedback to the system. Numerical simulations are carried out against various 
maneuvering targets with different terminal angle constraints. Simulation results show that the constructed guidance scheme is 
effective in achieving desired terminal angles while capturing maneuvering targets. 
Key Words: Incremental guidance, homing guidance, terminal angle constraint 

 
 

1 Introduction 
Proportional navigation guidance (PNG) is generally 

applied in the tactical guided missiles’ trajectory generation 
task [1]. Research on PNG has long been a hot topic since 
its first conception during the World War II, and one early 
study example of PNG was reported [2]. Soon after the war, 
the first missile to use PNG, named Lark missile, was 
tested [3]. As a matter of fact, PNG is proved to be optimal 
in certain cases [4]. With the increased mission 
requirement, some scenarios that PNG law has limited 
capability promote the development of advanced guidance 
laws. An instance can be referred to the impact angle 
constraint. This requirement has a crucial meaning, e.g., 
threats like well-armed warships and tanks can hardly be 
destroyed by normal tactical missiles unless being hit with 
a specific angle from its side or top, respectively [5, 6]. 

One early work proposing a guidance law with impact 
angle constraints was presented in [7], where a guidance 
law for ballistic re-entry vehicles was derived using linear 
quadratic optimization. Then, the optimal guidance laws 
with terminal angle requirements were investigated in [5, 8, 
9, 10]. This approach is also known as the optimal 
guidance. In [5], the terminal angle guidance was solved by 
using the optimal control to adjust the terminal maneuver 
acceleration. C. Ryoo generalized the optimal guidance 
with specified impact angle [8]. In [9], an optimal terminal 
angle guidance law was presented, and the field-of-view 
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(FOV) constraint was also considered. L. Hou developed a 
time and angle constraint guidance law, where the optimal 
control is also used[10]. Another nature way comes from 
modifying the origin PNG. This makes the guidance format 
like the PNG, and is able to handle impact angle or other 
constraints [11, 12, 13, 14]. For example, a variable gain 
PNG law was developed in [11]. The desired terminal 
angle was achieved by higher navigation gain at a closer 
stage. By adding the impact angle error as a feedback term 
to PNG law, an impact angle guidance law was presented 
in [12]. Another well-known guidance method based on 
PNG to address this issue is called biased proportional 
navigational guidance law [13, 14]. In [13], the PNG law 
was modified using the trajectory shaping approach. The 
terminal angle constraint was achieved by a time-varying 
PNG scheme [14].  

The terminal angle constraint becomes challenge to be 
achieved when facing maneuvering targets and complex 
perturbation such as measuring errors and noises. As a 
robust control method, sliding mode control (SMC) aims to 
eliminate the terminal angle error by enforcing an error-
varied sliding surface to the origin using the sign function. 
In [15], an impact angle guidance was developed using 
SMC and virtual target technics. L. Bai proposed a 3-D 
SMC guidance law with terminal angle constraint, and the 
FOV limit was also considered [16]. A sliding mode impact 
angle guidance was proposed against maneuvering targets 
in [17]. In [18], an impact angle guidance was developed 
with finite time convergence. A SMC-based guidance was 
presented against constant moving and maneuvering targets 
in [19]. In [20], the authors proposed a multivariable 
twisting control-based terminal angle guidance law against 
various target motions. The twisting guidance method 
shows good performance with strong robustness and simple 
structure that is feasible in intercepting maneuvering 
targets. Note that the guidance law parameter selection for 
robustness depends on the perturbation to be rejected. 
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Higher perturbation bounds would require a greater 
guidance gain that has risks for causing chattering issue in 
practice. Another issue is that the guidance performance is 
affected by the measuring errors and noises in practice. 
How to avoid using full guidance information in generating 
guidance commands becomes crucial for reliability 
maintenance under complex & harsh working conditions. 
Therefore, it is meaningful to provide solutions for 
enhancing the guidance robustness while reducing the 
guidance gains and relying not on all guidance information, 
especially coupled line-of-sight (LOS) dynamics. 

Considering the above points, this paper aims to design 
an incremental 3-D twisting guidance law for disturbance 
rejection with terminal angle constraints. It is an 
incremental version of the conventional twisting guidance 
law that has good performance in eliminating both the LOS 
errors and rates. Theoretical design and simulations for 
both guidance laws are provided for comparison. 

The paper is organized as follows. Sec. 2 describes the 
problem and LOS dynamics. Sec. 3 presents the guidance 
law design. In Sec. 4, simulations are conducted, and the 
conclusions are remarked in Sec. 5. 

Notions: 
  denotes the 2-norm of a vector in Euclidean space. 

2 Model Description 

2.1 Engagement geometry 

 
Fig. 1. Guidance geometry 

Considering a missile (M) and a target (T) engaged in 3-
D space, as is depicted in Fig. 1. Both vehicles can be 
regarded as points of mass, thus the attitude dynamics is 
ignored. I I IOX Y Z stands for the inertial ground reference 
frame, L L LOX Y Z is for the LOS reference frame, where 
OX is the LOS direction measured from the missile. 

M M MOX Y Z  and T T TOX Y Z  are the body coordinates of 
missile and target, respectively. As stated previously, the 
motion of attitude is not considered, then the OX  axis of 
the body coordinate coincides with the velocity direction. 

L  and L  are the elevation and azimuth angle of LOS, 
respectively. r is the range vector, and R  r  is the 
distance. Mv  and Tv  are the missile and target velocity, 
and their magnitudes are defined as M MV  v , T TV  v . 

M , M  are the flight path angles, and M , M  are the 
lead angles. The missile and target lateral acceleration are 
denoted as yMa , zMa  and yTa , zTa . 

2.2 The 3-D coupled LOS dynamics 

Given the above 3-D guidance model, the LOS dynamics 
is given as 
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The derivation of L  and L  contains couplings, which 
hinders the coupled guidance law design in both the 
longitude and lateral plane. 

3 Three-Dimensional Disturbance Rejection 
Guidance Law Design 

To enhance the robustness, a 3-D terminal angle 
guidance law using the twisting algorithm[20] is presented 
for disturbance rejection. First, the problem is tackled by 
scaling the errors between expected terminal angles and the 
real ones. Then, the guidance law is constructed via the 
single variable twisting algorithm. To further enhance the 
robustness and guidance performance against maneuvering 
targets with reduced guidance information, an incremental 
twisting algorithm-based guidance law is designed.  

3.1 Preparation 

The approaching LOS angles are defined as 
lim

f
LA pr

t
p

t
L 


  

lim
f

LA pr
t

p
t

L 


  

where ft  is the time of collision. lim
ft

f
t

R R


  is the miss 
distance, or the final relative distance. It is the destination 
for a guidance law to meet the target as close as possible, 
thus 0fR   is the basic goal. For a guidance law with 
terminal angle demands, there will be a set of expected 
final LOS angles Lf  and Lf , and the approaching angles 
should be close to them. Hence, the guidance law is to meet 
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  (3) 

3.2 Twisting algorithm-based guidance law 

The acceleration command in longitude plane is first 
considered. Let L Lf    , then L   , because Lf  is 
a constant. Thus, the requirement LAppr Lf   in (3) 
becomes 0  . Considering (1), the LOS angular 
acceleration dynamics in the pitch plane can be given by 

 1 1
cos

(t) (t)y
M

Mc a d
R


      (4) 

where    2
1(t) 2 / sin cosL L Lc R R        is known, 

11(t) cos /y TTd a R dis   contains unknown terms 
including the target maneuver, and 1dis  is the external 
disturbance. Design the guidance command in the plane as 
  yM yeq yda a a    (5) 

where 1 / coseq Mya Rc   is the elimination term. yda is 
designed using twisting algorithm as follows 

 1 2sgn sgn
cosy

M
d

p p
a R

 






  (6) 
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where sgn  is the sign function, 1 0p  , 2 0p  . 
Substituting the designed two terms into (5) yields  
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Therefore, the dynamics in the pitch plane is 
 1 1 2sgn sgnd p p        (8) 
Assume 1dis  is bounded, and consider that the target 

maneuver is limited, then the unknown term 1d is bounded. 
Under these conditions, the dynamics with the form of (8) 
can converge to the origin [21]. In other words, it can be 
guaranteed that 0   and 0   given the designed 
guidance command with appropriate parameter selection. 

Accordingly, the guidance command in the yaw plane 
can be designed by eliminating an error named 

L Lf    . Specifically, 

 2 2
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Therein, 2dis  stands for the external disturbance. Similarly, 
the guidance command in the yaw plane is consisted of two 
parts, the elimination term 2 (t) cos / coszeq L MRa c   , 
and the twisting term zda , presented as follows 
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where 1 0q  , and 2 0q   are design parameters. 
On the basis of assuming the boundness of 2dis  and the 

target maneuver, it can be known that 0   and 0   
with the guidance command (10) for the LOS angular 
acceleration dynamics (9). 

3.3 Incremental twisting-based guidance design 

To further enhance robustness, the twisting guidance will 
be extended to an incremental version via the incremental 
guidance concept [21, 22]. Rewrite the formula (4) in its 
incremental form by Taylor expansion: 

 0
0 1
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cos
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         (11) 

where 1(t)d is the change of external disturbance in a 
sampling step, the subscript “0” denotes the last recorded 
value at the latest sampling time, and in particular, 0t  is the 
last recorded sampling time. 0yM yM yMa a a   , 

0t = t - t  is the time change from 0t  to t , i.e., the 
sampling step. 0 , 0R  and 

0M  is the value of  , R  and 
M  at time 0t , respectively. Note that the term 0  

contains unmeasurable terms, which can be real-time 
estimated using a certain observer [23].   

Then, the incremental twisting guidance law in the pitch 
plane (defined as yMa ) can be designed as  

 yM Iyeq Iytwa a a       (12) 
where the subscript I refers to the incremental design, 

00 0
ˆ / cosIye Mqa R     is the elimination term, and the 

incremental twisting term is  
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where 1 0m  , and 2 0m  . 
The complete incremental guidance law (defined as 

IyMa ) in the pitch plane can be presented as  
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Substituting (14)into dynamics (11)yields: 
 1 1 2(t) sgn sgnd m m         (15) 
Note that the system dynamics is similar to the form as 

(8), and thus the convergence can be guaranteed. 
As for the incremental guidance law design for the yaw 

plane, rewriting (9) in an incremental form by Taylor 
expansion as 

 0
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The incremental guidance law in the yaw plane is 
designed as 
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where 
00 00sin sin cos//y M M yM Lf Ra     is known in 

each step, 1 0n  , and 2 0n  are design parameters. 
Substituting zMa  into (16) yields: 
 2 1 2(t) sgn sgnd n n         (18) 
Similarly, the incremental guidance law in the yaw plane 

can also ensure that 0   and 0  . 
Notably, it can be observed from the guidance dynamics 

(8) and (15) for the pitch plane (the same analysis for the 
yaw plane) that the disturbance to be rejected in the 
incremental guidance law is the incremental value of the 
disturbance. This is usually smaller than the disturbance 
itself, especially in a small sampling period. Therefore, the 
guidance parameter selection for the incremental twisting 
guidance will be more feasible (smaller and easy-tuning) 
for chattering avoidance than the twisting one, and will be 
more robust because: 1) the latest LOS angular acceleration 
and guidance command that reflect the real condition is 
included; 2) the coupled information c1 and c2 are not 
required in the incremental guidance law.  

4 Numerical Simulation 

The twisting control-based impact angle guidance 
(TCIAG) and incremental twisting control based-impact 
angle guidance (ITCIAG) are compared for intercepting 
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both constant moving and maneuvering targets via 
conducting extensive simulations. The initial conditions are 
listed in Table 1, and the simulation runs at 1ms per step, 
the guidance period is 20ms. The well-known PNG takes 
N=4 as navigation ratio. The designed guidance parameters 
are : 1 0.02p  , 2 0.03p  , 1 0.02q  , 2 0.03q   for the 
TCIAG, and 1 0.004m  , 2 0.0038m  , 1 0.004n  , 

2 0.0038n   for the ITCIAG. 

4.1 Simulation against constant moving target 
Table 1: Initial configurations 

Missile position/m (10000,0,10000) 

Target position/m (0,10000,0) 

Missile speed/(m/s) 500 

Target speed/(m/s) 300 

Missile flight path angle/° , ) ( 30 60)( ,M M      

Target flight path angle/° , )( (0, 90)T T     

 
First, four different expected terminal LOS angle cases 

are tested against a constant moving target in Fig. 2. The 
constraint settings are in Table 2. 

 
Fig. 2: Trajectories with various terminal angles against a constant 

moving target 

Table 2: Constraint settings 

Case Lf /rad Lf /rad 

1 0 / 2  
2 / 3  / 2  
3 0 0 
4 / 6  / 3  

The achieved LOS angles under different methods are 
given in Fig. 3. The comparison results show that both 
guidance can enforce the LOS angles to the expected ones.  

 
Fig. 3: LOS angle variation under various constraints against a 

constant moving target 

4.2 Simulation against a maneuvering target 

 
(a). Case 5 

 
(b). Case 6 

 
(c). Case 7 

Fig. 4: Trajectories under different guidance laws against 
maneuvering targets 

The terminal angle is set as , )( Lf Lf  = ( / 6, / 3)    
against maneuvering targets under the following cases: 

Case 5: 0, 3yT zTa a g    

Case 6:  0, 3 sin / 8yT zTa a g t    

Case 7:    3 sin / 8 / 2 , 3 sin / 8yT zTa g t a g t      
The 3-D interception trajectories are shown in Fig. 4, the 

guidance law can create feasible trajectories for capturing 
the target from specified approach direction (terminal 
angle). The LOS angles and guidance commands are 
shown in Fig. 5 and Fig. 6, respectively. Both the TCIAG 
and ITCIAG can achieve the terminal angle constraints 
with feasible guidance commands. In addition, it is 
noteworthy that the design parameters of the ITCIAG are 
smaller than the TCIAG, this is because the perturbation to 
be rejected is an incremental value of the disturbance.  

 
Fig. 5: LOS angle variation under various constraints against 

maneuvering targets 
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(b) Case 6 

 
(c) Case 7 

Fig. 6: Guidance commands against maneuvering targets 

5 Conclusion 
In this paper, an incremental twisting algorithm-based 

terminal angle guidance is investigated in the 3-D space. 
The nonlinear PD-like twisting algorithm utilizes the angle 
errors and LOS rate information, and can guarantee the 
convergence in finite time. Its incremental extension with 
application to the guidance law design also shows the 
simple guidance structure and enhanced robustness. Future 
work would be the online observation of LOS angular 
acceleration and the influences of the noises on the 
incremental guidance scheme.  
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Predefined time sliding mode attitude tracking control for rigid
spacecraft based on fully actuated system method
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Abstract: Based on the control theory of the fully actuated system method, this paper proposes a method of attitude-tracking
control for rigid spacecraft by using a predefined time terminal sliding mode scheme. First, we establish the fully-actuated system
model for the spacecraft by using the attitude dynamics and kinematics equation, then in order to improve the control efficiency,
a new predefined time controller is designed by combining the fully actuated system method and the nonsingular terminal sliding
mode control method. Finally, the effectiveness of the designed controller is verified by numerical simulation.

Key Words: Fully actuated system method, Attitude tracking, Predefined time stability, Terminal sliding mode

1 Introduction

In recent years, spacecraft attitude control has received

extensive attention due to its wide application in space ex-

ploration, satellite communication, interactive docking and

other space missions [1, 2]. The purpose of designing the at-

titude controller is to ensure that the spacecraft attitude can

remain stable and still be able to complete the task of track-

ing the target attitude when the spacecraft has unknown ex-

ternal disturbances, parameter uncertainties, sensor failures,

and so on.

In order to solve these control problems that may exist in

aerospace missions, researchers have proposed sliding mode

control methods [3, 4] backstepping control methods [5, 6]

and other robust control methods for nonlinear systems, and

applied these methods to spacecraft attitude control. The

reference [4] designed a sliding mode attitude controller to

solve the attitude tracking problem of spacecraft systems

with inertial uncertainties and external disturbances. In [5], a

robust controller based on the backstepping control method

is proposed to solve the attitude control problem of space-

craft with external disturbance, parameter uncertainty, and

input saturation. Hu proposed a finite-time observer and a

linear finite-time terminal sliding mode controller to solve

the attitude tracking problem [7]. In [8], an adaptive fixed-

time terminal sliding mode attitude control law for rigid

spacecraft.

Moreover, most of the above works are the research

of asymptotic convergence, finite time convergence, and

fixed time convergence, comparison with the above control

method, The predefined time convergence system has the ad-

vantages of a fast convergence rate, high control accuracy,

and the upper bound of convergence time is decidable. As

a research hotspot in recent years, predefined time has re-

ceived extensive attention. In [9], a nonsingular predefined-

time controller was developed for attitude stabilization of

rigid spacecraft. It is worth noting that the above research is

based on the state space model. In [10], a continuous precise

predefined-time attitude tracking control law was proposed

for a rigid spacecraft. In [11], the time-varying technique

was applied to design a predefinedtime output-feedback con-

troller for second-order nonlinear systems.

Duan first proposed a new control method, fully actuated

system method, in 2021 [12]. Compared with the state space

method, the fully actuated system theory can compensate

the dynamic characteristics of the system without consid-

ering the complexity of the nonlinear term of the system

while keeping the physical environment unchanged. Since

the fully actuated system was proposed, recent research on

the control theory and application of the fully actuated sys-

tem has gradually increase. Duan proposed the framework

of the fully actuated system method under the conditions

like full state feedback systems [13], robust control systems

[14], adaptive control systems[15], adaptive robust control

systems[16], discrete-time systems [17]. With the develop-

ment of the fully actuated system theory, more and more re-

searchers have applied the fully actuated system theory to

practical engineering. In [18], Duan proposed the applica-

tion of generalized PID control in tracking system under the

theory of fully actuated system. In Reference [19], duan pro-

posed an optimal control method in fully actuated system

for spacecraft attitude stability. In [20] proposed high or-

der fully actuated proportional integral predictive control to

achieve cooperative control and compensate for fixed com-

munication delays.In [21], a high order fully actuated pre-

dictive sliding mode control method is designed to realize

the cooperative control of multi-agent systems. Although

the full drive system has been studied for a period of time,

there are relatively few research results on predefined time

control based on fully actuated system considering external

disturbances. Therefore, this paper studies a scheduled time

spacecraft attitude problem based on the fully actuated sys-

tem method.

The main contribution of this paper is to establish the attitude

system of the spacecraft based on the fully actuated system

method, and a new nonsingular terminal sliding mode con-

troller is proposed to complete the attitude tracking control

of the system.

2 Preliminaries

2.1 The fully actuated Attitude Kinematics and Dy-
namics model for spacecraft

The attitude model of the spacecraft is shown in Fig.1.

The origin of the coordinate system is the center of the space-

craft, the z-axis is the direction from the center of the space-

craft to the center of the earth, the x-axis is consistent with

Proceedings of the 3rd Conference on Fully Actuated System Theory and Applications
May 10-12, 2024, Shenzhen, China
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Fig. 1: Coordinate system transformation

the flight direction of the spacecraft, and the y-axis is deter-

mined by the right-handed coordinate system. It is denoted

by σ = [ϕ, θ, ψ]T , where ϕ, θ, and ψ are the roll angle,

pitch angle, and yaw angle. If the rotation of the coordinate

system is Z(ψ) → Z(ϕ) → Z(θ) the spacecraft coordinate

transformation matrix from ω to σ̇ is defined as

G =

⎡
⎣ − sin θ/ cos θ 0 cos θ/ cosϕ

cos θ 0 sin θ
− sinϕ sin θ/ cos θ 1 − cos θ sinϕ/ cosϕ

⎤
⎦
(1)

As normal, the attitude kinematic and dynamic equation of

the rigid spacecraft with the external disturbance is defined

as

σ̇ = G(σ)ω (2)

Jω̇ = −ω×Jω + u+ d (3)

where J is the inertia matrix, ω is the angular velocity, u is

the control torque, d is the external disturbance. ω× is the

skew-symmetric matrix, which is defined as

ω× =

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ (4)

From (2), there have

σ̈ = Ġ(σ)ω +G(σ)ω̇

= Ġ(σ)G−1(σ)σ̇ +G(σ)[J−1(G−1(σ)σ̇)× · J(G−1(σ)σ̇)]
+G(σ)J−1u+G(σ)J−1d

(5)

define f(σ, σ̇) = Ġ(σ)G−1(σ)σ̇+G(σ)[J−1(G−1(σ)σ̇)× ·
J(G−1(σ)σ̇)], B(σ) = G(σ)J−1 and detB(σ) �= 0.

The system satisfies the form of high order fully actuated in

literature (Duan, 2021).

σ̈ = f(σ, σ̇) + Δf(σ, σ̇) +B(σ)u (6)

where f(σ, σ̇) = −M−1(σ)D(σ, σ̇)σ̇ − M−1(σ)ξ(σ, σ̇),
B(σ) = M−1(σ) and detB(σ) �= 0

2.2 Definition and Lemma
Definition [17]: Consider the following matrix second-

order system

x(n) = f(x(0∼n−1))+Δf(x(0∼n−1))+L(x(0∼n−1))u (7)

where x is the system state and u is the control

vector, f(x(0∼n−1)) is a continuous vector function,

L(x(0∼n−1)) is continuous matrix functions, and satisfies

detL(x(0∼n−1)) �= 0.

Lemma 1 [17]: A stabilizing controller for the above system

is defined by

u = u0 + u1 (8)

where u0 = −L−1[A(0∼n−1)x(0∼n−1) + Δf(x(0∼n−1)) +
f(x(0∼n−1))] is the basic part, which aims to assign the lin-

ear term A(0∼n−1)x(0∼n−1) to the closed-loop system, u1 is

the auxiliary controller to make the system achieve improved

dynamic performance such as the predefined time conver-

gence of the state.

Lemma 2 : consider the continuous nonlinear system ẋ(t) =
z(x, t), z(0) = 0 suppose there is an unbounded Lyapunov

function V and 0 < η < 1, such that V > 0 for any nonzero

x, the following inequality can be satisfied

V̇ ≤ − 2

tpη
(2V + V

1+η
2 + V

3−η
2 ) (9)

Hence, the system is predefined time stability, and the set-

tling time depends on the predefined time parameter tp, and

the settling time tc < tp.

proof: since the Lyapunov function with an initial condition

V0 > 0 converges to Vf > 0 in the time tc, the equation can

be expressed as

V̇ ≤ − 2
tpη

(2V + V
1+η
2 + V

3−η
2 )

tc ≤ − tpη
2

∫ Vf

V0

1

2V+V
1+η
2 +V

3−η
2

dV

= − tpη
2

∫ Vf

V0

1

V
1+η
2 (V

1−η
2 +2+V 1−η)

dV

= − tpη
2

∫ Vf

V0

1

V
1+η
2 (1+V

1−η
2 )

2 dV

= − tpη
2

∫ Vf

V0

1

V
1+η
2 (1+V

1−η
2 )

2 dV

= −tp
∫ Vf

V0

1

(1+V
1−η
2 )

2 dV
1−η
2

= tp(1− 1

1+V
1−η
2

0

) ≤ tp

(10)

This completes the proof

3 The design of PTNTSM controller

Denote σd is the desired attitude, define the tracking error{
e1 = σ − σd

e2 = σ̇ − σ̇d
(11)

Assumption1: the leader spacecraft σd, σ̇d, σ̈d and the dis-

turbance d is bounded.

A novel nonsingular terminal sliding surface proposed

s = ė1+
2

tpη
(k0e1+k1sig

α
β (e1)+k2sig

2−α
β (e1)+k3sign(e1))

(12)

where s and e1 are the sliding mode function and attitude

velocity tracking error of spacecraft, respectively, and the

parameter α > 0, β > 0, ki > 0 i = 0, 1, 2, 3 are positive

constant and α < β, η = α
β when s = 0 there have

ė1 =
2

tpη
(−k0e1−k1sig

α
β (e1)−k2sig

2−α
β (e1)−k3sign(e1))

(13)
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construct a Lyapunov function

V1 =
1

2
e21 (14)

taking the derivative of

V̇1 = e1ė1 = e1(
2

tpη
(−k0e1 − k1sig

α
β (e1)− k2sig

2−α
β (e1)

−k3sign(e1)))

= 2
tpη

(−e1(k0e1 + k1sign(e1)|e1|
α
β + k2sign(e1)|e1|2−

α
β

+k3sign(e1)))

= 2
tpη

(−k0e
2
1 − k1|e1|

α+β
β − k2|e1|

3β−α
β − k3 |e1|)

≤ − 2
tpη

(k0e
2
1 − k1|e1|

α+β
β − k2|e1|

3β−α
β )

≤ − 2
tpμ

(2V1 + V
1+μ
2

1 + V
3−μ
2

1 )

(15)

Then, the sliding mode reaching law can be defined as:

ṡ = l0s+
2

tpη
(l1sig

p
q (s)+ l2sig

2− p
q (s)+ l3sign(s)) (16)

taking the derivative of s

ṡ = ė2+
2

tpη
(k0e2 + k1

α
β |e1|

α
β −1

e2 + k2
2β−α

β |e1|
α
β −1

e2 + k3 |e1| e2)
(17)

moreover, the singularity problem will occur if e1 = 0 and

ė1 �= 0, when the term α
β − 1 < 0. so, saturation function is

addressed by the literature [21] to solve the singularity prob-

lem.

To limit the amplitude of the singularity term e
α
β −1

1 , satu-

ration function is applied in the controller and it is defined

as:

sat(m,n) =

{
m,n > |m|
nsign(m), |n| ≤ m

(18)

According to the lemma 1, for the spacecraft attitude fully

actuated system model (5), the following controller is pro-

posed in this paper.

u = −L−1(x(0−1))(A(0−1)σ(0−1) + us) (19)

and the u1 is given as

us = Ġ(σ)G−1(σ)σ̇ +G(σ)[J−1(G−1(σ)σ̇)× · J(G−1(σ)σ̇)]

−σ̈d +G(σ)J−1d+ 2
tpη

(k0e1 + sat(k1
α
β sig

α
β −1(e1)e2, h)

+k2
2β−α

β sig1−
α
β (e1)e2 + k3sign(e1)e2 − l0s− l1sig

p
q (s)

−l2sig
2− p

q (s)− l3sign(s))
(20)

where u0 is the linear state feedback based on the fully actu-

ated system, us is a nonsingular terminal sliding mode con-

troller for nonlinear dynamic compensation to achieve pre-

defined time convergence control.

4 Simulation

In order to verify the effectiveness of the designed control

method, considering the tracking system composed of a

leader spacecraft and a follower spacecraft, the simulation

parameters are defined as follows:

The inertia matrix of the spacecraft is defined as

J = [5.86, 0, 0; 0, 2.56, 0; 0, 0, 6.88].
The sine wave disturbance d =

0 2 4 6 8 10 12 14 16 18 20
time(s)

-1

-0.8

-0.6

-0.4

0

0.2

0.4

0.6

0.8

1

At
tit

ud
e 

tra
ck

in
g

 er
ro

r

e11

e12
e13

Fig. 2: Attitude tracking error under the controller (20)

Fig. 3: Attitude tracking error velocity error under the con-

troller (20)

0.1[sin(0.1t), cos(0.2t), sin(0.3t)]T of the spacecraft is

randomly added.

The initial attitude and initial angular velocity of the target

spacecraft are σd = [0, 0, 0]T .

The initial attitude and initial angular velocity of the

following spacecraft is σ = [0.5825; 0.− 5225; 0.1825]T ,

ω = [0, 0, 0]T . The predefined time tp = 10s, it is means

the attitude tracking error will converge to a small region in

10s.

The controller parameters are given by k0 = l0 = 5
,k1 = k2 = l1 = l2 = 10, k3 = l3 = 3,α = 7, β = 9,

p = 5, q = 9, h = 100, A0 = diag[−8,−5,−6],
A1 = diag[−7,−12,−3] and the minimum and maximum

control inputs are set to umin = −5N/m, umax = 5N/m.

Attitude tracking error (e1) and attitude tracking velocity

error (e2) under the controller (20) is shown in fig.2 and

fig.3, from the figures, it can be observed that all tracking

errors are guaranteed to converge to small regions within

the predefined time 10s. The results show that the proposed

control scheme can achieve attitude tracking even if there

are disturbances. The curve of sliding mode and control

input are presented in fig.4 and fig.5, it is evident to see that

no chattering occurs and the control inputs are continuous.

The sliding mode surface converges to within 10s.

In order to prove the superiority of the fully actuated sys-

tem method, this paper applies the controller without the

fully actuated method as a comparison, and we use u2 as

the controller.

u2 = B(σ)us (21)
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Fig. 5: Response of the controller (20)
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Fig. 6: Attitude tracking error under the controller (21)

Fig. 7: Attitude tracking velocity error under the controller

(21)

the simulation are shown in fig.6 and fig.7, one can see that

the system can converge to a small regions in the predifined

time 10s. But the control performance is not as good as the

controller (20).

Therefore, the method designed in this paper is effective and

can enable the spacecraft system to complete the attitude

tracking task in a predefined time, which can be applied in

actual working conditions because its upper bound of con-

vergence time is decidable.

5 Conclusion

In this paper, the predefined time terminal sliding mode

method and fully actuated system method are used to suc-

cessfully accomplish the attitude tracking of the spacecraft

in a predefined time. On this basis, the non-singular termi-

nal sliding mode surface is used to design the control law,

which ensures the predefined time convergence of the atti-

tude tracking error in the presence of external disturbances

and the effectiveness of the control scheme is verified by nu-

merical simulation.
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